-
Software Engineering

e | Seventh Edition

Roger S. Pressman

Software Engineering

A PRACTITIONER’S APPROACH

Software Engineering

A PRACTITIONER’S APPROACH

SEVENTH EDITION

Roger S. Pressman, Ph.D.

5 Higher Education

Boston Burr Ridge, IL Dubuque, IA° New York San Francisco St. Louis
Bangkok Bogotda Caracas Kuala Lumpur Lisbon London Madrid Mexico City
Milan Montreal New Delhi Santiago Seoul Singapore Sydney Taipei Toronto

The McGraw-Hill Companies

5 Higher Education

SOFTWARE ENGINEERING: A PRACTITIONER'S APPROACH, SEVENTH EDITION

Published by McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc., 1221 Avenue of the Americas, New
York, NY 10020. Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved. Previous editions © 2005,
2001, and 1997. No part of this publication may be reproduced or distributed in any form or by any means, or stored
in a database or retrieval system, without the prior written consent of The McGraw-Hill Companies, Inc., including,
but not limited to, in any network or other electronic storage or transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside
the United States.

This book is printed on acid-free paper.
1234567890DOC/DOCO09

ISBN 978-0-07-337597-7
MHID 0-07-337597-7

Global Publisher: Raghothaman Srinivasan

Director of Development: Kristine Tibbetts

Senior Marketing Manager: Curt Reynolds

Senior Managing Editor: Faye M. Schilling

Lead Production Supervisor: Sandy Ludovissy
Senior Media Project Manager: Sandra M. Schnee
Associate Design Coordinator: Brenda A. Rolwes
Cover Designer: Studio Montage, St. Louis, Missouri
(USE) Cover Image: © The Studio Dog/Gelty Images
Compositor: Macmillan Publishing Solutions
Typeface: 8.5/13.5 Leawood

Printer: R. R. Donnelley Crawfordsville, IN

Library of Congress Cataloging-in-Publication Data

Pressman, Roger S.
Software engineering : a practitioner’s approach / Roger S. Pressman. — 7th ed.
p. cm.
Includes index.
ISBN 978-0-07-337597-7 — ISBN 0-07-337597-7 (hard copy : alk. paper)
1. Software engineering. I. Title.
QA76.758.P75 2010
005.1—dc22
2008048802

www.mhhe.com

http://www.mhhe.com

In loving memory of my
father who lived 94 years
and taught me, above all,
that honesty and integrity

were the best guides for

my journey through life.

ABOUT THE AUTHOR

Roger S. Pressman is an internationally recognized authority in software process
improvement and software engineering technologies. For almost four decades,
he has worked as a software engineer, a manager, a professor, an author, and a con-
sultant, focusing on software engineering issues.

As an industry practitioner and manager, Dr. Pressman worked on the development
of CAD/CAM systems for advanced engineering and manufacturing applications. He
has also held positions with responsibility for scientific and systems programming.

After receiving a Ph.D. in engineering from the University of Connecticut,
Dr. Pressman moved to academia where he became Bullard Associate Professor of
Computer Engineering at the University of Bridgeport and director of the university’s
Computer-Aided Design and Manufacturing Center.

Dr. Pressman is currently president of R.S. Pressman & Associates, Inc., a consulting
firm specializing in software engineering methods and training. He serves as principal
consultant and has designed and developed Essential Software Engineering, a complete
video curriculum in software engineering, and Process Advisor, a self-directed system
for software process improvement. Both products are used by thousands of companies
worldwide. More recently, he has worked in collaboration with EdistaLearning in India
to develop comprehensive Internet-based training in software engineering.

Dr. Pressman has written many technical papers, is a regular contributor to
industry periodicals, and is author of seven technical books. In addition to Software
Engineering: A Practitioner’s Approach, he has co-authored Web Engineering
(McGraw-Hill), one of the first books to apply a tailored set of software engineering
principles and practices to the development of Web-based systems and applications.
He has also written the award-winning A Manager’s Guide to Software Engineering
(McGraw-Hill); Making Software Engineering Happen (Prentice Hall), the first book to
address the critical management problems associated with software process
improvement; and Software Shock (Dorset House), a treatment that focuses on soft-
ware and its impact on business and society. Dr. Pressman has been on the editorial
boards of a number of industry journals, and for many years, was editor of the
“Manager” column in IEEE Software.

Dr. Pressman is a well-known speaker, keynoting a number of major industry
conferences. He is a member of the IEEE, and Tau Beta Pi, Phi Kappa Phi, Eta Kappa
Nu, and Pi Tau Sigma.

On the personal side, Dr. Pressman lives in South Florida with his wife, Barbara.
An athlete for most of his life, he remains a serious tennis player (NTRP 4.5) and a
single-digit handicap golfer. In his spare time, he has written two novels, The Aymara

vi Bridge and The Puppeteer, and plans to begin work on another.

CHAPTER

1

CONTENTS AT A GLANCE

Software and Software Engineering 1

Requirements Modeling: Scenarios, Information, and Analysis Classes 148

Requirements Modeling: Flow, Behavior, Patterns, and WebApps 186

Testing Conventional Applications 481
Testing Object-Oriented Applications 511

Formal Modeling and Verification 557
Software Configuration Management 584

PART ONE THE SOFTWARE PROCESS 29
CHAPTER 2 Process Models 30
CHAPTER 3 Agile Development 65

PART TWO MODELING 95
CHAPTER 4 Principles that Guide Pracfice 96
CHAPTER 5 Understanding Requirements 119
CHAPTER 6
CHAPTER 7
CHAPTER 8 Design Concepts 215
CHAPTER 9 Architectural Design = 242
CHAPTER 10 Component-level Design 276
CHAPTER 11 User Inferfoce Design 312
CHAPTER 12 Pattern-Based Design 347
CHAPTER 13 WebApp Design 373

PART THREE QUALITY MANAGEMENT 397
CHAPTER 14 Qudlity Concepts 398
CHAPTER 15 Review Techniques 416
CHAPTER 16 Software Quality Assurance 432
CHAPTER 17 Software Tesfing Strategies 449
CHAPTER 18
CHAPTER 19
CHAPTER 20 Tesfing Web Applications 529
CHAPTER 21
CHAPTER 22
CHAPTER 23 Product Mefrics 613

PART FOUR MANAGING SOFTWARE PROJECTS 45

CHAPTER
CHAPTER

24
25

Project Management Concepts 646

Process and Project Mefrics 666
vii

viii

PART FIVE

PART TWO CONTENTS AT A GLANCE

CHAPTER 26
CHAPTER 27
CHAPTER 28
CHAPTER 29

Estimation for Software Projects 691
Project Scheduling 721
Risk Management 744

Maintenance and Reengineering 761

ADVANCED TOPICS 735

CHAPTER 30
CHAPTER 31
CHAPTER 32

APPENDIX 1
APPENDIX 2
REFERENCES
INDEX 889

Software Process Improvement 786
Emerging Trends in Software Engineering 808
Concluding Comments 833

An Infroduction to UML 841
Object-Oriented Concepts 863
871

TABLE OF CONTENTS

Preface xxv
CHAPTER 1 SOFTWARE AND SOFTWARE ENGINEERING 1

1.1 The Nature of Software 3

1101 Defining Software 4

1.1.2 Software Application Domains 7
1.1.3 legacy Software 9

The Unique Nature of VWebApps 10
Software Engineering 12

The Software Process 14

Software Engineering Practice 17

1.5.1 The Essence of Practice 17
1.5.2 General Principles 19

1.6 Software Myths 21

1.7 How It All Starts 24

1.8 Summary 25

PROBLEMS AND POINTS TO PONDER 25

FURTHER READINGS AND INFORMATION SOURCES 26

N w o

PART ONE THE SOFTWARE PROCESS 29

CHAPTER 2 PROCESS MODELS 30

2.1 A Generic Process Model 31
2.1.1 Defining a Framework Activity 32
2.1.2 Identifying a Task Set 34
2.1.3 Process Patterns 35

2.2 Process Assessment and Improvement 37
2.3 Prescriptive Process Models 38
2.3.1 The Waterfall Model 39
2.3.2 Incremental Process Models 41

2.3.3 Evolutionary Process Models 42

2.3.4 Concurrent Models 48

2.3.5 A Final Word on Evolutionary Processes 49
2.4 Specialized Process Models 50

2.4.1 Component-Based Development 50

2.4.2 The Formal Methods Model 51

243 AspectOriented Software Development 52
2.5 The Unified Process 53

2.5.1 A Brief History 54

252 Phases of the Unified Process 54
2.6 Personal and Team Process Models 56

2.6.1 Personal Software Process (PSP) 57

2.6.2 Team Software Process (TSP) 58
2.7 Process Technology 59

2.8 Product and Process 60 ix

X TABLE OF CONTENTS

2.9 Summary 61
PROBLEMS AND POINTS TO PONDER 62
FURTHER READINGS AND INFORMATION SOURCES 6.3

CHAPTER 3 AGILE DEVELOPMENT 65

3.1 What Is Agilitye 67

3.2 Agility and the Cost of Change 67

3.3 What Is an Agile Process? 68
3.3.1 Agility Principles 69
3.3.2 The Politics of Agile Development 70
3.3.3 Human Facfors /1

3.4 Extreme Programming (XP) /2

3.4.1 XP Values 72
3.4.2 The XP Process 73
3.4.3 Industrial XP 77

3.4.4 The XP Debate 78

3.5 Other Agile Process Models 80
3.5.1 Adaptive Software Development (ASD) 81
3.5.2 Scrum 82
3.5.3 Dynamic Systems Development Method (DSDM| 84
3.54 Crystal 85
3.5.5 Feature Driven Development [FDD] 86
3.5.6 Lean Software Development (LSD) 87
3.57 Agile Modeling [AM] 88
358 Agile Unified Process [AUP) 89

3.6 ATool Set for the Agile Process 91

3.7 Summary @1

PROBLEMS AND POINTS TO PONDER 92

FURTHER READINGS AND INFORMATION SOURCES @3

PART TWO MODELING 95

CHAPTER 4 PRINCIPLES THAT GUIDE PRACTICE 96

4. Software Engineering Knowledge 97
4.2 Core Principles 98
4.2.1 Principles That Guide Process 98

4272 Principles That Guide Practice 99
4.3 Principles That Guide Each Framework Activity 101
4.3.1 Communication Principles 101
4.3.2 Planning Principles 103
4.3.3 Modeling Principles 105
4.3.4 Construction Principles 111
4.3.5 Deployment Principles 113
4.4 Summary 115
PROBLEMS AND POINTS TO PONDER 116
FURTHER READINGS AND INFORMATION SOURCES 116

CHAPTER 5 UNDERSTANDING REQUIREMENTS 119

5.1 Requirements Engineering 120
52 Establishing the Groundwork 125
5.2.1 Identifying Stakeholders 125

TABLE OF CONTENTS

522 Recognizing Multiple Viewpoints 126
523 Working toward Collaboration 126
524 Asking the First Questions 127

5.3 Eliciting Requirements 128
5.3.1 Collaborative Requirements Gathering 128
532 Quality Function Deployment 131
5.3.3 Usage Scenarios 132
5.3.4 Elicitation Work Products 133

5.4 Developing Use Cases 133

5.5 Building the Requirements Model 138
551 Elements of the Requirements Model 139
552 Analysis Patterns 142

5.6 Negotiating Requirements 142

5.7 Validating Requirements 144

5.8 Summary 145

PROBLEMS AND POINTS TO PONDER 145

FURTHER READINGS AND INFORMATION SOURCES 146

CHAPTER 6 REQUIREMENTS MODELING: SCENARIOS, INFORMATION,
AND ANALYSIS CLASSES 148

6.1 Requirements Analysis 149
6.1.1 Overall Objectives and Philosophy 150
6.1.2 Analysis Rules of Thumb 151
6.1.3 Domain Analysis 151
6.1.4 Requirements Modeling Approaches 153
6.2 ScenarioBased Modeling 154
6.2.1 Creating a Preliminary Use Case 155
6.2.2 Refining a Preliminary Use Case 158
6.2.3 Writing a Formal Use Case 159
6.3 UML Models That Supplement the Use Case 161
6.3.1 Developing an Activity Diagram 161
6.3.2 Swimlane Diagrams 162
6.4 Data Modeling Concepts 164
6.4.1 Data Objects 164
6.4.2 Data Attributes 164
6.4.3 Relationships 165
6.5 ClassBased Modeling 167
6.5.1 Identifying Analysis Classes 167
6.5.2 Specifying Attributes 171
6.5.3 Defining Operations 171
6.54 Class-Responsibility-Collaborator (CRC) Modeling 173
6.5.5 Associafions and Dependencies 180
6.5.6 Analysis Packages 182
6.6 Summary 183
PROBLEMS AND POINTS TO PONDER 183
FURTHER READINGS AND INFORMATION SOURCES 184

CHAPTER 7 REQUIREMENTS MODELING: FLOW, BEHAVIOR, PATTERNS,
AND WEBAPPS 186

7.1 Requirements Modeling Strategies 186
7.2 Flow-Oriented Modeling 187

xii

TABLE OF CONTENTS

7.2 Creafing a Data Flow Model 188
7.2.2 Creafing a Control Flow Model 191
7.2.3 The Control Specification 191
724 The Process Specification 192

7.3 Creating a Behavioral Model 195

7.3.1 Identifying Events with the Use Case 195
7.3.2 State Representations 196
7.4 Patterns for Requirements Modeling 199
7.4 Discovering Analysis Patterns 200
7.4.2 A Requirements Pattern Example: Actuator-Sensor
7.5 Requirements Modeling for WebApps 205
7.5.1 How Much Analysis Is Enough? 205

7.5.2 Requirements Modeling Input - 206
7.5.3 Requirements Modeling Output 207
7.54 Content Model for WebApps 207
7.55 Inferaction Model for WebApps 209
7.5.6 Functional Model for WebApps 210
7.57 Configuration Models for WebApps 211
7.5.8 Navigation Modeling 212

7.6 Summary 213

PROBLEMS AND POINTS TO PONDER 213

FURTHER READINGS AND INFORMATION SOURCES 214

CHAPTER 8 DESIGN CONCEPTS 215

200

8.1 Design within the Confext of Software Engineering 216
8.2 The Design Process 219
8.2.1 Software Quality Guidelines and Atfributes 219

8.2.2 The Evolution of Software Design 221
8.3 Design Concepts 222

8.3.1 Abstraction 223

8.3.2 Architecture 223

8.3.3 Patterns 224

8.3.4 Separation of Concerns 225

8.3.5 Modularity 225

8.3.6 Information Hiding 226

8.3.7 Functional Independence 227

8.3.8 Refinement 228

8.3.9 Aspects 228

8.3.10 Refactoring 229

8.3.11 ObjectOriented Design Concepts 230

8.3.12 Design Classes 230
8.4 The Design Model 233

8.4.1 Data Design Elements 234
8.4.2 Architectural Design Elements 234
8.4.3 Inferface Design Elements 235

8.4.4 Componentlevel Design Elements 237
8.4.5 Deploymentlevel Design Elements 237
8.5 Summary 239
PROBLEMS AND POINTS TO PONDER 240
FURTHER READINGS AND INFORMATION SOURCES 240

TABLE OF CONTENTS xiii

CHAPTER 9 ARCHITECTURAL DESIGN 242

9.1 Software Architecture 243
Q.1.1 What Is Architecture? 243
9.1.2 Why Is Architecture Important? 245
9.1.3 Architectural Descriptions 245
9.1.4 Architectural Decisions 246
Q.2 Architectural Genres 246
9.3 Architectural Styles 249
9.3.1 A Brief Taxonomy of Architectural Styles 250
9.3.2 Architectural Patterns 253
9.3.3 Organization and Refinement 255
9.4 Architectural Design 255
Q.4.1 Representing the System in Confext 256
9.4.2 Defining Archetypes 257
9.4.3 Refining the Architecture into Components 258
9.4.4 Describing Instanfiations of the System 260
) Assessing Alternative Architectural Designs 261
9.5.1 An Architecture Trade-Off Analysis Method 262
9.5.2 Architectural Complexity 263
9.5.3 Architectural Description languages 264
9.6 Architectural Mapping Using Data Flow 265
9.6.1 Transform Mapping 265
9.6.2 Refining the Architectural Design 272
Q.7 Summary 273
PROBLEMS AND POINTS TO PONDER 2/4
FURTHER READINGS AND INFORMATION SOURCES ~ 2/4

CHAPTER 10 COMPONENT-LEVEL DESIGN 276

10.1 What Is a Componente 277
10.1.1 An ObjectOriented View 277
10.1.2 The Traditional View 279
10.1.3 A ProcessRelated View 281
10.2 Designing Class-Based Components 282
10.2.1 Basic Design Principles 282
10.2.2 Componentlevel Design Guidelines 285
10.2.3 Cohesion 286
10.2.4 Coupling 288
10.3 Conducting Componentlevel Design 290
10.4 Componentlevel Design for VWebApps 296
10.4.1 Confent Design at the Component level 297
10.4.2 Functional Design af the Component level 297
10.5 Designing Traditional Components 298
10.5.1 Graphical Design Notation 299
10.5.2 Tabular Design Notation 300
10.5.3 Program Design Llanguage 301
10.6 ComponentBased Development 303
10.6.1 Domain Engineering 303
10.6.2 Component Qualification, Adaptation, and Composition 304
10.6.3 Analysis and Design for Reuse 306
10.6.4 Clossifying and Refrieving Components 307

xXiv

TABLE OF CONTENTS

10.7 Summary 309
PROBLEMS AND POINTS TO PONDER 310
FURTHER READINGS AND INFORMATION SOURCES 311

CHAPTER 11 USER INTERFACE DESIGN 312

11.1 The Golden Rules 313
11.1.1 Place the User in Control 313
11.1.2 Reduce the User's Memory load 314
11.1.3 Make the Interface Consistent 316
11.2 User Interface Analysis and Design 317
11.2.1 Inferface Analysis and Design Models 317
11.2.2 The Process 319
11.3 Interface Analysis 320
11.3.1 User Analysis 321
11.3.2 Task Analysis and Modeling 322
11.3.3 Analysis of Display Content 32/
11.3.4 Analysis of the Work Environment 328
11.4 Interface Design Steps 328
11.4.1 Applying Interface Design Steps 329
11.4.2 User Inferface Design Patterns 330
11.4.3 Design Issues 331
11.5 WebApp Interface Design 335
11.5.1 Inferface Design Principles and Guidelines 336
11.5.2 Inferface Design Workflow for WebApps 340
11.6 Design Evaluation 342
11.7 Summary 344
PROBLEMS AND POINTS TO PONDER 345
FURTHER READINGS AND INFORMATION SOURCES 346

CHAPTER 12 PATTERN-BASED DESIGN 347

12.1 Design Patterns 348
12.1.1 Kinds of Patterns 349
12.1.2 Frameworks 352
12.1.3 Describing a Pattern 352
12.1.4 Pattern Llanguages and Repositories 353
12.2 Pattern-Based Software Design 354
12.2.1 Pattern-Based Design in Context 354
12.2.2 Thinking in Patterns 356
12.2.3 Design Tasks 357
12.2.4 Building a Pattern-Organizing Table 358
12.2.5 Common Design Mistakes 359
12.3 Architectural Patterns 360
12.4 Componentlevel Design Patterns 362
12.5 User Interface Design Patterns 364
12.6 WebApp Design Patlerns 368
12.6.1 Design Focus 368
12.6.2 Design Granularity 369
12.7 Summary 370
PROBLEMS AND POINTS TO PONDER 371
FURTHER READING AND INFORMATION SOURCES ~ 3/2

TABLE OF CONTENTS

CHAPTER 13 WEBAPP DESIGN 373

13.1 WebApp Design Qudlity 374
13.2 Design Goals 377
13.3 A Design Pyramid for WebApps 378
13.4 WebApp Interface Design 378
13.5 Aesthefic Design 380
13.5.1 Layout Issues 380
13.5.2 Graphic Design Issues 381
13.6 Confent Design 382
13.6.1 Confent Objects 382
13.6.2 Content Design lssues 382
13.7 Architecture Design 383
13.7.1 Content Architecture 384
13.7.2 WebApp Architecture 386
13.8 Navigation Design 388
13.8.1 Navigation Semantics 388
13.8.2 Navigation Syntax 389
13.9 Componentlevel Design 390
13.10 ObjectOriented Hypermedia Design Method (OOHDM) 390
13.10.1 Conceptual Design for OOHDM 391
13.10.2 Navigational Design for OOHDM = 391
13.10.3 Abstract Interface Design and Implementation 392
13.11 Summary 393
PROBLEMS AND POINTS TO PONDER 394
FURTHER READINGS AND INFORMATION SOURCES 395

PART THREE QUALITY MANAGEMENT 397

CHAPTER 14 QUALITY CONCEPTS 398

14.1 What Is Quality2 399
14.2 Software Quality 400
14.2.1 Garvin's Quality Dimensions 401
14.2.2 McCall's Quality Foctors 402
14.2.3 ISO 9126 Quality Factors 403
14.2.4 Targeted Quality Factors 404
14.2.5 The Transition to a Quantitative View 405
14.3 The Software Quality Dilemma 406
14.3.1 "Good Enough” Software 406
14.3.2 The Cost of Quality 407
14.3.3 Risks 409
14.3.4 Negligence and liability 410
14.3.5 Quality and Security 410
14.3.6 The Impact of Management Actions 411
14.4 Achieving Software Quality 412
14.4.1 Software Engineering Methods 412
14.4.2 Project Management Techniques 412
14.4.3 Qudlity Confrol 412
14.4.4 Quality Assurance 413
14.5 Summary 413
PROBLEMS AND POINTS TO PONDER 414
FURTHER READINGS AND INFORMATION SOURCES 414

xvi

TABLE OF CONTENTS

CHAPTER 15 REVIEW TECHNIQUES 416

15.1 Cost Impact of Software Defects 417
15.2 Defect Amplification and Removal 418
15.3 Review Metrics and Their Use 420
15.3.1 Analyzing Metrics 420
15.3.2 Cost Effectiveness of Reviews 421
154 Reviews: A Formality Spectrum 423
15.5 Informal Reviews 424
15.6 Formal Technical Reviews 426
15.6.1 The Review Meeting 426
15.6.2 Review Reporting and Record Keeping 427
15.6.3 Review Guidelines 427
15.6.4 Sample-Driven Reviews 429
157 Summary 430
PROBLEMS AND POINTS TO PONDER 43]
FURTHER READINGS AND INFORMATION SOURCES 431

CHAPTER 16 SOFTWARE QUALITY ASSURANCE

432

16.1 Background Issues 433
16.2 Elements of Software Quality Assurance 434
16.3 SQA Tasks, Goals, and Metrics 436
16.3.1 SQA Tasks 436
16.3.2 Gouals, Attributes, and Metrics 437
16.4 Formal Approaches to SQA 438
16.5 Statistical Software Quality Assurance 439
16.5.1 A Generic Example 439
16.5.2 Six Sigma for Software Engineering 441
16.6 Software Reliability 442
16.6.1 Measures of Reliability and Availability 442
16.6.2 Software Safety 443
16.7 The ISO Q000 Qudlity Standards 444
16.8 The SQA Plan 445
16.9 Summary 446
PROBLEMS AND POINTS TO PONDER 44/
FURTHER READINGS AND INFORMATION SOURCES 447

CHAPTER 17 SOFTWARE TESTING STRATEGIES 449

17.1 A Strategic Approach fo Software Testing 450
17.1.1 Verification and Validation 450

17.1.2 Organizing for Software Testing 451

17.1.3 Software Testing Strategy—The Big Picture 452

17.1.4 Criteria for Complefion of Testing 455
17.2 Strategic Issues 455
17.3 Test Strategies for Conventional Software 456
17.3.1 Unit Testing 456
17.3.2 Integration Testing 459
17.4 Test Strategies for ObjectOriented Software 465
17.4.1 Unit Testing in the OO Context 466
17.4.2 Infegration Testing in the OO Context 466
17.5 Test Strategies for WebApps 467
17.6 Volidation Testing 467

TABLE OF CONTENTS xvii

17.6.1 Validation-Test Criteria 468
17.6.2 Configuration Review 468
17.6.3 Alpha and Beta Testing 468
17.7 System Testing 470
17.7.1 Recovery Testing 470
17.7.2 Security Testing 470
17.7.3 Stress Testing 471
17.7.4 Performance Testing 471
17.7.5 Deployment Testing 472
17.8 The Art of Debugging 473
17.8.1 The Debugging Process 473
17.8.2 Psychological Considerations 474
17.8.3 Debugging Strategies 475
17.8.4 Correcting the Error 477
17.9 Summary 478
PROBLEMS AND POINTS TO PONDER ~ 4/8
FURTHER READINGS AND INFORMATION SOURCES ~ 4/9

CHAPTER 18 TESTING CONVENTIONAL APPLICATIONS 481

18.1 Software Testing Fundamentals 482
18.2 Infernal and External Views of Testing 484
18.3 White-Box Testing 485
18.4 Basis Path Testing 485
18.4.1 Flow Graph Notafion 485
18.4.2 Independent Program Paths 487
18.4.3 Deriving Test Cases 489
18.4.4 Graph Mafrices 491
18.5 Confrol Structure Testing 492
18.5.1 Condition Testing 492
18.5.2 Data Flow Testing 493
18.5.3 loop Testing 493
18.6 BlackBox Testing 495
18.6.1 Graph-Based Testing Methods 495
18.6.2 Equivalence Partitioning 497
18.6.3 Boundary Value Analysis 498
18.6.4 Orthogonal Array Testing 499
Model-Based Testing 502
Testing for Specialized Environments, Architectures, and Applications 503
18.8.1 Testing GUIs 503
18.8.2 Testing of Client-Server Architectures 503
18.8.3 Testing Documentation and Help Facilities 505
18.8.4 Testing for Real-Time Systems 506
18.9 Patterns for Software Testing 507
18.10 Summary 508
PROBLEMS AND POINTS TO PONDER 509
FURTHER READINGS AND INFORMATION SOURCES 510

0 o
© N

CHAPTER 19 TESTING OBJECT-ORIENTED APPLICATIONS 511

19.1 Broadening the View of Testing 512
19.2 Testing OOA and OOD Models 513

xXviii

TABLE OF CONTENTS

19.2.1 Correctness of OOA and OOD Models 513
19.2.2 Consistency of ObjectOriented Models 514
19.3 Object-Oriented Testing Strategies 516
19.3.1 Unit Testing in the OO Context 516
19.3.2 Infegration Testing in the OO Context 516
19.3.3 Validation Testing in an OO Context 517
19.4 ObjectOriented Testing Methods 517
19.4.1 The TestCase Design Implications of OO Concepts 518
19.4.2 Applicability of Conventional TestCase Design Methods 518
19.4.3 FaultBased Testing 519
19.4.4 Test Cases and the Class Hierarchy 519
19.4.5 Scenario-Based Test Design 520
19.4.6 Testing Surface Structure and Deep Structure 522
19.5 Testing Methods Applicable at the Class Level 522
19.5.1 Random Testing for OO Classes 522
19.5.2 Partition Testing at the Class level 524
19.6 Inferclass TestCase Design 524
19.6.1 Muliiple Class Testing 524
19.6.2 Tests Derived from Behavior Models 526
19.7 Summary 527
PROBLEMS AND POINTS TO PONDER 528
FURTHER READINGS AND INFORMATION SOURCES 528

CHAPTER 20 TESTING WEB APPLICATIONS 529

20.1 Testing Concepts for WebApps 530
20.1.1 Dimensions of Quality 530
20.1.2 Errors within @ WebApp Environment 531
20.1.3 Testing Strategy 532
20.1.4 Test Planning 532

20.2 The Testing Process—An Overview 533

20.3 Content Testing 534
20.3.1 Confent Testing Objectives 534
20.3.2 Database Tesfing 535

20.4 User Interface Testing 537
20.4.1 Inferface Testing Strategy 537
20.4.2 Testing Interface Mechanisms 538
20.4.3 Tesfing Interface Semantics 540
20.4.4 Usability Tests 540
20.4.5 Compatibility Tests 542

20.5 Componentlevel Testing 543

20.6 Navigation Testing 545
20.6.1 Testing Navigation Syntax 545
20.6.2 Testing Navigation Semantics 546

20.7 Configuration Testing 547
20.7.1 ServerSide Issues 547
20.7.2 Client-Side Issues 548

20.8 Security Testing 548

20.9 Performance Testing 550
20.9.1 Performance Testing Objectives 550
20.9.2 load Testing 551
20.9.3 Stress Testing 552

TABLE OF CONTENTS xXix

20.10 Summary 553
PROBLEMS AND POINTS TO PONDER 554
FURTHER READINGS AND INFORMATION SOURCES 555

CHAPTER 21 FORMAL MODELING AND VERIFICATION 557

21.1 The Cleanroom Strategy 558
21.2 Functional Specification 560
21.2.1 Black-Box Specification 561
21.2.2 State-Box Specification 562
21.2.3 ClearBox Specification 562
21.3 Cleanroom Design 563
21.3.1 Design Refinement 563
21.3.2 Design Verification 564
21.4 Cleanroom Testing 566
21.4.1 Statistical Use Testing 566
21.4.2 Certification 567
.5 Formal Methods Concepts 568
21.6 Applying Mathematical Notation for Formal Specification 571
7 Formal Specification languages 573
21.7.1 Object Constraint Language [OCL) 574
21.7.2 The Z Specification language 577
21.8 Summary 580
PROBLEMS AND POINTS TO PONDER 581
FURTHER READINGS AND INFORMATION SOURCES 582

1
1

CHAPTER 22 SOFTWARE CONFIGURATION MANAGEMENT 584

22.1 Software Configuration Management 585
22.1.1 An SCM Scenario 586
22.1.2 Elements of a Configuration Management System 587
22.1.3 Baselines 587
22.1.4 Software Configuration ltems 589
22.2 The SCM Repository 590
22.2.1 The Role of the Repository 590
22.2.2 General Features and Content 591
22.2.3 SCM Features 592
22.3 The SCM Process 593
22.3.1 Identification of Objects in the Software Configuration 594
22.3.2 Version Control 595
22.3.3 Change Control - 596
22.3.4 Configuration Audit 599
22.3.5 Status Reporting 600
22.4 Configuration Management for WebApps 601
22.4.1 Dominant Issues 601
22.4.2 WebApp Configuration Objects 603
22.4.3 Content Management 603
22.4.4 Change Management 606
22.4.5 Version Confrol 608
22.4.6 Auditing and Reporting 609
22.5 Summary 610
PROBLEMS AND POINTS TO PONDER 11
FURTHER READINGS AND INFORMATION SOURCES 612

XX

PART FOUR

TABLE OF CONTENTS

CHAPTER 23 PRODUCT METRICS 613

23.1

23.2

23.3

23.4
23.5
23.6

23.7
23.8

A Framework for Product Metrics 614

23.1.1 Measures, Metrics, and Indicators 614

23.1.2 The Challenge of Product Mefrics 615

23.1.3 Measurement Principles 616

23.1.4 Goal-Oriented Software Measurement 617
23.1.5 The Attributes of Effective Software Metrics 618
Metrics for the Requirements Model 619

23.2.1 Function-Based Metrics 620

23.2.2 Metrics for Specification Quality 623

Metrics for the Design Model 624

23.3.1 Architectural Design Metrics 624

23.3.2 Metrics for Object-Oriented Design 627
23.3.3 Class-Oriented Metrics—The CK Mefrics Suite 628
23.3.4 Class-Oriented Metrics—The MOOD Metrics Suife 631
23.3.5 OO Metrics Proposed by Lorenz and Kidd 632
23.3.6 Componentlevel Design Metrics 632

23.3.7 Operation-Oriented Mefrics 634

23.3.8 User Inferface Design Mefrics 635

Design Metrics for WebApps 636

Metrics for Source Code 638

Metrics for Testing 639

23.6.1 Halstead Metrics Applied o Testing 639
23.6.2 Metrics for Object-Oriented Testing 640
Metrics for Maintenance 641

Summary 642

PROBLEMS AND POINTS TO PONDER 642
FURTHER READINGS AND INFORMATION SOURCES 643

MANAGING SOFTWARE PROJECTS 645

CHAPTER 24 PROJECT MANAGEMENT CONCEPTS 646

241

24.2

24.3

24.4

24.5
24.6

The Management Spectrum 647
24.1.1 The People 647
24.1.2 The Product 648
24.1.3 The Process 648
24.1.4 The Project 648

People 649

24.2.1 The Stakeholders 649
24.2.2 Team leaders 650
24.2.3 The Software Team 651
24.2.4 Agile Teams 654

24.2.5 Coordination and Communication lssues 655
The Product 656
24.3.1 Software Scope 656

24.3.2 Problem Decomposition 656

The Process 657

24.4.1 Melding the Product and the Process 657
24.4.2 Process Decomposition 658

The Project 660

The W°HH Principle 661

TABLE OF CONTENTS xXxi

24.7 Critical Practices 662

24.8 Summary 0663

PROBLEMS AND POINTS TO PONDER 663

FURTHER READINGS AND INFORMATION SOURCES 664

CHAPTER 25 PROCESS AND PROJECT METRICS 666

25.1 Metrics in the Process and Project Domains 667
25.1.1 Process Metrics and Software Process Improvement 667
25.1.2 Project Metrics 670
25.2 Software Measurement 671
25.2.1 Size-Oriented Mefrics 672
25.2.2 Function-Oriented Mefrics 673
25.2.3 Reconciling LOC and FP Metrics 673
2524 ObjectOriented Mefrics 675
25.2.5 Use-Case-Oriented Mefrics 676
25.2.6 WebApp Project Metrics 677
25.3 Metrics for Software Quality 679
25.3.1 Measuring Quality 680
25.3.2 Defect Removal Efficiency 681
25.4 Infegrating Metrics within the Software Process 682
25.4.1 Arguments for Software Metrics 683
25.4.2 Establishing a Baseline 683
25.4.3 Metrics Collection, Computation, and Evaluation 684
25.5 Metrics for Small Organizations 684
25.6 Establishing a Software Mefrics Program 686
25.7 Summary 688
PROBLEMS AND POINTS TO PONDER 688
FURTHER READINGS AND INFORMATION SOURCES 689

CHAPTER 26 ESTIMATION FOR SOFTWARE PROJECTS 691

26.1 Observations on Estimation 692

26.2 The Project Planning Process 693

26.3 Software Scope and Feasibility 694

26.4 Resources 695
26.4.1 Human Resources 695
26.4.2 Reusable Software Resources 696
26.4.3 Environmental Resources 696

26.5 Software Project Esfimation 697

26.6 Decomposition Techniques 698
26.6.1 Software Sizing 698
26.6.2 Problem-Based Esfimation 699
26.6.3 An Example of LOCBased Esfimation 701
26.6.4 An Example of FP-Based Esfimation 702
26.6.5 ProcessBased Estimation 703
26.6.6 An Example of ProcessBased Estimation 704
20.6.7 Estimation with Use Cases 705
206.6.8 An Example of Use-Case-Based Estimation 706
26.6.9 Reconciling Estimates 707

26.7 Empirical Estimation Models 708
26.7.1 The Structure of Estimation Models 709
26.7.2 The COCOMO Il Model 709
26.7.3 The Software Equation 711

xXxii

TABLE OF CONTENTS

26.8 Esfimation for ObjectOriented Projects 712

26.9 Specialized Estimation Techniques 713
26.9.1 Estimation for Agile Development /13
26.9.2 Estimation for WebApp Projects 714

26.10 The Make/Buy Decision 715
26.10.1 Creating a Decision Tree 715
26.10.2 Outsourcing 717

26.11 Summary /18

PROBLEMS AND POINTS TO PONDER /19

FURTHER READINGS AND INFORMATION SOURCES /19

CHAPTER 27 PROJECT SCHEDULING 721

27.1 Basic Concepts 722
27.2 Project Scheduling 724
27.2.1 Basic Principles 725
27.2.2 The Relationship Between People and Effort 725
27.2.3 Effort Distribution 727
27.3 Defining a Task Set for the Software Project 728
27.3.1 ATask Set Example 729
27.3.2 Refinement of Software Engineering Actions 730
27.4 Defining a Task Network 731
27.5 Scheduling 732
27.5.1 Time-Line Charts 732
27.5.2 Tracking the Schedule 734
27.5.3 Tracking Progress for an OO Project 735
27.5.4 Scheduling for WebApp Projects 736
27.6 Eamed Value Analysis 739
277 Summary /41
PROBLEMS AND POINTS TO PONDER /4]
FURTHER READINGS AND INFORMATION SOURCES /43

CHAPTER 28 RISK MANAGEMENT 744

28.1 Reactive versus Proactive Risk Strategies 745
28.2 Software Risks 745
28.3 Risk Identification 747
28.3.1 Assessing Overall Project Risk 748
28.3.2 Risk Components and Drivers 749
28.4 Risk Projection 749
28.4.1 Developing a Risk Table 750
28.4.2 Assessing Risk Impact 752
28.5 Risk Refinement 754
28.6 Risk Mitigation, Monitoring, and Management 755
28.7 The RMMM Plan 757
28.8 Summary 759
PROBLEMS AND POINTS TO PONDER /59
FURTHER READINGS AND INFORMATION SOURCES /60

CHAPTER 29 MAINTENANCE AND REENGINEERING

761

29.1 Software Maintenance 762
29.2 Software Supportability 764

PART FIVE

TABLE OF CONTENTS

29.3 Reengineering 764
29.4 Business Process Reengineering 765
29.4.1 Business Processes 765
29.4.2 A BPR Model 766
29.5 Software Reengineering 768
29.5.1 A Software Reengineering Process Model 768
29.5.2 Software Reengineering Activities 770
29.6 Reverse Engineering /72
29.6.1 Reverse Engineering to Understand Data 773
29.6.2 Reverse Engineering fo Understand Processing /74
29.6.3 Reverse Engineering User Interfaces 775
29.7 Restructuring /76
29.7.1 Code Resfructuring 776
29.7.2 Data Restructuring /77
29.8 Forward Engineering /78
29.8.1 Forward Engineering for Client-Server Architectures 779
20.8.2 Forward Engineering for Object-Oriented Architectures 780
29.9 The Economics of Reengineering 780
29.10 Summary /81
PROBLEMS AND POINTS TO PONDER /82
FURTHER READINGS AND INFORMATION SOURCES /83

ADVANCED TOPICS 785

CHAPTER 30 SOFTWARE PROCESS IMPROVEMENT 786

xxiii

30.1 What Is SPI2 787
30.1.1 Approaches to SPI - 787
30.1.2 Moturity Models 789
30.1.3 Is SPI for Everyone2 790

30.2 The SPI Process /91
30.2.1 Assessment and Gap Analysis 791
30.2.2 Education and Training 793
30.2.3 Selection and Justification 793
30.2.4 Installation/Migration 794
30.2.5 Evaluation 795
30.2.6 Risk Management for SPI 795
30.2.7 Critical Success Factors 796

30.3 The CMMI 797

30.4 The People CMM 801

30.5 Other SPI Frameworks 802

30.6 SPIReturn on Investment 804

30.7 SPITrends 805

30.8 Summary 806

PROBLEMS AND POINTS TO PONDER 806

FURTHER READINGS AND INFORMATION SOURCES 80/

CHAPTER 31 EMERGING TRENDS IN SOFTWARE ENGINEERING

808

31.1 Technology Evolution 809
31.2 Observing Software Engineering Trends 811

XXiv

TABLE OF CONTENTS

31.3 Identifying “Soft Trends” 812
31.3.1 Managing Complexity 814
31.3.2 Open-World Software 815
31.3.3 Emergent Requirements 816
31.34 The Talent Mix 816
31.3.5 Software Building Blocks 817
31.3.6 Changing Perceptions of “Value” 818
31.3.7 Open Source 818
31.4 Technology Directions 819
31.4.1 Process Trends 819
31.4.2 The Grand Challenge 821
31.4.3 Collaborative Development 822
31.4.4 Requirements Engineering 824
31.4.5 Model-Driven Software Development 825
31.4.6 Postmodern Design 825
31.4.7 Test-Driven Development 826
31.5 ToolsRelated Trends 827
31.5.1 Tools That Respond fo Soft Trends 828
31.5.2 Tools That Address Technology Trends 830
31.6 Summary 830
PROBLEMS AND POINTS TO PONDER 83]
FURTHER READINGS AND INFORMATION SOURCES 831

CHAPTER 32 CONCLUDING COMMENTS 833

32.1 The Importance of Software—Revisited 834
32.2 People and the Way They Build Systems 834
32.3 New Modes for Representing Information 835
32.4 The long View 837

32.5 The Software Engineer's Responsibility 838
32.6 AFinal Comment 839

APPENDIX 1 AN INTRODUCTION TO UML 841
APPENDIX 2 OBJECT-ORIENTED CONCEPTS 863
REFERENCES 871

INDEX 889

hen computer software succeeds—when it meets the needs of the people who use

it, when it performs flawlessly over a long period of time, when it is easy to modify
and even easier to use—it can and does change things for the better. But when software
fails—when its users are dissatisfied, when it is error prone, when it is difficult to change
and even harder to use—bad things can and do happen. We all want to build software that
makes things better, avoiding the bad things that lurk in the shadow of failed efforts. To
succeed, we need discipline when software is designed and built. We need an engineer-
ing approach.

It has been almost three decades since the first edition of this book was written. During
that time, software engineering has evolved from an obscure idea practiced by a relatively
small number of zealots to a legitimate engineering discipline. Today, it is recognized as a
subject worthy of serious research, conscientious study, and tumultuous debate. Through-
out the industry, software engineer has replaced programmer as the job title of preference.
Software process models, software engineering methods, and software tools have been
adopted successfully across a broad spectrum of industry segments.

Although managers and practitioners alike recognize the need for a more disciplined
approach to software, they continue to debate the manner in which discipline is to be
applied. Many individuals and companies still develop software haphazardly, even as they
build systems to service today’s most advanced technologies. Many professionals and
students are unaware of modern methods. And as a result, the quality of the software that
we produce suffers, and bad things happen. In addition, debate and controversy about the
true nature of the software engineering approach continue. The status of software engi-
neering is a study in contrasts. Attitudes have changed, progress has been made, but
much remains to be done before the discipline reaches full maturity.

The seventh edition of Software Enginecring: A Practitioner’s Approach is intended to
serve as a guide to a maturing engineering discipline. Like the six editions that preceded it,
the seventh edition is intended for both students and practitioners, retaining its appeal as
a guide to the industry professional and a comprehensive introduction to the student at the
upper-level undergraduate or first-year graduate level.

The seventh edition is considerably more than a simple update. The book has been
revised and restructured to improve pedagogical flow and emphasize new and important
software engineering processes and practices. In addition, a revised and updated “support
system,” illustrated in the figure, provides a comprehensive set of student, instructor, and
professional resources to complement the content of the book. These resources are pre-
sented as part of a website (www.mhhe.com/ pressman) specifically designed for Software
Engineering: A Practitioner’s Approach.

The Seventh Edition. The 32 chapters of the seventh edition have been reorganized into
five parts. This organization, which differs considerably from the sixth edition, has been
done to better compartmentalize topics and assist instructors who may not have the time
to complete the entire book in one term.

XXV

http://www.mhhe.com/pressman

XXVi

PREFACE

Support
System for
SEPA, 7/e

Practice
\ quizzes

Student
resources

Web resources
(1,000+ links)
Reference library

(500+ links)

Instructor
manual

Checklists
Instructor Work product templates
S7E7A resources Tiny tools
e

Adaptable process model
Umbrella activities task set
Comprehensive case study

Professional
resources

Industry
comment

Distance
learning

Part 1, The Process, presents a variety of different views of software process, consider-
ing all important process models and addressing the debate between prescriptive and
agile process philosophies. Part 2, Modeling, presents analysis and design methods with
an emphasis on object-oriented techniques and UML modeling. Pattern-based design and
design for Web applications are also considered. Part 3, Qualily Management, presents the
concepts, procedures, techniques, and methods that enable a software team to assess
software quality, review software engineering work products, conduct SQA procedures,
and apply an effective testing strategy and tactics. In addition, formal modeling and veri-
fication methods are also considered. Part 4, Managing Software Projects, presents topics
that are relevant to those who plan, manage, and control a software development project.
Part 5, Advanced Topics, considers software process improvement and software engineer-
ing trends. Continuing in the tradition of past editions, a series of sidebars is used through-
out the book to present the trials and tribulations of a (fictional) software team and to
provide supplementary materials about methods and tools that are relevant to chapter
topics. Two new appendices provide brief tutorials on UML and object-oriented thinking
for those who may be unfamiliar with these important topics.

PREFACE xXxvii

The five-part organization of the seventh edition enables an instructor to “cluster”
topics based on available time and student need. An entire one-term course can be built
around one or more of the five parts. A software engineering survey course would select
chapters from all five parts. A software engineering course that emphasizes analysis and
design would select topics from Parts 1 and 2. A testing-oriented software engineering
course would select topics from Parts 1 and 3, with a brief foray into Part 2. A “manage-
ment course” would stress Parts 1 and 4. By organizing the seventh edition in this way,
I have attempted to provide an instructor with a number of teaching options. In every case,
the content of the seventh edition is complemented by the following elements of the SEPA,
7/e Support System.

Student Resources. A wide variety of student resources includes an extensive online
learning center encompassing chapter-by-chapter study guides, practice quizzes, prob-
lem solutions, and a variety of Web-based resources including software engineering
checklists, an evolving collection of “tiny tools,” a comprehensive case study, work prod-
uct templates, and many other resources. In addition, over 1000 categorized Web Refer-
ences allow a student to explore software engineering in greater detail and a Reference
Library with links to over 500 downloadable papers provides an in-depth source of
advanced software engineering information.

Instructor Resources. A broad array of instructor resources has been developed to
supplement the seventh edition. These include a complete online Instructor’s Guide (also
downloadable) and supplementary teaching materials including a complete set of over
700 PowerPoint Slides that may be used for lectures, and a test bank. Of course, all
resources available for students (e.g., tiny tools, the Web References, the downloadable
Reference Library) and professionals are also available.

The Instructor’s Guide for Software Engineering: A Practitioner’s Approach presents sug-
gestions for conducting various types of software engineering courses, recommendations
for a variety of software projects to be conducted in conjunction with a course, solutions
to selected problems, and a number of useful teaching aids.

Professional Resources. A collection of resources available to industry practitioners
(as well as students and faculty) includes outlines and samples of software engineering
documents and other work products, a useful set of software engineering checklists, a
catalog of software engineering (CASE) tools, a comprehensive collection of Web-based
resources, and an “adaptable process model” that provides a detailed task breakdown of
the software engineering process.

When coupled with its online support system, the seventh edition of Software Engi-
neering: A Practitioner’s Approach, provides flexibility and depth of content that cannot be
achieved by a textbook alone.

Acknowledgments. My work on the seven editions of Software Engineering: A Practi-
tioner’s Approach has been the longest continuing technical project of my life. Even when
the writing stops, information extracted from the technical literature continues to be
assimilated and organized, and criticism and suggestions from readers worldwide is eval-
uated and cataloged. For this reason, my thanks to the many authors of books, papers,
and articles (in both hardcopy and electronic media) who have provided me with addi-
tional insight, ideas, and commentary over nearly 30 years.

Special thanks go to Tim Lethbridge of the University of Ottawa, who assisted me in
the development of UML and OCL examples and developed the case study that accompa-
nies this book, and Dale Skrien of Colby College, who developed the UML tutorial in

xxviii

PREFACE

Appendix 1. Their assistance and comments were invaluable. Special thanks also go to
Bruce Maxim of the University of Michigan-Dearborn, who assisted me in developing
much of the pedagogical website content that accompanies this book. Finally, I wish to
thank the reviewers of the seventh edition: Their in-depth comments and thoughtful
criticism have been invaluable.

Osman Balci, SK Jain,
Virginia Tech University National Institute of Technology Hamirpur
Max Fomitchev, Saeed Monemi,
Penn State University Cal Poly Pomona
Jerry (Zeyu) Gao, Ahmed Salem,
San Jose State University California State University
Guillermo Garcia, Vasudeva Varma,
Universidad Alfonso X Madrid IIIT Hyderabad

Pablo Gervas,
Universidad Complutense de Madrid

The content of the seventh edition of Software Engineering: A Practitioner’s Approach
has been shaped by industry professionals, university professors, and students who have
used earlier editions of the book and have taken the time to communicate their sugges-
tions, criticisms, and ideas. My thanks to each of you. In addition, my personal thanks go
to our many industry clients worldwide, who certainly have taught me as much or more
than I could ever teach them.

As the editions of this book have evolved, my sons, Mathew and Michael, have grown
from boys to men. Their maturity, character, and success in the real world have been an
inspiration to me. Nothing has filled me with more pride. And finally, to Barbara, my love
and thanks for tolerating the many, many hours in the office and encouraging still another
edition of “the book.”

Roger S. Pressman

KEy
CONCEPTS
application

domains 7

characteristics of
software 4

framework
activities 15

legacy software . .9

practice 17
principles 19
software

engineering12
software myths . .21
software process . .14

umbrella
activities 16

WebApps 10

QUICK
Look

What is it? Computer software is

CHAPTER

SOFTWARE AND
SOFTWARE ENGINEERING

company—mid-40s, slightly graying at the temples, trim and athletic, with
eyes that penetrated the listener as he spoke. But what he said shocked me.

“Software is dead.”

I blinked with surprise and then smiled. “You're joking, right? The world is
driven by software and your company has profited handsomely because of it. It
isn't dead! It's alive and growing.”

He shook his head emphatically. “No, it's dead . . . at least as we once knew it.”

I leaned forward. “Go on.”

He spoke while tapping the table for emphasis. “The old-school view of
software—you buy it, you own it, and it's your job to manage it—that’s coming to
an end. Today, with Web 2.0 and pervasive computing coming on strong, we're
going to be seeing a completely different generation of software. It'll be delivered
via the Internet and will look exactly like it’s residing on each user’s computing
device . . . but it'll reside on a far-away server.”

He had the classic look of a senior executive for a major software

Software engineering is important because it

the product that software profession-
als build and then support over the
long term. It €ncompasses programs
that execute within a computer of any size and
architecture, content that is presented as the
computer programs execute, and descriptive
information in both hard copy and virtual forms
that encompass virtually any electronic media.
Software engineering encompasses a process, a
collection of methods (practice) and an array
of tools that allow professionals to build high-
quality computer software.

Who does it? Software engineers build and sup-

port software, and virtually everyone in the indus-
trialized world uses it either directly or indirectly.

Why is it important? Software is important

because it affects neor|y every aspect of our
lives and has become pervasive in our com-
merce, our culture, and our everyday activities.

enables us to build complex systems in a timely

manner and with high quality.

What are the steps? You build computer soft-

ware like you build any successful product, by
applying an agile, adaptable process that leads
to a high-quality result that meets the needs of
the people who will use the product. You apply
a software engineering approach.

What is the work product? From the point of

view of a software engineer, the work product is
the set of programs, content (data), and other
work products that are computer software. But
from the user’s viewpoint, the work product is
the resultant information that somehow makes
the user’s world better.

How do | ensure that I’'ve done it right?

Read the remainder of this book, select those
ideas that are applicable to the software that
you build, and apply them to your work.

“Ideas and
technological
discoveries are the
driving engines of
economic growth.”

Wall Street
Journal

CHAPTER 1 SOFTWARE AND SOFTWARE ENGINEERING

I had to agree. “So, your life will be much simpler. You guys won't have to worry
about five different versions of the same App in use across tens of thousands of
users.”

He smiled. “Absolutely. Only the most current version residing on our servers.
When we make a change or a correction, we supply updated functionality and
content to every user. Everyone has it instantly!”

I grimaced. “But if you make a mistake, everyone has that instantly as well.”

He chuckled. “True, that's why we're redoubling our efforts to do even better
software engineering. Problem is, we have to do it ‘fast’ because the market has
accelerated in every application area.”

I leaned back and put my hands behind my head. “You know what they say, . . .
you can have it fast, you can have it right, or you can have it cheap. Pick two!”

“I'll take it fast and right,” he said as he began to get up.

I stood as well. “Then you really do need software engineering.”

“I know that,” he said as he began to move away. “The problem is, we've got to
convince still another generation of techies that it's true!”

Is software really dead? If it was, you wouldn’t be reading this book!

Computer software continues to be the single most important technology on the
world stage. And it's also a prime example of the law of unintended consequences.
Fifty years ago no one could have predicted that software would become an indis-
pensable technology for business, science, and engineering; that software would
enable the creation of new technologies (e.g., genetic engineering and nanotech-
nology), the extension of existing technologies (e.g., telecommunications), and the
radical change in older technologies (e.g., the printing industry); that software would
be the driving force behind the personal computer revolution; that shrink-wrapped
software products would be purchased by consumers in neighborhood malls; that
software would slowly evolve from a product to a service as “on-demand” software
companies deliver just-in-time functionality via a Web browser; that a software
company would become larger and more influential than almost all industrial-era
companies; that a vast software-driven network called the Internet would evolve and
change everything from library research to consumer shopping to political discourse
to the dating habits of young (and not so young) adults.

No one could foresee that software would become embedded in systems of all
kinds: transportation, medical, telecommunications, military, industrial, entertain-
ment, office machines, . . . the list is almost endless. And if you believe the law of
unintended consequences, there are many effects that we cannot yet predict.

No one could predict that millions of computer programs would have to be cor-
rected, adapted, and enhanced as time passed. The burden of performing these
“maintenance” activities would absorb more people and more resources than all
work applied to the creation of new software.

As software’s importance has grown, the software community has continually
attempted to develop technologies that will make it easier, faster, and less expensive

1.1

CHAPTER 1 SOFTWARE AND SOFTWARE ENGINEERING 3
to build and maintain high-quality computer programs. Some of these technologies
are targeted at a specific application domain (e.g., website design and implementa-
tion); others focus on a technology domain (e.g., object-oriented systems or aspect-
oriented programming); and still others are broad-based (e.g., operating systems
such as Linux). However, we have yet to develop a software technology that does it
all, and the likelihood of one arising in the future is small. And yet, people bet their
jobs, their comforts, their safety, their entertainment, their decisions, and their very
lives on computer software. It better be right.

This book presents a framework that can be used by those who build computer
software—people who must get it right. The framework encompasses a process, a
set of methods, and an array of tools that we call software engineering.

THE NATURE OF SOFTWARE

%,
POINT
Software is both a
product and a vehicle
that delivers a product.

“Software is a
place where
dreams are planted
and nightmares
harvested, an
abstract, mystical
swamp where
terrible demons
compete with
magical panaceas,
a world of
werewolves and
silver bullets.”

Brad J. Cox

Today, software takes on a dual role. It is a product, and at the same time, the vehi-
cle for delivering a product. As a product, it delivers the computing potential em-
bodied by computer hardware or more broadly, by a network of computers that are
accessible by local hardware. Whether it resides within a mobile phone or operates
inside a mainframe computer, software is an information transformer—producing,
managing, acquiring, modifying, displaying, or transmitting information that can be
as simple as a single bit or as complex as a multimedia presentation derived from
data acquired from dozens of independent sources. As the vehicle used to deliver the
product, software acts as the basis for the control of the computer (operating sys-
tems), the communication of information (networks), and the creation and control
of other programs (software tools and environments).

Software delivers the most important product of our time—information. It trans-
forms personal data (e.g., an individual’s financial transactions) so that the data can
be more useful in a local context; it manages business information to enhance com-
petitiveness; it provides a gateway to worldwide information networks (e.g., the
Internet), and provides the means for acquiring information in all of its forms.

The role of computer software has undergone significant change over the last
half-century. Dramatic improvements in hardware performance, profound changes
in computing architectures, vast increases in memory and storage capacity, and a
wide variety of exotic input and output options, have all precipitated more sophisti-
cated and complex computer-based systems. Sophistication and complexity can
produce dazzling results when a system succeeds, but they can also pose huge
problems for those who must build complex systems.

Today, a huge software industry has become a dominant factor in the economies
of the industrialized world. Teams of software specialists, each focusing on one part
of the technology required to deliver a complex application, have replaced the lone
programmer of an earlier era. And yet, the questions that were asked of the lone

4 CHAPTER 1 SOFTWARE AND SOFTWARE ENGINEERING

programmer are the same questions that are asked when modern computer-based
systems are built:!

e Why does it take so long to get software finished?

e Why are development costs so high?

e Why can't we find all errors before we give the software to our customers?

e Why do we spend so much time and effort maintaining existing

programs?
e Why do we continue to have difficulty in measuring progress as software is

being developed and maintained?

These, and many other questions, are a manifestation of the concern about
software and the manner in which it is developed—a concern that has lead to the
adoption of software engineering practice.

1.1.1 Defining Software

Today, most professionals and many members of the public at large feel that they
understand software. But do they?
A textbook description of software might take the following form:

,, How should Software is: (1) instructions (computer programs) that when executed provide desired
® we define features, function, and performance; (2) data structures that enable the programs to ad-
software? equately manipulate information, and (3) descriptive information in both hard copy and

virtual forms that describes the operation and use of the programs.

There is no question that other more complete definitions could be offered.

But a more formal definition probably won’t measurably improve your under-
standing. To accomplish that, it's important to examine the characteristics of soft-
ware that make it different from other things that human beings build. Software is a
logical rather than a physical system element. Therefore, software has characteris-
tics that are considerably different than those of hardware:

1. Software is developed or engineered; it is not manufactured in the classical sense.

POINT Although some similarities exist between software development and hard-
Software is ware manufacturing, the two activities are fundamentally different. In both
engineered, not activities, high quality is achieved through good design, but the manufactur-
manufactured. ing phase for hardware can introduce quality problems that are nonexistent

1 In an excellent book of essays on the software business, Tom DeMarco [DeM95] argues the coun-
terpoint. He states: “Instead of asking why software costs so much, we need to begin asking ‘What
have we done to make it possible for today’s software to cost so little?” The answer to that ques-
tion will help us continue the extraordinary level of achievement that has always distinguished the
software industry.”

CHAPTER 1 SOFTWARE AND SOFTWARE ENGINEERING 5

Failure curve
for hardware

P
e,
POINT
Software doesn't wear
out, but it does
deferiorate.

ﬁpwcss

If you want o reduce
software deterioration,
you'll have to do
better software design
(Chapters 8 fo 13).

“Infant “Wear out” —___

mortality”

Failure rate

Time

(or easily corrected) for software. Both activities are dependent on people,
but the relationship between people applied and work accomplished is
entirely different (see Chapter 24). Both activities require the construction of
a “product,” but the approaches are different. Software costs are concen-
trated in engineering. This means that software projects cannot be managed
as if they were manufacturing projects.

. Software doesn't “wear out.”

Figure 1.1 depicts failure rate as a function of time for hardware. The rela-
tionship, often called the “bathtub curve,” indicates that hardware exhibits
relatively high failure rates early in its life (these failures are often attributa-
ble to design or manufacturing defects); defects are corrected and the failure
rate drops to a steady-state level (hopefully, quite low) for some period of
time. As time passes, however, the failure rate rises again as hardware com-
ponents suffer from the cumulative effects of dust, vibration, abuse, tempera-
ture extremes, and many other environmental maladies. Stated simply, the
hardware begins to wear out.

Software is not susceptible to the environmental maladies that cause
hardware to wear out. In theory, therefore, the failure rate curve for software
should take the form of the “idealized curve” shown in Figure 1.2. Undiscov-
ered defects will cause high failure rates early in the life of a program.
However, these are corrected and the curve flattens as shown. The idealized
curve is a gross oversimplification of actual failure models for software.
However, the implication is clear—software doesn't wear out. But it does
deteriorate!

Failure curves
for software

7N
e,
POINT
Software engineering
methods strive fo
reduce the magnitude
of the spikes and the
slope of the actual
curve in Figure 1.2.

oot

“Ideas are the
building blocks of

ideas.”

Juson Zebehazy

CHAPTER 1 SOFTWARE AND SOFTWARE ENGINEERING
\ q
Increased failure
rate due to side
effects
0
o
o
Y
0
1
=2
‘s
"9
Actual curve
|dealized curve

3.

Time

This seeming contradiction can best be explained by considering the
actual curve in Figure 1.2. During its life,? software will undergo change. As
changes are made, it is likely that errors will be introduced, causing the
failure rate curve to spike as shown in the “actual curve” (Figure 1.2). Before
the curve can return to the original steady-state failure rate, another change
is requested, causing the curve to spike again. Slowly, the minimum failure
rate level begins to rise—the software is deteriorating due to change.

Another aspect of wear illustrates the difference between hardware and
software. When a hardware component wears out, it is replaced by a spare
part. There are no software spare parts. Every software failure indicates an
error in design or in the process through which design was translated into
machine executable code. Therefore, the software maintenance tasks that
accommodate requests for change involve considerably more complexity
than hardware maintenance.

Although the industry is moving toward component-based construction, most
software continues to be custom built.

As an engineering discipline evolves, a collection of standard design compo-
nents is created. Standard screws and off-the-shelf integrated circuits are
only two of thousands of standard components that are used by mechanical
and electrical engineers as they design new systems. The reusable compo-
nents have been created so that the engineer can concentrate on the truly
innovative elements of a design, that is, the parts of the design that represent

2 In fact, from the moment that development begins and long before the first version is delivered,
changes may be requested by a variety of different stakeholders.

One of the most
comprehensive libraries
of shareware/ freeware
can be found at
shareware.cnet
.com

CHAPTER 1 SOFTWARE AND SOFTWARE ENGINEERING 7

something new. In the hardware world, component reuse is a natural part of
the engineering process. In the software world, it is something that has only
begun to be achieved on a broad scale.

A software component should be designed and implemented so that it can
be reused in many different programs. Modern reusable components encap-
sulate both data and the processing that is applied to the data, enabling the
software engineer to create new applications from reusable parts. For exam-
ple, today’s interactive user interfaces are built with reusable components
that enable the creation of graphics windows, pull-down menus, and a wide
variety of interaction mechanisms. The data structures and processing detail
required to build the interface are contained within a library of reusable
components for interface construction.

1.1.2 Software Application Domains

Today, seven broad categories of computer software present continuing challenges
for software engineers:

System software—a collection of programs written to service other pro-
grams. Some system software (e.g., compilers, editors, and file management
utilities) processes complex, but determinate,? information structures. Other
systems applications (e.g., operating system components, drivers, networking
software, telecommunications processors) process largely indeterminate data.
In either case, the systems software area is characterized by heavy interaction
with computer hardware; heavy usage by multiple users; concurrent opera-
tion that requires scheduling, resource sharing, and sophisticated process
management; complex data structures; and multiple external interfaces.

Application software—stand-alone programs that solve a specific business
need. Applications in this area process business or technical data in a way
that facilitates business operations or management/technical decision mak-
ing. In addition to conventional data processing applications, application
software is used to control business functions in real time (e.g., point-of-sale
transaction processing, real-time manufacturing process control).

Engineering/scientific software—has been characterized by “number
crunching” algorithms. Applications range from astronomy to volcanology,
from automotive stress analysis to space shuttle orbital dynamics, and
from molecular biology to automated manufacturing. However, modern
applications within the engineering/scientific area are moving away from

3 Component-based development is discussed in Chapter 10.

4 Software is determinate if the order and timing of inputs, processing, and outputs is predictable.
Software is indeterminate if the order and timing of inputs, processing, and outputs cannot be
predicted in advance.

@.cre

“There is no
computer that has
common sense.”

Marvin Minsky

CHAPTER 1 SOFTWARE AND SOFTWARE ENGINEERING

conventional numerical algorithms. Computer-aided design, system simula-
tion, and other interactive applications have begun to take on real-time and
even system software characteristics.

Embedded software—resides within a product or system and is used to
implement and control features and functions for the end user and for the
system itself. Embedded software can perform limited and esoteric functions
(e.g., key pad control for a microwave oven) or provide significant function
and control capability (e.g., digital functions in an automobile such as fuel
control, dashboard displays, and braking systems).

Product-line software—designed to provide a specific capability for use by
many different customers. Product-line software can focus on a limited and
esoteric marketplace (e.g., inventory control products) or address mass
consumer markets (e.g., word processing, spreadsheets, computer graphics,
multimedia, entertainment, database management, and personal and
business financial applications).

Web applications—called “WebApps,” this network-centric software cate-
gory spans a wide array of applications. In their simplest form, WebApps can
be little more than a set of linked hypertext files that present information
using text and limited graphics. However, as Web 2.0 emerges, WebApps are
evolving into sophisticated computing environments that not only provide
stand-alone features, computing functions, and content to the end user, but
also are integrated with corporate databases and business applications.

Artificial intelligence software—makes use of nonnumerical algorithms to
solve complex problems that are not amenable to computation or straightfor-
ward analysis. Applications within this area include robotics, expert systems,
pattern recognition (image and voice), artificial neural networks, theorem
proving, and game playing.

Millions of software engineers worldwide are hard at work on software projects in
one or more of these categories. In some cases, new systems are being built, but in
many others, existing applications are being corrected, adapted, and enhanced. It is
not uncommon for a young software engineer to work a program that is older than
she is! Past generations of software people have left a legacy in each of the cate-
gories I have discussed. Hopefully, the legacy to be left behind by this generation will
ease the burden of future software engineers. And yet, new challenges (Chapter 31)
have appeared on the horizon:

Open-world computing—the rapid growth of wireless networking may
soon lead to true pervasive, distributed computing. The challenge for soft-
ware engineers will be to develop systems and application software that will
allow mobile devices, personal computers, and enterprise systems to com-
municate across vast networks.

“You can't always
predict, but you
can always
prepare.”

Anonymous

® What do | do

® if | encounter
a legacy system
that exhibits poor
quality?

CHAPTER 1 SOFTWARE AND SOFTWARE ENGINEERING 9

Netsourcing—the World Wide Web is rapidly becoming a computing engine
as well as a content provider. The challenge for software engineers is to
architect simple (e.g., personal financial planning) and sophisticated applica-
tions that provide a benefit to targeted end-user markets worldwide.

Open source—a growing trend that results in distribution of source code for
systems applications (e.g., operating systems, database, and development en-
vironments) so that many people can contribute to its development. The chal-
lenge for software engineers is to build source code that is self-descriptive,
but more importantly, to develop techniques that will enable both customers
and developers to know what changes have been made and how those
changes manifest themselves within the software.

Each of these new challenges will undoubtedly obey the law of unintended conse-
quences and have effects (for businesspeople, software engineers, and end users) that
cannot be predicted today. However, software engineers can prepare by instantiating
a process that is agile and adaptable enough to accommodate dramatic changes in
technology and to business rules that are sure to come over the next decade.

1.1.3 Legacy Software

Hundreds of thousands of computer programs fall into one of the seven broad
application domains discussed in the preceding subsection. Some of these are state-
of-the-art software—just released to individuals, industry, and government. But
other programs are older, in some cases much older.

These older programs—often referred to as legacy software—have been the focus
of continuous attention and concern since the 1960s. Dayani-Fard and his
colleagues [Day99] describe legacy software in the following way:

Legacy software systems . . . were developed decades ago and have been continually
modified to meet changes in business requirements and computing platforms. The pro-
liferation of such systems is causing headaches for large organizations who find them
costly to maintain and risky to evolve.

Liu and his colleagues [Liu98] extend this description by noting that “many legacy
systems remain supportive to core business functions and are ‘indispensable’ to
the business.” Hence, legacy software is characterized by longevity and business
criticality.

Unfortunately, there is sometimes one additional characteristic that is present
in legacy software—poor quality.® Legacy systems sometimes have inextensible
designs, convoluted code, poor or nonexistent documentation, test cases and results

5 In this case, quality is judged based on modern software engineering thinking—a somewhat unfair
criterion since some modern software engineering concepts and principles may not have been well
understood at the time that the legacy software was developed.

10

€ What types
® of changes

are made to

legacy systems?

&pwcsg

Every software
engineer must
recognize that change
is natural. Don’t fry to
fight it.

1.2

CHAPTER 1 SOFTWARE AND SOFTWARE ENGINEERING

that were never archived, a poorly managed change history—the list can be quite
long. And yet, these systems support “core business functions and are indispensable
to the business.” What to do?

The only reasonable answer may be: Do nothing, at least until the legacy system
must undergo some significant change. If the legacy software meets the needs of its
users and runs reliably, it isn’t broken and does not need to be fixed. However, as
time passes, legacy systems often evolve for one or more of the following reasons:

e The software must be adapted to meet the needs of new computing environ-
ments or technology.

e The software must be enhanced to implement new business requirements.

o The software must be extended to make it interoperable with other more
modern systems or databases.

e The software must be re-architected to make it viable within a network
environment.

When these modes of evolution occur, a legacy system must be reengineered (Chap-
ter 29) so that it remains viable into the future. The goal of modern software engi-
neering is to “devise methodologies that are founded on the notion of evolution”;
that is, the notion that software systems continually change, new software systems
are built from the old ones, and . . . all must interoperate and cooperate with each
other” [Day99].

THE UNIQUE NATURE OF WEBAPPS

“By the time we
see any sort of
stabilization, the
Web will have
turned info
something
completely
different.”

Louis Monier

In the early days of the World Wide Web (circa 1990 to 1995), websites consisted of
little more than a set of linked hypertext files that presented information using text
and limited graphics. As time passed, the augmentation of HTML by development
tools (e.g., XML, Java) enabled Web engineers to provide computing capability along
with informational content. Web-based systems and applications® (I refer to these col-
lectively as WebApps) were born. Today, WebApps have evolved into sophisticated
computing tools that not only provide stand-alone function to the end user, but also
have been integrated with corporate databases and business applications.

As noted in Section 1.1.2, WebApps are one of a number of distinct software cat-
egories. And yet, it can be argued that WebApps are different. Powell [Pow98] sug-
gests that Web-based systems and applications “involve a mixture between print
publishing and software development, between marketing and computing, between

6 In the context of this book, the term Web application (WebApp) encompasses everything from a sim-
ple Web page that might help a consumer compute an automobile lease payment to a comprehen-
sive website that provides complete travel services for businesspeople and vacationers. Included
within this category are complete websites, specialized functionality within websites, and infor-
mation processing applications that reside on the Internet or on an Intranet or Extranet.

What
® characteristic
differentiates
WebApps from
other software?

CHAPTER 1 SOFTWARE AND SOFTWARE ENGINEERING 11

internal communications and external relations, and between art and technology.”
The following attributes are encountered in the vast majority of WebApps.

Network intensiveness. A WebApp resides on a network and must serve
the needs of a diverse community of clients. The network may enable world-
wide access and communication (i.e., the Internet) or more limited access
and communication (e.g., a corporate Intranet).

Concurrency. A large number of users may access the WebApp at one
time. In many cases, the patterns of usage among end users will vary greatly.

Unpredictable load. The number of users of the WebApp may vary by
orders of magnitude from day to day. One hundred users may show up on
Monday; 10,000 may use the system on Thursday.

Performance. If a WebApp user must wait too long (for access, for server-
side processing, for client-side formatting and display), he or she may decide
to go elsewhere.

Availability. Although expectation of 100 percent availability is unreason-
able, users of popular WebApps often demand access on a 24/7/365 basis.
Users in Australia or Asia might demand access during times when tradi-
tional domestic software applications in North America might be taken
off-line for maintenance.

Data driven. The primary function of many WebApps is to use hypermedia
to present text, graphics, audio, and video content to the end user. In addi-
tion, WebApps are commonly used to access information that exists on data-
bases that are not an integral part of the Web-based environment (e.g.,
e-commerce or financial applications).

Content sensitive. The quality and aesthetic nature of content remains an
important determinant of the quality of a WebApp.

Continuous evolution. Unlike conventional application software that
evolves over a series of planned, chronologically spaced releases, Web appli-
cations evolve continuously. It is not unusual for some WebApps (specifically,
their content) to be updated on a minute-by-minute schedule or for content
to be independently computed for each request.

Immediacy. Although immediacy—the compelling need to get software to
market quickly—is a characteristic of many application domains, WebApps

often exhibit a time-to-market that can be a matter of a few days or weeks.”
Security. Because WebApps are available via network access, it is difficult,

if not impossible, to limit the population of end users who may access the
application. In order to protect sensitive content and provide secure modes

7 With modern tools, sophisticated Web pages can be produced in only a few hours.

12 CHAPTER 1 SOFTWARE AND SOFTWARE ENGINEERING

of data transmission, strong security measures must be implemented
throughout the infrastructure that supports a WebApp and within the appli-
cation itself.

Aesthetics. An undeniable part of the appeal of a WebApp is its look and
feel. When an application has been designed to market or sell products or
ideas, aesthetics may have as much to do with success as technical design.

It can be argued that other application categories discussed in Section 1.1.2 can
exhibit some of the attributes noted. However, WebApps almost always exhibit all of
them.

1.3 SOFTWARE ENGINEERING

In order to build software that is ready to meet the challenges of the twenty-first
century, you must recognize a few simple realities:

3’@,‘ e Software has become deeply embedded in virtually every aspect of our lives,
POINT and as a consequence, the number of people who have an interest in the
Understand the features and functions provided by a specific application® has grown dramati-

problem before you cally. When a new application or embedded system is to be built, many

build @ solution. voices must be heard. And it sometimes seems that each of them has a
slightly different idea of what software features and functions should be
delivered. It follows that a concerted effort should be made to understand the
problem before a software solution is developed.

3’« e The information technology requirements demanded by individuals, busi-
3= nesses, and governments grow increasing complex with each passing year.
POINT 8 g g p p gy

Desig s a piot Large teams of people now create computer programs that were once built

sofftware engineering by a single individual. Sophisticated software that was once implemented in

activity. a predictable, self-contained, computing environment is now embedded
inside everything from consumer electronics to medical devices to weapons
systems. The complexity of these new computer-based systems and products
demands careful attention to the interactions of all system elements. It
follows that design becomes a pivotal activity.

a;@ o Individuals, businesses, and governments increasingly rely on software for
Jo. strategic and tactical decision making as well as day-to-day operations and

Both iy and control. If the software fails, people and major enterprises can experience
m(;int%lijr?(;l%i?;]ure - anything from minor inconvenience to catastrophic failures. It follows that
outgrowth of good software should exhibit high quality.

design. e As the perceived value of a specific application grows, the likelihood is that
its user base and longevity will also grow. As its user base and time-in-use

8 T will call these people “stakeholders” later in this book.

“More than a
discipline or a body
of knowledge,
engineering is a
verh, an action
word, a way of
approaching a
problem.”

Scott Whitmir

How do we
® define
software
engineering?

K,
POINT
Software engineering

encompasses a
process, methods for
managing and
engineering software,
and tools.

CHAPTER 1 SOFTWARE AND SOFTWARE ENGINEERING 13
increase, demands for adaptation and enhancement will also grow. It follows
that software should be maintainable.

These simple realities lead to one conclusion: software in all of its forms and across all
of its application domains should be engineered. And that leads us to the topic of this
book—software engineering.

Although hundreds of authors have developed personal definitions of software
engineering, a definition proposed by Fritz Bauer [Nau69] at the seminal conference
on the subject still serves as a basis for discussion:

[Software engineering is] the establishment and use of sound engineering principles in or-
der to obtain economically software that is reliable and works efficiently on real machines.

You will be tempted to add to this definition.” It says little about the technical as-
pects of software quality; it does not directly address the need for customer satisfac-
tion or timely product delivery; it omits mention of the importance of measurement
and metrics; it does not state the importance of an effective process. And yet, Bauer’s
definition provides us with a baseline. What are the “sound engineering principles”
that can be applied to computer software development? How do we “economically”
build software so that it is “reliable”? What is required to create computer programs
that work “efficiently” on not one but many different “real machines”? These are the
questions that continue to challenge software engineers.

The IEEE [IEE93a] has developed a more comprehensive definition when it states:

Software Engineering: (1) The application of a systematic, disciplined, quantifiable approach
to the development, operation, and maintenance of software; that is, the application of
engineering to software. (2) The study of approaches as in (1).

And yet, a “systematic, disciplined, and quantifiable” approach applied by one
software team may be burdensome to another. We need discipline, but we also need
adaptability and agility.

Software engineering is a layered technology. Referring to Figure 1.3, any engineer-
ing approach (including software engineering) must rest on an organizational com-
mitment to quality. Total quality management, Six Sigma, and similar philosophies'®
foster a continuous process improvement culture, and it is this culture that ultimately
leads to the development of increasingly more effective approaches to software engi-
neering. The bedrock that supports software engineering is a quality focus.

The foundation for software engineering is the process layer. The software engi-
neering process is the glue that holds the technology layers together and enables
rational and timely development of computer software. Process defines a framework

9 For numerous additional definitions of software engineering, see www.answers.com/topic/
software-engineering#wp-_note-13.

10 Quality management and related approaches are discussed in Chapter 14 and throughout Part 3 of
this book.

http://www.answers.com/topic/

14

CHAPTER 1 SOFTWARE AND SOFTWARE ENGINEERING

Software
engineering
layers

CrossTalk is a journal
that provides
pragmatic
information on
process, methods,
and fools. It can be
found at:
www.stsc

hill.af .mil.

Tools Y
— Methods /

Process

A quality focus

that must be established for effective delivery of software engineering technology.
The software process forms the basis for management control of software projects
and establishes the context in which technical methods are applied, work products
(models, documents, data, reports, forms, etc.) are produced, milestones are estab-
lished, quality is ensured, and change is properly managed.

Software engineering methods provide the technical how-to’s for building soft-
ware. Methods encompass a broad array of tasks that include communication,
requirements analysis, desigh modeling, program construction, testing, and sup-
port. Software engineering methods rely on a set of basic principles that govern
each area of the technology and include modeling activities and other descriptive
techniques.

Software engineering tools provide automated or semiautomated support for the
process and the methods. When tools are integrated so that information created by
one tool can be used by another, a system for the support of software development,
called computer-aided software engineering, is established.

1.4 THE SOFTWARE PROCESS

2 What are the
® elements of
a software
process?

@1

“A process defines
who is doing what
when and how to
reach a cerfain
goal.”

Ivar Jacobson,
Grady Booch,
and James
Rumbaugh

A process is a collection of activities, actions, and tasks that are performed when
some work product is to be created. An activity strives to achieve a broad objective
(e.g., communication with stakeholders) and is applied regardless of the application
domain, size of the project, complexity of the effort, or degree of rigor with which
software engineering is to be applied. An action (e.g., architectural design) encom-
passes a set of tasks that produce a major work product (e.g., an architectural design
model). A task focuses on a small, but well-defined objective (e.g., conducting a unit
test) that produces a tangible outcome.

In the context of software engineering, a process is not a rigid prescription for how
to build computer software. Rather, it is an adaptable approach that enables the peo-
ple doing the work (the software team) to pick and choose the appropriate set of
work actions and tasks. The intent is always to deliver software in a timely manner
and with sufficient quality to satisfy those who have sponsored its creation and those
who will use it.

http://www.stsc

', What are the
® five generic
process
framework
activities?

@.cre

“Einstein argued
that there must be
a simplified
explanation of
nature, because
God is not
capricious or
arbitrary. No such
faith comforts the
software engineer.
Much of the
complexity that he
must master is
arbitrary
complexity.”

Fred Brooks

CHAPTER 1 SOFTWARE AND SOFTWARE ENGINEERING 15

A process framework establishes the foundation for a complete software engi-
neering process by identifying a small number of framework activities that are appli-
cable to all software projects, regardless of their size or complexity. In addition, the
process framework encompasses a set of umbrella activities that are applicable
across the entire software process. A generic process framework for software engi-
neering encompasses five activities:

Communication. Before any technical work can commence, it is critically
important to communicate and collaborate with the customer (and other
stakeholders'' The intent is to understand stakeholders’ objectives for the
project and to gather requirements that help define software features and
functions.

Planning. Any complicated journey can be simplified if a map exists. A
software project is a complicated journey, and the planning activity creates a
“map” that helps guide the team as it makes the journey. The map—called a
software project plan—defines the software engineering work by describing
the technical tasks to be conducted, the risks that are likely, the resources
that will be required, the work products to be produced, and a work
schedule.

Modeling. Whether you're a landscaper, a bridge builder, an aeronautical
engineer, a carpenter, or an architect, you work with models every day. You
create a “sketch” of the thing so that you'll understand the big picture—what
it will look like architecturally, how the constituent parts fit together, and
many other characteristics. If required, you refine the sketch into greater and
greater detail in an effort to better understand the problem and how you're
going to solve it. A software engineer does the same thing by creating mod-
els to better understand software requirements and the design that will
achieve those requirements.

Construction. This activity combines code generation (either manual or
automated) and the testing that is required to uncover errors in the code.

Deployment. The software (as a complete entity or as a partially com-
pleted increment) is delivered to the customer who evaluates the delivered
product and provides feedback based on the evaluation.

These five generic framework activities can be used during the development of small,
simple programs, the creation of large Web applications, and for the engineering of
large, complex computer-based systems. The details of the software process will be
quite different in each case, but the framework activities remain the same.

11 A stakeholder is anyone who has a stake in the successful outcome of the project—business man-
agers, end users, software engineers, support people, etc. Rob Thomsett jokes that, “a stakeholder
is a person holding a large and sharp stake. . . . If you don't look after your stakeholders, you know
where the stake will end up.”).

16

A
&Q"
POINT

Umbrella activities
occur throughout the
software process and
focus primarily on
project management,
tracking, and control.

a:
;)C‘MNT

Software process
adaptation is essential
for project success.

D How do

@ process
models differ from
one another?

CHAPTER 1 SOFTWARE AND SOFTWARE ENGINEERING

For many software projects, framework activities are applied iteratively as a
project progresses. That is, communication, planning, modeling, construction,
and deployment are applied repeatedly through a number of project iterations.
Each project iteration produces a software increment that provides stakeholders with
a subset of overall software features and functionality. As each increment is pro-
duced, the software becomes more and more complete.

Software engineering process framework activities are complemented by a num-
ber of umbrella activities. In general, umbrella activities are applied throughout a soft-
ware project and help a software team manage and control progress, quality,
change, and risk. Typical umbrella activities include:

Software project tracking and control—allows the software team to
assess progress against the project plan and take any necessary action to
maintain the schedule.

Risk management—assesses risks that may affect the outcome of the
project or the quality of the product.

Software quality assurance—defines and conducts the activities required
to ensure software quality.

Technical reviews—assesses software engineering work products in an effort
to uncover and remove errors before they are propagated to the next activity.

Measurement—defines and collects process, project, and product measures
that assist the team in delivering software that meets stakeholders’ needs;
can be used in conjunction with all other framework and umbrella activities.

Software configuration management—manages the effects of change
throughout the software process.

Reusability management—defines criteria for work product reuse
(including software components) and establishes mechanisms to achieve
reusable components.

Work product preparation and production—encompasses the activities
required to create work products such as models, documents, logs, forms,
and lists.

Each of these umbrella activities is discussed in detail later in this book.

Earlier in this section, I noted that the software engineering process is not a rigid
prescription that must be followed dogmatically by a software team. Rather, it should
be agile and adaptable (to the problem, to the project, to the team, and to the organi-
zational culture). Therefore, a process adopted for one project might be significantly
different than a process adopted for another project. Among the differences are

o Overall flow of activities, actions, and tasks and the interdependencies
among them
e Degree to which actions and tasks are defined within each framework activity

e Degree to which work products are identified and required

“| feel a recipe is
only a theme which
an intelligent cook
can play each time
with a variation.”

Madame Benoit

9 What

® characterizes
an “agile”
process?

CHAPTER 1 SOFTWARE AND SOFTWARE ENGINEERING 17

e Manner in which quality assurance activities are applied

e Manner in which project tracking and control activities are applied

e Overall degree of detail and rigor with which the process is described

e Degree to which the customer and other stakeholders are involved with the
project

e Level of autonomy given to the software team

e Degree to which team organization and roles are prescribed

In Part 1 of this book, I'll examine software process in considerable detail. Prescriptive
process models (Chapter 2) stress detailed definition, identification, and application
of process activities and tasks. Their intent is to improve system quality, make proj-
ects more manageable, make delivery dates and costs more predictable, and guide
teams of software engineers as they perform the work required to build a system.
Unfortunately, there have been times when these objectives were not achieved. If
prescriptive models are applied dogmatically and without adaptation, they can in-
crease the level of bureaucracy associated with building computer-based systems
and inadvertently create difficulty for all stakeholders.

Aglile process models (Chapter 3) emphasize project “agility” and follow a set of prin-
ciples that lead to a more informal (but, proponents argue, no less effective) approach
to software process. These process models are generally characterized as “agile” be-
cause they emphasize maneuverability and adaptability. They are appropriate for many
types of projects and are particularly useful when Web applications are engineered.

1.5 SOFTWARE ENGINEERING PRACTICE

Avariety of thought-
provoking quotes on
the practice of software
engineering can be
found of www
Jiterateprogramming

om

ﬁpwcss

You might argue that
Polya’s approach is
simply common sense.
True. But it's amazing
how offen common
sense Is uncommon in
the software world.

In Section 1.4, I introduced a generic software process model composed of a set of
activities that establish a framework for software engineering practice. Generic
framework activities—communication, planning, modeling, construction, and
deployment—and umbrella activities establish a skeleton architecture for software
engineering work. But how does the practice of software engineering fit in? In the
sections that follow, you'll gain a basic understanding of the generic concepts and
principles that apply to framework activities.'?

1.5.1 The Essence of Practice

In a classic book, How to Solve It, written before modern computers existed, George
Polya [Pol45] outlined the essence of problem solving, and consequently, the essence
of software engineering practice:

1. Understand the problem (communication and analysis).

2. Plan a solution (modeling and software design).

12 You should revisit relevant sections within this chapter as specific software engineering methods
and umbrella activities are discussed later in this book.

18

“There is a grain of
discovery in the
solution of any
problem.”

George Polya

CHAPTER 1 SOFTWARE AND SOFTWARE ENGINEERING

3. Carry out the plan (code generation).

4. Examine the result for accuracy (testing and quality assurance).

In the context of software engineering, these commonsense steps lead to a series of
essential questions [adapted from Pol45]:

Understand the problem. It's sometimes difficult to admit, but most of us suffer
from hubris when we're presented with a problem. We listen for a few seconds and
then think, Oh yeah, I understand, let’s get on with solving this thing. Unfortunately,
understanding isn't always that easy. It's worth spending a little time answering a
few simple questions:

e Who has a stake in the solution to the problem? That is, who are the stake-
holders?

e What are the unknowns? What data, functions, and features are required to
properly solve the problem?

e Can the problem be compartmentalized? Is it possible to represent smaller
problems that may be easier to understand?

e Can the problem be represented graphically? Can an analysis model be created?

Plan the solution. Now you understand the problem (or so you think) and you
can't wait to begin coding. Before you do, slow down just a bit and do a little
design:

e Have you seen similar problems before? Are there patterns that are recogniz-
able in a potential solution? Is there existing software that implements the
data, functions, and features that are required?

e Has a similar problem been solved? If so, are elements of the solution
reusable?

e Can subproblems be defined? If so, are solutions readily apparent for the
subproblems?

e Can you represent a solution in a manner that leads to effective implementation?
Can a design model be created?

Carry out the plan. The design you've created serves as a road map for the
system you want to build. There may be unexpected detours, and it's possible that
you'll discover an even better route as you go, but the “plan” will allow you to
proceed without getting lost.

e Does the solution conform to the plan? Is source code traceable to the design
model?

e Is each component part of the solution provably correct? Have the design and
code been reviewed, or better, have correctness proofs been applied to the
algorithm?

ﬁpwcss.

Before beginning a
software project, be
sure the software has
a business purpose and
that users perceive
valve in it.

CHAPTER 1 SOFTWARE AND SOFTWARE ENGINEERING 19

Examine the result. You can't be sure that your solution is perfect, but you can be
sure that you've designed a sufficient number of tests to uncover as many errors as
possible.

e Is it possible to test each component part of the solution? Has a reasonable
testing strategy been implemented?

e Does the solution produce results that conform to the data, functions, and
[features that are required? Has the software been validated against all
stakeholder requirements?

It shouldn't surprise you that much of this approach is common sense. In fact, it's
reasonable to state that a commonsense approach to software engineering will
never lead you astray.

1.5.2 General Principles

The dictionary defines the word principle as “an important underlying law or as-
sumption required in a system of thought.” Throughout this book I'll discuss princi-
ples at many different levels of abstraction. Some focus on software engineering as a
whole, others consider a specific generic framework activity (e.g., communication),
and still others focus on software engineering actions (e.g., architectural design) or
technical tasks (e.g., write a usage scenario). Regardless of their level of focus, prin-
ciples help you establish a mind-set for solid software engineering practice. They are
important for that reason.

David Hooker [Ho096] has proposed seven principles that focus on software
engineering practice as a whole. They are reproduced in the following
paragraphs:!?

The First Principle: The Reason It All Exists

A software system exists for one reason: (o provide value to its users. All
decisions should be made with this in mind. Before specifying a system require-
ment, before noting a piece of system functionality, before determining the hard-
ware platforms or development processes, ask yourself questions such as: “Does
this add real value to the system?” If the answer is “no,” don't do it. All other
principles support this one.

The Second Principle: KISS (Keep It Simple, Stupid!)

Software design is not a haphazard process. There are many factors to consider
in any design effort. All design should be as simple as possible, but no simpler. This
facilitates having a more easily understood and easily maintained system. This is

13 Reproduced with permission of the author [Hoo96]. Hooker defines patterns for these principles at
http://c2.com/cgi/wiki?SevenPrinciplesOfSoftwareDevelopment.

http://c2.com/cgi/wiki?SevenPrinciplesOfSoftwareDevelopment

20

“There is a certain
maiesty in
simplicity which is
far above all the
quaintness of wit.”

Alexander Pope
(1688-1744)

If software has value,
it will change over its
useful life. For that
reason, software must
be built to be
maintainable.

CHAPTER 1 SOFTWARE AND SOFTWARE ENGINEERING

not to say that features, even internal features, should be discarded in the name of

simplicity. Indeed, the more elegant designs are usually the more simple ones. Sim-
ple also does not mean “quick and dirty.” In fact, it often takes a lot of thought and

work over multiple iterations to simplify. The payoff is software that is more main-

tainable and less error-prone.

The Third Principle: Maintain the Vision

A clear vision is essential to the success of a software project. Without one, a
project almost unfailingly ends up being “of two [or more] minds” about itself.
Without conceptual integrity, a system threatens to become a patchwork of in-
compatible designs, held together by the wrong kind of screws. . . . Compromis-
ing the architectural vision of a software system weakens and will eventually
break even the well-designed systems. Having an empowered architect who can
hold the vision and enforce compliance helps ensure a very successful software
project.

The Fourth Principle: What You Produce, Others Will Consume

Seldom is an industrial-strength software system constructed and used in a
vacuum. In some way or other, someone else will use, maintain, document, or
otherwise depend on being able to understand your system. So, always specify,
design, and implement knowing someone else will have to understand what you are
doing. The audience for any product of software development is potentially large.
Specify with an eye to the users. Design, keeping the implementers in mind. Code
with concern for those that must maintain and extend the system. Someone may
have to debug the code you write, and that makes them a user of your code.
Making their job easier adds value to the system.

The Fifth Principle: Be Open to the Future

A system with a long lifetime has more value. In today’s computing environ-
ments, where specifications change on a moment’s notice and hardware platforms
are obsolete just a few months old, software lifetimes are typically measured in
months instead of years. However, true “industrial-strength” software systems
must endure far longer. To do this successfully, these systems must be ready to
adapt to these and other changes. Systems that do this successfully are those that
have been designed this way from the start. Never design yourselfinto a corner.
Always ask “what if,” and prepare for all possible answers by creating systems that
solve the general problem, not just the specific one.!* This could very possibly lead
to the reuse of an entire system.

14 This advice can be dangerous if it is taken to extremes. Designing for the “general problem” some-
times requires performance compromises and can make specific solutions inefficient.

“In the absence of
meaningful
standards, o new
industry like
software comes to
depend instead on
folklore.”

Tom DeMarco

CHAPTER 1 SOFTWARE AND SOFTWARE ENGINEERING 21

The Sixth Principle: Plan Ahead for Reuse

Reuse saves time and effort.'>Achieving a high level of reuse is arguably the
hardest goal to accomplish in developing a software system. The reuse of code and
designs has been proclaimed as a major benefit of using object-oriented technolo-
gies. However, the return on this investment is not automatic. To leverage the
reuse possibilities that object-oriented [or conventional] programming provides
requires forethought and planning. There are many techniques to realize reuse
at every level of the system development process. . . . Planning ahead for reuse
reduces the cost and increases the value of both the reusable components and the
systems into which they are incorporated.

The Seventh principle: Think!

This last principle is probably the most overlooked. Placing clear, complete
thought before action almost always produces better results. When you think about
something, you are more likely to do it right. You also gain knowledge about how
to do it right again. If you do think about something and still do it wrong, it be-
comes a valuable experience. A side effect of thinking is learning to recognize
when you don't know something, at which point you can research the answer.
When clear thought has gone into a system, value comes out. Applying the first six
principles requires intense thought, for which the potential rewards are enormous.

If every software engineer and every software team simply followed Hooker’s seven
principles, many of the difficulties we experience in building complex computer-
based systems would be eliminated.

E MYTHS

Software myths—erroneous beliefs about software and the process that is used to
build it—can be traced to the earliest days of computing. Myths have a number of
attributes that make them insidious. For instance, they appear to be reasonable
statements of fact (sometimes containing elements of truth), they have an intuitive
feel, and they are often promulgated by experienced practitioners who “know the
score.”

Today, most knowledgeable software engineering professionals recognize myths
for what they are—misleading attitudes that have caused serious problems for
managers and practitioners alike. However, old attitudes and habits are difficult to
modify, and remnants of software myths remain.

15 Although this is true for those who reuse the software on future projects, reuse can be expensive
for those who must design and build reusable components. Studies indicate that designing and
building reusable components can cost between 25 to 200 percent more than targeted software. In
some cases, the cost differential cannot be justified.

22

The Software Project
Managers Network af
WWW.spmn.com
can help you dispel
these and other myths.

ﬁpwcss

Work very hard fo
understand what you
have to do before you
start. You may not be
able to develop every
detail, but the more
you know, the less risk
you fake.

CHAPTER 1 SOFTWARE AND SOFTWARE ENGINEERING

Management myths. Managers with software responsibility, like managers in
most disciplines, are often under pressure to maintain budgets, keep schedules from
slipping, and improve quality. Like a drowning person who grasps at a straw, a soft-
ware manager often grasps at belief in a software myth, if that belief will lessen the
pressure (even temporarily).

Myth: We already have a book that's full of standards and procedures for
building software. Won't that provide my people with everything they
need to know?

Reality: The book of standards may very well exist, but is it used? Are soft-
ware practitioners aware of its existence? Does it reflect modern
software engineering practice? Is it complete? Is it adaptable? Is it
streamlined to improve time-to-delivery while still maintaining a
focus on quality? In many cases, the answer to all of these questions
is “no.”

Myth: Ifwe get behind schedule, we can add more programmers and catch up
(sometimes called the “Mongolian horde” concept).

Reality: Software development is not a mechanistic process like manufactur-
ing. In the words of Brooks [Bro95]: “adding people to a late soft-
ware project makes it later.” At first, this statement may seem
counterintuitive. However, as new people are added, people who
were working must spend time educating the newcomers, thereby
reducing the amount of time spent on productive development
effort. People can be added but only in a planned and well-
coordinated manner.

Myth: If 1 decide to outsource the software project to a third party, I can just
relax and let that firm build it.

Reality: If an organization does not understand how to manage and control
software projects internally, it will invariably struggle when it out-
sources software projects.

Customer myths. A customer who requests computer software may be a person
at the next desk, a technical group down the hall, the marketing/sales department,
or an outside company that has requested software under contract. In many cases,
the customer believes myths about software because software managers and prac-
titioners do little to correct misinformation. Myths lead to false expectations (by the
customer) and, ultimately, dissatisfaction with the developer.

Myth: A general statement of objectives is sufficient to begin writing
programs—we can fill in the details later.

Reality: Although a comprehensive and stable statement of requirements is
not always possible, an ambiguous “statement of objectives” is a
recipe for disaster. Unambiguous requirements (usually derived

http://www.spmn.com

CHAPTER 1 SOFTWARE AND SOFTWARE ENGINEERING 23

Myth:

Reality:

iteratively) are developed only through effective and continuous
communication between customer and developer.

Software requirements continually change, but change can be easily
accommodated because software is flexible.

It is true that software requirements change, but the impact of
change varies with the time at which it is introduced. When require-
ments changes are requested early (before design or code has been
started), the cost impact is relatively small.!® However, as time
passes, the cost impact grows rapidly—resources have been commit-
ted, a design framework has been established, and change can
cause upheaval that requires additional resources and major design
modification.

Practitioner’s myths. Myths that are still believed by software practitioners have
ADVICE‘ . .
been fostered by over 50 years of programming culture. During the early days, pro-
Whenever you think, gramming was viewed as an art form. Old ways and attitudes die hard.

we don't have time for

software engineering, Myth:
ask yourself, “Will we Reality:
have time fo do it over

again?”

Myth:
Reality:

Myth:

Reality:

Myth:

Reality:

Once we write the program and get it to work, our job is done.

Someone once said that “the sooner you begin ‘writing code,’ the
longer it'll take you to get done.” Industry data indicate that between
60 and 80 percent of all effort expended on software will be ex-
pended after it is delivered to the customer for the first time.

Until I get the program “running” I have no way of assessing its quality.
One of the most effective software quality assurance mechanisms
can be applied from the inception of a project—the technical review.
Software reviews (described in Chapter 15) are a “quality filter” that
have been found to be more effective than testing for finding certain
classes of software defects.

The only deliverable work product for a successful project is the working
program.

A working program is only one part of a software configuration that
includes many elements. A variety of work products (e.g., models,
documents, plans) provide a foundation for successful engineering
and, more important, guidance for software support.

Software engineering will make us create voluminous and unnecessary
documentation and will invariably slow us down.
Software engineering is not about creating documents. It is about

creating a quality product. Better quality leads to reduced rework.
And reduced rework results in faster delivery times.

16 Many software engineers have adopted an “agile” approach that accommodates change incre-

mentally, thereby controlling its impact and cost. Agile methods are discussed in Chapter 3.

24 CHAPTER 1 SOFTWARE AND SOFTWARE ENGINEERING

Many software professionals recognize the fallacy of the myths just described.
Regrettably, habitual attitudes and methods foster poor management and technical
practices, even when reality dictates a better approach. Recognition of software
realities is the first step toward formulation of practical solutions for software
engineering.

1.7 How IT ALL STARTS

Every software project is precipitated by some business need—the need to correct a
defect in an existing application; the need to adapt a “legacy system” to a changing
business environment; the need to extend the functions and features of an existing
application; or the need to create a new product, service, or system.

At the beginning of a software project, the business need is often expressed
informally as part of a simple conversation. The conversation presented in the
sidebar is typical.

SareHoME!?

How a Project Starts

Joe: How big . . . bottom line big?

Mal (avoiding a direct commitment): Tell him

' The scene: Meeting room at CPI
about our ideq, Lisa.

Corporation, a (fictional) company that makes consumer
products for home and commercial use. Lisa: It's a whole new generation of what we call “home
management products.” We call ‘em SafeHome. They use
the new wireless interface, provide homeowners or small-
business people with a system that's controlled by their
PC—home security, home surveillance, appliance and
device control—you know, turn down the home air
conditioner while you're driving home, that sort of thing.

The players: Mal Golden, senior manager, product
development; Lisa Perez, marketing manager; Lee
Warren, engineering manager; Joe Camalleri, executive
VP, business development

The conversation:

Joe: Okay, Lee, what's this | hear about your folks Lee (jumping inj: Engnesina R Il

developing a what2 A generic universal wireless box2

Lee: It's pretty cool . . . about the size of a small
matchbook . . . we can attach it to sensors of all kinds, a
digital camera, just about anything. Using the 802.11g
wireless protocol. It allows us to access the device’s output
without wires. We think it'll lead to a whole new
generation of products.

Joe: You agree, Mal?

Mal: | do. In fact, with sales as flat as they’ve been this
year, we need something new. Lisa and | have been
doing a litle market research, and we think we’ve got a
line of products that could be big.

feasibility study of this idea, Joe. It's doable at low
mcnufocfuring cost. Most hardware is off-the-shelf.
Software is an issue, but it's nothing that we can’t do.

Joe: Interesting. Now, | asked about the bottom line.

Mal: PCs have penetrated over 70 percent of all
households in the USA. If we could price this thing right,
it could be a killer-App. Nobody else has our wireless
box . . . it's proprietary. We'll have a 2-year jump on
the competition. Revenue? Maybe as much as 30 to

40 million dollars in the second year.

Joe (smiling): Let's take this to the next level. I'm
interested.

17 The SafeHome project will be used throughout this book to illustrate the inner workings of a project
team as it builds a software product. The company, the project, and the people are purely fictitious,
but the situations and problems are real.

CHAPTER 1 SOFTWARE AND SOFTWARE ENGINEERING 25

With the exception of a passing reference, software was hardly mentioned as part
of the conversation. And yet, software will make or break the SafeHome product line.
The engineering effort will succeed only if SafeHome software succeeds. The market
will accept the product only if the software embedded within it properly meets the
customer’s (as yet unstated) needs. We'll follow the progression of SafeHome
software engineering in many of the chapters that follow.

1.8 SUMMARY

Software is the key element in the evolution of computer-based systems and
products and one of the most important technologies on the world stage. Over the
past 50 years, software has evolved from a specialized problem solving and infor-
mation analysis tool to an industry in itself. Yet we still have trouble developing high-
quality software on time and within budget.

Software—programs, data, and descriptive information—addresses a wide array
of technology and application areas. Legacy software continues to present special
challenges to those who must maintain it.

Web-based systems and applications have evolved from simple collections of in-
formation content to sophisticated systems that present complex functionality and
multimedia content. Although these WebApps have unique features and require-
ments, they are software nonetheless.

Software engineering encompasses process, methods, and tools that enable
complex computer-based systems to be built in a timely manner with quality. The
software process incorporates five framework activities—communication, planning,
modeling, construction, and deployment—that are applicable to all software proj-
ects. Software engineering practice is a problem solving activity that follows a set of
core principles.

A wide array of software myths continue to lead managers and practitioners
astray, even as our collective knowledge of software and the technologies required
to build it grows. As you learn more about software engineering, you'll begin to un-
derstand why these myths should be debunked whenever they are encountered.

PROBLEMS AND POINTS TO PONDER

1.1. Provide at least five additional examples of how the law of unintended consequences
applies to computer software.

1.2. Provide a number of examples (both positive and negative) that indicate the impact of
software on our society.

1.3. Develop your own answers to the five questions asked at the beginning of Section 1.1.
Discuss them with your fellow students.

1.4. Many modern applications change frequently—before they are presented to the end user
and then after the first version has been put into use. Suggest a few ways to build software to
stop deterioration due to change.

26

CHAPTER 1 SOFTWARE AND SOFTWARE ENGINEERING

1.5. Consider the seven software categories presented in Section 1.1.2. Do you think that the
same approach to software engineering can be applied for each? Explain your answer.

1.6. Figure 1.3 places the three software engineering layers on top of a layer entitled “a quality
focus.” This implies an organizational quality program such as total quality management. Do a
bit of research and develop an outline of the key tenets of a total quality management program.

1.7. Is software engineering applicable when WebApps are built? If so, how might it be modi-
fied to accommodate the unique characteristics of WebApps?

1.8. As software becomes more pervasive, risks to the public (due to faulty programs) become
an increasingly significant concern. Develop a doomsday but realistic scenario in which the fail-
ure of a computer program could do great harm (either economic or human).

1.9. Describe a process framework in your own words. When we say that framework activities
are applicable to all projects, does this mean that the same work tasks are applied for all
projects, regardless of size and complexity? Explain.

1.10. Umbrella activities occur throughout the software process. Do you think they are applied
evenly across the process, or are some concentrated in one or more framework activities.

1.11. Add two additional myths to the list presented in Section 1.6. Also state the reality that
accompanies the myth.

FURTHER READINGS AND INFORMATION SOURCES'®

There are literally thousands of books written about computer software. The vast majority
discuss programming languages or software applications, but a few discuss software itself.
Pressman and Herron (Software Shock, Dorset House, 1991) presented an early discussion
(directed at the layperson) of software and the way professionals build it. Negroponte’s best-
selling book (Being Digital, Alfred A. Knopf, Inc., 1995) provides a view of computing and its
overall impact in the twenty-first century. DeMarco (Why Does Software Cost So Much? Dorset
House, 1995) has produced a collection of amusing and insightful essays on software and the
process through which it is developed.

Minasi (The Software Conspiracy: Why Software Companies Put out Faully Products, How They
Can Hurt You, and What You Can Do, McGraw-Hill, 2000) argues that the “modern scourge” of
software bugs can be eliminated and suggests ways to accomplish this. Compaine (Digital
Divide: Facing a Crisis or Creating a Myth, MIT Press, 2001) argues that the “divide” between those
who have access to information resources (e.g., the Web) and those that do not is narrowing as
we move into the first decade of this century. Books by Greenfield (Everyware: The Dawning Age
of Ubiquitous Computing, New Riders Publishing, 2006) and Loke (Context-Aware Pervasive
Systems: Architectures for a New Breed of Applications, Auerbach, 2006) introduce the concept of
“open-world” software and predict a wireless environment in which software must adapt to
requirements that emerge in real time.

The current state of the software engineering and the software process can best be deter-
mined from publications such as IEEE Software, IEEE Compulter, CrossTalk, and IEEE Transactions
on Software Engineering. Industry periodicals such as Application Development Trends and Cutter

18 The Further Reading and Information Sources section presented at the conclusion of each chapter
presents a brief overview of print sources that can help to expand your understanding of the major
topics presented in the chapter. I have created a comprehensive website to support Software
Engineering: A Practitioner’s Approach at www.mhhe.com/compsci/pressman. Among the
many topics addressed within the website are chapter-by-chapter software engineering resources
to Web-based information that can complement the material presented in each chapter. An
Amazon.com link to every book noted in this section is contained within these resources.

http://www.mhhe.com/compsci/pressman

CHAPTER 1 SOFTWARE AND SOFTWARE ENGINEERING 27

IT Journal often contain articles on software engineering topics. The discipline is “summarized”
every year in the Proceeding of the International Conféerence on Software Engineering, sponsored
by the IEEE and ACM, and is discussed in depth in journals such as ACM Transactions on Software
Engineering and Methodology, ACM Software Engineering Notes, and Annals of Software Engineer-
ing. Tens of thousands of websites are dedicated to software engineering and the software
process.

Many books addressing the software process and software engineering have been published
in recent years. Some present an overview of the entire process, while others delve into a few
important topics to the exclusion of others. Among the more popular offerings (in addition to
this book!) are

Abran, A., and J. Moore, SWEBOK: Guide to the Software Engineering Body of Knowledge, IEEE,
2002.

Andersson, E., et al., Software Engineering for Internet Applications, The MIT Press, 2006.

Christensen, M., and R. Thayer, A Project Manager’s Guide to Software Engineering Best Prac-
tices, IEEE-CS Press (Wiley), 2002.

Glass, R., Fact and Fallacies of Software Engineering, Addison-Wesley, 2002.

Jacobson, 1., Object-Oriented Software Engineering: A Use Case Driven Approach, 2d ed.,
Addison-Wesley, 2008.

Jalote, P., An Integrated Approach to Software Engineering, Springer, 2006.

Pfleeger, S., Software Engineering: Theory and Practice, 3d ed., Prentice-Hall, 2005.

Schach, S., Object-Oriented and Classical Software Engineering, 7th ed., McGraw-Hill, 2006.

Sommerville, 1., Software Engineering, 8th ed., Addison-Wesley, 2006.

Tsui, F., and O. Karam, Essentials of Software Engineering, Jones & Bartlett Publishers, 2006.

Many software engineering standards have been published by the IEEE, ISO, and their stan-
dards organizations over the past few decades. Moore (The Road Map to Software Engineering:
A Standards-Based Guide, Wiley-IEEE Computer Society Press, 2006) provides a useful survey of
relevant standards and how they apply to real projects.

A wide variety of information sources on software engineering and the software process are
available on the Internet. An up-to-date list of World Wide Web references that are relevant to

the software process can be found at the SEPA website: www.mhhe.com/engcs/compsci/
pressman/professional/olc/ser.htm.

http://www.mhhe.com/engcs/compsci/

PART

THE SOFTWARE
PROCESS

n this part of Software Engineering: A Practitioner’s Approach
you’ll learn about the process that provides a framework for
software engineering practice. These questions are addressed

in the chapters that follow:

What is a software process?

What are the generic framework activities that are present in
every software process?

How are processes modeled and what are process patterns?

What are the prescriptive process models and what are their
strengths and weaknesses?

Why is agility a watchword in modern software engineering
work?

What is agile software development and how does it differ
from more traditional process models?

Once these questions are answered you'll be better prepared to
understand the context in which software engineering practice is
applied.

29

CHAPTER

PROCESS
MODELS

KEey n a fascinating book that provides an economist’s view of software and soft-
CONCEPTS ware engineering, Howard Baetjer, Jr. [Bae98], comments on the software
component-based process:

development 50

concurrent models . .48 Because software, like all capital, is embodied knowledge, and because that knowl-
:“‘::::I':’““'V process 42 edge is initially dispersed, tacit, latent, and incomplete in large measure, software de-
farmal meﬂwds o velopment is a social learning process. The process is a dialogue in which the
model 51 knowledge that must become the software is brought together and embodied in the
generic process

model - oo 3] software. The process provides interaction between users and designers, between
incremental process users and evolving tools, and between designers and evolving tools [technology]. It is
models 4 an iterative process in which the evolving tool itself serves as the medium for com-
personal software . K . L

PIOGESS ... 57 munication, with each new round of the dialogue eliciting more useful knowledge
prescriptive process from the people involved.

models 38

process patterns . . .35 Indeed, building computer software is an iterative social learning process, and
task set 34 g . " . .
P — the outcome, something that Baetjer would call “software capital,” is an embodi-
process.......... 58 ment of knowledge collected, distilled, and organized as the process is conducted.

Unified Process53

SAB(O What is it? When you worktobuild What are the steps? At a detailed level, the

Look a product or system, it's important fo process that you adopt depends on the software
go through a series of predictable that you're building. One process might be ap-
steps—a road map that helps you propriate for creating software for an aircraft

create a timely, high-quality result. The road map avionics system, while an entirely different process
that you follow is called a “software process.” would be indicated for the creation of a website.

Who does it? Sofiware engineers and their What is the work product? From the point of
managers adapt the process to their needs and view of a software engineer, the work products
then follow it. In addition, the people who have are the programs, documents, and data that are
requested the software have a role to play in the produced as a consequence of the activities and
process of defining, building, and testing it. tasks defined by the process.

Why is it important? Because it provides How do I ensure that I’ve done it right?

srobi|ity, control, and organization to an activity
that can, if left uncontrolled, become quite
chaotic. However, a modern software engineer-
ing approach must be “agile.” It must demand
only those activities, controls, and work products
that are appropriate for the project team and the
product that is to be produced.

30

There are a number of software process
assessment mechanisms that enable organiza-
tions to determine the “maturity” of their soft-
ware process. However, the quality, timeliness,
and long-term viability of the product you
build are the best indicators of the efficacy of
the process that you use.

CHAPTER 2 PROCESS MODELS 31

But what exactly is a software process from a technical point of view? Within the
context of this book, I define a software process as a framework for the activities, ac-
tions, and tasks that are required to build high-quality software. Is “process” syn-
onymous with software engineering? The answer is “yes and no.” A software process
defines the approach that is taken as software is engineered. But software engi-
neering also encompasses technologies that populate the process—technical meth-
ods and automated tools.

More important, software engineering is performed by creative, knowledgeable
people who should adapt a mature software process so that it is appropriate for the
products that they build and the demands of their marketplace.

2,1 A QENERIQ ProOcESs MODEL

a:
POINT

The hierarchy of
technical work within
the software process is
activities,
encompassing acfions,
populated by tasks.

“We think that
software
developers are
missing a vital
truth: most
organizations don’t
know what they
do. They think they
know, but they
don't know.”

Tom DeMarco

In Chapter 1, a process was defined as a collection of work activities, actions, and
tasks that are performed when some work product is to be created. Each of these
activities, actions, and tasks reside within a framework or model that defines their
relationship with the process and with one another.

The software process is represented schematically in Figure 2.1. Referring to the
figure, each framework activity is populated by a set of software engineering actions.
Each software engineering action is defined by a task set that identifies the work
tasks that are to be completed, the work products that will be produced, the quality
assurance points that will be required, and the milestones that will be used to indi-
cate progress.

As I discussed in Chapter 1, a generic process framework for software engineer-
ing defines five framework activities—communication, planning, modeling,
construction, and deployment. In addition, a set of umbrella activities—project
tracking and control, risk management, quality assurance, configuration manage-
ment, technical reviews, and others—are applied throughout the process.

You should note that one important aspect of the software process has not
yet been discussed. This aspect—called process flow—describes how the frame-
work activities and the actions and tasks that occur within each framework
activity are organized with respect to sequence and time and is illustrated in
Figure 2.2.

A linear process flow executes each of the five framework activities in sequence,
beginning with communication and culminating with deployment (Figure 2.2a). An
iterative process flow repeats one or more of the activities before proceeding to the
next (Figure 2.2b). An evolutionary process flow executes the activities in a “circular”
manner. Each circuit through the five activities leads to a more complete version
of the software (Figure 2.2¢). A parallel process flow (Figure 2.2d) executes one or
more activities in parallel with other activities (e.g., modeling for one aspect of the
software might be executed in parallel with construction of another aspect of the
software).

32

A software
process
framework

PART ONE THE SOFTWARE PROCESS

Software process

Process fra mework

Umbrella activities

Task sets

Task sets

framework activity # 1

software engineering action #1.1

work tasks

work products

quality assurance points
project milestones

software engineering action #1.k

work tasks

work products

quality assurance points
project milestones

Task sets

Task sets

framework activity # n

software engineering action #n.1

work tasks

work products

quality assurance points
project milestones

software engineering action #n.m

work tasks

work products

quality assurance points
project milestones

2.1.1 Defining a Framework Activity

Although I have described five framework activities and provided a basic defini-
tion of each in Chapter 1, a software team would need significantly more infor-
mation before it could properly execute any one of these activities as part of the
software process. Therefore, you are faced with a key question: What actions are
appropriate for a framework activity, given the nature of the problem to be solved, the
characteristics of the people doing the work, and the stakeholders who are sponsor-

ing the project?

CHAPTER 2

PROCESS MODELS

m Process flow

Communication |—

Planning |—

Modeling |—

Construction |—

Deployment |—

(a)

Linear process flow

Communication |—

Planning |—

Modeling |—

Construction |—

Deployment |—

‘, How does a
® framework
activity change as
the nature of the
project changes?

(&—/

Planning
—| Communication
Increment Deployment
released

(b) lterative process flow

(c) Evolutionary process flow

Communication |—

Planning I

Modeling I

2

Modeling

Construction

Time —

Construction |—

Deployment |—

(d) Parallel process flow

action €ncompasses are:

1.

2. Discuss requirements and take notes.

Make contact with stakeholder via telephone.

For a small software project requested by one person (at a remote location) with
simple, straightforward requirements, the communication activity might encompass
little more than a phone call with the appropriate stakeholder. Therefore, the only
necessary action is phone conversation, and the work tasks (the task set) that this

34

2oy
e,
POINT
Different projects
demand different task
sets. The software
team chooses the task
set based on problem
and project
characteristics.

PART ONE THE SOFTWARE PROCESS

3. Organize notes into a brief written statement of requirements.

4. E-mail to stakeholder for review and approval.

If the project was considerably more complex with many stakeholders, each with
a different set of (sometime conflicting) requirements, the communication activity
might have six distinct actions (described in Chapter 5): inception, élicitation, elabo-
ration, negotiation, specification, and validation. Each of these software engineering
actions would have many work tasks and a number of distinct work products.

2.1.2 Identifying a Task Set

Referring again to Figure 2.1, each software engineering action (e.g., elicitation, an
action associated with the communication activity) can be represented by a number
of different task sets—each a collection of software engineering work tasks, related
work products, quality assurance points, and project milestones. You should choose
a task set that best accommodates the needs of the project and the characteristics of
your team. This implies that a software engineering action can be adapted to the spe-

cific needs of the software project and the characteristics of the project team.

/

Task Set

A task set defines the actual work to be done

to accomplish the objectives of a software
engineering action. For example, elicitation (more
commonly called “requirements gathering”) is an
important software engineering action that occurs during
the communication activity. The goal of requirements
gathering is to understand what various stakeholders want
from the software that is to be built.

For a smalll, relatively simple project, the task set for

requirements gathering might look like this:

1. Make a list of stakeholders for the project.

2. Invite all stakeholders to an informal meeting.

3. Ask each stakeholder to make a list of features and
functions required.

4. Discuss requirements and build a final list.

5. Prioritize requirements.

6. Note areas of uncertainty.

For a larger, more complex software project, a
different task set would be required. It might encompass
the fo||owing work tasks:

1. Make a list of stakeholders for the project.
2. Interview each stakeholder separately to determine

\ overall wants and needs.

3. Build a preliminary list of functions and features
based on stakeholder input.
4. Schedule a series of facilitated application
specification meetings.
5. Conduct meetings.
6. Produce informal user scenarios as part of each
meeting.
7. Refine user scenarios based on stakeholder
feedback.
8. Build a revised list of stakeholder requirements.
9. Use quality function deployment techniques to
prioritize requirements.
10. Package requirements so that they can be delivered
incrementally.
11. Note constraints and restrictions that will be placed
on the system.
12. Discuss methods for validating the system.

Both of these task sets achieve “requirements gathering,”
but they are quite different in their depth and formdlity. The
software team chooses the task set that will allow it to
achieve the goal of each action and still maintain quality
and agility.

/

O Whatis a
@ process
pattern?

“The repefition of
patterns is quite a
different thing than
the repefition of
parts. Indeed, the
different parts will
be unique because
the patterns are the
same.”

Christopher
Alexander

[/
T,
POINT
A pattem template
provides a consistent

means for describing a
pattern.

CHAPTER 2 PROCESS MODELS 35

2.1.3 Process Patterns

Every software team encounters problems as it moves through the software process.
It would be useful if proven solutions to these problems were readily available to the
team so that the problems could be addressed and resolved quickly. A process
pattern' describes a process-related problem that is encountered during software en-
gineering work, identifies the environment in which the problem has been encoun-
tered, and suggests one or more proven solutions to the problem. Stated in more
general terms, a process pattern provides you with a template [Amb98]—a consis-
tent method for describing problem solutions within the context of the software
process. By combining patterns, a software team can solve problems and construct
a process that best meets the needs of a project.

Patterns can be defined at any level of abstraction.? In some cases, a pattern might
be used to describe a problem (and solution) associated with a complete process
model (e.g., prototyping). In other situations, patterns can be used to describe a prob-
lem (and solution) associated with a framework activity (e.g., planning) or an action
within a framework activity (e.g., project estimating).

Ambler [Amb98] has proposed a template for describing a process pattern:

Pattern Name. The pattern is given a meaningful name describing it
within the context of the software process (e.g., TechnicalReviews).

Forces. The environment in which the pattern is encountered and the
issues that make the problem visible and may affect its solution.

Type. The pattern type is specified. Ambler [Amb98] suggests three types:

1. Stage pattern—defines a problem associated with a framework activity for
the process. Since a framework activity encompasses multiple actions and
work tasks, a stage pattern incorporates multiple task patterns (see the fol-
lowing) that are relevant to the stage (framework activity). An example of a
stage pattern might be EstablishingCommunication. This pattern would
incorporate the task pattern RequirementsGathering and others.

2. Task pattern—defines a problem associated with a software engineering
action or work task and relevant to successful software engineering
practice (e.g., RequirementsGathering is a task pattern).

3. Phase pattern—define the sequence of framework activities that occurs
within the process, even when the overall flow of activities is iterative
in nature. An example of a phase pattern might be SpiralModel or
Prototyping.’

1 A detailed discussion of patterns is presented in Chapter 12.

2 Patterns are applicable to many software engineering activities. Analysis, design, and testing
patterns are discussed in Chapters 7, 9, 10, 12, and 14. Patterns and “antipatterns” for project
management activities are discussed in Part 4 of this book.

3 These phase patterns are discussed in Section 2.3.3.

36

Comprehensive
1ESOUICES 0N Process
patterns can be found
at www.
ambysoft.com/
processPattemsPage
himl.

PART ONE THE SOFTWARE PROCESS

Initial context. Describes the conditions under which the pattern applies.
Prior to the initiation of the pattern: (1) What organizational or team-related ac-
tivities have already occurred? (2) What is the entry state for the process?
(3) What software engineering information or project information already exists?
For example, the Planning pattern (a stage pattern) requires that (1) cus-
tomers and software engineers have established a collaborative communi-
cation; (2) successful completion of a number of task patterns [specified] for
the Communication pattern has occurred; and (3) the project scope, basic
business requirements, and project constraints are known.

Problem. The specific problem to be solved by the pattern.

Solution. Describes how to implement the pattern successfully. This sec-
tion describes how the initial state of the process (that exists before the pat-
tern is implemented) is modified as a consequence of the initiation of the
pattern. It also describes how software engineering information or project
information that is available before the initiation of the pattern is transformed
as a consequence of the successful execution of the pattern.

Resulting Context. Describes the conditions that will result once the pat-
tern has been successfully implemented. Upon completion of the pattern:
(1) What organizational or team-related activities must have occurred?

(2) What is the exit state for the process? (3) What software engineering
information or project information has been developed?

Related Patterns. Provide a list of all process patterns that are directly
related to this one. This may be represented as a hierarchy or in some other
diagrammatic form. For example, the stage pattern Communication
encompasses the task patterns: ProjectTeam, CollaborativeGuidelines,
Scopelsolation, RequirementsGathering, ConstraintDescription, and
ScenarioCreation.

Known Uses and Examples. Indicate the specific instances in which the
pattern is applicable. For example, Communication is mandatory at the
beginning of every software project, is recommended throughout the software
project, and is mandatory once the deployment activity is under way.

Process patterns provide an effective mechanism for addressing problems asso-
ciated with any software process. The patterns enable you to develop a hierarchical
process description that begins at a high level of abstraction (a phase pattern). The
description is then refined into a set of stage patterns that describe framework
activities and are further refined in a hierarchical fashion into more detailed task
patterns for each stage pattern. Once process patterns have been developed, they
can be reused for the definition of process variants—that is, a customized process
model can be defined by a software team using the patterns as building blocks for
the process model.

http://www.ambysoft.com/
http://www.ambysoft.com/

CHAPTER 2 PROCESS MODELS

37

/

An Example Process Pattern

The following abbreviated process pattern

describes an approach that may be applicable
when stakeholders have a general idea of what must be
done but are unsure of specific software requirements.

Pattern name. RequirementsUnclear

Intent. This pattern describes an approach for building a
model (a prototype) that can be assessed iteratively by
stakeholders in an effort to identify or solidify software
requirements.

Type. Phase pattern.

Initial context. The following conditions must be met
prior fo the initiation of this pattern: (1) stakeholders have
been identified; (2) a mode of communication between
stakeholders and the software team has been established;
(3) the overriding software problem to be solved has been
identified by stakeholders; (4) an initial understanding of
project scope, basic business requirements, and project
constraints has been developed.

Problem. Requirements are hazy or nonexistent, yet

t\here is clear recognition that there is a problem to be

solved, and the problem must be addressed with a
software solution. Stakeholders are unsure of what they
want; that is, they cannot describe software requirements
in any detail.

Solution. A description of the prototyping process
would be presented here and is described later in

Section 2.3.3.

Resulting context. A software prototype that identifies
basic requirements (e.g., modes of interaction,
computational features, processing functions) is approved
by stakeholders. Following this, (1) the prototype may
evolve through a series of increments to become the
production software or (2) the prototype may be discarded
and the production software built using some other process
pattern.

Related patterns. The following patterns are related to
this pattern: CustomerCommunication,
IterativeDesign, lterativeDevelopment,
CustomerAssessment, RequirementExtraction.

Known uses and examples. Prototyping is
recommended when requirements are uncertain.

/

— 2.2 PROCESS ASSESSMENT AND IMPROVEMENT

[/

Assessment attempts to
understand the current
state of the software
process with the intent

of mproving it cessful software engineering.*

The existence of a software process is no guarantee that software will be delivered
on time, that it will meet the customer’s needs, or that it will exhibit the technical
characteristics that will lead to long-term quality characteristics (Chapters 14 and
16). Process patterns must be coupled with solid software engineering practice
(Part 2 of this book). In addition, the process itself can be assessed to ensure that it
meets a set of basic process criteria that have been shown to be essential for a suc-

A number of different approaches to software process assessment and
improvement have been proposed over the past few decades:

@ What formal
® techniques
are available for
assessing the
software process?

Standard CMMI Assessment Method for Process Improvement
(SCAMPI)—provides a five-step process assessment model that incorporates
five phases: initiating, diagnosing, establishing, acting, and learning. The
SCAMPI method uses the SEI CMMI as the basis for assessment [SEIOO0].

4 The SEI's CMMI [CMMO7] describes the characteristics of a software process and the criteria for a
successful process in voluminous detail.

38

“Software
organizations have
exhibited
significant
shortcomings in
their ability to
capitalize on the
experiences gained
from completed
projects.”

NASA

2.3

PART ONE THE SOFTWARE PROCESS

CMM-Based Appraisal for Internal Process Improvement (CBA IPI)—
provides a diagnostic technique for assessing the relative maturity of a
software organization; uses the SEI CMM as the basis for the assessment
[DunO1].

SPICE (ISO/IEC15504)—a standard that defines a set of requirements for
software process assessment. The intent of the standard is to assist organi-
zations in developing an objective evaluation of the efficacy of any defined
software process [ISO08].

ISO 9001:2000 for Software—a generic standard that applies to any or-
ganization that wants to improve the overall quality of the products, systems,
or services that it provides. Therefore, the standard is directly applicable to
software organizations and companies [Ant06].

A more detailed discussion of software assessment and process improvement
methods is presented in Chapter 30.

PRESCRIPTIVE PROCESS MODELS

“If the process is
right, the results
will take care of
themselves.”

Takashi Osada

Prescriptive process models were originally proposed to bring order to the chaos
of software development. History has indicated that these traditional models
have brought a certain amount of useful structure to software engineering work and
have provided a reasonably effective road map for software teams. However, software
engineering work and the product that it produces remain on “the edge of chaos.”

In an intriguing paper on the strange relationship between order and chaos in the
software world, Nogueira and his colleagues [Nog00] state

The edge of chaos is defined as “a natural state between order and chaos, a grand com-
promise between structure and surprise” [Kau95]. The edge of chaos can be visualized as
an unstable, partially structured state. . . . It is unstable because it is constantly attracted
to chaos or to absolute order.

We have the tendency to think that order is the ideal state of nature. This could be a mis-
take. Research . . . supports the theory that operation away from equilibrium generates cre-
ativity, self-organized processes, and increasing returns [Roo96]. Absolute order means the
absence of variability, which could be an advantage under unpredictable environments.
Change occurs when there is some structure so that the change can be organized, but not
so rigid that it cannot occur. Too much chaos, on the other hand, can make coordination
and coherence impossible. Lack of structure does not always mean disorder.

The philosophical implications of this argument are significant for software engineer-
ing. If prescriptive process models® strive for structure and order, are they inappropri-
ate for a software world that thrives on change? Yet, if we reject traditional process

5 Prescriptive process models are sometimes referred to as “traditional” process models.

Prescriptive process
models define a
prescribed set of
process elements and
a predictable process
work flow.

CHAPTER 2 PROCESS MODELS 39

models (and the order they imply) and replace them with something less structured,
do we make it impossible to achieve coordination and coherence in software work?

There are no easy answers to these questions, but there are alternatives available
to software engineers. In the sections that follow, I examine the prescriptive process
approach in which order and project consistency are dominant issues. I call them
“prescriptive” because they prescribe a set of process elements—{ramework activi-
ties, software engineering actions, tasks, work products, quality assurance, and
change control mechanisms for each project. Each process model also prescribes a
process flow (also called a work flow)—that is, the manner in which the process
elements are interrelated to one another.

All software process models can accommodate the generic framework activities
described in Chapter 1, but each applies a different emphasis to these activities and
defines a process flow that invokes each framework activity (as well as software
engineering actions and tasks) in a different manner.

2.3.1 The Waterfall Model

There are times when the requirements for a problem are well understood—when
work flows from communication through deployment in a reasonably linear fash-
ion. This situation is sometimes encountered when well-defined adaptations or en-
hancements to an existing system must be made (e.g., an adaptation to accounting
software that has been mandated because of changes to government regulations). It
may also occur in a limited number of new development efforts, but only when
requirements are well defined and reasonably stable.

The waterfall model, sometimes called the classic life cycle, suggests a systematic,
sequential approach® to software development that begins with customer specifica-
tion of requirements and progresses through planning, modeling, construction, and
deployment, culminating in ongoing support of the completed software (Figure 2.3).

A variation in the representation of the waterfall model is called the V-model.
Represented in Figure 2.4, the V-model [Buc99] depicts the relationship of quality

m The waterfall model

—| Communication

project initiation Pluqnqu Modelin
requirements gathering CRIIEITE, lysi 9 Construction
scheduling ChIElEE code Deployment
tracking design tost delivery
support
feedback

6 Although the original waterfall model proposed by Winston Royce [Roy70] made provision for
“feedback loops,” the vast majority of organizations that apply this process model treat it as if it
were strictly linear.

40

PART ONE THE SOFTWARE PROCESS

The V-model

ZoN
e,
POINT
The V-model illustrates
how verification and
validation actions are
associated with earlier
engineering acfions.

A Why does

® the waterfall
model sometimes
fail?

Requirements Acceptance
modeling testing

Architectural

System

design testing
Component Integration
design testing

Code Unit

generation = testing

Executable
software

assurance actions to the actions associated with communication, modeling, and
early construction activities. As a software team moves down the left side of the V,
basic problem requirements are refined into progressively more detailed and techni-
cal representations of the problem and its solution. Once code has been generated,
the team moves up the right side of the V, essentially performing a series of tests
(quality assurance actions) that validate each of the models created as the team
moved down the left side.” In reality, there is no fundamental difference between the
classic life cycle and the V-model. The V-model provides a way of visualizing how
verification and validation actions are applied to earlier engineering work.

The waterfall model is the oldest paradigm for software engineering. However,
over the past three decades, criticism of this process model has caused even ardent
supporters to question its efficacy [Han95]. Among the problems that are sometimes
encountered when the waterfall model is applied are:

1. Real projects rarely follow the sequential flow that the model proposes.
Although the linear model can accommodate iteration, it does so indirectly.
As aresult, changes can cause confusion as the project team proceeds.

7 A detailed discussion of quality assurance actions is presented in Part 3 of this book.

“Too often,
software work
follows the first law
of bicydling: No
matter where
you're going, it's
uphill and against
the wind.”

Avuthor unknown

a}
l?élN'l'

The incremental model
delivers a series of
releases, called
increments, that
provide progressively
more functionality for
the customer as each
increment is delivered.

QA'pwcss.

Your customer
demands delivery by a
date that is impossible
to meet. Suggest deliv-
ering one or more
increments by that
date and the rest of
the soffware (addi-
tional increments)
later.

CHAPTER 2 PROCESS MODELS 41

2. Itis often difficult for the customer to state all requirements explicitly. The
waterfall model requires this and has difficulty accommodating the natural
uncertainty that exists at the beginning of many projects.

3. The customer must have patience. A working version of the program(s) will
not be available until late in the project time span. A major blunder, if unde-
tected until the working program is reviewed, can be disastrous.

In an interesting analysis of actual projects, Bradac [Bra94] found that the linear
nature of the classic life cycle leads to “blocking states” in which some project team
members must wait for other members of the team to complete dependent tasks. In
fact, the time spent waiting can exceed the time spent on productive work! The
blocking states tend to be more prevalent at the beginning and end of a linear
sequential process.

Today, software work is fast-paced and subject to a never-ending stream of
changes (to features, functions, and information content). The waterfall model is
often inappropriate for such work. However, it can serve as a useful process model
in situations where requirements are fixed and work is to proceed to completion in
a linear manner.

2.3.2 Incremental Process Models

There are many situations in which initial software requirements are reasonably well
defined, but the overall scope of the development effort precludes a purely linear
process. In addition, there may be a compelling need to provide a limited set of soft-
ware functionality to users quickly and then refine and expand on that functionality
in later software releases. In such cases, you can choose a process model that is
designed to produce the software in increments.

The incremental model combines elements of linear and parallel process flows
discussed in Section 2.1. Referring to Figure 2.5, the incremental model applies linear
sequences in a staggered fashion as calendar time progresses. Each linear sequence
produces deliverable “increments” of the software [McD93] in a manner that is sim-
ilar to the increments produced by an evolutionary process flow (Section 2.3.3).

For example, word-processing software developed using the incremental para-
digm might deliver basic file management, editing, and document production func-
tions in the first increment; more sophisticated editing and document production
capabilities in the second increment; spelling and grammar checking in the third in-
crement; and advanced page layout capability in the fourth increment. It should be
noted that the process flow for any increment can incorporate the prototyping
paradigm.

When an incremental model is used, the first increment is often a core product.
That is, basic requirements are addressed but many supplementary features (some
known, others unknown) remain undelivered. The core product is used by the cus-
tomer (or undergoes detailed evaluation). As a result of use and/or evaluation, a

42

PART ONE THE SOFTWARE PROCESS

The
incremental
model

7N
e,

POINT
Evolutionary process
models produce an
increasingly more
complete version of
the software with each
iteration.

D Communication

D Planning

D Modeling (analysis, design)
increment # n

D Construction (code, test)
D Deployment (delivery, feedback) D—D—D_D—D
.‘ delivery of

increment # 2 [] nth increment

D—D—D_D—D delivery of
increment # 1 2nd increment
EH:H:I—D_D sy o
1st increment

Project Calendar Time

Software Functionality and Features

plan is developed for the next increment. The plan addresses the modification of the
core product to better meet the needs of the customer and the delivery of additional
features and functionality. This process is repeated following the delivery of each
increment, until the complete product is produced.

The incremental process model focuses on the delivery of an operational product
with each increment. Early increments are stripped-down versions of the final prod-
uct, but they do provide capability that serves the user and also provide a platform
for evaluation by the user.®

Incremental development is particularly useful when staffing is unavailable for a
complete implementation by the business deadline that has been established for the
project. Early increments can be implemented with fewer people. If the core product
is well received, then additional staff (if required) can be added to implement the next
increment. In addition, increments can be planned to manage technical risks. For ex-
ample, a major system might require the availability of new hardware that is under
development and whose delivery date is uncertain. It might be possible to plan early
increments in a way that avoids the use of this hardware, thereby enabling partial
functionality to be delivered to end users without inordinate delay.

2.3.3 Evolutionary Process Models

Software, like all complex systems, evolves over a period of time. Business and prod-
uct requirements often change as development proceeds, making a straight line path
to an end product unrealistic; tight market deadlines make completion of a compre-
hensive software product impossible, but a limited version must be introduced to

8 Itisimportant to note that an incremental philosophy is also used for all “agile” process models dis-
cussed in Chapter 3.

“Plan to throw one
away. You will do
that, anyway. Your
only choice is
whether to fry to
sell the throwaway
to customers.”

Frederick P.
Brooks

QA'pwcss.

When your customer
has a legitimate need,
but is clueless about
the details, develop a
profotype as a first
step.

CHAPTER 2 PROCESS MODELS 43

meet competitive or business pressure; a set of core product or system requirements
is well understood, but the details of product or system extensions have yet to be
defined. In these and similar situations, you need a process model that has been
explicitly designed to accommodate a product that evolves over time.

Evolutionary models are iterative. They are characterized in a manner that
enables you to develop increasingly more complete versions of the software. In the
paragraphs that follow, I present two common evolutionary process models.

Prototyping. Often, a customer defines a set of general objectives for software,
but does not identify detailed requirements for functions and features. In other
cases, the developer may be unsure of the efficiency of an algorithm, the adapt-
ability of an operating system, or the form that human-machine interaction should
take. In these, and many other situations, a prototyping paradigm may offer the best
approach.

Although prototyping can be used as a stand-alone process model, it is more com-
monly used as a technique that can be implemented within the context of any one
of the process models noted in this chapter. Regardless of the manner in which it is
applied, the prototyping paradigm assists you and other stakeholders to better
understand what is to be built when requirements are fuzzy.

The prototyping paradigm (Figure 2.6) begins with communication. You meet with
other stakeholders to define the overall objectives for the software, identify whatever
requirements are known, and outline areas where further definition is mandatory. A
prototyping iteration is planned quickly, and modeling (in the form of a “quick de-
sign”) occurs. A quick design focuses on a representation of those aspects of the soft-
ware that will be visible to end users (e.g., human interface layout or output display

The
prototyping
paradigm

Quick plan
Communication \

\ Modeling

Quick design

Deployment
Delivery
& Feedback

Construction
of

prototype

QA'pwcss

Resist pressure fo
extend a rough
profofype info a
production product.
Quality almost always
suffers as a resulf.

PART ONE THE SOFTWARE PROCESS

formats). The quick design leads to the construction of a prototype. The prototype is
deployed and evaluated by stakeholders, who provide feedback that is used to fur-
ther refine requirements. Iteration occurs as the prototype is tuned to satisfy the
needs of various stakeholders, while at the same time enabling you to better under-
stand what needs to be done.

Ideally, the prototype serves as a mechanism for identifying software require-
ments. If a working prototype is to be built, you can make use of existing program
fragments or apply tools (e.g., report generators and window managers) that enable
working programs to be generated quickly.

But what do you do with the prototype when it has served the purpose described
earlier? Brooks [Bro95] provides one answer:

In most projects, the first system built is barely usable. It may be too slow, too big, awk-
ward in use or all three. There is no alternative but to start again, smarting but smarter,
and build a redesigned version in which these problems are solved.

The prototype can serve as “the first system.” The one that Brooks recommends
you throw away. But this may be an idealized view. Although some prototypes are
built as “throwaways,” others are evolutionary in the sense that the prototype slowly
evolves into the actual system.

Both stakeholders and software engineers like the prototyping paradigm. Users
get a feel for the actual system, and developers get to build something immediately.
Yet, prototyping can be problematic for the following reasons:

1. Stakeholders see what appears to be a working version of the software,
unaware that the prototype is held together haphazardly, unaware that in the
rush to get it working you haven't considered overall software quality or
long-term maintainability. When informed that the product must be rebuilt so
that high levels of quality can be maintained, stakeholders cry foul and
demand that “a few fixes” be applied to make the prototype a working
product. Too often, software development management relents.

2. As asoftware engineer, you often make implementation compromises in
order to get a prototype working quickly. An inappropriate operating system
or programming language may be used simply because it is available and
known; an inefficient algorithm may be implemented simply to demonstrate
capability. After a time, you may become comfortable with these choices and
forget all the reasons why they were inappropriate. The less-than-ideal
choice has now become an integral part of the system.

Although problems can occur, prototyping can be an effective paradigm for soft-
ware engineering. The key is to define the rules of the game at the beginning; that is,
all stakeholders should agree that the prototype is built to serve as a mechanism for
defining requirements. It is then discarded (at least in part), and the actual software
is engineered with an eye toward quality.

CHAPTER 2 PROCESS MODELS

SAFEHOME

JipS—

r'
r]" The scene: Meeting room for the

software engineering group at CPl Corporation, a
(fictional) company that makes consumer products for
home and commercial use.

The players: Lee Warren, engineering manager; Doug
Miller, software engineering manager; Jamie Lazar,
software team member; Vinod Raman, software team
member; and Ed Robbins, software team member.

The conversation:

Lee: So let's recapitulate. I've spent some time discussing
the SafeHome product line as we see it at the moment.
No doubt, we've got a lot of work to do to simply define
the thing, but I'd like you guys to begin thinking about
how you're going to approach the software part of this
project.

Doug: Seems like we've been pretty disorganized in our
approach to software in the past.

Ed: | don't know, Doug, we always got product out
the door.

Doug: True, but not without a lot of grief, and this
project looks like it's bigger and more complex than
anything we've done in the past.

Jamie: Doesn't look that hard, but | agree . . . our
ad hoc approach to past projects won't work here,
particularly if we have a very tight time line.

The Spiral Model.

45

Selecting a Process Model, Part 1

Doug (smiling): | want to be a bit more professional in
our approach. | went to a short course last week and
learned a lot about software engineering . . . good stuff.
We need a process here.

Jamie (with a frown): My job is to build computer
programs, not push paper around.

Doug: Give it a chance before you go negative on

me. Here's what | mean. [Doug proceeds to describe

the process framework described in this chapter and

the prescriptive process models presented to this

point.]

Doug: So anyway, it seems to me that a linear model is
not for us . . . assumes we have all requirements up front
and, knowing this place, that's not likely.

Vinod: Yecah, and it sounds way too IT-oriented . . .
probably good for building an inventory control system
or something, but it's just not right for SafeHome.

Doug: | agree.

Ed: That prototyping approach seems OK. A lot like what
we do here anyway.

Vinod: That's a problem. I'm worried that it doesn’t
provide us with enough structure.

Doug: Not to worry. We've got plenty of other options,
and | want you guys to pick what's best for the team and
best for the project.

Originally proposed by Barry Boehm [Boe88], the spiral model

is an evolutionary software process model that couples the iterative nature of proto-
typing with the controlled and systematic aspects of the waterfall model. It provides
the potential for rapid development of increasingly more complete versions of the
software. Boehm [BoeOla] describes the model in the following manner:

The spiral development model is a risk-driven process model generator that is used to
guide multi-stakeholder concurrent engineering of software intensive systems. It has two

main distinguishing features. One is a cyclic approach for incrementally growing a sys-

tem’s degree of definition and implementation while decreasing its degree of risk. The

other is a set of anchor point milestones for ensuring stakeholder commitment to feasible

and mutually satisfactory system solutions.

Using the spiral model, software is developed in a series of evolutionary releases.
During early iterations, the release might be a model or prototype. During later iter-
ations, increasingly more complete versions of the engineered system are produced.

46

A typical
spiral model

N
e,

POINT
The spiral model can
be adapted to apply
throughout the entire
life cycle of an
application, from
concept development
fo maintenance.

Useful information
about the spiral model
can be obtained at:
WWW.sei.cmu
.edu/publications/
documents/00
.reports/00sr008
himl.

PART ONE THE SOFTWARE PROCESS

Planning
estimation
scheduling
risk analysis

Modeling
analysis
design

N—

Deployment .
. Construction
delivery code
feedback

test

A spiral model is divided into a set of framework activities defined by the software
engineering team. For illustrative purposes, I use the generic framework activities
discussed earlier.” Each of the framework activities represent one segment of the spi-
ral path illustrated in Figure 2.7. As this evolutionary process begins, the software
team performs activities that are implied by a circuit around the spiral in a clockwise
direction, beginning at the center. Risk (Chapter 28) is considered as each revolution
is made. Anchor point milestones—a combination of work products and conditions
that are attained along the path of the spiral—are noted for each evolutionary pass.

The first circuit around the spiral might result in the development of a product
specification; subsequent passes around the spiral might be used to develop a pro-
totype and then progressively more sophisticated versions of the software. Each pass
through the planning region results in adjustments to the project plan. Cost and
schedule are adjusted based on feedback derived from the customer after delivery.
In addition, the project manager adjusts the planned number of iterations required
to complete the software.

Unlike other process models that end when software is delivered, the spiral model
can be adapted to apply throughout the life of the computer software. Therefore, the
first circuit around the spiral might represent a “concept development project” that
starts at the core of the spiral and continues for multiple iterations'® until concept

9 The spiral model discussed in this section is a variation on the model proposed by Boehm. For
further information on the original spiral model, see [Boe88]. More recent discussion of Boehm's
spiral model can be found in [Boe98].

10 The arrows pointing inward along the axis separating the deployment region from the commu-
nication region indicate a potential for local iteration along the same spiral path.

http://www.sei.cmu

Gpwcsg

If your management
demands fixed-budget
development
(generally a bad idea),
the spiral can be a
problem. As each
aircuit is completed,
project cost is revisited
and revised.

@.cre

“I'm only this for
and only fomorrow

leads my way.”

Dave Matthews
Band

CHAPTER 2 PROCESS MODELS 47

development is complete. If the concept is to be developed into an actual product,
the process proceeds outward on the spiral and a “new product development proj-
ect” commences. The new product will evolve through a number of iterations around
the spiral. Later, a circuit around the spiral might be used to represent a “product en-
hancement project.” In essence, the spiral, when characterized in this way, remains
operative until the software is retired. There are times when the process is dormant,
but whenever a change is initiated, the process starts at the appropriate entry point
(e.g., product enhancement).

The spiral model is a realistic approach to the development of large-scale systems
and software. Because software evolves as the process progresses, the developer
and customer better understand and react to risks at each evolutionary level. The
spiral model uses prototyping as a risk reduction mechanism but, more important,
enables you to apply the prototyping approach at any stage in the evolution of the
product. It maintains the systematic stepwise approach suggested by the classic life
cycle but incorporates it into an iterative framework that more realistically reflects
the real world. The spiral model demands a direct consideration of technical risks at
all stages of the project and, if properly applied, should reduce risks before they
become problematic.

But like other paradigms, the spiral model is not a panacea. It may be difficult to
convince customers (particularly in contract situations) that the evolutionary
approach is controllable. It demands considerable risk assessment expertise and
relies on this expertise for success. If a major risk is not uncovered and managed,
problems will undoubtedly occur.

SAFEHOME

software engineering group at CPl Corporation, a
company that makes consumer products for home and
commercial use.

The players: Lee Warren, engineering manager; Doug
Miller, software engineering manager; Vinod and Jamie,
members of the software engineering feam.

The conversation: [Doug describes evolutionary
process options.]

Jamie: Now | see something | like. An incremental
approach makes sense, and | really like the flow of that
spiral model thing. That's keepin’ it real.

Vinod: | agree. We deliver an increment, learn from
customer feedback, replan, and then deliver another
increment. It also fits into the nature of the product. We

Selecting a Process Model, Part 2

can have something on the market fast and then add
funcfionoﬂity with each version, er, increment.

The scene: Meeting room for the

Lee: Wait a minute. Did you say that we regenerate the

plan with each tour around the spiral, Doug? That's not so
great; we need one plan, one schedule, and we’ve got to
stick fo it.

Doug: That's old-school thinking, Lee. Like the guys said,
we've got to keep it real. | submit that it's better to tweak
the plan as we learn more and as changes are requested.
It's way more realistic. What's the point of a plan if it
doesn’t reflect reality?

Lee (frowning): | suppose so, but . . . senior management's
not going to like this . . . they want a fixed plan.

Doug (smiling): Then you'll have to reeducate them,

buddy.

48

PART ONE THE SOFTWARE PROCESS

One element of
the concurrent
process model

ﬁnwcs’

The concurrent mode!
is often more appro-
priate for product eng-
neering projects where
different engineering
teams are involved.

Inactive

Modeling activity
r

N

Represents the state
of a software engineering
activity or task

Under
development

Awaiting
changes

Under review

Under

revision

Baselined

2.3.4 Concurrent Models

The concurrent development model, sometimes called concurrent engineering, allows
a software team to represent iterative and concurrent elements of any of the process
models described in this chapter. For example, the modeling activity defined for the
spiral model is accomplished by invoking one or more of the following software
engineering actions: prototyping, analysis, and design.!'

Figure 2.8 provides a schematic representation of one software engineering
activity within the modeling activity using a concurrent modeling approach. The
activity—modeling—may be in any one of the states'? noted at any given time. Sim-
ilarly, other activities, actions, or tasks (€.g., communication or construction) can
be represented in an analogous manner. All software engineering activities exist
concurrently but reside in different states.

11 It should be noted that analysis and design are complex tasks that require substantial discussion.
Part 2 of this book considers these topics in detail.
12 A state is some externally observable mode of behavior.

“Every process in
your organization
has a customer,
and without
customer a process
has no purpose.”

V. Daniel Hunt

CHAPTER 2 PROCESS MODELS 49

For example, early in a project the communication activity (not shown in the figure)
has completed its first iteration and exists in the awaiting changes state. The model-
ing activity (which existed in the inactive state while initial communication was com-
pleted, now makes a transition into the under development state. If, however, the
customer indicates that changes in requirements must be made, the modeling activity
moves from the under development state into the awaiting changes state.

Concurrent modeling defines a series of events that will trigger transitions from
state to state for each of the software engineering activities, actions, or tasks. For
example, during early stages of design (a major software engineering action that
occurs during the modeling activity), an inconsistency in the requirements model is
uncovered. This generates the event analysis model correction, which will trigger the
requirements analysis action from the done state into the awaiting changes state.

Concurrent modeling is applicable to all types of software development and pro-
vides an accurate picture of the current state of a project. Rather than confining soft-
ware engineering activities, actions, and tasks to a sequence of events, it defines a
process network. Each activity, action, or task on the network exists simultaneously
with other activities, actions, or tasks. Events generated at one point in the process
network trigger transitions among the states.

2.3.5 A Final Word on Evolutionary Processes

I have already noted that modern computer software is characterized by continual
change, by very tight time lines, and by an emphatic need for customer-user
satisfaction. In many cases, time-to-market is the most important management
requirement. If a market window is missed, the software project itself may be
meaningless."?

Evolutionary process models were conceived to address these issues, and yet, as
a general class of process models, they too have weaknesses. These are summarized
by Nogueira and his colleagues [Nog00] :

Despite the unquestionable benefits of evolutionary software processes, we have some
concerns. The first concern is that prototyping [and other more sophisticated evolution-
ary processes] poses a problem to project planning because of the uncertain number of
cycles required to construct the product. Most project management and estimation tech-
niques are based on linear layouts of activities, so they do not fit completely.

Second, evolutionary software processes do not establish the maximum speed of the
evolution. If the evolutions occur too fast, without a period of relaxation, it is certain that
the process will fall into chaos. On the other hand if the speed is too slow then produc-
tivity could be affected . . .

13 It is important to note, however, that being the first to reach a market is no guarantee of success.
In fact, many very successful software products have been second or even third to reach the market
(learning from the mistakes of their predecessors).

50

PART ONE THE SOFTWARE PROCESS

Third, software processes should be focused on flexibility and extensibility rather than
on high quality. This assertion sounds scary. However, we should prioritize the speed of
the development over zero defects. Extending the development in order to reach high
quality could result in a late delivery of the product, when the opportunity niche has
disappeared. This paradigm shift is imposed by the competition on the edge of chaos.

Indeed, a software process that focuses on flexibility, extensibility, and speed of de-
velopment over high quality does sound scary. And yet, this idea has been proposed
by a number of well-respected software engineering experts (e.g., [You95], [Bac97]).

The intent of evolutionary models is to develop high-quality software'* in an iter-
ative or incremental manner. However, it is possible to use an evolutionary process
to emphasize flexibility, extensibility, and speed of development. The challenge for
software teams and their managers is to establish a proper balance between these
critical project and product parameters and customer satisfaction (the ultimate
arbiter of software quality).

2.4 SPECIALIZED PROCESS MODELS

Useful information on
component-based
development can be
obfained af: www
.chd-hg.com.

Specialized process models take on many of the characteristics of one or more of the
traditional models presented in the preceding sections. However, these models tend
to be applied when a specialized or narrowly defined software engineering approach
is chosen.'®

2.4.1 Component-Based Development

Commercial off-the-shelf (COTS) software components, developed by vendors who
offer them as products, provide targeted functionality with well-defined interfaces
that enable the component to be integrated into the software that is to be built. The
component-based development model incorporates many of the characteristics of the
spiral model. It is evolutionary in nature [Nie92], demanding an iterative approach to
the creation of software. However, the component-based development model con-
structs applications from prepackaged software components.

Modeling and construction activities begin with the identification of candidate
components. These components can be designed as either conventional software
modules or object-oriented classes or packages'® of classes. Regardless of the

14 In this context software quality is defined quite broadly to encompass not only customer satisfac-
tion, but also a variety of technical criteria discussed in Chapters 14 and 16.

15 In some cases, these specialized process models might better be characterized as a collection of
techniques or a “methodology” for accomplishing a specific software development goal. However,
they do imply a process.

16 Object-oriented concepts are discussed in Appendix 2 and are used throughout Part 2 of this book.
In this context, a class encompasses a set of data and the procedures that process the data. A pack-
age of classes is a collection of related classes that work together to achieve some end result.

9 I formal

® methods can
demonstrate
software
correctness, why
is it they are not
widely used?

CHAPTER 2 PROCESS MODELS 51

technology that is used to create the components, the component-based develop-
ment model incorporates the following steps (implemented using an evolutionary
approach):

1. Available component-based products are researched and evaluated for the
application domain in question.

Component integration issues are considered.

A software architecture is designed to accommodate the components.

Components are integrated into the architecture.

LA

Comprehensive testing is conducted to ensure proper functionality.

The component-based development model leads to software reuse, and reusabil-
ity provides software engineers with a number of measurable benefits. Your software
engineering team can achieve a reduction in development cycle time as well as a
reduction in project cost if component reuse becomes part of your culture. Component-
based development is discussed in more detail in Chapter 10.

2.4.2 The Formal Methods Model

The formal methods model encompasses a set of activities that leads to formal math-
ematical specification of computer software. Formal methods enable you to specify,
develop, and verify a computer-based system by applying a rigorous, mathematical
notation. A variation on this approach, called cleanroom software engineering [Mil87,
Dye92], is currently applied by some software development organizations.

When formal methods (Chapter 21) are used during development, they provide a
mechanism for eliminating many of the problems that are difficult to overcome using
other software engineering paradigms. Ambiguity, incompleteness, and inconsis-
tency can be discovered and corrected more easily—not through ad hoc review, but
through the application of mathematical analysis. When formal methods are used
during design, they serve as a basis for program verification and therefore enable
you to discover and correct errors that might otherwise go undetected.

Although not a mainstream approach, the formal methods model offers the prom-
ise of defect-free software. Yet, concern about its applicability in a business envi-
ronment has been voiced:

e The development of formal models is currently quite time consuming and
expensive.

e Because few software developers have the necessary background to apply
formal methods, extensive training is required.

e It is difficult to use the models as a communication mechanism for techni-
cally unsophisticated customers.

These concerns notwithstanding, the formal methods approach has gained
adherents among software developers who must build safety-critical software

52

A wide array of
resources and
information on AOP
can be found af:
aosd.net.

o
e,
POINT
AQSD defines
“aspects” that express
customer concerns that
cut across mulfiple
system functions,
features, and
information.

PART ONE THE SOFTWARE PROCESS

(e.g., developers of aircraft avionics and medical devices) and among developers
that would suffer severe economic hardship should software errors occur.

2.4.3 Aspect-Oriented Software Development

Regardless of the software process that is chosen, the builders of complex software
invariably implement a set of localized features, functions, and information content.
These localized software characteristics are modeled as components (e.g., object-
oriented classes) and then constructed within the context of a system architecture.
As modern computer-based systems become more sophisticated (and complex),
certain concerns—customer required properties or areas of technical interest—span
the entire architecture. Some concerns are high-level properties of a system (e.g.,
security, fault tolerance). Other concerns affect functions (e.g., the application of
business rules), while others are systemic (e.g., task synchronization or memory
management).

When concerns cut across multiple system functions, features, and information,
they are often referred to as crosscutting concerns. Aspectual requirements define
those crosscutting concerns that have an impact across the software architecture.
Aspect-oriented software development (AOSD), often referred to as aspect-oriented
programming (AOP), is a relatively new software engineering paradigm that provides
a process and methodological approach for defining, specifying, designing, and con-
structing aspects—"mechanisms beyond subroutines and inheritance for localizing
the expression of a crosscutting concern” [EIr01].

Grundy [Gru02] provides further discussion of aspects in the context of what he
calls aspect-oriented component engineering (AOCE):

AOCE uses a concept of horizontal slices through vertically-decomposed software com-
ponents, called “aspects,” to characterize cross-cutting functional and non-functional
properties of components. Common, systemic aspects include user interfaces, collabora-
tive work, distribution, persistency, memory management, transaction processing, secu-
rity, integrity and so on. Components may provide or require one or more “aspect details”
relating to a particular aspect, such as a viewing mechanism, extensible affordance and
interface kind (user interface aspects); event generation, transport and receiving
(distribution aspects); data store/retrieve and indexing (persistency aspects); authentica-
tion, encoding and access rights (security aspects); transaction atomicity, concurrency
control and logging strategy (transaction aspects); and so on. Each aspect detail has a
number of properties, relating to functional and/or non-functional characteristics of the
aspect detail.

A distinct aspect-oriented process has not yet matured. However, it is likely that
such a process will adopt characteristics of both evolutionary and concurrent
process models. The evolutionary model is appropriate as aspects are identified and
then constructed. The parallel nature of concurrent development is essential be-
cause aspects are engineered independently of localized software components and
yet, aspects have a direct impact on these components. Hence, it is essential to

CHAPTER 2 PROCESS MODELS

53

instantiate asynchronous communication between the software process activities
applied to the engineering and construction of aspects and components.

A detailed discussion of aspect-oriented software development is best left to
books dedicated to the subject. If you have further interest, see [Saf08], [Cla05],

[Jac04], and [Gra03].

/

- Process Management

Objective: To assist in the definition,
execution, and management of prescriptive
process models.

Mechanics: Process management tools allow a software
organization or team to define a complete software
process model (framework activities, actions, tasks, QA
checkpoints, milestones, and work products). In addition,
the tools provide a road map as software engineers do
technical work and a template for managers who must
track and control the software process.

Representative Tools:'”
GDPA, a research process definition tool suite, developed at
Bremen University in Germany (www.informatik

SOFTWARE TOOLS

.uni-bremen.de/uniform/gdpa/home.htm),
provides a wide array of process modeling and
management functions.

SpeeDev, developed by SpeeDev Corporation
(www.speedev.com) encompasses a suite of tools
for process definition, requirements management, issue
resolution, project planning, and tracking.

ProVision BPMx, developed by Proforma
(www.proformacorp.com), is representative of
many tools that assist in process definition and
workflow automation.

A worthwhile listing of many different tools associated
with the software process can be found ot www
.processwave.net/Links/tool_links.htm.

2.5 THE UNIFIED PROCESS

In their seminal book on the Unified Process, lvar Jacobson, Grady Booch, and James
Rumbaugh [Jac99] discuss the need for a “use case driven, architecture-centric, iter-
ative and incremental” software process when they state:

Today, the trend in software is toward bigger, more complex systems. That is due in part
to the fact that computers become more powerful every year, leading users to expect
more from them. This trend has also been influenced by the expanding use of the Inter-

net for exchanging all kinds of information. . . . Our appetite for ever-more sophisticated
software grows as we learn from one product release to the next how the product could
be improved. We want software that is better adapted to our needs, but that, in turn,
merely makes the software more complex. In short, we want more.

In some ways the Unified Process is an attempt to draw on the best features and
characteristics of traditional software process models, but characterize them in a
way that implements many of the best principles of agile software development

17 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.
In most cases, tool names are trademarked by their respective developers.

http://www.informatikSOFTWARETOOLS.uni-bremen.de/uniform/gdpa/home.htm
http://www.informatikSOFTWARETOOLS.uni-bremen.de/uniform/gdpa/home.htm
http://www.informatikSOFTWARETOOLS.uni-bremen.de/uniform/gdpa/home.htm
http://www.speedev.com
http://www.proformacorp.com

54

PART ONE THE SOFTWARE PROCESS

(Chapter 3). The Unified Process recognizes the importance of customer communi-
cation and streamlined methods for describing the customer’s view of a system
(the use case'®). It emphasizes the important role of software architecture and
“helps the architect focus on the right goals, such as understandability, reliance to
future changes, and reuse” [Jac99]. It suggests a process flow that is iterative and
incremental, providing the evolutionary feel that is essential in modern software
development.

2.5.1 A Brief History

During the early 1990s James Rumbaugh [Rum91], Grady Booch [Boo94], and Ivar
Jacobson [Jac92] began working on a “unified method” that would combine the best
features of each of their individual object-oriented analysis and design methods and
adopt additional features proposed by other experts (e.g., [Wir90]) in object-oriented
modeling. The result was UML—a unified modeling language that contains a robust
notation for the modeling and development of object-oriented systems. By 1997,
UML became a de facto industry standard for object-oriented software development.

UML is used throughout Part 2 of this book to represent both requirements and
design models. Appendix 1 presents an introductory tutorial for those who are unfa-
miliar with basic UML notation and modeling rules. A comprehensive presentation
of UML is best left to textbooks dedicated to the subject. Recommended books are
listed in Appendix 1.

UML provided the necessary technology to support object-oriented software engi-
neering practice, but it did not provide the process framework to guide project teams
in their application of the technology. Over the next few years, Jacobson, Rumbaugh,
and Booch developed the Unified Process, a framework for object-oriented software
engineering using UML. Today, the Unified Process (UP) and UML are widely used on
object-oriented projects of all kinds. The iterative, incremental model proposed by the
UP can and should be adapted to meet specific project needs.

2.5.2 Phases of the Unified Process'®

Earlier in this chapter, I discussed five generic framework activities and argued that
they may be used to describe any software process model. The Unified Process is no
exception. Figure 2.9 depicts the “phases” of the UP and relates them to the generic
activities that have been discussed in Chapter 1 and earlier in this chapter.

18 A use case (Chapter 5) is a text narrative or template that describes a system function or feature
from the user’s point of view. A use case is written by the user and serves as a basis for the creation
of a more comprehensive requirements model.

19 The Unified Process is sometimes called the Rational Unified Process (RUP) after the Rational Cor-
poration (subsequently acquired by IBM), an early contributor to the development and refinement
of the UP and a builder of complete environments (tools and technology) that support the process.

CHAPTER 2 PROCESS MODELS 55

The Unified
Process

%
POINT

UP phases are similar
in intent to the generic

framework activities
defined in this book.

Elaboration

Inception

Construction

Release Transition

software increment

Production

The inception phase of the UP encompasses both customer communication and
planning activities. By collaborating with stakeholders, business requirements for
the software are identified; a rough architecture for the system is proposed; and a
plan for the iterative, incremental nature of the ensuing project is developed.
Fundamental business requirements are described through a set of preliminary use
cases (Chapter 5) that describe which features and functions each major class of
users desires. Architecture at this point is nothing more than a tentative outline of
major subsystems and the function and features that populate them. Later, the ar-
chitecture will be refined and expanded into a set of models that will represent
different views of the system. Planning identifies resources, assesses major risks,
defines a schedule, and establishes a basis for the phases that are to be applied as
the software increment is developed.

The elaboration phase encompasses the communication and modeling activities of
the generic process model (Figure 2.9). Elaboration refines and expands the prelimi-
nary use cases that were developed as part of the inception phase and expands the
architectural representation to include five different views of the software—the use
case model, the requirements model, the design model, the implementation model,
and the deployment model. In some cases, elaboration creates an “executable
architectural baseline” [Arl02] that represents a “first cut” executable system.?’ The
architectural baseline demonstrates the viability of the architecture but does not
provide all features and functions required to use the system. In addition, the plan is
carefully reviewed at the culmination of the elaboration phase to ensure that scope,
risks, and delivery dates remain reasonable. Modifications to the plan are often made
at this time.

20 Itis important to note that the architectural baseline is not a prototype in that it is not thrown away.
Rather, the baseline is fleshed out during the next UP phase.

56

An inferesting
discussion of the UP in
the context of agile
development can be
found at
www.ambysoft
.com/
unifiedprocess/
agileUP.html.

2.6

PART ONE THE SOFTWARE PROCESS

The construction phase of the UP is identical to the construction activity defined
for the generic software process. Using the architectural model as input, the con-
struction phase develops or acquires the software components that will make each
use case operational for end users. To accomplish this, requirements and design
models that were started during the elaboration phase are completed to reflect the
final version of the software increment. All necessary and required features and
functions for the software increment (i.e., the release) are then implemented in
source code. As components are being implemented, unit tests?! are designed and
executed for each. In addition, integration activities (component assembly and inte-
gration testing) are conducted. Use cases are used to derive a suite of acceptance
tests that are executed prior to the initiation of the next UP phase.

The transition phase of the UP encompasses the latter stages of the generic con-
struction activity and the first part of the generic deployment (delivery and feedback)
activity. Software is given to end users for beta testing and user feedback reports
both defects and necessary changes. In addition, the software team creates the nec-
essary support information (e.g., user manuals, troubleshooting guides, installation
procedures) that is required for the release. At the conclusion of the transition phase,
the software increment becomes a usable software release.

The production phase of the UP coincides with the deployment activity of the
generic process. During this phase, the ongoing use of the software is monitored,
support for the operating environment (infrastructure) is provided, and defect reports
and requests for changes are submitted and evaluated.

It is likely that at the same time the construction, transition, and production
phases are being conducted, work may have already begun on the next software
increment. This means that the five UP phases do not occur in a sequence, but rather
with staggered concurrency.

A software engineering workflow is distributed across all UP phases. In the con-
text of UP, a workflow is analogous to a task set (described earlier in this chapter).
That is, a workflow identifies the tasks required to accomplish an important software
engineering action and the work products that are produced as a consequence of
successfully completing the tasks. It should be noted that not every task identified for
a UP workflow is conducted for every software project. The team adapts the process
(actions, tasks, subtasks, and work products) to meet its needs.

PERSONAL AND TEAM PROCESS MODELS

The best software process is one that is close to the people who will be doing the
work. If a software process model has been developed at a corporate or organiza-
tional level, it can be effective only if it is amenable to significant adaptation to meet

21 A comprehensive discussion of software testing (including unit tests) is presented in Chapters 17
through 20.

http://www.ambysoft

“A person who is
successful has
simply formed the
habit of doing
things that
unsuceessful people
will not do.”

Dexter Yager

A wide array of
resources for PSP can
be found ot www
.ipd.ka.de/PSP/.

‘, What

® framework
activities are used
during PSP?

CHAPTER 2 PROCESS MODELS 57

the needs of the project team that is actually doing software engineering work. In an
ideal setting, you would create a process that best fits your needs, and at the same
time, meets the broader needs of the team and the organization. Alternatively, the
team itself can create its own process, and at the same time meet the narrower needs
of individuals and the broader needs of the organization. Watts Humphrey ([Hum97]
and [HumOO]) argues that it is possible to create a “personal software process”
and/or a “team software process.” Both require hard work, training, and coordina-
tion, but both are achievable.?

2.6.1 Personal Software Process (PSP)

Every developer uses some process to build computer software. The process may be
haphazard or ad hoc; may change on a daily basis; may not be efficient, effective, or
even successful; but a “process” does exist. Watts Humphrey [Hum97] suggests that
in order to change an ineffective personal process, an individual must move through
four phases, each requiring training and careful instrumentation. The Personal Soft-
ware Process (PSP) emphasizes personal measurement of both the work product that
is produced and the resultant quality of the work product. In addition PSP makes the
practitioner responsible for project planning (e.g., estimating and scheduling) and
empowers the practitioner to control the quality of all software work products that
are developed. The PSP model defines five framework activities:

Planning. This activity isolates requirements and develops both size and
resource estimates. In addition, a defect estimate (the number of defects
projected for the work) is made. All metrics are recorded on worksheets or
templates. Finally, development tasks are identified and a project schedule is
created.

High-level design. External specifications for each component to be con-
structed are developed and a component design is created. Prototypes are
built when uncertainty exists. All issues are recorded and tracked.

High-level design review. Formal verification methods (Chapter 21) are
applied to uncover errors in the design. Metrics are maintained for all impor-
tant tasks and work results.

Development. The component-level design is refined and reviewed. Code
is generated, reviewed, compiled, and tested. Metrics are maintained for all
important tasks and work results.

Postmortem. Using the measures and metrics collected (this is a substan-
tial amount of data that should be analyzed statistically), the effectiveness of
the process is determined. Measures and metrics should provide guidance for
modifying the process to improve its effectiveness.

22 1It's worth noting the proponents of agile software development (Chapter 3) also argue that the
process should remain close to the team. They propose an alternative method for achieving this.

58

P
e,

POINT
PSP emphasizes the
need to record and
analyze the types of
errors you make, so
that you can develop
strategies fo eliminate
them.

Information on building
higtperformance feams
using TSP and PSP can
be obtained af:
www.sei.cmu

.edu/tsp/.

ﬁpwcss

To form a selfdirected
team, you must collab-
orate well internally
and communicate well
externally.

PART ONE THE SOFTWARE PROCESS

PSP stresses the need to identify errors early and, just as important, to understand
the types of errors that you are likely to make. This is accomplished through a rigor-
ous assessment activity performed on all work products you produce.

PSP represents a disciplined, metrics-based approach to software engineering
that may lead to culture shock for many practitioners. However, when PSP is prop-
erly introduced to software engineers [Hum96], the resulting improvement in soft-
ware engineering productivity and software quality are significant [Fer97]. However,
PSP has not been widely adopted throughout the industry. The reasons, sadly, have
more to do with human nature and organizational inertia than they do with the
strengths and weaknesses of the PSP approach. PSP is intellectually challenging and
demands a level of commitment (by practitioners and their managers) that is not al-
ways possible to obtain. Training is relatively lengthy, and training costs are high.
The required level of measurement is culturally difficult for many software people.

Can PSP be used as an effective software process at a personal level? The answer
is an unequivocal “yes.” But even if PSP is not adopted in its entirely, many of the
personal process improvement concepts that it introduces are well worth learning.

2.6.2 Team Software Process (TSP)

Because many industry-grade software projects are addressed by a team of practi-
tioners, Watts Humphrey extended the lessons learned from the introduction of PSP
and proposed a Team Software Process (TSP). The goal of TSP is to build a “self-
directed” project team that organizes itself to produce high-quality software.
Humphrey [Hum98] defines the following objectives for TSP:

o Build self-directed teams that plan and track their work, establish goals, and
own their processes and plans. These can be pure software teams or inte-
grated product teams (IPTs) of 3 to about 20 engineers.

e Show managers how to coach and motivate their teams and how to help
them sustain peak performance.

e Accelerate software process improvement by making CMM?* Level 5
behavior normal and expected.

e Provide improvement guidance to high-maturity organizations.

e Facilitate university teaching of industrial-grade team skills.

A self-directed team has a consistent understanding of its overall goals and objec-
tives; defines roles and responsibilities for each team member; tracks quantitative
project data (about productivity and quality); identifies a team process that is appro-
priate for the project and a strategy for implementing the process; defines local stan-
dards that are applicable to the team'’s software engineering work; continually
assesses risk and reacts to it; and tracks, manages, and reports project status.

23 The Capability Maturity Model (CMM), a measure of the effectiveness of a software process, is
discussed in Chapter 30.

http://www.sei.cmu

%
POINT
TSP scripts define
elements of the team
process and activities
that occur within the
process.

2.7

CHAPTER 2 PROCESS MODELS 59

TSP defines the following framework activities: project launch, high-level
design, implementation, integration and test, and postmortem. Like their
counterparts in PSP (note that terminology is somewhat different), these activities
enable the team to plan, design, and construct software in a disciplined manner
while at the same time quantitatively measuring the process and the product. The
postmortem sets the stage for process improvements.

TSP makes use of a wide variety of scripts, forms, and standards that serve to guide
team members in their work. “Scripts” define specific process activities (i.e., project
launch, design, implementation, integration and system testing, postmortem) and other
more detailed work functions (e.g., development planning, requirements development,
software configuration management, unit test) that are part of the team process.

TSP recognizes that the best software teams are self-directed.?* Team members
set project objectives, adapt the process to meet their needs, control the project
schedule, and through measurement and analysis of the metrics collected, work con-
tinually to improve the team’s approach to software engineering.

Like PSP, TSP is a rigorous approach to software engineering that provides dis-
tinct and quantifiable benefits in productivity and quality. The team must make a full
commitment to the process and must undergo thorough training to ensure that the
approach is properly applied.

PROCESS TECHNOLOGY

One or more of the process models discussed in the preceding sections must be
adapted for use by a software team. To accomplish this, process technology tools have
been developed to help software organizations analyze their current process,
organize work tasks, control and monitor progress, and manage technical quality.

Process technology tools allow a software organization to build an automated
model of the process framework, task sets, and umbrella activities discussed in
Section 2.1. The model, normally represented as a network, can then be analyzed to
determine typical workflow and examine alternative process structures that might
lead to reduced development time or cost.

Once an acceptable process has been created, other process technology tools can
be used to allocate, monitor, and even control all software engineering activities,
actions, and tasks defined as part of the process model. Each member of a software
team can use such tools to develop a checklist of work tasks to be performed, work
products to be produced, and quality assurance activities to be conducted. The
process technology tool can also be used to coordinate the use of other software en-
gineering tools that are appropriate for a particular work task.

24 In Chapter 3 I discuss the importance of “self-organizing” teams as a key element in agile software
development.

60 PART ONE THE SOFTWARE PROCESS

SOFTWARE TooLs
Process Modeling Tools the content or description of each process element, and

.
'Q Objective: If an organization works fo then manage the process as it is conducted. In some cases,
improve a business or software) process, it the process technology tools incorporate standard project

must first understand it. Process modeling tools (also called ~ Management tasks such as estimating, scheduling,

process fechnology or process management tools) are fracking, and control.

used fo represent the key elements of a process so that it Representative Tools:2’
can be better understood. Such tools can also provide links
to process descriptions that help those involved in the
process to understand the actions and work tasks that are
required to perform it. Process modeling tools provide links
to other tools that provide support to defined process
activities.

Igrafx Process Tools—tools that enable a team to map,
measure, and model the software process
(www.micrografx.com)

Adeptia BPM Server—designed to manage, automate, and
optimize business processes (www.adeptia.com)

. C g . SpeedDev Suite—a collection of six tools with a heavy
Mechanics: Tools in this category allow a team to define . -
emphasis on the management of communication and

the elements of a unique process model (actions, tasks, A .
modeling activities (www.speedev.com)

Q)rk products, QA points), provide detailed guidance on /

2.8 PRODUCT AND PROCESS

If the process is weak, the end product will undoubtedly suffer. But an obsessive over-
reliance on process is also dangerous. In a brief essay written many years ago, Mar-
garet Davis [Dav95a] makes timeless comments on the duality of product and process:

About every ten years give or take five, the software community redefines “the problem”
by shifting its focus from product issues to process issues. Thus, we have embraced
structured programming languages (product) followed by structured analysis methods
(process) followed by data encapsulation (product) followed by the current emphasis
on the Software Engineering Institute’s Software Development Capability Maturity
Model (process) [followed by object-oriented methods, followed by agile software
development].

While the natural tendency of a pendulum is to come to rest at a point midway be-
tween two extremes, the software community’s focus constantly shifts because new force
is applied when the last swing fails. These swings are harmful in and of themselves be-
cause they confuse the average software practitioner by radically changing what it means
to perform the job let alone perform it well. The swings also do not solve “the problem”
for they are doomed to fail as long as product and process are treated as forming a
dichotomy instead of a duality.

There is precedence in the scientific community to advance notions of duality when
contradictions in observations cannot be fully explained by one competing theory or
another. The dual nature of light, which seems to be simultaneously particle and wave,
has been accepted since the 1920s when Louis de Broglie proposed it. I believe that the

25 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.
In most cases, tool names are trademarked by their respective developers.

http://www.micrografx.com
http://www.adeptia.com
http://www.speedev.com

CHAPTER 2 PROCESS MODELS 61

observations we can make on the artifacts of software and its development demonstrate
a fundamental duality between product and process. You can never derive or understand
the full artifact, its context, use, meaning, and worth if you view it as only a process or
only a product . . .

All of human activity may be a process, but each of us derives a sense of self-worth
from those activities that result in a representation or instance that can be used or
appreciated either by more than one person, used over and over, or used in some other
context not considered. That is, we derive feelings of satisfaction from reuse of our prod-
ucts by ourselves or others.

Thus, while the rapid assimilation of reuse goals into software development poten-
tially increases the satisfaction software practitioners derive from their work, it also in-
creases the urgency for acceptance of the duality of product and process. Thinking of a
reusable artifact as only product or only process either obscures the context and ways to
use it or obscures the fact that each use results in product that will, in turn, be used as
input to some other software development activity. Taking one view over the other
dramatically reduces the opportunities for reuse and, hence, loses the opportunity for
increasing job satisfaction.

People derive as much (or more) satisfaction from the creative process as they do
from the end product. An artist enjoys the brush strokes as much as the framed re-
sult. A writer enjoys the search for the proper metaphor as much as the finished
book. As creative software professional, you should also derive as much satisfaction
from the process as the end product. The duality of product and process is one
important element in keeping creative people engaged as software engineering
continues to evolve.

2.9 SUMMARY

A generic process model for software engineering encompasses a set of framework
and umbrella activities, actions, and work tasks. Each of a variety of process models
can be described by a different process flow—a description of how the framework
activities, actions, and tasks are organized sequentially and chronologically. Process
patterns can be used to solve common problems that are encountered as part of the
software process.

Prescriptive process models have been applied for many years in an effort to bring
order and structure to software development. Each of these models suggests a some-
what different process flow, but all perform the same set of generic framework
activities: communication, planning, modeling, construction, and deployment.

Sequential process models, such as the waterfall and V models, are the oldest
software engineering paradigms. They suggest a linear process flow that is often in-
consistent with modern realities (e.g., continuous change, evolving systems, tight
time lines) in the software world. They do, however, have applicability in situations
where requirements are well defined and stable.

62

PART ONE THE SOFTWARE PROCESS

Incremental process models are iterative in nature and produce working versions
of software quite rapidly. Evolutionary process models recognize the iterative, in-
cremental nature of most software engineering projects and are designed to accom-
modate change. Evolutionary models, such as prototyping and the spiral model,
produce incremental work products (or working versions of the software) quickly.
These models can be adopted to apply across all software engineering activities—
from concept development to long-term system maintenance.

The concurrent process model allows a software team to represent iterative
and concurrent elements of any process model. Specialized models include the
component-based model that emphasizes component reuse and assembly; the for-
mal methods model that encourages a mathematically based approach to software
development and verification; and the aspect-oriented model that accommodates
crosscutting concerns spanning the entire system architecture. The Unified Process
is a “use case driven, architecture-centric, iterative and incremental” software
process designed as a framework for UML methods and tools.

Personal and team models for the software process have been proposed. Both
emphasize measurement, planning, and self-direction as key ingredients for a suc-
cessful software process.

PROBLEMS AND POINTS TO PONDER

2.1. In the introduction to this chapter Baetjer notes: “The process provides interaction
between users and designers, between users and evolving tools, and between designers and
evolving tools [technology].” List five questions that (a) designers should ask users, (b) users
should ask designers, (c) users should ask themselves about the software product that is to be
built, (d) designers should ask themselves about the software product that is to be built and the
process that will be used to build it.

2.2. Tryto develop a set of actions for the communication activity. Select one action and define
a task set for it.

2.3. A common problem during communication occurs when you encounter two stakehold-
ers who have conflicting ideas about what the software should be. That is, you have mutually
conflicting requirements. Develop a process pattern (this would be a stage pattern) using the
template presented in Section 2.1.3 that addresses this problem and suggest an effective
approach to it.

2.4. Do some research on PSP and present a brief presentation that describes the types of
measurements that an individual software engineer is asked to make and how those measure-
ment can be used to improve personal effectiveness.

2.5. The use of “scripts” (a required mechanism in TSP) is not universally praised within the
software community. Make a list of pros and cons regarding scripts and suggest at least two sit-
uations in which they would be useful and another two situations where they might provide less
benefit.

2.6. Read [Nog00] and write a two- or three-page paper that discusses the impact of “chaos”
on software engineering.

2.7. Provide three examples of software projects that would be amenable to the waterfall
model. Be specific.

CHAPTER 2 PROCESS MODELS 63

2.8. Provide three examples of software projects that would be amenable to the prototyping
model. Be specific.

2.9. What process adaptations are required if the prototype will evolve into a deliverable
system or product?

2.10. Provide three examples of software projects that would be amenable to the incremental
model. Be specific.

2.11. Asyoumove outward along the spiral process flow, what can you say about the software
that is being developed or maintained?

2.12. Is it possible to combine process models? If so, provide an example.

2.13. The concurrent process model defines a set of “states.” Describe what these states rep-
resent in your own words, and then indicate how they come into play within the concurrent
process model.

2.14. What are the advantages and disadvantages of developing software in which quality is
“good enough”? That is, what happens when we emphasize development speed over product
quality?

2.15. Provide three examples of software projects that would be amenable to the component-
based model. Be specific.

2.16. It is possible to prove that a software component and even an entire program is correct.
So why doesn't everyone do this?

2.17. Are the Unified Process and UML the same thing? Explain your answer.

FURTHER READINGS AND INFORMATION SOQURCES

Most software engineering textbooks consider traditional process models in some detail. Books
by Sommerville (Software Engineering, 8th ed., Addison-Wesley, 2006), Pfleeger and Atlee
(Software Engineering, 3d ed., Prentice-Hall, 2005), and Schach (Object-Oriented and Classical
Software Engineering, 7th ed., McGraw-Hill, 2006) consider traditional paradigms and discuss
their strengths and weaknesses. Glass (Facts and Fallacies of Software Engineering, Prentice-Hall,
2002) provides an unvarnished, pragmatic view of the software engineering process. Although
not specifically dedicated to process, Brooks (The Mythical Man-Month, 2d ed., Addison-Wesley,
1995) presents age-old project wisdom that has everything to do with process.

Firesmith and Henderson-Sellers (The OPEN Process Framework: An Introduction, Addison-
Wesley, 2001) present a general template for creating “flexible, yet discipline software
processes” and discuss process attributes and objectives. Madachy (Software Process Dynamics,
Wiley-IEEE, 2008) discusses modeling techniques that allow the interrelated technical and
social elements of the software process to be analyzed. Sharpe and McDermott (Workflow Mod-
eling: Tools for Process Improvement and Application Development, Artech House, 2001) present
tools for modeling both software and business processes.

Lim (Managing Software Reuse, Prentice Hall, 2004) discusses reuse from a manager’s
perspective. Ezran, Morisio, and Tully (Practical Software Reuse, Springer, 2002) and Jacobson,
Griss, and Jonsson (Software Reuse, Addison-Wesley, 1997) present much useful information on
component-based development. Heineman and Council (Component-Based Software Engineer-
ing, Addison-Wesley, 2001) describe the process required to implement component-based
systems. Kenett and Baker (Software Process Quality: Management and Control, Marcel Dekker,
1999) consider how quality management and process design are intimately connected to one
another.

Nygard (Release ItT: Design and Deploy Production-Ready Software, Pragmatic Bookshelf,
2007) and Richardson and Gwaltney (Ship it! A Practical Guide to Successful Software Projects,
Pragmatic Bookshelf, 2005) present a broad collection of useful guidelines that are applicable to
the deployment activity.

64

PART ONE THE SOFTWARE PROCESS

In addition to Jacobson, Rumbaugh, and Booch’s seminal book on the Unified Process
JJac99], books by Arlow and Neustadt (UML 2 and the Unified Process, Addison-Wesley, 2005),
Kroll and Kruchten (The Rational Unified Process Made Easy, Addison-Wesley, 2003), and Farve
(UML and the Unified Process, IRM Press, 2003) provide excellent complementary information.
Gibbs (Project Management with the IBM Rational Unified Process, IBM Press, 2006) discusses
project management within the context of the UP.

A wide variety of information sources on software engineering and the software process are
available on the Internet. An up-to-date list of World Wide Web references that are relevant to
the software process can be found at the SEPA website: www.mhhe.com/engcs/compsci/
pressman/professional/olc/ser.htm.

http://www.mhhe.com/engcs/compsci/

CHAPTER

AGILE DEVELOPMENT

KEy n 2001, Kent Beck and 16 other noted software developers, writers, and con-
CONCEPTS sultants [BecO1a] (referred to as the “Agile Alliance”) signed the “Manifesto for
Adaptive Software Agile Software Development.” It stated:
Development .. .81

We are uncovering better ways of developing software by doing it and helping others
agile process .. .68

do it. Through this work we have come to value:

Agile Unified .))

Process 89 Individuals and interactions over processes and tools
agility 67 Working software over comprehensive documentation
Crystal 85 Customer collaboration over contract negotiation
DSDM 84 Responding to change over following a plan

Extreme

. That is, while there is value in the items on the right, we value the items on the
Programming .. .72

left more.

QUICK

What is it? Agile software engi-

neering combines a philosophy and

a set of development guidelines. The

philosophy encourages customer
satisfaction and early incremental delivery of
software; small, highly motivated project teams;
informal methods; minimal software engineer-
ing work products; and overall development
simplicity. The development guidelines stress
delivery over analysis and design (although
these activities are not discouraged), and active
and continuous communication between devel-
opers and customers.

Who does it? Software engineers and other
project stakeholders (managers, customers, end
users) work together on an agile team—a team
that is self-organizing and in control of its own
destiny. An agile team fosters communication
and collaboration among all who serve on it.

Why is it important? The modern business envi-
ronment that spawns computer-based systems
and software products is fast-paced and ever-
changing. Agile software engineering repre-
sents a reasonable alternative to conventional

Look

software engineering for certain classes of soft-
ware and certain types of software projects. It
has been demonstrated to deliver successful sys-
tems quickly.

What are the steps? Agile development might best
be termed “software engineering lite.” The basic
framework activities—communication, planning,
modeling, construction, and deployment—
remain. But they morph into a minimal task set
that pushes the project team toward construction
and delivery (some would argue that this is
done at the expense of problem analysis and
solution design).

What is the work product? Both the customer
and the software engineer have the same
view—the only really important work product
is an operational “software increment” that is
delivered to the customer on the appropriate
commitment date.

How do I ensure that I’ve done it right? If the
agile team agrees that the process works, and
the team produces deliverable software
increments that satisfy the customer, you've
done it right.

65

Industrial XP ...77

Lean Software
Development ...87

pair

programming ...76
project

velodty 74
refactoring 75
Scum 82
stories 74
XP process 73

Qoote:

“Agility: 1,
everything else: 0.

Tom DeMarco

PART ONE THE SOFTWARE PROCESS

A manifesto is normally associated with an emerging political movement—one
that attacks the old guard and suggests revolutionary change (hopefully for the
better). In some ways, that's exactly what agile development is all about.

Although the underlying ideas that guide agile development have been with us for
many years, it has been less than two decades since these ideas have crystallized
into a “movement.” In essence, agile! methods were developed in an effort to over-
come perceived and actual weaknesses in conventional software engineering. Agile
development can provide important benefits, but it is not applicable to all projects,
all products, all people, and all situations. It is also not antithetical to solid software
engineering practice and can be applied as an overriding philosophy for all software
work.

In the modern economy, it is often difficult or impossible to predict how a
computer-based system (e.g., a Web-based application) will evolve as time passes.
Market conditions change rapidly, end-user needs evolve, and new competitive
threats emerge without warning. In many situations, you won't be able to define
requirements fully before the project begins. You must be agile enough to respond to
a fluid business environment.

Fluidity implies change, and change is expensive. Particularly if it is uncontrolled
or poorly managed. One of the most compelling characteristics of the agile approach
is its ability to reduce the costs of change throughout the software process.

Does this mean that a recognition of challenges posed by modern realities causes
you to discard valuable software engineering principles, concepts, methods, and
tools? Absolutely not! Like all engineering disciplines, software engineering contin-
ues to evolve. It can be adapted easily to meet the challenges posed by a demand for
agility.

In a thought-provoking book on agile software development, Alistair Cockburn
[Coc02] argues that the prescriptive process models introduced in Chapter 2 have a
major failing: they forget the fiailties of the people who build computer software. Software
engineers are not robots. They exhibit great variation in working styles; significant dif-
ferences in skill level, creativity, orderliness, consistency, and spontaneity. Some com-
municate well in written form, others do not. Cockburn argues that process models
can “deal with people’s common weaknesses with [either] discipline or tolerance” and
that most prescriptive process models choose discipline. He states: “Because consis-
tency in action is a human weakness, high discipline methodologies are fragile.”

If process models are to work, they must provide a realistic mechanism for en-
couraging the discipline that is necessary, or they must be characterized in a man-
ner that shows “tolerance” for the people who do software engineering work.
Invariably, tolerant practices are easier for software people to adopt and sustain, but
(as Cockburn admits) they may be less productive. Like most things in life, trade-offs
must be considered.

1 Agile methods are sometimes referred to as light methods or lean methods.

3.1

CHAPTER 3 AGILE DEVELOPMENT 67

WHAT Is AGILITY?

ﬁpwcss

Don’t make the
mistake of assuming
that agility gives you
license to hack out
solutions. A process is
required and discipline
Is essential.

Just what is agility in the context of software engineering work? Ivar Jacobson
[Jac02a] provides a useful discussion:

Agility has become today’s buzzword when describing a modern software process. Every-
one is agile. An agile team is a nimble team able to appropriately respond to changes.
Change is what software development is very much about. Changes in the software be-
ing built, changes to the team members, changes because of new technology, changes of
all kinds that may have an impact on the product they build or the project that creates the
product. Support for changes should be built-in everything we do in software, something
we embrace because it is the heart and soul of software. An agile team recognizes that
software is developed by individuals working in teams and that the skills of these people,
their ability to collaborate is at the core for the success of the project.

In Jacobson'’s view, the pervasiveness of change is the primary driver for agility. Soft-
ware engineers must be quick on their feet if they are to accommodate the rapid
changes that Jacobson describes.

But agility is more than an effective response to change. It also encompasses the
philosophy espoused in the manifesto noted at the beginning of this chapter. It
encourages team structures and attitudes that make communication (among team
members, between technologists and business people, between software engineers
and their managers) more facile. It emphasizes rapid delivery of operational soft-
ware and de-emphasizes the importance of intermediate work products (not always
a good thing); it adopts the customer as a part of the development team and works
to eliminate the “us and them” attitude that continues to pervade many software
projects; it recognizes that planning in an uncertain world has its limits and that a
project plan must be flexible.

Agility can be applied to any software process. However, to accomplish this, it is
essential that the process be designed in a way that allows the project team to adapt
tasks and to streamline them, conduct planning in a way that understands the fluid-
ity of an agile development approach, eliminate all but the most essential work prod-
ucts and keep them lean, and emphasize an incremental delivery strategy that gets
working software to the customer as rapidly as feasible for the product type and
operational environment.

3,2 AGILITY AND THE QQE:]: OF QHANGE

The conventional wisdom in software development (supported by decades of expe-
rience) is that the cost of change increases nonlinearly as a project progresses
(Figure 3.1, solid black curve). It is relatively easy to accommodate a change when a
software team is gathering requirements (early in a project). A usage scenario might
have to be modified, a list of functions may be extended, or a written specification
can be edited. The costs of doing this work are minimal, and the time required will

68

PART ONE THE SOFTWARE PROCESS

Change costs
as a function
of time in

development

- .

“Agility is dynamic,
confent specific,
aggressively
change embracing,
and growth
oriented.”

=Steven
Goldman et al.

2oy
e,
POINT
An agile process
reduces the cost of
change because
software is released in
increments and change
can be better
controlled within an
increment.

Cost of change
using conventional
software processes

Cost of change
using agile processes

Development cost

Idealized cost of change
using agile process

Development schedule progress

not adversely affect the outcome of the project. But what if we fast-forward a num-
ber of months? The team is in the middle of validation testing (something that occurs
relatively late in the project), and an important stakeholder is requesting a major
functional change. The change requires a modification to the architectural design of
the software, the design and construction of three new components, modifications
to another five components, the design of new tests, and so on. Costs escalate
quickly, and the time and cost required to ensure that the change is made without
unintended side effects is nontrivial.

Proponents of agility (e.g., [Bec00], [Amb04]) argue that a well-designed agile
process “flattens” the cost of change curve (Figure 3.1, shaded, solid curve), allowing
a software team to accommodate changes late in a software project without dramatic
cost and time impact. You've already learned that the agile process encompasses in-
cremental delivery. When incremental delivery is coupled with other agile practices
such as continuous unit testing and pair programming (discussed later in this chap-
ter), the cost of making a change is attenuated. Although debate about the degree to
which the cost curve flattens is ongoing, there is evidence [CocOla] to suggest that a
significant reduction in the cost of change can be achieved.

3.3 WHAT Is AN AGILE PROCESS?

Any agile software process is characterized in a manner that addresses a number of
key assumptions [Fow02] about the majority of software projects:

1. Itis difficult to predict in advance which software requirements will persist
and which will change. 1t is equally difficult to predict how customer
priorities will change as the project proceeds.

A comprehensive
collection of articles on
the agile process

can be found at
www.aanpo.org,/
articles/index.

a:
POINT

Although agile
processes embrace
change, it is still
important fo examine
the reasons for
change.

ﬁpwcss

Working software is
important, but don’t
forget that it must also
exhibit a variety of
quality affributes
including reliability,
usability, and
maintainability.

CHAPTER 3 AGILE DEVELOPMENT 69

2. For many types of software, design and construction are interleaved. That is,
both activities should be performed in tandem so that design models are
proven as they are created. It is difficult to predict how much design is
necessary before construction is used to prove the design.

3. Analysis, design, construction, and testing are not as predictable (from a
planning point of view) as we might like.

Given these three assumptions, an important question arises: How do we create a
process that can manage unpredictability? The answer, as I have already noted, lies
in process adaptability (to rapidly changing project and technical conditions). An
agile process, therefore, must be adaptable.

But continual adaptation without forward progress accomplishes little. Therefore,
an agile software process must adapt incrementally. To accomplish incremental adap-
tation, an agile team requires customer feedback (so that the appropriate adaptations
can be made). An effective catalyst for customer feedback is an operational prototype
or a portion of an operational system. Hence, an incremental development strategy
should be instituted. Software increments (executable prototypes or portions of an op-
erational system) must be delivered in short time periods so that adaptation keeps pace
with change (unpredictability). This iterative approach enables the customer to evalu-
ate the software increment regularly, provide necessary feedback to the software team,
and influence the process adaptations that are made to accommodate the feedback.

3.3.1 Agility Principles
The Agile Alliance (see [Agi03], [FowO01]) defines 12 agility principles for those who
want to achieve agility:
1. Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software.

2. Welcome changing requirements, even late in development. Agile processes
harness change for the customer’s competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference to the shorter timescale.

4. Business people and developers must work together daily throughout the
project.

5. Build projects around motivated individuals. Give them the environment and
support they need, and trust them to get the job done.

6. The most efficient and effective method of conveying information to and
within a development team is face-to-face conversation.

7. Working software is the primary measure of progress.

Agile processes promote sustainable development. The sponsors, developers,
and users should be able to maintain a constant pace indefinitely.

http://www.aanpo.org/

70

Gpwcsﬁ

You don’t have to
choose between agility
and software engi-
neering. Rather, define
a software engineering
approach that is agile.

PART ONE THE SOFTWARE PROCESS

9. Continuous attention to technical excellence and good design enhances
agility.
10. Simplicity—the art of maximizing the amount of work not done—is
essential.

11. The best architectures, requirements, and designs emerge from self-
organizing teams.

12. Atregular intervals, the team reflects on how to become more effective, then
tunes and adjusts its behavior accordingly.

Not every agile process model applies these 12 principles with equal weight, and
some models choose to ignore (or at least downplay) the importance of one or more
of the principles. However, the principles define an agile spirit that is maintained in
each of the process models presented in this chapter.

3.3.2 The Politics of Agile Development

There is considerable debate (sometimes strident) about the benefits and applicabil-
ity of agile software development as opposed to more conventional software engi-
neering processes. Jim Highsmith [Hig02a] (facetiously) states the extremes when he
characterizes the feeling of the pro-agility camp (“agilists”). “Traditional methodolo-
gists are a bunch of stick-in-the-muds who'd rather produce flawless documentation
than a working system that meets business needs.” As a counterpoint, he states
(again, facetiously) the position of the traditional software engineering camp: “Light-
weight, er, ‘agile’ methodologists are a bunch of glorified hackers who are going to
be in for a heck of a surprise when they try to scale up their toys into enterprise-wide
software.”

Like all software technology arguments, this methodology debate risks degener-
ating into a religious war. If warfare breaks out, rational thought disappears and
beliefs rather than facts guide decision making.

No one is against agility. The real question is: What is the best way to achieve it?
As important, how do you build software that meets customers’ needs today and
exhibits the quality characteristics that will enable it to be extended and scaled to
meet customers’ needs over the long term?

There are no absolute answers to either of these questions. Even within the agile
school itself, there are many proposed process models (Section 3.4), each with a
subtly different approach to the agility problem. Within each model there is a set of
“ideas” (agilists are loath to call them “work tasks”) that represent a significant
departure from traditional software engineering. And yet, many agile concepts are
simply adaptations of good software engineering concepts. Bottom line: there is
much that can be gained by considering the best of both schools and virtually
nothing to be gained by denigrating either approach.

If you have further interest, see [Hig01], [Hig02a], and [DeM02] for an entertain-
ing summary of other important technical and political issues.

“Agile methods
derive much of
their agility by
relying on the
tacit knowledge
embodied in the
team, rather than
writing the
knowledge down
in plans.”

Barry Boehm

) What key

® traits must
exist among the

people on an

effective software

team?

“What counts as
barely sufficient
for one feam is
either overly
sufficient or
insufficient for
another.”

Alistair
Cockburn

CHAPTER 3 AGILE DEVELOPMENT 71

3.3.3 Human Factors

Proponents of agile software development take great pains to emphasize the impor-
tance of “people factors.” As Cockburn and Highsmith [CocOla] state, “Agile devel-
opment focuses on the talents and skills of individuals, molding the process to
specific people and teams.” The key point in this statement is that the process molds
to the needs of the people and team, not the other way around.?

If members of the software team are to drive the characteristics of the process that
is applied to build software, a number of key traits must exist among the people on
an agile team and the team itself:

Competence. In an agile development (as well as software engineering)
context, “competence” encompasses innate talent, specific software-related
skills, and overall knowledge of the process that the team has chosen to
apply. Skill and knowledge of process can and should be taught to all people
who serve as agile team members.

Common focus. Although members of the agile team may perform differ-
ent tasks and bring different skills to the project, all should be focused on one
goal—to deliver a working software increment to the customer within the
time promised. To achieve this goal, the team will also focus on continual
adaptations (small and large) that will make the process fit the needs of the
team.

Collaboration. Software engineering (regardless of process) is about as-
sessing, analyzing, and using information that is communicated to the soft-
ware team; creating information that will help all stakeholders understand
the work of the team; and building information (computer software and rele-
vant databases) that provides business value for the customer. To accomplish
these tasks, team members must collaborate—with one another and all other
stakeholders.

Decision-making ability. Any good software team (including agile teams)
must be allowed the freedom to control its own destiny. This implies that the
team is given autonomy—decision-making authority for both technical and
project issues.

Fuzzy problem-solving ability. Software managers must recognize that

the agile team will continually have to deal with ambiguity and will continu-
ally be buffeted by change. In some cases, the team must accept the fact that
the problem they are solving today may not be the problem that needs to be

solved tomorrow. However, lessons learned from any problem-solving

2 Successful software engineering organizations recognize this reality regardless of the process
model they choose.

72

[/5]
N

POINT

A self-organizing team
is in control of the
work it performs. The
team makes its own
commitments and
defines plans to
achieve them.

PART ONE THE SOFTWARE PROCESS

activity (including those that solve the wrong problem) may be of benefit to
the team later in the project.

Mutual trust and respect. The agile team must become what DeMarco
and Lister [DeM98] call a “jelled” team (Chapter 24). A jelled team exhibits
the trust and respect that are necessary to make them “so strongly knit that
the whole is greater than the sum of the parts.” [DeM98]

Self-organization. In the context of agile development, self-organization
implies three things: (1) the agile team organizes itself for the work to be
done, (2) the team organizes the process to best accommodate its local envi-
ronment, (3) the team organizes the work schedule to best achieve delivery
of the software increment. Self-organization has a number of technical bene-
fits, but more importantly, it serves to improve collaboration and boost team
morale. In essence, the team serves as its own management. Ken Schwaber
[Sch02] addresses these issues when he writes: “The team selects how much
work it believes it can perform within the iteration, and the team commits to
the work. Nothing demotivates a team as much as someone else making
commitments for it. Nothing motivates a team as much as accepting the
responsibility for fulfilling commitments that it made itself.”

3.4 EXTREME PROGRAMMING (XP)

In order to illustrate an agile process in a bit more detail, I'll provide you with an
overview of Extreme Programming (XP), the most widely used approach to agile soft-
ware development. Although early work on the ideas and methods associated with
XP occurred during the late 1980s, the seminal work on the subject has been written
by Kent Beck [Bec04a]. More recently, a variant of XP, called Industrial XP (IXP) has
been proposed [Ker05]. IXP refines XP and targets the agile process specifically for
use within large organizations.

3.4.1 XP Values

Beck [Bec0O4a] defines a set of five values that establish a foundation for all work per-
formed as part of XP—communication, simplicity, feedback, courage, and respect. Each
of these values is used as a driver for specific XP activities, actions, and tasks.

In order to achieve effective communication between software engineers and
other stakeholders (e.g., to establish required features and functions for the soft-
ware), XP emphasizes close, yet informal (verbal) collaboration between customers
and developers, the establishment of effective metaphors® for communicating
important concepts, continuous feedback, and the avoidance of voluminous docu-
mentation as a communication medium.

3 Inthe XP context, a metaphor is “a story that everyone—customers, programmers, and managers—
can tell about how the system works” [Bec04al.

Gpwc:s

Keep it simple
whenever you can, but
recognize that
continual “refactoring”
can absorb significant
time and resources.

- .

“XP is the answer
to the question,
‘How litile can we

do and still build
great software?”

Anonymous

An excellent overview
of “rules” for XP can
be found at www
.extremeprogramm
ing.org/rules.html.

CHAPTER 3 AGILE DEVELOPMENT 73

To achieve simplicity, XP restricts developers to design only for immediate needs,
rather than consider future needs. The intent is to create a simple design that can be
easily implemented in code). If the design must be improved, it can be refactored* at
a later time.

Feedback is derived from three sources: the implemented software itself, the
customer, and other software team members. By designing and implementing an
effective testing strategy (Chapters 17 through 20), the software (via test results) pro-
vides the agile team with feedback. XP makes use of the unit test as its primary test-
ing tactic. As each class is developed, the team develops a unit test to exercise each
operation according to its specified functionality. As an increment is delivered to a
customer, the user stories or use cases (Chapter 5) that are implemented by the
increment are used as a basis for acceptance tests. The degree to which the software
implements the output, function, and behavior of the use case is a form of feedback.
Finally, as new requirements are derived as part of iterative planning, the team pro-
vides the customer with rapid feedback regarding cost and schedule impact.

Beck [BecO4a] argues that strict adherence to certain XP practices demands
courage. A better word might be discipline. For example, there is often significant
pressure to design for future requirements. Most software teams succumb, arguing
that “designing for tomorrow” will save time and effort in the long run. An agile XP
team must have the discipline (courage) to design for today, recognizing that future
requirements may change dramatically, thereby demanding substantial rework of
the design and implemented code.

By following each of these values, the agile team inculcates respect among it
members, between other stakeholders and team members, and indirectly, for the
software itself. As they achieve successful delivery of software increments, the team
develops growing respect for the XP process.

3.4.2 The XP Process

Extreme Programming uses an object-oriented approach (Appendix 2) as its pre-
ferred development paradigm and encompasses a set of rules and practices that
occur within the context of four framework activities: planning, design, coding, and
testing. Figure 3.2 illustrates the XP process and notes some of the key ideas and
tasks that are associated with each framework activity. Key XP activities are sum-
marized in the paragraphs that follow.

Planning. The planning activity (also called the planning game) begins with
listening—a requirements gathering activity that enables the technical members of
the XP team to understand the business context for the software and to get a broad

4 Refactoring allows a software engineer to improve the internal structure of a design (or source
code) without changing its external functionality or behavior. In essence, refactoring can be used
to improve the efficiency, readability, or performance of a design or the code that implements a
design.

74

PART ONE THE SOFTWARE PROCESS

The Extreme
Programming
process

What is an
® XP “story”?

A worthwhile XP
“planning game” can
be found at:
2.com/cgi/
wiki?planningGame.

simple design spike solutions
CRC cards prototypes

user stories
values
acceptance fest criteria

iteration plan

refoctoring

pair programming

Release

software increment
project velocity computed

unit test
continuous integration

acceptance testing

feel for required output and major features and functionality. Listening leads to the
creation of a set of “stories” (also called user stories) that describe required output,
features, and functionality for software to be built. Each story (similar to use cases
described in Chapter 5) is written by the customer and is placed on an index card.
The customer assigns a value (i.e., a priority) to the story based on the overall busi-
ness value of the feature or function.® Members of the XP team then assess each
story and assign a cost—measured in development weeks—to it. If the story is esti-
mated to require more than three development weeks, the customer is asked to split
the story into smaller stories and the assignment of value and cost occurs again. It
is important to note that new stories can be written at any time.

Customers and developers work together to decide how to group stories into the
next release (the next software increment) to be developed by the XP team. Once a
basic commitment (agreement on stories to be included, delivery date, and other
project matters) is made for a release, the XP team orders the stories that will be de-
veloped in one of three ways: (1) all stories will be implemented immediately (within
a few weeks), (2) the stories with highest value will be moved up in the schedule and
implemented first, or (3) the riskiest stories will be moved up in the schedule and
implemented first.

After the first project release (also called a software increment) has been deliv-
ered, the XP team computes project velocity. Stated simply, project velocity is the

5 The value of a story may also be dependent on the presence of another story.

Project velocity is a
subtle measure of
team productivity.

ﬁpwcss

XP deemphasizes the
importance of design.
Not everyone agrees.
In fact, there are times
when design should be
emphasized.

Refactoring techniques
and tools can be
found at:
www.refactoring
.com.

CHAPTER 3 AGILE DEVELOPMENT 75

number of customer stories implemented during the first release. Project velocity can
then be used to (1) help estimate delivery dates and schedule for subsequent releases
and (2) determine whether an overcommitment has been made for all stories across
the entire development project. If an overcommitment occurs, the content of releases
is modified or end delivery dates are changed.

As development work proceeds, the customer can add stories, change the value
of an existing story, split stories, or eliminate them. The XP team then reconsiders all
remaining releases and modifies its plans accordingly.

Design. XP design rigorously follows the KIS (keep it simple) principle. A simple
design is always preferred over a more complex representation. In addition, the de-
sign provides implementation guidance for a story as it is written—nothing less,
nothing more. The design of extra functionality (because the developer assumes it
will be required later) is discouraged.®

XP encourages the use of CRC cards (Chapter 7) as an effective mechanism for
thinking about the software in an object-oriented context. CRC (class-responsibility-
collaborator) cards identify and organize the object-oriented classes’ that are rele-
vant to the current software increment. The XP team conducts the design exercise
using a process similar to the one described in Chapter 8. The CRC cards are the only
design work product produced as part of the XP process.

If a difficult design problem is encountered as part of the design of a story, XP rec-
ommends the immediate creation of an operational prototype of that portion of the
design. Called a spike solution, the design prototype is implemented and evaluated.
The intent is to lower risk when true implementation starts and to validate the orig-
inal estimates for the story containing the design problem.

In the preceding section, we noted that XP encourages refactoring—a construction
technique that is also a method for design optimization. Fowler [Fow00] describes
refactoring in the following manner:

Refactoring is the process of changing a software system in such a way that it does not
alter the external behavior of the code yet improves the internal structure. It is a disci-
plined way to clean up code [and modify/simplify the internal design] that minimizes the
chances of introducing bugs. In essence, when you refactor you are improving the design
of the code after it has been written.

Because XP design uses virtually no notation and produces few, if any, work prod-
ucts other than CRC cards and spike solutions, design is viewed as a transient arti-
fact that can and should be continually modified as construction proceeds. The intent
of refactoring is to control these modifications by suggesting small design changes

6 These design guidelines should be followed in every software engineering method, although there
are times when sophisticated design notation and terminology may get in the way of simplicity.

7 Object-oriented classes are discussed in Appendix 2, in Chapter 8, and throughout Part 2 of this
book.

http://www.refactoring

76

A
e,

POINT
Refactoring improves
the infernal structure of
a design (or source
code) without
changing its external
functionality or
behavior.

Useful information on
XP can be obtained
at www
.Xprogramming.
com.

® What is
® pair
programming?

Gpwcss.

Many software teams
are populated by indi-
vidualists. You'll have
to work fo change that
clture if pair program-
ming is fo work effec-
fively.

‘, How are unit
® tests used in
XP?

PART ONE THE SOFTWARE PROCESS

that “can radically improve the design” [Fow00]. It should be noted, however, that
the effort required for refactoring can grow dramatically as the size of an application
grows.

A central notion in XP is that design occurs both before and after coding com-
mences. Refactoring means that design occurs continuously as the system is con-
structed. In fact, the construction activity itself will provide the XP team with
guidance on how to improve the design.

Coding. After stories are developed and preliminary design work is done, the team
does not move to code, but rather develops a series of unit tests that will exercise
each of the stories that is to be included in the current release (software increment).®
Once the unit test” has been created, the developer is better able to focus on what
must be implemented to pass the test. Nothing extraneous is added (KIS). Once the
code is complete, it can be unit-tested immediately, thereby providing instantaneous
feedback to the developers.

A key concept during the coding activity (and one of the most talked about aspects
of XP) is pair programming. XP recommends that two people work together at one
computer workstation to create code for a story. This provides a mechanism for real-
time problem solving (two heads are often better than one) and real-time quality as-
surance (the code is reviewed as it is created). It also keeps the developers focused
on the problem at hand. In practice, each person takes on a slightly different role. For
example, one person might think about the coding details of a particular portion of
the design while the other ensures that coding standards (a required part of XP) are
being followed or that the code for the story will satisfy the unit test that has been
developed to validate the code against the story.

As pair programmers complete their work, the code they develop is integrated
with the work of others. In some cases this is performed on a daily basis by an inte-
gration team. In other cases, the pair programmers have integration responsibility.
This “continuous integration” strategy helps to avoid compatibility and interfacing
problems and provides a “smoke testing” environment (Chapter 17) that helps to
uncover errors early.

Testing. [have already noted that the creation of unit tests before coding com-
mences is a key element of the XP approach. The unit tests that are created should
be implemented using a framework that enables them to be automated (hence, they
can be executed easily and repeatedly). This encourages a regression testing strat-
egy (Chapter 17) whenever code is modified (which is often, given the XP refactor-
ing philosophy).

8 This approach is analogous to knowing the exam questions before you begin to study. It makes
studying much easier by focusing attention only on the questions that will be asked.

9 Unit testing, discussed in detail in Chapter 17, focuses on an individual software component, exer-
cising the component’s interface, data structures, and functionality in an effort to uncover errors
that are local to the component.

a’
I%INT

XP acceptance tests
are derived from user
stories.

€ What new

® practices are
appended to XP
to create IXP?

“Ability is what
you're capable of
doing. Motivation
defermines what
you do. Attitude
determines how
well you do it.”

Lou Holtz

CHAPTER 3 AGILE DEVELOPMENT 77

As the individual unit tests are organized into a “universal testing suite” [Wel99],
integration and validation testing of the system can occur on a daily basis. This pro-
vides the XP team with a continual indication of progress and also can raise warn-
ing flags early if things go awry. Wells [Wel99] states: “Fixing small problems every
few hours takes less time than fixing huge problems just before the deadline.”

XP acceptance tests, also called customer tests, are specified by the customer and
focus on overall system features and functionality that are visible and reviewable by
the customer. Acceptance tests are derived from user stories that have been imple-
mented as part of a software release.

3.4.3 Industrial XP

Joshua Kerievsky [Ker05] describes Industrial Extreme Programming (IXP) in the fol-
lowing manner: “IXP is an organic evolution of XP. It is imbued with XP’s minimal-
ist, customer-centric, test-driven spirit. IXP differs most from the original XP in its
greater inclusion of management, its expanded role for customers, and its upgraded
technical practices.” IXP incorporates six new practices that are designed to help
ensure that an XP project works successfully for significant projects within a large
organization.

Readiness assessment. Prior to the initiation of an IXP project, the organ-
ization should conduct a readiness assessment. The assessment ascertains
whether (1) an appropriate development environment exists to support IXP,
(2) the team will be populated by the proper set of stakeholders, (3) the or-
ganization has a distinct quality program and supports continuous improve-
ment, (4) the organizational culture will support the new values of an agile
team, and (5) the broader project community will be populated appropriately.

Project community. Classic XP suggests that the right people be used to
populate the agile team to ensure success. The implication is that people on
the team must be well-trained, adaptable and skilled, and have the proper
temperament to contribute to a self-organizing team. When XP is to be
applied for a significant project in a large organization, the concept of the
“team” should morph into that of a community. A community may have a
technologist and customers who are central to the success of a project as
well as many other stakeholders (e.g., legal staff, quality auditors, manufac-
turing or sales types) who “are often at the periphery of an IXP project yet
they may play important roles on the project” [Ker05]. In IXP, the community
members and their roles should be explicitly defined and mechanisms for
communication and coordination between community members should be
established.

Project chartering. The IXP team assesses the project itself to determine
whether an appropriate business justification for the project exists and
whether the project will further the overall goals and objectives of the

78

PART ONE THE SOFTWARE PROCESS

organization. Chartering also examines the context of the project to deter-
mine how it complements, extends, or replaces existing systems or
processes.

Test-driven management. An IXP project requires measurable criteria for
assessing the state of the project and the progress that has been made to
date. Test-driven management establishes a series of measurable “destina-
tions” [Ker05] and then defines mechanisms for determining whether or not
these destinations have been reached.

Retrospectives. An IXP team conducts a specialized technical review
(Chapter 15) after a software increment is delivered. Called a retrospective,
the review examines “issues, events, and lessons-learned” [Ker05] across a
software increment and/or the entire software release. The intent is to
improve the IXP process.

Continuous learning. Because learning is a vital part of continuous
process improvement, members of the XP team are encouraged (and possi-
bly, incented) to learn new methods and techniques that can lead to a higher-
quality product.

In addition to the six new practices discussed, IXP modifies a number of existing
XP practices. Story-driven development (SDD) insists that stories for acceptance tests
be written before a single line of code is generated. Domain-driven design (DDD) is
an improvement on the “system metaphor” concept used in XP. DDD [Eva03] sug-
gests the evolutionary creation of a domain model that “accurately represents how
domain experts think about their subject” [Ker05]. Pairing extends the XP pair-
programming concept to include managers and other stakeholders. The intent is to
improve knowledge sharing among XP team members who may not be directly in-
volved in technical development. Iterative usability discourages front-loaded inter-
face design in favor of usability design that evolves as software increments are
delivered and users’ interaction with the software is studied.

IXP makes smaller modifications to other XP practices and redefines certain roles
and responsibilities to make them more amenable to significant projects for large
organizations. For further discussion of IXP, visit http://industrialxp.org.

3.4.4 The XP Debate

All new process models and methods spur worthwhile discussion and in some in-
stances heated debate. Extreme Programming has done both. In an interesting book
that examines the efficacy of XP, Stephens and Rosenberg [Ste03] argue that many
XP practices are worthwhile, but others have been overhyped, and a few are prob-
lematic. The authors suggest that the codependent nature of XP practices are both
its strength and its weakness. Because many organizations adopt only a subset of XP
practices, they weaken the efficacy of the entire process. Proponents counter that
XP is continuously evolving and that many of the issues raised by critics have been

http://industrialxp.org

CHAPTER 3 AGILE DEVELOPMENT 79

addressed as XP practice matures. Among the issues that continue to trouble some
critics of XP are:!°

What are e Requirements volatility. Because the customer is an active member of the XP
® some of the team, changes to requirements are requested informally. As a consequence,
issues that lead to the scope of the project can change and earlier work may have to be
an XP debate? modified to accommodate current needs. Proponents argue that this happens

regardless of the process that is applied and that XP provides mechanisms for
controlling scope creep.

e Conflicting customer needs. Many projects have multiple customers, each with
his own set of needs. In XP, the team itself is tasked with assimilating the
needs of different customers, a job that may be beyond their scope of
authority.

e Requirements are expressed informally. User stories and acceptance tests are
the only explicit manifestation of requirements in XP. Critics argue that a
more formal model or specification is often needed to ensure that omissions,
inconsistencies, and errors are uncovered before the system is built. Propo-
nents counter that the changing nature of requirements makes such models
and specification obsolete almost as soon as they are developed.

e Lack of formal design. XP deemphasizes the need for architectural design and
in many instances, suggests that design of all kinds should be relatively
informal. Critics argue that when complex systems are built, design must be
emphasized to ensure that the overall structure of the software will exhibit
quality and maintainability. XP proponents suggest that the incremental
nature of the XP process limits complexity (simplicity is a core value) and
therefore reduces the need for extensive design.

You should note that every software process has flaws and that many software or-
ganizations have used XP successfully. The key is to recognize where a process may
have weaknesses and to adapt it to the specific needs of your organization.

SAFEHOME

Considering Agile Software Development

" The scene: Doug Miller’s office. The conversation:
The Players: Doug Miller, software engineering (A knock on the door, Jamie and Vinod enter Doug's office)
manager; Jamie Lazar, software team member; Vinod Jamie: Doug, you got a minute?

Raman, software team member.

10 For a detailed look at some thoughtful criticism that has been leveled at XP, visit
www.softwarereality.com/ExtremeProgramming.jsp.

http://www.softwarereality.com/ExtremeProgramming.jsp

80 PART ONE THE SOFTWARE PROCESS

Doug: Sure Jamie, what's up?

Jamie: We've been thinking about our process
discussion yesterday . . . you know, what process we're
going to choose for this new SafeHome project.

Doug: And?
Vinod: | was talking to a friend at another company,

and he was telling me about Extreme Programming. It's
an agile process model . . . heard of it2

Doug: Yeah, some good, some bad.

Jamie: Well, it sounds pretty good to us. Lets you
develop software really fast, uses something called pair
programming to do real-time quality checks . . . it's pretty
cool, | think.

Doug: It does have a lot of really good ideas. | like the
pair-programming concept, for instance, and the idea
that stakeholders should be part of the team.

Jamie: Huh? You mean that marketing will work on the
project feam with us?

Doug (nodding): They're a stakeholder, aren’t they?
Jamie: Jeez . . . they'll be requesting changes every five
minutes.

Vinod: Not necessarily. My friend said that there are
ways to “embrace” changes during an XP project.

Doug: So you guys think we should use XP2
Jamie: It's definitely worth considering.

Doug: | agree. And even if we choose an incremental
model as our approach, there’s no reason why we can'’t
incorporate much of what XP has to offer.

Vinod: Doug, before you said “some good, some bad.”
What was the “bad”2

Doug: The thing | don't like is the way XP downplays
analysis and design . . . sort of says that writing code is
where the action is . . .

(The team members look at one another and smile.)
Doug: So you agree with the XP approach?

Jamie (speaking for both): Writing code is what
we do, Boss!

Doug (laughing): True, but I'd like fo see you spend a
little less time coding and then recoding and a little more
time analyzing what has to be done and designing a
solution that works.

Vinod: Maybe we can have it both ways, agility with a
little discipline.

Doug: | think we can, Vinod. In fact, I'm sure of it.

3,5 Q:I:HER AGILE PROCESS MODELS

@

“Our profession
goes through
methodologies like
a 14-year-old goes
through clothing.”

Stephen
Hawrysh and
Jim Ruprecht

The history of software engineering is littered with dozens of obsolete process
descriptions and methodologies, modeling methods and notations, tools, and
technology. Each flared in notoriety and was then eclipsed by something new and
(purportedly) better. With the introduction of a wide array of agile process models—
each contending for acceptance within the software development community—the
agile movement is following the same historical path.'!

As I noted in the last section, the most widely used of all agile process models
is Extreme Programming (XP). But many other agile process models have been
proposed and are in use across the industry. Among the most common are:

o Adaptive Software Development (ASD)
e Scrum
e Dynamic Systems Development Method (DSDM)
11 This is not a bad thing. Before one or more models or methods are accepted as a de facto standard,

all must contend for the hearts and minds of software engineers. The “winners” evolve into best
practice, while the “losers” either disappear or merge with the winning models.

Useful resources for
ASD can be found at
www.adaptivesd
.com.

CHAPTER 3 AGILE DEVELOPMENT 81

e Crystal

e Feature Drive Development (FDD)
e Lean Software Development (LSD)
e Agile Modeling (AM)

e Agile Unified Process (AUP)

In the sections that follow, I present a very brief overview of each of these agile
process models. It is important to note that all agile process models conform (to a
greater or lesser degree) to the Manifesto for Agile Software Development and the prin-
ciples noted in Section 3.3.1. For additional detail, refer to the references noted in
each subsection or for a survey, examine the “agile software development” entry
in Wikipedia.'?

3.5.1 Adaptive Software Development (ASD)

Adaptive Software Development (ASD) has been proposed by Jim Highsmith [Hig00] as
a technique for building complex software and systems. The philosophical under-
pinnings of ASD focus on human collaboration and team self-organization.

Highsmith argues that an agile, adaptive development approach based on collab-
oration is “as much a source of order in our complex interactions as discipline and
engineering.” He defines an ASD “life cycle” (Figure 3.3) that incorporates three
phases, speculation, collaboration, and learning.

Adaptive
software
development

adaptive cycle planning Requirements gathering
mission statement JAD
project constraints mini-specs
basic requirements

time-boxed release plan

\

Release

software increment
adjustments for subsequent cycles

components implemented/tested
focus groups for feedback
formal technical reviews
postmortems

12 See http://en.wikipedia.org/wiki/Agile_software_development#Agile_methods.

http://en.wikipedia.org/wiki/Agile_software_development#Agile_methods
http://www.adaptivesd

82

ﬁpwcsou

Effective collaboration
with your customer will
only occur if you
jettison any “s and
them” attitudes.

o
e,

POINT
ASD emphasizes
learning as a key
element in achieving
a “self-organizing”
team.

Useful Scrum
information and
resources can be found
at www
.controlchaos.com.

PART ONE THE SOFTWARE PROCESS

During speculation, the project is initiated and adaptive cycle planning is con-
ducted. Adaptive cycle planning uses project initiation information—the customer’s
mission statement, project constraints (e.g., delivery dates or user descriptions), and
basic requirements—to define the set of release cycles (software increments) that
will be required for the project.

No matter how complete and farsighted the cycle plan, it will invariably change.
Based on information obtained at the completion of the first cycle, the plan is re-
viewed and adjusted so that planned work better fits the reality in which an ASD
team is working.

Motivated people use collaboration in a way that multiplies their talent and cre-
ative output beyond their absolute numbers. This approach is a recurring theme in
all agile methods. But collaboration is not easy. It encompasses communication and
teamwork, but it also emphasizes individualism, because individual creativity plays
an important role in collaborative thinking. It is, above all, a matter of trust. People
working together must trust one another to (1) criticize without animosity, (2) assist
without resentment, (3) work as hard as or harder than they do, (4) have the skill set
to contribute to the work at hand, and (5) communicate problems or concerns in a
way that leads to effective action.

As members of an ASD team begin to develop the components that are part of an
adaptive cycle, the emphasis is on “learning” as much as it is on progress toward
a completed cycle. In fact, Highsmith [Hig00] argues that software developers often
overestimate their own understanding (of the technology, the process, and the proj-
ect) and that learning will help them to improve their level of real understanding.
ASD teams learn in three ways: focus groups (Chapter 5), technical reviews (Chap-
ter 14), and project postmortems.

The ASD philosophy has merit regardless of the process model that is used. ASD’s
overall emphasis on the dynamics of self-organizing teams, interpersonal collabo-
ration, and individual and team learning yield software project teams that have a
much higher likelihood of success.

3.5.2 Scrum

Scrum (the name is derived from an activity that occurs during a rugby match'?) is
an agile software development method that was conceived by Jeff Sutherland and his
development team in the early 1990s. In recent years, further development on the
Scrum methods has been performed by Schwaber and Beedle [SchO1a].

Scrum principles are consistent with the agile manifesto and are used to guide
development activities within a process that incorporates the following framework
activities: requirements, analysis, design, evolution, and delivery. Within each

13 A group of players forms around the ball and the teammates work together (sometimes violently?)
to move the ball downfield.

CHAPTER 3 AGILE DEVELOPMENT 83

Scrum process
flow

every 24
hours

he

Scrum: 15 minute daily meeting.

Team members respond to basics:

1) What did you do since last Scrum
meeting?

2) Do you have any obstacles?

Sprint Backlog: Backlog 3) What will you do before next
Feature(s) items 30 days meeting?
assigned expanded
to sprint by team
' New functionality
is demonstrated
at end of sprint
Product Backlog:

%

POINT
Scrum incorporates a
set of process pattems
that emphasize project
priorities,
compartmentalized
work units,
communication, and
frequent customer
feedback.

Prioritized product features desired by the customer

framework activity, work tasks occur within a process pattern (discussed in the fol-
lowing paragraph) called a sprint. The work conducted within a sprint (the number
of sprints required for each framework activity will vary depending on product com-
plexity and size) is adapted to the problem at hand and is defined and often modified
in real time by the Scrum team. The overall flow of the Scrum process is illustrated
in Figure 3.4.

Scrum emphasizes the use of a set of software process patterns [Noy02] that have
proven effective for projects with tight timelines, changing requirements, and business
criticality. Each of these process patterns defines a set of development actions:

Backlog—a prioritized list of project requirements or features that provide busi-
ness value for the customer. Items can be added to the backlog at any time (this is
how changes are introduced). The product manager assesses the backlog and
updates priorities as required.

Sprints—consist of work units that are required to achieve a requirement de-
fined in the backlog that must be fit into a predefined time-box'* (typically 30 days).

14 A time-box is a project management term (see Part 4 of this book) that indicates a period of time
that has been allocated to accomplish some task.

84

Useful resources for
DSSD can be found at
www.dsdm.org.

PART ONE THE SOFTWARE PROCESS

Changes (e.g., backlog work items) are not introduced during the sprint. Hence, the
sprint allows team members to work in a short-term, but stable environment.

Scrum meetings—are short (typically 15 minutes) meetings held daily by the Scrum
team. Three key questions are asked and answered by all team members [Noy02]:

e What did you do since the last team meeting?
e What obstacles are you encountering?

e What do you plan to accomplish by the next team meeting?

A team leader, called a Scrum master, leads the meeting and assesses the responses
from each person. The Scrum meeting helps the team to uncover potential problems
as early as possible. Also, these daily meetings lead to “knowledge socialization”
[Bee99] and thereby promote a self-organizing team structure.

Demos—deliver the software increment to the customer so that functionality that
has been implemented can be demonstrated and evaluated by the customer. It is im-
portant to note that the demo may not contain all planned functionality, but rather
those functions that can be delivered within the time-box that was established.

Beedle and his colleagues [Bee99] present a comprehensive discussion of these pat-
terns in which they state: “Scrum assumes up-front the existence of chaos. ... " The
Scrum process patterns enable a software team to work successfully in a world
where the elimination of uncertainty is impossible.

3.5.3 Dynamic Systems Development Method (DSDM)

The Dynamic Systems Development Method (DSDM) [Sta97] is an agile software devel-
opment approach that “provides a framework for building and maintaining systems
which meet tight time constraints through the use of incremental prototyping in a con-
trolled project environment” [CCS02]. The DSDM philosophy is borrowed from a mod-
ified version of the Pareto principle—80 percent of an application can be delivered in
20 percent of the time it would take to deliver the complete (100 percent) application.

DSDM is an iterative software process in which each iteration follows the 80 per-
cent rule. That is, only enough work is required for each increment to facilitate
movement to the next increment. The remaining detail can be completed later when
more business requirements are known or changes have been requested and
accommodated.

The DSDM Consortium (www.dsdm.org) is a worldwide group of member com-
panies that collectively take on the role of “keeper” of the method. The consortium
has defined an agile process model, called the DSDM life cycle that defines three dif-
ferent iterative cycles, preceded by two additional life cycle activities:

Feasibility study—establishes the basic business requirements and constraints
associated with the application to be built and then assesses whether the applica-
tion is a viable candidate for the DSDM process.

http://www.dsdm.org
http://www.dsdm.org

DSDM is a process
framework that can
adopt the factics of
another agile approach
such as XP.

@
%’NT

Crystal is a family of
process models with
the same “genetic
code” but different
methods for adapting
to project
characterisfics.

CHAPTER 3 AGILE DEVELOPMENT 85

Business study—establishes the functional and information requirements that
will allow the application to provide business value; also, defines the basic
application architecture and identifies the maintainability requirements for the
application.

Functional model iteration—produces a set of incremental prototypes that
demonstrate functionality for the customer. (Note: All DSDM prototypes are in-
tended to evolve into the deliverable application.) The intent during this iterative
cycle is to gather additional requirements by eliciting feedback from users as they
exercise the prototype.

Design and build iteration—revisits prototypes built during functional model
iteration to ensure that each has been engineered in a manner that will enable it to
provide operational business value for end users. In some cases, functional model
Iteration and design and build iteration occur concurrently.

Implementation—places the latest software increment (an “operationalized” pro-
totype) into the operational environment. It should be noted that (1) the increment
may not be 100 percent complete or (2) changes may be requested as the incre-
ment is put into place. In either case, DSDM development work continues by
returning to the functional model iteration activity.

DSDM can be combined with XP (Section 3.4) to provide a combination approach
that defines a solid process model (the DSDM life cycle) with the nuts and bolts prac-
tices (XP) that are required to build software increments. In addition, the ASD con-
cepts of collaboration and self-organizing teams can be adapted to a combined
process model.

3.5.4 Crystal

Alistair Cockburn [Coc05] and Jim Highsmith [Hig02b] created the Crystal family of
agile methods' in order to achieve a software development approach that puts a
premium on “maneuverability” during what Cockburn characterizes as “a resource-
limited, cooperative game of invention and communication, with a primary goal of
delivering useful, working software and a secondary goal of setting up for the next
game” [Coc02].

To achieve maneuverability, Cockburn and Highsmith have defined a set of
methodologies, each with core elements that are common to all, and roles, process
patterns, work products, and practice that are unique to each. The Crystal family is
actually a set of example agile processes that have been proven effective for differ-
ent types of projects. The intent is to allow agile teams to select the member of the
crystal family that is most appropriate for their project and environment.

15 The name “crystal” is derived from the characteristics of geological crystals, each with its own
color, shape, and hardness.

86

A wide variety of
articles and
presentations on FDD
can be found at:
www.featuredrive
ndevelopment
.com/.

PART ONE THE SOFTWARE PROCESS

3.5.5 Feature Driven Development (FDD)

Feature Driven Development (FDD) was originally conceived by Peter Coad and his
colleagues [Coa99] as a practical process model for object-oriented software engi-
neering. Stephen Palmer and John Felsing [Pal02] have extended and improved
Coad’s work, describing an adaptive, agile process that can be applied to moderately
sized and larger software projects.

Like other agile approaches, FDD adopts a philosophy that (1) emphasizes col-
laboration among people on an FDD team; (2) manages problem and project
complexity using feature-based decomposition followed by the integration of
software increments, and (3) communication of technical detail using verbal,
graphical, and text-based means. FDD emphasizes software quality assurance
activities by encouraging an incremental development strategy, the use of design
and code inspections, the application of software quality assurance audits (Chap-
ter 16), the collection of metrics, and the use of patterns (for analysis, design, and
construction).

In the context of FDD, a feature “is a client-valued function that can be imple-
mented in two weeks or less” [Coa99]. The emphasis on the definition of features
provides the following benefits:

e Because features are small blocks of deliverable functionality, users can
describe them more easily; understand how they relate to one another more
readily; and better review them for ambiguity, error, or omissions.

e Features can be organized into a hierarchical business-related grouping.

e Since a feature is the FDD deliverable software increment, the team develops
operational features every two weeks.

e Because features are small, their design and code representations are easier
to inspect effectively.

e Project planning, scheduling, and tracking are driven by the feature
hierarchy, rather than an arbitrarily adopted software engineering
task set.

Coad and his colleagues [Coa99] suggest the following template for defining a
feature:

<action> the <result> <by | for | of | to> a(n) <object>

where an <object> is “a person, place, or thing (including roles, moments in time or
intervals of time, or catalog-entry-like descriptions).” Examples of features for an
e-commerce application might be:

Add the product to shopping cart

Display the technical-specifications of the product

Store the shipping-information for the customer

http://www.featuredrive

CHAPTER 3 AGILE DEVELOPMENT 87

Feature Driven
Development
[Coa99] (with
permission)

[
[
Develgs Build a Plan
an Features B
Ol List Feot{Jre
Model |
e ——— I -
(more shape A list of features A development plan A design Completed
than content) grouped into sets Class owners package clientvalue
and subject areas Feature Set Owners (sequences) function

A feature set groups related features into business-related categories and is defined
[Coa99] as:

<action><-ing> a(n) <object>

For example: Making a product sale is a feature set that would encompass the fea-
tures noted earlier and others.

The FDD approach defines five “collaborating” [Coa99] framework activities (in
FDD these are called “processes”) as shown in Figure 3.5.

FDD provides greater emphasis on project management guidelines and tech-
niques than many other agile methods. As projects grow in size and complexity,
ad hoc project management is often inadequate. It is essential for developers, their
managers, and other stakeholders to understand project status—what accomplish-
ments have been made and problems have been encountered. If deadline pressure
is significant, it is critical to determine if software increments (features) are properly
scheduled. To accomplish this, FDD defines six milestones during the design and
implementation of a feature: “design walkthrough, design, design inspection, code,
code inspection, promote to build” [Coa99].

3.5.6 Lean Software Development (LSD)

Lean Software Development (LSD) has adapted the principles of lean manufacturing
to the world of software engineering. The lean principles that inspire the LSD process
can be summarized ([Pop03], [Pop06éa]) as eliminate waste, build quality in, create
knowledge, defer commitment, deliver fast, respect people, and optimize the whole.
Each of these principles can be adapted to the software process. For example,
eliminate waste within the context of an agile software project can be interpreted
to mean [Das05]: (1) adding no extraneous features or functions, (2) assessing the
cost and schedule impact of any newly requested requirement, (3) removing any
superfluous process steps, (4) establishing mechanisms to improve the way team
members find information, (5) ensuring the testing finds as many errors as possible,

88

Comprehensive
information on agile
modeling can be found
at: www

.agilemodeling.com.

“I was in the drug
store the other day
trying to get a cold
medication . . . not
easy. There's an
entire wall of
products you need.
You stand there
going, Well, this
one is quick acting
but this is long
lasting. . . . Which
is more important,
the present or the
future?”

Jerry Seinfeld

PART ONE THE SOFTWARE PROCESS

(6) reducing the time required to request and get a decision that affects the software
or the process that is applied to create it, and (7) streamlining the manner in which
information is transmitted to all stakeholders involved in the process.

For a detailed discussion of LSD and pragmatic guidelines for implementing the
process, you should examine [Pop0O6a] and [Pop06b].

3.5.7 Agile Modeling (AM)

There are many situations in which software engineers must build large, business-
critical systems. The scope and complexity of such systems must be modeled so that
(1) all constituencies can better understand what needs to be accomplished, (2) the
problem can be partitioned effectively among the people who must solve it, and
(3) quality can be assessed as the system is being engineered and built.

Over the past 30 years, a wide variety of software engineering modeling methods
and notation have been proposed for analysis and design (both architectural and
component-level). These methods have merit, but they have proven to be difficult
to apply and challenging to sustain (over many projects). Part of the problem is the
“weight” of these modeling methods. By this I mean the volume of notation required,
the degree of formalism suggested, the sheer size of the models for large projects,
and the difficulty in maintaining the model(s) as changes occur. Yet analysis and de-
sign modeling have substantial benefit for large projects—if for no other reason than
to make these projects intellectually manageable. Is there an agile approach to soft-
ware engineering modeling that might provide an alternative?

At “The Official Agile Modeling Site,” Scott Ambler [Amb02a] describes agile mod-
eling (AM) in the following manner:

Agile Modeling (AM) is a practice-based methodology for effective modeling and documen-
tation of software-based systems. Simply put, Agile Modeling (AM) is a collection of values,
principles, and practices for modeling software that can be applied on a software develop-
ment project in an effective and light-weight manner. Agile models are more effective than
traditional models because they are just barely good, they don't have to be perfect.

Agile modeling adopts all of the values that are consistent with the agile manifesto.
The agile modeling philosophy recognizes that an agile team must have the courage
to make decisions that may cause it to reject a design and refactor. The team must
also have the humility to recognize that technologists do not have all the answers and
that business experts and other stakeholders should be respected and embraced.

Although AM suggests a wide array of “core” and “supplementary” modeling prin-
ciples, those that make AM unique are [Amb02a]:

Model with a purpose. A developer who uses AM should have a specific
goal (e.g., to communicate information to the customer or to help better un-
derstand some aspect of the software) in mind before creating the model.
Once the goal for the model is identified, the type of notation to be used and
level of detail required will be more obvious.

eArpwcss.

“Traveling light” is an
appropriate philosophy
for all software engi-
negring work. Build
only those models that
provide valve . .. no
more, o less.

CHAPTER 3 AGILE DEVELOPMENT 89

Use multiple models. There are many different models and notations that
can be used to describe software. Only a small subset is essential for most
projects. AM suggests that to provide needed insight, each model should
present a different aspect of the system and only those models that provide
value to their intended audience should be used.

Travel light. As software engineering work proceeds, keep only those mod-
els that will provide long-term value and jettison the rest. Every work product
that is kept must be maintained as changes occur. This represents work that
slows the team down. Ambler [Amb02a] notes that “Every time you decide to
keep a model you trade-off agility for the convenience of having that informa-
tion available to your team in an abstract manner (hence potentially enhanc-
ing communication within your team as well as with project stakeholders).”

Content is more important than representation. Modeling should im-
part information to its intended audience. A syntactically perfect model that
imparts little useful content is not as valuable as a model with flawed nota-
tion that nevertheless provides valuable content for its audience.

Know the models and the tools you use to create them. Understand
the strengths and weaknesses of each model and the tools that are used to
create it.

Adapt locally. The modeling approach should be adapted to the needs of
the agile team.

A major segment of the software engineering community has adopted the Unified
Modeling Language (UML)'¢ as the preferred method for representing analysis and
design models. The Unified Process (Chapter 2) has been developed to provide a
framework for the application of UML. Scott Ambler [Amb06] has developed a sim-
plified version of the UP that integrates his agile modeling philosophy.

3.5.8 Agile Unified Process (AUP)

The Agile Unified Process (AUP) adopts a “serial in the large” and “iterative in the
small” [Amb06] philosophy for building computer-based systems. By adopting the
classic UP phased activities—inception, elaboration, construction, and transition—AUP
provides a serial overlay (i.e., a linear sequence of software engineering activities)
that enables a team to visualize the overall process flow for a software project. How-
ever, within each of the activities, the team iterates to achieve agility and to deliver
meaningful software increments to end users as rapidly as possible. Each AUP iter-
ation addresses the following activities [AmbO06]:

e Modeling. UML representations of the business and problem domains are
created. However, to stay agile, these models should be “just barely good
enough” [Amb06] to allow the team to proceed.

16 A brief tutorial on UML is presented in Appendix 1.

90 PART ONE THE SOFTWARE PROCESS

e Implementation. Models are translated into source code.

e Testing. Like XP, the team designs and executes a series of tests to uncover
errors and ensure that the source code meets its requirements.

e Deployment. Like the generic process activity discussed in Chapters 1 and 2,
deployment in this context focuses on the delivery of a software increment
and the acquisition of feedback from end users.

e Configuration and project management. In the context of AUP, configuration
management (Chapter 22) addresses change management, risk manage-
ment, and the control of any persistent work products'” that are produced by
the team. Project management tracks and controls the progress of the team
and coordinates team activities.

e Environment management. Environment management coordinates a process
infrastructure that includes standards, tools, and other support technology

available to the team.

Although the AUP has historical and technical connections to the Unified Modeling
Language, it is important to note that UML modeling can be using in conjunction
with any of the agile process models described in Section 3.5.

Q
development with an emphasis on facilitating the rapid
generation of operational software. These tools can also

be used when prescriptive process models (Chapter 2) are
applied.

Agile Development

Objective: The objective of agile development
tools is to assist in one or more aspects of agile

Mechanics: Tool mechanics vary. In general, agile tool
sets encompass automated support for project planning,

use case development and requirements gathering, rapid
design, code generation, and testing.

Representative Tools:'®
Note: Because agile development is a hot topic, most
software tools vendors purport to sell tools that support

SOFTWARE TooOLS

the agile approach. The tools noted here have
characteristics that make them particularly useful for
agile projects.

OnTime, developed by Axosoft (www.axosoft.com),
provides agile process management support for
various technical activities within the process.

Ideogramic UML, developed by Ideogramic
(www.ideogramic.com) is a UML tool set
specifically developed for use within an agile
process.

Together Tool Set, distributed by Borland
(www.borland.com), provides a tools suite that
supports many technical activities within XP and other

agile processes. /

17 A persistent work product is a model or document or test case produced by the team that will be kept
for an indeterminate period of time. It will not be discarded once the software increment is

delivered.

18 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.
In most cases, tool names are trademarked by their respective developers.

http://www.axosoft.com
http://www.ideogramic.com
http://www.borland.com

CHAPTER 3 AGILE DEVELOPMENT 91

3.6 A TooL SET FOR THE AGILE PROCESS

)
POINT
The “tool set” that
supports agile
processes focuses
more on people issues
than it does on
technology issues.

3.7 SUMMARY

Some proponents of the agile philosophy argue that automated software tools (e.g.,
design tools) should be viewed as a minor supplement to the team’s activities, and
not at all pivotal to the success of the team. However, Alistair Cockburn [Coc04] sug-
gests that tools can have a benefit and that “agile teams stress using tools that per-
mit the rapid flow of understanding. Some of those tools are social, starting even at
the hiring stage. Some tools are technological, helping distributed teams simulate
being physically present. Many tools are physical, allowing people to manipulate
them in workshops.”

Because acquiring the right people (hiring), team collaboration, stakeholder com-
munication, and indirect management are key elements in virtually all agile process
models, Cockburn argues that “tools” that address these issues are critical success
factors for agility. For example, a hiring “tool” might be the requirement to have a
prospective team member spend a few hours pair programming with an existing
member of the team. The “fit” can be assessed immediately.

Collaborative and communication “tools” are generally low tech and incorporate
any mechanism (“physical proximity, whiteboards, poster sheets, index cards, and
sticky notes” [Coc04]) that provides information and coordination among agile de-
velopers. Active communication is achieved via the team dynamics (e.g., pair pro-
gramming), while passive communication is achieved by “information radiators”
(e.g., a flat panel display that presents the overall status of different components of
an increment). Project management tools deemphasize the Gantt chart and replace
it with earned value charts or “graphs of tests created versus passed . . . other agile
tools are used to optimize the environment in which the agile team works (e.g., more
efficient meeting areas), improve the team culture by nurturing social interactions
(e.g., collocated teams), physical devices (e.g., electronic whiteboards), and process
enhancement (e.g., pair programming or time-boxing)” [Coc04].

Are any of these things really tools? They are, if they facilitate the work performed
by an agile team member and enhance the quality of the end product.

In a modern economy, market conditions change rapidly, customer and end-user
needs evolve, and new competitive threats emerge without warning. Practitioners
must approach software engineering in a manner that allows them to remain agile—
to define maneuverable, adaptive, lean processes that can accommodate the needs
of modern business.

An agile philosophy for software engineering stresses four key issues: the impor-
tance of self-organizing teams that have control over the work they perform, com-
munication and collaboration between team members and between practitioners
and their customers, a recognition that change represents an opportunity, and

92

PART ONE THE SOFTWARE PROCESS

an emphasis on rapid delivery of software that satisfies the customer. Agile process
models have been designed to address each of these issues.

Extreme programming (XP) is the most widely used agile process. Organized as
four framework activities—planning, design, coding, and testing—XP suggests a
number of innovative and powerful techniques that allow an agile team to create
frequent software releases that deliver features and functionality that have been de-
scribed and then prioritized by stakeholders.

Other agile process models also stress human collaboration and team self-
organization, but define their own framework activities and select different points of
emphasis. For example, ASD uses an iterative process that incorporates adaptive
cycle planning, relatively rigorous requirement gathering methods, and an iterative
development cycle that incorporates customer focus groups and formal technical re-
views as real-time feedback mechanisms. Scrum emphasizes the use of a set of soft-
ware process patterns that have proven effective for projects with tight time lines,
changing requirements, and business criticality. Each process pattern defines a set
of development tasks and allows the Scrum team to construct a process that is
adapted to the needs of the project. The Dynamic Systems Development Method
(DSDM) advocates the use of time-box scheduling and suggests that only enough
work is required for each software increment to facilitate movement to the next
increment. Crystal is a family of agile process models that can be adopted to the spe-
cific characteristics of a project.

Feature Driven Development (FDD) is somewhat more “formal” than other agile
methods, but still maintains agility by focusing the project team on the development
of features—a client-valued function that can be implemented in two weeks or less.
Lean Software Development (LSD) has adapted the principles of lean manufacturing
to the world of software engineering. Agile modeling (AM) suggests that modeling is
essential for all systems, but that the complexity, type, and size of the model must be
tuned to the software to be built. The Agile Unified Process (AUP) adopts a “serial in
the large” and “iterative in the small” philosophy for building software.

PROBLEMS AND POINTS TO PONDER

3.1. Reread “The Manifesto for Agile Software Development” at the beginning of this chapter.
Can you think of a situation in which one or more of the four “values” could get a software team
into trouble?

3.2. Describe agility (for software projects) in your own words.

3.3. Why does an iterative process make it easier to manage change? Is every agile process dis-
cussed in this chapter iterative? Is it possible to complete a project in just one iteration and still
be agile? Explain your answers.

3.4. Could each of the agile processes be described using the generic framework activities
noted in Chapter 2? Build a table that maps the generic activities into the activities defined for
each agile process.

3.5. Try to come up with one more “agility principle” that would help a software engineering
team become even more maneuverable.

CHAPTER 3 AGILE DEVELOPMENT 93

3.6. Select one agility principle noted in Section 3.3.1 and try to determine whether each of the
process models presented in this chapter exhibits the principle. [Note: I have presented an
overview of these process models only, so it may not be possible to determine whether a prin-
ciple has been addressed by one or more of the models, unless you do additional research
(which is not required for this problem).]

3.7. Why do requirements change so much? After all, don't people know what they want?

3.8. Most agile process models recommend face-to-face communication. Yet today, members
of a software team and their customers may be geographically separated from one another. Do
you think this implies that geographical separation is something to avoid? Can you think of ways
to overcome this problem?

3.9. Write an XP user story that describes the “favorite places” or “bookmarks” feature avail-
able on most Web browsers.

3.10. What is a spike solution in XP?
3.11. Describe the XP concepts of refactoring and pair programming in your own words.

3.12. Do a bit more reading and describe what a time-box is. How does this assist an ASD team
in delivering software increments in a short time period?

3.13. Do the 80 percent rule in DSDM and the time-boxing approach defined for ASD achieve
the same result?

3.14. Using the process pattern template presented in Chapter 2, develop a process pattern for
any one of the Scrum patterns presented in Section 3.5.2.

3.15. Why is Crystal called a family of agile methods?

3.16. Using the FDD feature template described in Section 3.5.5, define a feature set for a Web
browser. Now develop a set of features for the feature set.

3.17. Visit the Official Agile Modeling Site and make a complete list of all core and supple-
mentary AM principles.

3.18. The tool set proposed in Section 3.6 supports many of the “soft” aspects of agile meth-
ods. Since communication is so important, recommend an actual tool set that might be used to
enhance communication among stakeholders on an agile team.

FURTHER READINGS AND INFORMATION SOURCES

The overall philosophy and underlying principles of agile software development are considered
in depth in many of the books referenced in the body of this chapter. In addition, books by Shaw
and Warden (The Art of Agile Development, O'Reilly Media, Inc., 2008), Hunt (Agile Software Con-
struction, Springer, 2005), and Carmichael and Haywood (Better Software Fasler, Prentice-Hall,
2002) present useful discussions of the subject. Aguanno (Managing Agile Projects, Multi-
Media Publications, 2005), Highsmith (Agile Project Management: Creating Innovative Products,
Addison-Wesley, 2004), and Larman (Agile and Iterative Development: A Manager's Guide,
Addison-Wesley, 2003) present a management overview and consider project management
issues. Highsmith (Agile Software Development Ecosystems, Addison-Wesley, 2002) presents a
survey of agile principles, processes, and practices. A worthwhile discussion of the delicate bal-
ance between agility and discipline is presented by Booch and his colleagues (Balancing Agility
and Discipline, Addison-Wesley, 2004).

Martin (Clean Code: A Handbook of Agile Software Craftsmanship, Prentice-Hall, 2009) pres-
ents the principles, patterns, and practices required to develop “clean code” in an agile software
engineering environment. Leffingwell (Scaling Software Agility: Best Practices for Large Enter-
prises, Addison-Wesley, 2007) discusses strategies for scaling up agile practices for large proj-
ects. Lippert and Rook (Refactoring in Large Software Projects: Performing Complex Restructurings
Successfully, Wiley, 2006) discuss the use of refactoring when applied in large, complex systems.

94

PART ONE THE SOFTWARE PROCESS

Stamelos and Sfetsos (Agile Software Development Quality Assurance, 1GI Global, 2007) discuss
SQA techniques that conform to the agile philosophy.

Dozens of books have been written about Extreme Programming over the past decade. Beck
(Extreme Programming Explained: Embrace Change, 2d ed., Addison-Wesley, 2004) remains the
definitive treatment of the subject. In addition, Jeffries and his colleagues (Extreme Programming
Installed, Addison-Wesley, 2000), Succi and Marchesi (Extreme Programming Examined,
Addison-Wesley, 2001), Newkirk and Martin (Extreme Programming in Practice, Addison-Wesley,
2001), and Auer and his colleagues (Extreme Programming Applied: Play to Win, Addison-Wesley,
2001) provide a nuts-and-bolts discussion of XP along with guidance on how best to apply it.
McBreen (Questioning Extreme Programming, Addison-Wesley, 2003) takes a critical look at XP,
defining when and where it is appropriate. An in-depth consideration of pair programming is
presented by McBreen (Pair Programming Hluminated, Addison-Wesley, 2003).

ASD is addressed in depth by Highsmith [Hig00]. Schwaber (The Enterprise and Scrum,
Microsoft Press, 2007) discusses the use of Scrum for projects that have a major business
impact. The nuts and bolts of Scrum are discussed by Schwaber and Beedle (Agile Software
Development with SCRUM, Prentice-Hall, 2001). Worthwhile treatments of DSDM have been
written by the DSDM Consortium (DSDM: Business Focused Development, 2d ed., Pearson Edu-
cation, 2003) and Stapleton (DSDM: The Method in Practice, Addison-Wesley, 1997). Cockburn
(Crystal Clear, Addison-Wesley, 2005) presents an excellent overview of the Crystal family of
processes. Palmer and Felsing [Pal02] present a detailed treatment of FDD. Carmichael and
Haywood (Better Software Faster, Prentice-Hall, 2002) provides another useful treatment of FDD
that includes a step-by-step journey through the mechanics of the process. Poppendieck and
Poppendieck (Lean Development: An Agile Toolkit for Software Development Managers, Addison-
Wesley, 2003) provide guidelines for managing and controlling agile projects. Ambler and
Jeffries (Agile Modeling, Wiley, 2002) discuss AM in some depth.

A wide variety of information sources on agile software development are available on the
Internet. An up-to-date list of World Wide Web references that are relevant to the agile process
can be found at the SEPA website: www.mhhe.com/engcs/compsci/pressman/
professional/olc/ser.htm.

http://www.mhhe.com/engcs/compsci/pressman/

PART

Two

MODELING

n this part of Software Engineering: A Practitioner’'s Approach
you'll learn about the principles, concepts, and methods that are
used to create high-quality requirements and design models.

These questions are addressed in the chapters that follow:

What concepts and principles guide software engineering
practice?

What is requirements engineering and what are the underly-
ing concepts that lead to good requirements analysis?

How is the requirements model created and what are its
elements?

What are the elements of a good design?

How does architectural design establish a framework for all
other design actions and what models are used?

How do we design high-quality software components?

What concepts, models, and methods are applied as a user
interface is designed?

What is pattern-based design?

What specialized strategies and methods are used to design
WebApps?

Once these questions are answered you'll be better prepared to
apply software engineering practice.

95

CHAPTER

PRINCIPLES THAT
GuUIDE PRACTICE

KEy
CONCEPTS

Core principles . ..98
Principles that govern:
coding 11
communication . .101
deployment ...113

design 109
modeling 105
planning 103
requirements ..107
testing 112

n a book that explores the lives and thoughts of software engineers, Ellen
Ullman [U1197] depicts a slice of life as she relates the thoughts of practitioner

under pressure:

I have no idea what time it is. There are no windows in this office and no clock, only
the blinking red LED display of a microwave, which flashes 12:00, 12:00, 12:00, 12:00.
Joel and I have been programming for days. We have a bug, a stubborn demon of a
bug. So the red pulse no-time feels right, like a read-out of our brains, which have
somehow synchronized themselves at the same blink rate . . .

What are we working on? . . . The details escape me just now. We may be helping
poor sick people or tuning a set of low-level routines to verify bits on a distributed
database protocol—I don't care. I should care; in another part of my being—later, per-
haps when we emerge from this room full of computers—I will care very much why
and for whom and for what purpose I am writing software. But just now: no. I have
passed through a membrane where the real world and its uses no longer matter. I am

a software engineer. . . .

QUICK

What is it? Software engineering

practice is a broad array of princi-

ples, concepts, methods, and tools

that you must consider as software is
planned and developed. Principles that guide
practice establish a foundation from which soft-
ware engineering is conducted.

Who does it? Practitioners (software engineers)
and their managers conduct a variety of soft-
ware engineering fasks.

Why is it important? The software process pro-
vides everyone involved in the creation of a
computer-based system or product with a road
map for getting fo a successful destination.
Practice provides you with the detail you'll need
to drive along the road. It tells you where the
bridges, the roadblocks, and the forks are located.
It helps you understand the concepts and princi-
ples that must be understood and followed to
drive safely and rapidly. It instructs you on how
to drive, where to slow down, and where to
speed up. In the context of software engineering,

Look

96

practice is what you do day in and day out as
software evolves from an idea to a reality.

What are the steps? Three elements of practice
apply regardless of the process model that is cho-
sen. They are: principles, concepts, and methods.
A fourth element of practice—tools—supports
the application of methods.

What is the work product? Practice encom-
passes the technical activities that produce dll
work products that are defined by the software
process model that has been chosen.

How do | ensure that I've done it right? First,
have a firm understanding of the principles that
apply to the work (e.g., design) that you're doing
at the moment. Then, be certain that you've cho-
sen an appropriate method for the work, be sure
that you understand how to apply the method, use
automated tools when they’re appropriate for the
tqsk, and be adamant about the need for tech-
niques fo ensure the quality of work products that
are produced.

CHAPTER 4 PRINCIPLES THAT GUIDE PRACTICE 97

A dark image of software engineering practice to be sure, but upon reflection,
many of the readers of this book will be able to relate to it.

People who create computer software practice the art or craft or discipline' that
is software engineering. But what is software engineering “practice”? In a generic
sense, practice is a collection of concepts, principles, methods, and tools that a soft-
ware engineer calls upon on a daily basis. Practice allows managers to manage soft-
ware projects and software engineers to build computer programs. Practice
populates a software process model with the necessary technical and management
how-to’s to get the job done. Practice transforms a haphazard unfocused approach
into something that is more organized, more effective, and more likely to achieve
success.

Various aspects of software engineering practice will be examined throughout the
remainder of this book. In this chapter, my focus is on principles and concepts that
guide software engineering practice in general.

— 4.1 SOrTWARE ENGINEERING KNOWLEDGE

In an editorial published in IEEE Software a decade ago, Steve McConnell [McC99]
made the following comment:

Many software practitioners think of software engineering knowledge almost exclusively
as knowledge of specific technologies: Java, Perl, html, C++, Linux, Windows NT, and so
on. Knowledge of specific technology details is necessary to perform computer program-
ming. If someone assigns you to write a program in C++, you have to know something
about C++ to get your program to work.

You often hear people say that software development knowledge has a 3-year
half-life: half of what you need to know today will be obsolete within 3 years. In the
domain of technology-related knowledge, that's probably about right. But there is
another kind of software development knowledge—a kind that I think of as “software
engineering principles”—that does not have a three-year half-life. These software engi-
neering principles are likely to serve a professional programmer throughout his or her
career.

McConnell goes on to argue that the body of software engineering knowledge
(circa the year 2000) had evolved to a “stable core” that he estimated represented
about “75 percent of the knowledge needed to develop a complex system.” But what
resides within this stable core?

As McConnell indicates, core principles—the elemental ideas that guide software
engineers in the work that they do—now provide a foundation from which software
engineering models, methods, and tools can be applied and evaluated.

1 Some writers argue for one of these terms to the exclusion of the others. In reality, software
engineering is all three.

98

Qoote:

“In theory there is
no difference
hetween theory and
pracice. But, in
praciice, there is.”

Jan van de
Snepscheut

ﬁpwcsg

Every project and
every feam is unique.
That means that you
must adapt your
process fo best fit your
needs.

PART TWO MODELING

INCIPLES

Software engineering is guided by a collection of core principles that help in the ap-
plication of a meaningful software process and the execution of effective software
engineering methods. At the process level, core principles establish a philosophical
foundation that guides a software team as it performs framework and umbrella ac-
tivities, navigates the process flow, and produces a set of software engineering work
products. At the level of practice, core principles establish a collection of values and
rules that serve as a guide as you analyze a problem, design a solution, implement
and test the solution, and ultimately deploy the software in the user community.

In Chapter 1, Iidentified a set of general principles that span software engineering
process and practice: (1) provide value to end users, (2) keep it simple, (3) maintain
the vision (of the product and the project), (4) recognize that others consume (and
must understand) what you produce, (5) be open to the future, (6) plan ahead for
reuse, and (7) think! Although these general principles are important, they are char-
acterized at such a high level of abstraction that they are sometimes difficult to trans-
late into day-to-day software engineering practice. In the subsections that follow, I
take a more detailed look at the core principles that guide process and practice.

4.2.1 Principles That Guide Process

In Part 1 of this book I discussed the importance of the software process and
described the many different process models that have been proposed for software
engineering work. Regardless of whether a model is linear or iterative, prescriptive
or agile, it can be characterized using the generic process framework that is appli-
cable for all process models. The following set of core principles can be applied to
the framework, and by extension, to every software process.

Principle 1. Be agile. Whether the process model you choose is prescrip-
tive or agile, the basic tenets of agile development should govern your
approach. Every aspect of the work you do should emphasize economy of
action—keep your technical approach as simple as possible, keep the work
products you produce as concise as possible, and make decisions locally
whenever possible.

Principle 2. Focus on quality at every step. The exit condition for every
process activity, action, and task should focus on the quality of the work
product that has been produced.

Principle 3. Be ready to adapt. Process is not a religious experience, and
dogma has no place in it. When necessary, adapt your approach to con-
straints imposed by the problem, the people, and the project itself.

Principle 4. Build an effective team. Software engineering process and
practice are important, but the bottom line is people. Build a self-organizing
team that has mutual trust and respect.

“The truth of the
matter is that you
always know the
right thing to do.
The hard part is
doing it.”

General H.
Norman
Schwarzkopf

%,
POINT
Problems are easier to
solve when they are

subdivided into
separate concerns,
each distinct,
individually solvable,
and verifiable.

CHAPTER 4 PRINCIPLES THAT GUIDE PRACTICE 99

Principle 5. Establish mechanisms for communication and coordination.
Projects fail because important information falls into the cracks and/or
stakeholders fail to coordinate their efforts to create a successful end prod-
uct. These are management issues and they must be addressed.

Principle 6. Manage change. The approach may be either formal or infor-
mal, but mechanisms must be established to manage the way changes are
requested, assessed, approved, and implemented.

Principle 7. Assess risk. Lots of things can go wrong as software is being
developed. It's essential that you establish contingency plans.

Principle 8. Create work products that provide value for others.

Create only those work products that provide value for other process
activities, actions, or tasks. Every work product that is produced as part of
software engineering practice will be passed on to someone else. A list of
required functions and features will be passed along to the person (people)
who will develop a design, the design will be passed along to those who
generate code, and so on. Be sure that the work product imparts the necessary
information without ambiguity or omission.

Part 4 of this book focuses on project and process management issues and
considers various aspects of each of these principles in some detail.

4.2.2 Principles That Guide Practice

Software engineering practice has a single overriding goal—to deliver on-time, high-
quality, operational software that contains functions and features that meet the
needs of all stakeholders. To achieve this goal, you should adopt a set of core prin-
ciples that guide your technical work. These principles have merit regardless of the
analysis and design methods that you apply, the construction techniques (e.g., pro-
gramming language, automated tools) that you use, or the verification and valida-
tion approach that you choose. The following set of core principles are fundamental
to the practice of software engineering:

Principle 1. Divide and conquer. Stated in a more technical manner,
analysis and design should always emphasize separation of concerns (SoC). A
large problem is easier to solve if it is subdivided into a collection of elements
(or concerns). Ideally, each concern delivers distinct functionality that can be
developed, and in some cases validated, independently of other concerns.

Principle 2. Understand the use of abstraction. At its core, an abstrac-
tion is a simplification of some complex element of a system used to commu-
nicate meaning in a single phrase. When I use the abstraction spreadsheet, it
is assumed that you understand what a spreadsheet is, the general structure
of content that a spreadsheet presents, and the typical functions that can be
applied to it. In software engineering practice, you use many different levels

100

GDVICE‘

Use patterns

(Chapter 12) to
capture knowledge and
experience for future
generations of
software engineers.

PART TWO MODELING

of abstraction, each imparting or implying meaning that must be communi-
cated. In analysis and design work, a software team normally begins with
models that represent high levels of abstraction (e.g., a spreadsheet) and
slowly refines those models into lower levels of abstraction (e.g., a column
or the SUM function).

Joel Spolsky [Spo02] suggests that “all non-trivial abstractions, to some
degree, are leaky.” The intent of an abstraction is to eliminate the need to
communicate details. But sometimes, problematic effects precipitated by
these details “leak” through. Without an understanding of the details, the
cause of a problem cannot be easily diagnosed.

Principle 3. Strive for consistency. Whether it's creating a requirements
model, developing a software design, generating source code, or creating
test cases, the principle of consistency suggests that a familiar context makes
software easier to use. As an example, consider the design of a user interface
for a WebApp. Consistent placement of menu options, the use of a consistent
color scheme, and the consistent use of recognizable icons all help to make
the interface ergonomically sound.

Principle 4. Focus on the transfer of information. Software is about
information transfer—from a database to an end user, from a legacy system
to a WebApp, from an end user into a graphic user interface (GUI), from an
operating system to an application, from one software component to an-
other—the list is almost endless. In every case, information flows across an
interface, and as a consequence, there are opportunities for error, or omis-
sion, or ambiguity. The implication of this principle is that you must pay spe-
cial attention to the analysis, design, construction, and testing of interfaces.
Principle 5. Build software that exhibits effective modularity.
Separation of concerns (Principle 1) establishes a philosophy for software.
Modularity provides a mechanism for realizing the philosophy. Any complex
system can be divided into modules (components), but good software engi-
neering practice demands more. Modularity must be ¢ffective. That is, each
module should focus exclusively on one well-constrained aspect of the
system—it should be cohesive in its function and/or constrained in the
content it represents. Additionally, modules should be interconnected in a
relatively simple manner—each module should exhibit low coupling to other
modules, to data sources, and to other environmental aspects.

Principle 6. Look for patterns. Brad Appleton [App00] suggests that:

The goal of patterns within the software community is to create a body of literature
to help software developers resolve recurring problems encountered throughout
all of software development. Patterns help create a shared language for commu-
nicating insight and experience about these problems and their solutions. Formally
codifying these solutions and their relationships lets us successfully capture the

CHAPTER 4 PRINCIPLES THAT GUIDE PRACTICE 101

body of knowledge which defines our understanding of good architectures that
meet the needs of their users.

Principle 7. When possible, represent the problem and its solution
from a number of different perspectives. When a problem and its solution
are examined from a number of different perspectives, it is more likely that
greater insight will be achieved and that errors and omissions will be uncov-
ered. For example, a requirements model can be represented using a data-
oriented viewpoint, a function-oriented viewpoint, or a behavioral viewpoint
(Chapters 6 and 7). Each provides a different view of the problem and its
requirements.

Principle 8. Remember that someone will maintain the software. Over
the long term, software will be corrected as defects are uncovered, adapted
as its environment changes, and enhanced as stakeholders request more
capabilities. These maintenance activities can be facilitated if solid software

engineering practice is applied throughout the software process.

These principles are not all you'll need to build high-quality software, but they do
establish a foundation for every software engineering method discussed in this book.

— 4.3 PRINCIPLES THAT GUIDE EACH FRAMEWORK ACTIVITY

“The ideal engineer
is a composite. . . .
He is not a
scienfist, he is not
mathematician, he
is not a sociologist
or a writer; but he
may use the
knowledge and
techniques of any
or all of these
disciplines in
solving engineering
problems.”

N. W.
Dougherty

In the sections that follow I consider principles that have a strong bearing on the suc-
cess of each generic framework activity defined as part of the software process. In
many cases, the principles that are discussed for each of the framework activities are
a refinement of the principles presented in Section 4.2. They are simply core princi-
ples stated at a lower level of abstraction.

4.3.1 Communication Principles

Before customer requirements can be analyzed, modeled, or specified they must
be gathered through the communication activity. A customer has a problem that may
be amenable to a computer-based solution. You respond to the customer’s request
for help. Communication has begun. But the road from communication to under-
standing is often full of potholes.

Effective communication (among technical peers, with the customer and other
stakeholders, and with project managers) is among the most challenging activities
that you will confront. In this context, I discuss communication principles as they
apply to customer communication. However, many of the principles apply equally to
all forms of communication that occur within a software project.

Principle 1. Listen. Try to focus on the speaker’s words, rather than formu-
lating your response to those words. Ask for clarification if something is un-
clear, but avoid constant interruptions. Never become contentious in your words
or actions (e.g., rolling your eyes or shaking your head) as a person is talking.

102

ﬁpwcss

Before communicating
be sure you under-
stand the point of view
of the other party,
know a bit about his or
her needs, and then
listen.

- .

“Plain questions
and plain answers
make the shortest
road to most
perplexities.”

Mark Twain

2 What

® happens if |
can’t come to an
agreement with
the customer on
some project-
related issue?

PART TWO MODELING

Principle 2. Prepare before you communicate. Spend the time to under-
stand the problem before you meet with others. If necessary, do some re-
search to understand business domain jargon. If you have responsibility for
conducting a meeting, prepare an agenda in advance of the meeting.

Principle 3. Someone should facilitate the activity. Every communica-
tion meeting should have a leader (a facilitator) to keep the conversation
moving in a productive direction, (2) to mediate any conflict that does occur,
and (3) to ensure than other principles are followed.

Principle 4. Face-to-face communication is best. But it usually works
better when some other representation of the relevant information is present.
For example, a participant may create a drawing or a “strawman” document
that serves as a focus for discussion.

Principle 5. Take notes and document decisions. Things have a way of
falling into the cracks. Someone participating in the communication should
serve as a “recorder” and write down all important points and decisions.

Principle 6. Strive for collaboration. Collaboration and consensus occur
when the collective knowledge of members of the team is used to

describe product or system functions or features. Each small collaboration
serves to build trust among team members and creates a common goal for
the team.

Principle 7. Stay focused; modularize your discussion. The more
people involved in any communication, the more likely that discussion will
bounce from one topic to the next. The facilitator should keep the conversation
modular, leaving one topic only after it has been resolved (however, see
Principle 9).

Principle 8. If something is unclear, draw a picture. Verbal communica-
tion goes only so far. A sketch or drawing can often provide clarity when
words fail to do the job.

Principle 9. (a) Once you agree to something, move on. (b) If you can’t
agree to something, move on. (c) If a feature or function is unclear
and cannot be clarified at the moment, move on. Communication, like
any software engineering activity, takes time. Rather than iterating endlessly,
the people who participate should recognize that many topics require discus-
sion (see Principle 2) and that “moving on” is sometimes the best way to
achieve communication agility.

Principle 10. Negotiation is not a contest or a game. It works best
when both parties win. There are many instances in which you and other
stakeholders must negotiate functions and features, priorities, and delivery
dates. If the team has collaborated well, all parties have a common goal. Still,
negotiation will demand compromise from all parties.

CHAPTER 4 PRINCIPLES THAT GUIDE PRACTICE

103

/

Software engineers communicate with many
different stakeholders, but customers and end
users have the most significant impact on the technical
work that follows. In some cases the customer and the end
user are one and the same, but for many projects, the
customer and the end user are different people, working
for different managers, in different business organizations.
A customer is the person or group who (1) originally
requested the software to be built, (2) defines overalll
Qsiness obijectives for the software, (3) provides basic

The Difference Between Customers and End Users

.

product requirements, and (4) coordinates funding for the
project. In a product or system business, the customer
is often the marketing department. In an information
technology (IT) environment, the customer might be a
business component or department.

An end user is the person or group who (1) will
actually use the software that is built to achieve some
business purpose and (2) will define operational
details of the software so the business purpose can be
achieved.

)

SAFEHOME

Communication Mistakes

" The scene: Software engineering
team workspace

The players: Jamie Lazar, software team member;
Vinod Raman, software team member; Ed Robbins,
software team member.

The conversation:
Ed: “What have you heard about this SafeHome

projecte”

Vinod: “The kick-off meeting is scheduled for next
week.”

Jamie: “I've already done a litfle bit of investigation, but

it didn’t go well.”
Ed: “What do you mean?”

Jamie: “Well, | gave Lisa Perez a call. She's the
marketing honcho on this thing.”

Vinod: “And . . . 2"

Jamie: “l wanted her to tell me about SafeHome features
and functions . . . that sort of thing. Instead, she began

4.3.2 Planning Principles

asking me questions about security systems, surveillance
systems . . . I'm no expert.”

Vinod: “What does that tell you?”
(Jamie shrugs.)

Vinod: “That marketing will need us to act as consultants
and that we’d better do some homework on this product
area before our kick-off meeting. Doug said that he
wanted us to ‘collaborate’ with our customer, so we'd
better learn how to do that.”

Ed: “Probably would have been better to stop by her office.
Phone calls just don’t work as well for this sort of thing.”

Jamie: “You're both right. We've got to get our act
together or our early communications will be a struggle.”

Vinod: “I saw Doug reading a book on ‘requirements
engineering.” I'll bet that lists some principles of good
communication. I'm going to borrow it from him.”

Jamie: “Good idea . . . then you can teach us.”

Vinod (smiling): “Yeah, right.”

The communication activity helps you to define your overall goals and objectives
(subject, of course, to change as time passes). However, understanding these goals
and objectives is not the same as defining a plan for getting there. The planning
activity encompasses a set of management and technical practices that enable the
software team to define a road map as it travels toward its strategic goal and tacti-

cal objectives.

104

“In preparing for
hattle | have
always found that
plans are useless,
but planning is
indispensable.”

General Dwight
D. Eisenhower

An excellent repository
of planning and project
management
information can be
found af
www.4pm.com/
repository.htm.

oot

“Success is more

a function of
consistent common
sense than it is of
genius.”

An Wang

PART TWO MODELING

Try as we might, it's impossible to predict exactly how a software project will
evolve. There is no easy way to determine what unforeseen technical problems will
be encountered, what important information will remain undiscovered until late in
the project, what misunderstandings will occur, or what business issues will change.
And yet, a good software team must plan its approach.

There are many different planning philosophies.> Some people are “minimalists,”
arguing that change often obviates the need for a detailed plan. Others are “tradi-
tionalists,” arguing that the plan provides an effective road map and the more detail
it has, the less likely the team will become lost. Still others are “agilists,” arguing that
a quick “planning game” may be necessary, but that the road map will emerge as
“real work” on the software begins.

What to do? On many projects, overplanning is time consuming and fruitless (too
many things change), but underplanning is a recipe for chaos. Like most things in
life, planning should be conducted in moderation, enough to provide useful guidance
for the team—no more, no less. Regardless of the rigor with which planning is con-
ducted, the following principles always apply:

Principle 1. Understand the scope of the project. It's impossible to use
a road map if you don't know where you're going. Scope provides the soft-
ware team with a destination.

Principle 2. Involve stakeholders in the planning activity. Stakeholders
define priorities and establish project constraints. To accommodate these
realities, software engineers must often negotiate order of delivery, time
lines, and other project-related issues.

Principle 3. Recognize that planning is iterative. A project plan is never
engraved in stone. As work begins, it is very likely that things will change. As
a consequence, the plan must be adjusted to accommodate these changes. In
addition, iterative, incremental process models dictate replanning after the
delivery of each software increment based on feedback received from users.

Principle 4. Estimate based on what you know. The intent of estimation
is to provide an indication of effort, cost, and task duration, based on the
team'’s current understanding of the work to be done. If information is vague
or unreliable, estimates will be equally unreliable.

Principle 5. Consider risk as you define the plan. If you have identified
risks that have high impact and high probability, contingency planning is
necessary. In addition, the project plan (including the schedule) should be
adjusted to accommodate the likelihood that one or more of these risks will
occur.

2 A detailed discussion of software project planning and management is presented in Part 4 of this
book.

http://www.4pm.com/

%,

POINT
The term granularity
refers to the detail
with which some
element of planning is
represented or
conducted.

CHAPTER 4 PRINCIPLES THAT GUIDE PRACTICE 105

Principle 6. Be realistic. People don't work 100 percent of every day.
Noise always enters into any human communication. Omissions and
ambiguity are facts of life. Change will occur. Even the best software
engineers make mistakes. These and other realities should be considered
as a project plan is established.

Principle 7. Adjust granularity as you define the plan. Granularity
refers to the level of detail that is introduced as a project plan is developed.
A “high-granularity” plan provides significant work task detail that is planned
over relatively short time increments (so that tracking and control occur
frequently). A “low-granularity” plan provides broader work tasks that are
planned over longer time periods. In general, granularity moves from high to
low as the project time line moves away from the current date. Over the

next few weeks or months, the project can be planned in significant detail.
Activities that won't occur for many months do not require high granularity
(too much can change).

Principle 8. Define how you intend to ensure quality. The plan should
identify how the software team intends to ensure quality. If technical
reviews?® are to be conducted, they should be scheduled. If pair programming
(Chapter 3) is to be used during construction, it should be explicitly defined
within the plan.

Principle 9. Describe how you intend to accommodate change. Even
the best planning can be obviated by uncontrolled change. You should iden-
tify how changes are to be accommodated as software engineering work
proceeds. For example, can the customer request a change at any time? If a
change is requested, is the team obliged to implement it immediately? How is
the impact and cost of the change assessed?

Principle 10. Track the plan frequently and make adjustments das re-
quired. Software projects fall behind schedule one day at a time. Therefore,
it makes sense to track progress on a daily basis, looking for problem areas
and situations in which scheduled work does not conform to actual work
conducted. When slippage is encountered, the plan is adjusted accordingly.

To be most effective, everyone on the software team should participate in the

planning activity. Only then will team members “sign up” to the plan.

4.3.3 Modeling Principles

We create models to gain a better understanding of the actual entity to be built. When
the entity is a physical thing (e.g., a building, a plane, a machine), we can build a
model that is identical in form and shape but smaller in scale. However, when the

3 Technical reviews are discussed in Chapter 15.

106

o
e,

POINT
Requirements models
represent customer
requirements. Design
models provide a
concrefe specification
for the construction of
the software.

Gpwcsg

The infent of any
model is to communi-
cate information. To
accomplish this, use a
consistent format.
Assume that you won't
be there to explain the
model. It should stand
on ifs own.

PART TWO MODELING

entity to be built is software, our model must take a different form. It must be capa-
ble of representing the information that software transforms, the architecture and
functions that enable the transformation to occur, the features that users desire, and
the behavior of the system as the transformation is taking place. Models must
accomplish these objectives at different levels of abstraction—first depicting the soft-
ware from the customer’s viewpoint and later representing the software at a more
technical level.

In software engineering work, two classes of models can be created: require-
ments models and design models. Requirements models (also called analysis models)
represent customer requirements by depicting the software in three different do-
mains: the information domain, the functional domain, and the behavioral domain.
Design models represent characteristics of the software that help practitioners to
construct it effectively: the architecture, the user interface, and component-level
detail.

In their book on agile modeling, Scott Ambler and Ron Jeffries [Amb02b] define a
set of modeling principles* that are intended for those who use the agile process
model (Chapter 3) but are appropriate for all software engineers who perform mod-
eling actions and tasks:

Principle 1. The primary goal of the software team is to build soft-
ware, not create models. Agility means getting software to the customer
in the fastest possible time. Models that make this happen are worth creat-
ing, but models that slow the process down or provide little new insight
should be avoided.

Principle 2. Travel light—don’t create more models than you need.
Every model that is created must be kept up-to-date as changes occur. More
importantly, every new model takes time that might otherwise be spent on
construction (coding and testing). Therefore, create only those models that
make it easier and faster to construct the software.

Principle 3. Strive to produce the simplest model that will describe the
problem or the software. Don't overbuild the software [AmbO02b]. By
keeping models simple, the resultant software will also be simple. The result
is software that is easier to integrate, easier to test, and easier to maintain (to
change). In addition, simple models are easier for members of the software
team to understand and critique, resulting in an ongoing form of feedback
that optimizes the end result.

Principle 4. Build models in a way that makes them amenable to change.
Assume that your models will change, but in making this assumption don’t

4 The principles noted in this section have been abbreviated and rephrased for the purposes of this
book.

CHAPTER 4 PRINCIPLES THAT GUIDE PRACTICE 107

get sloppy. For example, since requirements will change, there is a tendency
to give requirements models short shrift. Why? Because you know that they'll
change anyway. The problem with this attitude is that without a reasonably
complete requirements model, you'll create a design (design model) that will
invariably miss important functions and features.

Principle 5. Be able to state an explicit purpose for each model that
is created. Every time you create a model, ask yourself why you're doing
so. If you can't provide solid justification for the existence of the model,
don't spend time on it.

Principle 6. Adapt the models you develop to the system at hand. 1t
may be necessary to adapt model notation or rules to the application; for ex-
ample, a video game application might require a different modeling technique
than real-time, embedded software that controls an automobile engine.

Principle 7. Try to build useful models, but forget about building per-
fect models. When building requirements and design models, a software
engineer reaches a point of diminishing returns. That is, the effort required to
make the model absolutely complete and internally consistent is not worth
the benefits of these properties. Am I suggesting that modeling should be
sloppy or low quality? The answer is “no.” But modeling should be conducted
with an eye to the next software engineering steps. Iterating endlessly to
make a model “perfect” does not serve the need for agility.

Principle 8. Don’t become dogmatic about the syntax of the model. If
it communicates content successfully, representation is secondary.
Although everyone on a software team should try to use consistent notation
during modeling, the most important characteristic of the model is to com-
municate information that enables the next software engineering task. If a
model does this successfully, incorrect syntax can be forgiven.

Principle 9. If your instincts tell you a model isn’t right even though it
seems okay on paper, you probably have reason to be concerned. If
you are an experienced software engineer, trust your instincts. Software
work teaches many lessons—some of them on a subconscious level. If some-
thing tells you that a design model is doomed to fail (even though you can't
prove it explicitly), you have reason to spend additional time examining the
model or developing a different one.

Principle 10. Get feedback as soon as you can. Every model should be
reviewed by members of the software team. The intent of these reviews is to
provide feedback that can be used to correct modeling mistakes, change mis-
interpretations, and add features or functions that were inadvertently omitted.

Requirements modeling principles. Over the past three decades, a large num-
ber of requirements modeling methods have been developed. Investigators have

108

2oy
e,

POINT
Analysis modeling
focuses on three
attributes of software:
information to be
processed, function to
be delivered, and
behavior o be
exhibited.

“The engineer’s
first problem in
any design
situation is to
discover what the
problem really is.”

Author unknown

PART TWO MODELING

identified requirements analysis problems and their causes and have developed
a variety of modeling notations and corresponding sets of heuristics to overcome
them. Each analysis method has a unique point of view. However, all analysis meth-
ods are related by a set of operational principles:

Principle 1. The information domain of a problem must be represented
and understood. The information domain encompasses the data that flow
into the system (from end users, other systems, or external devices), the data
that flow out of the system (via the user interface, network interfaces, reports,
graphics, and other means), and the data stores that collect and organize per-
sistent data objects (i.e., data that are maintained permanently).

Principle 2. The functions that the software performs must be defined.
Software functions provide direct benefit to end users and also provide inter-
nal support for those features that are user visible. Some functions transform
data that flow into the system. In other cases, functions effect some level of
control over internal software processing or external system elements. Func-
tions can be described at many different levels of abstraction, ranging from a
general statement of purpose to a detailed description of the processing
elements that must be invoked.

Principle 3. The behavior of the software (as a consequence of external
events) must be represented. The behavior of computer software is driven
by its interaction with the external environment. Input provided by end users,
control data provided by an external system, or monitoring data collected
over a network all cause the software to behave in a specific way.

Principle 4. The models that depict information, function, and behavior
must be partitioned in a manner that uncovers detail in a layered (or
hierarchical) fashion. Requirements modeling is the first step in software
engineering problem solving. It allows you to better understand the problem
and establishes a basis for the solution (design). Complex problems are difficult
to solve in their entirety. For this reason, you should use a divide-and-conquer
strategy. A large, complex problem is divided into subproblems until each sub-
problem is relatively easy to understand. This concept is called partitioning or
separation of concerns, and it is a key strategy in requirements modeling.
Principle 5. The analysis task should move from essential information
toward implementation detail. Requirements modeling begins by describ-
ing the problem from the end-user’s perspective. The “essence” of the
problem is described without any consideration of how a solution will be
implemented. For example, a video game requires that the player “instruct”
its protagonist on what direction to proceed as she moves into a dangerous
maze. That is the essence of the problem. Implementation detail (normally
described as part of the design model) indicates how the essence will be
implemented. For the video game, voice input might be used. Alternatively,

“See first that the
design is wise

and just: that
ascertained, pursue
it resolutely; do not
for one repulse
forego the purpose
that you resolved
to effect.”

William
Shakespeare

Insightful comments
on the design process,
along with a discussion
of design aesthetics,
can be found at
cs.wwec.edu/
~aabyan/Design/.

CHAPTER 4 PRINCIPLES THAT GUIDE PRACTICE 109

a keyboard command might be typed, a joystick (or mouse) might be pointed
in a specific direction, or a motion-sensitive device might be waved in the air.

By applying these principles, a software engineer approaches a problem system-
atically. But how are these principles applied in practice? This question will be an-
swered in Chapters 5 through 7.

Design Modeling Principles. The software design model is analogous to an
architect’s plans for a house. It begins by representing the totality of the thing to be
built (e.g., a three-dimensional rendering of the house) and slowly refines the thing
to provide guidance for constructing each detail (e.g., the plumbing layout). Similarly,
the design model that is created for software provides a variety of different views of
the system.

There is no shortage of methods for deriving the various elements of a software
design. Some methods are data driven, allowing the data structure to dictate the pro-
gram architecture and the resultant processing components. Others are pattern
driven, using information about the problem domain (the requirements model) to de-
velop architectural styles and processing patterns. Still others are object oriented,
using problem domain objects as the driver for the creation of data structures and
the methods that manipulate them. Yet all embrace a set of design principles that can
be applied regardless of the method that is used:

Principle 1. Design should be traceable to the requirements model.
The requirements model describes the information domain of the problem,
user-visible functions, system behavior, and a set of requirements classes
that package business objects with the methods that service them. The de-
sign model translates this information into an architecture, a set of subsys-
tems that implement major functions, and a set of components that are the
realization of requirements classes. The elements of the design model should
be traceable to the requirements model.

Principle 2. Always consider the architecture of the system to be built.
Software architecture (Chapter 9) is the skeleton of the system to be built. It
affects interfaces, data structures, program control flow and behavior, the
manner in which testing can be conducted, the maintainability of the result-
ant system, and much more. For all of these reasons, design should start with
architectural considerations. Only after the architecture has been established
should component-level issues be considered.

Principle 3. Design of data is as important as design of processing
functions. Data design is an essential element of architectural design. The
manner in which data objects are realized within the design cannot be left to
chance. A well-structured data design helps to simplify program flow, makes
the design and implementation of software components easier, and makes
overall processing more efficient.

110

“The differences
are not minor—
they are rather like
the differences
between Salieri
and Mozart. Study
after study shows
that the very best
designers produce
structures that are
faster, smaller,
simpler, clearer,
and produced with
less effort.”

Frederick P.
Brooks

PART TWO MODELING

Principle 4. Interfaces (both internal and external) must be designed
with care. The manner in which data flows between the components of a
system has much to do with processing efficiency, error propagation, and
design simplicity. A well-designed interface makes integration easier and
assists the tester in validating component functions.

Principle 5. User interface design should be tuned to the needs of the
end user. However, in every case, it should stress ease of use. The
user interface is the visible manifestation of the software. No matter how
sophisticated its internal functions, no matter how comprehensive its data
structures, no matter how well designed its architecture, a poor interface
design often leads to the perception that the software is “bad.”

Principle 6. Component-level design should be functionally independ-
ent. Functional independence is a measure of the “single-mindedness” of a
software component. The functionality that is delivered by a component
should be cohesive—that is, it should focus on one and only one function or
subfunction.®

Principle 7. Components should be loosely coupled to one another
and to the external environment. Coupling is achieved in many ways—
via a component interface, by messaging, through global data. As the level of
coupling increases, the likelihood of error propagation also increases and the
overall maintainability of the software decreases. Therefore, component cou-
pling should be kept as low as is reasonable.

Principle 8. Design representations (models) should be easily under-
standable. The purpose of design is to communicate information to practi-
tioners who will generate code, to those who will test the software, and to
others who may maintain the software in the future. If the design is difficult
to understand, it will not serve as an effective communication medium.
Principle 9. The design should be developed iteratively. With each
iteration, the designer should strive for greater simplicity. Like almost
all creative activities, design occurs iteratively. The first iterations work to
refine the design and correct errors, but later iterations should strive to make
the design as simple as is possible.

When these design principles are properly applied, you create a design that exhibits
both external and internal quality factors [Mye78]. External quality factors are those
properties of the software that can be readily observed by users (e.g., speed, reliability,
correctness, usability). Internal quality factors are of importance to software engineers.
They lead to a high-quality design from the technical perspective. To achieve internal
quality factors, the designer must understand basic design concepts (Chapter 8).

5 Additional discussion of cohesion can be found in Chapter 8.

“For much of my
life, I have been a
software voyeur,
peeking furtively
at other people’s
dirty code.
Occasionally, | find

a real jewel, o well-

structured program
written in a
consistent style,
free of kludges,
developed so that
each component s
simple and
organized, and
designed so that
the product is easy
to change.”

David Parnas

ﬁpwcss

Avoid developing an
elegant program that
solves the wrong

problem. Pay particular

attention to the first
preparation principle.

CHAPTER 4 PRINCIPLES THAT GUIDE PRACTICE 111

4.3.4 Construction Principles

The construction activity encompasses a set of coding and testing tasks that lead to
operational software that is ready for delivery to the customer or end user. In mod-
ern software engineering work, coding may be (1) the direct creation of program-
ming language source code (e.g., Java), (2) the automatic generation of source code
using an intermediate design-like representation of the component to be built, or
(3) the automatic generation of executable code using a “fourth-generation pro-
gramming language” (e.g., Visual C++).

The initial focus of testing is at the component level, often called unit testing. Other
levels of testing include (1) integration testing (conducted as the system is con-
structed), validation testing that assesses whether requirements have been met for
the complete system (or software increment), and (3) acceptance testing that is con-
ducted by the customer in an effort to exercise all required features and functions.
The following set of fundamental principles and concepts are applicable to coding
and testing:

Coding Principles. The principles that guide the coding task are closely aligned
with programming style, programming languages, and programming methods.
However, there are a number of fundamental principles that can be stated:

Preparation principles: Before you write one line of code, be sure you
e Understand of the problem you're trying to solve.
e Understand basic design principles and concepts.

e Pick a programming language that meets the needs of the software to be
built and the environment in which it will operate.

e Select a programming environment that provides tools that will make your
work easier.

o Create a set of unit tests that will be applied once the component you code is
completed.

Programming principles: As you begin writing code, be sure you

e Constrain your algorithms by following structured programming [Boh00]
practice.

e Consider the use of pair programming.

e Select data structures that will meet the needs of the design.

e Understand the software architecture and create interfaces that are
consistent with it.

e Keep conditional logic as simple as possible.
e Create nested loops in a way that makes them easily testable.

e Select meaningful variable names and follow other local coding standards.

112

A wide variety of links
to coding standards can
be found at www
Jiterateprogramm
ing.com/fpstyle
himl.

A What are the
® objectives of
software testing?

ﬁpwcss

In a broader software
design context, recall
that you begin “in the
large” by focusing on
software architecture
and end “in the small
focusing on compo-
nents. For testing, you
simply reverse the
focus and test your
way out.

“

PART TWO MODELING

e Write code that is self-documenting.

e Create a visual layout (e.g., indentation and blank lines) that aids
understanding.

Validation Principles: After you’ve completed your first coding pass,
be sure you

e Conduct a code walkthrough when appropriate.
e Perform unit tests and correct errors you've uncovered.

e Refactor the code.

More books have been written about programming (coding) and the principles and
concepts that guide it than about any other topic in the software process. Books on
the subject include early works on programming style [Ker78], practical software
construction [McC04], programming pearls [Ben99], the art of programming
[Knu98], pragmatic programming issues [Hun99], and many, many other subjects.
A comprehensive discussion of these principles and concepts is beyond the scope
of this book. If you have further interest, examine one or more of the references
noted.

Testing Principles. In a classic book on software testing, Glen Myers [Mye79]
states a number of rules that can serve well as testing objectives:

e Testing is a process of executing a program with the intent of finding
an error.

e A good test case is one that has a high probability of finding an as-yet-
undiscovered error.

e A successful test is one that uncovers an as-yet-undiscovered error.

These objectives imply a dramatic change in viewpoint for some software develop-
ers. They move counter to the commonly held view that a successful test is one in
which no errors are found. Your objective is to design tests that systematically un-
cover different classes of errors and to do so with a minimum amount of time and
effort.

If testing is conducted successfully (according to the objectives stated previously),
it will uncover errors in the software. As a secondary benefit, testing demonstrates
that software functions appear to be working according to specification, and that
behavioral and performance requirements appear to have been met. In addition, the
data collected as testing is conducted provide a good indication of software reliabil-
ity and some indication of software quality as a whole. But testing cannot show the
absence of errors and defects; it can show only that software errors and defects are
present. It is important to keep this (rather gloomy) statement in mind as testing is
being conducted.

CHAPTER 4 PRINCIPLES THAT GUIDE PRACTICE 113

Davis [Dav95b] suggests a set of testing principles® that have been adapted for use
in this book:

Principle 1. All tests should be traceable to customer requirements.’
The objective of software testing is to uncover errors. It follows that the most
severe defects (from the customer’s point of view) are those that cause the
program to fail to meet its requirements.

Principle 2. Tests should be planned long before testing begins. Test
planning (Chapter 17) can begin as soon as the requirements model is com-
plete. Detailed definition of test cases can begin as soon as the design model
has been solidified. Therefore, all tests can be planned and designed before
any code has been generated.

Principle 3. The Pareto principle applies to software testing. In this
context the Pareto principle implies that 80 percent of all errors uncovered
during testing will likely be traceable to 20 percent of all program compo-
nents. The problem, of course, is to isolate these suspect components and to
thoroughly test them.

Principle 4. Testing should begin “in the small” and progress toward
testing “in the large.” The first tests planned and executed generally focus
on individual components. As testing progresses, focus shifts in an attempt
to find errors in integrated clusters of components and ultimately in the
entire system.

Principle 5. Exhaustive testing is not possible. The number of path per-
mutations for even a moderately sized program is exceptionally large. For
this reason, it is impossible to execute every combination of paths during
testing. It is possible, however, to adequately cover program logic and to en-
sure that all conditions in the component-level design have been exercised.

4.3.5 Deployment Principles

As I noted earlier in Part 1 of this book, the deployment activity encompasses three
actions: delivery, support, and feedback. Because modern software process models
are evolutionary or incremental in nature, deployment happens not once, but a num-
ber of times as software moves toward completion. Each delivery cycle provides the
customer and end users with an operational software increment that provides usable
functions and features. Each support cycle provides documentation and human
assistance for all functions and features introduced during all deployment cycles to

6 Only a small subset of Davis’s testing principles are noted here. For more information, see
[Dav9sb].

7 This principle refers to functional tests, i.e., tests that focus on requirements. Structural tests (tests
that focus on architectural or logical detail) may not address specific requirements directly.

114

G"‘"‘“

Be sure that your cus-
tomer knows what to
expect before a soft
ware increment is
delivered. Otherwise,
you can bet the cus-
tomer will expect more
than you deliver.

PART TWO MODELING

date. Each feedback cycle provides the software team with important guidance that
results in modifications to the functions, features, and approach taken for the next
increment.

The delivery of a software increment represents an important milestone for any
software project. A number of key principles should be followed as the team pre-
pares to deliver an increment:

Principle 1. Customer expectations for the software must be managed.
Too often, the customer expects more than the team has promised to deliver,
and disappointment occurs immediately. This results in feedback that is not
productive and ruins team morale. In her book on managing expectations,
Naomi Karten [Kar94] states: “The starting point for managing expectations
is to become more conscientious about what you communicate and how.”
She suggests that a software engineer must be careful about sending the cus-
tomer conflicting messages (e.g., promising more than you can reasonably
deliver in the time frame provided or delivering more than you promise for
one software increment and then less than promised for the next).

Principle 2. A complete delivery package should be assembled and
tested. A CD-ROM or other media (including Web-based downloads)
containing all executable software, support data files, support documents,
and other relevant information should be assembled and thoroughly
beta-tested with actual users. All installation scripts and other operational
features should be thoroughly exercised in as many different computing
configurations (i.e., hardware, operating systems, peripheral devices, net-
working arrangements) as possible.

Principle 3. A support regime must be established before the software
is delivered. An end user expects responsiveness and accurate information
when a question or problem arises. If support is ad hoc, or worse, nonexist-
ent, the customer will become dissatisfied immediately. Support should be
planned, support materials should be prepared, and appropriate record-
keeping mechanisms should be established so that the software team can
conduct a categorical assessment of the kinds of support requested.

Principle 4. Appropriate instructional materials must be provided to
end users. The software team delivers more than the software itself.
Appropriate training aids (if required) should be developed; troubleshooting
guidelines should be provided, and when necessary, a “what'’s different about
this software increment” description should be published.®

8 During the communication activity, the software team should determine what types of help mate-
rials users want.

CHAPTER 4 PRINCIPLES THAT GUIDE PRACTICE 115

Principle 5. Buggy software should be fixed first, delivered later. Under
time pressure, some software organizations deliver low-quality increments
with a warning to the customer that bugs “will be fixed in the next release.”
This is a mistake. There’s a saying in the software business: “Customers will
forget you delivered a high-quality product a few days late, but they will
never forget the problems that a low-quality product caused them. The soft-
ware reminds them every day.”

The delivered software provides benefit for the end user, but it also provides use-
ful feedback for the software team. As the increment is put into use, end users should
be encouraged to comment on features and functions, ease of use, reliability, and
any other characteristics that are appropriate.

4.4 SUMMARY

Software engineering practice encompasses principles, concepts, methods, and
tools that software engineers apply throughout the software process. Every software
engineering project is different. Yet, a set of generic principles apply to the process
as a whole and to the practice of each framework activity regardless of the project
or the product.

A set of core principles help in the application of a meaningful software process
and the execution of effective software engineering methods. At the process level,
core principles establish a philosophical foundation that guides a software team as
it navigates through the software process. At the level of practice, core principles
establish a collection of values and rules that serve as a guide as you analyze a prob-
lem, design a solution, implement and test the solution, and ultimately deploy the
software in the user community.

Communication principles focus on the need to reduce noise and improve band-
width as the conversation between developer and customer progresses. Both parties
must collaborate for the best communication to occur.

Planning principles provide guidelines for constructing the best map for the
journey to a completed system or product. The plan may be designed solely for a
single software increment, or it may be defined for the entire project. Regardless,
it must address what will be done, who will do it, and when the work will be
completed.

Modeling encompasses both analysis and design, describing representations of
the software that progressively become more detailed. The intent of the models is to
solidify understanding of the work to be done and to provide technical guidance to
those who will implement the software. Modeling principles serve as a founda-
tion for the methods and notation that are used to create representations of the
software.

Construction incorporates a coding and testing cycle in which source code for a
component is generated and tested. Coding principles define generic actions that

116

PART TWO MODELING

should occur before code is written, while it is being created, and after it has been
completed. Although there are many testing principles, only one is dominant: test-
ing is a process of executing a program with the intent of finding an error.

Deployment occurs as each software increment is presented to the customer and
encompasses delivery, support, and feedback. Key principles for delivery consider
managing customer expectations and providing the customer with appropriate sup-
port information for the software. Support demands advance preparation. Feedback
allows the customer to suggest changes that have business value and provide the
developer with input for the next iterative software engineering cycle.

PROBLEMS AND POINTS TO PONDER

4.1. Since a focus on quality demands resources and time, is it possible to be agile and still
maintain a quality focus?

4.2. Of the eight core principles that guide process (discussed in Section 4.2.1), which do you
believe is most important?

4.3. Describe the concept of separation of concerns in your own words.

4.4. An important communication principle states “prepare before you communicate.” How
should this preparation manifest itself in the early work that you do? What work products might
result as a consequence of early preparation?

4.5. Do some research on “facilitation” for the communication activity (use the references pro-
vided or others) and prepare a set of guidelines that focus solely on facilitation.

4.6. How does agile communication differ from traditional software engineering communica-
tion? How is it similar?

4.7. Why is it necessary to “move on"?

4.8. Do some research on “negotiation” for the communication activity and prepare a set of
guidelines that focus solely on negotiation.

4.9. Describe what granularity means in the context of a project schedule.

4.10. Why are models important in software engineering work? Are they always necessary?
Are there qualifiers to your answer about necessity?

4.11. What three “domains” are considered during requirements modeling?
4.12. Try to add one additional principle to those stated for coding in Section 4.3.4.
4.13. What is a successful test?

4.14. Do you agree or disagree with the following statement: “Since we deliver multiple incre-
ments to the customer, why should we be concerned about quality in the early increments—we
can fix problems in later iterations.” Explain your answer.

4.15. Why is feedback important to the software team?

FURTHER READINGS AND INFORMATION SOURCES

Customer communication is a critically important activity in software engineering, yet few prac-
titioners spend any time reading about it. Withall (Software Requirements Patterns, Microsoft
Press, 2007) presents a variety of useful patterns that address communications problems. Sutliff

CHAPTER 4 PRINCIPLES THAT GUIDE PRACTICE 117

(User-Centred Requirements Engineering, Springer, 2002) focuses heavily on communications-
related challenges. Books by Weigers (Software Requirements, 2d ed., Microsoft Press, 2003),
Pardee (To Satisfy and Delight Your Customer, Dorset House, 1996), and Karten [Kar94] provide
much insight into methods for effective customer interaction. Although their book does not
focus on software, Hooks and Farry (Customer Centered Products, American Management Asso-
ciation, 2000) present useful generic guidelines for customer communication. Young (Effective
Requirements Practices, Addison-Wesley, 2001) emphasizes a “joint team” of customers and
developers who develop requirements collaboratively. Somerville and Kotonya (Requirements
Engineering: Processes and Techniques, Wiley, 1998) discuss “elicitation” concepts and tech-
niques and other requirements engineering principles.

Communication and planning concepts and principles are considered in many project man-
agement books. Useful project management offerings include books by Bechtold (Essentials of
Software Project Management, 2d ed., Management Concepts, 2007), Wysocki (Effective Project
Management: Traditional, Adaptive, Extreme, 4th ed., Wiley, 2006), Leach (Lean Project Manage-
ment: Eight Principles for Success, BookSurge Publishing, 2006), Hughes (Software Project Man-
agement, McGraw-Hill, 2005), and Stellman and Greene (Applied Software Project Management,
O'Reilly Media, Inc., 2005).

Davis [Dav95] has compiled an excellent collection of software engineering principles. In ad-
dition, virtually every book on software engineering contains a useful discussion of concepts
and principles for analysis, design, and testing. Among the most widely used offerings (in addi-
tion to this book!) are:

Abran, A., andJ. Moore, SWEBOK: Guide to the Software Enginecring Body of Knowledge, 1EEE,
2002.

Christensen, M., and R. Thayer, A Project Manager'’s Guide to Software Engineering Best Prac-
tices, IEEE-CS Press (Wiley), 2002.

Jalote, P., An Integrated Approach to Software Enginecring, Springer, 2006.

Pfleeger, S., Software Engineering: Theory and Practice, 3d ed., Prentice-Hall, 2005.
Schach, S., Object-Oriented and Classical Software Engineering, McGraw-Hill, 7th ed., 2006.
Sommerville, 1., Software Engineering, 8th ed., Addison-Wesley, 2006.

These books also present detailed discussion of modeling and construction principles.

Modeling principles are considered in many books dedicated to requirements analysis
and/or software design. Books by Lieberman (The Art of Software Modeling, Auerbach, 2007),
Rosenberg and Stephens (Use Case Driven Object Modeling with UML: Theory and Practice,
Apress, 2007), Roques (UML in Practice, Wiley, 2004), Penker and Eriksson (Business
Modeling with UML: Business Patterns at Work, Wiley, 2001) discuss modeling principles and
methods.

Norman's (The Design of Everyday Things, Currency/Doubleday, 1990) is must reading for
every software engineer who intends to do design work. Winograd and his colleagues (Bringing
Design to Software, Addison-Wesley, 1996) have edited an excellent collection of essays that
address practical issues for software design. Constantine and Lockwood (Software for Use,
Addison-Wesley, 1999) present the concepts associated with “user centered design.” Tognazzini
(Tog on Software Design, Addison-Wesley, 1995) presents a worthwhile philosophical discussion
of the nature of design and the impact of decisions on quality and a team'’s ability to produce
software that provides great value to its customer. Stahl and his colleagues (Model-
Driven Software Development: Technology, Engineering, Wiley, 2006) discuss the principles of
model-driven development.

Hundreds of books address one or more elements of the construction activity. Kernighan
and Plauger [Ker78] have written a classic text on programming style, McConnell [McC93]
presents pragmatic guidelines for practical software construction, Bentley [Ben99] suggests
a wide variety of programming pearls, Knuth [Knu99] has written a classic three-volume
series on the art of programming, and Hunt [Hun99] suggests pragmatic programming
guidelines.

Myers and his colleagues (The Art of Software Testing, 2d ed., Wiley, 2004) have developed a
major revision of his classic text and discuss many important testing principles. Books by Perry

118

PART TWO MODELING

(Effective Methods for Software Testing, 3d ed., Wiley, 2006), Whittaker (How to Break Software,
Addison-Wesley, 2002), Kaner and his colleagues (Lessons Learned in Software Testing, Wiley,
2001), and Marick (The Craft of Software Testing, Prentice-Hall, 1997) each present important testing
concepts and principles and much pragmatic guidance.

A wide variety of information sources on software engineering practice are available on the
Internet. An up-to-date list of World Wide Web references that are relevant to software engi-
neering practice can be found at the SEPA website: www.mhhe.com/engcs/compsci/
pressman/professional/olc/ser.htm.

http://www.mhhe.com/engcs/compsci/

Key
CONCEPTS
analysis

model 138
analysis

patterns 142

collaboration ..126
elaboration122
elicitation 121
inception
negotiation122
quality function

CHAPTER

UNDERSTANDING
REQUIREMENTS

nderstanding the requirements of a problem is among the most difficult
tasks that face a software engineer. When you first think about it, devel-
oping a clear understanding of requirements doesn’t seem that hard. After
all, doesn'’t the customer know what is required? Shouldn't the end users have
a good understanding of the features and functions that will provide benefit?
Surprisingly, in many instances the answer to these questions is “no.” And even if
customers and end-users are explicit in their needs, those needs will change
throughout the project.
In the forward to a book by Ralph Young [YouOl] on effective requirements
practices, I wrote:

It's your worst nightmare. A customer walks into your office, sits down, looks you

straight in the eye, and says, “I know you think you understand what I said, but what
you don't understand is what I said is not what I meant.” Invariably, this happens late

deployment ...131
SAB{ @ What is it? Before you begin any
Look technical work, it's a good idea to

apply a set of requirements engi-

neering tasks. These tasks lead to an
understanding of what the business impact of the
software will be, what the customer wants, and
how end users will interact with the software.

Who does it? Software engineers (sometimes
referred to as system engineers or “analysts” in
the IT world) and other project stakeholders
(managers, customers, end users) all participate
in requirements engineering.

Why is it important? Designing and building an
elegant computer program that solves the wrong
problem serves no one’s needs. That's why it's
important to understand what the customer
wants before you begin to design and build a
computer-based system.

What are the steps? Requirements engineering
begins with inception—a task that defines the
scope and nature of the problem to be solved. It
moves onwards to elicitation—a task that helps
stakeholders define what is required, and then

elaboration—where basic requirements are
refined and modified. As stakeholders define the
problem, negotiation occurs—what are the
priorities, what is essential, when is it required?
Finally, the problem is specified in some manner
and then reviewed or validated fo ensure that
your understanding of the problem and the
stakeholders’ understanding of the problem
coincide.

What is the work product? The infent of require-
ments engineering is fo provide all parties with
a written understanding of the problem. This can
be achieved though a number of work products:
usage scenarios, functions and features lists,
requirements models, or a specification.

How do | ensure that I've done it right?
Requirements engineering work products are
reviewed with stakeholders to ensure that what
you have learned is what they really meant. A
word of warning: even after all parties agree,
things will change, and they will continue to
change throughout the project.

119

120

requirements
engineering ...120

requirements
gathering 128

requirements
management . .124

spedification . ..122
stakeholders ..125

use cases 133
validating

requirements ..144
validation 123

viewpoints126

work
products 133

5.1

PART TWO MODELING

in the project, after deadline commitments have been made, reputations are on the line,
and serious money is at stake.

All of us who have worked in the systems and software business for more than a few
years have lived this nightmare, and yet, few of us have learned to make it go away. We
struggle when we try to elicit requirements from our customers. We have trouble under-
standing the information that we do acquire. We often record requirements in a disor-
ganized manner, and we spend far too little time verifying what we do record. We allow
change to control us, rather than establishing mechanisms to control change. In short, we
fail to establish a solid foundation for the system or software. Each of these problems is
challenging. When they are combined, the outlook is daunting for even the most experi-
enced managers and practitioners. But solutions do exist.

It's reasonable to argue that the techniques I'll discuss in this chapter are not a
true “solution” to the challenges just noted. But they do provide a solid approach for
addressing these challenges.

REQUIREMENTS ENGINEERING

Quoie:

“The hardest single
part of building a
software system

is deciding what to
build. No part of the
work so cripples the
resulfing system if
done wrong. No
other partis more
difficult to rectify
|ater.”

Fred Brooks

P
e,
POINT
Requirements
engineering establishes
a solid base for design
and construction.
Without it, the
resulting software has
a high probability of
not meefing
cusfomer’s needs.

Designing and building computer software is challenging, creative, and just plain
fun. In fact, building software is so compelling that many software developers want
to jump right in before they have a clear understanding of what is needed. They argue
that things will become clear as they build, that project stakeholders will be able to
understand need only after examining early iterations of the software, that things
change so rapidly that any attempt to understand requirements in detail is a waste
of time, that the bottom line is producing a working program and all else is second-
ary. What makes these arguments seductive is that they contain elements of truth.
But each is flawed and can lead to a failed software project.

The broad spectrum of tasks and techniques that lead to an understanding of re-
quirements is called requirements engineering. From a software process perspective,
requirements engineering is a major software engineering action that begins during
the communication activity and continues into the modeling activity. It must be
adapted to the needs of the process, the project, the product, and the people doing
the work.

Requirements engineering builds a bridge to design and construction. But where
does the bridge originate? One could argue that it begins at the feet of the project
stakeholders (e.g., managers, customers, end users), where business need is
defined, user scenarios are described, functions and features are delineated, and
project constraints are identified. Others might suggest that it begins with a broader
system definition, where software is but one component of the larger system
domain. But regardless of the starting point, the journey across the bridge takes you

1 This is particularly true for small projects (less than one month) and smaller, relatively simple soft-
ware efforts. As software grows in size and complexity, these arguments begin to break down.

ﬁpwcss

Expect to do a bit of
design during require-
ments work and a bit
of requirements work
during design.

-

“The seeds of
major soffware
disasters are
usually sown in the
first three months
of commencing the
software project.”

Caper Jones

Why is it
? difficult to
gain a clear
understanding of
what the
customer wants?

CHAPTER 5 UNDERSTANDING REQUIREMENTS 121

high above the project, allowing you to examine the context of the software work to
be performed; the specific needs that design and construction must address; the pri-
orities that guide the order in which work is to be completed; and the information,
functions, and behaviors that will have a profound impact on the resultant design.
Requirements engineering provides the appropriate mechanism for understand-
ing what the customer wants, analyzing need, assessing feasibility, negotiating a rea-
sonable solution, specifying the solution unambiguously, validating the specification,
and managing the requirements as they are transformed into an operational system
[Tha97]. It encompasses seven distinct tasks: inception, elicitation, elaboration,
negotiation, specification, validation, and management. It is important to note that
some of these tasks occur in parallel and all are adapted to the needs of the project.

Inception. How does a software project get started? Is there a single event that
becomes the catalyst for a new computer-based system or product, or does the need
evolve over time? There are no definitive answers to these questions. In some cases,
a casual conversation is all that is needed to precipitate a major software engineer-
ing effort. But in general, most projects begin when a business need is identified
or a potential new market or service is discovered. Stakeholders from the business
community (e.g., business managers, marketing people, product managers) define
a business case for the idea, try to identify the breadth and depth of the market, do a
rough feasibility analysis, and identify a working description of the project’s scope.
All of this information is subject to change, but it is sufficient to precipitate discus-
sions with the software engineering organization.?

At project inception,® you establish a basic understanding of the problem, the peo-
ple who want a solution, the nature of the solution that is desired, and the effective-
nessof preliminary communication and collaboration between the other stakeholders
and the software team.

Elicitation. It certainly seems simple enough—ask the customer, the users, and
others what the objectives for the system or product are, what is to be accomplished,
how the system or product fits into the needs of the business, and finally, how the sys-
tem or product is to be used on a day-to-day basis. But it isn't simple—it’s very hard.

Christel and Kang [Cri92] identify a number of problems that are encountered as
elicitation occurs.

e Problems of scope. The boundary of the system is ill-defined or the
customers/users specify unnecessary technical detail that may confuse,
rather than clarify, overall system objectives.

2 If a computer-based system is to be developed, discussions begin within the context of a system
engineering process. For a detailed discussion of system engineering, visit the website that
accompanies this book.

3 Recall that the Unified Process (Chapter 2) defines a more comprehensive “inception phase” that
encompasses the inception, elicitation, and elaboration tasks discussed in this chapter.

122

ﬁpwcss

Elaboration is a good
thing, but you have fo
know when to stop.
The key is fo describe
the problem in a way
that establishes a firm
base for design. If you
work beyond that
point, you're doing
design.

ﬁpwcsg

There should be no
winner and no loser in
an effective negotio-
tion. Both sides win,
because a “deal” that

both can live with is
solidified.

PART TWO MODELING

e Problems of understanding. The customers/users are not completely sure
of what is needed, have a poor understanding of the capabilities and limita-
tions of their computing environment, don't have a full understanding of the
problem domain, have trouble communicating needs to the system engineer,
omit information that is believed to be “obvious,” specify requirements that
conflict with the needs of other customers/users, or specify requirements
that are ambiguous or untestable.

e Problems of volatility. The requirements change over time.

To help overcome these problems, you must approach requirements gathering in an
organized manner.

Elaboration. The information obtained from the customer during inception and
elicitation is expanded and refined during elaboration. This task focuses on devel-
oping a refined requirements model (Chapters 6 and 7) that identifies various aspects
of software function, behavior, and information.

Elaboration is driven by the creation and refinement of user scenarios that de-
scribe how the end user (and other actors) will interact with the system. Each user
scenario is parsed to extract analysis classes—business domain entities that are
visible to the end user. The attributes of each analysis class are defined, and the serv-
ices* that are required by each class are identified. The relationships and collabora-
tion between classes are identified, and a variety of supplementary diagrams are
produced.

Negotiation. It isn't unusual for customers and users to ask for more than can be
achieved, given limited business resources. It's also relatively common for different
customers or users to propose conflicting requirements, arguing that their version is
“essential for our special needs.”

You have to reconcile these conflicts through a process of negotiation. Customers,
users, and other stakeholders are asked to rank requirements and then discuss con-
flicts in priority. Using an iterative approach that prioritizes requirements, assesses
their cost and risk, and addresses internal conflicts, requirements are eliminated,
combined, and/or modified so that each party achieves some measure of satisfaction.

Specification. In the context of computer-based systems (and software), the term
specification means different things to different people. A specification can be a writ-
ten document, a set of graphical models, a formal mathematical model, a collection
of usage scenarios, a prototype, or any combination of these.

Some suggest that a “standard template” [Som97] should be developed and used
for a specification, arguing that this leads to requirements that are presented in a

4 A service manipulates the data encapsulated by the class. The terms operation and method are also
used. If you are unfamiliar with object-oriented concepts, a basic introduction is presented in
Appendix 2.

The formality and
format of a specifica-
tion varies with the size
and the complexity of
the software to be built.

CHAPTER 5 UNDERSTANDING REQUIREMENTS 123

consistent and therefore more understandable manner. However, it is sometimes
necessary to remain flexible when a specification is to be developed. For large sys-
tems, a written document, combining natural language descriptions and graphical
models may be the best approach. However, usage scenarios may be all that are re-
quired for smaller products or systems that reside within well-understood technical
environments.

/

Software Requirements Specification Template

A software requirements specification (SRS) is 2.2 Product Features
a document that is created when a detailed 2.3 User Classes and Characteristics
description of all aspects of the software to be built must be 2.4 Operating Environment
specified before the project is fo commence. It is important 2.5 Design and Implementation Constraints
to note that a formal SRS is not always written. In fact, 2.6 User Documentation
there are many instances in which effort expended on an 2.7 Assumptions and Dependencies
SRS might be better spent in other software engineering 3. System Features
activities. However, when software is to be developed by 3.1 System Feature 1
a third party, when a lack of specification would create 3.2 System Feature 2 and so on)

severe business issues, or when a system is extremely
complex or business critical, an SRS may be justified.
Karl Wiegers [Wie03] of Process Impact Inc. has
developed a worthwhile template (available at
www.processimpact.com/process_assets/srs_
template.doc) that can serve as a guideline for those

who must create a complete SRS. A topic outline follows: 5. Other Nonfunctional Requirements
5.1 Performance Requirements

Table of Contents 5.2 Safety Requirements

Revision History 5.3 Security Requirements

1. Introduction

1.1 Purpose

1.2 Document Conventions Appendix A: Glossary

1.3 Intended Audience and Reading Suggestions Appendix B: Analysis Models

1.4 Project Scope Appendix C: Issues List

1.5 References A detailed description of each SRS topic can be obtained

2. Overall Description by downloading the SRS template at the URL noted earlier
\ 2.1 Product Perspective in this sidebar. /

.

4. External Interface Requirements
4.1 User Interfaces

4.2 Hardware Inferfaces

4.3 Software Inferfaces

4.4 Communications Interfaces

5.4 Software Qudlity Attributes
6. Other Requirements

Validation. The work products produced as a consequence of requirements engi-
neering are assessed for quality during a validation step. Requirements validation
examines the specification® to ensure that all software requirements have been

5 Recall that the nature of the specification will vary with each project. In some cases, the “specifi-
cation” is a collection of user scenarios and little else. In others, the specification may be a docu-
ment that contains scenarios, models, and written descriptions.

http://www.processimpact.com/process_assets/srs_

124

ﬁpwcss

A key concern during
requirements valida-
tion is consistency. Use
the analysis mode! to
ensure that require-

PART TWO MODELING

stated unambiguously; that inconsistencies, omissions, and errors have been
detected and corrected; and that the work products conform to the standards estab-
lished for the process, the project, and the product.

The primary requirements validation mechanism is the technical review (Chap-
ter 15). The review team that validates requirements includes software engineers,
customers, users, and other stakeholders who examine the specification looking
for errors in content or interpretation, areas where clarification may be required,
missing information, inconsistencies (a major problem when large products or
systems are engineered), conflicting requirements, or unrealistic (unachievable)

ments have been con-

requirements.
sistently stated. q

/

Requirements Validation
Checklist

It is often useful to examine each requirement
against a set of checklist questions. Here is a small subset
of those that might be asked:

o Are requirements stated clearly? Can they be
misinterpreted?

o s the source (e.g., a person, a regulation, a document)
of the requirement identified2 Has the final statement of
the requirement been examined by or against the
original source?

o s the requirement bounded in quantitative terms2

o What other requirements relate to this requirement2 Are
they clearly noted via a cross-reference matrix or other

\mechcmism?

e Has an index for the specification been created?
e Have requirements associated with performance,

Does the requirement violate any system domain
constraints?

Is the requirement festable? If so, can we specify fests
(sometimes called validation criteria) to exercise the
requiremente

Is the requirement traceable to any system model that
has been created?

Is the requirement traceable to overall system/product
objectives?

Is the specification structured in a way that leads to
easy understanding, easy reference, and easy
translation into more technical work products?

behavior, and operational characteristics been clearly

stated2 What requirements appear to be implicit? /

Requirements management.

Requirements for computer-based systems

change, and the desire to change requirements persists throughout the life of the
system. Requirements management is a set of activities that help the project team
identify, control, and track requirements and changes to requirements at any time as
the project proceeds.® Many of these activities are identical to the software configu-
ration management (SCM) techniques discussed in Chapter 22.

6 Formal requirements management is initiated only for large projects that have hundreds of identi-
fiable requirements. For small projects, this requirements engineering action is considerably less
formal.

CHAPTER 5 UNDERSTANDING REQUIREMENTS

125

Requirements Engineering

)
\/ Objective: Requirements engineering tools
assist in requirements gathering, requirements
modeling, requirements management, and requirements
validation.

Mechanics: Tool mechanics vary. In general,
requirements engineering tools build a variety of
graphical (e.g., UML) models that depict the informational,
functional, and behavioral aspects of a system. These
models form the basis for all other activities in the

software process.

Representative Tools:”

A reasonably comprehensive (and up-to-date) listing of
requirements engineering tools can be found at the Volvere
Requirements resources site at www.volere.co.uk/
Qols.htm. Requirements modeling tools are discussed in

SOFTWARE TooOLS

Chapters 6 and 7. Tools noted below focus on requirement
management.

EasyRM, developed by Cybernetic Intelligence GmbH
(www.easy-rm.com), builds a project-specific
dictionary/glossary that contains detailed requirements
descriptions and attributes.

Rational RequisitePro, developed by Rational Software
(Wwww-306.ibm.com/software/awdtools/
reqpro/), allows users to build a requirements
database; represent relationships among requirements;
and organize, prioritize, and trace requirements.

Many additional requirements management tools can be
found at the Volvere site noted earlier and at
wwwi.jiludwig.com/Requirements_
Management_Tools.himl.

J

— 5.2 ESTABLISHING THE GROUNDWORK

%,
POINT
A stakeholder is
anyone who has a
direct inferest in or
benefits from the
sysfem that is to be
developed.

In an ideal setting, stakeholders and software engineers work together on the same
team.® In such cases, requirements engineering is simply a matter of conducting
meaningful conversations with colleagues who are well-known members of the
team. But reality is often quite different.

Customer(s) or end users may be located in a different city or country, may have
only a vague idea of what is required, may have conflicting opinions about the sys-
tem to be built, may have limited technical knowledge, and may have limited time to
interact with the requirements engineer. None of these things are desirable, but all
are fairly common, and you are often forced to work within the constraints imposed
by this situation.

In the sections that follow, I discuss the steps required to establish the ground-
work for an understanding of software requirements—to get the project started in a
way that will keep it moving forward toward a successful solution.

5.2.1

Sommerville and Sawyer [Som97] define a stakeholder as “anyone who benefits
in a direct or indirect way from the system which is being developed.” I have already

Identifying Stakeholders

7 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.
In most cases, tool names are trademarked by their respective developers.

8 This approach is strongly recommended for projects that adopt an agile software development
philosophy.

http://www.volere.co.uk/
http://www.easy-rm.com
http://www.jiludwig.com/Requirements_

126

“Put three
stakeholders in a
room and ask them
what kind of
system they want.
You're likely to get
four or more
different opinions.”

Author unknown

PART TWO MODELING

identified the usual suspects: business operations managers, product managers,
marketing people, internal and external customers, end users, consultants, product
engineers, software engineers, support and maintenance engineers, and others.
Each stakeholder has a different view of the system, achieves different benefits when
the system is successfully developed, and is open to different risks if the development
effort should fail.

At inception, you should create a list of people who will contribute input as re-
quirements are elicited (Section 5.3). The initial list will grow as stakeholders are
contacted because every stakeholder will be asked: “Whom else do you think I
should talk to?”

5.2.2 Recognizing Multiple Viewpoints

Because many different stakeholders exist, the requirements of the system will be
explored from many different points of view. For example, the marketing group is in-
terested in functions and features that will excite the potential market, making the
new system easy to sell. Business managers are interested in a feature set that can
be built within budget and that will be ready to meet defined market windows. End
users may want features that are familiar to them and that are easy to learn and use.
Software engineers may be concerned with functions that are invisible to nontech-
nical stakeholders but that enable an infrastructure that supports more marketable
functions and features. Support engineers may focus on the maintainability of the
software.

Each of these constituencies (and others) will contribute information to the re-
quirements engineering process. As information from multiple viewpoints is col-
lected, emerging requirements may be inconsistent or may conflict with one
another. You should categorize all stakeholder information (including inconsistent
and conflicting requirements) in a way that will allow decision makers to choose an
internally consistent set of requirements for the system.

5.2.3 Working toward Collaboration

If five stakeholders are involved in a software project, you may have five (or more)
different opinions about the proper set of requirements. Throughout earlier chapters,
I have noted that customers (and other stakeholders) must collaborate among them-
selves (avoiding petty turf battles) and with software engineering practitioners if a
successful system is to result. But how is this collaboration accomplished?

The job of a requirements engineer is to identify areas of commonality (i.e., re-
quirements on which all stakeholders agree) and areas of conflict or inconsistency
(i.e., requirements that are desired by one stakeholder but conflict with the
needs of another stakeholder). It is, of course, the latter category that presents a
challenge.

CHAPTER 5 UNDERSTANDING REQUIREMENTS 127

/

Using “Priority Points”
One way of resolving conflicting each (from his or her viewpoint) by spending one or
requirements and at the same time better more priority points on it. Points spent cannot be reused.
understanding the relative importance of all requirements ~ Once a stakeholder’s priority points are exhausted,
is to use a “voting” scheme based on priority points. no further action on requirements can be taken by that
All stakeholders are provided with some number of person. Overall points spent on each requirement by
priority points that can be “spent” on any number of all stakeholders provide an indication of the overall
requirements. A list of requirements is presented, and importance of each requirement.
@ch stakeholder indicates the relative importance of /

.

- .

“It is better to
know some of the
questions than all
of the answers.”

Jumes Thurber

D What
® questions

will help you gain

a preliminary

understanding of

the problem?

Collaboration does not necessarily mean that requirements are defined by
committee. In many cases, stakeholders collaborate by providing their view of
requirements, but a strong “project champion”(e.g., a business manager or a senior
technologist) may make the final decision about which requirements make the cut.

5.2.4 Asking the First Questions

Questions asked at the inception of the project should be “context free” [Gau89]. The
first set of context-free questions focuses on the customer and other stakeholders,
the overall project goals and benefits. For example, you might ask:

e Who is behind the request for this work?

e Who will use the solution?

e What will be the economic benefit of a successful solution?

e Is there another source for the solution that you need?
These questions help to identify all stakeholders who will have interest in the
software to be built. In addition, the questions identify the measurable benefit of
a successful implementation and possible alternatives to custom software devel-
opment.

The next set of questions enables you to gain a better understanding of the prob-
lem and allows the customer to voice his or her perceptions about a solution:

e How would you characterize “good” output that would be generated by a
successful solution?
e What problem(s) will this solution address?

e Can you show me (or describe) the business environment in which the
solution will be used?

o Will special performance issues or constraints affect the way the solution is
approached?

128

“He who asks a
question is a fool
for five minutes;
he who does not
ask a question is a
fool forever.”

Chinese proverh

PART TWO MODELING

The final set of questions focuses on the effectiveness of the communication
activity itself. Gause and Weinberg [Gau89] call these “meta-questions” and propose
the following (abbreviated) list:

e Are you the right person to answer these questions? Are your answers
“official"?

e Are my questions relevant to the problem that you have?

e Am I asking too many questions?

e Can anyone else provide additional information?

e Should I be asking you anything else?
These questions (and others) will help to “break the ice” and initiate the communi-
cation that is essential to successful elicitation. But a question-and-answer meeting
format is not an approach that has been overwhelmingly successful. In fact, the Q&A
session should be used for the first encounter only and then replaced by a require-

ments elicitation format that combines elements of problem solving, negotiation,
and specification. An approach of this type is presented in Section 5.3.

5,3 ELICITING REQUIREMENTS

€ What are
® the basic
guidelines for
conducting a
collaborative
requirements
gathering
meeting?

Requirements elicitation (also called requirements gathering) combines elements of
problem solving, elaboration, negotiation, and specification. In order to encourage
a collaborative, team-oriented approach to requirements gathering, stakeholders
work together to identify the problem, propose elements of the solution, negotiate
different approaches and specify a preliminary set of solution requirements [Zah90].?

5.3.1 Collaborative Requirements Gathering

Many different approaches to collaborative requirements gathering have been pro-
posed. Each makes use of a slightly different scenario, but all apply some variation
on the following basic guidelines:

e Meetings are conducted and attended by both software engineers and other
stakeholders.
e Rules for preparation and participation are established.

e An agenda is suggested that is formal enough to cover all important points
but informal enough to encourage the free flow of ideas.

o A “facilitator” (can be a customer, a developer, or an outsider) controls the
meeting.

e A “definition mechanism” (can be work sheets, flip charts, or wall stickers or
an electronic bulletin board, chat room, or virtual forum) is used.

9 This approach is sometimes called a facilitated application specification technique (FAST).

“We spend a lot of
time—the
majority of project
effort—not
implementing or
testing, but trying
to decide what fo

build.”

Brian Lawrence

Joint Application
Development (JAD) is
a popular technique

for requirements
gathering. A good
desription can be
found o
www.carolla.com/
wp-jad.htm.

QA'pwcss.

If a system or product
will serve many users,
be absolutely certain
that requirements are
elicited from a repre-
sentative cross secfion
of users. If only one
user defines all require-
ments, acceptance risk
is high.

CHAPTER 5 UNDERSTANDING REQUIREMENTS 129

The goal is to identify the problem, propose elements of the solution, negotiate
different approaches, and specify a preliminary set of solution requirements in an at-
mosphere that is conducive to the accomplishment of the goal. To better understand
the flow of events as they occur, I present a brief scenario that outlines the sequence
of events that lead up to the requirements gathering meeting, occur during the meet-
ing, and follow the meeting.

During inception (Section 5.2) basic questions and answers establish the scope of
the problem and the overall perception of a solution. Out of these initial meetings,
the developer and customers write a one- or two-page “product request.”

A meeting place, time, and date are selected; a facilitator is chosen; and attendees
from the software team and other stakeholder organizations are invited to partici-
pate. The product request is distributed to all attendees before the meeting date.

As an example,'® consider an excerpt from a product request written by a mar-
keting person involved in the SafeHome project. This person writes the following nar-
rative about the home security function that is to be part of SafeHome:

Our research indicates that the market for home management systems is growing at a
rate of 40 percent per year. The first SafeHome function we bring to market should be the
home security function. Most people are familiar with “alarm systems” so this would be
an easy sell.

The home security function would protect against and/or recognize a variety of un-
desirable “situations” such as illegal entry, fire, flooding, carbon monoxide levels, and
others. It'll use our wireless sensors to detect each situation. It can be programmed by the
homeowner, and will automatically telephone a monitoring agency when a situation is
detected.

In reality, others would contribute to this narrative during the requirements gath-
ering meeting and considerably more information would be available. But even with
additional information, ambiguity would be present, omissions would likely exist,
and errors might occur. For now, the preceding “functional description” will suffice.

While reviewing the product request in the days before the meeting, each at-
tendee is asked to make a list of objects that are part of the environment that sur-
rounds the system, other objects that are to be produced by the system, and objects
that are used by the system to perform its functions. In addition, each attendee is
asked to make another list of services (processes or functions) that manipulate or in-
teract with the objects. Finally, lists of constraints (e.g., cost, size, business rules) and
performance criteria (e.g., speed, accuracy) are also developed. The attendees are in-
formed that the lists are not expected to be exhaustive but are expected to reflect
each person’s perception of the system.

10 This example (with extensions and variations) is used to illustrate important software engineering
methods in many of the chapters that follow. As an exercise, it would be worthwhile to conduct
your own requirements gathering meeting and develop a set of lists for it.

http://www.carolla.com/

130

“Facts do not cease
to exist because
they are ignored.”

Aldous Huxley

ﬁpwcsg

Avoid the impulse fo
shoot down a cus-
tomer’s idea as “too
costly” or “impracti-
cal.” The idea here is
to negotiate a list that
is acceptable fo all. To
do this, you must kegp
an open mind.

PART TWO MODELING

Objects described for SafeHome might include the control panel, smoke detectors,
window and door sensors, motion detectors, an alarm, an event (a sensor has been
activated), a display, a PC, telephone numbers, a telephone call, and so on. The list
of services might include configuring the system, setting the alarm, monitoring the
sensors, dialing the phone, programming the control panel, and reading the display
(note that services act on objects). In a similar fashion, each attendee will develop
lists of constraints (e.g., the system must recoghize when sensors are not operating,
must be user-friendly, must interface directly to a standard phone line) and perform-
ance criteria (e.g., a sensor event should be recognized within one second, and an
event priority scheme should be implemented).

The lists of objects can be pinned to the walls of the room using large sheets of
paper, stuck to the walls using adhesive-backed sheets, or written on a wall board.
Alternatively, the lists may have been posted on an electronic bulletin board, at an
internal website, or posed in a chat room environment for review prior to the meet-
ing. Ideally, each listed entry should be capable of being manipulated separately so
that lists can be combined, entries can be modified, and additions can be made. At
this stage, critique and debate are strictly prohibited.

After individual lists are presented in one topic area, the group creates a com-
bined list by eliminating redundant entries, adding any new ideas that come up dur-
ing the discussion, but not deleting anything. After you create combined lists for all
topic areas, discussion—coordinated by the facilitator—ensues. The combined list is
shortened, lengthened, or reworded to properly reflect the product/system to be de-
veloped. The objective is to develop a consensus list of objects, services, constraints,
and performance for the system to be built.

In many cases, an object or service described on a list will require further expla-
nation. To accomplish this, stakeholders develop mini-specifications for entries on
the lists.!" Each mini-specification is an elaboration of an object or service. For
example, the mini-spec for the SafeHome object Control Panel might be:

The control panel is a wall-mounted unit that is approximately 9 x 5 inches in size. The
control panel has wireless connectivity to sensors and a PC. User interaction occurs
through a keypad containing 12 keys. A 3 x 3 inch LCD color display provides user feed-
back. Software provides interactive prompts, echo, and similar functions.

The mini-specs are presented to all stakeholders for discussion. Additions, deletions,
and further elaboration are made. In some cases, the development of mini-specs will
uncover new objects, services, constraints, or performance requirements that will be
added to the original lists. During all discussions, the team may raise an issue that
cannot be resolved during the meeting. An issues list is maintained so that these
ideas will be acted on later.

11 Rather than creating a mini-specification, many software teams elect to develop user scenarios
called use cases. These are considered in detail in Section 5.4 and in Chapter 6.

CHAPTER 5 UNDERSTANDING REQUIREMENTS 131

SAFEHOME

" The scene: A meeting room. The first
requirements gathering meeting is in progress.

The players: Jamie Lazar, software team member;
Vinod Raman, software team member; Ed Robbins,
software team member; Doug Miller, software
engineering manager; three members of marketing; a
product engineering representative; and a facilitator.

The conversation:

Facilitator (pointing at whiteboard): So that's the
current list of objects and services for the home security
function.

Marketing person: That about covers it from our
point of view.

Vinod: Didn’t someone mention that they wanted all
SafeHome functiondlity to be accessible via the Internet2
That would include the home security function, no?
Marketing person: Yes, that's right . . . we'll have to
add that functionality and the appropriate objects.

Facilitator: Does that also add some constraints2

Conducting a Requirements Gathering Meeting

Jamie: It does, both technical and legal.
Production rep: Meaning?

Jamie: We better make sure an outsider can’t hack into
the system, disarm it, and rob the place or worse. Heavy
liability on our part.

Doug: Very true.

Marketing: But we still need that . . . just be sure to stop
an outsider from getting in.

Ed: That's easier said than done and . . .

Facilitator (interrupting): | don’t want to debate this
issue now. Let's note it as an action item and proceed.
(Doug, serving as the recorder for the meeting, makes an
appropriate note.)

Facilitator: | have a feeling there's still more to consider

here.

(The group spends the next 20 minutes refining and
expanding the details of the home security function.)

5.3.2 Quality Function Deployment

%,
POINT
QFD defines require-
ments in a way that
maximizes customer

satisfaction.

Normal requirements.

Quuality function deployment (QFD) is a quality management technique that translates
the needs of the customer into technical requirements for software. QFD “concen-
trates on maximizing customer satisfaction from the software engineering process”
[Zul92]. To accomplish this, QFD emphasizes an understanding of what is valuable
to the customer and then deploys these values throughout the engineering process.
QFD identifies three types of requirements [Zul92]:

The objectives and goals that are stated for a prod-

uct or system during meetings with the customer. If these requirements are

Gpwcsg

Everyone wants to
implement lots of
exciting requirements,
but be careful. That's
how “requirements
creep” sets in. On the
other hand, exciting
requirements lead fo @
breakthrough product!

levels of performance.

installation.

present, the customer is satisfied. Examples of normal requirements might be
requested types of graphical displays, specific system functions, and defined

Expected requirements. These requirements are implicit to the product
or system and may be so fundamental that the customer does not explicitly
state them. Their absence will be a cause for significant dissatisfaction.
Examples of expected requirements are: ease of human/machine interaction,
overall operational correctness and reliability, and ease of software

132 PART TWO MODELING

Exciting requirements. These features go beyond the customer’s expecta-
tions and prove to be very satisfying when present. For example, software for
a new mobile phone comes with standard features, but is coupled with a set
of unexpected capabilities (e.g., multitouch screen, visual voice mail) that
delight every user of the product.

Although QFD concepts can be applied across the entire software process [Par96al],
specific QFD techniques are applicable to the requirements elicitation activity. QFD
uses customer interviews and observation, surveys, and examination of historical
data (e.g., problem reports) as raw data for the requirements gathering activity.
These data are then translated into a table of requirements—called the customer
voice table—that is reviewed with the customer and other stakeholders. A variety of
diagrams, matrices, and evaluation methods are then used to extract expected re-
quirements and to attempt to derive exciting requirements [Aka04].

Useful information on
QFD can be obtained at
www.qfdi.org.

5.3.3 Usage Scenarios

As requirements are gathered, an overall vision of system functions and features be-
gins to materialize. However, it is difficult to move into more technical software en-
gineering activities until you understand how these functions and features will be
used by different classes of end users. To accomplish this, developers and users can
create a set of scenarios that identify a thread of usage for the system to be con-
structed. The scenarios, often called use cases [Jac92], provide a description of how
the system will be used. Use cases are discussed in greater detail in Section 5.4.

SAFEHOME

Developing a Preliminary User Scenario

|I_”. The scene: A meeting room,
continuing the first requirements gathering meeting.

The players: Jamie Lazar, software team member;
Vinod Raman, software team member; Ed Robbins,
software team member; Doug Miller, software
engineering manager; three members of marketing; a
producf engineering representative; and a facilitator.

The conversation:

Facilitator: We've been talking about security for

access to SafeHome functionality that will be accessible
via the Internet. I'd like fo try something. Let's develop a
usage scenario for access fo the home security function.

Jamie: How?

Facilitator: We can do it a couple of different ways, but
for now, I'd like to keep things really informal. Tell us (he
points at a marketing person) how you envision accessing
the system.

Marketing person: Um . . . well, this is the kind of
thing I'd do if I was away from home and | had to let
someone into the house, say a housekeeper or repair guy,
who didn’t have the security code.

Facilitator (smiling): That's the reason you'd do it . . .
tell me how you'd actually do this.

Marketing person: Um . . . the first thing I'd need is a
PC. I'd log on to a website we’'d maintain for all users of

SafeHome. I'd provide my user id and . . .

Vinod (interrupting): The Web page would have to be
secure, encrypted, to guarantee that we're safe and . . .

Facilitator (interrupting): That's good information,
Vinod, but it's technical. Let’s just focus on how the end
user will use this capability. OK2

Vinod: No problem.

Marketing person: So as | was saying, I'd log on to a
website and provide my user ID and two levels of passwords.

http://www.qfdi.org

CHAPTER 5 UNDERSTANDING REQUIREMENTS 133

Jamie: Whet if | forget my password? along with a list of functions that | can perform—arm the

Facilitator (interrupting): Good point, Jamie, but system, disarm the system, disarm one or more sensors.

let's not address that now. We'll make a note of that and
call it an exception. I'm sure there'll be others.

| suppose it might also allow me to reconfigure security
zones and other things like that, but I'm not sure.

Marketing person: After | enter the passwords, a (As the marketing person continues talking, Doug takes
screen representing all SafeHome functions will appear. copious notes; these form the basis for the first informal
I'd select the home security function. The system might usage scenario. Alfernatively, the marketing person could
request that | verify who | am, say, by asking for my have been asked to write the scenario, but this would be
address or phone number or something. It would then done outside the meeting.)

display a picture of the security system control panel

® What

® information
is produced as a
consequence of
requirements
gathering?

5.3.4 Elicitation Work Products
The work products produced as a consequence of requirements elicitation will vary
depending on the size of the system or product to be built. For most systems, the
work products include

e A statement of need and feasibility.

e A bounded statement of scope for the system or product.

e A list of customers, users, and other stakeholders who participated in
requirements elicitation.

e A description of the system'’s technical environment.

e A list of requirements (preferably organized by function) and the domain
constraints that apply to each.

e A set of usage scenarios that provide insight into the use of the system or
product under different operating conditions.

e Any prototypes developed to better define requirements.

Each of these work products is reviewed by all people who have participated in re-
quirements elicitation.

5.4 DEVELOPING USE CASES

In a book that discusses how to write effective use cases, Alistair Cockburn
[Coc01b] notes that “a use case captures a contract ... [that] describes the system'’s
behavior under various conditions as the system responds to a request from one of
its stakeholders . . .” In essence, a use case tells a stylized story about how an end
user (playing one of a number of possible roles) interacts with the system under a
specific set of circumstances. The story may be narrative text, an outline of tasks
or interactions, a template-based description, or a diagrammatic representation.
Regardless of its form, a use case depicts the software or system from the end
user’s point of view.

134

POINT

Use cases are defined
from an actor’s point
of view. An actor s

a role that people

(users) or devices play

as they interact with
the software.

An excellent paper on
Use cases can be
downloaded from
www.ibm.com/
developerworks/
webservices/
library/
codesign7.html.

‘, What do |

® need to
know in order to
develop an
effective use
case?

PART TWO MODELING

The first step in writing a use case is to define the set of “actors” that will be
involved in the story. Actors are the different people (or devices) that use the system
or product within the context of the function and behavior that is to be described.
Actors represent the roles that people (or devices) play as the system operates.
Defined somewhat more formally, an actor is anything that communicates with the
system or product and that is external to the system itself. Every actor has one or
more goals when using the system.

It is important to note that an actor and an end user are not necessarily the same
thing. A typical user may play a number of different roles when using a system,
whereas an actor represents a class of external entities (often, but not always, peo-
ple) that play just one role in the context of the use case. As an example, consider a
machine operator (a user) who interacts with the control computer for a manufac-
turing cell that contains a number of robots and numerically controlled machines.
After careful review of requirements, the software for the control computer requires
four different modes (roles) for interaction: programming mode, test mode, moni-
toring mode, and troubleshooting mode. Therefore, four actors can be defined: pro-
grammer, tester, monitor, and troubleshooter. In some cases, the machine operator
can play all of these roles. In others, different people may play the role of each actor.

Because requirements elicitation is an evolutionary activity, not all actors are
identified during the first iteration. It is possible to identify primary actors [Jac92]
during the first iteration and secondary actors as more is learned about the system.
Primary actors interact to achieve required system function and derive the intended
benefit from the system. They work directly and frequently with the software.
Secondary actors support the system so that primary actors can do their work.

Once actors have been identified, use cases can be developed. Jacobson [Jac92]
suggests a number of questions'? that should be answered by a use case:

e Who is the primary actor, the secondary actor(s)?

e What are the actor’s goals?

e What preconditions should exist before the story begins?

e What main tasks or functions are performed by the actor?

e What exceptions might be considered as the story is described?

e What variations in the actor’s interaction are possible?

o What system information will the actor acquire, produce, or change?

o Will the actor have to inform the system about changes in the external
environment?

e What information does the actor desire from the system?

e Does the actor wish to be informed about unexpected changes?

12 Jacobson'’s questions have been extended to provide a more complete view of use-case content.

http://www.ibm.com/

CHAPTER 5 UNDERSTANDING REQUIREMENTS 135

Recalling basic SafeHome requirements, we define four actors: homeowner
(a user), setup manager (likely the same person as homeowner, but playing a dif-
ferent role), sensors (devices attached to the system), and the monitoring and
response subsystem (the central station that monitors the SafeHome home secu-
rity function). For the purposes of this example, we consider only the homeowner
actor. The homeowner actor interacts with the home security function in a number
of different ways using either the alarm control panel or a PC:

e Enters a password to allow all other interactions.
e Inquires about the status of a security zone.

e Inquires about the status of a sensor.

e Presses the panic button in an emergency.

e Activates/deactivates the security system.

Considering the situation in which the homeowner uses the control panel, the basic
use case for system activation follows:'?

1. The homeowner observes the SafeHome control panel (Figure 5.1) to determine if the
system is ready for input. If the system is not ready, a not ready message is displayed
on the LCD display, and the homeowner must physically close windows or doors so
that the not ready message disappears. [A not ready message implies that a sensor is
open; i.e., that a door or window is open.]

SafeHome
control panel

SAFEHOME off away stay
m1 away
Ui stay max test bypass
alarm instant @
e i iﬁ* .d @
(8]
ready

55 Hoo
panic

13 Note that this use case differs from the situation in which the system is accessed via the Internet.
In this case, interaction occurs via the control panel, not the graphical user interface (GUI) provided
when a PC is used.

136

Gpwcss

Use cases are often
written informally.
However, use the tem-
plate shown here fo
ensure that you've
addressed all key

[ssues.

PART TWO MODELING

2. The homeowner uses the keypad to key in a four-digit password. The password is com-

pared with the valid password stored in the system. If the password is incorrect, the con-
trol panel will beep once and reset itself for additional input. If the password is correct,
the control panel awaits further action.

. The homeowner selects and keys in stay or away (see Figure 5.1) to activate the system.

Stay activates only perimeter sensors (inside motion detecting sensors are deacti-
vated). Away activates all sensors.

4. When activation occurs, a red alarm light can be observed by the homeowner.

The basic use case presents a high-level story that describes the interaction between
the actor and the system.

In many instances, uses cases are further elaborated to provide considerably
more detail about the interaction. For example, Cockburn [Coc01b] suggests the fol-
lowing template for detailed descriptions of use cases:

Use case: InitiateMonitoring
Primary actor: Homeowner.
Goal in context: To set the system to monitor sensors when the homeowner

leaves the house or remains inside.

Preconditions: System has been programmed for a password and to recognize

various sensors.

Trigger: The homeowner decides to “set” the system, i.e., to turn on the

alarm functions.

Scenario:

1.

Homeowner: observes control panel

2. Homeowner: enters password

3. Homeowner: selects “stay” or “away”

4. Homeowner: observes read alarm light to indicate that SafeHome has been armed

Exceptions:

1

. Control panel is not ready: homeowner checks all sensors to determine which are

open; closes them.

. Password is incorrect (control panel beeps once): homeowner reenters correct password.

. Password not recognized: monitoring and response subsystem must be contacted to

reprogram password.

. Stay is selected: control panel beeps twice and a stay light is lit; perimeter sensors are

activated.

. Away is selected: control panel beeps three times and an away light is lit; all sensors

are activated.
Priority: Essential, must be implemented

When available: First increment

CHAPTER 5 UNDERSTANDING REQUIREMENTS 137

Frequency of use:
Channel to actor:

Secondary actors:

Many times per day
Via control panel interface

Support technician, sensors

Channels to secondary actors:

Support technician: phone line

Sensors: hardwired and radio frequency interfaces

Open issues:

1. Should there be a way to activate the system without the use of a password or with an

abbreviated password?

2. Should the control panel display additional text messages?

3. How much time does the homeowner have to enter the password from the time the

first key is pressed?

4. Is there a way to deactivate the system before it actually activates?

Use cases for other homeowner interactions would be developed in a similar manner.
It is important to review each use case with care. If some element of the interaction
is ambiguous, it is likely that a review of the use case will indicate a problem.

" The scene: A meeting room,
continuing the requirements gathering meeting

The players: Jamie Lazar, software team member;
Vinod Raman, software team member; Ed Robbins,
software team member; Doug Miller, software
engineering manager; three members of marketing; @
product engineering representative; and a facilitator.

The conversation:

Facilitator: We've spent a fair amount of time talking
about SafeHome home security functionality. During the
break | sketched a use case diagram to summarize the
imporfant scenarios that are part of this function. Take

a look.

(All attendees look at Figure 5.2.)

Jamie: I'm just beginning to learn UML notation.'* So
the home security function is represented by the big box
with the ovals inside it2 And the ovals represent use cases
that we've written in text2

Developing a High-Level Use-Case Diagram

Facilitator: Yep. And the stick figures represent actors—
the people or things that interact with the system as described
by the use case . . . oh, | use the labeled square to represent
an actor that's not a person . . . in this case, sensors.

Doug: Is that legal in UML?

Facilitator: Legality isn’t the issue. The point is to
communicate information. | view the use of a humanlike
stick figure for representing a device fo be misleading. So
I've adapted things a bit. | don’t think it creates a problem.

Vinod: Okay, so we have use-case narratives for each
of the ovals. Do we need to develop the more detailed
template-based narratives I've read about?

Facilitator: Probably, but that can wait until we’ve
considered other SafeHome functions.

Marketing person: Wait, I've been looking at this
diagram and all of a sudden | realize we missed something.

Facilitator: Oh redlly. Tell me what we've missed.

(The meeting continues.)

14 A brief UML tutorial is presented in Appendix 1 for those who are unfamiliar with the notation.

138 PART TWO MODELING

UML use case
diagram for
SafeHome
home security
function

‘Arms/disarms
system

Accesses
system
via Internet

Sensors

Homeowner

Responds fo
alarm event

Encounters
an error
condition
System
administrator

Reconfigures
sensors and
related
system features

SOrFTWARE TOOLS

/ Use-Case Development Representative Tools:'>
L - o The vast majority of UML-based analysis modeling tools
_/ Objective: Assist in the development of . .
provide both text and graphical support for use-case

use cases by providing automated templates .
P 9 P development and modeling.

and mechanisms for assessing clarity and consistency.

Objects by Design
Mechanics: Tool mechanics vary. In general, use-case (www.objectsbydesign.com/tools/
tools provide fill-in-the-blank templates for creating effective umltools_byCompany.html) provides
use cases. Most use-case functionality is embedded into a comprehensive links to tools of this type.
s\et of broader requirements engineering functions. /

5.5 BUILDING THE REQUIREMENTS MODEL'®

The intent of the analysis model is to provide a description of the required informational,
functional, and behavioral domains for a computer-based system. The model changes
dynamically as you learn more about the system to be built, and other stakeholders un-
derstand more about what they really require. For that reason, the analysis model is a
snapshot of requirements at any given time. You should expect it to change.

15 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.
In most cases, tool names are trademarked by their respective developers.

16 Throughout this book, I use the terms analysis model and requirements model synonymously. Both
refer to representations of the information, functional, and behavioral domains that describe prob-
lem requirements.

http://www.objectsbydesign.com/tools/umltools_byCompany.html
http://www.objectsbydesign.com/tools/umltools_byCompany.html

&pwcsg

It is always a good
idea fo get stakehold-
ers involved. One of
the best ways fo do
this is to have each
stakeholder wrife use
cases that describe
how the software will
be used.

ﬁpwcsﬁ.

One way to isolate
classes is to look for
descriptive nouns in
use-case script. At least
some of the nouns will
be candidate closses.
More on this in the
Chapter 8.

CHAPTER 5 UNDERSTANDING REQUIREMENTS 139

As the requirements model evolves, certain elements will become relatively
stable, providing a solid foundation for the design tasks that follow. However, other
elements of the model may be more volatile, indicating that stakeholders do not yet
fully understand requirements for the system. The analysis model and the methods
that are used to build it are presented in detail in Chapters 6 and 7. I present a brief
overview in the sections that follow.

5.5.1 Elements of the Requirements Model

There are many different ways to look at the requirements for a computer-based
system. Some software people argue that it's best to select one mode of represen-
tation (e.g., the use case) and apply it to the exclusion of all other modes. Other
practitioners believe that it's worthwhile to use a number of different modes of rep-
resentation to depict the requirements model. Different modes of representation
force you to consider requirements from different viewpoints—an approach that has
a higher probability of uncovering omissions, inconsistencies, and ambiguity.

The specific elements of the requirements model are dictated by the analysis
modeling method (Chapters 6 and 7) that is to be used. However, a set of generic
elements is common to most requirements models.

Scenario-based elements. The system is described from the user’s point of view
using a scenario-based approach. For example, basic use cases (Section 5.4) and
their corresponding use-case diagrams (Figure 5.2) evolve into more elaborate
template-based use cases. Scenario-based elements of the requirements model
are often the first part of the model that is developed. As such, they serve as input for
the creation of other modeling elements. Figure 5.3 depicts a UML activity diagram'’
for eliciting requirements and representing them using use cases. Three levels of
elaboration are shown, culminating in a scenario-based representation.

Class-based elements. Each usage scenario implies a set of objects that are
manipulated as an actor interacts with the system. These objects are categorized into
classes—a collection of things that have similar attributes and common behaviors. For
example, a UML class diagram can be used to depict a Sensor class for the SafeHome
security function (Figure 5.4). Note that the diagram lists the attributes of sensors (e.g.,
name, type) and the operations (e.g., identify, enable) that can be applied to modify
these attributes. In addition to class diagrams, other analysis modeling elements de-
pict the manner in which classes collaborate with one another and the relationships
and interactions between classes. These are discussed in more detail in Chapter 7.

Behavioral elements. The behavior of a computer-based system can have a pro-
found effect on the design that is chosen and the implementation approach that is
applied. Therefore, the requirements model must provide modeling elements that
depict behavior.

17 A brief UML tutorial is presented in Appendix 1 for those who are unfamiliar with the notation.

140

PART TWO MODELING

UML activity
diagrams for
eliciting

requirements

g

Conduct
meetings

Make lists of
functions, classes

L) ' Formal prioritization? o
Elicit requirements ‘ P -

l % Use QFD to Informally ;"
' prioritize prioritize o
@ . _Uequirements requirements .

S Draw use-case Write
‘ diagram scenario

g
.
.

Class diagram
for sensor

POINT

A state is an externally
observable mode of
behavior. External
stimuli cause transi-
tions between states.

4 Sensor)

Name

Type

Location

Area
Characteristics

Identify()
Enable()

Disable()
Reconfigure()

y

The state diagram is one method for representing the behavior of a system by de-
picting its states and the events that cause the system to change state. A state is any
externally observable mode of behavior. In addition, the state diagram indicates
actions (e.g., process activation) taken as a consequence of a particular event.

To illustrate the use of a state diagram, consider software embedded within the
SafeHome control panel that is responsible for reading user input. A simplified UML
state diagram is shown in Figure 5.5.

CHAPTER 5 UNDERSTANDING REQUIREMENTS 141

<D p

UML state Re‘-"di“%)
; commands
diagram State name
notation
System status = "Ready"
Display msg = "enter cmd" ™~ State variables

Display status = steady

Entry/subsystems ready
Do: poll user input panel
Do: read user input

Do: interpret user input

™ State activities

y

In addition to behavioral representations of the system as a whole, the behavior
of individual classes can also be modeled. Further discussion of behavioral model-

ing is presented in Chapter 7.

SAFEHOME

" The scene: A meeting room,
continuing the requirements meeting.

The players: Jamie Lazar, software team member;
Vinod Raman, software team member; Ed Robbins,
software team member; Doug Miller, software
engineering manager; three members of marketing;

a product engineering representative; and a facilitator.

The conversation:

Facilitator: We've just about finished talking about
SafeHome home security functionality. But before we do,
| want to discuss the behavior of the function.

Marketing person: | don’t understand what you mean
by behavior.

Ed (smiling): That's when you give the product a
“timeout” if it misbehaves.

Facilitator: Not exactly. Let me explain.

(The facilitator explains the basics of behavioral modeling
to the requirements gathering feam.)

Preliminary Behavioral Modeling

Marketing person: This seems a little technical. I'm
not sure | can help here.

Facilitator: Sure you can. What behavior do you
observe from the user’s point of view?

Marketing person: Uh . . . well, the system will be
monitoring the sensors. Itll be reading commands from
the homeowner. Il be displaying its status.

Facilitator: See, you can do it.

Jamie: It also be polling the PC to determine if there is
any input from it, for example, Internet-based access or
configuration information.

Vinod: Yeah, in fact, configuring the system is a state in
its own right.

Doug: You guys are rolling. Let's give this a bit more
thought . . . is there a way to diagram this stuff2

Facilitator: There is, but let's postpone that until after
the meeting.

Flow-oriented elements. Information is transformed as it flows through a
computer-based system. The system accepts input in a variety of forms, applies func-
tions to transform it, and produces output in a variety of forms. Input may be a control
signal transmitted by a transducer, a series of numbers typed by a human operator, a

142

oot

“A compromise is
the art of dividing
a cake in such a
way that everyone
helieves he has the
higgest piece.”

Ludwig Erhard

PART TWO MODELING

packet of information transmitted on a network link, or a voluminous data file
retrieved from secondary storage. The transform(s) may comprise a single logical
comparison, a complex numerical algorithm, or a rule-inference approach of an expert
system. Output may light a single LED or produce a 200-page report. In effect, we can
create a flow model for any computer-based system, regardless of size and complex-
ity. A more detailed discussion of flow modeling is presented in Chapter 7.

5.5.2 Analysis Patterns

Anyone who has done requirements engineering on more than a few software
projects begins to notice that certain problems reoccur across all projects within a
specific application domain.'® These analysis patterns [Fow97] suggest solutions
(e.g., a class, a function, a behavior) within the application domain that can be
reused when modeling many applications.

Geyer-Schulz and Hahsler [GeyOl1] suggest two benefits that can be associated
with the use of analysis patterns:

First, analysis patterns speed up the development of abstract analysis models that cap-
ture the main requirements of the concrete problem by providing reusable analysis mod-
els with examples as well as a description of advantages and limitations. Second, analysis
patterns facilitate the transformation of the analysis model into a design model by sug-
gesting design patterns and reliable solutions for common problems.

Analysis patterns are integrated into the analysis model by reference to the pattern
name. They are also stored in a repository so that requirements engineers can use
search facilities to find and apply them. Information about an analysis pattern (and
other types of patterns) is presented in a standard template [Gey01]' that is dis-
cussed in more detail in Chapter 12. Examples of analysis patterns and further dis-
cussion of this topic are presented in Chapter 7.

ENTS

In an ideal requirements engineering context, the inception, elicitation, and elabo-
ration tasks determine customer requirements in sufficient detail to proceed to sub-
sequent software engineering activities. Unfortunately, this rarely happens. In reality,
you may have to enter into a negotiation with one or more stakeholders. In most
cases, stakeholders are asked to balance functionality, performance, and other prod-
uct or system characteristics against cost and time-to-market. The intent of this
negotiation is to develop a project plan that meets stakeholder needs while at the

18 In some cases, problems reoccur regardless of the application domain. For example, the features
and functions used to solve user interface problems are common regardless of the application
domain under consideration.

19 A variety of patterns templates have been proposed in the literature. If you have interest, see
[Fow97], [Gam95], [Yac03], and [Bus07] among many sources.

Abrief paper on
negofiation for software
requirements can be
downloaded from
www.alexander-
egyed.com/
publications/
Software_
Requirements_
Negofiation-
Some_Lessons_
Learned.html.

CHAPTER 5 UNDERSTANDING REQUIREMENTS 143

same time reflecting the real-world constraints (e.g., time, people, budget) that have
been placed on the software team.

The best negotiations strive for a “win-win” result.?® That is, stakeholders win by
getting the system or product that satisfies the majority of their needs and you (as a
member of the software team) win by working to realistic and achievable budgets
and deadlines.

Boehm [Boe98] defines a set of negotiation activities at the beginning of each soft-
ware process iteration. Rather than a single customer communication activity, the
following activities are defined:

Identification of the system or subsystem'’s key stakeholders.
Determination of the stakeholders’ “win conditions.”
Negotiation of the stakeholders’ win conditions to reconcile them into a set

of win-win conditions for all concerned (including the software team).

Successful completion of these initial steps achieves a win-win result, which becomes
the key criterion for proceeding to subsequent software engineering activities.

/

.

The Art of Negotiation

Learning how to negotiate effectively can serve
you well throughout your personal and technical

life. The following guidelines are well worth considering: 4. Focus on the other party’s interests. Don't take hard
) . . positions if you want to avoid conflict.
1. Recognize that if's m:)t a competition. To be 5. Don't let it get personal. Focus on the problem that
successful, both parties have to feel they’ve won or needs to be solved.
achieved something. Both will have fo compromise. 6. Be creative. Don't be afraid to think out of the box if
2. Map out a strategy. Decide what you'd like to you're at an impasse.
achieve; what the other party wants to achieve, and 7. Be ready to commit. Once an agreement has been

how you'll go about making both happen.
3. Listen actively. Don't work on formulating your
response while the other party is talking. Listen

.

to her. It's likely you'll gain knowledge that will help
you to better negotiate your position.

reached, don’t waffle; commit to it and move on.

J

SAFEHOME

The players: Doug Miller, software engineering
manager and Lisa Perez, marketing manager.

‘. The scene: Lisa Perez’s office, after
the first requirements gathering meeting.

The Start of a Negotiation

The conversation:
Lisa: So, | hear the first meeting went really well.

Doug: Actudlly, it did. You sent some good people to the
meeting . . . they really contributed.

20 Dozens of books have been written on negotiating skills (e.g., [Lew06], [Rai06], [Fis06]). It is one of
the more important skills that you can learn. Read one.

http://www.alexander-egyed.com/
http://www.alexander-egyed.com/
http://www.alexander-egyed.com/

144 PART TWO MODELING

Lisa (smiling): Yeah, they actually told me they got into
it and it wasn't a “propeller head activity.”

Doug (laughing): I'll be sure to take off my techie
beanie the next time | visit . . . Look, Lisa, | think we may
have a problem with getting all of the functionality for the
home security system out by the dates your management
is talking about. It's early, | know, but I've already been
doing a little back-of-the-envelope planning and . . .

Lisa (frowning): We've got to have it by that date,
Doug. What functionality are you talking about2

Doug: | figure we can get full home security functionality
out by the drop-dead date, but we'll have to delay
Internet access ‘til the second release.

Lisa: Doug, it's the Internet access that gives SafeHome
“gee whiz” appeal. We're going to build our entire
marketing campaign around it. We've gotta have it!

Doug: | understand your situation, | really do. The
problem is that in order to give you Internet access,
we'll have to have a fully secure website up and
running. That takes time and people. We'll also have
to build a lot of additional functionality into the first
release . . . | don’t think we can do it with the resources
we've got.

Lisa (still frowning): | see, but you've got to figure out
a way fo get it done. If's pivotal to home security functions
and to other functions as well . . . those can wait until the
next releases . . . I'll agree to that.

Lisa and Doug appear to be at an impasse, and yet they
must negotiate a solution to this problem. Can they both
“win” here? Playing the role of a mediator, what would you
suggeste

5.7 VALIDATING REQUIREMENTS

As each element of the requirements model is created, it is examined for inconsis-
tency, omissions, and ambiguity. The requirements represented by the model are pri-
oritized by the stakeholders and grouped within requirements packages that will be
implemented as software increments. A review of the requirements model addresses
the following questions:

2 When |
® review
requirements,

what questions
should | ask?

Is each requirement consistent with the overall objectives for the
system/product?

Have all requirements been specified at the proper level of abstraction? That
is, do some requirements provide a level of technical detail that is inappro-
priate at this stage?

Is the requirement really necessary or does it represent an add-on feature
that may not be essential to the objective of the system?

Is each requirement bounded and unambiguous?

Does each requirement have attribution? That is, is a source (generally, a
specific individual) noted for each requirement?

Do any requirements conflict with other requirements?

[s each requirement achievable in the technical environment that will house
the system or product?

[s each requirement testable, once implemented?

Does the requirements model properly reflect the information, function, and
behavior of the system to be built?

5.8

CHAPTER 5 UNDERSTANDING REQUIREMENTS 145

e Has the requirements model been “partitioned” in a way that exposes
progressively more detailed information about the system?

e Have requirements patterns been used to simplify the requirements model?
Have all patterns been properly validated? Are all patterns consistent with
customer requirements?

These and other questions should be asked and answered to ensure that the re-
quirements model is an accurate reflection of stakeholder needs and that it provides
a solid foundation for design.

SUMMARY

Requirements engineering tasks are conducted to establish a solid foundation for de-
sign and construction. Requirements engineering occurs during the communication
and modeling activities that have been defined for the generic software process.
Seven distinct requirements engineering functions—inception, elicitation, elabora-
tion, negotiation, specification, validation, and management—are conducted by
members of the software team.

At project inception, stakeholders establish basic problem requirements, define
overriding project constraints, and address major features and functions that must
be present for the system to meet its objectives. This information is refined and ex-
panded during elicitation—a requirements gathering activity that makes use of facil-
itated meetings, QFD, and the development of usage scenarios.

Elaboration further expands requirements in a model—a collection of scenario-
based, class-based, behavioral, and flow-oriented elements. The model may refer-
ence analysis patterns, solutions for analysis problems that have been seen to
reoccur across different applications.

As requirements are identified and the requirements model is being created, the
software team and other project stakeholders negotiate the priority, availability, and
relative cost of each requirement. The intent of this negotiation is to develop a realis-
tic project plan. In addition, each requirement and the requirements model as a whole
are validated against customer need to ensure that the right system is to be built.

PROBLEMS AND POINTS TO PONDER

5.1. Why is it that many software developers don't pay enough attention to requirements engi-
neering? Are there ever circumstances where you can skip it?

5.2. You have been given the responsibility to elicit requirements from a customer who tells
you he is too busy to meet with you. What should you do?

5.3. Discuss some of the problems that occur when requirements must be elicited from three
or four different customers.

5.4. Why do we say that the requirements model represents a snapshot of a system in time?

146

PART TWO MODELING

5.5. Let's assume that you've convinced the customer (you're a very good salesperson) to agree
to every demand that you have as a developer. Does that make you a master negotiator? Why?

5.6. Develop at least three additional “context-free questions” that you might ask a stakeholder
during inception.

5.7. Develop a requirements gathering “kit.” The kit should include a set of guidelines for con-
ducting a requirements gathering meeting and materials that can be used to facilitate the cre-
ation of lists and any other items that might help in defining requirements.

5.8. Your instructor will divide the class into groups of four to six students. Half of the group
will play the role of the marketing department and half will take on the role of software
engineering. Your job is to define requirements for the SafeHome security function described
in this chapter. Conduct a requirements gathering meeting using the guidelines presented in
this chapter.

5.9. Develop a complete use case for one of the following activities:

. Making a withdrawal at an ATM

. Using your charge card for a meal at a restaurant

. Buying a stock using an on-line brokerage account

. Searching for books (on a specific topic) using an on-line bookstore
. An activity specified by your instructor.

o on oW

5.10. What do use case “exceptions” represent?
5.11. Describe what an analysis pattern is in your own words.

5.12. Using the template presented in Section 5.5.2, suggest one or more analysis pattern for
the following application domains:

. Accounting software

. E-mail software

. Internet browsers

. Word-processing software

. Website creation software

. An application domain specified by your instructor

"D AN oW

5.13. What does win-win mean in the context of negotiation during the requirements engi-
neering activity?

5.14. What do you think happens when requirement validation uncovers an error? Who is
involved in correcting the error?

FURTHER READINGS AND INFORMATION SOURCES

Because it is pivotal to the successful creation of any complex computer-based system, re-
quirements engineering is discussed in a wide array of books. Hood and his colleagues
(Requirements Management, Springer, 2007) discuss a variety of requirements engineering is-
sues that span both systems and software engineering. Young (The Requirements Engineering
Handbook, Artech House Publishers, 2007) presents an in-depth discussion of requirements en-
gineering tasks. Wiegers (More About Software Requirements, Microsoft Press, 2006) provides
many practical techniques for requirements gathering and management. Hull and her
colleagues (Requirements Engineering, 2d ed., Springer-Verlag, 2004), Bray (An Introduction to
Requirements Enginecring, Addison-Wesley, 2002), Arlow (Requirements Enginecring, Addison-
Wesley, 2001), Gilb (Requirements Enginecring, Addison-Wesley, 2000), Graham (Requirements
Engineering and Rapid Development, Addison-Wesley, 1999), and Sommerville and Kotonya
(Requirement Engineering: Processes and Techniques, Wiley, 1998) are but a few of many books
dedicated to the subject. Gottesdiener (Requirements by Collaboration: Workshops for Defining

CHAPTER 5 UNDERSTANDING REQUIREMENTS 147

Needs, Addison-Wesley, 2002) provides useful guidance for those who must establish a collab-
orative requirements gathering environment with stakeholders.

Lauesen (Software Requirements: Styles and Techniques, Addison-Wesley, 2002) presents a
comprehensive survey of requirement analysis methods and notation. Weigers (Software
Requirements, Microsoft Press, 1999) and Leffingwell and his colleagues (Managing Software
Requirements: A Use Case Approach, 2d ed., Addison-Wesley, 2003) present a useful collection of
requirement best practices and suggest pragmatic guidelines for most aspects of the require-
ments engineering process.

A patterns-based view of requirements engineering is described by Withall (Software Require-
ment Patterns, Microsoft Press, 2007). Ploesch (Assertions, Scenarios and Prototypes, Springer-
Verlag, 2003) discusses advanced techniques for developing software requirements. Windle and
Abreo (Software Requirements Using the Unified Process, Prentice-Hall, 2002) discuss require-
ments engineering within the context of the Unified Process and UML notation. Alexander and
Steven (Writing Better Requirements, Addison-Wesley, 2002) present a brief set of guidelines for
writing clear requirements, representing them as scenarios, and reviewing the end result.

Use-case modeling is often the driver for the creation of all other aspects of the analysis
model. The subject is discussed at length by Rosenberg and Stephens (Use Case Driven Object
Modeling with UML: Theory and Practice, Apress, 2007), Denny (Succeeding with Use Cases: Work-
ing Smart to Deliver Quality, Addison-Wesley, 2005), Alexander and Maiden (eds.) (Scenarios,
Stories, Use Cases: Through the Systems Development Life-Cycle, Wiley, 2004), Leffingwell and his
colleagues (Managing Software Requirements: A Use Case Approach, 2d ed., Addison-Wesley,
2003) present a useful collection of requirement best practices. Bittner and Spence (Use
Case Modeling, Addison-Wesley, 2002), Cockburn [Coc01], Armour and Miller (Advanced
Use Case Modeling: Software Systems, Addison-Wesley, 2000), and Kulak and his colleagues (Use
Cases: Requirements in Context, Addison-Wesley, 2000) discuss requirements gathering with an
emphasis on use-case modeling.

A wide variety of information sources on requirements engineering and analysis is available
on the Internet. An up-to-date list of World Wide Web references that are relevant to require-
ments engineering and analysis can be found at the SEPA website: www.mhhe.com/engcs/
compsci/pressman/professional/olc/ser.htm.

http://www.mhhe.com/engcs/

CHAPTER

REQUIREMENTS MODELING: SCENARIOS,
INFORMATION, AND ANALYSIS CLASSES

Key
CONCEPTS
activity diagram . .161

t a technical level, software engineering begins with a series of
modeling tasks that lead to a specification of requirements and a design
representation for the software to be built. The requirements model'—

analysis classes . .167

analysis

actually a set of models—is the first technical representation of a system.

packages 182 In a seminal book on requirements modeling methods, Tom DeMarco [DeM79]
associations180 describes the process in this way:

class-hased

?I:gel:::gelin.g " :% Looking back over the recognized problems and failings of the analysis phase, I sug-

data modeling . . .164
domain analysis . .151

grammat
parse ..

QUICK

Look

ical

What is it? The written word is a
wonderful vehicle for communica-
tion, but it is not necessarily the best
way fo represent the requirements for
computer software. Requirements modeling uses
a combination of text and diagrammatic forms
to depict requirements in a way that is relatively
easy to understand, and more important,
straightforward to review for correctness, com-
pleteness, and consistency.

Who does it? A software engineer (sometimes

called an “analyst’) builds the model using
requirements elicited from the customer.

Why is it important? To validate software require-

ments, you need to examine them from a number
of different points of view. In this chapter you'll
consider requirements modeling from three dif-
ferent perspectives: scenario-based models, data
(information) models, and class-based models.
Each represents requirements in a different
“dimension,” thereby increasing the probability
that errors will be found, that inconsistency will
surface, and that omissions will be uncovered.

gest that we need to make the following additions to our set of analysis phase goals.
The products of analysis must be highly maintainable. This applies particularly to the

What are the steps? Scenario-based modeling

represents the system from the user’s point of view.
Data modeling represents the information space
and depicts the data objects that the software will
manipulate and the relationships among them.
Class-based modeling defines objects, attributes,
and relationships. Once preliminary models are
created, they are refined and analyzed to assess
their clarity, completeness, and consistency. In
Chapter 7, we extend the modeling dimensions
noted here with additional representations, pro-
viding a more robust view of requirements.

What is the work product? A wide array of text-

based and diagrammatic forms may be chosen
for the requirements model. Each of these repre-
sentations provides a view of one or more of the
model elements.

How do | ensure that I've done it right?

Requirements modeling work products must be
reviewed for correctness, completeness, and
consistency. They must reflect the needs of dll
stakeholders and establish a foundation from
which design can be conducted.

1 In past editions of this book, I used the term analysis model, rather than requirements model. In this
edition, I've decided to use both phrases to represent the modeling activity that defines various as-
pects of the problem to be solved. Analysis is the action that occurs as requirements are derived.

148

requirements

modeling 153
scenario-based
modeling 154
swimlane
diagram 162
UML models161
USe Cases 156
6.1

CHAPTER 6 REQUIREMENTS MODELING: SCENARIOS, INFORMATION, AND ANALYSIS CLASSES 149

Target Document [software requirements specification]. Problems of size must be dealt
with using an effective method of partitioning. The Victorian novel specification is
out. Graphics have to be used whenever possible. We have to differentiate between log-
ical [essential] and physical [implementation] considerations. . .. At the very least, we
need. . .. Something to help us partition our requirements and document that partition-
ing before specification. . . . Some means of keeping track of and evaluating interfaces. . . .
New tools to describe logic and policy, something better than narrative text.

Although DeMarco wrote about the attributes of analysis modeling more than a
quarter century ago, his comments still apply to modern requirements modeling
methods and notation.

REQUIREMENTS ANALYSIS

“Any one ‘view'

of requirements

is insufficient

to understand

or describe the
desired behavior of
a complex system.”

Alan M. Davis

a’
I%INT

The analysis model
and requirements
specification provide
a means for assessing
quality once the
software is built.

Requirements analysis results in the specification of software’s operational charac-
teristics, indicates software’s interface with other system elements, and establishes
constraints that software must meet. Requirements analysis allows you (regardless
of whether you're called a software engineer, an analyst, or a modeler) to elaborate on
basic requirements established during the inception, elicitation, and negotiation
tasks that are part of requirements engineering (Chapter 5).

The requirements modeling action results in one or more of the following types
of models:

e Scenario-based models of requirements from the point of view of various
system “actors”

e Data models that depict the information domain for the problem

e Class-oriented models that represent object-oriented classes (attributes and
operations) and the manner in which classes collaborate to achieve system
requirements

e Flow-oriented models that represent the functional elements of the system
and how they transform data as it moves through the system

e Behavioral models that depict how the software behaves as a consequence of
external “events”

These models provide a software designer with information that can be translated
to architectural, interface, and component-level designs. Finally, the requirements
model (and the software requirements specification) provides the developer and the
customer with the means to assess quality once software is built.

In this chapter, I focus on scenario-based modeling—a technique that is growing
increasingly popular throughout the software engineering community; data
modeling—a more specialized technique that is particularly appropriate when an
application must create or manipulate a complex information space; and class

150

PART TWO MODELING

The
requirements
model as

a bridge
between the
system
description
and the design
model

“Requirements are
not architecture.
Requirements

are not design, nor
are they the

user interface.
Requirements are
need.”

Andrew Hunt
and David
Thomas

2oy
e,
POINT
The analysis model
should describe what
the customer wants,
establish a basis for
design, and establish a
target for validation.

System
description

Analysis
model

modeling—a representation of the object-oriented classes and the resultant collabo-
rations that allow a system to function. Flow-oriented models, behavioral models,
pattern-based modeling, and WebApp models are discussed in Chapter 7.

6.1.1 Overdall Objectives and Philosophy

Throughout requirements modeling, your primary focus is on what, not how. What
user interaction occurs in a particular circumstance, what objects does the system
manipulate, what functions must the system perform, what behaviors does the sys-
tem exhibit, what interfaces are defined, and what constraints apply??

In earlier chapters, I noted that complete specification of requirements may not
be possible at this stage. The customer may be unsure of precisely what is required
for certain aspects of the system. The developer may be unsure that a specific ap-
proach will properly accomplish function and performance. These realities mitigate
in favor of an iterative approach to requirements analysis and modeling. The analyst
should model what is known and use that model as the basis for design of the soft-
ware increment.?

The requirements model must achieve three primary objectives: (1) to describe
what the customer requires, (2) to establish a basis for the creation of a software de-
sign, and (3) to define a set of requirements that can be validated once the software
is built. The analysis model bridges the gap between a system-level description that
describes overall system or business functionality as it is achieved by applying soft-
ware, hardware, data, human, and other system elements and a software design
(Chapters 8 through 13) that describes the software’s application architecture, user in-
terface, and component-level structure. This relationship is illustrated in Figure 6.1.

2 It should be noted that as customers become more technologically sophisticated, there is a trend
toward the specification of how as well as what. However, the primary focus should remain on
what.

3 Alternatively, the software team may choose to create a prototype (Chapter 2) in an effort to better
understand requirements for the system.

€ Are there

® Dbasic
guidelines that
can help us as we
do requirements
analysis work?

“Problems worthy
of attack, prove
their worth by
hitting back.”

Piet Hein

Many useful resources
for domain analysis
can be found af
www.iturls
.com/English/
Software
Engineering/
SE_mod5.asp.

CHAPTER 6 REQUIREMENTS MODELING: SCENARIOS, INFORMATION, AND ANALYSIS CLASSES 151

It is important to note that all elements of the requirements model will be directly
traceable to parts of the design model. A clear division of analysis and design tasks
between these two important modeling activities is not always possible. Some
design invariably occurs as part of analysis, and some analysis will be conducted
during design.

6.1.2 Analysis Rules of Thumb

Arlow and Neustadt [Arl02] suggest a number of worthwhile rules of thumb that
should be followed when creating the analysis model:

e The model should focus on requirements that are visible within the problem or
business domain. The level of abstraction should be relatively high. “Don't get
bogged down in details” [Arl02] that try to explain how the system will work.

e Each element of the requirements model should add to an overall understanding
of software requirements and provide insight into the information domain,
function, and behavior of the system.

e Delay consideration of infrastructure and other nonfunctional models until
design. That is, a database may be required, but the classes necessary to
implement it, the functions required to access it, and the behavior that will be
exhibited as it is used should be considered only after problem domain
analysis has been completed.

e Minimize coupling th