
Praise for earlier editions of

Software Engineering: A Practitioner’s Approach
“Roger Pressman has written a solid comprehensive guidebook for the � eld of software
engineering for both students of the discipline and software developers and managers
practicing it—or needing to practice it.” IEEE Software

“This is a classic modern textbook, clear and authoritative, with lots of pictures, examples,
questions and references I recommend it to anyone who asks, ‘What is software
engineering and where is it now?’ ACM Computing Reviews

“An up-to-the minute, in-depth treatment of the software engineering process.”
Byte Book Club (main selection)

“... had the best explanations of what I want to cover ...”

“... The de� nitive book on the subject as far as I’m concerned ...”

“... A good textbook as well as reference ...” from comp.software-eng FAQ

“As a practicing Software Engineer, I � nd this book to be invaluable. It has served as
a great reference for all the projects that I have worked on.”

“This book is a framework on how to develop high quality software.”
reviews from Amazon.com

For almost three decades, Software Engineering: A Practitioner’s Approach has been the best selling guide to software
engineering for students and industry professionals alike.

In its seventh edition, the book has been restructured and redesigned, undergoing a substantial content update
that addresses every important topic in what many have called “the engineering discipline of the 21st century.”
Unique sidebars and marginal content have been expanded and enhanced, o� ering the reader an entertaining
and informative complement to chapter topics. New chapters and a new organization make the book still easier
to use in the classroom and as a self-study guide.

 Part 1, The Software Process, presents both prescriptive and agile process models.

 Part 2, Modeling, presents modern analysis and design methods with a new emphasis on UML-based modeling.

 Part 3, Quality Management, is new for the seventh edition and address all aspects of software testing, quality
assurance, formal veri� cation techniques, and change management.

 Part 4, Managing Software Projects, presents topics that are relevant to those who plan, manage, and control
a software project.

 Part 5, Advanced Topics, presents dedicated chapters that address software process improvement and
future software engineering trends.

Roger Pressman, continuing in the tradition of his earlier editions, has written a book that will serve as an excellent
guide to software engineering for everyone who must understand, build, or manage computer-based systems.

Visit the book’s On-Line Learning Center at www.mhhe.com/pressman.

The site, visited by thousands of readers each month, has been signi� cantly expanded and updated to provide
comprehensive software engineering resources for students, instructors, and industry professionals.

Software Engineering
A Practitioner’s Approach

Seventh Edition

Roger S. Pressman

Seventh
Edition

Softw
are Engineering

A Practitioner’s Approach

Pressman

Roger S. Pressman, Ph.D

M
D

 D
A

L
IM

 #1001702 12/23/08 C
Y

A
N

 M
A

G
 Y

E
L

O
 B

L
K

Software Engineering
A P R A C T I T I O N E R ’ S A P P R O A C H

pre75977_FM.qxd 11/27/08 6:38 PM Page i

pre75977_FM.qxd 11/27/08 6:38 PM Page ii

Software Engineering
A P R A C T I T I O N E R ’ S A P P R O A C H

SEVENTH EDITION

Roger S. Pressman, Ph.D.

pre75977_FM.qxd 11/27/08 6:38 PM Page iii

SOFTWARE ENGINEERING: A PRACTITIONER’S APPROACH, SEVENTH EDITION

Published by McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc., 1221 Avenue of the Americas, New
York, NY 10020. Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved. Previous editions © 2005,
2001, and 1997. No part of this publication may be reproduced or distributed in any form or by any means, or stored
in a database or retrieval system, without the prior written consent of The McGraw-Hill Companies, Inc., including,
but not limited to, in any network or other electronic storage or transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside
the United States.

This book is printed on acid-free paper.

1 2 3 4 5 6 7 8 9 0 DOC/DOC 0 9

ISBN 978–0–07–337597–7
MHID 0–07–337597–7

Global Publisher: Raghothaman Srinivasan
Director of Development: Kristine Tibbetts
Senior Marketing Manager: Curt Reynolds
Senior Managing Editor: Faye M. Schilling
Lead Production Supervisor: Sandy Ludovissy
Senior Media Project Manager: Sandra M. Schnee
Associate Design Coordinator: Brenda A. Rolwes
Cover Designer: Studio Montage, St. Louis, Missouri
(USE) Cover Image: © The Studio Dog/Getty Images
Compositor: Macmillan Publishing Solutions
Typeface: 8.5/13.5 Leawood
Printer: R. R. Donnelley Crawfordsville, IN

Library of Congress Cataloging-in-Publication Data

Pressman, Roger S.
Software engineering : a practitioner’s approach / Roger S. Pressman. — 7th ed.

p. cm.
Includes index.
ISBN 978–0–07–337597–7 — ISBN 0–07–337597–7 (hard copy : alk. paper)

1. Software engineering. I. Title.
QA76.758.P75 2010
005.1—dc22

2008048802

www.mhhe.com

pre75977_FM.qxd 11/27/08 6:38 PM Page iv

http://www.mhhe.com

In loving memory of my
father who lived 94 years
and taught me, above all,
that honesty and integrity
were the best guides for
my journey through life.

pre75977_FM.qxd 11/27/08 6:38 PM Page v

Roger S. Pressman is an internationally recognized authority in software process

improvement and software engineering technologies. For almost four decades,

he has worked as a software engineer, a manager, a professor, an author, and a con-

sultant, focusing on software engineering issues.

As an industry practitioner and manager, Dr. Pressman worked on the development

of CAD/CAM systems for advanced engineering and manufacturing applications. He

has also held positions with responsibility for scientific and systems programming.

After receiving a Ph.D. in engineering from the University of Connecticut,

Dr. Pressman moved to academia where he became Bullard Associate Professor of

Computer Engineering at the University of Bridgeport and director of the university’s

Computer-Aided Design and Manufacturing Center.

Dr. Pressman is currently president of R.S. Pressman & Associates, Inc., a consulting

firm specializing in software engineering methods and training. He serves as principal

consultant and has designed and developed Essential Software Engineering, a complete

video curriculum in software engineering, and Process Advisor, a self-directed system

for software process improvement. Both products are used by thousands of companies

worldwide. More recently, he has worked in collaboration with EdistaLearning in India

to develop comprehensive Internet-based training in software engineering.

Dr. Pressman has written many technical papers, is a regular contributor to

industry periodicals, and is author of seven technical books. In addition to Software

Engineering: A Practitioner’s Approach, he has co-authored Web Engineering

(McGraw-Hill), one of the first books to apply a tailored set of software engineering

principles and practices to the development of Web-based systems and applications.

He has also written the award-winning A Manager’s Guide to Software Engineering

(McGraw-Hill); Making Software Engineering Happen (Prentice Hall), the first book to

address the critical management problems associated with software process

improvement; and Software Shock (Dorset House), a treatment that focuses on soft-

ware and its impact on business and society. Dr. Pressman has been on the editorial

boards of a number of industry journals, and for many years, was editor of the

“Manager” column in IEEE Software.

Dr. Pressman is a well-known speaker, keynoting a number of major industry

conferences. He is a member of the IEEE, and Tau Beta Pi, Phi Kappa Phi, Eta Kappa

Nu, and Pi Tau Sigma.

On the personal side, Dr. Pressman lives in South Florida with his wife, Barbara.

An athlete for most of his life, he remains a serious tennis player (NTRP 4.5) and a

single-digit handicap golfer. In his spare time, he has written two novels, The Aymara

Bridge and The Puppeteer, and plans to begin work on another.

ABOUT THE AUTHOR

vi

pre75977_FM.qxd 11/27/08 6:38 PM Page vi

CONTENTS AT A GLANCE

CHAPTER 1 Software and Software Engineering 1

PART ONE THE SOFTWARE PROCESS 29

CHAPTER 2 Process Models 30

CHAPTER 3 Agile Development 65

PART TWO MODELING 95

CHAPTER 4 Principles that Guide Practice 96

CHAPTER 5 Understanding Requirements 119

CHAPTER 6 Requirements Modeling: Scenarios, Information, and Analysis Classes 148

CHAPTER 7 Requirements Modeling: Flow, Behavior, Patterns, and WebApps 186

CHAPTER 8 Design Concepts 215

CHAPTER 9 Architectural Design 242

CHAPTER 10 Component-Level Design 276

CHAPTER 11 User Interface Design 312

CHAPTER 12 Pattern-Based Design 347

CHAPTER 13 WebApp Design 373

PART THREE QUALITY MANAGEMENT 397

CHAPTER 14 Quality Concepts 398

CHAPTER 15 Review Techniques 416

CHAPTER 16 Software Quality Assurance 432

CHAPTER 17 Software Testing Strategies 449

CHAPTER 18 Testing Conventional Applications 481

CHAPTER 19 Testing Object-Oriented Applications 511

CHAPTER 20 Testing Web Applications 529

CHAPTER 21 Formal Modeling and Verification 557

CHAPTER 22 Software Configuration Management 584

CHAPTER 23 Product Metrics 613

PART FOUR MANAGING SOFTWARE PROJECTS 645

CHAPTER 24 Project Management Concepts 646

CHAPTER 25 Process and Project Metrics 666
vii

pre75977_FM.qxd 11/27/08 6:38 PM Page vii

CHAPTER 26 Estimation for Software Projects 691

CHAPTER 27 Project Scheduling 721

CHAPTER 28 Risk Management 744

CHAPTER 29 Maintenance and Reengineering 761

PART FIVE ADVANCED TOPICS 785

CHAPTER 30 Software Process Improvement 786

CHAPTER 31 Emerging Trends in Software Engineering 808

CHAPTER 32 Concluding Comments 833

APPENDIX 1 An Introduction to UML 841

APPENDIX 2 Object-Oriented Concepts 863

REFERENCES 871

INDEX 889

viii PART TWO CONTENTS AT A GLANCE

pre75977_FM.qxd 11/27/08 6:38 PM Page viii

TABLE OF CONTENTS

Preface xxv

CHAPTER 1 SOFTWARE AND SOFTWARE ENGINEERING 1

1.1 The Nature of Software 3
1.1.1 Defining Software 4
1.1.2 Software Application Domains 7
1.1.3 Legacy Software 9

1.2 The Unique Nature of WebApps 10
1.3 Software Engineering 12
1.4 The Software Process 14
1.5 Software Engineering Practice 17

1.5.1 The Essence of Practice 17
1.5.2 General Principles 19

1.6 Software Myths 21
1.7 How It All Starts 24
1.8 Summary 25
PROBLEMS AND POINTS TO PONDER 25
FURTHER READINGS AND INFORMATION SOURCES 26

PART ONE THE SOFTWARE PROCESS 29

CHAPTER 2 PROCESS MODELS 30

2.1 A Generic Process Model 31
2.1.1 Defining a Framework Activity 32
2.1.2 Identifying a Task Set 34
2.1.3 Process Patterns 35

2.2 Process Assessment and Improvement 37
2.3 Prescriptive Process Models 38

2.3.1 The Waterfall Model 39
2.3.2 Incremental Process Models 41
2.3.3 Evolutionary Process Models 42
2.3.4 Concurrent Models 48
2.3.5 A Final Word on Evolutionary Processes 49

2.4 Specialized Process Models 50
2.4.1 Component-Based Development 50
2.4.2 The Formal Methods Model 51
2.4.3 Aspect-Oriented Software Development 52

2.5 The Unified Process 53
2.5.1 A Brief History 54
2.5.2 Phases of the Unified Process 54

2.6 Personal and Team Process Models 56
2.6.1 Personal Software Process (PSP) 57
2.6.2 Team Software Process (TSP) 58

2.7 Process Technology 59
2.8 Product and Process 60 ix

pre75977_FM.qxd 11/27/08 6:38 PM Page ix

2.9 Summary 61
PROBLEMS AND POINTS TO PONDER 62
FURTHER READINGS AND INFORMATION SOURCES 63

CHAPTER 3 AGILE DEVELOPMENT 65

3.1 What Is Agility? 67
3.2 Agility and the Cost of Change 67
3.3 What Is an Agile Process? 68

3.3.1 Agility Principles 69
3.3.2 The Politics of Agile Development 70
3.3.3 Human Factors 71

3.4 Extreme Programming (XP) 72
3.4.1 XP Values 72
3.4.2 The XP Process 73
3.4.3 Industrial XP 77
3.4.4 The XP Debate 78

3.5 Other Agile Process Models 80
3.5.1 Adaptive Software Development (ASD) 81
3.5.2 Scrum 82
3.5.3 Dynamic Systems Development Method (DSDM) 84
3.5.4 Crystal 85
3.5.5 Feature Driven Development (FDD) 86
3.5.6 Lean Software Development (LSD) 87
3.5.7 Agile Modeling (AM) 88
3.5.8 Agile Unified Process (AUP) 89

3.6 A Tool Set for the Agile Process 91
3.7 Summary 91
PROBLEMS AND POINTS TO PONDER 92
FURTHER READINGS AND INFORMATION SOURCES 93

PART TWO MODELING 95

CHAPTER 4 PRINCIPLES THAT GUIDE PRACTICE 96

4.1 Software Engineering Knowledge 97
4.2 Core Principles 98

4.2.1 Principles That Guide Process 98
4.2.2 Principles That Guide Practice 99

4.3 Principles That Guide Each Framework Activity 101
4.3.1 Communication Principles 101
4.3.2 Planning Principles 103
4.3.3 Modeling Principles 105
4.3.4 Construction Principles 111
4.3.5 Deployment Principles 113

4.4 Summary 115
PROBLEMS AND POINTS TO PONDER 116
FURTHER READINGS AND INFORMATION SOURCES 116

CHAPTER 5 UNDERSTANDING REQUIREMENTS 119

5.1 Requirements Engineering 120
5.2 Establishing the Groundwork 125

5.2.1 Identifying Stakeholders 125

x TABLE OF CONTENTS

pre75977_FM.qxd 11/27/08 6:38 PM Page x

5.2.2 Recognizing Multiple Viewpoints 126
5.2.3 Working toward Collaboration 126
5.2.4 Asking the First Questions 127

5.3 Eliciting Requirements 128
5.3.1 Collaborative Requirements Gathering 128
5.3.2 Quality Function Deployment 131
5.3.3 Usage Scenarios 132
5.3.4 Elicitation Work Products 133

5.4 Developing Use Cases 133
5.5 Building the Requirements Model 138

5.5.1 Elements of the Requirements Model 139
5.5.2 Analysis Patterns 142

5.6 Negotiating Requirements 142
5.7 Validating Requirements 144
5.8 Summary 145
PROBLEMS AND POINTS TO PONDER 145
FURTHER READINGS AND INFORMATION SOURCES 146

CHAPTER 6 REQUIREMENTS MODELING: SCENARIOS, INFORMATION,
AND ANALYSIS CLASSES 148

6.1 Requirements Analysis 149
6.1.1 Overall Objectives and Philosophy 150
6.1.2 Analysis Rules of Thumb 151
6.1.3 Domain Analysis 151
6.1.4 Requirements Modeling Approaches 153

6.2 Scenario-Based Modeling 154
6.2.1 Creating a Preliminary Use Case 155
6.2.2 Refining a Preliminary Use Case 158
6.2.3 Writing a Formal Use Case 159

6.3 UML Models That Supplement the Use Case 161
6.3.1 Developing an Activity Diagram 161
6.3.2 Swimlane Diagrams 162

6.4 Data Modeling Concepts 164
6.4.1 Data Objects 164
6.4.2 Data Attributes 164
6.4.3 Relationships 165

6.5 Class-Based Modeling 167
6.5.1 Identifying Analysis Classes 167
6.5.2 Specifying Attributes 171
6.5.3 Defining Operations 171
6.5.4 Class-Responsibility-Collaborator (CRC) Modeling 173
6.5.5 Associations and Dependencies 180
6.5.6 Analysis Packages 182

6.6 Summary 183
PROBLEMS AND POINTS TO PONDER 183
FURTHER READINGS AND INFORMATION SOURCES 184

CHAPTER 7 REQUIREMENTS MODELING: FLOW, BEHAVIOR, PATTERNS,
AND WEBAPPS 186

7.1 Requirements Modeling Strategies 186
7.2 Flow-Oriented Modeling 187

TABLE OF CONTENTS xi

pre75977_FM.qxd 11/27/08 6:38 PM Page xi

7.2.1 Creating a Data Flow Model 188
7.2.2 Creating a Control Flow Model 191
7.2.3 The Control Specification 191
7.2.4 The Process Specification 192

7.3 Creating a Behavioral Model 195
7.3.1 Identifying Events with the Use Case 195
7.3.2 State Representations 196

7.4 Patterns for Requirements Modeling 199
7.4.1 Discovering Analysis Patterns 200
7.4.2 A Requirements Pattern Example: Actuator-Sensor 200

7.5 Requirements Modeling for WebApps 205
7.5.1 How Much Analysis Is Enough? 205
7.5.2 Requirements Modeling Input 206
7.5.3 Requirements Modeling Output 207
7.5.4 Content Model for WebApps 207
7.5.5 Interaction Model for WebApps 209
7.5.6 Functional Model for WebApps 210
7.5.7 Configuration Models for WebApps 211
7.5.8 Navigation Modeling 212

7.6 Summary 213
PROBLEMS AND POINTS TO PONDER 213
FURTHER READINGS AND INFORMATION SOURCES 214

CHAPTER 8 DESIGN CONCEPTS 215

8.1 Design within the Context of Software Engineering 216
8.2 The Design Process 219

8.2.1 Software Quality Guidelines and Attributes 219
8.2.2 The Evolution of Software Design 221

8.3 Design Concepts 222
8.3.1 Abstraction 223
8.3.2 Architecture 223
8.3.3 Patterns 224
8.3.4 Separation of Concerns 225
8.3.5 Modularity 225
8.3.6 Information Hiding 226
8.3.7 Functional Independence 227
8.3.8 Refinement 228
8.3.9 Aspects 228
8.3.10 Refactoring 229
8.3.11 Object-Oriented Design Concepts 230
8.3.12 Design Classes 230

8.4 The Design Model 233
8.4.1 Data Design Elements 234
8.4.2 Architectural Design Elements 234
8.4.3 Interface Design Elements 235
8.4.4 Component-Level Design Elements 237
8.4.5 Deployment-Level Design Elements 237

8.5 Summary 239
PROBLEMS AND POINTS TO PONDER 240
FURTHER READINGS AND INFORMATION SOURCES 240

xii TABLE OF CONTENTS

pre75977_FM.qxd 11/27/08 6:38 PM Page xii

CHAPTER 9 ARCHITECTURAL DESIGN 242

9.1 Software Architecture 243
9.1.1 What Is Architecture? 243
9.1.2 Why Is Architecture Important? 245
9.1.3 Architectural Descriptions 245
9.1.4 Architectural Decisions 246

9.2 Architectural Genres 246
9.3 Architectural Styles 249

9.3.1 A Brief Taxonomy of Architectural Styles 250
9.3.2 Architectural Patterns 253
9.3.3 Organization and Refinement 255

9.4 Architectural Design 255
9.4.1 Representing the System in Context 256
9.4.2 Defining Archetypes 257
9.4.3 Refining the Architecture into Components 258
9.4.4 Describing Instantiations of the System 260

9.5 Assessing Alternative Architectural Designs 261
9.5.1 An Architecture Trade-Off Analysis Method 262
9.5.2 Architectural Complexity 263
9.5.3 Architectural Description Languages 264

9.6 Architectural Mapping Using Data Flow 265
9.6.1 Transform Mapping 265
9.6.2 Refining the Architectural Design 272

9.7 Summary 273
PROBLEMS AND POINTS TO PONDER 274
FURTHER READINGS AND INFORMATION SOURCES 274

CHAPTER 10 COMPONENT-LEVEL DESIGN 276

10.1 What Is a Component? 277
10.1.1 An Object-Oriented View 277
10.1.2 The Traditional View 279
10.1.3 A Process-Related View 281

10.2 Designing Class-Based Components 282
10.2.1 Basic Design Principles 282
10.2.2 Component-Level Design Guidelines 285
10.2.3 Cohesion 286
10.2.4 Coupling 288

10.3 Conducting Component-Level Design 290
10.4 Component-Level Design for WebApps 296

10.4.1 Content Design at the Component Level 297
10.4.2 Functional Design at the Component Level 297

10.5 Designing Traditional Components 298
10.5.1 Graphical Design Notation 299
10.5.2 Tabular Design Notation 300
10.5.3 Program Design Language 301

10.6 Component-Based Development 303
10.6.1 Domain Engineering 303
10.6.2 Component Qualification, Adaptation, and Composition 304
10.6.3 Analysis and Design for Reuse 306
10.6.4 Classifying and Retrieving Components 307

TABLE OF CONTENTS xiii

pre75977_FM.qxd 11/27/08 6:38 PM Page xiii

10.7 Summary 309
PROBLEMS AND POINTS TO PONDER 310
FURTHER READINGS AND INFORMATION SOURCES 311

CHAPTER 11 USER INTERFACE DESIGN 312

11.1 The Golden Rules 313
11.1.1 Place the User in Control 313
11.1.2 Reduce the User’s Memory Load 314
11.1.3 Make the Interface Consistent 316

11.2 User Interface Analysis and Design 317
11.2.1 Interface Analysis and Design Models 317
11.2.2 The Process 319

11.3 Interface Analysis 320
11.3.1 User Analysis 321
11.3.2 Task Analysis and Modeling 322
11.3.3 Analysis of Display Content 327
11.3.4 Analysis of the Work Environment 328

11.4 Interface Design Steps 328
11.4.1 Applying Interface Design Steps 329
11.4.2 User Interface Design Patterns 330
11.4.3 Design Issues 331

11.5 WebApp Interface Design 335
11.5.1 Interface Design Principles and Guidelines 336
11.5.2 Interface Design Workflow for WebApps 340

11.6 Design Evaluation 342
11.7 Summary 344
PROBLEMS AND POINTS TO PONDER 345
FURTHER READINGS AND INFORMATION SOURCES 346

CHAPTER 12 PATTERN-BASED DESIGN 347

12.1 Design Patterns 348
12.1.1 Kinds of Patterns 349
12.1.2 Frameworks 352
12.1.3 Describing a Pattern 352
12.1.4 Pattern Languages and Repositories 353

12.2 Pattern-Based Software Design 354
12.2.1 Pattern-Based Design in Context 354
12.2.2 Thinking in Patterns 356
12.2.3 Design Tasks 357
12.2.4 Building a Pattern-Organizing Table 358
12.2.5 Common Design Mistakes 359

12.3 Architectural Patterns 360
12.4 Component-Level Design Patterns 362
12.5 User Interface Design Patterns 364
12.6 WebApp Design Patterns 368

12.6.1 Design Focus 368
12.6.2 Design Granularity 369

12.7 Summary 370
PROBLEMS AND POINTS TO PONDER 371
FURTHER READING AND INFORMATION SOURCES 372

xiv TABLE OF CONTENTS

pre75977_FM.qxd 11/27/08 6:38 PM Page xiv

CHAPTER 13 WEBAPP DESIGN 373

13.1 WebApp Design Quality 374
13.2 Design Goals 377
13.3 A Design Pyramid for WebApps 378
13.4 WebApp Interface Design 378
13.5 Aesthetic Design 380

13.5.1 Layout Issues 380
13.5.2 Graphic Design Issues 381

13.6 Content Design 382
13.6.1 Content Objects 382
13.6.2 Content Design Issues 382

13.7 Architecture Design 383
13.7.1 Content Architecture 384
13.7.2 WebApp Architecture 386

13.8 Navigation Design 388
13.8.1 Navigation Semantics 388
13.8.2 Navigation Syntax 389

13.9 Component-Level Design 390
13.10 Object-Oriented Hypermedia Design Method (OOHDM) 390

13.10.1 Conceptual Design for OOHDM 391
13.10.2 Navigational Design for OOHDM 391
13.10.3 Abstract Interface Design and Implementation 392

13.11 Summary 393
PROBLEMS AND POINTS TO PONDER 394
FURTHER READINGS AND INFORMATION SOURCES 395

PART THREE QUALITY MANAGEMENT 397

CHAPTER 14 QUALITY CONCEPTS 398

14.1 What Is Quality? 399
14.2 Software Quality 400

14.2.1 Garvin’s Quality Dimensions 401
14.2.2 McCall’s Quality Factors 402
14.2.3 ISO 9126 Quality Factors 403
14.2.4 Targeted Quality Factors 404
14.2.5 The Transition to a Quantitative View 405

14.3 The Software Quality Dilemma 406
14.3.1 “Good Enough” Software 406
14.3.2 The Cost of Quality 407
14.3.3 Risks 409
14.3.4 Negligence and Liability 410
14.3.5 Quality and Security 410
14.3.6 The Impact of Management Actions 411

14.4 Achieving Software Quality 412
14.4.1 Software Engineering Methods 412
14.4.2 Project Management Techniques 412
14.4.3 Quality Control 412
14.4.4 Quality Assurance 413

14.5 Summary 413
PROBLEMS AND POINTS TO PONDER 414
FURTHER READINGS AND INFORMATION SOURCES 414

TABLE OF CONTENTS xv

pre75977_FM.qxd 11/27/08 6:38 PM Page xv

CHAPTER 15 REVIEW TECHNIQUES 416

15.1 Cost Impact of Software Defects 417
15.2 Defect Amplification and Removal 418
15.3 Review Metrics and Their Use 420

15.3.1 Analyzing Metrics 420
15.3.2 Cost Effectiveness of Reviews 421

15.4 Reviews: A Formality Spectrum 423
15.5 Informal Reviews 424
15.6 Formal Technical Reviews 426

15.6.1 The Review Meeting 426
15.6.2 Review Reporting and Record Keeping 427
15.6.3 Review Guidelines 427
15.6.4 Sample-Driven Reviews 429

15.7 Summary 430
PROBLEMS AND POINTS TO PONDER 431
FURTHER READINGS AND INFORMATION SOURCES 431

CHAPTER 16 SOFTWARE QUALITY ASSURANCE 432

16.1 Background Issues 433
16.2 Elements of Software Quality Assurance 434
16.3 SQA Tasks, Goals, and Metrics 436

16.3.1 SQA Tasks 436
16.3.2 Goals, Attributes, and Metrics 437

16.4 Formal Approaches to SQA 438
16.5 Statistical Software Quality Assurance 439

16.5.1 A Generic Example 439
16.5.2 Six Sigma for Software Engineering 441

16.6 Software Reliability 442
16.6.1 Measures of Reliability and Availability 442
16.6.2 Software Safety 443

16.7 The ISO 9000 Quality Standards 444
16.8 The SQA Plan 445
16.9 Summary 446
PROBLEMS AND POINTS TO PONDER 447
FURTHER READINGS AND INFORMATION SOURCES 447

CHAPTER 17 SOFTWARE TESTING STRATEGIES 449

17.1 A Strategic Approach to Software Testing 450
17.1.1 Verification and Validation 450
17.1.2 Organizing for Software Testing 451
17.1.3 Software Testing Strategy—The Big Picture 452
17.1.4 Criteria for Completion of Testing 455

17.2 Strategic Issues 455
17.3 Test Strategies for Conventional Software 456

17.3.1 Unit Testing 456
17.3.2 Integration Testing 459

17.4 Test Strategies for Object-Oriented Software 465
17.4.1 Unit Testing in the OO Context 466
17.4.2 Integration Testing in the OO Context 466

17.5 Test Strategies for WebApps 467
17.6 Validation Testing 467

xvi TABLE OF CONTENTS

pre75977_FM.qxd 11/27/08 6:38 PM Page xvi

17.6.1 Validation-Test Criteria 468
17.6.2 Configuration Review 468
17.6.3 Alpha and Beta Testing 468

17.7 System Testing 470
17.7.1 Recovery Testing 470
17.7.2 Security Testing 470
17.7.3 Stress Testing 471
17.7.4 Performance Testing 471
17.7.5 Deployment Testing 472

17.8 The Art of Debugging 473
17.8.1 The Debugging Process 473
17.8.2 Psychological Considerations 474
17.8.3 Debugging Strategies 475
17.8.4 Correcting the Error 477

17.9 Summary 478
PROBLEMS AND POINTS TO PONDER 478
FURTHER READINGS AND INFORMATION SOURCES 479

CHAPTER 18 TESTING CONVENTIONAL APPLICATIONS 481

18.1 Software Testing Fundamentals 482
18.2 Internal and External Views of Testing 484
18.3 White-Box Testing 485
18.4 Basis Path Testing 485

18.4.1 Flow Graph Notation 485
18.4.2 Independent Program Paths 487
18.4.3 Deriving Test Cases 489
18.4.4 Graph Matrices 491

18.5 Control Structure Testing 492
18.5.1 Condition Testing 492
18.5.2 Data Flow Testing 493
18.5.3 Loop Testing 493

18.6 Black-Box Testing 495
18.6.1 Graph-Based Testing Methods 495
18.6.2 Equivalence Partitioning 497
18.6.3 Boundary Value Analysis 498
18.6.4 Orthogonal Array Testing 499

18.7 Model-Based Testing 502
18.8 Testing for Specialized Environments, Architectures, and Applications 503

18.8.1 Testing GUIs 503
18.8.2 Testing of Client-Server Architectures 503
18.8.3 Testing Documentation and Help Facilities 505
18.8.4 Testing for Real-Time Systems 506

18.9 Patterns for Software Testing 507
18.10 Summary 508
PROBLEMS AND POINTS TO PONDER 509
FURTHER READINGS AND INFORMATION SOURCES 510

CHAPTER 19 TESTING OBJECT-ORIENTED APPLICATIONS 511

19.1 Broadening the View of Testing 512
19.2 Testing OOA and OOD Models 513

TABLE OF CONTENTS xvii

pre75977_FM.qxd 12/1/08 3:15 PM Page xvii

19.2.1 Correctness of OOA and OOD Models 513
19.2.2 Consistency of Object-Oriented Models 514

19.3 Object-Oriented Testing Strategies 516
19.3.1 Unit Testing in the OO Context 516
19.3.2 Integration Testing in the OO Context 516
19.3.3 Validation Testing in an OO Context 517

19.4 Object-Oriented Testing Methods 517
19.4.1 The Test-Case Design Implications of OO Concepts 518
19.4.2 Applicability of Conventional Test-Case Design Methods 518
19.4.3 Fault-Based Testing 519
19.4.4 Test Cases and the Class Hierarchy 519
19.4.5 Scenario-Based Test Design 520
19.4.6 Testing Surface Structure and Deep Structure 522

19.5 Testing Methods Applicable at the Class Level 522
19.5.1 Random Testing for OO Classes 522
19.5.2 Partition Testing at the Class Level 524

19.6 Interclass Test-Case Design 524
19.6.1 Multiple Class Testing 524
19.6.2 Tests Derived from Behavior Models 526

19.7 Summary 527
PROBLEMS AND POINTS TO PONDER 528
FURTHER READINGS AND INFORMATION SOURCES 528

CHAPTER 20 TESTING WEB APPLICATIONS 529

20.1 Testing Concepts for WebApps 530
20.1.1 Dimensions of Quality 530
20.1.2 Errors within a WebApp Environment 531
20.1.3 Testing Strategy 532
20.1.4 Test Planning 532

20.2 The Testing Process—An Overview 533
20.3 Content Testing 534

20.3.1 Content Testing Objectives 534
20.3.2 Database Testing 535

20.4 User Interface Testing 537
20.4.1 Interface Testing Strategy 537
20.4.2 Testing Interface Mechanisms 538
20.4.3 Testing Interface Semantics 540
20.4.4 Usability Tests 540
20.4.5 Compatibility Tests 542

20.5 Component-Level Testing 543
20.6 Navigation Testing 545

20.6.1 Testing Navigation Syntax 545
20.6.2 Testing Navigation Semantics 546

20.7 Configuration Testing 547
20.7.1 Server-Side Issues 547
20.7.2 Client-Side Issues 548

20.8 Security Testing 548
20.9 Performance Testing 550

20.9.1 Performance Testing Objectives 550
20.9.2 Load Testing 551
20.9.3 Stress Testing 552

xviii TABLE OF CONTENTS

pre75977_FM.qxd 11/27/08 6:38 PM Page xviii

20.10 Summary 553
PROBLEMS AND POINTS TO PONDER 554
FURTHER READINGS AND INFORMATION SOURCES 555

CHAPTER 21 FORMAL MODELING AND VERIFICATION 557

21.1 The Cleanroom Strategy 558
21.2 Functional Specification 560

21.2.1 Black-Box Specification 561
21.2.2 State-Box Specification 562
21.2.3 Clear-Box Specification 562

21.3 Cleanroom Design 563
21.3.1 Design Refinement 563
21.3.2 Design Verification 564

21.4 Cleanroom Testing 566
21.4.1 Statistical Use Testing 566
21.4.2 Certification 567

21.5 Formal Methods Concepts 568
21.6 Applying Mathematical Notation for Formal Specification 571
21.7 Formal Specification Languages 573

21.7.1 Object Constraint Language (OCL) 574
21.7.2 The Z Specification Language 577

21.8 Summary 580
PROBLEMS AND POINTS TO PONDER 581
FURTHER READINGS AND INFORMATION SOURCES 582

CHAPTER 22 SOFTWARE CONFIGURATION MANAGEMENT 584

22.1 Software Configuration Management 585
22.1.1 An SCM Scenario 586
22.1.2 Elements of a Configuration Management System 587
22.1.3 Baselines 587
22.1.4 Software Configuration Items 589

22.2 The SCM Repository 590
22.2.1 The Role of the Repository 590
22.2.2 General Features and Content 591
22.2.3 SCM Features 592

22.3 The SCM Process 593
22.3.1 Identification of Objects in the Software Configuration 594
22.3.2 Version Control 595
22.3.3 Change Control 596
22.3.4 Configuration Audit 599
22.3.5 Status Reporting 600

22.4 Configuration Management for WebApps 601
22.4.1 Dominant Issues 601
22.4.2 WebApp Configuration Objects 603
22.4.3 Content Management 603
22.4.4 Change Management 606
22.4.5 Version Control 608
22.4.6 Auditing and Reporting 609

22.5 Summary 610
PROBLEMS AND POINTS TO PONDER 611
FURTHER READINGS AND INFORMATION SOURCES 612

TABLE OF CONTENTS xix

pre75977_FM.qxd 11/27/08 6:38 PM Page xix

CHAPTER 23 PRODUCT METRICS 613

23.1 A Framework for Product Metrics 614
23.1.1 Measures, Metrics, and Indicators 614
23.1.2 The Challenge of Product Metrics 615
23.1.3 Measurement Principles 616
23.1.4 Goal-Oriented Software Measurement 617
23.1.5 The Attributes of Effective Software Metrics 618

23.2 Metrics for the Requirements Model 619
23.2.1 Function-Based Metrics 620
23.2.2 Metrics for Specification Quality 623

23.3 Metrics for the Design Model 624
23.3.1 Architectural Design Metrics 624
23.3.2 Metrics for Object-Oriented Design 627
23.3.3 Class-Oriented Metrics—The CK Metrics Suite 628
23.3.4 Class-Oriented Metrics—The MOOD Metrics Suite 631
23.3.5 OO Metrics Proposed by Lorenz and Kidd 632
23.3.6 Component-Level Design Metrics 632
23.3.7 Operation-Oriented Metrics 634
23.3.8 User Interface Design Metrics 635

23.4 Design Metrics for WebApps 636
23.5 Metrics for Source Code 638
23.6 Metrics for Testing 639

23.6.1 Halstead Metrics Applied to Testing 639
23.6.2 Metrics for Object-Oriented Testing 640

23.7 Metrics for Maintenance 641
23.8 Summary 642
PROBLEMS AND POINTS TO PONDER 642
FURTHER READINGS AND INFORMATION SOURCES 643

PART FOUR MANAGING SOFTWARE PROJECTS 645

CHAPTER 24 PROJECT MANAGEMENT CONCEPTS 646

24.1 The Management Spectrum 647
24.1.1 The People 647
24.1.2 The Product 648
24.1.3 The Process 648
24.1.4 The Project 648

24.2 People 649
24.2.1 The Stakeholders 649
24.2.2 Team Leaders 650
24.2.3 The Software Team 651
24.2.4 Agile Teams 654
24.2.5 Coordination and Communication Issues 655

24.3 The Product 656
24.3.1 Software Scope 656
24.3.2 Problem Decomposition 656

24.4 The Process 657
24.4.1 Melding the Product and the Process 657
24.4.2 Process Decomposition 658

24.5 The Project 660
24.6 The W5HH Principle 661

xx TABLE OF CONTENTS

pre75977_FM.qxd 11/27/08 6:38 PM Page xx

24.7 Critical Practices 662
24.8 Summary 663
PROBLEMS AND POINTS TO PONDER 663
FURTHER READINGS AND INFORMATION SOURCES 664

CHAPTER 25 PROCESS AND PROJECT METRICS 666

25.1 Metrics in the Process and Project Domains 667
25.1.1 Process Metrics and Software Process Improvement 667
25.1.2 Project Metrics 670

25.2 Software Measurement 671
25.2.1 Size-Oriented Metrics 672
25.2.2 Function-Oriented Metrics 673
25.2.3 Reconciling LOC and FP Metrics 673
25.2.4 Object-Oriented Metrics 675
25.2.5 Use-Case–Oriented Metrics 676
25.2.6 WebApp Project Metrics 677

25.3 Metrics for Software Quality 679
25.3.1 Measuring Quality 680
25.3.2 Defect Removal Efficiency 681

25.4 Integrating Metrics within the Software Process 682
25.4.1 Arguments for Software Metrics 683
25.4.2 Establishing a Baseline 683
25.4.3 Metrics Collection, Computation, and Evaluation 684

25.5 Metrics for Small Organizations 684
25.6 Establishing a Software Metrics Program 686
25.7 Summary 688
PROBLEMS AND POINTS TO PONDER 688
FURTHER READINGS AND INFORMATION SOURCES 689

CHAPTER 26 ESTIMATION FOR SOFTWARE PROJECTS 691

26.1 Observations on Estimation 692
26.2 The Project Planning Process 693
26.3 Software Scope and Feasibility 694
26.4 Resources 695

26.4.1 Human Resources 695
26.4.2 Reusable Software Resources 696
26.4.3 Environmental Resources 696

26.5 Software Project Estimation 697
26.6 Decomposition Techniques 698

26.6.1 Software Sizing 698
26.6.2 Problem-Based Estimation 699
26.6.3 An Example of LOC-Based Estimation 701
26.6.4 An Example of FP-Based Estimation 702
26.6.5 Process-Based Estimation 703
26.6.6 An Example of Process-Based Estimation 704
26.6.7 Estimation with Use Cases 705
26.6.8 An Example of Use-Case–Based Estimation 706
26.6.9 Reconciling Estimates 707

26.7 Empirical Estimation Models 708
26.7.1 The Structure of Estimation Models 709
26.7.2 The COCOMO II Model 709
26.7.3 The Software Equation 711

TABLE OF CONTENTS xxi

pre75977_FM.qxd 11/27/08 6:38 PM Page xxi

26.8 Estimation for Object-Oriented Projects 712
26.9 Specialized Estimation Techniques 713

26.9.1 Estimation for Agile Development 713
26.9.2 Estimation for WebApp Projects 714

26.10 The Make/Buy Decision 715
26.10.1 Creating a Decision Tree 715
26.10.2 Outsourcing 717

26.11 Summary 718
PROBLEMS AND POINTS TO PONDER 719
FURTHER READINGS AND INFORMATION SOURCES 719

CHAPTER 27 PROJECT SCHEDULING 721

27.1 Basic Concepts 722
27.2 Project Scheduling 724

27.2.1 Basic Principles 725
27.2.2 The Relationship Between People and Effort 725
27.2.3 Effort Distribution 727

27.3 Defining a Task Set for the Software Project 728
27.3.1 A Task Set Example 729
27.3.2 Refinement of Software Engineering Actions 730

27.4 Defining a Task Network 731
27.5 Scheduling 732

27.5.1 Time-Line Charts 732
27.5.2 Tracking the Schedule 734
27.5.3 Tracking Progress for an OO Project 735
27.5.4 Scheduling for WebApp Projects 736

27.6 Earned Value Analysis 739
27.7 Summary 741
PROBLEMS AND POINTS TO PONDER 741
FURTHER READINGS AND INFORMATION SOURCES 743

CHAPTER 28 RISK MANAGEMENT 744

28.1 Reactive versus Proactive Risk Strategies 745
28.2 Software Risks 745
28.3 Risk Identification 747

28.3.1 Assessing Overall Project Risk 748
28.3.2 Risk Components and Drivers 749

28.4 Risk Projection 749
28.4.1 Developing a Risk Table 750
28.4.2 Assessing Risk Impact 752

28.5 Risk Refinement 754
28.6 Risk Mitigation, Monitoring, and Management 755
28.7 The RMMM Plan 757
28.8 Summary 759
PROBLEMS AND POINTS TO PONDER 759
FURTHER READINGS AND INFORMATION SOURCES 760

CHAPTER 29 MAINTENANCE AND REENGINEERING 761

29.1 Software Maintenance 762
29.2 Software Supportability 764

xxii TABLE OF CONTENTS

pre75977_FM.qxd 11/27/08 6:38 PM Page xxii

29.3 Reengineering 764
29.4 Business Process Reengineering 765

29.4.1 Business Processes 765
29.4.2 A BPR Model 766

29.5 Software Reengineering 768
29.5.1 A Software Reengineering Process Model 768
29.5.2 Software Reengineering Activities 770

29.6 Reverse Engineering 772
29.6.1 Reverse Engineering to Understand Data 773
29.6.2 Reverse Engineering to Understand Processing 774
29.6.3 Reverse Engineering User Interfaces 775

29.7 Restructuring 776
29.7.1 Code Restructuring 776
29.7.2 Data Restructuring 777

29.8 Forward Engineering 778
29.8.1 Forward Engineering for Client-Server Architectures 779
29.8.2 Forward Engineering for Object-Oriented Architectures 780

29.9 The Economics of Reengineering 780
29.10 Summary 781
PROBLEMS AND POINTS TO PONDER 782
FURTHER READINGS AND INFORMATION SOURCES 783

PART FIVE ADVANCED TOPICS 785

CHAPTER 30 SOFTWARE PROCESS IMPROVEMENT 786

30.1 What Is SPI? 787
30.1.1 Approaches to SPI 787
30.1.2 Maturity Models 789
30.1.3 Is SPI for Everyone? 790

30.2 The SPI Process 791
30.2.1 Assessment and Gap Analysis 791
30.2.2 Education and Training 793
30.2.3 Selection and Justification 793
30.2.4 Installation/Migration 794
30.2.5 Evaluation 795
30.2.6 Risk Management for SPI 795
30.2.7 Critical Success Factors 796

30.3 The CMMI 797
30.4 The People CMM 801
30.5 Other SPI Frameworks 802
30.6 SPI Return on Investment 804
30.7 SPI Trends 805
30.8 Summary 806
PROBLEMS AND POINTS TO PONDER 806
FURTHER READINGS AND INFORMATION SOURCES 807

CHAPTER 31 EMERGING TRENDS IN SOFTWARE ENGINEERING 808

31.1 Technology Evolution 809
31.2 Observing Software Engineering Trends 811

TABLE OF CONTENTS xxiii

pre75977_FM.qxd 11/27/08 6:38 PM Page xxiii

31.3 Identifying “Soft Trends” 812
31.3.1 Managing Complexity 814
31.3.2 Open-World Software 815
31.3.3 Emergent Requirements 816
31.3.4 The Talent Mix 816
31.3.5 Software Building Blocks 817
31.3.6 Changing Perceptions of “Value” 818
31.3.7 Open Source 818

31.4 Technology Directions 819
31.4.1 Process Trends 819
31.4.2 The Grand Challenge 821
31.4.3 Collaborative Development 822
31.4.4 Requirements Engineering 824
31.4.5 Model-Driven Software Development 825
31.4.6 Postmodern Design 825
31.4.7 Test-Driven Development 826

31.5 Tools-Related Trends 827
31.5.1 Tools That Respond to Soft Trends 828
31.5.2 Tools That Address Technology Trends 830

31.6 Summary 830
PROBLEMS AND POINTS TO PONDER 831
FURTHER READINGS AND INFORMATION SOURCES 831

CHAPTER 32 CONCLUDING COMMENTS 833

32.1 The Importance of Software—Revisited 834
32.2 People and the Way They Build Systems 834
32.3 New Modes for Representing Information 835
32.4 The Long View 837
32.5 The Software Engineer’s Responsibility 838
32.6 A Final Comment 839

APPENDIX 1 AN INTRODUCTION TO UML 841
APPENDIX 2 OBJECT-ORIENTED CONCEPTS 863
REFERENCES 871
INDEX 889

xxiv TABLE OF CONTENTS

pre75977_FM.qxd 12/3/08 1:55 PM Page xxiv

When computer software succeeds—when it meets the needs of the people who use
it, when it performs flawlessly over a long period of time, when it is easy to modify

and even easier to use—it can and does change things for the better. But when software
fails—when its users are dissatisfied, when it is error prone, when it is difficult to change
and even harder to use—bad things can and do happen. We all want to build software that
makes things better, avoiding the bad things that lurk in the shadow of failed efforts. To
succeed, we need discipline when software is designed and built. We need an engineer-
ing approach.

It has been almost three decades since the first edition of this book was written. During
that time, software engineering has evolved from an obscure idea practiced by a relatively
small number of zealots to a legitimate engineering discipline. Today, it is recognized as a
subject worthy of serious research, conscientious study, and tumultuous debate. Through-
out the industry, software engineer has replaced programmer as the job title of preference.
Software process models, software engineering methods, and software tools have been
adopted successfully across a broad spectrum of industry segments.

Although managers and practitioners alike recognize the need for a more disciplined
approach to software, they continue to debate the manner in which discipline is to be
applied. Many individuals and companies still develop software haphazardly, even as they
build systems to service today’s most advanced technologies. Many professionals and
students are unaware of modern methods. And as a result, the quality of the software that
we produce suffers, and bad things happen. In addition, debate and controversy about the
true nature of the software engineering approach continue. The status of software engi-
neering is a study in contrasts. Attitudes have changed, progress has been made, but
much remains to be done before the discipline reaches full maturity.

The seventh edition of Software Engineering: A Practitioner’s Approach is intended to
serve as a guide to a maturing engineering discipline. Like the six editions that preceded it,
the seventh edition is intended for both students and practitioners, retaining its appeal as
a guide to the industry professional and a comprehensive introduction to the student at the
upper-level undergraduate or first-year graduate level.

The seventh edition is considerably more than a simple update. The book has been
revised and restructured to improve pedagogical flow and emphasize new and important
software engineering processes and practices. In addition, a revised and updated “support
system,” illustrated in the figure, provides a comprehensive set of student, instructor, and
professional resources to complement the content of the book. These resources are pre-
sented as part of a website (www.mhhe.com/ pressman) specifically designed for Software
Engineering: A Practitioner’s Approach.

The Seventh Edition. The 32 chapters of the seventh edition have been reorganized into
five parts. This organization, which differs considerably from the sixth edition, has been
done to better compartmentalize topics and assist instructors who may not have the time
to complete the entire book in one term.

PREFACE

xxv

pre75977_FM.qxd 11/27/08 6:38 PM Page xxv

http://www.mhhe.com/pressman

Part 1, The Process, presents a variety of different views of software process, consider-
ing all important process models and addressing the debate between prescriptive and
agile process philosophies. Part 2, Modeling, presents analysis and design methods with
an emphasis on object-oriented techniques and UML modeling. Pattern-based design and
design for Web applications are also considered. Part 3, Quality Management, presents the
concepts, procedures, techniques, and methods that enable a software team to assess
software quality, review software engineering work products, conduct SQA procedures,
and apply an effective testing strategy and tactics. In addition, formal modeling and veri-
fication methods are also considered. Part 4, Managing Software Projects, presents topics
that are relevant to those who plan, manage, and control a software development project.
Part 5, Advanced Topics, considers software process improvement and software engineer-
ing trends. Continuing in the tradition of past editions, a series of sidebars is used through-
out the book to present the trials and tribulations of a (fictional) software team and to
provide supplementary materials about methods and tools that are relevant to chapter
topics. Two new appendices provide brief tutorials on UML and object-oriented thinking
for those who may be unfamiliar with these important topics.

xxvi PREFACE

Web resources
 (1,000+ links)
Reference library
 (500+ links)
Checklists
Work product templates
Tiny tools
Adaptable process model
Umbrella activities task set
Comprehensive case study

Student
resources

Instructor
resources

Solved
problems

Instructor
manual

Test
bank

Industry
comment

Distance
learning

Professional
resources

Power-
point
slides

Practice
quizzes

Other
SE

topics

SEPA
7/e

Chapter
study

guides

Support
System for
SEPA, 7/e

pre75977_FM.qxd 11/27/08 6:39 PM Page xxvi

The five-part organization of the seventh edition enables an instructor to “cluster”
topics based on available time and student need. An entire one-term course can be built
around one or more of the five parts. A software engineering survey course would select
chapters from all five parts. A software engineering course that emphasizes analysis and
design would select topics from Parts 1 and 2. A testing-oriented software engineering
course would select topics from Parts 1 and 3, with a brief foray into Part 2. A “manage-
ment course” would stress Parts 1 and 4. By organizing the seventh edition in this way,
I have attempted to provide an instructor with a number of teaching options. In every case,
the content of the seventh edition is complemented by the following elements of the SEPA,
7/e Support System.

Student Resources. A wide variety of student resources includes an extensive online
learning center encompassing chapter-by-chapter study guides, practice quizzes, prob-
lem solutions, and a variety of Web-based resources including software engineering
checklists, an evolving collection of “tiny tools,” a comprehensive case study, work prod-
uct templates, and many other resources. In addition, over 1000 categorized Web Refer-
ences allow a student to explore software engineering in greater detail and a Reference
Library with links to over 500 downloadable papers provides an in-depth source of
advanced software engineering information.

Instructor Resources. A broad array of instructor resources has been developed to
supplement the seventh edition. These include a complete online Instructor’s Guide (also
downloadable) and supplementary teaching materials including a complete set of over
700 PowerPoint Slides that may be used for lectures, and a test bank. Of course, all
resources available for students (e.g., tiny tools, the Web References, the downloadable
Reference Library) and professionals are also available.

The Instructor’s Guide for Software Engineering: A Practitioner’s Approach presents sug-
gestions for conducting various types of software engineering courses, recommendations
for a variety of software projects to be conducted in conjunction with a course, solutions
to selected problems, and a number of useful teaching aids.

Professional Resources. A collection of resources available to industry practitioners
(as well as students and faculty) includes outlines and samples of software engineering
documents and other work products, a useful set of software engineering checklists, a
catalog of software engineering (CASE) tools, a comprehensive collection of Web-based
resources, and an “adaptable process model” that provides a detailed task breakdown of
the software engineering process.

When coupled with its online support system, the seventh edition of Software Engi-
neering: A Practitioner’s Approach, provides flexibility and depth of content that cannot be
achieved by a textbook alone.

Acknowledgments. My work on the seven editions of Software Engineering: A Practi-
tioner’s Approach has been the longest continuing technical project of my life. Even when
the writing stops, information extracted from the technical literature continues to be
assimilated and organized, and criticism and suggestions from readers worldwide is eval-
uated and cataloged. For this reason, my thanks to the many authors of books, papers,
and articles (in both hardcopy and electronic media) who have provided me with addi-
tional insight, ideas, and commentary over nearly 30 years.

Special thanks go to Tim Lethbridge of the University of Ottawa, who assisted me in
the development of UML and OCL examples and developed the case study that accompa-
nies this book, and Dale Skrien of Colby College, who developed the UML tutorial in

PREFACE xxvii

pre75977_FM.qxd 11/27/08 6:39 PM Page xxvii

The content of the seventh edition of Software Engineering: A Practitioner’s Approach
has been shaped by industry professionals, university professors, and students who have
used earlier editions of the book and have taken the time to communicate their sugges-
tions, criticisms, and ideas. My thanks to each of you. In addition, my personal thanks go
to our many industry clients worldwide, who certainly have taught me as much or more
than I could ever teach them.

As the editions of this book have evolved, my sons, Mathew and Michael, have grown
from boys to men. Their maturity, character, and success in the real world have been an
inspiration to me. Nothing has filled me with more pride. And finally, to Barbara, my love
and thanks for tolerating the many, many hours in the office and encouraging still another
edition of “the book.”

Roger S. Pressman

xxviii PREFACE

Osman Balci,
Virginia Tech University

Max Fomitchev,
Penn State University

Jerry (Zeyu) Gao,
San Jose State University

Guillermo Garcia,
Universidad Alfonso X Madrid

Pablo Gervas,
Universidad Complutense de Madrid

SK Jain,
National Institute of Technology Hamirpur

Saeed Monemi,
Cal Poly Pomona

Ahmed Salem,
California State University

Vasudeva Varma,
IIIT Hyderabad

Appendix 1. Their assistance and comments were invaluable. Special thanks also go to
Bruce Maxim of the University of Michigan–Dearborn, who assisted me in developing
much of the pedagogical website content that accompanies this book. Finally, I wish to
thank the reviewers of the seventh edition: Their in-depth comments and thoughtful
criticism have been invaluable.

pre75977_FM.qxd 11/27/08 6:39 PM Page xxviii

He had the classic look of a senior executive for a major software
company—mid-40s, slightly graying at the temples, trim and athletic, with
eyes that penetrated the listener as he spoke. But what he said shocked me.

“Software is dead.”
I blinked with surprise and then smiled. “You’re joking, right? The world is

driven by software and your company has profited handsomely because of it. It
isn’t dead! It’s alive and growing.”

He shook his head emphatically. “No, it’s dead . . . at least as we once knew it.”
I leaned forward. “Go on.”
He spoke while tapping the table for emphasis. “The old-school view of

software—you buy it, you own it, and it’s your job to manage it—that’s coming to
an end. Today, with Web 2.0 and pervasive computing coming on strong, we’re
going to be seeing a completely different generation of software. It’ll be delivered
via the Internet and will look exactly like it’s residing on each user’s computing
device . . . but it’ll reside on a far-away server.”

1

C H A P T E R

1SOFTWARE AND
SOFTWARE ENGINEERING

What is it? Computer software is
the product that software profession-
als build and then support over the
long term. It encompasses programs

that execute within a computer of any size and
architecture, content that is presented as the
computer programs execute, and descriptive
information in both hard copy and virtual forms
that encompass virtually any electronic media.
Software engineering encompasses a process, a
collection of methods (practice) and an array
of tools that allow professionals to build high-
quality computer software.

Who does it? Software engineers build and sup-
port software, and virtually everyone in the indus-
trialized world uses it either directly or indirectly.

Why is it important? Software is important
because it affects nearly every aspect of our
lives and has become pervasive in our com-
merce, our culture, and our everyday activities.

Q U I C K
L O O K

Software engineering is important because it
enables us to build complex systems in a timely
manner and with high quality.

What are the steps? You build computer soft-
ware like you build any successful product, by
applying an agile, adaptable process that leads
to a high-quality result that meets the needs of
the people who will use the product. You apply
a software engineering approach.

What is the work product? From the point of
view of a software engineer, the work product is
the set of programs, content (data), and other
work products that are computer software. But
from the user’s viewpoint, the work product is
the resultant information that somehow makes
the user’s world better.

How do I ensure that I’ve done it right?
Read the remainder of this book, select those
ideas that are applicable to the software that
you build, and apply them to your work.

K E Y
C O N C E P T S

application
domains 7
characteristics of
software 4
framework
activities 15
legacy software . .9
practice 17
principles 19
software
engineering 12
software myths . .21
software process . .14
umbrella
activities 16
WebApps 10

pre75977_ch01.qxd 11/27/08 3:11 PM Page 1

I had to agree. “So, your life will be much simpler. You guys won’t have to worry
about five different versions of the same App in use across tens of thousands of
users.”

He smiled. “Absolutely. Only the most current version residing on our servers.
When we make a change or a correction, we supply updated functionality and
content to every user. Everyone has it instantly!”

I grimaced. “But if you make a mistake, everyone has that instantly as well.”
He chuckled. “True, that’s why we’re redoubling our efforts to do even better

software engineering. Problem is, we have to do it ‘fast’ because the market has
accelerated in every application area.”

I leaned back and put my hands behind my head. “You know what they say, . . .
you can have it fast, you can have it right, or you can have it cheap. Pick two!”

“I’ll take it fast and right,” he said as he began to get up.
I stood as well. “Then you really do need software engineering.”
“I know that,” he said as he began to move away. “The problem is, we’ve got to

convince still another generation of techies that it’s true!”

Is software really dead? If it was, you wouldn’t be reading this book!

Computer software continues to be the single most important technology on the

world stage. And it’s also a prime example of the law of unintended consequences.

Fifty years ago no one could have predicted that software would become an indis-

pensable technology for business, science, and engineering; that software would

enable the creation of new technologies (e.g., genetic engineering and nanotech-

nology), the extension of existing technologies (e.g., telecommunications), and the

radical change in older technologies (e.g., the printing industry); that software would

be the driving force behind the personal computer revolution; that shrink-wrapped

software products would be purchased by consumers in neighborhood malls; that

software would slowly evolve from a product to a service as “on-demand” software

companies deliver just-in-time functionality via a Web browser; that a software

company would become larger and more influential than almost all industrial-era

companies; that a vast software-driven network called the Internet would evolve and

change everything from library research to consumer shopping to political discourse

to the dating habits of young (and not so young) adults.

No one could foresee that software would become embedded in systems of all

kinds: transportation, medical, telecommunications, military, industrial, entertain-

ment, office machines, . . . the list is almost endless. And if you believe the law of

unintended consequences, there are many effects that we cannot yet predict.

No one could predict that millions of computer programs would have to be cor-

rected, adapted, and enhanced as time passed. The burden of performing these

“maintenance” activities would absorb more people and more resources than all

work applied to the creation of new software.

As software’s importance has grown, the software community has continually

attempted to develop technologies that will make it easier, faster, and less expensive

2 CHAPTER 1 SOFTWARE AND SOFTWARE ENGINEERING

uote:

“Ideas and
technological
discoveries are the
driving engines of
economic growth.”

Wall Street
Journal

pre75977_ch01.qxd 11/27/08 3:11 PM Page 2

to build and maintain high-quality computer programs. Some of these technologies

are targeted at a specific application domain (e.g., website design and implementa-

tion); others focus on a technology domain (e.g., object-oriented systems or aspect-

oriented programming); and still others are broad-based (e.g., operating systems

such as Linux). However, we have yet to develop a software technology that does it

all, and the likelihood of one arising in the future is small. And yet, people bet their

jobs, their comforts, their safety, their entertainment, their decisions, and their very

lives on computer software. It better be right.

This book presents a framework that can be used by those who build computer

software—people who must get it right. The framework encompasses a process, a

set of methods, and an array of tools that we call software engineering.

1.1 THE NATURE OF SOFTWARE

Today, software takes on a dual role. It is a product, and at the same time, the vehi-

cle for delivering a product. As a product, it delivers the computing potential em-

bodied by computer hardware or more broadly, by a network of computers that are

accessible by local hardware. Whether it resides within a mobile phone or operates

inside a mainframe computer, software is an information transformer—producing,

managing, acquiring, modifying, displaying, or transmitting information that can be

as simple as a single bit or as complex as a multimedia presentation derived from

data acquired from dozens of independent sources. As the vehicle used to deliver the

product, software acts as the basis for the control of the computer (operating sys-

tems), the communication of information (networks), and the creation and control

of other programs (software tools and environments).

Software delivers the most important product of our time—information. It trans-

forms personal data (e.g., an individual’s financial transactions) so that the data can

be more useful in a local context; it manages business information to enhance com-

petitiveness; it provides a gateway to worldwide information networks (e.g., the

Internet), and provides the means for acquiring information in all of its forms.

The role of computer software has undergone significant change over the last

half-century. Dramatic improvements in hardware performance, profound changes

in computing architectures, vast increases in memory and storage capacity, and a

wide variety of exotic input and output options, have all precipitated more sophisti-

cated and complex computer-based systems. Sophistication and complexity can

produce dazzling results when a system succeeds, but they can also pose huge

problems for those who must build complex systems.

Today, a huge software industry has become a dominant factor in the economies

of the industrialized world. Teams of software specialists, each focusing on one part

of the technology required to deliver a complex application, have replaced the lone

programmer of an earlier era. And yet, the questions that were asked of the lone

CHAPTER 1 SOFTWARE AND SOFTWARE ENGINEERING 3

Software is both a
product and a vehicle
that delivers a product.

uote:

“Software is a
place where
dreams are planted
and nightmares
harvested, an
abstract, mystical
swamp where
terrible demons
compete with
magical panaceas,
a world of
werewolves and
silver bullets.”

Brad J. Cox

pre75977_ch01.qxd 11/27/08 3:11 PM Page 3

programmer are the same questions that are asked when modern computer-based

systems are built:1

4 CHAPTER 1 SOFTWARE AND SOFTWARE ENGINEERING

1 In an excellent book of essays on the software business, Tom DeMarco [DeM95] argues the coun-

terpoint. He states: “Instead of asking why software costs so much, we need to begin asking ‘What

have we done to make it possible for today’s software to cost so little?’ The answer to that ques-

tion will help us continue the extraordinary level of achievement that has always distinguished the

software industry.”

• Why does it take so long to get software finished?

• Why are development costs so high?

• Why can’t we find all errors before we give the software to our customers?

• Why do we spend so much time and effort maintaining existing

programs?

• Why do we continue to have difficulty in measuring progress as software is

being developed and maintained?

These, and many other questions, are a manifestation of the concern about

software and the manner in which it is developed—a concern that has lead to the

adoption of software engineering practice.

1.1.1 Defining Software

Today, most professionals and many members of the public at large feel that they

understand software. But do they?

A textbook description of software might take the following form:

Software is: (1) instructions (computer programs) that when executed provide desired

features, function, and performance; (2) data structures that enable the programs to ad-

equately manipulate information, and (3) descriptive information in both hard copy and

virtual forms that describes the operation and use of the programs.

There is no question that other more complete definitions could be offered.

But a more formal definition probably won’t measurably improve your under-

standing. To accomplish that, it’s important to examine the characteristics of soft-

ware that make it different from other things that human beings build. Software is a

logical rather than a physical system element. Therefore, software has characteris-

tics that are considerably different than those of hardware:

1. Software is developed or engineered; it is not manufactured in the classical sense.

Although some similarities exist between software development and hard-

ware manufacturing, the two activities are fundamentally different. In both

activities, high quality is achieved through good design, but the manufactur-

ing phase for hardware can introduce quality problems that are nonexistent

How should
we define

software?
?

Software is
engineered, not
manufactured.

pre75977_ch01.qxd 11/27/08 3:11 PM Page 4

(or easily corrected) for software. Both activities are dependent on people,

but the relationship between people applied and work accomplished is

entirely different (see Chapter 24). Both activities require the construction of

a “product,” but the approaches are different. Software costs are concen-

trated in engineering. This means that software projects cannot be managed

as if they were manufacturing projects.

2. Software doesn’t “wear out.”

Figure 1.1 depicts failure rate as a function of time for hardware. The rela-

tionship, often called the “bathtub curve,” indicates that hardware exhibits

relatively high failure rates early in its life (these failures are often attributa-

ble to design or manufacturing defects); defects are corrected and the failure

rate drops to a steady-state level (hopefully, quite low) for some period of

time. As time passes, however, the failure rate rises again as hardware com-

ponents suffer from the cumulative effects of dust, vibration, abuse, tempera-

ture extremes, and many other environmental maladies. Stated simply, the

hardware begins to wear out.

Software is not susceptible to the environmental maladies that cause

hardware to wear out. In theory, therefore, the failure rate curve for software

should take the form of the “idealized curve” shown in Figure 1.2. Undiscov-

ered defects will cause high failure rates early in the life of a program.

However, these are corrected and the curve flattens as shown. The idealized

curve is a gross oversimplification of actual failure models for software.

However, the implication is clear—software doesn’t wear out. But it does

deteriorate!

CHAPTER 1 SOFTWARE AND SOFTWARE ENGINEERING 5

“Wear out”“Infant
mortality”

Time

Fa
ilu

re
 r

a
te

FIGURE 1.1

Failure curve
for hardware

Software doesn’t wear
out, but it does
deteriorate.

If you want to reduce
software deterioration,
you’ll have to do
better software design
(Chapters 8 to 13).

pre75977_ch01.qxd 11/27/08 3:11 PM Page 5

This seeming contradiction can best be explained by considering the

actual curve in Figure 1.2. During its life,2 software will undergo change. As

changes are made, it is likely that errors will be introduced, causing the

failure rate curve to spike as shown in the “actual curve” (Figure 1.2). Before

the curve can return to the original steady-state failure rate, another change

is requested, causing the curve to spike again. Slowly, the minimum failure

rate level begins to rise—the software is deteriorating due to change.

Another aspect of wear illustrates the difference between hardware and

software. When a hardware component wears out, it is replaced by a spare

part. There are no software spare parts. Every software failure indicates an

error in design or in the process through which design was translated into

machine executable code. Therefore, the software maintenance tasks that

accommodate requests for change involve considerably more complexity

than hardware maintenance.

3. Although the industry is moving toward component-based construction, most

software continues to be custom built.

As an engineering discipline evolves, a collection of standard design compo-

nents is created. Standard screws and off-the-shelf integrated circuits are

only two of thousands of standard components that are used by mechanical

and electrical engineers as they design new systems. The reusable compo-

nents have been created so that the engineer can concentrate on the truly

innovative elements of a design, that is, the parts of the design that represent

6 CHAPTER 1 SOFTWARE AND SOFTWARE ENGINEERING

Increased failure
rate due to side

effects

Time

Fa
ilu

re
 r

a
te

Change

Actual curve

Idealized curve

FIGURE 1.2

Failure curves
for software

2 In fact, from the moment that development begins and long before the first version is delivered,

changes may be requested by a variety of different stakeholders.

Software engineering
methods strive to
reduce the magnitude
of the spikes and the
slope of the actual
curve in Figure 1.2.

uote:

“Ideas are the
building blocks of
ideas.”

Jason Zebehazy

pre75977_ch01.qxd 11/27/08 3:11 PM Page 6

something new. In the hardware world, component reuse is a natural part of

the engineering process. In the software world, it is something that has only

begun to be achieved on a broad scale.

A software component should be designed and implemented so that it can

be reused in many different programs. Modern reusable components encap-

sulate both data and the processing that is applied to the data, enabling the

software engineer to create new applications from reusable parts.3 For exam-

ple, today’s interactive user interfaces are built with reusable components

that enable the creation of graphics windows, pull-down menus, and a wide

variety of interaction mechanisms. The data structures and processing detail

required to build the interface are contained within a library of reusable

components for interface construction.

1.1.2 Software Application Domains

Today, seven broad categories of computer software present continuing challenges

for software engineers:

System software—a collection of programs written to service other pro-

grams. Some system software (e.g., compilers, editors, and file management

utilities) processes complex, but determinate,4 information structures. Other

systems applications (e.g., operating system components, drivers, networking

software, telecommunications processors) process largely indeterminate data.

In either case, the systems software area is characterized by heavy interaction

with computer hardware; heavy usage by multiple users; concurrent opera-

tion that requires scheduling, resource sharing, and sophisticated process

management; complex data structures; and multiple external interfaces.

Application software—stand-alone programs that solve a specific business

need. Applications in this area process business or technical data in a way

that facilitates business operations or management/technical decision mak-

ing. In addition to conventional data processing applications, application

software is used to control business functions in real time (e.g., point-of-sale

transaction processing, real-time manufacturing process control).

Engineering/scientific software—has been characterized by “number

crunching” algorithms. Applications range from astronomy to volcanology,

from automotive stress analysis to space shuttle orbital dynamics, and

from molecular biology to automated manufacturing. However, modern

applications within the engineering/scientific area are moving away from

CHAPTER 1 SOFTWARE AND SOFTWARE ENGINEERING 7

3 Component-based development is discussed in Chapter 10.

4 Software is determinate if the order and timing of inputs, processing, and outputs is predictable.

Software is indeterminate if the order and timing of inputs, processing, and outputs cannot be

predicted in advance.

WebRef
One of the most
comprehensive libraries
of shareware/ freeware
can be found at
shareware.cnet
.com

pre75977_ch01.qxd 11/27/08 3:11 PM Page 7

conventional numerical algorithms. Computer-aided design, system simula-

tion, and other interactive applications have begun to take on real-time and

even system software characteristics.

Embedded software—resides within a product or system and is used to

implement and control features and functions for the end user and for the

system itself. Embedded software can perform limited and esoteric functions

(e.g., key pad control for a microwave oven) or provide significant function

and control capability (e.g., digital functions in an automobile such as fuel

control, dashboard displays, and braking systems).

Product-line software—designed to provide a specific capability for use by

many different customers. Product-line software can focus on a limited and

esoteric marketplace (e.g., inventory control products) or address mass

consumer markets (e.g., word processing, spreadsheets, computer graphics,

multimedia, entertainment, database management, and personal and

business financial applications).

Web applications—called “WebApps,” this network-centric software cate-

gory spans a wide array of applications. In their simplest form, WebApps can

be little more than a set of linked hypertext files that present information

using text and limited graphics. However, as Web 2.0 emerges, WebApps are

evolving into sophisticated computing environments that not only provide

stand-alone features, computing functions, and content to the end user, but

also are integrated with corporate databases and business applications.

Artificial intelligence software—makes use of nonnumerical algorithms to

solve complex problems that are not amenable to computation or straightfor-

ward analysis. Applications within this area include robotics, expert systems,

pattern recognition (image and voice), artificial neural networks, theorem

proving, and game playing.

Millions of software engineers worldwide are hard at work on software projects in

one or more of these categories. In some cases, new systems are being built, but in

many others, existing applications are being corrected, adapted, and enhanced. It is

not uncommon for a young software engineer to work a program that is older than

she is! Past generations of software people have left a legacy in each of the cate-

gories I have discussed. Hopefully, the legacy to be left behind by this generation will

ease the burden of future software engineers. And yet, new challenges (Chapter 31)

have appeared on the horizon:

Open-world computing—the rapid growth of wireless networking may

soon lead to true pervasive, distributed computing. The challenge for soft-

ware engineers will be to develop systems and application software that will

allow mobile devices, personal computers, and enterprise systems to com-

municate across vast networks.

8 CHAPTER 1 SOFTWARE AND SOFTWARE ENGINEERING

uote:

“There is no
computer that has
common sense.”

Marvin Minsky

pre75977_ch01.qxd 11/27/08 3:11 PM Page 8

Netsourcing—the World Wide Web is rapidly becoming a computing engine

as well as a content provider. The challenge for software engineers is to

architect simple (e.g., personal financial planning) and sophisticated applica-

tions that provide a benefit to targeted end-user markets worldwide.

Open source—a growing trend that results in distribution of source code for

systems applications (e.g., operating systems, database, and development en-

vironments) so that many people can contribute to its development. The chal-

lenge for software engineers is to build source code that is self-descriptive,

but more importantly, to develop techniques that will enable both customers

and developers to know what changes have been made and how those

changes manifest themselves within the software.

Each of these new challenges will undoubtedly obey the law of unintended conse-

quences and have effects (for businesspeople, software engineers, and end users) that

cannot be predicted today. However, software engineers can prepare by instantiating

a process that is agile and adaptable enough to accommodate dramatic changes in

technology and to business rules that are sure to come over the next decade.

1.1.3 Legacy Software

Hundreds of thousands of computer programs fall into one of the seven broad

application domains discussed in the preceding subsection. Some of these are state-

of-the-art software—just released to individuals, industry, and government. But

other programs are older, in some cases much older.

These older programs—often referred to as legacy software—have been the focus

of continuous attention and concern since the 1960s. Dayani-Fard and his

colleagues [Day99] describe legacy software in the following way:

Legacy software systems . . . were developed decades ago and have been continually

modified to meet changes in business requirements and computing platforms. The pro-

liferation of such systems is causing headaches for large organizations who find them

costly to maintain and risky to evolve.

Liu and his colleagues [Liu98] extend this description by noting that “many legacy

systems remain supportive to core business functions and are ‘indispensable’ to

the business.” Hence, legacy software is characterized by longevity and business

criticality.

Unfortunately, there is sometimes one additional characteristic that is present

in legacy software—poor quality.5 Legacy systems sometimes have inextensible

designs, convoluted code, poor or nonexistent documentation, test cases and results

CHAPTER 1 SOFTWARE AND SOFTWARE ENGINEERING 9

uote:

“You can’t always
predict, but you
can always
prepare.”

Anonymous

5 In this case, quality is judged based on modern software engineering thinking—a somewhat unfair

criterion since some modern software engineering concepts and principles may not have been well

understood at the time that the legacy software was developed.

What do I do
if I encounter

a legacy system
that exhibits poor
quality?

?

pre75977_ch01.qxd 11/27/08 3:11 PM Page 9

that were never archived, a poorly managed change history—the list can be quite

long. And yet, these systems support “core business functions and are indispensable

to the business.” What to do?

The only reasonable answer may be: Do nothing, at least until the legacy system

must undergo some significant change. If the legacy software meets the needs of its

users and runs reliably, it isn’t broken and does not need to be fixed. However, as

time passes, legacy systems often evolve for one or more of the following reasons:

• The software must be adapted to meet the needs of new computing environ-

ments or technology.

• The software must be enhanced to implement new business requirements.

• The software must be extended to make it interoperable with other more

modern systems or databases.

• The software must be re-architected to make it viable within a network

environment.

When these modes of evolution occur, a legacy system must be reengineered (Chap-

ter 29) so that it remains viable into the future. The goal of modern software engi-

neering is to “devise methodologies that are founded on the notion of evolution”;

that is, the notion that software systems continually change, new software systems

are built from the old ones, and . . . all must interoperate and cooperate with each

other” [Day99].

1.2 THE UNIQUE NATURE OF WEBAPPS

In the early days of the World Wide Web (circa 1990 to 1995), websites consisted of

little more than a set of linked hypertext files that presented information using text

and limited graphics. As time passed, the augmentation of HTML by development

tools (e.g., XML, Java) enabled Web engineers to provide computing capability along

with informational content. Web-based systems and applications6 (I refer to these col-

lectively as WebApps) were born. Today, WebApps have evolved into sophisticated

computing tools that not only provide stand-alone function to the end user, but also

have been integrated with corporate databases and business applications.

As noted in Section 1.1.2, WebApps are one of a number of distinct software cat-

egories. And yet, it can be argued that WebApps are different. Powell [Pow98] sug-

gests that Web-based systems and applications “involve a mixture between print

publishing and software development, between marketing and computing, between

10 CHAPTER 1 SOFTWARE AND SOFTWARE ENGINEERING

What types
of changes

are made to
legacy systems?

?

Every software
engineer must
recognize that change
is natural. Don’t try to
fight it.

uote:

“By the time we
see any sort of
stabilization, the
Web will have
turned into
something
completely
different.”

Louis Monier

6 In the context of this book, the term Web application (WebApp) encompasses everything from a sim-

ple Web page that might help a consumer compute an automobile lease payment to a comprehen-

sive website that provides complete travel services for businesspeople and vacationers. Included

within this category are complete websites, specialized functionality within websites, and infor-

mation processing applications that reside on the Internet or on an Intranet or Extranet.

pre75977_ch01.qxd 11/27/08 3:11 PM Page 10

internal communications and external relations, and between art and technology.”

The following attributes are encountered in the vast majority of WebApps.

Network intensiveness. A WebApp resides on a network and must serve

the needs of a diverse community of clients. The network may enable world-

wide access and communication (i.e., the Internet) or more limited access

and communication (e.g., a corporate Intranet).

Concurrency. A large number of users may access the WebApp at one

time. In many cases, the patterns of usage among end users will vary greatly.

Unpredictable load. The number of users of the WebApp may vary by

orders of magnitude from day to day. One hundred users may show up on

Monday; 10,000 may use the system on Thursday.

Performance. If a WebApp user must wait too long (for access, for server-

side processing, for client-side formatting and display), he or she may decide

to go elsewhere.

Availability. Although expectation of 100 percent availability is unreason-

able, users of popular WebApps often demand access on a 24/7/365 basis.

Users in Australia or Asia might demand access during times when tradi-

tional domestic software applications in North America might be taken

off-line for maintenance.

Data driven. The primary function of many WebApps is to use hypermedia

to present text, graphics, audio, and video content to the end user. In addi-

tion, WebApps are commonly used to access information that exists on data-

bases that are not an integral part of the Web-based environment (e.g.,

e-commerce or financial applications).

Content sensitive. The quality and aesthetic nature of content remains an

important determinant of the quality of a WebApp.

Continuous evolution. Unlike conventional application software that

evolves over a series of planned, chronologically spaced releases, Web appli-

cations evolve continuously. It is not unusual for some WebApps (specifically,

their content) to be updated on a minute-by-minute schedule or for content

to be independently computed for each request.

Immediacy. Although immediacy—the compelling need to get software to

market quickly—is a characteristic of many application domains, WebApps

often exhibit a time-to-market that can be a matter of a few days or weeks.7

Security. Because WebApps are available via network access, it is difficult,

if not impossible, to limit the population of end users who may access the

application. In order to protect sensitive content and provide secure modes

CHAPTER 1 SOFTWARE AND SOFTWARE ENGINEERING 11

7 With modern tools, sophisticated Web pages can be produced in only a few hours.

What
characteristic

differentiates
WebApps from
other software?

?

pre75977_ch01.qxd 11/27/08 3:11 PM Page 11

of data transmission, strong security measures must be implemented

throughout the infrastructure that supports a WebApp and within the appli-

cation itself.

Aesthetics. An undeniable part of the appeal of a WebApp is its look and

feel. When an application has been designed to market or sell products or

ideas, aesthetics may have as much to do with success as technical design.

It can be argued that other application categories discussed in Section 1.1.2 can

exhibit some of the attributes noted. However, WebApps almost always exhibit all of

them.

1.3 SOFTWARE ENGINEERING

In order to build software that is ready to meet the challenges of the twenty-first

century, you must recognize a few simple realities:

• Software has become deeply embedded in virtually every aspect of our lives,

and as a consequence, the number of people who have an interest in the

features and functions provided by a specific application8 has grown dramati-

cally. When a new application or embedded system is to be built, many

voices must be heard. And it sometimes seems that each of them has a

slightly different idea of what software features and functions should be

delivered. It follows that a concerted effort should be made to understand the

problem before a software solution is developed.

• The information technology requirements demanded by individuals, busi-

nesses, and governments grow increasing complex with each passing year.

Large teams of people now create computer programs that were once built

by a single individual. Sophisticated software that was once implemented in

a predictable, self-contained, computing environment is now embedded

inside everything from consumer electronics to medical devices to weapons

systems. The complexity of these new computer-based systems and products

demands careful attention to the interactions of all system elements. It

follows that design becomes a pivotal activity.

• Individuals, businesses, and governments increasingly rely on software for

strategic and tactical decision making as well as day-to-day operations and

control. If the software fails, people and major enterprises can experience

anything from minor inconvenience to catastrophic failures. It follows that

software should exhibit high quality.

• As the perceived value of a specific application grows, the likelihood is that

its user base and longevity will also grow. As its user base and time-in-use

12 CHAPTER 1 SOFTWARE AND SOFTWARE ENGINEERING

8 I will call these people “stakeholders” later in this book.

Understand the
problem before you
build a solution.

Design is a pivotal
software engineering
activity.

Both quality and
maintainability are an
outgrowth of good
design.

pre75977_ch01.qxd 11/27/08 3:11 PM Page 12

increase, demands for adaptation and enhancement will also grow. It follows

that software should be maintainable.

These simple realities lead to one conclusion: software in all of its forms and across all

of its application domains should be engineered. And that leads us to the topic of this

book—software engineering.

Although hundreds of authors have developed personal definitions of software

engineering, a definition proposed by Fritz Bauer [Nau69] at the seminal conference

on the subject still serves as a basis for discussion:

[Software engineering is] the establishment and use of sound engineering principles in or-

der to obtain economically software that is reliable and works efficiently on real machines.

You will be tempted to add to this definition.9 It says little about the technical as-

pects of software quality; it does not directly address the need for customer satisfac-

tion or timely product delivery; it omits mention of the importance of measurement

and metrics; it does not state the importance of an effective process. And yet, Bauer’s

definition provides us with a baseline. What are the “sound engineering principles”

that can be applied to computer software development? How do we “economically”

build software so that it is “reliable”? What is required to create computer programs

that work “efficiently” on not one but many different “real machines”? These are the

questions that continue to challenge software engineers.

The IEEE [IEE93a] has developed a more comprehensive definition when it states:

Software Engineering: (1) The application of a systematic, disciplined, quantifiable approach

to the development, operation, and maintenance of software; that is, the application of

engineering to software. (2) The study of approaches as in (1).

And yet, a “systematic, disciplined, and quantifiable” approach applied by one

software team may be burdensome to another. We need discipline, but we also need

adaptability and agility.

Software engineering is a layered technology. Referring to Figure 1.3, any engineer-

ing approach (including software engineering) must rest on an organizational com-

mitment to quality. Total quality management, Six Sigma, and similar philosophies10

foster a continuous process improvement culture, and it is this culture that ultimately

leads to the development of increasingly more effective approaches to software engi-

neering. The bedrock that supports software engineering is a quality focus.

The foundation for software engineering is the process layer. The software engi-

neering process is the glue that holds the technology layers together and enables

rational and timely development of computer software. Process defines a framework

CHAPTER 1 SOFTWARE AND SOFTWARE ENGINEERING 13

uote:

“More than a
discipline or a body
of knowledge,
engineering is a
verb, an action
word, a way of
approaching a
problem.”

Scott Whitmir

How do we
define

software
engineering?

?

9 For numerous additional definitions of software engineering, see www.answers.com/topic/

software-engineering#wp-_note-13.

10 Quality management and related approaches are discussed in Chapter 14 and throughout Part 3 of

this book.

Software engineering
encompasses a
process, methods for
managing and
engineering software,
and tools.

pre75977_ch01.qxd 11/27/08 3:11 PM Page 13

http://www.answers.com/topic/

that must be established for effective delivery of software engineering technology.

The software process forms the basis for management control of software projects

and establishes the context in which technical methods are applied, work products

(models, documents, data, reports, forms, etc.) are produced, milestones are estab-

lished, quality is ensured, and change is properly managed.

Software engineering methods provide the technical how-to’s for building soft-

ware. Methods encompass a broad array of tasks that include communication,

requirements analysis, design modeling, program construction, testing, and sup-

port. Software engineering methods rely on a set of basic principles that govern

each area of the technology and include modeling activities and other descriptive

techniques.

Software engineering tools provide automated or semiautomated support for the

process and the methods. When tools are integrated so that information created by

one tool can be used by another, a system for the support of software development,

called computer-aided software engineering, is established.

1.4 THE SOFTWARE PROCESS

A process is a collection of activities, actions, and tasks that are performed when

some work product is to be created. An activity strives to achieve a broad objective

(e.g., communication with stakeholders) and is applied regardless of the application

domain, size of the project, complexity of the effort, or degree of rigor with which

software engineering is to be applied. An action (e.g., architectural design) encom-

passes a set of tasks that produce a major work product (e.g., an architectural design

model). A task focuses on a small, but well-defined objective (e.g., conducting a unit

test) that produces a tangible outcome.

In the context of software engineering, a process is not a rigid prescription for how

to build computer software. Rather, it is an adaptable approach that enables the peo-

ple doing the work (the software team) to pick and choose the appropriate set of

work actions and tasks. The intent is always to deliver software in a timely manner

and with sufficient quality to satisfy those who have sponsored its creation and those

who will use it.

14 CHAPTER 1 SOFTWARE AND SOFTWARE ENGINEERING

Tools

A quality focus

Methods

Process

FIGURE 1.3

Software
engineering
layers

WebRef

CrossTalk is a journal
that provides
pragmatic
information on
process, methods,
and tools. It can be
found at:
www.stsc
.hill.af.mil.

What are the
elements of

a software
process?

?

uote:

“A process defines
who is doing what
when and how to
reach a certain
goal.”

Ivar Jacobson,
Grady Booch,
and James
Rumbaugh

pre75977_ch01.qxd 11/27/08 3:11 PM Page 14

http://www.stsc

A process framework establishes the foundation for a complete software engi-

neering process by identifying a small number of framework activities that are appli-

cable to all software projects, regardless of their size or complexity. In addition, the

process framework encompasses a set of umbrella activities that are applicable

across the entire software process. A generic process framework for software engi-

neering encompasses five activities:

Communication. Before any technical work can commence, it is critically

important to communicate and collaborate with the customer (and other

stakeholders11 The intent is to understand stakeholders’ objectives for the

project and to gather requirements that help define software features and

functions.

Planning. Any complicated journey can be simplified if a map exists. A

software project is a complicated journey, and the planning activity creates a

“map” that helps guide the team as it makes the journey. The map—called a

software project plan—defines the software engineering work by describing

the technical tasks to be conducted, the risks that are likely, the resources

that will be required, the work products to be produced, and a work

schedule.

Modeling. Whether you’re a landscaper, a bridge builder, an aeronautical

engineer, a carpenter, or an architect, you work with models every day. You

create a “sketch” of the thing so that you’ll understand the big picture—what

it will look like architecturally, how the constituent parts fit together, and

many other characteristics. If required, you refine the sketch into greater and

greater detail in an effort to better understand the problem and how you’re

going to solve it. A software engineer does the same thing by creating mod-

els to better understand software requirements and the design that will

achieve those requirements.

Construction. This activity combines code generation (either manual or

automated) and the testing that is required to uncover errors in the code.

Deployment. The software (as a complete entity or as a partially com-

pleted increment) is delivered to the customer who evaluates the delivered

product and provides feedback based on the evaluation.

These five generic framework activities can be used during the development of small,

simple programs, the creation of large Web applications, and for the engineering of

large, complex computer-based systems. The details of the software process will be

quite different in each case, but the framework activities remain the same.

CHAPTER 1 SOFTWARE AND SOFTWARE ENGINEERING 15

11 A stakeholder is anyone who has a stake in the successful outcome of the project—business man-

agers, end users, software engineers, support people, etc. Rob Thomsett jokes that, “a stakeholder

is a person holding a large and sharp stake. . . . If you don’t look after your stakeholders, you know

where the stake will end up.”).

What are the
five generic

process
framework
activities?

?

uote:

“Einstein argued
that there must be
a simplified
explanation of
nature, because
God is not
capricious or
arbitrary. No such
faith comforts the
software engineer.
Much of the
complexity that he
must master is
arbitrary
complexity.”

Fred Brooks

pre75977_ch01.qxd 11/27/08 3:11 PM Page 15

For many software projects, framework activities are applied iteratively as a

project progresses. That is, communication, planning, modeling, construction,

and deployment are applied repeatedly through a number of project iterations.

Each project iteration produces a software increment that provides stakeholders with

a subset of overall software features and functionality. As each increment is pro-

duced, the software becomes more and more complete.

Software engineering process framework activities are complemented by a num-

ber of umbrella activities. In general, umbrella activities are applied throughout a soft-

ware project and help a software team manage and control progress, quality,

change, and risk. Typical umbrella activities include:

Software project tracking and control—allows the software team to

assess progress against the project plan and take any necessary action to

maintain the schedule.

Risk management—assesses risks that may affect the outcome of the

project or the quality of the product.

Software quality assurance—defines and conducts the activities required

to ensure software quality.

Technical reviews—assesses software engineering work products in an effort

to uncover and remove errors before they are propagated to the next activity.

Measurement—defines and collects process, project, and product measures

that assist the team in delivering software that meets stakeholders’ needs;

can be used in conjunction with all other framework and umbrella activities.

Software configuration management—manages the effects of change

throughout the software process.

Reusability management—defines criteria for work product reuse

(including software components) and establishes mechanisms to achieve

reusable components.

Work product preparation and production—encompasses the activities

required to create work products such as models, documents, logs, forms,

and lists.

Each of these umbrella activities is discussed in detail later in this book.

Earlier in this section, I noted that the software engineering process is not a rigid

prescription that must be followed dogmatically by a software team. Rather, it should

be agile and adaptable (to the problem, to the project, to the team, and to the organi-

zational culture). Therefore, a process adopted for one project might be significantly

different than a process adopted for another project. Among the differences are

• Overall flow of activities, actions, and tasks and the interdependencies

among them

• Degree to which actions and tasks are defined within each framework activity

• Degree to which work products are identified and required

16 CHAPTER 1 SOFTWARE AND SOFTWARE ENGINEERING

Umbrella activities
occur throughout the
software process and
focus primarily on
project management,
tracking, and control.

Software process
adaptation is essential
for project success.

How do
process

models differ from
one another?

?

pre75977_ch01.qxd 11/27/08 3:11 PM Page 16

• Manner in which quality assurance activities are applied

• Manner in which project tracking and control activities are applied

• Overall degree of detail and rigor with which the process is described

• Degree to which the customer and other stakeholders are involved with the

project

• Level of autonomy given to the software team

• Degree to which team organization and roles are prescribed

In Part 1 of this book, I’ll examine software process in considerable detail. Prescriptive

process models (Chapter 2) stress detailed definition, identification, and application

of process activities and tasks. Their intent is to improve system quality, make proj-

ects more manageable, make delivery dates and costs more predictable, and guide

teams of software engineers as they perform the work required to build a system.

Unfortunately, there have been times when these objectives were not achieved. If

prescriptive models are applied dogmatically and without adaptation, they can in-

crease the level of bureaucracy associated with building computer-based systems

and inadvertently create difficulty for all stakeholders.

Agile process models (Chapter 3) emphasize project “agility” and follow a set of prin-

ciples that lead to a more informal (but, proponents argue, no less effective) approach

to software process. These process models are generally characterized as “agile” be-

cause they emphasize maneuverability and adaptability. They are appropriate for many

types of projects and are particularly useful when Web applications are engineered.

1.5 SOFTWARE ENGINEERING PRACTICE

In Section 1.4, I introduced a generic software process model composed of a set of

activities that establish a framework for software engineering practice. Generic

framework activities—communication, planning, modeling, construction, and

deployment—and umbrella activities establish a skeleton architecture for software

engineering work. But how does the practice of software engineering fit in? In the

sections that follow, you’ll gain a basic understanding of the generic concepts and

principles that apply to framework activities.12

1.5.1 The Essence of Practice

In a classic book, How to Solve It, written before modern computers existed, George

Polya [Pol45] outlined the essence of problem solving, and consequently, the essence

of software engineering practice:

1. Understand the problem (communication and analysis).

2. Plan a solution (modeling and software design).

CHAPTER 1 SOFTWARE AND SOFTWARE ENGINEERING 17

What
characterizes

an “agile”
process?

?

uote:

“I feel a recipe is
only a theme which
an intelligent cook
can play each time
with a variation.”

Madame Benoit

WebRef
A variety of thought-
provoking quotes on
the practice of software
engineering can be
found at www
.literateprogramming
.com

You might argue that
Polya’s approach is
simply common sense.
True. But it’s amazing
how often common
sense is uncommon in
the software world.

12 You should revisit relevant sections within this chapter as specific software engineering methods

and umbrella activities are discussed later in this book.

pre75977_ch01.qxd 11/27/08 3:11 PM Page 17

3. Carry out the plan (code generation).

4. Examine the result for accuracy (testing and quality assurance).

In the context of software engineering, these commonsense steps lead to a series of

essential questions [adapted from Pol45]:

Understand the problem. It’s sometimes difficult to admit, but most of us suffer

from hubris when we’re presented with a problem. We listen for a few seconds and

then think, Oh yeah, I understand, let’s get on with solving this thing. Unfortunately,

understanding isn’t always that easy. It’s worth spending a little time answering a

few simple questions:

• Who has a stake in the solution to the problem? That is, who are the stake-

holders?

• What are the unknowns? What data, functions, and features are required to

properly solve the problem?

• Can the problem be compartmentalized? Is it possible to represent smaller

problems that may be easier to understand?

• Can the problem be represented graphically? Can an analysis model be created?

Plan the solution. Now you understand the problem (or so you think) and you

can’t wait to begin coding. Before you do, slow down just a bit and do a little

design:

• Have you seen similar problems before? Are there patterns that are recogniz-

able in a potential solution? Is there existing software that implements the

data, functions, and features that are required?

• Has a similar problem been solved? If so, are elements of the solution

reusable?

• Can subproblems be defined? If so, are solutions readily apparent for the

subproblems?

• Can you represent a solution in a manner that leads to effective implementation?

Can a design model be created?

Carry out the plan. The design you’ve created serves as a road map for the

system you want to build. There may be unexpected detours, and it’s possible that

you’ll discover an even better route as you go, but the “plan” will allow you to

proceed without getting lost.

• Does the solution conform to the plan? Is source code traceable to the design

model?

• Is each component part of the solution provably correct? Have the design and

code been reviewed, or better, have correctness proofs been applied to the

algorithm?

18 CHAPTER 1 SOFTWARE AND SOFTWARE ENGINEERING

uote:

“There is a grain of
discovery in the
solution of any
problem.”

George Polya

pre75977_ch01.qxd 11/27/08 3:11 PM Page 18

Examine the result. You can’t be sure that your solution is perfect, but you can be

sure that you’ve designed a sufficient number of tests to uncover as many errors as

possible.

• Is it possible to test each component part of the solution? Has a reasonable

testing strategy been implemented?

• Does the solution produce results that conform to the data, functions, and

features that are required? Has the software been validated against all

stakeholder requirements?

It shouldn’t surprise you that much of this approach is common sense. In fact, it’s

reasonable to state that a commonsense approach to software engineering will

never lead you astray.

1.5.2 General Principles

The dictionary defines the word principle as “an important underlying law or as-

sumption required in a system of thought.” Throughout this book I’ll discuss princi-

ples at many different levels of abstraction. Some focus on software engineering as a

whole, others consider a specific generic framework activity (e.g., communication),

and still others focus on software engineering actions (e.g., architectural design) or

technical tasks (e.g., write a usage scenario). Regardless of their level of focus, prin-

ciples help you establish a mind-set for solid software engineering practice. They are

important for that reason.

David Hooker [Hoo96] has proposed seven principles that focus on software

engineering practice as a whole. They are reproduced in the following

paragraphs:13

The First Principle: The Reason It All Exists

A software system exists for one reason: to provide value to its users. All

decisions should be made with this in mind. Before specifying a system require-

ment, before noting a piece of system functionality, before determining the hard-

ware platforms or development processes, ask yourself questions such as: “Does

this add real value to the system?” If the answer is “no,” don’t do it. All other

principles support this one.

The Second Principle: KISS (Keep It Simple, Stupid!)

Software design is not a haphazard process. There are many factors to consider

in any design effort. All design should be as simple as possible, but no simpler. This

facilitates having a more easily understood and easily maintained system. This is

CHAPTER 1 SOFTWARE AND SOFTWARE ENGINEERING 19

13 Reproduced with permission of the author [Hoo96]. Hooker defines patterns for these principles at

http://c2.com/cgi/wiki?SevenPrinciplesOfSoftwareDevelopment.

Before beginning a
software project, be
sure the software has
a business purpose and
that users perceive
value in it.

pre75977_ch01.qxd 11/27/08 3:11 PM Page 19

http://c2.com/cgi/wiki?SevenPrinciplesOfSoftwareDevelopment

not to say that features, even internal features, should be discarded in the name of

simplicity. Indeed, the more elegant designs are usually the more simple ones. Sim-

ple also does not mean “quick and dirty.” In fact, it often takes a lot of thought and

work over multiple iterations to simplify. The payoff is software that is more main-

tainable and less error-prone.

The Third Principle: Maintain the Vision

A clear vision is essential to the success of a software project. Without one, a

project almost unfailingly ends up being “of two [or more] minds” about itself.

Without conceptual integrity, a system threatens to become a patchwork of in-

compatible designs, held together by the wrong kind of screws. . . . Compromis-

ing the architectural vision of a software system weakens and will eventually

break even the well-designed systems. Having an empowered architect who can

hold the vision and enforce compliance helps ensure a very successful software

project.

The Fourth Principle: What You Produce, Others Will Consume

Seldom is an industrial-strength software system constructed and used in a

vacuum. In some way or other, someone else will use, maintain, document, or

otherwise depend on being able to understand your system. So, always specify,

design, and implement knowing someone else will have to understand what you are

doing. The audience for any product of software development is potentially large.

Specify with an eye to the users. Design, keeping the implementers in mind. Code

with concern for those that must maintain and extend the system. Someone may

have to debug the code you write, and that makes them a user of your code.

Making their job easier adds value to the system.

The Fifth Principle: Be Open to the Future

A system with a long lifetime has more value. In today’s computing environ-

ments, where specifications change on a moment’s notice and hardware platforms

are obsolete just a few months old, software lifetimes are typically measured in

months instead of years. However, true “industrial-strength” software systems

must endure far longer. To do this successfully, these systems must be ready to

adapt to these and other changes. Systems that do this successfully are those that

have been designed this way from the start. Never design yourself into a corner.

Always ask “what if,” and prepare for all possible answers by creating systems that

solve the general problem, not just the specific one.14 This could very possibly lead

to the reuse of an entire system.

20 CHAPTER 1 SOFTWARE AND SOFTWARE ENGINEERING

If software has value,
it will change over its
useful life. For that
reason, software must
be built to be
maintainable.

14 This advice can be dangerous if it is taken to extremes. Designing for the “general problem” some-

times requires performance compromises and can make specific solutions inefficient.

uote:

“There is a certain
majesty in
simplicity which is
far above all the
quaintness of wit.”

Alexander Pope
(1688–1744)

pre75977_ch01.qxd 11/27/08 3:11 PM Page 20

The Sixth Principle: Plan Ahead for Reuse

Reuse saves time and effort.15Achieving a high level of reuse is arguably the

hardest goal to accomplish in developing a software system. The reuse of code and

designs has been proclaimed as a major benefit of using object-oriented technolo-

gies. However, the return on this investment is not automatic. To leverage the

reuse possibilities that object-oriented [or conventional] programming provides

requires forethought and planning. There are many techniques to realize reuse

at every level of the system development process. . . . Planning ahead for reuse

reduces the cost and increases the value of both the reusable components and the

systems into which they are incorporated.

The Seventh principle: Think!

This last principle is probably the most overlooked. Placing clear, complete

thought before action almost always produces better results. When you think about

something, you are more likely to do it right. You also gain knowledge about how

to do it right again. If you do think about something and still do it wrong, it be-

comes a valuable experience. A side effect of thinking is learning to recognize

when you don’t know something, at which point you can research the answer.

When clear thought has gone into a system, value comes out. Applying the first six

principles requires intense thought, for which the potential rewards are enormous.

If every software engineer and every software team simply followed Hooker’s seven

principles, many of the difficulties we experience in building complex computer-

based systems would be eliminated.

1.6 SOFTWARE MYTHS

Software myths—erroneous beliefs about software and the process that is used to

build it—can be traced to the earliest days of computing. Myths have a number of

attributes that make them insidious. For instance, they appear to be reasonable

statements of fact (sometimes containing elements of truth), they have an intuitive

feel, and they are often promulgated by experienced practitioners who “know the

score.”

Today, most knowledgeable software engineering professionals recognize myths

for what they are—misleading attitudes that have caused serious problems for

managers and practitioners alike. However, old attitudes and habits are difficult to

modify, and remnants of software myths remain.

CHAPTER 1 SOFTWARE AND SOFTWARE ENGINEERING 21

15 Although this is true for those who reuse the software on future projects, reuse can be expensive

for those who must design and build reusable components. Studies indicate that designing and

building reusable components can cost between 25 to 200 percent more than targeted software. In

some cases, the cost differential cannot be justified.

uote:

“In the absence of
meaningful
standards, a new
industry like
software comes to
depend instead on
folklore.”

Tom DeMarco

pre75977_ch01.qxd 11/27/08 3:11 PM Page 21

Management myths. Managers with software responsibility, like managers in

most disciplines, are often under pressure to maintain budgets, keep schedules from

slipping, and improve quality. Like a drowning person who grasps at a straw, a soft-

ware manager often grasps at belief in a software myth, if that belief will lessen the

pressure (even temporarily).

Myth: We already have a book that’s full of standards and procedures for

building software. Won’t that provide my people with everything they

need to know?

Reality: The book of standards may very well exist, but is it used? Are soft-

ware practitioners aware of its existence? Does it reflect modern

software engineering practice? Is it complete? Is it adaptable? Is it

streamlined to improve time-to-delivery while still maintaining a

focus on quality? In many cases, the answer to all of these questions

is “no.”

Myth: If we get behind schedule, we can add more programmers and catch up

(sometimes called the “Mongolian horde” concept).

Reality: Software development is not a mechanistic process like manufactur-

ing. In the words of Brooks [Bro95]: “adding people to a late soft-

ware project makes it later.” At first, this statement may seem

counterintuitive. However, as new people are added, people who

were working must spend time educating the newcomers, thereby

reducing the amount of time spent on productive development

effort. People can be added but only in a planned and well-

coordinated manner.

Myth: If I decide to outsource the software project to a third party, I can just

relax and let that firm build it.

Reality: If an organization does not understand how to manage and control

software projects internally, it will invariably struggle when it out-

sources software projects.

Customer myths. A customer who requests computer software may be a person

at the next desk, a technical group down the hall, the marketing/sales department,

or an outside company that has requested software under contract. In many cases,

the customer believes myths about software because software managers and prac-

titioners do little to correct misinformation. Myths lead to false expectations (by the

customer) and, ultimately, dissatisfaction with the developer.

Myth: A general statement of objectives is sufficient to begin writing

programs—we can fill in the details later.

Reality: Although a comprehensive and stable statement of requirements is

not always possible, an ambiguous “statement of objectives” is a

recipe for disaster. Unambiguous requirements (usually derived

22 CHAPTER 1 SOFTWARE AND SOFTWARE ENGINEERING

WebRef
The Software Project
Managers Network at
www.spmn.com
can help you dispel
these and other myths.

Work very hard to
understand what you
have to do before you
start. You may not be
able to develop every
detail, but the more
you know, the less risk
you take.

pre75977_ch01.qxd 11/27/08 3:11 PM Page 22

http://www.spmn.com

iteratively) are developed only through effective and continuous

communication between customer and developer.

Myth: Software requirements continually change, but change can be easily

accommodated because software is flexible.

Reality: It is true that software requirements change, but the impact of

change varies with the time at which it is introduced. When require-

ments changes are requested early (before design or code has been

started), the cost impact is relatively small.16 However, as time

passes, the cost impact grows rapidly—resources have been commit-

ted, a design framework has been established, and change can

cause upheaval that requires additional resources and major design

modification.

Practitioner’s myths. Myths that are still believed by software practitioners have

been fostered by over 50 years of programming culture. During the early days, pro-

gramming was viewed as an art form. Old ways and attitudes die hard.

Myth: Once we write the program and get it to work, our job is done.

Reality: Someone once said that “the sooner you begin ‘writing code,’ the

longer it’ll take you to get done.” Industry data indicate that between

60 and 80 percent of all effort expended on software will be ex-

pended after it is delivered to the customer for the first time.

Myth: Until I get the program “running” I have no way of assessing its quality.

Reality: One of the most effective software quality assurance mechanisms

can be applied from the inception of a project—the technical review.

Software reviews (described in Chapter 15) are a “quality filter” that

have been found to be more effective than testing for finding certain

classes of software defects.

Myth: The only deliverable work product for a successful project is the working

program.

Reality: A working program is only one part of a software configuration that

includes many elements. A variety of work products (e.g., models,

documents, plans) provide a foundation for successful engineering

and, more important, guidance for software support.

Myth: Software engineering will make us create voluminous and unnecessary

documentation and will invariably slow us down.

Reality: Software engineering is not about creating documents. It is about

creating a quality product. Better quality leads to reduced rework.

And reduced rework results in faster delivery times.

CHAPTER 1 SOFTWARE AND SOFTWARE ENGINEERING 23

Whenever you think,
we don’t have time for
software engineering,
ask yourself, “Will we
have time to do it over
again?”

16 Many software engineers have adopted an “agile” approach that accommodates change incre-

mentally, thereby controlling its impact and cost. Agile methods are discussed in Chapter 3.

pre75977_ch01.qxd 11/27/08 3:11 PM Page 23

Many software professionals recognize the fallacy of the myths just described.

Regrettably, habitual attitudes and methods foster poor management and technical

practices, even when reality dictates a better approach. Recognition of software

realities is the first step toward formulation of practical solutions for software

engineering.

1.7 HOW IT ALL STARTS

Every software project is precipitated by some business need—the need to correct a

defect in an existing application; the need to adapt a “legacy system” to a changing

business environment; the need to extend the functions and features of an existing

application; or the need to create a new product, service, or system.

At the beginning of a software project, the business need is often expressed

informally as part of a simple conversation. The conversation presented in the

sidebar is typical.

24 CHAPTER 1 SOFTWARE AND SOFTWARE ENGINEERING

How a Project Starts

The scene: Meeting room at CPI
Corporation, a (fictional) company that makes consumer
products for home and commercial use.

The players: Mal Golden, senior manager, product
development; Lisa Perez, marketing manager; Lee
Warren, engineering manager; Joe Camalleri, executive
VP, business development

The conversation:

Joe: Okay, Lee, what’s this I hear about your folks
developing a what? A generic universal wireless box?

Lee: It’s pretty cool . . . about the size of a small
matchbook . . . we can attach it to sensors of all kinds, a
digital camera, just about anything. Using the 802.11g
wireless protocol. It allows us to access the device’s output
without wires. We think it’ll lead to a whole new
generation of products.

Joe: You agree, Mal?

Mal: I do. In fact, with sales as flat as they’ve been this
year, we need something new. Lisa and I have been
doing a little market research, and we think we’ve got a
line of products that could be big.

Joe: How big . . . bottom line big?

Mal (avoiding a direct commitment): Tell him
about our idea, Lisa.

Lisa: It’s a whole new generation of what we call “home
management products.” We call ’em SafeHome. They use
the new wireless interface, provide homeowners or small-
business people with a system that’s controlled by their
PC—home security, home surveillance, appliance and
device control—you know, turn down the home air
conditioner while you’re driving home, that sort of thing.

Lee (jumping in): Engineering’s done a technical
feasibility study of this idea, Joe. It’s doable at low
manufacturing cost. Most hardware is off-the-shelf.
Software is an issue, but it’s nothing that we can’t do.

Joe: Interesting. Now, I asked about the bottom line.

Mal: PCs have penetrated over 70 percent of all
households in the USA. If we could price this thing right,
it could be a killer-App. Nobody else has our wireless
box . . . it’s proprietary. We’ll have a 2-year jump on
the competition. Revenue? Maybe as much as 30 to
40 million dollars in the second year.

Joe (smiling): Let’s take this to the next level. I’m
interested.

SAFEHOME17

17 The SafeHome project will be used throughout this book to illustrate the inner workings of a project

team as it builds a software product. The company, the project, and the people are purely fictitious,

but the situations and problems are real.

pre75977_ch01.qxd 11/27/08 3:11 PM Page 24

CHAPTER 1 SOFTWARE AND SOFTWARE ENGINEERING 25

With the exception of a passing reference, software was hardly mentioned as part

of the conversation. And yet, software will make or break the SafeHome product line.

The engineering effort will succeed only if SafeHome software succeeds. The market

will accept the product only if the software embedded within it properly meets the

customer’s (as yet unstated) needs. We’ll follow the progression of SafeHome

software engineering in many of the chapters that follow.

1.8 SUMMARY

Software is the key element in the evolution of computer-based systems and

products and one of the most important technologies on the world stage. Over the

past 50 years, software has evolved from a specialized problem solving and infor-

mation analysis tool to an industry in itself. Yet we still have trouble developing high-

quality software on time and within budget.

Software—programs, data, and descriptive information—addresses a wide array

of technology and application areas. Legacy software continues to present special

challenges to those who must maintain it.

Web-based systems and applications have evolved from simple collections of in-

formation content to sophisticated systems that present complex functionality and

multimedia content. Although these WebApps have unique features and require-

ments, they are software nonetheless.

Software engineering encompasses process, methods, and tools that enable

complex computer-based systems to be built in a timely manner with quality. The

software process incorporates five framework activities—communication, planning,

modeling, construction, and deployment—that are applicable to all software proj-

ects. Software engineering practice is a problem solving activity that follows a set of

core principles.

A wide array of software myths continue to lead managers and practitioners

astray, even as our collective knowledge of software and the technologies required

to build it grows. As you learn more about software engineering, you’ll begin to un-

derstand why these myths should be debunked whenever they are encountered.

PROBLEMS AND POINTS TO PONDER

1.1. Provide at least five additional examples of how the law of unintended consequences
applies to computer software.

1.2. Provide a number of examples (both positive and negative) that indicate the impact of
software on our society.

1.3. Develop your own answers to the five questions asked at the beginning of Section 1.1.
Discuss them with your fellow students.

1.4. Many modern applications change frequently—before they are presented to the end user
and then after the first version has been put into use. Suggest a few ways to build software to
stop deterioration due to change.

pre75977_ch01.qxd 11/27/08 3:11 PM Page 25

1.5. Consider the seven software categories presented in Section 1.1.2. Do you think that the
same approach to software engineering can be applied for each? Explain your answer.

1.6. Figure 1.3 places the three software engineering layers on top of a layer entitled “a quality
focus.” This implies an organizational quality program such as total quality management. Do a
bit of research and develop an outline of the key tenets of a total quality management program.

1.7. Is software engineering applicable when WebApps are built? If so, how might it be modi-
fied to accommodate the unique characteristics of WebApps?

1.8. As software becomes more pervasive, risks to the public (due to faulty programs) become
an increasingly significant concern. Develop a doomsday but realistic scenario in which the fail-
ure of a computer program could do great harm (either economic or human).

1.9. Describe a process framework in your own words. When we say that framework activities
are applicable to all projects, does this mean that the same work tasks are applied for all
projects, regardless of size and complexity? Explain.

1.10. Umbrella activities occur throughout the software process. Do you think they are applied
evenly across the process, or are some concentrated in one or more framework activities.

1.11. Add two additional myths to the list presented in Section 1.6. Also state the reality that
accompanies the myth.

FURTHER READINGS AND INFORMATION SOURCES1 8

There are literally thousands of books written about computer software. The vast majority
discuss programming languages or software applications, but a few discuss software itself.
Pressman and Herron (Software Shock, Dorset House, 1991) presented an early discussion
(directed at the layperson) of software and the way professionals build it. Negroponte’s best-
selling book (Being Digital, Alfred A. Knopf, Inc., 1995) provides a view of computing and its
overall impact in the twenty-first century. DeMarco (Why Does Software Cost So Much? Dorset
House, 1995) has produced a collection of amusing and insightful essays on software and the
process through which it is developed.

Minasi (The Software Conspiracy: Why Software Companies Put out Faulty Products, How They
Can Hurt You, and What You Can Do, McGraw-Hill, 2000) argues that the “modern scourge” of
software bugs can be eliminated and suggests ways to accomplish this. Compaine (Digital
Divide: Facing a Crisis or Creating a Myth, MIT Press, 2001) argues that the “divide” between those
who have access to information resources (e.g., the Web) and those that do not is narrowing as
we move into the first decade of this century. Books by Greenfield (Everyware: The Dawning Age
of Ubiquitous Computing, New Riders Publishing, 2006) and Loke (Context-Aware Pervasive
Systems: Architectures for a New Breed of Applications, Auerbach, 2006) introduce the concept of
“open-world” software and predict a wireless environment in which software must adapt to
requirements that emerge in real time.

The current state of the software engineering and the software process can best be deter-
mined from publications such as IEEE Software, IEEE Computer, CrossTalk, and IEEE Transactions
on Software Engineering. Industry periodicals such as Application Development Trends and Cutter

26 CHAPTER 1 SOFTWARE AND SOFTWARE ENGINEERING

18 The Further Reading and Information Sources section presented at the conclusion of each chapter

presents a brief overview of print sources that can help to expand your understanding of the major

topics presented in the chapter. I have created a comprehensive website to support Software

Engineering: A Practitioner’s Approach at www.mhhe.com/compsci/pressman. Among the

many topics addressed within the website are chapter-by-chapter software engineering resources

to Web-based information that can complement the material presented in each chapter. An

Amazon.com link to every book noted in this section is contained within these resources.

pre75977_ch01.qxd 11/27/08 3:11 PM Page 26

http://www.mhhe.com/compsci/pressman

IT Journal often contain articles on software engineering topics. The discipline is “summarized”
every year in the Proceeding of the International Conference on Software Engineering, sponsored
by the IEEE and ACM, and is discussed in depth in journals such as ACM Transactions on Software
Engineering and Methodology, ACM Software Engineering Notes, and Annals of Software Engineer-
ing. Tens of thousands of websites are dedicated to software engineering and the software
process.

Many books addressing the software process and software engineering have been published
in recent years. Some present an overview of the entire process, while others delve into a few
important topics to the exclusion of others. Among the more popular offerings (in addition to
this book!) are

Abran, A., and J. Moore, SWEBOK: Guide to the Software Engineering Body of Knowledge, IEEE,
2002.

Andersson, E., et al., Software Engineering for Internet Applications, The MIT Press, 2006.

Christensen, M., and R. Thayer, A Project Manager’s Guide to Software Engineering Best Prac-
tices, IEEE-CS Press (Wiley), 2002.

Glass, R., Fact and Fallacies of Software Engineering, Addison-Wesley, 2002.

Jacobson, I., Object-Oriented Software Engineering: A Use Case Driven Approach, 2d ed.,
Addison-Wesley, 2008.

Jalote, P., An Integrated Approach to Software Engineering, Springer, 2006.

Pfleeger, S., Software Engineering: Theory and Practice, 3d ed., Prentice-Hall, 2005.

Schach, S., Object-Oriented and Classical Software Engineering, 7th ed., McGraw-Hill, 2006.

Sommerville, I., Software Engineering, 8th ed., Addison-Wesley, 2006.

Tsui, F., and O. Karam, Essentials of Software Engineering, Jones & Bartlett Publishers, 2006.

Many software engineering standards have been published by the IEEE, ISO, and their stan-
dards organizations over the past few decades. Moore (The Road Map to Software Engineering:
A Standards-Based Guide, Wiley-IEEE Computer Society Press, 2006) provides a useful survey of
relevant standards and how they apply to real projects.

A wide variety of information sources on software engineering and the software process are
available on the Internet. An up-to-date list of World Wide Web references that are relevant to
the software process can be found at the SEPA website: www.mhhe.com/engcs/compsci/
pressman/professional/olc/ser.htm.

CHAPTER 1 SOFTWARE AND SOFTWARE ENGINEERING 27

pre75977_ch01.qxd 11/27/08 3:11 PM Page 27

http://www.mhhe.com/engcs/compsci/

pre75977_ch01.qxd 11/27/08 3:11 PM Page 28

THE SOFTWARE

PROCESS

29

P A R T

One

I n this part of Software Engineering: A Practitioner’s Approach
you’ll learn about the process that provides a framework for
software engineering practice. These questions are addressed

in the chapters that follow:

• What is a software process?

• What are the generic framework activities that are present in
every software process?

• How are processes modeled and what are process patterns?

• What are the prescriptive process models and what are their
strengths and weaknesses?

• Why is agility a watchword in modern software engineering
work?

• What is agile software development and how does it differ
from more traditional process models?

Once these questions are answered you’ll be better prepared to
understand the context in which software engineering practice is
applied.

pre75977_ch02.qxd 11/27/08 3:21 PM Page 29

I n a fascinating book that provides an economist’s view of software and soft-
ware engineering, Howard Baetjer, Jr. [Bae98], comments on the software
process:

Because software, like all capital, is embodied knowledge, and because that knowl-

edge is initially dispersed, tacit, latent, and incomplete in large measure, software de-

velopment is a social learning process. The process is a dialogue in which the

knowledge that must become the software is brought together and embodied in the

software. The process provides interaction between users and designers, between

users and evolving tools, and between designers and evolving tools [technology]. It is

an iterative process in which the evolving tool itself serves as the medium for com-

munication, with each new round of the dialogue eliciting more useful knowledge

from the people involved.

Indeed, building computer software is an iterative social learning process, and
the outcome, something that Baetjer would call “software capital,” is an embodi-
ment of knowledge collected, distilled, and organized as the process is conducted.

30

C H A P T E R

2 PROCESS
MODELS

K E Y
C O N C E P T S

component-based
development50
concurrent models . .48
evolutionary process
models 42
formal methods
model51
generic process
model31
incremental process
models 41
personal software
process57
prescriptive process
models 38
process patterns . . .35
task set 34
team software
process58
Unified Process 53

What is it? When you work to build
a product or system, it’s important to
go through a series of predictable
steps—a road map that helps you

create a timely, high-quality result. The road map
that you follow is called a “software process.”

Who does it? Software engineers and their
managers adapt the process to their needs and
then follow it. In addition, the people who have
requested the software have a role to play in the
process of defining, building, and testing it.

Why is it important? Because it provides
stability, control, and organization to an activity
that can, if left uncontrolled, become quite
chaotic. However, a modern software engineer-
ing approach must be “agile.” It must demand
only those activities, controls, and work products
that are appropriate for the project team and the
product that is to be produced.

Q U I C K
L O O K

What are the steps? At a detailed level, the
process that you adopt depends on the software
that you’re building. One process might be ap-
propriate for creating software for an aircraft
avionics system, while an entirely different process
would be indicated for the creation of a website.

What is the work product? From the point of
view of a software engineer, the work products
are the programs, documents, and data that are
produced as a consequence of the activities and
tasks defined by the process.

How do I ensure that I’ve done it right?
There are a number of software process
assessment mechanisms that enable organiza-
tions to determine the “maturity” of their soft-
ware process. However, the quality, timeliness,
and long-term viability of the product you
build are the best indicators of the efficacy of
the process that you use.

pre75977_ch02.qxd 11/27/08 3:21 PM Page 30

CHAPTER 2 PROCESS MODELS 31

But what exactly is a software process from a technical point of view? Within the
context of this book, I define a software process as a framework for the activities, ac-
tions, and tasks that are required to build high-quality software. Is “process” syn-
onymous with software engineering? The answer is “yes and no.” A software process
defines the approach that is taken as software is engineered. But software engi-
neering also encompasses technologies that populate the process—technical meth-
ods and automated tools.

More important, software engineering is performed by creative, knowledgeable
people who should adapt a mature software process so that it is appropriate for the
products that they build and the demands of their marketplace.

2.1 A GENERIC PROCESS MODEL

In Chapter 1, a process was defined as a collection of work activities, actions, and

tasks that are performed when some work product is to be created. Each of these

activities, actions, and tasks reside within a framework or model that defines their

relationship with the process and with one another.

The software process is represented schematically in Figure 2.1. Referring to the

figure, each framework activity is populated by a set of software engineering actions.

Each software engineering action is defined by a task set that identifies the work

tasks that are to be completed, the work products that will be produced, the quality

assurance points that will be required, and the milestones that will be used to indi-

cate progress.

As I discussed in Chapter 1, a generic process framework for software engineer-

ing defines five framework activities—communication, planning, modeling,

construction, and deployment. In addition, a set of umbrella activities—project

tracking and control, risk management, quality assurance, configuration manage-

ment, technical reviews, and others—are applied throughout the process.

You should note that one important aspect of the software process has not

yet been discussed. This aspect—called process flow—describes how the frame-

work activities and the actions and tasks that occur within each framework

activity are organized with respect to sequence and time and is illustrated in

Figure 2.2.

A linear process flow executes each of the five framework activities in sequence,

beginning with communication and culminating with deployment (Figure 2.2a). An

iterative process flow repeats one or more of the activities before proceeding to the

next (Figure 2.2b). An evolutionary process flow executes the activities in a “circular”

manner. Each circuit through the five activities leads to a more complete version

of the software (Figure 2.2c). A parallel process flow (Figure 2.2d) executes one or

more activities in parallel with other activities (e.g., modeling for one aspect of the

software might be executed in parallel with construction of another aspect of the

software).

The hierarchy of
technical work within
the software process is
activities,
encompassing actions,
populated by tasks.

uote:

“We think that
software
developers are
missing a vital
truth: most
organizations don’t
know what they
do. They think they
know, but they
don’t know.”

Tom DeMarco

pre75977_ch02.qxd 11/27/08 3:21 PM Page 31

2.1.1 Defining a Framework Activity

Although I have described five framework activities and provided a basic defini-

tion of each in Chapter 1, a software team would need significantly more infor-

mation before it could properly execute any one of these activities as part of the

software process. Therefore, you are faced with a key question: What actions are

appropriate for a framework activity, given the nature of the problem to be solved, the

characteristics of the people doing the work, and the stakeholders who are sponsor-

ing the project?

32 PART ONE THE SOFTWARE PROCESS

Process framework

Umbrella activities

framework activity # 1

Task sets
work tasks
work products
quality assurance points
project milestones

software engineering action #1.1

Task sets
work tasks
work products
quality assurance points
project milestones

software engineering action #1.k

framework activity # n

Task sets
work tasks
work products
quality assurance points
project milestones

software engineering action #n.1

Task sets
work tasks
work products
quality assurance points
project milestones

software engineering action #n.m

Software process
FIGURE 2.1

A software
process
framework

pre75977_ch02.qxd 11/27/08 3:21 PM Page 32

CHAPTER 2 PROCESS MODELS 33

(d) Parallel process flow

(c) Evolutionary process flow

Communication Planning Modeling

(a) Linear process flow

Construction Deployment

Communication Planning Modeling Construction Deployment

Construction Deployment

Communication Planning

Modeling Time

(b) Iterative process flow

Planning
Modeling

ConstructionDeploymentIncrement
released

Communication

FIGURE 2.2 Process flow

For a small software project requested by one person (at a remote location) with

simple, straightforward requirements, the communication activity might encompass

little more than a phone call with the appropriate stakeholder. Therefore, the only

necessary action is phone conversation, and the work tasks (the task set) that this

action encompasses are:

1. Make contact with stakeholder via telephone.

2. Discuss requirements and take notes.

How does a
framework

activity change as
the nature of the
project changes?

?

pre75977_ch02.qxd 11/27/08 3:21 PM Page 33

3. Organize notes into a brief written statement of requirements.

4. E-mail to stakeholder for review and approval.

If the project was considerably more complex with many stakeholders, each with

a different set of (sometime conflicting) requirements, the communication activity

might have six distinct actions (described in Chapter 5): inception, elicitation, elabo-

ration, negotiation, specification, and validation. Each of these software engineering

actions would have many work tasks and a number of distinct work products.

2.1.2 Identifying a Task Set

Referring again to Figure 2.1, each software engineering action (e.g., elicitation, an

action associated with the communication activity) can be represented by a number

of different task sets—each a collection of software engineering work tasks, related

work products, quality assurance points, and project milestones. You should choose

a task set that best accommodates the needs of the project and the characteristics of

your team. This implies that a software engineering action can be adapted to the spe-

cific needs of the software project and the characteristics of the project team.

34 PART ONE THE SOFTWARE PROCESS

Task Set
A task set defines the actual work to be done
to accomplish the objectives of a software

engineering action. For example, elicitation (more
commonly called “requirements gathering”) is an
important software engineering action that occurs during
the communication activity. The goal of requirements
gathering is to understand what various stakeholders want
from the software that is to be built.

For a small, relatively simple project, the task set for
requirements gathering might look like this:

1. Make a list of stakeholders for the project.
2. Invite all stakeholders to an informal meeting.
3. Ask each stakeholder to make a list of features and

functions required.
4. Discuss requirements and build a final list.
5. Prioritize requirements.
6. Note areas of uncertainty.

For a larger, more complex software project, a
different task set would be required. It might encompass
the following work tasks:

1. Make a list of stakeholders for the project.
2. Interview each stakeholder separately to determine

overall wants and needs.

3. Build a preliminary list of functions and features
based on stakeholder input.

4. Schedule a series of facilitated application
specification meetings.

5. Conduct meetings.
6. Produce informal user scenarios as part of each

meeting.
7. Refine user scenarios based on stakeholder

feedback.
8. Build a revised list of stakeholder requirements.
9. Use quality function deployment techniques to

prioritize requirements.
10. Package requirements so that they can be delivered

incrementally.
11. Note constraints and restrictions that will be placed

on the system.
12. Discuss methods for validating the system.

Both of these task sets achieve “requirements gathering,”
but they are quite different in their depth and formality. The
software team chooses the task set that will allow it to
achieve the goal of each action and still maintain quality
and agility.

INFO

Different projects
demand different task
sets. The software
team chooses the task
set based on problem
and project
characteristics.

pre75977_ch02.qxd 11/27/08 3:21 PM Page 34

2.1.3 Process Patterns

Every software team encounters problems as it moves through the software process.

It would be useful if proven solutions to these problems were readily available to the

team so that the problems could be addressed and resolved quickly. A process

pattern1 describes a process-related problem that is encountered during software en-

gineering work, identifies the environment in which the problem has been encoun-

tered, and suggests one or more proven solutions to the problem. Stated in more

general terms, a process pattern provides you with a template [Amb98]—a consis-

tent method for describing problem solutions within the context of the software

process. By combining patterns, a software team can solve problems and construct

a process that best meets the needs of a project.

Patterns can be defined at any level of abstraction.2 In some cases, a pattern might

be used to describe a problem (and solution) associated with a complete process

model (e.g., prototyping). In other situations, patterns can be used to describe a prob-

lem (and solution) associated with a framework activity (e.g., planning) or an action

within a framework activity (e.g., project estimating).

Ambler [Amb98] has proposed a template for describing a process pattern:

Pattern Name. The pattern is given a meaningful name describing it

within the context of the software process (e.g., TechnicalReviews).

Forces. The environment in which the pattern is encountered and the

issues that make the problem visible and may affect its solution.

Type. The pattern type is specified. Ambler [Amb98] suggests three types:

1. Stage pattern—defines a problem associated with a framework activity for

the process. Since a framework activity encompasses multiple actions and

work tasks, a stage pattern incorporates multiple task patterns (see the fol-

lowing) that are relevant to the stage (framework activity). An example of a

stage pattern might be EstablishingCommunication. This pattern would

incorporate the task pattern RequirementsGathering and others.

2. Task pattern—defines a problem associated with a software engineering

action or work task and relevant to successful software engineering

practice (e.g., RequirementsGathering is a task pattern).

3. Phase pattern—define the sequence of framework activities that occurs

within the process, even when the overall flow of activities is iterative

in nature. An example of a phase pattern might be SpiralModel or

Prototyping.3

CHAPTER 2 PROCESS MODELS 35

1 A detailed discussion of patterns is presented in Chapter 12.

2 Patterns are applicable to many software engineering activities. Analysis, design, and testing

patterns are discussed in Chapters 7, 9, 10, 12, and 14. Patterns and “antipatterns” for project

management activities are discussed in Part 4 of this book.

3 These phase patterns are discussed in Section 2.3.3.

What is a
process

pattern?
?

uote:

“The repetition of
patterns is quite a
different thing than
the repetition of
parts. Indeed, the
different parts will
be unique because
the patterns are the
same.”

Christopher
Alexander

A pattern template
provides a consistent
means for describing a
pattern.

pre75977_ch02.qxd 11/27/08 3:21 PM Page 35

Initial context. Describes the conditions under which the pattern applies.

Prior to the initiation of the pattern: (1) What organizational or team-related ac-

tivities have already occurred? (2) What is the entry state for the process?

(3) What software engineering information or project information already exists?

For example, the Planning pattern (a stage pattern) requires that (1) cus-

tomers and software engineers have established a collaborative communi-

cation; (2) successful completion of a number of task patterns [specified] for

the Communication pattern has occurred; and (3) the project scope, basic

business requirements, and project constraints are known.

Problem. The specific problem to be solved by the pattern.

Solution. Describes how to implement the pattern successfully. This sec-

tion describes how the initial state of the process (that exists before the pat-

tern is implemented) is modified as a consequence of the initiation of the

pattern. It also describes how software engineering information or project

information that is available before the initiation of the pattern is transformed

as a consequence of the successful execution of the pattern.

Resulting Context. Describes the conditions that will result once the pat-

tern has been successfully implemented. Upon completion of the pattern:

(1) What organizational or team-related activities must have occurred?

(2) What is the exit state for the process? (3) What software engineering

information or project information has been developed?

Related Patterns. Provide a list of all process patterns that are directly

related to this one. This may be represented as a hierarchy or in some other

diagrammatic form. For example, the stage pattern Communication

encompasses the task patterns: ProjectTeam, CollaborativeGuidelines,

ScopeIsolation, RequirementsGathering, ConstraintDescription, and

ScenarioCreation.

Known Uses and Examples. Indicate the specific instances in which the

pattern is applicable. For example, Communication is mandatory at the

beginning of every software project, is recommended throughout the software

project, and is mandatory once the deployment activity is under way.

Process patterns provide an effective mechanism for addressing problems asso-

ciated with any software process. The patterns enable you to develop a hierarchical

process description that begins at a high level of abstraction (a phase pattern). The

description is then refined into a set of stage patterns that describe framework

activities and are further refined in a hierarchical fashion into more detailed task

patterns for each stage pattern. Once process patterns have been developed, they

can be reused for the definition of process variants—that is, a customized process

model can be defined by a software team using the patterns as building blocks for

the process model.

36 PART ONE THE SOFTWARE PROCESS

WebRef
Comprehensive
resources on process
patterns can be found
at www.
ambysoft.com/
processPatternsPage
.html.

pre75977_ch02.qxd 11/27/08 3:21 PM Page 36

http://www.ambysoft.com/
http://www.ambysoft.com/

2.2 PROCESS ASSESSMENT AND IMPROVEMENT

The existence of a software process is no guarantee that software will be delivered

on time, that it will meet the customer’s needs, or that it will exhibit the technical

characteristics that will lead to long-term quality characteristics (Chapters 14 and

16). Process patterns must be coupled with solid software engineering practice

(Part 2 of this book). In addition, the process itself can be assessed to ensure that it

meets a set of basic process criteria that have been shown to be essential for a suc-

cessful software engineering.4

A number of different approaches to software process assessment and

improvement have been proposed over the past few decades:

Standard CMMI Assessment Method for Process Improvement

(SCAMPI)—provides a five-step process assessment model that incorporates

five phases: initiating, diagnosing, establishing, acting, and learning. The

SCAMPI method uses the SEI CMMI as the basis for assessment [SEI00].

CHAPTER 2 PROCESS MODELS 37

4 The SEI’s CMMI [CMM07] describes the characteristics of a software process and the criteria for a

successful process in voluminous detail.

Assessment attempts to
understand the current
state of the software
process with the intent
of improving it.

What formal
techniques

are available for
assessing the
software process?

?

INFO

An Example Process Pattern
The following abbreviated process pattern
describes an approach that may be applicable

when stakeholders have a general idea of what must be
done but are unsure of specific software requirements.

Pattern name. RequirementsUnclear

Intent. This pattern describes an approach for building a
model (a prototype) that can be assessed iteratively by
stakeholders in an effort to identify or solidify software
requirements.

Type. Phase pattern.

Initial context. The following conditions must be met
prior to the initiation of this pattern: (1) stakeholders have
been identified; (2) a mode of communication between
stakeholders and the software team has been established;
(3) the overriding software problem to be solved has been
identified by stakeholders; (4) an initial understanding of
project scope, basic business requirements, and project
constraints has been developed.

Problem. Requirements are hazy or nonexistent, yet
there is clear recognition that there is a problem to be

solved, and the problem must be addressed with a
software solution. Stakeholders are unsure of what they
want; that is, they cannot describe software requirements
in any detail.

Solution. A description of the prototyping process
would be presented here and is described later in
Section 2.3.3.

Resulting context. A software prototype that identifies
basic requirements (e.g., modes of interaction,
computational features, processing functions) is approved
by stakeholders. Following this, (1) the prototype may
evolve through a series of increments to become the
production software or (2) the prototype may be discarded
and the production software built using some other process
pattern.

Related patterns. The following patterns are related to
this pattern: CustomerCommunication,
IterativeDesign, IterativeDevelopment,
CustomerAssessment, RequirementExtraction.

Known uses and examples. Prototyping is
recommended when requirements are uncertain.

pre75977_ch02.qxd 11/27/08 3:21 PM Page 37

CMM-Based Appraisal for Internal Process Improvement (CBA IPI)—

provides a diagnostic technique for assessing the relative maturity of a

software organization; uses the SEI CMM as the basis for the assessment

[Dun01].

SPICE (ISO/IEC15504)—a standard that defines a set of requirements for

software process assessment. The intent of the standard is to assist organi-

zations in developing an objective evaluation of the efficacy of any defined

software process [ISO08].

ISO 9001:2000 for Software—a generic standard that applies to any or-

ganization that wants to improve the overall quality of the products, systems,

or services that it provides. Therefore, the standard is directly applicable to

software organizations and companies [Ant06].

A more detailed discussion of software assessment and process improvement

methods is presented in Chapter 30.

2.3 PRESCRIPTIVE PROCESS MODELS

Prescriptive process models were originally proposed to bring order to the chaos

of software development. History has indicated that these traditional models

have brought a certain amount of useful structure to software engineering work and

have provided a reasonably effective road map for software teams. However, software

engineering work and the product that it produces remain on “the edge of chaos.”

In an intriguing paper on the strange relationship between order and chaos in the

software world, Nogueira and his colleagues [Nog00] state

The edge of chaos is defined as “a natural state between order and chaos, a grand com-

promise between structure and surprise” [Kau95]. The edge of chaos can be visualized as

an unstable, partially structured state. . . . It is unstable because it is constantly attracted

to chaos or to absolute order.

We have the tendency to think that order is the ideal state of nature. This could be a mis-

take. Research . . . supports the theory that operation away from equilibrium generates cre-

ativity, self-organized processes, and increasing returns [Roo96]. Absolute order means the

absence of variability, which could be an advantage under unpredictable environments.

Change occurs when there is some structure so that the change can be organized, but not

so rigid that it cannot occur. Too much chaos, on the other hand, can make coordination

and coherence impossible. Lack of structure does not always mean disorder.

The philosophical implications of this argument are significant for software engineer-

ing. If prescriptive process models5 strive for structure and order, are they inappropri-

ate for a software world that thrives on change? Yet, if we reject traditional process

38 PART ONE THE SOFTWARE PROCESS

5 Prescriptive process models are sometimes referred to as “traditional” process models.

uote:

“Software
organizations have
exhibited
significant
shortcomings in
their ability to
capitalize on the
experiences gained
from completed
projects.”

NASA

uote:

“If the process is
right, the results
will take care of
themselves.”

Takashi Osada

pre75977_ch02.qxd 11/27/08 3:21 PM Page 38

models (and the order they imply) and replace them with something less structured,

do we make it impossible to achieve coordination and coherence in software work?

There are no easy answers to these questions, but there are alternatives available

to software engineers. In the sections that follow, I examine the prescriptive process

approach in which order and project consistency are dominant issues. I call them

“prescriptive” because they prescribe a set of process elements—framework activi-

ties, software engineering actions, tasks, work products, quality assurance, and

change control mechanisms for each project. Each process model also prescribes a

process flow (also called a work flow)—that is, the manner in which the process

elements are interrelated to one another.

All software process models can accommodate the generic framework activities

described in Chapter 1, but each applies a different emphasis to these activities and

defines a process flow that invokes each framework activity (as well as software

engineering actions and tasks) in a different manner.

2.3.1 The Waterfall Model

There are times when the requirements for a problem are well understood—when

work flows from communication through deployment in a reasonably linear fash-

ion. This situation is sometimes encountered when well-defined adaptations or en-

hancements to an existing system must be made (e.g., an adaptation to accounting

software that has been mandated because of changes to government regulations). It

may also occur in a limited number of new development efforts, but only when

requirements are well defined and reasonably stable.

The waterfall model, sometimes called the classic life cycle, suggests a systematic,

sequential approach6 to software development that begins with customer specifica-

tion of requirements and progresses through planning, modeling, construction, and

deployment, culminating in ongoing support of the completed software (Figure 2.3).

A variation in the representation of the waterfall model is called the V-model.

Represented in Figure 2.4, the V-model [Buc99] depicts the relationship of quality

CHAPTER 2 PROCESS MODELS 39

Communication
 project initiation
 requirements gathering

Planning
 estimating
 scheduling
 tracking

Modeling
 analysis
 design

Deployment
 delivery
 support
 feedback

Construction
 code
 test

FIGURE 2.3 The waterfall model

6 Although the original waterfall model proposed by Winston Royce [Roy70] made provision for

“feedback loops,” the vast majority of organizations that apply this process model treat it as if it

were strictly linear.

Prescriptive process
models define a
prescribed set of
process elements and
a predictable process
work flow.

pre75977_ch02.qxd 11/27/08 3:21 PM Page 39

assurance actions to the actions associated with communication, modeling, and

early construction activities. As a software team moves down the left side of the V,

basic problem requirements are refined into progressively more detailed and techni-

cal representations of the problem and its solution. Once code has been generated,

the team moves up the right side of the V, essentially performing a series of tests

(quality assurance actions) that validate each of the models created as the team

moved down the left side.7 In reality, there is no fundamental difference between the

classic life cycle and the V-model. The V-model provides a way of visualizing how

verification and validation actions are applied to earlier engineering work.

The waterfall model is the oldest paradigm for software engineering. However,

over the past three decades, criticism of this process model has caused even ardent

supporters to question its efficacy [Han95]. Among the problems that are sometimes

encountered when the waterfall model is applied are:

1. Real projects rarely follow the sequential flow that the model proposes.

Although the linear model can accommodate iteration, it does so indirectly.

As a result, changes can cause confusion as the project team proceeds.

40 PART ONE THE SOFTWARE PROCESS

7 A detailed discussion of quality assurance actions is presented in Part 3 of this book.

The V-model illustrates
how verification and
validation actions are
associated with earlier
engineering actions.

Why does
the waterfall

model sometimes
fail?

?

Code
generation

Architectural
design

Component
design

Requirements
modeling

Acceptance
testing

System
testing

Integration
testing

Unit
testing

Executable
software

FIGURE 2.4

The V-model

pre75977_ch02.qxd 11/27/08 3:21 PM Page 40

2. It is often difficult for the customer to state all requirements explicitly. The

waterfall model requires this and has difficulty accommodating the natural

uncertainty that exists at the beginning of many projects.

3. The customer must have patience. A working version of the program(s) will

not be available until late in the project time span. A major blunder, if unde-

tected until the working program is reviewed, can be disastrous.

In an interesting analysis of actual projects, Bradac [Bra94] found that the linear

nature of the classic life cycle leads to “blocking states” in which some project team

members must wait for other members of the team to complete dependent tasks. In

fact, the time spent waiting can exceed the time spent on productive work! The

blocking states tend to be more prevalent at the beginning and end of a linear

sequential process.

Today, software work is fast-paced and subject to a never-ending stream of

changes (to features, functions, and information content). The waterfall model is

often inappropriate for such work. However, it can serve as a useful process model

in situations where requirements are fixed and work is to proceed to completion in

a linear manner.

2.3.2 Incremental Process Models

There are many situations in which initial software requirements are reasonably well

defined, but the overall scope of the development effort precludes a purely linear

process. In addition, there may be a compelling need to provide a limited set of soft-

ware functionality to users quickly and then refine and expand on that functionality

in later software releases. In such cases, you can choose a process model that is

designed to produce the software in increments.

The incremental model combines elements of linear and parallel process flows

discussed in Section 2.1. Referring to Figure 2.5, the incremental model applies linear

sequences in a staggered fashion as calendar time progresses. Each linear sequence

produces deliverable “increments” of the software [McD93] in a manner that is sim-

ilar to the increments produced by an evolutionary process flow (Section 2.3.3).

For example, word-processing software developed using the incremental para-

digm might deliver basic file management, editing, and document production func-

tions in the first increment; more sophisticated editing and document production

capabilities in the second increment; spelling and grammar checking in the third in-

crement; and advanced page layout capability in the fourth increment. It should be

noted that the process flow for any increment can incorporate the prototyping

paradigm.

When an incremental model is used, the first increment is often a core product.

That is, basic requirements are addressed but many supplementary features (some

known, others unknown) remain undelivered. The core product is used by the cus-

tomer (or undergoes detailed evaluation). As a result of use and/or evaluation, a

CHAPTER 2 PROCESS MODELS 41

uote:

“Too often,
software work
follows the first law
of bicycling: No
matter where
you’re going, it’s
uphill and against
the wind.”

Author unknown

The incremental model
delivers a series of
releases, called
increments, that
provide progressively
more functionality for
the customer as each
increment is delivered.

Your customer
demands delivery by a
date that is impossible
to meet. Suggest deliv-
ering one or more
increments by that
date and the rest of
the software (addi-
tional increments)
later.

pre75977_ch02.qxd 11/27/08 3:21 PM Page 41

plan is developed for the next increment. The plan addresses the modification of the

core product to better meet the needs of the customer and the delivery of additional

features and functionality. This process is repeated following the delivery of each

increment, until the complete product is produced.

The incremental process model focuses on the delivery of an operational product

with each increment. Early increments are stripped-down versions of the final prod-

uct, but they do provide capability that serves the user and also provide a platform

for evaluation by the user.8

Incremental development is particularly useful when staffing is unavailable for a

complete implementation by the business deadline that has been established for the

project. Early increments can be implemented with fewer people. If the core product

is well received, then additional staff (if required) can be added to implement the next

increment. In addition, increments can be planned to manage technical risks. For ex-

ample, a major system might require the availability of new hardware that is under

development and whose delivery date is uncertain. It might be possible to plan early

increments in a way that avoids the use of this hardware, thereby enabling partial

functionality to be delivered to end users without inordinate delay.

2.3.3 Evolutionary Process Models

Software, like all complex systems, evolves over a period of time. Business and prod-

uct requirements often change as development proceeds, making a straight line path

to an end product unrealistic; tight market deadlines make completion of a compre-

hensive software product impossible, but a limited version must be introduced to

42 PART ONE THE SOFTWARE PROCESS

Evolutionary process
models produce an
increasingly more
complete version of
the software with each
iteration.

8 It is important to note that an incremental philosophy is also used for all “agile” process models dis-

cussed in Chapter 3.

increment # 1

increment # 2

delivery of
1st increment

delivery of
2nd increment

delivery of
nth increment

increment # n

Project Calendar Time

So
ft

w
a
re

 F
u
n
ct

io
n
a
lit

y
 a

n
d
 F

ea
tu

re
s

Communication

Planning

Modeling (analysis, design)

Construction (code, test)

Deployment (delivery, feedback)

FIGURE 2.5

The
incremental
model

pre75977_ch02.qxd 11/27/08 3:21 PM Page 42

meet competitive or business pressure; a set of core product or system requirements

is well understood, but the details of product or system extensions have yet to be

defined. In these and similar situations, you need a process model that has been

explicitly designed to accommodate a product that evolves over time.

Evolutionary models are iterative. They are characterized in a manner that

enables you to develop increasingly more complete versions of the software. In the

paragraphs that follow, I present two common evolutionary process models.

Prototyping. Often, a customer defines a set of general objectives for software,

but does not identify detailed requirements for functions and features. In other

cases, the developer may be unsure of the efficiency of an algorithm, the adapt-

ability of an operating system, or the form that human-machine interaction should

take. In these, and many other situations, a prototyping paradigm may offer the best

approach.

Although prototyping can be used as a stand-alone process model, it is more com-

monly used as a technique that can be implemented within the context of any one

of the process models noted in this chapter. Regardless of the manner in which it is

applied, the prototyping paradigm assists you and other stakeholders to better

understand what is to be built when requirements are fuzzy.

The prototyping paradigm (Figure 2.6) begins with communication. You meet with

other stakeholders to define the overall objectives for the software, identify whatever

requirements are known, and outline areas where further definition is mandatory. A

prototyping iteration is planned quickly, and modeling (in the form of a “quick de-

sign”) occurs. A quick design focuses on a representation of those aspects of the soft-

ware that will be visible to end users (e.g., human interface layout or output display

CHAPTER 2 PROCESS MODELS 43

uote:

“Plan to throw one
away. You will do
that, anyway. Your
only choice is
whether to try to
sell the throwaway
to customers.”

Frederick P.
Brooks

When your customer
has a legitimate need,
but is clueless about
the details, develop a
prototype as a first
step.

Communication

Quick plan

Construction
of
prototype

Modeling
 Quick design

Deployment
 Delivery
 & Feedback

FIGURE 2.6

The
prototyping
paradigm

pre75977_ch02.qxd 11/27/08 3:21 PM Page 43

formats). The quick design leads to the construction of a prototype. The prototype is

deployed and evaluated by stakeholders, who provide feedback that is used to fur-

ther refine requirements. Iteration occurs as the prototype is tuned to satisfy the

needs of various stakeholders, while at the same time enabling you to better under-

stand what needs to be done.

Ideally, the prototype serves as a mechanism for identifying software require-

ments. If a working prototype is to be built, you can make use of existing program

fragments or apply tools (e.g., report generators and window managers) that enable

working programs to be generated quickly.

But what do you do with the prototype when it has served the purpose described

earlier? Brooks [Bro95] provides one answer:

In most projects, the first system built is barely usable. It may be too slow, too big, awk-

ward in use or all three. There is no alternative but to start again, smarting but smarter,

and build a redesigned version in which these problems are solved.

The prototype can serve as “the first system.” The one that Brooks recommends

you throw away. But this may be an idealized view. Although some prototypes are

built as “throwaways,” others are evolutionary in the sense that the prototype slowly

evolves into the actual system.

Both stakeholders and software engineers like the prototyping paradigm. Users

get a feel for the actual system, and developers get to build something immediately.

Yet, prototyping can be problematic for the following reasons:

1. Stakeholders see what appears to be a working version of the software,

unaware that the prototype is held together haphazardly, unaware that in the

rush to get it working you haven’t considered overall software quality or

long-term maintainability. When informed that the product must be rebuilt so

that high levels of quality can be maintained, stakeholders cry foul and

demand that “a few fixes” be applied to make the prototype a working

product. Too often, software development management relents.

2. As a software engineer, you often make implementation compromises in

order to get a prototype working quickly. An inappropriate operating system

or programming language may be used simply because it is available and

known; an inefficient algorithm may be implemented simply to demonstrate

capability. After a time, you may become comfortable with these choices and

forget all the reasons why they were inappropriate. The less-than-ideal

choice has now become an integral part of the system.

Although problems can occur, prototyping can be an effective paradigm for soft-

ware engineering. The key is to define the rules of the game at the beginning; that is,

all stakeholders should agree that the prototype is built to serve as a mechanism for

defining requirements. It is then discarded (at least in part), and the actual software

is engineered with an eye toward quality.

44 PART ONE THE SOFTWARE PROCESS

Resist pressure to
extend a rough
prototype into a
production product.
Quality almost always
suffers as a result.

pre75977_ch02.qxd 11/27/08 3:21 PM Page 44

The Spiral Model. Originally proposed by Barry Boehm [Boe88], the spiral model

is an evolutionary software process model that couples the iterative nature of proto-

typing with the controlled and systematic aspects of the waterfall model. It provides

the potential for rapid development of increasingly more complete versions of the

software. Boehm [Boe01a] describes the model in the following manner:

The spiral development model is a risk-driven process model generator that is used to

guide multi-stakeholder concurrent engineering of software intensive systems. It has two

main distinguishing features. One is a cyclic approach for incrementally growing a sys-

tem’s degree of definition and implementation while decreasing its degree of risk. The

other is a set of anchor point milestones for ensuring stakeholder commitment to feasible

and mutually satisfactory system solutions.

Using the spiral model, software is developed in a series of evolutionary releases.

During early iterations, the release might be a model or prototype. During later iter-

ations, increasingly more complete versions of the engineered system are produced.

CHAPTER 2 PROCESS MODELS 45

The scene: Meeting room for the
software engineering group at CPI Corporation, a
(fictional) company that makes consumer products for
home and commercial use.

The players: Lee Warren, engineering manager; Doug
Miller, software engineering manager; Jamie Lazar,
software team member; Vinod Raman, software team
member; and Ed Robbins, software team member.

The conversation:

Lee: So let’s recapitulate. I’ve spent some time discussing
the SafeHome product line as we see it at the moment.
No doubt, we’ve got a lot of work to do to simply define
the thing, but I’d like you guys to begin thinking about
how you’re going to approach the software part of this
project.

Doug: Seems like we’ve been pretty disorganized in our
approach to software in the past.

Ed: I don’t know, Doug, we always got product out
the door.

Doug: True, but not without a lot of grief, and this
project looks like it’s bigger and more complex than
anything we’ve done in the past.

Jamie: Doesn’t look that hard, but I agree . . . our
ad hoc approach to past projects won’t work here,
particularly if we have a very tight time line.

Doug (smiling): I want to be a bit more professional in
our approach. I went to a short course last week and
learned a lot about software engineering . . . good stuff.
We need a process here.

Jamie (with a frown): My job is to build computer
programs, not push paper around.

Doug: Give it a chance before you go negative on
me. Here’s what I mean. [Doug proceeds to describe
the process framework described in this chapter and
the prescriptive process models presented to this
point.]

Doug: So anyway, it seems to me that a linear model is
not for us . . . assumes we have all requirements up front
and, knowing this place, that’s not likely.

Vinod: Yeah, and it sounds way too IT-oriented . . .
probably good for building an inventory control system
or something, but it’s just not right for SafeHome.

Doug: I agree.

Ed: That prototyping approach seems OK. A lot like what
we do here anyway.

Vinod: That’s a problem. I’m worried that it doesn’t
provide us with enough structure.

Doug: Not to worry. We’ve got plenty of other options,
and I want you guys to pick what’s best for the team and
best for the project.

SAFEHOME

Selecting a Process Model, Part 1

pre75977_ch02.qxd 11/27/08 3:21 PM Page 45

A spiral model is divided into a set of framework activities defined by the software

engineering team. For illustrative purposes, I use the generic framework activities

discussed earlier.9 Each of the framework activities represent one segment of the spi-

ral path illustrated in Figure 2.7. As this evolutionary process begins, the software

team performs activities that are implied by a circuit around the spiral in a clockwise

direction, beginning at the center. Risk (Chapter 28) is considered as each revolution

is made. Anchor point milestones—a combination of work products and conditions

that are attained along the path of the spiral—are noted for each evolutionary pass.

The first circuit around the spiral might result in the development of a product

specification; subsequent passes around the spiral might be used to develop a pro-

totype and then progressively more sophisticated versions of the software. Each pass

through the planning region results in adjustments to the project plan. Cost and

schedule are adjusted based on feedback derived from the customer after delivery.

In addition, the project manager adjusts the planned number of iterations required

to complete the software.

Unlike other process models that end when software is delivered, the spiral model

can be adapted to apply throughout the life of the computer software. Therefore, the

first circuit around the spiral might represent a “concept development project” that

starts at the core of the spiral and continues for multiple iterations10 until concept

46 PART ONE THE SOFTWARE PROCESS

9 The spiral model discussed in this section is a variation on the model proposed by Boehm. For

further information on the original spiral model, see [Boe88]. More recent discussion of Boehm’s

spiral model can be found in [Boe98].

10 The arrows pointing inward along the axis separating the deployment region from the commu-

nication region indicate a potential for local iteration along the same spiral path.

Communication

Planning

Modeling

Construction
Deployment

delivery
feedback

Start

analysis
design

code
test

estimation
scheduling
risk analysis

FIGURE 2.7

A typical
spiral model

The spiral model can
be adapted to apply
throughout the entire
life cycle of an
application, from
concept development
to maintenance.

WebRef
Useful information
about the spiral model
can be obtained at:
www.sei.cmu
.edu/publications/
documents/00
.reports/00sr008
.html.

pre75977_ch02.qxd 11/27/08 3:21 PM Page 46

http://www.sei.cmu

development is complete. If the concept is to be developed into an actual product,

the process proceeds outward on the spiral and a “new product development proj-

ect” commences. The new product will evolve through a number of iterations around

the spiral. Later, a circuit around the spiral might be used to represent a “product en-

hancement project.” In essence, the spiral, when characterized in this way, remains

operative until the software is retired. There are times when the process is dormant,

but whenever a change is initiated, the process starts at the appropriate entry point

(e.g., product enhancement).

The spiral model is a realistic approach to the development of large-scale systems

and software. Because software evolves as the process progresses, the developer

and customer better understand and react to risks at each evolutionary level. The

spiral model uses prototyping as a risk reduction mechanism but, more important,

enables you to apply the prototyping approach at any stage in the evolution of the

product. It maintains the systematic stepwise approach suggested by the classic life

cycle but incorporates it into an iterative framework that more realistically reflects

the real world. The spiral model demands a direct consideration of technical risks at

all stages of the project and, if properly applied, should reduce risks before they

become problematic.

But like other paradigms, the spiral model is not a panacea. It may be difficult to

convince customers (particularly in contract situations) that the evolutionary

approach is controllable. It demands considerable risk assessment expertise and

relies on this expertise for success. If a major risk is not uncovered and managed,

problems will undoubtedly occur.

CHAPTER 2 PROCESS MODELS 47

If your management
demands fixed-budget
development
(generally a bad idea),
the spiral can be a
problem. As each
circuit is completed,
project cost is revisited
and revised.

uote:

“I’m only this far
and only tomorrow
leads my way.”

Dave Matthews
Band

The scene: Meeting room for the
software engineering group at CPI Corporation, a
company that makes consumer products for home and
commercial use.

The players: Lee Warren, engineering manager; Doug
Miller, software engineering manager; Vinod and Jamie,
members of the software engineering team.

The conversation: [Doug describes evolutionary
process options.]

Jamie: Now I see something I like. An incremental
approach makes sense, and I really like the flow of that
spiral model thing. That’s keepin’ it real.

Vinod: I agree. We deliver an increment, learn from
customer feedback, replan, and then deliver another
increment. It also fits into the nature of the product. We

can have something on the market fast and then add
functionality with each version, er, increment.

Lee: Wait a minute. Did you say that we regenerate the
plan with each tour around the spiral, Doug? That’s not so
great; we need one plan, one schedule, and we’ve got to
stick to it.

Doug: That’s old-school thinking, Lee. Like the guys said,
we’ve got to keep it real. I submit that it’s better to tweak
the plan as we learn more and as changes are requested.
It’s way more realistic. What’s the point of a plan if it
doesn’t reflect reality?

Lee (frowning): I suppose so, but . . . senior management’s
not going to like this . . . they want a fixed plan.

Doug (smiling): Then you’ll have to reeducate them,
buddy.

SAFEHOME

Selecting a Process Model, Part 2

pre75977_ch02.qxd 11/27/08 3:21 PM Page 47

2.3.4 Concurrent Models

The concurrent development model, sometimes called concurrent engineering, allows

a software team to represent iterative and concurrent elements of any of the process

models described in this chapter. For example, the modeling activity defined for the

spiral model is accomplished by invoking one or more of the following software

engineering actions: prototyping, analysis, and design.11

Figure 2.8 provides a schematic representation of one software engineering

activity within the modeling activity using a concurrent modeling approach. The

activity—modeling—may be in any one of the states12 noted at any given time. Sim-

ilarly, other activities, actions, or tasks (e.g., communication or construction) can

be represented in an analogous manner. All software engineering activities exist

concurrently but reside in different states.

48 PART ONE THE SOFTWARE PROCESS

11 It should be noted that analysis and design are complex tasks that require substantial discussion.

Part 2 of this book considers these topics in detail.

12 A state is some externally observable mode of behavior.

Under review

Baselined

Under
revision

Awaiting
changes

Under
development

Inactive

Modeling activity

Represents the state
of a software engineering
activity or task

Done

FIGURE 2.8

One element of
the concurrent
process model

The concurrent model
is often more appro-
priate for product engi-
neering projects where
different engineering
teams are involved.

pre75977_ch02.qxd 11/27/08 3:21 PM Page 48

For example, early in a project the communication activity (not shown in the figure)

has completed its first iteration and exists in the awaiting changes state. The model-

ing activity (which existed in the inactive state while initial communication was com-

pleted, now makes a transition into the under development state. If, however, the

customer indicates that changes in requirements must be made, the modeling activity

moves from the under development state into the awaiting changes state.

Concurrent modeling defines a series of events that will trigger transitions from

state to state for each of the software engineering activities, actions, or tasks. For

example, during early stages of design (a major software engineering action that

occurs during the modeling activity), an inconsistency in the requirements model is

uncovered. This generates the event analysis model correction, which will trigger the

requirements analysis action from the done state into the awaiting changes state.

Concurrent modeling is applicable to all types of software development and pro-

vides an accurate picture of the current state of a project. Rather than confining soft-

ware engineering activities, actions, and tasks to a sequence of events, it defines a

process network. Each activity, action, or task on the network exists simultaneously

with other activities, actions, or tasks. Events generated at one point in the process

network trigger transitions among the states.

2.3.5 A Final Word on Evolutionary Processes

I have already noted that modern computer software is characterized by continual

change, by very tight time lines, and by an emphatic need for customer–user

satisfaction. In many cases, time-to-market is the most important management

requirement. If a market window is missed, the software project itself may be

meaningless.13

Evolutionary process models were conceived to address these issues, and yet, as

a general class of process models, they too have weaknesses. These are summarized

by Nogueira and his colleagues [Nog00] :

Despite the unquestionable benefits of evolutionary software processes, we have some

concerns. The first concern is that prototyping [and other more sophisticated evolution-

ary processes] poses a problem to project planning because of the uncertain number of

cycles required to construct the product. Most project management and estimation tech-

niques are based on linear layouts of activities, so they do not fit completely.

Second, evolutionary software processes do not establish the maximum speed of the

evolution. If the evolutions occur too fast, without a period of relaxation, it is certain that

the process will fall into chaos. On the other hand if the speed is too slow then produc-

tivity could be affected . . .

CHAPTER 2 PROCESS MODELS 49

13 It is important to note, however, that being the first to reach a market is no guarantee of success.

In fact, many very successful software products have been second or even third to reach the market

(learning from the mistakes of their predecessors).

uote:

“Every process in
your organization
has a customer,
and without a
customer a process
has no purpose.”

V. Daniel Hunt

pre75977_ch02.qxd 11/27/08 3:21 PM Page 49

Third, software processes should be focused on flexibility and extensibility rather than

on high quality. This assertion sounds scary. However, we should prioritize the speed of

the development over zero defects. Extending the development in order to reach high

quality could result in a late delivery of the product, when the opportunity niche has

disappeared. This paradigm shift is imposed by the competition on the edge of chaos.

Indeed, a software process that focuses on flexibility, extensibility, and speed of de-

velopment over high quality does sound scary. And yet, this idea has been proposed

by a number of well-respected software engineering experts (e.g., [You95], [Bac97]).

The intent of evolutionary models is to develop high-quality software14 in an iter-

ative or incremental manner. However, it is possible to use an evolutionary process

to emphasize flexibility, extensibility, and speed of development. The challenge for

software teams and their managers is to establish a proper balance between these

critical project and product parameters and customer satisfaction (the ultimate

arbiter of software quality).

2.4 SPECIALIZED PROCESS MODELS

Specialized process models take on many of the characteristics of one or more of the

traditional models presented in the preceding sections. However, these models tend

to be applied when a specialized or narrowly defined software engineering approach

is chosen.15

2.4.1 Component-Based Development

Commercial off-the-shelf (COTS) software components, developed by vendors who

offer them as products, provide targeted functionality with well-defined interfaces

that enable the component to be integrated into the software that is to be built. The

component-based development model incorporates many of the characteristics of the

spiral model. It is evolutionary in nature [Nie92], demanding an iterative approach to

the creation of software. However, the component-based development model con-

structs applications from prepackaged software components.

Modeling and construction activities begin with the identification of candidate

components. These components can be designed as either conventional software

modules or object-oriented classes or packages16 of classes. Regardless of the

50 PART ONE THE SOFTWARE PROCESS

14 In this context software quality is defined quite broadly to encompass not only customer satisfac-

tion, but also a variety of technical criteria discussed in Chapters 14 and 16.

15 In some cases, these specialized process models might better be characterized as a collection of

techniques or a “methodology” for accomplishing a specific software development goal. However,

they do imply a process.

16 Object-oriented concepts are discussed in Appendix 2 and are used throughout Part 2 of this book.

In this context, a class encompasses a set of data and the procedures that process the data. A pack-

age of classes is a collection of related classes that work together to achieve some end result.

WebRef
Useful information on
component-based
development can be
obtained at: www
.cbd-hq.com.

pre75977_ch02.qxd 11/27/08 3:21 PM Page 50

technology that is used to create the components, the component-based develop-

ment model incorporates the following steps (implemented using an evolutionary

approach):

1. Available component-based products are researched and evaluated for the

application domain in question.

2. Component integration issues are considered.

3. A software architecture is designed to accommodate the components.

4. Components are integrated into the architecture.

5. Comprehensive testing is conducted to ensure proper functionality.

The component-based development model leads to software reuse, and reusabil-

ity provides software engineers with a number of measurable benefits. Your software

engineering team can achieve a reduction in development cycle time as well as a

reduction in project cost if component reuse becomes part of your culture. Component-

based development is discussed in more detail in Chapter 10.

2.4.2 The Formal Methods Model

The formal methods model encompasses a set of activities that leads to formal math-

ematical specification of computer software. Formal methods enable you to specify,

develop, and verify a computer-based system by applying a rigorous, mathematical

notation. A variation on this approach, called cleanroom software engineering [Mil87,

Dye92], is currently applied by some software development organizations.

When formal methods (Chapter 21) are used during development, they provide a

mechanism for eliminating many of the problems that are difficult to overcome using

other software engineering paradigms. Ambiguity, incompleteness, and inconsis-

tency can be discovered and corrected more easily—not through ad hoc review, but

through the application of mathematical analysis. When formal methods are used

during design, they serve as a basis for program verification and therefore enable

you to discover and correct errors that might otherwise go undetected.

Although not a mainstream approach, the formal methods model offers the prom-

ise of defect-free software. Yet, concern about its applicability in a business envi-

ronment has been voiced:

• The development of formal models is currently quite time consuming and

expensive.

• Because few software developers have the necessary background to apply

formal methods, extensive training is required.

• It is difficult to use the models as a communication mechanism for techni-

cally unsophisticated customers.

These concerns notwithstanding, the formal methods approach has gained

adherents among software developers who must build safety-critical software

CHAPTER 2 PROCESS MODELS 51

If formal
methods can

demonstrate
software
correctness, why
is it they are not
widely used?

?

pre75977_ch02.qxd 11/27/08 3:21 PM Page 51

(e.g., developers of aircraft avionics and medical devices) and among developers

that would suffer severe economic hardship should software errors occur.

2.4.3 Aspect-Oriented Software Development

Regardless of the software process that is chosen, the builders of complex software

invariably implement a set of localized features, functions, and information content.

These localized software characteristics are modeled as components (e.g., object-

oriented classes) and then constructed within the context of a system architecture.

As modern computer-based systems become more sophisticated (and complex),

certain concerns—customer required properties or areas of technical interest—span

the entire architecture. Some concerns are high-level properties of a system (e.g.,

security, fault tolerance). Other concerns affect functions (e.g., the application of

business rules), while others are systemic (e.g., task synchronization or memory

management).

When concerns cut across multiple system functions, features, and information,

they are often referred to as crosscutting concerns. Aspectual requirements define

those crosscutting concerns that have an impact across the software architecture.

Aspect-oriented software development (AOSD), often referred to as aspect-oriented

programming (AOP), is a relatively new software engineering paradigm that provides

a process and methodological approach for defining, specifying, designing, and con-

structing aspects—“mechanisms beyond subroutines and inheritance for localizing

the expression of a crosscutting concern” [Elr01].

Grundy [Gru02] provides further discussion of aspects in the context of what he

calls aspect-oriented component engineering (AOCE):

AOCE uses a concept of horizontal slices through vertically-decomposed software com-

ponents, called “aspects,” to characterize cross-cutting functional and non-functional

properties of components. Common, systemic aspects include user interfaces, collabora-

tive work, distribution, persistency, memory management, transaction processing, secu-

rity, integrity and so on. Components may provide or require one or more “aspect details”

relating to a particular aspect, such as a viewing mechanism, extensible affordance and

interface kind (user interface aspects); event generation, transport and receiving

(distribution aspects); data store/retrieve and indexing (persistency aspects); authentica-

tion, encoding and access rights (security aspects); transaction atomicity, concurrency

control and logging strategy (transaction aspects); and so on. Each aspect detail has a

number of properties, relating to functional and/or non-functional characteristics of the

aspect detail.

A distinct aspect-oriented process has not yet matured. However, it is likely that

such a process will adopt characteristics of both evolutionary and concurrent

process models. The evolutionary model is appropriate as aspects are identified and

then constructed. The parallel nature of concurrent development is essential be-

cause aspects are engineered independently of localized software components and

yet, aspects have a direct impact on these components. Hence, it is essential to

52 PART ONE THE SOFTWARE PROCESS

WebRef
A wide array of
resources and
information on AOP
can be found at:
aosd.net.

AOSD defines
“aspects” that express
customer concerns that
cut across multiple
system functions,
features, and
information.

pre75977_ch02.qxd 11/27/08 3:21 PM Page 52

instantiate asynchronous communication between the software process activities

applied to the engineering and construction of aspects and components.

A detailed discussion of aspect-oriented software development is best left to

books dedicated to the subject. If you have further interest, see [Saf08], [Cla05],

[Jac04], and [Gra03].

CHAPTER 2 PROCESS MODELS 53

17 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.

In most cases, tool names are trademarked by their respective developers.

Process Management
Objective: To assist in the definition,
execution, and management of prescriptive

process models.

Mechanics: Process management tools allow a software
organization or team to define a complete software
process model (framework activities, actions, tasks, QA
checkpoints, milestones, and work products). In addition,
the tools provide a road map as software engineers do
technical work and a template for managers who must
track and control the software process.

Representative Tools:17

GDPA, a research process definition tool suite, developed at
Bremen University in Germany (www.informatik

.uni-bremen.de/uniform/gdpa/home.htm),
provides a wide array of process modeling and
management functions.

SpeeDev, developed by SpeeDev Corporation
(www.speedev.com) encompasses a suite of tools
for process definition, requirements management, issue
resolution, project planning, and tracking.

ProVision BPMx, developed by Proforma
(www.proformacorp.com), is representative of
many tools that assist in process definition and
workflow automation.

A worthwhile listing of many different tools associated
with the software process can be found at www
.processwave.net/Links/tool_links.htm.

SOFTWARE TOOLS

2.5 THE UNIFIED PROCESS

In their seminal book on the Unified Process, Ivar Jacobson, Grady Booch, and James

Rumbaugh [Jac99] discuss the need for a “use case driven, architecture-centric, iter-

ative and incremental” software process when they state:

Today, the trend in software is toward bigger, more complex systems. That is due in part

to the fact that computers become more powerful every year, leading users to expect

more from them. This trend has also been influenced by the expanding use of the Inter-

net for exchanging all kinds of information. . . . Our appetite for ever-more sophisticated

software grows as we learn from one product release to the next how the product could

be improved. We want software that is better adapted to our needs, but that, in turn,

merely makes the software more complex. In short, we want more.

In some ways the Unified Process is an attempt to draw on the best features and

characteristics of traditional software process models, but characterize them in a

way that implements many of the best principles of agile software development

pre75977_ch02.qxd 11/27/08 3:21 PM Page 53

http://www.informatikSOFTWARETOOLS.uni-bremen.de/uniform/gdpa/home.htm
http://www.informatikSOFTWARETOOLS.uni-bremen.de/uniform/gdpa/home.htm
http://www.informatikSOFTWARETOOLS.uni-bremen.de/uniform/gdpa/home.htm
http://www.speedev.com
http://www.proformacorp.com

(Chapter 3). The Unified Process recognizes the importance of customer communi-

cation and streamlined methods for describing the customer’s view of a system

(the use case18). It emphasizes the important role of software architecture and

“helps the architect focus on the right goals, such as understandability, reliance to

future changes, and reuse” [Jac99]. It suggests a process flow that is iterative and

incremental, providing the evolutionary feel that is essential in modern software

development.

2.5.1 A Brief History

During the early 1990s James Rumbaugh [Rum91], Grady Booch [Boo94], and Ivar

Jacobson [Jac92] began working on a “unified method” that would combine the best

features of each of their individual object-oriented analysis and design methods and

adopt additional features proposed by other experts (e.g., [Wir90]) in object-oriented

modeling. The result was UML—a unified modeling language that contains a robust

notation for the modeling and development of object-oriented systems. By 1997,

UML became a de facto industry standard for object-oriented software development.

UML is used throughout Part 2 of this book to represent both requirements and

design models. Appendix 1 presents an introductory tutorial for those who are unfa-

miliar with basic UML notation and modeling rules. A comprehensive presentation

of UML is best left to textbooks dedicated to the subject. Recommended books are

listed in Appendix 1.

UML provided the necessary technology to support object-oriented software engi-

neering practice, but it did not provide the process framework to guide project teams

in their application of the technology. Over the next few years, Jacobson, Rumbaugh,

and Booch developed the Unified Process, a framework for object-oriented software

engineering using UML. Today, the Unified Process (UP) and UML are widely used on

object-oriented projects of all kinds. The iterative, incremental model proposed by the

UP can and should be adapted to meet specific project needs.

2.5.2 Phases of the Unified Process19

Earlier in this chapter, I discussed five generic framework activities and argued that

they may be used to describe any software process model. The Unified Process is no

exception. Figure 2.9 depicts the “phases” of the UP and relates them to the generic

activities that have been discussed in Chapter 1 and earlier in this chapter.

54 PART ONE THE SOFTWARE PROCESS

18 A use case (Chapter 5) is a text narrative or template that describes a system function or feature

from the user’s point of view. A use case is written by the user and serves as a basis for the creation

of a more comprehensive requirements model.

19 The Unified Process is sometimes called the Rational Unified Process (RUP) after the Rational Cor-

poration (subsequently acquired by IBM), an early contributor to the development and refinement

of the UP and a builder of complete environments (tools and technology) that support the process.

pre75977_ch02.qxd 11/27/08 3:21 PM Page 54

The inception phase of the UP encompasses both customer communication and

planning activities. By collaborating with stakeholders, business requirements for

the software are identified; a rough architecture for the system is proposed; and a

plan for the iterative, incremental nature of the ensuing project is developed.

Fundamental business requirements are described through a set of preliminary use

cases (Chapter 5) that describe which features and functions each major class of

users desires. Architecture at this point is nothing more than a tentative outline of

major subsystems and the function and features that populate them. Later, the ar-

chitecture will be refined and expanded into a set of models that will represent

different views of the system. Planning identifies resources, assesses major risks,

defines a schedule, and establishes a basis for the phases that are to be applied as

the software increment is developed.

The elaboration phase encompasses the communication and modeling activities of

the generic process model (Figure 2.9). Elaboration refines and expands the prelimi-

nary use cases that were developed as part of the inception phase and expands the

architectural representation to include five different views of the software—the use

case model, the requirements model, the design model, the implementation model,

and the deployment model. In some cases, elaboration creates an “executable

architectural baseline” [Arl02] that represents a “first cut” executable system.20 The

architectural baseline demonstrates the viability of the architecture but does not

provide all features and functions required to use the system. In addition, the plan is

carefully reviewed at the culmination of the elaboration phase to ensure that scope,

risks, and delivery dates remain reasonable. Modifications to the plan are often made

at this time.

CHAPTER 2 PROCESS MODELS 55

Transition

Production

software increment

Release

modeling

construction

planning

communication

deployment Construction

Inception

Elaboration
FIGURE 2.9

The Unified
Process

UP phases are similar
in intent to the generic
framework activities
defined in this book.

20 It is important to note that the architectural baseline is not a prototype in that it is not thrown away.

Rather, the baseline is fleshed out during the next UP phase.

pre75977_ch02.qxd 11/27/08 3:21 PM Page 55

The construction phase of the UP is identical to the construction activity defined

for the generic software process. Using the architectural model as input, the con-

struction phase develops or acquires the software components that will make each

use case operational for end users. To accomplish this, requirements and design

models that were started during the elaboration phase are completed to reflect the

final version of the software increment. All necessary and required features and

functions for the software increment (i.e., the release) are then implemented in

source code. As components are being implemented, unit tests21 are designed and

executed for each. In addition, integration activities (component assembly and inte-

gration testing) are conducted. Use cases are used to derive a suite of acceptance

tests that are executed prior to the initiation of the next UP phase.

The transition phase of the UP encompasses the latter stages of the generic con-

struction activity and the first part of the generic deployment (delivery and feedback)

activity. Software is given to end users for beta testing and user feedback reports

both defects and necessary changes. In addition, the software team creates the nec-

essary support information (e.g., user manuals, troubleshooting guides, installation

procedures) that is required for the release. At the conclusion of the transition phase,

the software increment becomes a usable software release.

The production phase of the UP coincides with the deployment activity of the

generic process. During this phase, the ongoing use of the software is monitored,

support for the operating environment (infrastructure) is provided, and defect reports

and requests for changes are submitted and evaluated.

It is likely that at the same time the construction, transition, and production

phases are being conducted, work may have already begun on the next software

increment. This means that the five UP phases do not occur in a sequence, but rather

with staggered concurrency.

A software engineering workflow is distributed across all UP phases. In the con-

text of UP, a workflow is analogous to a task set (described earlier in this chapter).

That is, a workflow identifies the tasks required to accomplish an important software

engineering action and the work products that are produced as a consequence of

successfully completing the tasks. It should be noted that not every task identified for

a UP workflow is conducted for every software project. The team adapts the process

(actions, tasks, subtasks, and work products) to meet its needs.

2.6 PERSONAL AND TEAM PROCESS MODELS

The best software process is one that is close to the people who will be doing the

work. If a software process model has been developed at a corporate or organiza-

tional level, it can be effective only if it is amenable to significant adaptation to meet

56 PART ONE THE SOFTWARE PROCESS

21 A comprehensive discussion of software testing (including unit tests) is presented in Chapters 17
through 20.

WebRef
An interesting
discussion of the UP in
the context of agile
development can be
found at
www.ambysoft
.com/
unifiedprocess/
agileUP.html.

pre75977_ch02.qxd 11/27/08 3:21 PM Page 56

http://www.ambysoft

the needs of the project team that is actually doing software engineering work. In an

ideal setting, you would create a process that best fits your needs, and at the same

time, meets the broader needs of the team and the organization. Alternatively, the

team itself can create its own process, and at the same time meet the narrower needs

of individuals and the broader needs of the organization. Watts Humphrey ([Hum97]

and [Hum00]) argues that it is possible to create a “personal software process”

and/or a “team software process.” Both require hard work, training, and coordina-

tion, but both are achievable.22

2.6.1 Personal Software Process (PSP)

Every developer uses some process to build computer software. The process may be

haphazard or ad hoc; may change on a daily basis; may not be efficient, effective, or

even successful; but a “process” does exist. Watts Humphrey [Hum97] suggests that

in order to change an ineffective personal process, an individual must move through

four phases, each requiring training and careful instrumentation. The Personal Soft-

ware Process (PSP) emphasizes personal measurement of both the work product that

is produced and the resultant quality of the work product. In addition PSP makes the

practitioner responsible for project planning (e.g., estimating and scheduling) and

empowers the practitioner to control the quality of all software work products that

are developed. The PSP model defines five framework activities:

Planning. This activity isolates requirements and develops both size and

resource estimates. In addition, a defect estimate (the number of defects

projected for the work) is made. All metrics are recorded on worksheets or

templates. Finally, development tasks are identified and a project schedule is

created.

High-level design. External specifications for each component to be con-

structed are developed and a component design is created. Prototypes are

built when uncertainty exists. All issues are recorded and tracked.

High-level design review. Formal verification methods (Chapter 21) are

applied to uncover errors in the design. Metrics are maintained for all impor-

tant tasks and work results.

Development. The component-level design is refined and reviewed. Code

is generated, reviewed, compiled, and tested. Metrics are maintained for all

important tasks and work results.

Postmortem. Using the measures and metrics collected (this is a substan-

tial amount of data that should be analyzed statistically), the effectiveness of

the process is determined. Measures and metrics should provide guidance for

modifying the process to improve its effectiveness.

CHAPTER 2 PROCESS MODELS 57

22 It’s worth noting the proponents of agile software development (Chapter 3) also argue that the

process should remain close to the team. They propose an alternative method for achieving this.

uote:

“A person who is
successful has
simply formed the
habit of doing
things that
unsuccessful people
will not do.”

Dexter Yager

WebRef
A wide array of
resources for PSP can
be found at www
.ipd.uka.de/PSP/.

What
framework

activities are used
during PSP?

?

pre75977_ch02.qxd 11/27/08 3:21 PM Page 57

PSP stresses the need to identify errors early and, just as important, to understand

the types of errors that you are likely to make. This is accomplished through a rigor-

ous assessment activity performed on all work products you produce.

PSP represents a disciplined, metrics-based approach to software engineering

that may lead to culture shock for many practitioners. However, when PSP is prop-

erly introduced to software engineers [Hum96], the resulting improvement in soft-

ware engineering productivity and software quality are significant [Fer97]. However,

PSP has not been widely adopted throughout the industry. The reasons, sadly, have

more to do with human nature and organizational inertia than they do with the

strengths and weaknesses of the PSP approach. PSP is intellectually challenging and

demands a level of commitment (by practitioners and their managers) that is not al-

ways possible to obtain. Training is relatively lengthy, and training costs are high.

The required level of measurement is culturally difficult for many software people.

Can PSP be used as an effective software process at a personal level? The answer

is an unequivocal “yes.” But even if PSP is not adopted in its entirely, many of the

personal process improvement concepts that it introduces are well worth learning.

2.6.2 Team Software Process (TSP)

Because many industry-grade software projects are addressed by a team of practi-

tioners, Watts Humphrey extended the lessons learned from the introduction of PSP

and proposed a Team Software Process (TSP). The goal of TSP is to build a “self-

directed” project team that organizes itself to produce high-quality software.

Humphrey [Hum98] defines the following objectives for TSP:

• Build self-directed teams that plan and track their work, establish goals, and

own their processes and plans. These can be pure software teams or inte-

grated product teams (IPTs) of 3 to about 20 engineers.

• Show managers how to coach and motivate their teams and how to help

them sustain peak performance.

• Accelerate software process improvement by making CMM23 Level 5

behavior normal and expected.

• Provide improvement guidance to high-maturity organizations.

• Facilitate university teaching of industrial-grade team skills.

A self-directed team has a consistent understanding of its overall goals and objec-

tives; defines roles and responsibilities for each team member; tracks quantitative

project data (about productivity and quality); identifies a team process that is appro-

priate for the project and a strategy for implementing the process; defines local stan-

dards that are applicable to the team’s software engineering work; continually

assesses risk and reacts to it; and tracks, manages, and reports project status.

58 PART ONE THE SOFTWARE PROCESS

PSP emphasizes the
need to record and
analyze the types of
errors you make, so
that you can develop
strategies to eliminate
them.

To form a self-directed
team, you must collab-
orate well internally
and communicate well
externally.

WebRef
Information on building
high-performance teams
using TSP and PSP can
be obtained at:
www.sei.cmu
.edu/tsp/.

23 The Capability Maturity Model (CMM), a measure of the effectiveness of a software process, is

discussed in Chapter 30.

pre75977_ch02.qxd 11/27/08 3:21 PM Page 58

http://www.sei.cmu

TSP defines the following framework activities: project launch, high-level

design, implementation, integration and test, and postmortem. Like their

counterparts in PSP (note that terminology is somewhat different), these activities

enable the team to plan, design, and construct software in a disciplined manner

while at the same time quantitatively measuring the process and the product. The

postmortem sets the stage for process improvements.

TSP makes use of a wide variety of scripts, forms, and standards that serve to guide

team members in their work. “Scripts” define specific process activities (i.e., project

launch, design, implementation, integration and system testing, postmortem) and other

more detailed work functions (e.g., development planning, requirements development,

software configuration management, unit test) that are part of the team process.

TSP recognizes that the best software teams are self-directed.24 Team members

set project objectives, adapt the process to meet their needs, control the project

schedule, and through measurement and analysis of the metrics collected, work con-

tinually to improve the team’s approach to software engineering.

Like PSP, TSP is a rigorous approach to software engineering that provides dis-

tinct and quantifiable benefits in productivity and quality. The team must make a full

commitment to the process and must undergo thorough training to ensure that the

approach is properly applied.

2.7 PROCESS TECHNOLOGY

One or more of the process models discussed in the preceding sections must be

adapted for use by a software team. To accomplish this, process technology tools have

been developed to help software organizations analyze their current process,

organize work tasks, control and monitor progress, and manage technical quality.

Process technology tools allow a software organization to build an automated

model of the process framework, task sets, and umbrella activities discussed in

Section 2.1. The model, normally represented as a network, can then be analyzed to

determine typical workflow and examine alternative process structures that might

lead to reduced development time or cost.

Once an acceptable process has been created, other process technology tools can

be used to allocate, monitor, and even control all software engineering activities,

actions, and tasks defined as part of the process model. Each member of a software

team can use such tools to develop a checklist of work tasks to be performed, work

products to be produced, and quality assurance activities to be conducted. The

process technology tool can also be used to coordinate the use of other software en-

gineering tools that are appropriate for a particular work task.

CHAPTER 2 PROCESS MODELS 59

24 In Chapter 3 I discuss the importance of “self-organizing” teams as a key element in agile software

development.

TSP scripts define
elements of the team
process and activities
that occur within the
process.

pre75977_ch02.qxd 11/27/08 3:21 PM Page 59

60 PART ONE THE SOFTWARE PROCESS

25 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.

In most cases, tool names are trademarked by their respective developers.

Process Modeling Tools
Objective: If an organization works to
improve a business (or software) process, it

must first understand it. Process modeling tools (also called
process technology or process management tools) are
used to represent the key elements of a process so that it
can be better understood. Such tools can also provide links
to process descriptions that help those involved in the
process to understand the actions and work tasks that are
required to perform it. Process modeling tools provide links
to other tools that provide support to defined process
activities.

Mechanics: Tools in this category allow a team to define
the elements of a unique process model (actions, tasks,
work products, QA points), provide detailed guidance on

the content or description of each process element, and
then manage the process as it is conducted. In some cases,
the process technology tools incorporate standard project
management tasks such as estimating, scheduling,
tracking, and control.

Representative Tools:25

Igrafx Process Tools—tools that enable a team to map,
measure, and model the software process
(www.micrografx.com)

Adeptia BPM Server—designed to manage, automate, and
optimize business processes (www.adeptia.com)

SpeedDev Suite—a collection of six tools with a heavy
emphasis on the management of communication and
modeling activities (www.speedev.com)

SOFTWARE TOOLS

2.8 PRODUCT AND PROCESS

If the process is weak, the end product will undoubtedly suffer. But an obsessive over-

reliance on process is also dangerous. In a brief essay written many years ago, Mar-

garet Davis [Dav95a] makes timeless comments on the duality of product and process:

About every ten years give or take five, the software community redefines “the problem”

by shifting its focus from product issues to process issues. Thus, we have embraced

structured programming languages (product) followed by structured analysis methods

(process) followed by data encapsulation (product) followed by the current emphasis

on the Software Engineering Institute’s Software Development Capability Maturity

Model (process) [followed by object-oriented methods, followed by agile software

development].

While the natural tendency of a pendulum is to come to rest at a point midway be-

tween two extremes, the software community’s focus constantly shifts because new force

is applied when the last swing fails. These swings are harmful in and of themselves be-

cause they confuse the average software practitioner by radically changing what it means

to perform the job let alone perform it well. The swings also do not solve “the problem”

for they are doomed to fail as long as product and process are treated as forming a

dichotomy instead of a duality.

There is precedence in the scientific community to advance notions of duality when

contradictions in observations cannot be fully explained by one competing theory or

another. The dual nature of light, which seems to be simultaneously particle and wave,

has been accepted since the 1920s when Louis de Broglie proposed it. I believe that the

pre75977_ch02.qxd 11/27/08 3:21 PM Page 60

http://www.micrografx.com
http://www.adeptia.com
http://www.speedev.com

observations we can make on the artifacts of software and its development demonstrate

a fundamental duality between product and process. You can never derive or understand

the full artifact, its context, use, meaning, and worth if you view it as only a process or

only a product . . .

All of human activity may be a process, but each of us derives a sense of self-worth

from those activities that result in a representation or instance that can be used or

appreciated either by more than one person, used over and over, or used in some other

context not considered. That is, we derive feelings of satisfaction from reuse of our prod-

ucts by ourselves or others.

Thus, while the rapid assimilation of reuse goals into software development poten-

tially increases the satisfaction software practitioners derive from their work, it also in-

creases the urgency for acceptance of the duality of product and process. Thinking of a

reusable artifact as only product or only process either obscures the context and ways to

use it or obscures the fact that each use results in product that will, in turn, be used as

input to some other software development activity. Taking one view over the other

dramatically reduces the opportunities for reuse and, hence, loses the opportunity for

increasing job satisfaction.

People derive as much (or more) satisfaction from the creative process as they do

from the end product. An artist enjoys the brush strokes as much as the framed re-

sult. A writer enjoys the search for the proper metaphor as much as the finished

book. As creative software professional, you should also derive as much satisfaction

from the process as the end product. The duality of product and process is one

important element in keeping creative people engaged as software engineering

continues to evolve.

2.9 SUMMARY

A generic process model for software engineering encompasses a set of framework

and umbrella activities, actions, and work tasks. Each of a variety of process models

can be described by a different process flow—a description of how the framework

activities, actions, and tasks are organized sequentially and chronologically. Process

patterns can be used to solve common problems that are encountered as part of the

software process.

Prescriptive process models have been applied for many years in an effort to bring

order and structure to software development. Each of these models suggests a some-

what different process flow, but all perform the same set of generic framework

activities: communication, planning, modeling, construction, and deployment.

Sequential process models, such as the waterfall and V models, are the oldest

software engineering paradigms. They suggest a linear process flow that is often in-

consistent with modern realities (e.g., continuous change, evolving systems, tight

time lines) in the software world. They do, however, have applicability in situations

where requirements are well defined and stable.

CHAPTER 2 PROCESS MODELS 61

pre75977_ch02.qxd 11/27/08 3:21 PM Page 61

Incremental process models are iterative in nature and produce working versions

of software quite rapidly. Evolutionary process models recognize the iterative, in-

cremental nature of most software engineering projects and are designed to accom-

modate change. Evolutionary models, such as prototyping and the spiral model,

produce incremental work products (or working versions of the software) quickly.

These models can be adopted to apply across all software engineering activities—

from concept development to long-term system maintenance.

The concurrent process model allows a software team to represent iterative

and concurrent elements of any process model. Specialized models include the

component-based model that emphasizes component reuse and assembly; the for-

mal methods model that encourages a mathematically based approach to software

development and verification; and the aspect-oriented model that accommodates

crosscutting concerns spanning the entire system architecture. The Unified Process

is a “use case driven, architecture-centric, iterative and incremental” software

process designed as a framework for UML methods and tools.

Personal and team models for the software process have been proposed. Both

emphasize measurement, planning, and self-direction as key ingredients for a suc-

cessful software process.

PROBLEMS AND POINTS TO PONDER

2.1. In the introduction to this chapter Baetjer notes: “The process provides interaction
between users and designers, between users and evolving tools, and between designers and
evolving tools [technology].” List five questions that (a) designers should ask users, (b) users
should ask designers, (c) users should ask themselves about the software product that is to be
built, (d) designers should ask themselves about the software product that is to be built and the
process that will be used to build it.

2.2. Try to develop a set of actions for the communication activity. Select one action and define
a task set for it.

2.3. A common problem during communication occurs when you encounter two stakehold-
ers who have conflicting ideas about what the software should be. That is, you have mutually
conflicting requirements. Develop a process pattern (this would be a stage pattern) using the
template presented in Section 2.1.3 that addresses this problem and suggest an effective
approach to it.

2.4. Do some research on PSP and present a brief presentation that describes the types of
measurements that an individual software engineer is asked to make and how those measure-
ment can be used to improve personal effectiveness.

2.5. The use of “scripts” (a required mechanism in TSP) is not universally praised within the
software community. Make a list of pros and cons regarding scripts and suggest at least two sit-
uations in which they would be useful and another two situations where they might provide less
benefit.

2.6. Read [Nog00] and write a two- or three-page paper that discusses the impact of “chaos”
on software engineering.

2.7. Provide three examples of software projects that would be amenable to the waterfall
model. Be specific.

62 PART ONE THE SOFTWARE PROCESS

pre75977_ch02.qxd 11/27/08 3:21 PM Page 62

2.8. Provide three examples of software projects that would be amenable to the prototyping
model. Be specific.

2.9. What process adaptations are required if the prototype will evolve into a deliverable
system or product?

2.10. Provide three examples of software projects that would be amenable to the incremental
model. Be specific.

2.11. As you move outward along the spiral process flow, what can you say about the software
that is being developed or maintained?

2.12. Is it possible to combine process models? If so, provide an example.

2.13. The concurrent process model defines a set of “states.” Describe what these states rep-
resent in your own words, and then indicate how they come into play within the concurrent
process model.

2.14. What are the advantages and disadvantages of developing software in which quality is
“good enough”? That is, what happens when we emphasize development speed over product
quality?

2.15. Provide three examples of software projects that would be amenable to the component-
based model. Be specific.

2.16. It is possible to prove that a software component and even an entire program is correct.
So why doesn’t everyone do this?

2.17. Are the Unified Process and UML the same thing? Explain your answer.

FURTHER READINGS AND INFORMATION SOURCES

Most software engineering textbooks consider traditional process models in some detail. Books
by Sommerville (Software Engineering, 8th ed., Addison-Wesley, 2006), Pfleeger and Atlee
(Software Engineering, 3d ed., Prentice-Hall, 2005), and Schach (Object-Oriented and Classical
Software Engineering, 7th ed., McGraw-Hill, 2006) consider traditional paradigms and discuss
their strengths and weaknesses. Glass (Facts and Fallacies of Software Engineering, Prentice-Hall,
2002) provides an unvarnished, pragmatic view of the software engineering process. Although
not specifically dedicated to process, Brooks (The Mythical Man-Month, 2d ed., Addison-Wesley,
1995) presents age-old project wisdom that has everything to do with process.

Firesmith and Henderson-Sellers (The OPEN Process Framework: An Introduction, Addison-
Wesley, 2001) present a general template for creating “flexible, yet discipline software
processes” and discuss process attributes and objectives. Madachy (Software Process Dynamics,
Wiley-IEEE, 2008) discusses modeling techniques that allow the interrelated technical and
social elements of the software process to be analyzed. Sharpe and McDermott (Workflow Mod-
eling: Tools for Process Improvement and Application Development, Artech House, 2001) present
tools for modeling both software and business processes.

Lim (Managing Software Reuse, Prentice Hall, 2004) discusses reuse from a manager’s
perspective. Ezran, Morisio, and Tully (Practical Software Reuse, Springer, 2002) and Jacobson,
Griss, and Jonsson (Software Reuse, Addison-Wesley, 1997) present much useful information on
component-based development. Heineman and Council (Component-Based Software Engineer-
ing, Addison-Wesley, 2001) describe the process required to implement component-based
systems. Kenett and Baker (Software Process Quality: Management and Control, Marcel Dekker,
1999) consider how quality management and process design are intimately connected to one
another.

Nygard (Release It!: Design and Deploy Production-Ready Software, Pragmatic Bookshelf,
2007) and Richardson and Gwaltney (Ship it! A Practical Guide to Successful Software Projects,
Pragmatic Bookshelf, 2005) present a broad collection of useful guidelines that are applicable to
the deployment activity.

CHAPTER 2 PROCESS MODELS 63

pre75977_ch02.qxd 11/27/08 3:21 PM Page 63

In addition to Jacobson, Rumbaugh, and Booch’s seminal book on the Unified Process
[Jac99], books by Arlow and Neustadt (UML 2 and the Unified Process, Addison-Wesley, 2005),
Kroll and Kruchten (The Rational Unified Process Made Easy, Addison-Wesley, 2003), and Farve
(UML and the Unified Process, IRM Press, 2003) provide excellent complementary information.
Gibbs (Project Management with the IBM Rational Unified Process, IBM Press, 2006) discusses
project management within the context of the UP.

A wide variety of information sources on software engineering and the software process are
available on the Internet. An up-to-date list of World Wide Web references that are relevant to
the software process can be found at the SEPA website: www.mhhe.com/engcs/compsci/
pressman/professional/olc/ser.htm.

64 PART ONE THE SOFTWARE PROCESS

pre75977_ch02.qxd 11/27/08 3:21 PM Page 64

http://www.mhhe.com/engcs/compsci/

In 2001, Kent Beck and 16 other noted software developers, writers, and con-
sultants [Bec01a] (referred to as the “Agile Alliance”) signed the “Manifesto for
Agile Software Development.” It stated:

We are uncovering better ways of developing software by doing it and helping others

do it. Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the

left more.

65

C H A P T E R

3AGILE DEVELOPMENT

What is it? Agile software engi-
neering combines a philosophy and
a set of development guidelines. The
philosophy encourages customer

satisfaction and early incremental delivery of
software; small, highly motivated project teams;
informal methods; minimal software engineer-
ing work products; and overall development
simplicity. The development guidelines stress
delivery over analysis and design (although
these activities are not discouraged), and active
and continuous communication between devel-
opers and customers.

Who does it? Software engineers and other
project stakeholders (managers, customers, end
users) work together on an agile team—a team
that is self-organizing and in control of its own
destiny. An agile team fosters communication
and collaboration among all who serve on it.

Why is it important? The modern business envi-
ronment that spawns computer-based systems
and software products is fast-paced and ever-
changing. Agile software engineering repre-
sents a reasonable alternative to conventional

Q U I C K
L O O K

software engineering for certain classes of soft-
ware and certain types of software projects. It
has been demonstrated to deliver successful sys-
tems quickly.

What are the steps? Agile development might best
be termed “software engineering lite.” The basic
framework activities—communication, planning,
modeling, construction, and deployment—
remain. But they morph into a minimal task set
that pushes the project team toward construction
and delivery (some would argue that this is
done at the expense of problem analysis and
solution design).

What is the work product? Both the customer
and the software engineer have the same
view—the only really important work product
is an operational “software increment” that is
delivered to the customer on the appropriate
commitment date.

How do I ensure that I’ve done it right? If the
agile team agrees that the process works, and
the team produces deliverable software
increments that satisfy the customer, you’ve
done it right.

K E Y
C O N C E P T S

Adaptive Software
Development . . .81

agile process . . .68

Agile Unified
Process 89

agility 67

Crystal85

DSDM 84

Extreme
Programming . . .72

pre75977_ch03.qxd 11/27/08 3:24 PM Page 65

A manifesto is normally associated with an emerging political movement—one

that attacks the old guard and suggests revolutionary change (hopefully for the

better). In some ways, that’s exactly what agile development is all about.

Although the underlying ideas that guide agile development have been with us for

many years, it has been less than two decades since these ideas have crystallized

into a “movement.” In essence, agile1 methods were developed in an effort to over-

come perceived and actual weaknesses in conventional software engineering. Agile

development can provide important benefits, but it is not applicable to all projects,

all products, all people, and all situations. It is also not antithetical to solid software

engineering practice and can be applied as an overriding philosophy for all software

work.

In the modern economy, it is often difficult or impossible to predict how a

computer-based system (e.g., a Web-based application) will evolve as time passes.

Market conditions change rapidly, end-user needs evolve, and new competitive

threats emerge without warning. In many situations, you won’t be able to define

requirements fully before the project begins. You must be agile enough to respond to

a fluid business environment.

Fluidity implies change, and change is expensive. Particularly if it is uncontrolled

or poorly managed. One of the most compelling characteristics of the agile approach

is its ability to reduce the costs of change throughout the software process.

Does this mean that a recognition of challenges posed by modern realities causes

you to discard valuable software engineering principles, concepts, methods, and

tools? Absolutely not! Like all engineering disciplines, software engineering contin-

ues to evolve. It can be adapted easily to meet the challenges posed by a demand for

agility.

In a thought-provoking book on agile software development, Alistair Cockburn

[Coc02] argues that the prescriptive process models introduced in Chapter 2 have a

major failing: they forget the frailties of the people who build computer software. Software

engineers are not robots. They exhibit great variation in working styles; significant dif-

ferences in skill level, creativity, orderliness, consistency, and spontaneity. Some com-

municate well in written form, others do not. Cockburn argues that process models

can “deal with people’s common weaknesses with [either] discipline or tolerance” and

that most prescriptive process models choose discipline. He states: “Because consis-

tency in action is a human weakness, high discipline methodologies are fragile.”

If process models are to work, they must provide a realistic mechanism for en-

couraging the discipline that is necessary, or they must be characterized in a man-

ner that shows “tolerance” for the people who do software engineering work.

Invariably, tolerant practices are easier for software people to adopt and sustain, but

(as Cockburn admits) they may be less productive. Like most things in life, trade-offs

must be considered.

66 PART ONE THE SOFTWARE PROCESS

FDD 86

Industrial XP . . .77

Lean Software
Development . . .87

pair
programming . . .76

project
velocity 74

refactoring 75

Scrum 82

stories 74

XP process 73

1 Agile methods are sometimes referred to as light methods or lean methods.

uote:

“Agility: 1,
everything else: 0.”

Tom DeMarco

pre75977_ch03.qxd 11/27/08 3:24 PM Page 66

3.1 WHAT IS AGILITY?

Just what is agility in the context of software engineering work? Ivar Jacobson

[Jac02a] provides a useful discussion:

Agility has become today’s buzzword when describing a modern software process. Every-

one is agile. An agile team is a nimble team able to appropriately respond to changes.

Change is what software development is very much about. Changes in the software be-

ing built, changes to the team members, changes because of new technology, changes of

all kinds that may have an impact on the product they build or the project that creates the

product. Support for changes should be built-in everything we do in software, something

we embrace because it is the heart and soul of software. An agile team recognizes that

software is developed by individuals working in teams and that the skills of these people,

their ability to collaborate is at the core for the success of the project.

In Jacobson’s view, the pervasiveness of change is the primary driver for agility. Soft-

ware engineers must be quick on their feet if they are to accommodate the rapid

changes that Jacobson describes.

But agility is more than an effective response to change. It also encompasses the

philosophy espoused in the manifesto noted at the beginning of this chapter. It

encourages team structures and attitudes that make communication (among team

members, between technologists and business people, between software engineers

and their managers) more facile. It emphasizes rapid delivery of operational soft-

ware and de-emphasizes the importance of intermediate work products (not always

a good thing); it adopts the customer as a part of the development team and works

to eliminate the “us and them” attitude that continues to pervade many software

projects; it recognizes that planning in an uncertain world has its limits and that a

project plan must be flexible.

Agility can be applied to any software process. However, to accomplish this, it is

essential that the process be designed in a way that allows the project team to adapt

tasks and to streamline them, conduct planning in a way that understands the fluid-

ity of an agile development approach, eliminate all but the most essential work prod-

ucts and keep them lean, and emphasize an incremental delivery strategy that gets

working software to the customer as rapidly as feasible for the product type and

operational environment.

3.2 AGILITY AND THE COST OF CHANGE

The conventional wisdom in software development (supported by decades of expe-

rience) is that the cost of change increases nonlinearly as a project progresses

(Figure 3.1, solid black curve). It is relatively easy to accommodate a change when a

software team is gathering requirements (early in a project). A usage scenario might

have to be modified, a list of functions may be extended, or a written specification

can be edited. The costs of doing this work are minimal, and the time required will

CHAPTER 3 AGILE DEVELOPMENT 67

Don’t make the
mistake of assuming
that agility gives you
license to hack out
solutions. A process is
required and discipline
is essential.

pre75977_ch03.qxd 11/27/08 3:24 PM Page 67

not adversely affect the outcome of the project. But what if we fast-forward a num-

ber of months? The team is in the middle of validation testing (something that occurs

relatively late in the project), and an important stakeholder is requesting a major

functional change. The change requires a modification to the architectural design of

the software, the design and construction of three new components, modifications

to another five components, the design of new tests, and so on. Costs escalate

quickly, and the time and cost required to ensure that the change is made without

unintended side effects is nontrivial.

Proponents of agility (e.g., [Bec00], [Amb04]) argue that a well-designed agile

process “flattens” the cost of change curve (Figure 3.1, shaded, solid curve), allowing

a software team to accommodate changes late in a software project without dramatic

cost and time impact. You’ve already learned that the agile process encompasses in-

cremental delivery. When incremental delivery is coupled with other agile practices

such as continuous unit testing and pair programming (discussed later in this chap-

ter), the cost of making a change is attenuated. Although debate about the degree to

which the cost curve flattens is ongoing, there is evidence [Coc01a] to suggest that a

significant reduction in the cost of change can be achieved.

3.3 WHAT IS AN AGILE PROCESS?

Any agile software process is characterized in a manner that addresses a number of

key assumptions [Fow02] about the majority of software projects:

1. It is difficult to predict in advance which software requirements will persist

and which will change. It is equally difficult to predict how customer

priorities will change as the project proceeds.

68 PART ONE THE SOFTWARE PROCESS

Cost of change
using conventional
software processes

Cost of change
using agile processes

Idealized cost of change
using agile process

Development schedule progress

D
ev

el
o
p
m

en
t

co
st

FIGURE 3.1

Change costs
as a function
of time in
development

uote:

“Agility is dynamic,
content specific,
aggressively
change embracing,
and growth
oriented.”

–Steven
Goldman et al.

An agile process
reduces the cost of
change because
software is released in
increments and change
can be better
controlled within an
increment.

pre75977_ch03.qxd 11/27/08 3:24 PM Page 68

2. For many types of software, design and construction are interleaved. That is,

both activities should be performed in tandem so that design models are

proven as they are created. It is difficult to predict how much design is

necessary before construction is used to prove the design.

3. Analysis, design, construction, and testing are not as predictable (from a

planning point of view) as we might like.

Given these three assumptions, an important question arises: How do we create a

process that can manage unpredictability? The answer, as I have already noted, lies

in process adaptability (to rapidly changing project and technical conditions). An

agile process, therefore, must be adaptable.

But continual adaptation without forward progress accomplishes little. Therefore,

an agile software process must adapt incrementally. To accomplish incremental adap-

tation, an agile team requires customer feedback (so that the appropriate adaptations

can be made). An effective catalyst for customer feedback is an operational prototype

or a portion of an operational system. Hence, an incremental development strategy

should be instituted. Software increments (executable prototypes or portions of an op-

erational system) must be delivered in short time periods so that adaptation keeps pace

with change (unpredictability). This iterative approach enables the customer to evalu-

ate the software increment regularly, provide necessary feedback to the software team,

and influence the process adaptations that are made to accommodate the feedback.

3.3.1 Agility Principles

The Agile Alliance (see [Agi03], [Fow01]) defines 12 agility principles for those who

want to achieve agility:

1. Our highest priority is to satisfy the customer through early and continuous

delivery of valuable software.

2. Welcome changing requirements, even late in development. Agile processes

harness change for the customer’s competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of

months, with a preference to the shorter timescale.

4. Business people and developers must work together daily throughout the

project.

5. Build projects around motivated individuals. Give them the environment and

support they need, and trust them to get the job done.

6. The most efficient and effective method of conveying information to and

within a development team is face-to-face conversation.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The sponsors, developers,

and users should be able to maintain a constant pace indefinitely.

CHAPTER 3 AGILE DEVELOPMENT 69

WebRef
A comprehensive
collection of articles on
the agile process
can be found at
www.aanpo.org/
articles/index.

Although agile
processes embrace
change, it is still
important to examine
the reasons for
change.

Working software is
important, but don’t
forget that it must also
exhibit a variety of
quality attributes
including reliability,
usability, and
maintainability.

pre75977_ch03.qxd 11/27/08 3:24 PM Page 69

http://www.aanpo.org/

9. Continuous attention to technical excellence and good design enhances

agility.

10. Simplicity—the art of maximizing the amount of work not done—is

essential.

11. The best architectures, requirements, and designs emerge from self–

organizing teams.

12. At regular intervals, the team reflects on how to become more effective, then

tunes and adjusts its behavior accordingly.

Not every agile process model applies these 12 principles with equal weight, and

some models choose to ignore (or at least downplay) the importance of one or more

of the principles. However, the principles define an agile spirit that is maintained in

each of the process models presented in this chapter.

3.3.2 The Politics of Agile Development

There is considerable debate (sometimes strident) about the benefits and applicabil-

ity of agile software development as opposed to more conventional software engi-

neering processes. Jim Highsmith [Hig02a] (facetiously) states the extremes when he

characterizes the feeling of the pro-agility camp (“agilists”). “Traditional methodolo-

gists are a bunch of stick-in-the-muds who’d rather produce flawless documentation

than a working system that meets business needs.” As a counterpoint, he states

(again, facetiously) the position of the traditional software engineering camp: “Light-

weight, er, ‘agile’ methodologists are a bunch of glorified hackers who are going to

be in for a heck of a surprise when they try to scale up their toys into enterprise-wide

software.”

Like all software technology arguments, this methodology debate risks degener-

ating into a religious war. If warfare breaks out, rational thought disappears and

beliefs rather than facts guide decision making.

No one is against agility. The real question is: What is the best way to achieve it?

As important, how do you build software that meets customers’ needs today and

exhibits the quality characteristics that will enable it to be extended and scaled to

meet customers’ needs over the long term?

There are no absolute answers to either of these questions. Even within the agile

school itself, there are many proposed process models (Section 3.4), each with a

subtly different approach to the agility problem. Within each model there is a set of

“ideas” (agilists are loath to call them “work tasks”) that represent a significant

departure from traditional software engineering. And yet, many agile concepts are

simply adaptations of good software engineering concepts. Bottom line: there is

much that can be gained by considering the best of both schools and virtually

nothing to be gained by denigrating either approach.

If you have further interest, see [Hig01], [Hig02a], and [DeM02] for an entertain-

ing summary of other important technical and political issues.

70 PART ONE THE SOFTWARE PROCESS

You don’t have to
choose between agility
and software engi-
neering. Rather, define
a software engineering
approach that is agile.

pre75977_ch03.qxd 11/27/08 3:24 PM Page 70

3.3.3 Human Factors

Proponents of agile software development take great pains to emphasize the impor-

tance of “people factors.” As Cockburn and Highsmith [Coc01a] state, “Agile devel-

opment focuses on the talents and skills of individuals, molding the process to

specific people and teams.” The key point in this statement is that the process molds

to the needs of the people and team, not the other way around.2

If members of the software team are to drive the characteristics of the process that

is applied to build software, a number of key traits must exist among the people on

an agile team and the team itself:

Competence. In an agile development (as well as software engineering)

context, “competence” encompasses innate talent, specific software-related

skills, and overall knowledge of the process that the team has chosen to

apply. Skill and knowledge of process can and should be taught to all people

who serve as agile team members.

Common focus. Although members of the agile team may perform differ-

ent tasks and bring different skills to the project, all should be focused on one

goal—to deliver a working software increment to the customer within the

time promised. To achieve this goal, the team will also focus on continual

adaptations (small and large) that will make the process fit the needs of the

team.

Collaboration. Software engineering (regardless of process) is about as-

sessing, analyzing, and using information that is communicated to the soft-

ware team; creating information that will help all stakeholders understand

the work of the team; and building information (computer software and rele-

vant databases) that provides business value for the customer. To accomplish

these tasks, team members must collaborate—with one another and all other

stakeholders.

Decision-making ability. Any good software team (including agile teams)

must be allowed the freedom to control its own destiny. This implies that the

team is given autonomy—decision-making authority for both technical and

project issues.

Fuzzy problem-solving ability. Software managers must recognize that

the agile team will continually have to deal with ambiguity and will continu-

ally be buffeted by change. In some cases, the team must accept the fact that

the problem they are solving today may not be the problem that needs to be

solved tomorrow. However, lessons learned from any problem-solving

CHAPTER 3 AGILE DEVELOPMENT 71

2 Successful software engineering organizations recognize this reality regardless of the process

model they choose.

uote:

“Agile methods
derive much of
their agility by
relying on the
tacit knowledge
embodied in the
team, rather than
writing the
knowledge down
in plans.”

Barry Boehm

What key
traits must

exist among the
people on an
effective software
team?

?

uote:

“What counts as
barely sufficient
for one team is
either overly
sufficient or
insufficient for
another.”

Alistair
Cockburn

pre75977_ch03.qxd 11/27/08 3:24 PM Page 71

activity (including those that solve the wrong problem) may be of benefit to

the team later in the project.

Mutual trust and respect. The agile team must become what DeMarco

and Lister [DeM98] call a “jelled” team (Chapter 24). A jelled team exhibits

the trust and respect that are necessary to make them “so strongly knit that

the whole is greater than the sum of the parts.” [DeM98]

Self-organization. In the context of agile development, self-organization

implies three things: (1) the agile team organizes itself for the work to be

done, (2) the team organizes the process to best accommodate its local envi-

ronment, (3) the team organizes the work schedule to best achieve delivery

of the software increment. Self-organization has a number of technical bene-

fits, but more importantly, it serves to improve collaboration and boost team

morale. In essence, the team serves as its own management. Ken Schwaber

[Sch02] addresses these issues when he writes: “The team selects how much

work it believes it can perform within the iteration, and the team commits to

the work. Nothing demotivates a team as much as someone else making

commitments for it. Nothing motivates a team as much as accepting the

responsibility for fulfilling commitments that it made itself.”

3.4 EXTREME PROGRAMMING (XP)

In order to illustrate an agile process in a bit more detail, I’ll provide you with an

overview of Extreme Programming (XP), the most widely used approach to agile soft-

ware development. Although early work on the ideas and methods associated with

XP occurred during the late 1980s, the seminal work on the subject has been written

by Kent Beck [Bec04a]. More recently, a variant of XP, called Industrial XP (IXP) has

been proposed [Ker05]. IXP refines XP and targets the agile process specifically for

use within large organizations.

3.4.1 XP Values

Beck [Bec04a] defines a set of five values that establish a foundation for all work per-

formed as part of XP—communication, simplicity, feedback, courage, and respect. Each

of these values is used as a driver for specific XP activities, actions, and tasks.

In order to achieve effective communication between software engineers and

other stakeholders (e.g., to establish required features and functions for the soft-

ware), XP emphasizes close, yet informal (verbal) collaboration between customers

and developers, the establishment of effective metaphors3 for communicating

important concepts, continuous feedback, and the avoidance of voluminous docu-

mentation as a communication medium.

72 PART ONE THE SOFTWARE PROCESS

A self-organizing team
is in control of the
work it performs. The
team makes its own
commitments and
defines plans to
achieve them.

3 In the XP context, a metaphor is “a story that everyone—customers, programmers, and managers—

can tell about how the system works” [Bec04a].

pre75977_ch03.qxd 11/27/08 3:24 PM Page 72

To achieve simplicity, XP restricts developers to design only for immediate needs,

rather than consider future needs. The intent is to create a simple design that can be

easily implemented in code). If the design must be improved, it can be refactored4 at

a later time.

Feedback is derived from three sources: the implemented software itself, the

customer, and other software team members. By designing and implementing an

effective testing strategy (Chapters 17 through 20), the software (via test results) pro-

vides the agile team with feedback. XP makes use of the unit test as its primary test-

ing tactic. As each class is developed, the team develops a unit test to exercise each

operation according to its specified functionality. As an increment is delivered to a

customer, the user stories or use cases (Chapter 5) that are implemented by the

increment are used as a basis for acceptance tests. The degree to which the software

implements the output, function, and behavior of the use case is a form of feedback.

Finally, as new requirements are derived as part of iterative planning, the team pro-

vides the customer with rapid feedback regarding cost and schedule impact.

Beck [Bec04a] argues that strict adherence to certain XP practices demands

courage. A better word might be discipline. For example, there is often significant

pressure to design for future requirements. Most software teams succumb, arguing

that “designing for tomorrow” will save time and effort in the long run. An agile XP

team must have the discipline (courage) to design for today, recognizing that future

requirements may change dramatically, thereby demanding substantial rework of

the design and implemented code.

By following each of these values, the agile team inculcates respect among it

members, between other stakeholders and team members, and indirectly, for the

software itself. As they achieve successful delivery of software increments, the team

develops growing respect for the XP process.

3.4.2 The XP Process

Extreme Programming uses an object-oriented approach (Appendix 2) as its pre-

ferred development paradigm and encompasses a set of rules and practices that

occur within the context of four framework activities: planning, design, coding, and

testing. Figure 3.2 illustrates the XP process and notes some of the key ideas and

tasks that are associated with each framework activity. Key XP activities are sum-

marized in the paragraphs that follow.

Planning. The planning activity (also called the planning game) begins with

listening—a requirements gathering activity that enables the technical members of

the XP team to understand the business context for the software and to get a broad

CHAPTER 3 AGILE DEVELOPMENT 73

4 Refactoring allows a software engineer to improve the internal structure of a design (or source

code) without changing its external functionality or behavior. In essence, refactoring can be used

to improve the efficiency, readability, or performance of a design or the code that implements a

design.

Keep it simple
whenever you can, but
recognize that
continual “refactoring”
can absorb significant
time and resources.

uote:

“XP is the answer
to the question,
‘How little can we
do and still build
great software?’“

Anonymous

WebRef
An excellent overview
of “rules” for XP can
be found at www
.extremeprogramm
ing.org/rules.html.

pre75977_ch03.qxd 11/27/08 3:24 PM Page 73

feel for required output and major features and functionality. Listening leads to the

creation of a set of “stories” (also called user stories) that describe required output,

features, and functionality for software to be built. Each story (similar to use cases

described in Chapter 5) is written by the customer and is placed on an index card.

The customer assigns a value (i.e., a priority) to the story based on the overall busi-

ness value of the feature or function.5 Members of the XP team then assess each

story and assign a cost—measured in development weeks—to it. If the story is esti-

mated to require more than three development weeks, the customer is asked to split

the story into smaller stories and the assignment of value and cost occurs again. It

is important to note that new stories can be written at any time.

Customers and developers work together to decide how to group stories into the

next release (the next software increment) to be developed by the XP team. Once a

basic commitment (agreement on stories to be included, delivery date, and other

project matters) is made for a release, the XP team orders the stories that will be de-

veloped in one of three ways: (1) all stories will be implemented immediately (within

a few weeks), (2) the stories with highest value will be moved up in the schedule and

implemented first, or (3) the riskiest stories will be moved up in the schedule and

implemented first.

After the first project release (also called a software increment) has been deliv-

ered, the XP team computes project velocity. Stated simply, project velocity is the

74 PART ONE THE SOFTWARE PROCESS

user stories
 values
 acceptance test criteria
iteration plan

simple design
 CRC cards

unit test
 continuous integration

software increment
 project velocity computed

spike solutions
 prototypes

refactoring

pair programming

acceptance testing

Release

design

codingplanning

test

FIGURE 3.2

The Extreme
Programming
process

5 The value of a story may also be dependent on the presence of another story.

WebRef
A worthwhile XP
“planning game” can
be found at:
c2.com/cgi/
wiki?planningGame.

What is an
XP “story”??

pre75977_ch03.qxd 11/27/08 3:24 PM Page 74

number of customer stories implemented during the first release. Project velocity can

then be used to (1) help estimate delivery dates and schedule for subsequent releases

and (2) determine whether an overcommitment has been made for all stories across

the entire development project. If an overcommitment occurs, the content of releases

is modified or end delivery dates are changed.

As development work proceeds, the customer can add stories, change the value

of an existing story, split stories, or eliminate them. The XP team then reconsiders all

remaining releases and modifies its plans accordingly.

Design. XP design rigorously follows the KIS (keep it simple) principle. A simple

design is always preferred over a more complex representation. In addition, the de-

sign provides implementation guidance for a story as it is written—nothing less,

nothing more. The design of extra functionality (because the developer assumes it

will be required later) is discouraged.6

XP encourages the use of CRC cards (Chapter 7) as an effective mechanism for

thinking about the software in an object-oriented context. CRC (class-responsibility-

collaborator) cards identify and organize the object-oriented classes7 that are rele-

vant to the current software increment. The XP team conducts the design exercise

using a process similar to the one described in Chapter 8. The CRC cards are the only

design work product produced as part of the XP process.

If a difficult design problem is encountered as part of the design of a story, XP rec-

ommends the immediate creation of an operational prototype of that portion of the

design. Called a spike solution, the design prototype is implemented and evaluated.

The intent is to lower risk when true implementation starts and to validate the orig-

inal estimates for the story containing the design problem.

In the preceding section, we noted that XP encourages refactoring—a construction

technique that is also a method for design optimization. Fowler [Fow00] describes

refactoring in the following manner:

Refactoring is the process of changing a software system in such a way that it does not

alter the external behavior of the code yet improves the internal structure. It is a disci-

plined way to clean up code [and modify/simplify the internal design] that minimizes the

chances of introducing bugs. In essence, when you refactor you are improving the design

of the code after it has been written.

Because XP design uses virtually no notation and produces few, if any, work prod-

ucts other than CRC cards and spike solutions, design is viewed as a transient arti-

fact that can and should be continually modified as construction proceeds. The intent

of refactoring is to control these modifications by suggesting small design changes

CHAPTER 3 AGILE DEVELOPMENT 75

Project velocity is a
subtle measure of
team productivity.

6 These design guidelines should be followed in every software engineering method, although there

are times when sophisticated design notation and terminology may get in the way of simplicity.

7 Object-oriented classes are discussed in Appendix 2, in Chapter 8, and throughout Part 2 of this

book.

XP deemphasizes the
importance of design.
Not everyone agrees.
In fact, there are times
when design should be
emphasized.

WebRef
Refactoring techniques
and tools can be
found at:
www.refactoring
.com.

pre75977_ch03.qxd 11/27/08 3:24 PM Page 75

http://www.refactoring

that “can radically improve the design” [Fow00]. It should be noted, however, that

the effort required for refactoring can grow dramatically as the size of an application

grows.

A central notion in XP is that design occurs both before and after coding com-

mences. Refactoring means that design occurs continuously as the system is con-

structed. In fact, the construction activity itself will provide the XP team with

guidance on how to improve the design.

Coding. After stories are developed and preliminary design work is done, the team

does not move to code, but rather develops a series of unit tests that will exercise

each of the stories that is to be included in the current release (software increment).8

Once the unit test9 has been created, the developer is better able to focus on what

must be implemented to pass the test. Nothing extraneous is added (KIS). Once the

code is complete, it can be unit-tested immediately, thereby providing instantaneous

feedback to the developers.

A key concept during the coding activity (and one of the most talked about aspects

of XP) is pair programming. XP recommends that two people work together at one

computer workstation to create code for a story. This provides a mechanism for real-

time problem solving (two heads are often better than one) and real-time quality as-

surance (the code is reviewed as it is created). It also keeps the developers focused

on the problem at hand. In practice, each person takes on a slightly different role. For

example, one person might think about the coding details of a particular portion of

the design while the other ensures that coding standards (a required part of XP) are

being followed or that the code for the story will satisfy the unit test that has been

developed to validate the code against the story.

As pair programmers complete their work, the code they develop is integrated

with the work of others. In some cases this is performed on a daily basis by an inte-

gration team. In other cases, the pair programmers have integration responsibility.

This “continuous integration” strategy helps to avoid compatibility and interfacing

problems and provides a “smoke testing” environment (Chapter 17) that helps to

uncover errors early.

Testing. I have already noted that the creation of unit tests before coding com-

mences is a key element of the XP approach. The unit tests that are created should

be implemented using a framework that enables them to be automated (hence, they

can be executed easily and repeatedly). This encourages a regression testing strat-

egy (Chapter 17) whenever code is modified (which is often, given the XP refactor-

ing philosophy).

76 PART ONE THE SOFTWARE PROCESS

Refactoring improves
the internal structure of
a design (or source
code) without
changing its external
functionality or
behavior.

WebRef
Useful information on
XP can be obtained
at www
.xprogramming.
com.

8 This approach is analogous to knowing the exam questions before you begin to study. It makes

studying much easier by focusing attention only on the questions that will be asked.

9 Unit testing, discussed in detail in Chapter 17, focuses on an individual software component, exer-

cising the component’s interface, data structures, and functionality in an effort to uncover errors

that are local to the component.

What is
pair

programming?
?

Many software teams
are populated by indi-
vidualists. You’ll have
to work to change that
culture if pair program-
ming is to work effec-
tively.

How are unit
tests used in

XP?
?

pre75977_ch03.qxd 11/27/08 3:24 PM Page 76

As the individual unit tests are organized into a “universal testing suite” [Wel99],

integration and validation testing of the system can occur on a daily basis. This pro-

vides the XP team with a continual indication of progress and also can raise warn-

ing flags early if things go awry. Wells [Wel99] states: “Fixing small problems every

few hours takes less time than fixing huge problems just before the deadline.”

XP acceptance tests, also called customer tests, are specified by the customer and

focus on overall system features and functionality that are visible and reviewable by

the customer. Acceptance tests are derived from user stories that have been imple-

mented as part of a software release.

3.4.3 Industrial XP

Joshua Kerievsky [Ker05] describes Industrial Extreme Programming (IXP) in the fol-

lowing manner: “IXP is an organic evolution of XP. It is imbued with XP’s minimal-

ist, customer-centric, test-driven spirit. IXP differs most from the original XP in its

greater inclusion of management, its expanded role for customers, and its upgraded

technical practices.” IXP incorporates six new practices that are designed to help

ensure that an XP project works successfully for significant projects within a large

organization.

Readiness assessment. Prior to the initiation of an IXP project, the organ-

ization should conduct a readiness assessment. The assessment ascertains

whether (1) an appropriate development environment exists to support IXP,

(2) the team will be populated by the proper set of stakeholders, (3) the or-

ganization has a distinct quality program and supports continuous improve-

ment, (4) the organizational culture will support the new values of an agile

team, and (5) the broader project community will be populated appropriately.

Project community. Classic XP suggests that the right people be used to

populate the agile team to ensure success. The implication is that people on

the team must be well-trained, adaptable and skilled, and have the proper

temperament to contribute to a self-organizing team. When XP is to be

applied for a significant project in a large organization, the concept of the

“team” should morph into that of a community. A community may have a

technologist and customers who are central to the success of a project as

well as many other stakeholders (e.g., legal staff, quality auditors, manufac-

turing or sales types) who “are often at the periphery of an IXP project yet

they may play important roles on the project” [Ker05]. In IXP, the community

members and their roles should be explicitly defined and mechanisms for

communication and coordination between community members should be

established.

Project chartering. The IXP team assesses the project itself to determine

whether an appropriate business justification for the project exists and

whether the project will further the overall goals and objectives of the

CHAPTER 3 AGILE DEVELOPMENT 77

XP acceptance tests
are derived from user
stories.

What new
practices are

appended to XP
to create IXP?

?

uote:

“Ability is what
you’re capable of
doing. Motivation
determines what
you do. Attitude
determines how
well you do it.”

Lou Holtz

pre75977_ch03.qxd 11/27/08 3:24 PM Page 77

organization. Chartering also examines the context of the project to deter-

mine how it complements, extends, or replaces existing systems or

processes.

Test-driven management. An IXP project requires measurable criteria for

assessing the state of the project and the progress that has been made to

date. Test-driven management establishes a series of measurable “destina-

tions” [Ker05] and then defines mechanisms for determining whether or not

these destinations have been reached.

Retrospectives. An IXP team conducts a specialized technical review

(Chapter 15) after a software increment is delivered. Called a retrospective,

the review examines “issues, events, and lessons-learned” [Ker05] across a

software increment and/or the entire software release. The intent is to

improve the IXP process.

Continuous learning. Because learning is a vital part of continuous

process improvement, members of the XP team are encouraged (and possi-

bly, incented) to learn new methods and techniques that can lead to a higher-

quality product.

In addition to the six new practices discussed, IXP modifies a number of existing

XP practices. Story-driven development (SDD) insists that stories for acceptance tests

be written before a single line of code is generated. Domain-driven design (DDD) is

an improvement on the “system metaphor” concept used in XP. DDD [Eva03] sug-

gests the evolutionary creation of a domain model that “accurately represents how

domain experts think about their subject” [Ker05]. Pairing extends the XP pair-

programming concept to include managers and other stakeholders. The intent is to

improve knowledge sharing among XP team members who may not be directly in-

volved in technical development. Iterative usability discourages front-loaded inter-

face design in favor of usability design that evolves as software increments are

delivered and users’ interaction with the software is studied.

IXP makes smaller modifications to other XP practices and redefines certain roles

and responsibilities to make them more amenable to significant projects for large

organizations. For further discussion of IXP, visit http://industrialxp.org.

3.4.4 The XP Debate

All new process models and methods spur worthwhile discussion and in some in-

stances heated debate. Extreme Programming has done both. In an interesting book

that examines the efficacy of XP, Stephens and Rosenberg [Ste03] argue that many

XP practices are worthwhile, but others have been overhyped, and a few are prob-

lematic. The authors suggest that the codependent nature of XP practices are both

its strength and its weakness. Because many organizations adopt only a subset of XP

practices, they weaken the efficacy of the entire process. Proponents counter that

XP is continuously evolving and that many of the issues raised by critics have been

78 PART ONE THE SOFTWARE PROCESS

pre75977_ch03.qxd 11/27/08 3:24 PM Page 78

http://industrialxp.org

addressed as XP practice matures. Among the issues that continue to trouble some

critics of XP are:10

• Requirements volatility. Because the customer is an active member of the XP

team, changes to requirements are requested informally. As a consequence,

the scope of the project can change and earlier work may have to be

modified to accommodate current needs. Proponents argue that this happens

regardless of the process that is applied and that XP provides mechanisms for

controlling scope creep.

• Conflicting customer needs. Many projects have multiple customers, each with

his own set of needs. In XP, the team itself is tasked with assimilating the

needs of different customers, a job that may be beyond their scope of

authority.

• Requirements are expressed informally. User stories and acceptance tests are

the only explicit manifestation of requirements in XP. Critics argue that a

more formal model or specification is often needed to ensure that omissions,

inconsistencies, and errors are uncovered before the system is built. Propo-

nents counter that the changing nature of requirements makes such models

and specification obsolete almost as soon as they are developed.

• Lack of formal design. XP deemphasizes the need for architectural design and

in many instances, suggests that design of all kinds should be relatively

informal. Critics argue that when complex systems are built, design must be

emphasized to ensure that the overall structure of the software will exhibit

quality and maintainability. XP proponents suggest that the incremental

nature of the XP process limits complexity (simplicity is a core value) and

therefore reduces the need for extensive design.

You should note that every software process has flaws and that many software or-

ganizations have used XP successfully. The key is to recognize where a process may

have weaknesses and to adapt it to the specific needs of your organization.

CHAPTER 3 AGILE DEVELOPMENT 79

10 For a detailed look at some thoughtful criticism that has been leveled at XP, visit

www.softwarereality.com/ExtremeProgramming.jsp.

What are
some of the

issues that lead to
an XP debate?

?

The scene: Doug Miller’s office.

The Players: Doug Miller, software engineering
manager; Jamie Lazar, software team member; Vinod
Raman, software team member.

The conversation:

(A knock on the door, Jamie and Vinod enter Doug’s office)

Jamie: Doug, you got a minute?

SAFEHOME

Considering Agile Software Development

pre75977_ch03.qxd 11/27/08 3:24 PM Page 79

http://www.softwarereality.com/ExtremeProgramming.jsp

3.5 OTHER AGILE PROCESS MODELS

The history of software engineering is littered with dozens of obsolete process

descriptions and methodologies, modeling methods and notations, tools, and

technology. Each flared in notoriety and was then eclipsed by something new and

(purportedly) better. With the introduction of a wide array of agile process models—

each contending for acceptance within the software development community—the

agile movement is following the same historical path.11

As I noted in the last section, the most widely used of all agile process models

is Extreme Programming (XP). But many other agile process models have been

proposed and are in use across the industry. Among the most common are:

• Adaptive Software Development (ASD)

• Scrum

• Dynamic Systems Development Method (DSDM)

80 PART ONE THE SOFTWARE PROCESS

Doug: Sure Jamie, what’s up?

Jamie: We’ve been thinking about our process
discussion yesterday . . . you know, what process we’re
going to choose for this new SafeHome project.

Doug: And?

Vinod: I was talking to a friend at another company,
and he was telling me about Extreme Programming. It’s
an agile process model . . . heard of it?

Doug: Yeah, some good, some bad.

Jamie: Well, it sounds pretty good to us. Lets you
develop software really fast, uses something called pair
programming to do real-time quality checks . . . it’s pretty
cool, I think.

Doug: It does have a lot of really good ideas. I like the
pair-programming concept, for instance, and the idea
that stakeholders should be part of the team.

Jamie: Huh? You mean that marketing will work on the
project team with us?

Doug (nodding): They’re a stakeholder, aren’t they?

Jamie: Jeez . . . they’ll be requesting changes every five
minutes.

Vinod: Not necessarily. My friend said that there are
ways to “embrace” changes during an XP project.

Doug: So you guys think we should use XP?

Jamie: It’s definitely worth considering.

Doug: I agree. And even if we choose an incremental
model as our approach, there’s no reason why we can’t
incorporate much of what XP has to offer.

Vinod: Doug, before you said “some good, some bad.”
What was the “bad”?

Doug: The thing I don’t like is the way XP downplays
analysis and design . . . sort of says that writing code is
where the action is . . .

(The team members look at one another and smile.)

Doug: So you agree with the XP approach?

Jamie (speaking for both): Writing code is what
we do, Boss!

Doug (laughing): True, but I’d like to see you spend a
little less time coding and then recoding and a little more
time analyzing what has to be done and designing a
solution that works.

Vinod: Maybe we can have it both ways, agility with a
little discipline.

Doug: I think we can, Vinod. In fact, I’m sure of it.

uote:

“Our profession
goes through
methodologies like
a 14-year-old goes
through clothing.”

Stephen
Hawrysh and
Jim Ruprecht

11 This is not a bad thing. Before one or more models or methods are accepted as a de facto standard,

all must contend for the hearts and minds of software engineers. The “winners” evolve into best

practice, while the “losers” either disappear or merge with the winning models.

pre75977_ch03.qxd 11/27/08 3:24 PM Page 80

• Crystal

• Feature Drive Development (FDD)

• Lean Software Development (LSD)

• Agile Modeling (AM)

• Agile Unified Process (AUP)

In the sections that follow, I present a very brief overview of each of these agile

process models. It is important to note that all agile process models conform (to a

greater or lesser degree) to the Manifesto for Agile Software Development and the prin-

ciples noted in Section 3.3.1. For additional detail, refer to the references noted in

each subsection or for a survey, examine the “agile software development” entry

in Wikipedia.12

3.5.1 Adaptive Software Development (ASD)

Adaptive Software Development (ASD) has been proposed by Jim Highsmith [Hig00] as

a technique for building complex software and systems. The philosophical under-

pinnings of ASD focus on human collaboration and team self-organization.

Highsmith argues that an agile, adaptive development approach based on collab-

oration is “as much a source of order in our complex interactions as discipline and

engineering.” He defines an ASD “life cycle” (Figure 3.3) that incorporates three

phases, speculation, collaboration, and learning.

CHAPTER 3 AGILE DEVELOPMENT 81

12 See http://en.wikipedia.org/wiki/Agile_software_development#Agile_methods.

WebRef
Useful resources for
ASD can be found at
www.adaptivesd
.com.

adaptive cycle planning
 mission statement
 project constraints
 basic requirements
time-boxed release plan

components implemented/tested
 focus groups for feedback
 formal technical reviews
postmortems

Requirements gathering
 JAD
 mini-specs

software increment
 adjustments for subsequent cycles

Release

collaboration

speculation

learning

FIGURE 3.3

Adaptive
software
development

pre75977_ch03.qxd 11/27/08 3:24 PM Page 81

http://en.wikipedia.org/wiki/Agile_software_development#Agile_methods
http://www.adaptivesd

During speculation, the project is initiated and adaptive cycle planning is con-

ducted. Adaptive cycle planning uses project initiation information—the customer’s

mission statement, project constraints (e.g., delivery dates or user descriptions), and

basic requirements—to define the set of release cycles (software increments) that

will be required for the project.

No matter how complete and farsighted the cycle plan, it will invariably change.

Based on information obtained at the completion of the first cycle, the plan is re-

viewed and adjusted so that planned work better fits the reality in which an ASD

team is working.

Motivated people use collaboration in a way that multiplies their talent and cre-

ative output beyond their absolute numbers. This approach is a recurring theme in

all agile methods. But collaboration is not easy. It encompasses communication and

teamwork, but it also emphasizes individualism, because individual creativity plays

an important role in collaborative thinking. It is, above all, a matter of trust. People

working together must trust one another to (1) criticize without animosity, (2) assist

without resentment, (3) work as hard as or harder than they do, (4) have the skill set

to contribute to the work at hand, and (5) communicate problems or concerns in a

way that leads to effective action.

As members of an ASD team begin to develop the components that are part of an

adaptive cycle, the emphasis is on “learning” as much as it is on progress toward

a completed cycle. In fact, Highsmith [Hig00] argues that software developers often

overestimate their own understanding (of the technology, the process, and the proj-

ect) and that learning will help them to improve their level of real understanding.

ASD teams learn in three ways: focus groups (Chapter 5), technical reviews (Chap-

ter 14), and project postmortems.

The ASD philosophy has merit regardless of the process model that is used. ASD’s

overall emphasis on the dynamics of self-organizing teams, interpersonal collabo-

ration, and individual and team learning yield software project teams that have a

much higher likelihood of success.

3.5.2 Scrum

Scrum (the name is derived from an activity that occurs during a rugby match13) is

an agile software development method that was conceived by Jeff Sutherland and his

development team in the early 1990s. In recent years, further development on the

Scrum methods has been performed by Schwaber and Beedle [Sch01a].

Scrum principles are consistent with the agile manifesto and are used to guide

development activities within a process that incorporates the following framework

activities: requirements, analysis, design, evolution, and delivery. Within each

82 PART ONE THE SOFTWARE PROCESS

Effective collaboration
with your customer will
only occur if you
jettison any “us and
them” attitudes.

ASD emphasizes
learning as a key
element in achieving
a “self-organizing”
team.

13 A group of players forms around the ball and the teammates work together (sometimes violently!)

to move the ball downfield.

WebRef
Useful Scrum
information and
resources can be found
at www
.controlchaos.com.

pre75977_ch03.qxd 11/27/08 3:24 PM Page 82

every 24
hours

30 days

Scrum: 15 minute daily meeting.
Team members respond to basics:
1) What did you do since last Scrum
 meeting?
2) Do you have any obstacles?
3) What will you do before next
 meeting?

Sprint Backlog:
Feature(s)
assigned
to sprint

Product Backlog:
Prioritized product features desired by the customer

Backlog
items

expanded
by team

New functionality
is demonstrated
at end of sprint

framework activity, work tasks occur within a process pattern (discussed in the fol-

lowing paragraph) called a sprint. The work conducted within a sprint (the number

of sprints required for each framework activity will vary depending on product com-

plexity and size) is adapted to the problem at hand and is defined and often modified

in real time by the Scrum team. The overall flow of the Scrum process is illustrated

in Figure 3.4.

Scrum emphasizes the use of a set of software process patterns [Noy02] that have

proven effective for projects with tight timelines, changing requirements, and business

criticality. Each of these process patterns defines a set of development actions:

Backlog—a prioritized list of project requirements or features that provide busi-

ness value for the customer. Items can be added to the backlog at any time (this is

how changes are introduced). The product manager assesses the backlog and

updates priorities as required.

Sprints—consist of work units that are required to achieve a requirement de-

fined in the backlog that must be fit into a predefined time-box14 (typically 30 days).

CHAPTER 3 AGILE DEVELOPMENT 83

14 A time-box is a project management term (see Part 4 of this book) that indicates a period of time

that has been allocated to accomplish some task.

FIGURE 3.4

Scrum process
flow

Scrum incorporates a
set of process patterns
that emphasize project
priorities,
compartmentalized
work units,
communication, and
frequent customer
feedback.

pre75977_ch03.qxd 11/27/08 3:24 PM Page 83

Changes (e.g., backlog work items) are not introduced during the sprint. Hence, the

sprint allows team members to work in a short-term, but stable environment.

Scrum meetings—are short (typically 15 minutes) meetings held daily by the Scrum

team. Three key questions are asked and answered by all team members [Noy02]:

• What did you do since the last team meeting?

• What obstacles are you encountering?

• What do you plan to accomplish by the next team meeting?

A team leader, called a Scrum master, leads the meeting and assesses the responses

from each person. The Scrum meeting helps the team to uncover potential problems

as early as possible. Also, these daily meetings lead to “knowledge socialization”

[Bee99] and thereby promote a self-organizing team structure.

Demos—deliver the software increment to the customer so that functionality that

has been implemented can be demonstrated and evaluated by the customer. It is im-

portant to note that the demo may not contain all planned functionality, but rather

those functions that can be delivered within the time-box that was established.

Beedle and his colleagues [Bee99] present a comprehensive discussion of these pat-

terns in which they state: “Scrum assumes up-front the existence of chaos. . . . ” The

Scrum process patterns enable a software team to work successfully in a world

where the elimination of uncertainty is impossible.

3.5.3 Dynamic Systems Development Method (DSDM)

The Dynamic Systems Development Method (DSDM) [Sta97] is an agile software devel-

opment approach that “provides a framework for building and maintaining systems

which meet tight time constraints through the use of incremental prototyping in a con-

trolled project environment” [CCS02]. The DSDM philosophy is borrowed from a mod-

ified version of the Pareto principle—80 percent of an application can be delivered in

20 percent of the time it would take to deliver the complete (100 percent) application.

DSDM is an iterative software process in which each iteration follows the 80 per-

cent rule. That is, only enough work is required for each increment to facilitate

movement to the next increment. The remaining detail can be completed later when

more business requirements are known or changes have been requested and

accommodated.

The DSDM Consortium (www.dsdm.org) is a worldwide group of member com-

panies that collectively take on the role of “keeper” of the method. The consortium

has defined an agile process model, called the DSDM life cycle that defines three dif-

ferent iterative cycles, preceded by two additional life cycle activities:

Feasibility study—establishes the basic business requirements and constraints

associated with the application to be built and then assesses whether the applica-

tion is a viable candidate for the DSDM process.

84 PART ONE THE SOFTWARE PROCESS

WebRef
Useful resources for
DSSD can be found at
www.dsdm.org.

pre75977_ch03.qxd 11/27/08 3:24 PM Page 84

http://www.dsdm.org
http://www.dsdm.org

Business study—establishes the functional and information requirements that

will allow the application to provide business value; also, defines the basic

application architecture and identifies the maintainability requirements for the

application.

Functional model iteration—produces a set of incremental prototypes that

demonstrate functionality for the customer. (Note: All DSDM prototypes are in-

tended to evolve into the deliverable application.) The intent during this iterative

cycle is to gather additional requirements by eliciting feedback from users as they

exercise the prototype.

Design and build iteration—revisits prototypes built during functional model

iteration to ensure that each has been engineered in a manner that will enable it to

provide operational business value for end users. In some cases, functional model

iteration and design and build iteration occur concurrently.

Implementation—places the latest software increment (an “operationalized” pro-

totype) into the operational environment. It should be noted that (1) the increment

may not be 100 percent complete or (2) changes may be requested as the incre-

ment is put into place. In either case, DSDM development work continues by

returning to the functional model iteration activity.

DSDM can be combined with XP (Section 3.4) to provide a combination approach

that defines a solid process model (the DSDM life cycle) with the nuts and bolts prac-

tices (XP) that are required to build software increments. In addition, the ASD con-

cepts of collaboration and self-organizing teams can be adapted to a combined

process model.

3.5.4 Crystal

Alistair Cockburn [Coc05] and Jim Highsmith [Hig02b] created the Crystal family of

agile methods15 in order to achieve a software development approach that puts a

premium on “maneuverability” during what Cockburn characterizes as “a resource-

limited, cooperative game of invention and communication, with a primary goal of

delivering useful, working software and a secondary goal of setting up for the next

game” [Coc02].

To achieve maneuverability, Cockburn and Highsmith have defined a set of

methodologies, each with core elements that are common to all, and roles, process

patterns, work products, and practice that are unique to each. The Crystal family is

actually a set of example agile processes that have been proven effective for differ-

ent types of projects. The intent is to allow agile teams to select the member of the

crystal family that is most appropriate for their project and environment.

CHAPTER 3 AGILE DEVELOPMENT 85

15 The name “crystal” is derived from the characteristics of geological crystals, each with its own

color, shape, and hardness.

Crystal is a family of
process models with
the same “genetic
code” but different
methods for adapting
to project
characteristics.

DSDM is a process
framework that can
adopt the tactics of
another agile approach
such as XP.

pre75977_ch03.qxd 11/27/08 3:24 PM Page 85

3.5.5 Feature Driven Development (FDD)

Feature Driven Development (FDD) was originally conceived by Peter Coad and his

colleagues [Coa99] as a practical process model for object-oriented software engi-

neering. Stephen Palmer and John Felsing [Pal02] have extended and improved

Coad’s work, describing an adaptive, agile process that can be applied to moderately

sized and larger software projects.

Like other agile approaches, FDD adopts a philosophy that (1) emphasizes col-

laboration among people on an FDD team; (2) manages problem and project

complexity using feature-based decomposition followed by the integration of

software increments, and (3) communication of technical detail using verbal,

graphical, and text-based means. FDD emphasizes software quality assurance

activities by encouraging an incremental development strategy, the use of design

and code inspections, the application of software quality assurance audits (Chap-

ter 16), the collection of metrics, and the use of patterns (for analysis, design, and

construction).

In the context of FDD, a feature “is a client-valued function that can be imple-

mented in two weeks or less” [Coa99]. The emphasis on the definition of features

provides the following benefits:

• Because features are small blocks of deliverable functionality, users can

describe them more easily; understand how they relate to one another more

readily; and better review them for ambiguity, error, or omissions.

• Features can be organized into a hierarchical business-related grouping.

• Since a feature is the FDD deliverable software increment, the team develops

operational features every two weeks.

• Because features are small, their design and code representations are easier

to inspect effectively.

• Project planning, scheduling, and tracking are driven by the feature

hierarchy, rather than an arbitrarily adopted software engineering

task set.

Coad and his colleagues [Coa99] suggest the following template for defining a

feature:

<action> the <result> <by for of to> a(n) <object>

where an <object> is “a person, place, or thing (including roles, moments in time or

intervals of time, or catalog-entry-like descriptions).” Examples of features for an

e-commerce application might be:

Add the product to shopping cart

Display the technical-specifications of the product

Store the shipping-information for the customer

86 PART ONE THE SOFTWARE PROCESS

WebRef
A wide variety of
articles and
presentations on FDD
can be found at:
www.featuredrive
ndevelopment
.com/.

pre75977_ch03.qxd 11/27/08 3:24 PM Page 86

http://www.featuredrive

A feature set groups related features into business-related categories and is defined

[Coa99] as:

<action><-ing> a(n) <object>

For example: Making a product sale is a feature set that would encompass the fea-

tures noted earlier and others.

The FDD approach defines five “collaborating” [Coa99] framework activities (in

FDD these are called “processes”) as shown in Figure 3.5.

FDD provides greater emphasis on project management guidelines and tech-

niques than many other agile methods. As projects grow in size and complexity,

ad hoc project management is often inadequate. It is essential for developers, their

managers, and other stakeholders to understand project status—what accomplish-

ments have been made and problems have been encountered. If deadline pressure

is significant, it is critical to determine if software increments (features) are properly

scheduled. To accomplish this, FDD defines six milestones during the design and

implementation of a feature: “design walkthrough, design, design inspection, code,

code inspection, promote to build” [Coa99].

3.5.6 Lean Software Development (LSD)

Lean Software Development (LSD) has adapted the principles of lean manufacturing

to the world of software engineering. The lean principles that inspire the LSD process

can be summarized ([Pop03], [Pop06a]) as eliminate waste, build quality in, create

knowledge, defer commitment, deliver fast, respect people, and optimize the whole.

Each of these principles can be adapted to the software process. For example,

eliminate waste within the context of an agile software project can be interpreted

to mean [Das05]: (1) adding no extraneous features or functions, (2) assessing the

cost and schedule impact of any newly requested requirement, (3) removing any

superfluous process steps, (4) establishing mechanisms to improve the way team

members find information, (5) ensuring the testing finds as many errors as possible,

CHAPTER 3 AGILE DEVELOPMENT 87

Develop
an

Overall
Model

Build a
Features

List

Plan
By

Feature

Design
By

Feature

Build
By

Feature

(more shape
than content)

A list of features
grouped into sets
and subject areas

A development plan
Class owners
Feature Set Owners

A design
package
(sequences)

Completed
client-value
function

FIGURE 3.5

Feature Driven
Development
[Coa99] (with
permission)

pre75977_ch03.qxd 11/27/08 3:24 PM Page 87

(6) reducing the time required to request and get a decision that affects the software

or the process that is applied to create it, and (7) streamlining the manner in which

information is transmitted to all stakeholders involved in the process.

For a detailed discussion of LSD and pragmatic guidelines for implementing the

process, you should examine [Pop06a] and [Pop06b].

3.5.7 Agile Modeling (AM)

There are many situations in which software engineers must build large, business-

critical systems. The scope and complexity of such systems must be modeled so that

(1) all constituencies can better understand what needs to be accomplished, (2) the

problem can be partitioned effectively among the people who must solve it, and

(3) quality can be assessed as the system is being engineered and built.

Over the past 30 years, a wide variety of software engineering modeling methods

and notation have been proposed for analysis and design (both architectural and

component-level). These methods have merit, but they have proven to be difficult

to apply and challenging to sustain (over many projects). Part of the problem is the

“weight” of these modeling methods. By this I mean the volume of notation required,

the degree of formalism suggested, the sheer size of the models for large projects,

and the difficulty in maintaining the model(s) as changes occur. Yet analysis and de-

sign modeling have substantial benefit for large projects—if for no other reason than

to make these projects intellectually manageable. Is there an agile approach to soft-

ware engineering modeling that might provide an alternative?

At “The Official Agile Modeling Site,” Scott Ambler [Amb02a] describes agile mod-

eling (AM) in the following manner:

Agile Modeling (AM) is a practice-based methodology for effective modeling and documen-

tation of software-based systems. Simply put, Agile Modeling (AM) is a collection of values,

principles, and practices for modeling software that can be applied on a software develop-

ment project in an effective and light-weight manner. Agile models are more effective than

traditional models because they are just barely good, they don’t have to be perfect.

Agile modeling adopts all of the values that are consistent with the agile manifesto.

The agile modeling philosophy recognizes that an agile team must have the courage

to make decisions that may cause it to reject a design and refactor. The team must

also have the humility to recognize that technologists do not have all the answers and

that business experts and other stakeholders should be respected and embraced.

Although AM suggests a wide array of “core” and “supplementary” modeling prin-

ciples, those that make AM unique are [Amb02a]:

Model with a purpose. A developer who uses AM should have a specific

goal (e.g., to communicate information to the customer or to help better un-

derstand some aspect of the software) in mind before creating the model.

Once the goal for the model is identified, the type of notation to be used and

level of detail required will be more obvious.

88 PART ONE THE SOFTWARE PROCESS

WebRef
Comprehensive
information on agile
modeling can be found
at: www
.agilemodeling.com.

uote:

“I was in the drug
store the other day
trying to get a cold
medication . . . not
easy. There’s an
entire wall of
products you need.
You stand there
going, Well, this
one is quick acting
but this is long
lasting. . . . Which
is more important,
the present or the
future?”

Jerry Seinfeld

pre75977_ch03.qxd 11/27/08 3:24 PM Page 88

Use multiple models. There are many different models and notations that

can be used to describe software. Only a small subset is essential for most

projects. AM suggests that to provide needed insight, each model should

present a different aspect of the system and only those models that provide

value to their intended audience should be used.

Travel light. As software engineering work proceeds, keep only those mod-

els that will provide long-term value and jettison the rest. Every work product

that is kept must be maintained as changes occur. This represents work that

slows the team down. Ambler [Amb02a] notes that “Every time you decide to

keep a model you trade-off agility for the convenience of having that informa-

tion available to your team in an abstract manner (hence potentially enhanc-

ing communication within your team as well as with project stakeholders).”

Content is more important than representation. Modeling should im-

part information to its intended audience. A syntactically perfect model that

imparts little useful content is not as valuable as a model with flawed nota-

tion that nevertheless provides valuable content for its audience.

Know the models and the tools you use to create them. Understand

the strengths and weaknesses of each model and the tools that are used to

create it.

Adapt locally. The modeling approach should be adapted to the needs of

the agile team.

A major segment of the software engineering community has adopted the Unified

Modeling Language (UML)16 as the preferred method for representing analysis and

design models. The Unified Process (Chapter 2) has been developed to provide a

framework for the application of UML. Scott Ambler [Amb06] has developed a sim-

plified version of the UP that integrates his agile modeling philosophy.

3.5.8 Agile Unified Process (AUP)

The Agile Unified Process (AUP) adopts a “serial in the large” and “iterative in the

small” [Amb06] philosophy for building computer-based systems. By adopting the

classic UP phased activities—inception, elaboration, construction, and transition—AUP

provides a serial overlay (i.e., a linear sequence of software engineering activities)

that enables a team to visualize the overall process flow for a software project. How-

ever, within each of the activities, the team iterates to achieve agility and to deliver

meaningful software increments to end users as rapidly as possible. Each AUP iter-

ation addresses the following activities [Amb06]:

• Modeling. UML representations of the business and problem domains are

created. However, to stay agile, these models should be “just barely good

enough” [Amb06] to allow the team to proceed.

CHAPTER 3 AGILE DEVELOPMENT 89

“Traveling light” is an
appropriate philosophy
for all software engi-
neering work. Build
only those models that
provide value … no
more, no less.

16 A brief tutorial on UML is presented in Appendix 1.

pre75977_ch03.qxd 11/27/08 3:24 PM Page 89

• Implementation. Models are translated into source code.

• Testing. Like XP, the team designs and executes a series of tests to uncover

errors and ensure that the source code meets its requirements.

• Deployment. Like the generic process activity discussed in Chapters 1 and 2,

deployment in this context focuses on the delivery of a software increment

and the acquisition of feedback from end users.

• Configuration and project management. In the context of AUP, configuration

management (Chapter 22) addresses change management, risk manage-

ment, and the control of any persistent work products17 that are produced by

the team. Project management tracks and controls the progress of the team

and coordinates team activities.

• Environment management. Environment management coordinates a process

infrastructure that includes standards, tools, and other support technology

available to the team.

Although the AUP has historical and technical connections to the Unified Modeling

Language, it is important to note that UML modeling can be using in conjunction

with any of the agile process models described in Section 3.5.

90 PART ONE THE SOFTWARE PROCESS

17 A persistent work product is a model or document or test case produced by the team that will be kept

for an indeterminate period of time. It will not be discarded once the software increment is

delivered.

18 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.

In most cases, tool names are trademarked by their respective developers.

Agile Development

Objective: The objective of agile development
tools is to assist in one or more aspects of agile

development with an emphasis on facilitating the rapid
generation of operational software. These tools can also
be used when prescriptive process models (Chapter 2) are
applied.

Mechanics: Tool mechanics vary. In general, agile tool
sets encompass automated support for project planning,
use case development and requirements gathering, rapid
design, code generation, and testing.

Representative Tools:18

Note: Because agile development is a hot topic, most
software tools vendors purport to sell tools that support

the agile approach. The tools noted here have
characteristics that make them particularly useful for
agile projects.

OnTime, developed by Axosoft (www.axosoft.com),
provides agile process management support for
various technical activities within the process.

Ideogramic UML, developed by Ideogramic
(www.ideogramic.com) is a UML tool set
specifically developed for use within an agile
process.

Together Tool Set, distributed by Borland
(www.borland.com), provides a tools suite that
supports many technical activities within XP and other
agile processes.

SOFTWARE TOOLS

pre75977_ch03.qxd 11/27/08 3:24 PM Page 90

http://www.axosoft.com
http://www.ideogramic.com
http://www.borland.com

3.6 A TOOL SET FOR THE AGILE PROCESS

Some proponents of the agile philosophy argue that automated software tools (e.g.,

design tools) should be viewed as a minor supplement to the team’s activities, and

not at all pivotal to the success of the team. However, Alistair Cockburn [Coc04] sug-

gests that tools can have a benefit and that “agile teams stress using tools that per-

mit the rapid flow of understanding. Some of those tools are social, starting even at

the hiring stage. Some tools are technological, helping distributed teams simulate

being physically present. Many tools are physical, allowing people to manipulate

them in workshops.”

Because acquiring the right people (hiring), team collaboration, stakeholder com-

munication, and indirect management are key elements in virtually all agile process

models, Cockburn argues that “tools” that address these issues are critical success

factors for agility. For example, a hiring “tool” might be the requirement to have a

prospective team member spend a few hours pair programming with an existing

member of the team. The “fit” can be assessed immediately.

Collaborative and communication “tools” are generally low tech and incorporate

any mechanism (“physical proximity, whiteboards, poster sheets, index cards, and

sticky notes” [Coc04]) that provides information and coordination among agile de-

velopers. Active communication is achieved via the team dynamics (e.g., pair pro-

gramming), while passive communication is achieved by “information radiators”

(e.g., a flat panel display that presents the overall status of different components of

an increment). Project management tools deemphasize the Gantt chart and replace

it with earned value charts or “graphs of tests created versus passed . . . other agile

tools are used to optimize the environment in which the agile team works (e.g., more

efficient meeting areas), improve the team culture by nurturing social interactions

(e.g., collocated teams), physical devices (e.g., electronic whiteboards), and process

enhancement (e.g., pair programming or time-boxing)” [Coc04].

Are any of these things really tools? They are, if they facilitate the work performed

by an agile team member and enhance the quality of the end product.

3.7 SUMMARY

In a modern economy, market conditions change rapidly, customer and end-user

needs evolve, and new competitive threats emerge without warning. Practitioners

must approach software engineering in a manner that allows them to remain agile—

to define maneuverable, adaptive, lean processes that can accommodate the needs

of modern business.

An agile philosophy for software engineering stresses four key issues: the impor-

tance of self-organizing teams that have control over the work they perform, com-

munication and collaboration between team members and between practitioners

and their customers, a recognition that change represents an opportunity, and

CHAPTER 3 AGILE DEVELOPMENT 91

The “tool set” that
supports agile
processes focuses
more on people issues
than it does on
technology issues.

pre75977_ch03.qxd 11/27/08 3:24 PM Page 91

an emphasis on rapid delivery of software that satisfies the customer. Agile process

models have been designed to address each of these issues.

Extreme programming (XP) is the most widely used agile process. Organized as

four framework activities—planning, design, coding, and testing—XP suggests a

number of innovative and powerful techniques that allow an agile team to create

frequent software releases that deliver features and functionality that have been de-

scribed and then prioritized by stakeholders.

Other agile process models also stress human collaboration and team self-

organization, but define their own framework activities and select different points of

emphasis. For example, ASD uses an iterative process that incorporates adaptive

cycle planning, relatively rigorous requirement gathering methods, and an iterative

development cycle that incorporates customer focus groups and formal technical re-

views as real-time feedback mechanisms. Scrum emphasizes the use of a set of soft-

ware process patterns that have proven effective for projects with tight time lines,

changing requirements, and business criticality. Each process pattern defines a set

of development tasks and allows the Scrum team to construct a process that is

adapted to the needs of the project. The Dynamic Systems Development Method

(DSDM) advocates the use of time-box scheduling and suggests that only enough

work is required for each software increment to facilitate movement to the next

increment. Crystal is a family of agile process models that can be adopted to the spe-

cific characteristics of a project.

Feature Driven Development (FDD) is somewhat more “formal” than other agile

methods, but still maintains agility by focusing the project team on the development

of features—a client-valued function that can be implemented in two weeks or less.

Lean Software Development (LSD) has adapted the principles of lean manufacturing

to the world of software engineering. Agile modeling (AM) suggests that modeling is

essential for all systems, but that the complexity, type, and size of the model must be

tuned to the software to be built. The Agile Unified Process (AUP) adopts a “serial in

the large” and “iterative in the small” philosophy for building software.

PROBLEMS AND POINTS TO PONDER

3.1. Reread “The Manifesto for Agile Software Development” at the beginning of this chapter.
Can you think of a situation in which one or more of the four “values” could get a software team
into trouble?

3.2. Describe agility (for software projects) in your own words.

3.3. Why does an iterative process make it easier to manage change? Is every agile process dis-
cussed in this chapter iterative? Is it possible to complete a project in just one iteration and still
be agile? Explain your answers.

3.4. Could each of the agile processes be described using the generic framework activities
noted in Chapter 2? Build a table that maps the generic activities into the activities defined for
each agile process.

3.5. Try to come up with one more “agility principle” that would help a software engineering
team become even more maneuverable.

92 PART ONE THE SOFTWARE PROCESS

pre75977_ch03.qxd 11/27/08 3:24 PM Page 92

3.6. Select one agility principle noted in Section 3.3.1 and try to determine whether each of the
process models presented in this chapter exhibits the principle. [Note: I have presented an
overview of these process models only, so it may not be possible to determine whether a prin-
ciple has been addressed by one or more of the models, unless you do additional research
(which is not required for this problem).]

3.7. Why do requirements change so much? After all, don’t people know what they want?

3.8. Most agile process models recommend face-to-face communication. Yet today, members
of a software team and their customers may be geographically separated from one another. Do
you think this implies that geographical separation is something to avoid? Can you think of ways
to overcome this problem?

3.9. Write an XP user story that describes the “favorite places” or “bookmarks” feature avail-
able on most Web browsers.

3.10. What is a spike solution in XP?

3.11. Describe the XP concepts of refactoring and pair programming in your own words.

3.12. Do a bit more reading and describe what a time-box is. How does this assist an ASD team
in delivering software increments in a short time period?

3.13. Do the 80 percent rule in DSDM and the time-boxing approach defined for ASD achieve
the same result?

3.14. Using the process pattern template presented in Chapter 2, develop a process pattern for
any one of the Scrum patterns presented in Section 3.5.2.

3.15. Why is Crystal called a family of agile methods?

3.16. Using the FDD feature template described in Section 3.5.5, define a feature set for a Web
browser. Now develop a set of features for the feature set.

3.17. Visit the Official Agile Modeling Site and make a complete list of all core and supple-
mentary AM principles.

3.18. The tool set proposed in Section 3.6 supports many of the “soft” aspects of agile meth-
ods. Since communication is so important, recommend an actual tool set that might be used to
enhance communication among stakeholders on an agile team.

FURTHER READINGS AND INFORMATION SOURCES

The overall philosophy and underlying principles of agile software development are considered
in depth in many of the books referenced in the body of this chapter. In addition, books by Shaw
and Warden (The Art of Agile Development, O’Reilly Media, Inc., 2008), Hunt (Agile Software Con-
struction, Springer, 2005), and Carmichael and Haywood (Better Software Faster, Prentice-Hall,
2002) present useful discussions of the subject. Aguanno (Managing Agile Projects, Multi-
Media Publications, 2005), Highsmith (Agile Project Management: Creating Innovative Products,
Addison-Wesley, 2004), and Larman (Agile and Iterative Development: A Manager’s Guide,
Addison-Wesley, 2003) present a management overview and consider project management
issues. Highsmith (Agile Software Development Ecosystems, Addison-Wesley, 2002) presents a
survey of agile principles, processes, and practices. A worthwhile discussion of the delicate bal-
ance between agility and discipline is presented by Booch and his colleagues (Balancing Agility
and Discipline, Addison-Wesley, 2004).

Martin (Clean Code: A Handbook of Agile Software Craftsmanship, Prentice-Hall, 2009) pres-
ents the principles, patterns, and practices required to develop “clean code” in an agile software
engineering environment. Leffingwell (Scaling Software Agility: Best Practices for Large Enter-
prises, Addison-Wesley, 2007) discusses strategies for scaling up agile practices for large proj-
ects. Lippert and Rook (Refactoring in Large Software Projects: Performing Complex Restructurings
Successfully, Wiley, 2006) discuss the use of refactoring when applied in large, complex systems.

CHAPTER 3 AGILE DEVELOPMENT 93

pre75977_ch03.qxd 11/27/08 3:24 PM Page 93

Stamelos and Sfetsos (Agile Software Development Quality Assurance, IGI Global, 2007) discuss
SQA techniques that conform to the agile philosophy.

Dozens of books have been written about Extreme Programming over the past decade. Beck
(Extreme Programming Explained: Embrace Change, 2d ed., Addison-Wesley, 2004) remains the
definitive treatment of the subject. In addition, Jeffries and his colleagues (Extreme Programming
Installed, Addison-Wesley, 2000), Succi and Marchesi (Extreme Programming Examined,
Addison-Wesley, 2001), Newkirk and Martin (Extreme Programming in Practice, Addison-Wesley,
2001), and Auer and his colleagues (Extreme Programming Applied: Play to Win, Addison-Wesley,
2001) provide a nuts-and-bolts discussion of XP along with guidance on how best to apply it.
McBreen (Questioning Extreme Programming, Addison-Wesley, 2003) takes a critical look at XP,
defining when and where it is appropriate. An in-depth consideration of pair programming is
presented by McBreen (Pair Programming Illuminated, Addison-Wesley, 2003).

ASD is addressed in depth by Highsmith [Hig00]. Schwaber (The Enterprise and Scrum,
Microsoft Press, 2007) discusses the use of Scrum for projects that have a major business
impact. The nuts and bolts of Scrum are discussed by Schwaber and Beedle (Agile Software
Development with SCRUM, Prentice-Hall, 2001). Worthwhile treatments of DSDM have been
written by the DSDM Consortium (DSDM: Business Focused Development, 2d ed., Pearson Edu-
cation, 2003) and Stapleton (DSDM: The Method in Practice, Addison-Wesley, 1997). Cockburn
(Crystal Clear, Addison-Wesley, 2005) presents an excellent overview of the Crystal family of
processes. Palmer and Felsing [Pal02] present a detailed treatment of FDD. Carmichael and
Haywood (Better Software Faster, Prentice-Hall, 2002) provides another useful treatment of FDD
that includes a step-by-step journey through the mechanics of the process. Poppendieck and
Poppendieck (Lean Development: An Agile Toolkit for Software Development Managers, Addison-
Wesley, 2003) provide guidelines for managing and controlling agile projects. Ambler and
Jeffries (Agile Modeling, Wiley, 2002) discuss AM in some depth.

A wide variety of information sources on agile software development are available on the
Internet. An up-to-date list of World Wide Web references that are relevant to the agile process
can be found at the SEPA website: www.mhhe.com/engcs/compsci/pressman/
professional/olc/ser.htm.

94 PART ONE THE SOFTWARE PROCESS

pre75977_ch03.qxd 11/27/08 3:24 PM Page 94

http://www.mhhe.com/engcs/compsci/pressman/

MODELING

95

P A R T

Two

In this part of Software Engineering: A Practitioner’s Approach
you’ll learn about the principles, concepts, and methods that are
used to create high-quality requirements and design models.

These questions are addressed in the chapters that follow:

• What concepts and principles guide software engineering
practice?

• What is requirements engineering and what are the underly-
ing concepts that lead to good requirements analysis?

• How is the requirements model created and what are its
elements?

• What are the elements of a good design?

• How does architectural design establish a framework for all
other design actions and what models are used?

• How do we design high-quality software components?

• What concepts, models, and methods are applied as a user
interface is designed?

• What is pattern-based design?

• What specialized strategies and methods are used to design
WebApps?

Once these questions are answered you’ll be better prepared to
apply software engineering practice.

pre75977_ch04.qxd 11/27/08 3:27 PM Page 95

In a book that explores the lives and thoughts of software engineers, Ellen
Ullman [Ull97] depicts a slice of life as she relates the thoughts of practitioner
under pressure:

I have no idea what time it is. There are no windows in this office and no clock, only

the blinking red LED display of a microwave, which flashes 12:00, 12:00, 12:00, 12:00.

Joel and I have been programming for days. We have a bug, a stubborn demon of a

bug. So the red pulse no-time feels right, like a read-out of our brains, which have

somehow synchronized themselves at the same blink rate . . .

What are we working on? . . . The details escape me just now. We may be helping

poor sick people or tuning a set of low-level routines to verify bits on a distributed

database protocol—I don’t care. I should care; in another part of my being—later, per-

haps when we emerge from this room full of computers—I will care very much why

and for whom and for what purpose I am writing software. But just now: no. I have

passed through a membrane where the real world and its uses no longer matter. I am

a software engineer. . . .

96

C H A P T E R

4 PRINCIPLES THAT
GUIDE PRACTICE

K E Y
C O N C E P T S

Core principles . . .98
Principles that govern:

coding111
communication . .101
deployment . . .113
design 109
modeling 105
planning 103
requirements . .107
testing 112

What is it? Software engineering
practice is a broad array of princi-
ples, concepts, methods, and tools
that you must consider as software is

planned and developed. Principles that guide
practice establish a foundation from which soft-
ware engineering is conducted.

Who does it? Practitioners (software engineers)
and their managers conduct a variety of soft-
ware engineering tasks.

Why is it important? The software process pro-
vides everyone involved in the creation of a
computer-based system or product with a road
map for getting to a successful destination.
Practice provides you with the detail you’ll need
to drive along the road. It tells you where the
bridges, the roadblocks, and the forks are located.
It helps you understand the concepts and princi-
ples that must be understood and followed to
drive safely and rapidly. It instructs you on how
to drive, where to slow down, and where to
speed up. In the context of software engineering,

Q U I C K
L O O K

practice is what you do day in and day out as
software evolves from an idea to a reality.

What are the steps? Three elements of practice
apply regardless of the process model that is cho-
sen. They are: principles, concepts, and methods.
A fourth element of practice—tools—supports
the application of methods.

What is the work product? Practice encom-
passes the technical activities that produce all
work products that are defined by the software
process model that has been chosen.

How do I ensure that I’ve done it right? First,
have a firm understanding of the principles that
apply to the work (e.g., design) that you’re doing
at the moment. Then, be certain that you’ve cho-
sen an appropriate method for the work, be sure
that you understand how to apply the method, use
automated tools when they’re appropriate for the
task, and be adamant about the need for tech-
niques to ensure the quality of work products that
are produced.

pre75977_ch04.qxd 11/27/08 3:27 PM Page 96

CHAPTER 4 PRINCIPLES THAT GUIDE PRACTICE 97

A dark image of software engineering practice to be sure, but upon reflection,
many of the readers of this book will be able to relate to it.

People who create computer software practice the art or craft or discipline1 that
is software engineering. But what is software engineering “practice”? In a generic
sense, practice is a collection of concepts, principles, methods, and tools that a soft-
ware engineer calls upon on a daily basis. Practice allows managers to manage soft-
ware projects and software engineers to build computer programs. Practice
populates a software process model with the necessary technical and management
how-to’s to get the job done. Practice transforms a haphazard unfocused approach
into something that is more organized, more effective, and more likely to achieve
success.

Various aspects of software engineering practice will be examined throughout the
remainder of this book. In this chapter, my focus is on principles and concepts that
guide software engineering practice in general.

4.1 SOFTWARE ENGINEERING KNOWLEDGE

In an editorial published in IEEE Software a decade ago, Steve McConnell [McC99]

made the following comment:

Many software practitioners think of software engineering knowledge almost exclusively

as knowledge of specific technologies: Java, Perl, html, C��, Linux, Windows NT, and so

on. Knowledge of specific technology details is necessary to perform computer program-

ming. If someone assigns you to write a program in C��, you have to know something

about C�� to get your program to work.

You often hear people say that software development knowledge has a 3-year

half-life: half of what you need to know today will be obsolete within 3 years. In the

domain of technology-related knowledge, that’s probably about right. But there is

another kind of software development knowledge—a kind that I think of as “software

engineering principles”—that does not have a three-year half-life. These software engi-

neering principles are likely to serve a professional programmer throughout his or her

career.

McConnell goes on to argue that the body of software engineering knowledge

(circa the year 2000) had evolved to a “stable core” that he estimated represented

about “75 percent of the knowledge needed to develop a complex system.” But what

resides within this stable core?

As McConnell indicates, core principles—the elemental ideas that guide software

engineers in the work that they do—now provide a foundation from which software

engineering models, methods, and tools can be applied and evaluated.

1 Some writers argue for one of these terms to the exclusion of the others. In reality, software
engineering is all three.

pre75977_ch04.qxd 11/27/08 3:27 PM Page 97

4.2 CORE PRINCIPLES

Software engineering is guided by a collection of core principles that help in the ap-

plication of a meaningful software process and the execution of effective software

engineering methods. At the process level, core principles establish a philosophical

foundation that guides a software team as it performs framework and umbrella ac-

tivities, navigates the process flow, and produces a set of software engineering work

products. At the level of practice, core principles establish a collection of values and

rules that serve as a guide as you analyze a problem, design a solution, implement

and test the solution, and ultimately deploy the software in the user community.

In Chapter 1, I identified a set of general principles that span software engineering

process and practice: (1) provide value to end users, (2) keep it simple, (3) maintain

the vision (of the product and the project), (4) recognize that others consume (and

must understand) what you produce, (5) be open to the future, (6) plan ahead for

reuse, and (7) think! Although these general principles are important, they are char-

acterized at such a high level of abstraction that they are sometimes difficult to trans-

late into day-to-day software engineering practice. In the subsections that follow, I

take a more detailed look at the core principles that guide process and practice.

4.2.1 Principles That Guide Process

In Part 1 of this book I discussed the importance of the software process and

described the many different process models that have been proposed for software

engineering work. Regardless of whether a model is linear or iterative, prescriptive

or agile, it can be characterized using the generic process framework that is appli-

cable for all process models. The following set of core principles can be applied to

the framework, and by extension, to every software process.

Principle 1. Be agile. Whether the process model you choose is prescrip-

tive or agile, the basic tenets of agile development should govern your

approach. Every aspect of the work you do should emphasize economy of

action—keep your technical approach as simple as possible, keep the work

products you produce as concise as possible, and make decisions locally

whenever possible.

Principle 2. Focus on quality at every step. The exit condition for every

process activity, action, and task should focus on the quality of the work

product that has been produced.

Principle 3. Be ready to adapt. Process is not a religious experience, and

dogma has no place in it. When necessary, adapt your approach to con-

straints imposed by the problem, the people, and the project itself.

Principle 4. Build an effective team. Software engineering process and

practice are important, but the bottom line is people. Build a self-organizing

team that has mutual trust and respect.

98 PART TWO MODELING

uote:

“In theory there is
no difference
between theory and
practice. But, in
practice, there is.”

Jan van de
Snepscheut

Every project and
every team is unique.
That means that you
must adapt your
process to best fit your
needs.

pre75977_ch04.qxd 11/27/08 3:27 PM Page 98

Principle 5. Establish mechanisms for communication and coordination.
Projects fail because important information falls into the cracks and/or

stakeholders fail to coordinate their efforts to create a successful end prod-

uct. These are management issues and they must be addressed.

Principle 6. Manage change. The approach may be either formal or infor-

mal, but mechanisms must be established to manage the way changes are

requested, assessed, approved, and implemented.

Principle 7. Assess risk. Lots of things can go wrong as software is being

developed. It’s essential that you establish contingency plans.

Principle 8. Create work products that provide value for others.
Create only those work products that provide value for other process

activities, actions, or tasks. Every work product that is produced as part of

software engineering practice will be passed on to someone else. A list of

required functions and features will be passed along to the person (people)

who will develop a design, the design will be passed along to those who

generate code, and so on. Be sure that the work product imparts the necessary

information without ambiguity or omission.

Part 4 of this book focuses on project and process management issues and

considers various aspects of each of these principles in some detail.

4.2.2 Principles That Guide Practice

Software engineering practice has a single overriding goal—to deliver on-time, high-

quality, operational software that contains functions and features that meet the

needs of all stakeholders. To achieve this goal, you should adopt a set of core prin-

ciples that guide your technical work. These principles have merit regardless of the

analysis and design methods that you apply, the construction techniques (e.g., pro-

gramming language, automated tools) that you use, or the verification and valida-

tion approach that you choose. The following set of core principles are fundamental

to the practice of software engineering:

Principle 1. Divide and conquer. Stated in a more technical manner,

analysis and design should always emphasize separation of concerns (SoC). A

large problem is easier to solve if it is subdivided into a collection of elements

(or concerns). Ideally, each concern delivers distinct functionality that can be

developed, and in some cases validated, independently of other concerns.

Principle 2. Understand the use of abstraction. At its core, an abstrac-

tion is a simplification of some complex element of a system used to commu-

nicate meaning in a single phrase. When I use the abstraction spreadsheet, it

is assumed that you understand what a spreadsheet is, the general structure

of content that a spreadsheet presents, and the typical functions that can be

applied to it. In software engineering practice, you use many different levels

CHAPTER 4 PRINCIPLES THAT GUIDE PRACTICE 99

uote:

“The truth of the
matter is that you
always know the
right thing to do.
The hard part is
doing it.”

General H.
Norman
Schwarzkopf

Problems are easier to
solve when they are
subdivided into
separate concerns,
each distinct,
individually solvable,
and verifiable.

pre75977_ch04.qxd 11/27/08 3:27 PM Page 99

of abstraction, each imparting or implying meaning that must be communi-

cated. In analysis and design work, a software team normally begins with

models that represent high levels of abstraction (e.g., a spreadsheet) and

slowly refines those models into lower levels of abstraction (e.g., a column

or the SUM function).

Joel Spolsky [Spo02] suggests that “all non-trivial abstractions, to some

degree, are leaky.” The intent of an abstraction is to eliminate the need to

communicate details. But sometimes, problematic effects precipitated by

these details “leak” through. Without an understanding of the details, the

cause of a problem cannot be easily diagnosed.

Principle 3. Strive for consistency. Whether it’s creating a requirements

model, developing a software design, generating source code, or creating

test cases, the principle of consistency suggests that a familiar context makes

software easier to use. As an example, consider the design of a user interface

for a WebApp. Consistent placement of menu options, the use of a consistent

color scheme, and the consistent use of recognizable icons all help to make

the interface ergonomically sound.

Principle 4. Focus on the transfer of information. Software is about

information transfer—from a database to an end user, from a legacy system

to a WebApp, from an end user into a graphic user interface (GUI), from an

operating system to an application, from one software component to an-

other—the list is almost endless. In every case, information flows across an

interface, and as a consequence, there are opportunities for error, or omis-

sion, or ambiguity. The implication of this principle is that you must pay spe-

cial attention to the analysis, design, construction, and testing of interfaces.

Principle 5. Build software that exhibits effective modularity.
Separation of concerns (Principle 1) establishes a philosophy for software.

Modularity provides a mechanism for realizing the philosophy. Any complex

system can be divided into modules (components), but good software engi-

neering practice demands more. Modularity must be effective. That is, each

module should focus exclusively on one well-constrained aspect of the

system—it should be cohesive in its function and/or constrained in the

content it represents. Additionally, modules should be interconnected in a

relatively simple manner—each module should exhibit low coupling to other

modules, to data sources, and to other environmental aspects.

Principle 6. Look for patterns. Brad Appleton [App00] suggests that:

The goal of patterns within the software community is to create a body of literature

to help software developers resolve recurring problems encountered throughout

all of software development. Patterns help create a shared language for commu-

nicating insight and experience about these problems and their solutions. Formally

codifying these solutions and their relationships lets us successfully capture the

100 PART TWO MODELING

Use patterns
(Chapter 12) to
capture knowledge and
experience for future
generations of
software engineers.

pre75977_ch04.qxd 11/27/08 3:27 PM Page 100

body of knowledge which defines our understanding of good architectures that

meet the needs of their users.

Principle 7. When possible, represent the problem and its solution
from a number of different perspectives. When a problem and its solution

are examined from a number of different perspectives, it is more likely that

greater insight will be achieved and that errors and omissions will be uncov-

ered. For example, a requirements model can be represented using a data-

oriented viewpoint, a function-oriented viewpoint, or a behavioral viewpoint

(Chapters 6 and 7). Each provides a different view of the problem and its

requirements.

Principle 8. Remember that someone will maintain the software. Over

the long term, software will be corrected as defects are uncovered, adapted

as its environment changes, and enhanced as stakeholders request more

capabilities. These maintenance activities can be facilitated if solid software

engineering practice is applied throughout the software process.

These principles are not all you’ll need to build high-quality software, but they do

establish a foundation for every software engineering method discussed in this book.

4.3 PRINCIPLES THAT GUIDE EACH FRAMEWORK ACTIVITY

In the sections that follow I consider principles that have a strong bearing on the suc-

cess of each generic framework activity defined as part of the software process. In

many cases, the principles that are discussed for each of the framework activities are

a refinement of the principles presented in Section 4.2. They are simply core princi-

ples stated at a lower level of abstraction.

4.3.1 Communication Principles

Before customer requirements can be analyzed, modeled, or specified they must

be gathered through the communication activity. A customer has a problem that may

be amenable to a computer-based solution. You respond to the customer’s request

for help. Communication has begun. But the road from communication to under-

standing is often full of potholes.

Effective communication (among technical peers, with the customer and other

stakeholders, and with project managers) is among the most challenging activities

that you will confront. In this context, I discuss communication principles as they

apply to customer communication. However, many of the principles apply equally to

all forms of communication that occur within a software project.

Principle 1. Listen. Try to focus on the speaker’s words, rather than formu-

lating your response to those words. Ask for clarification if something is un-

clear, but avoid constant interruptions. Never become contentious in your words

or actions (e.g., rolling your eyes or shaking your head) as a person is talking.

CHAPTER 4 PRINCIPLES THAT GUIDE PRACTICE 101

uote:

“The ideal engineer
is a composite. . . .
He is not a
scientist, he is not a
mathematician, he
is not a sociologist
or a writer; but he
may use the
knowledge and
techniques of any
or all of these
disciplines in
solving engineering
problems.”

N. W.
Dougherty

pre75977_ch04.qxd 11/27/08 3:27 PM Page 101

Principle 2. Prepare before you communicate. Spend the time to under-

stand the problem before you meet with others. If necessary, do some re-

search to understand business domain jargon. If you have responsibility for

conducting a meeting, prepare an agenda in advance of the meeting.

Principle 3. Someone should facilitate the activity. Every communica-

tion meeting should have a leader (a facilitator) to keep the conversation

moving in a productive direction, (2) to mediate any conflict that does occur,

and (3) to ensure than other principles are followed.

Principle 4. Face-to-face communication is best. But it usually works

better when some other representation of the relevant information is present.

For example, a participant may create a drawing or a “strawman” document

that serves as a focus for discussion.

Principle 5. Take notes and document decisions. Things have a way of

falling into the cracks. Someone participating in the communication should

serve as a “recorder” and write down all important points and decisions.

Principle 6. Strive for collaboration. Collaboration and consensus occur

when the collective knowledge of members of the team is used to

describe product or system functions or features. Each small collaboration

serves to build trust among team members and creates a common goal for

the team.

Principle 7. Stay focused; modularize your discussion. The more

people involved in any communication, the more likely that discussion will

bounce from one topic to the next. The facilitator should keep the conversation

modular, leaving one topic only after it has been resolved (however, see

Principle 9).

Principle 8. If something is unclear, draw a picture. Verbal communica-

tion goes only so far. A sketch or drawing can often provide clarity when

words fail to do the job.

Principle 9. (a) Once you agree to something, move on. (b) If you can’t
agree to something, move on. (c) If a feature or function is unclear
and cannot be clarified at the moment, move on. Communication, like

any software engineering activity, takes time. Rather than iterating endlessly,

the people who participate should recognize that many topics require discus-

sion (see Principle 2) and that “moving on” is sometimes the best way to

achieve communication agility.

Principle 10. Negotiation is not a contest or a game. It works best
when both parties win. There are many instances in which you and other

stakeholders must negotiate functions and features, priorities, and delivery

dates. If the team has collaborated well, all parties have a common goal. Still,

negotiation will demand compromise from all parties.

102 PART TWO MODELING

Before communicating
be sure you under-
stand the point of view
of the other party,
know a bit about his or
her needs, and then
listen.

uote:

“Plain questions
and plain answers
make the shortest
road to most
perplexities.”

Mark Twain

What
happens if I

can’t come to an
agreement with
the customer on
some project-
related issue?

?

pre75977_ch04.qxd 11/27/08 3:27 PM Page 102

CHAPTER 4 PRINCIPLES THAT GUIDE PRACTICE 103

Communication Mistakes

The scene: Software engineering
team workspace

The players: Jamie Lazar, software team member;
Vinod Raman, software team member; Ed Robbins,
software team member.

The conversation:

Ed: “What have you heard about this SafeHome
project?”

Vinod: “The kick-off meeting is scheduled for next
week.”

Jamie: “I’ve already done a little bit of investigation, but
it didn’t go well.”

Ed: “What do you mean?”

Jamie: “Well, I gave Lisa Perez a call. She’s the
marketing honcho on this thing.”

Vinod: “And . . . ?”

Jamie: “I wanted her to tell me about SafeHome features
and functions . . . that sort of thing. Instead, she began

asking me questions about security systems, surveillance
systems . . . I’m no expert.”

Vinod: “What does that tell you?”

(Jamie shrugs.)

Vinod: “That marketing will need us to act as consultants
and that we’d better do some homework on this product
area before our kick-off meeting. Doug said that he
wanted us to ‘collaborate’ with our customer, so we’d
better learn how to do that.”

Ed: “Probably would have been better to stop by her office.
Phone calls just don’t work as well for this sort of thing.”

Jamie: “You’re both right. We’ve got to get our act
together or our early communications will be a struggle.”

Vinod: “I saw Doug reading a book on ‘requirements
engineering.’ I’ll bet that lists some principles of good
communication. I’m going to borrow it from him.”

Jamie: “Good idea . . . then you can teach us.”

Vinod (smiling): “Yeah, right.”

SAFEHOME

4.3.2 Planning Principles

The communication activity helps you to define your overall goals and objectives

(subject, of course, to change as time passes). However, understanding these goals

and objectives is not the same as defining a plan for getting there. The planning

activity encompasses a set of management and technical practices that enable the

software team to define a road map as it travels toward its strategic goal and tacti-

cal objectives.

The Difference Between Customers and End Users
Software engineers communicate with many
different stakeholders, but customers and end

users have the most significant impact on the technical
work that follows. In some cases the customer and the end
user are one and the same, but for many projects, the
customer and the end user are different people, working
for different managers, in different business organizations.

A customer is the person or group who (1) originally
requested the software to be built, (2) defines overall
business objectives for the software, (3) provides basic

product requirements, and (4) coordinates funding for the
project. In a product or system business, the customer
is often the marketing department. In an information
technology (IT) environment, the customer might be a
business component or department.

An end user is the person or group who (1) will
actually use the software that is built to achieve some
business purpose and (2) will define operational
details of the software so the business purpose can be
achieved.

INFO

pre75977_ch04.qxd 11/27/08 3:27 PM Page 103

Try as we might, it’s impossible to predict exactly how a software project will

evolve. There is no easy way to determine what unforeseen technical problems will

be encountered, what important information will remain undiscovered until late in

the project, what misunderstandings will occur, or what business issues will change.

And yet, a good software team must plan its approach.

There are many different planning philosophies.2 Some people are “minimalists,”

arguing that change often obviates the need for a detailed plan. Others are “tradi-

tionalists,” arguing that the plan provides an effective road map and the more detail

it has, the less likely the team will become lost. Still others are “agilists,” arguing that

a quick “planning game” may be necessary, but that the road map will emerge as

“real work” on the software begins.

What to do? On many projects, overplanning is time consuming and fruitless (too

many things change), but underplanning is a recipe for chaos. Like most things in

life, planning should be conducted in moderation, enough to provide useful guidance

for the team—no more, no less. Regardless of the rigor with which planning is con-

ducted, the following principles always apply:

Principle 1. Understand the scope of the project. It’s impossible to use

a road map if you don’t know where you’re going. Scope provides the soft-

ware team with a destination.

Principle 2. Involve stakeholders in the planning activity. Stakeholders

define priorities and establish project constraints. To accommodate these

realities, software engineers must often negotiate order of delivery, time

lines, and other project-related issues.

Principle 3. Recognize that planning is iterative. A project plan is never

engraved in stone. As work begins, it is very likely that things will change. As

a consequence, the plan must be adjusted to accommodate these changes. In

addition, iterative, incremental process models dictate replanning after the

delivery of each software increment based on feedback received from users.

Principle 4. Estimate based on what you know. The intent of estimation

is to provide an indication of effort, cost, and task duration, based on the

team’s current understanding of the work to be done. If information is vague

or unreliable, estimates will be equally unreliable.

Principle 5. Consider risk as you define the plan. If you have identified

risks that have high impact and high probability, contingency planning is

necessary. In addition, the project plan (including the schedule) should be

adjusted to accommodate the likelihood that one or more of these risks will

occur.

104 PART TWO MODELING

uote:

“In preparing for
battle I have
always found that
plans are useless,
but planning is
indispensable.”

General Dwight
D. Eisenhower

WebRef
An excellent repository
of planning and project
management
information can be
found at
www.4pm.com/
repository.htm.

2 A detailed discussion of software project planning and management is presented in Part 4 of this
book.

uote:

“Success is more
a function of
consistent common
sense than it is of
genius.”

An Wang

pre75977_ch04.qxd 11/27/08 3:27 PM Page 104

http://www.4pm.com/

Principle 6. Be realistic. People don’t work 100 percent of every day.

Noise always enters into any human communication. Omissions and

ambiguity are facts of life. Change will occur. Even the best software

engineers make mistakes. These and other realities should be considered

as a project plan is established.

Principle 7. Adjust granularity as you define the plan. Granularity

refers to the level of detail that is introduced as a project plan is developed.

A “high-granularity” plan provides significant work task detail that is planned

over relatively short time increments (so that tracking and control occur

frequently). A “low-granularity” plan provides broader work tasks that are

planned over longer time periods. In general, granularity moves from high to

low as the project time line moves away from the current date. Over the

next few weeks or months, the project can be planned in significant detail.

Activities that won’t occur for many months do not require high granularity

(too much can change).

Principle 8. Define how you intend to ensure quality. The plan should

identify how the software team intends to ensure quality. If technical

reviews3 are to be conducted, they should be scheduled. If pair programming

(Chapter 3) is to be used during construction, it should be explicitly defined

within the plan.

Principle 9. Describe how you intend to accommodate change. Even

the best planning can be obviated by uncontrolled change. You should iden-

tify how changes are to be accommodated as software engineering work

proceeds. For example, can the customer request a change at any time? If a

change is requested, is the team obliged to implement it immediately? How is

the impact and cost of the change assessed?

Principle 10. Track the plan frequently and make adjustments as re-
quired. Software projects fall behind schedule one day at a time. Therefore,

it makes sense to track progress on a daily basis, looking for problem areas

and situations in which scheduled work does not conform to actual work

conducted. When slippage is encountered, the plan is adjusted accordingly.

To be most effective, everyone on the software team should participate in the

planning activity. Only then will team members “sign up” to the plan.

4.3.3 Modeling Principles

We create models to gain a better understanding of the actual entity to be built. When

the entity is a physical thing (e.g., a building, a plane, a machine), we can build a

model that is identical in form and shape but smaller in scale. However, when the

CHAPTER 4 PRINCIPLES THAT GUIDE PRACTICE 105

The term granularity
refers to the detail
with which some
element of planning is
represented or
conducted.

3 Technical reviews are discussed in Chapter 15.

pre75977_ch04.qxd 11/27/08 3:27 PM Page 105

entity to be built is software, our model must take a different form. It must be capa-

ble of representing the information that software transforms, the architecture and

functions that enable the transformation to occur, the features that users desire, and

the behavior of the system as the transformation is taking place. Models must

accomplish these objectives at different levels of abstraction—first depicting the soft-

ware from the customer’s viewpoint and later representing the software at a more

technical level.

In software engineering work, two classes of models can be created: require-

ments models and design models. Requirements models (also called analysis models)

represent customer requirements by depicting the software in three different do-

mains: the information domain, the functional domain, and the behavioral domain.

Design models represent characteristics of the software that help practitioners to

construct it effectively: the architecture, the user interface, and component-level

detail.

In their book on agile modeling, Scott Ambler and Ron Jeffries [Amb02b] define a

set of modeling principles4 that are intended for those who use the agile process

model (Chapter 3) but are appropriate for all software engineers who perform mod-

eling actions and tasks:

Principle 1. The primary goal of the software team is to build soft-
ware, not create models. Agility means getting software to the customer

in the fastest possible time. Models that make this happen are worth creat-

ing, but models that slow the process down or provide little new insight

should be avoided.

Principle 2. Travel light—don’t create more models than you need.
Every model that is created must be kept up-to-date as changes occur. More

importantly, every new model takes time that might otherwise be spent on

construction (coding and testing). Therefore, create only those models that

make it easier and faster to construct the software.

Principle 3. Strive to produce the simplest model that will describe the
problem or the software. Don’t overbuild the software [Amb02b]. By

keeping models simple, the resultant software will also be simple. The result

is software that is easier to integrate, easier to test, and easier to maintain (to

change). In addition, simple models are easier for members of the software

team to understand and critique, resulting in an ongoing form of feedback

that optimizes the end result.

Principle 4. Build models in a way that makes them amenable to change.
Assume that your models will change, but in making this assumption don’t

106 PART TWO MODELING

Requirements models
represent customer
requirements. Design
models provide a
concrete specification
for the construction of
the software.

4 The principles noted in this section have been abbreviated and rephrased for the purposes of this
book.

The intent of any
model is to communi-
cate information. To
accomplish this, use a
consistent format.
Assume that you won’t
be there to explain the
model. It should stand
on its own.

pre75977_ch04.qxd 11/27/08 3:27 PM Page 106

get sloppy. For example, since requirements will change, there is a tendency

to give requirements models short shrift. Why? Because you know that they’ll

change anyway. The problem with this attitude is that without a reasonably

complete requirements model, you’ll create a design (design model) that will

invariably miss important functions and features.

Principle 5. Be able to state an explicit purpose for each model that
is created. Every time you create a model, ask yourself why you’re doing

so. If you can’t provide solid justification for the existence of the model,

don’t spend time on it.

Principle 6. Adapt the models you develop to the system at hand. It

may be necessary to adapt model notation or rules to the application; for ex-

ample, a video game application might require a different modeling technique

than real-time, embedded software that controls an automobile engine.

Principle 7. Try to build useful models, but forget about building per-
fect models. When building requirements and design models, a software

engineer reaches a point of diminishing returns. That is, the effort required to

make the model absolutely complete and internally consistent is not worth

the benefits of these properties. Am I suggesting that modeling should be

sloppy or low quality? The answer is “no.” But modeling should be conducted

with an eye to the next software engineering steps. Iterating endlessly to

make a model “perfect” does not serve the need for agility.

Principle 8. Don’t become dogmatic about the syntax of the model. If
it communicates content successfully, representation is secondary.
Although everyone on a software team should try to use consistent notation

during modeling, the most important characteristic of the model is to com-

municate information that enables the next software engineering task. If a

model does this successfully, incorrect syntax can be forgiven.

Principle 9. If your instincts tell you a model isn’t right even though it
seems okay on paper, you probably have reason to be concerned. If

you are an experienced software engineer, trust your instincts. Software

work teaches many lessons—some of them on a subconscious level. If some-

thing tells you that a design model is doomed to fail (even though you can’t

prove it explicitly), you have reason to spend additional time examining the

model or developing a different one.

Principle 10. Get feedback as soon as you can. Every model should be

reviewed by members of the software team. The intent of these reviews is to

provide feedback that can be used to correct modeling mistakes, change mis-

interpretations, and add features or functions that were inadvertently omitted.

Requirements modeling principles. Over the past three decades, a large num-

ber of requirements modeling methods have been developed. Investigators have

CHAPTER 4 PRINCIPLES THAT GUIDE PRACTICE 107

pre75977_ch04.qxd 11/27/08 3:27 PM Page 107

identified requirements analysis problems and their causes and have developed

a variety of modeling notations and corresponding sets of heuristics to overcome

them. Each analysis method has a unique point of view. However, all analysis meth-

ods are related by a set of operational principles:

Principle 1. The information domain of a problem must be represented
and understood. The information domain encompasses the data that flow

into the system (from end users, other systems, or external devices), the data

that flow out of the system (via the user interface, network interfaces, reports,

graphics, and other means), and the data stores that collect and organize per-

sistent data objects (i.e., data that are maintained permanently).

Principle 2. The functions that the software performs must be defined.
Software functions provide direct benefit to end users and also provide inter-

nal support for those features that are user visible. Some functions transform

data that flow into the system. In other cases, functions effect some level of

control over internal software processing or external system elements. Func-

tions can be described at many different levels of abstraction, ranging from a

general statement of purpose to a detailed description of the processing

elements that must be invoked.

Principle 3. The behavior of the software (as a consequence of external
events) must be represented. The behavior of computer software is driven

by its interaction with the external environment. Input provided by end users,

control data provided by an external system, or monitoring data collected

over a network all cause the software to behave in a specific way.

Principle 4. The models that depict information, function, and behavior
must be partitioned in a manner that uncovers detail in a layered (or
hierarchical) fashion. Requirements modeling is the first step in software

engineering problem solving. It allows you to better understand the problem

and establishes a basis for the solution (design). Complex problems are difficult

to solve in their entirety. For this reason, you should use a divide-and-conquer

strategy. A large, complex problem is divided into subproblems until each sub-

problem is relatively easy to understand. This concept is called partitioning or

separation of concerns, and it is a key strategy in requirements modeling.

Principle 5. The analysis task should move from essential information
toward implementation detail. Requirements modeling begins by describ-

ing the problem from the end-user’s perspective. The “essence” of the

problem is described without any consideration of how a solution will be

implemented. For example, a video game requires that the player “instruct”

its protagonist on what direction to proceed as she moves into a dangerous

maze. That is the essence of the problem. Implementation detail (normally

described as part of the design model) indicates how the essence will be

implemented. For the video game, voice input might be used. Alternatively,

108 PART TWO MODELING

Analysis modeling
focuses on three
attributes of software:
information to be
processed, function to
be delivered, and
behavior to be
exhibited.

uote:

“The engineer’s
first problem in
any design
situation is to
discover what the
problem really is.”

Author unknown

pre75977_ch04.qxd 11/27/08 3:27 PM Page 108

a keyboard command might be typed, a joystick (or mouse) might be pointed

in a specific direction, or a motion-sensitive device might be waved in the air.

By applying these principles, a software engineer approaches a problem system-

atically. But how are these principles applied in practice? This question will be an-

swered in Chapters 5 through 7.

Design Modeling Principles. The software design model is analogous to an

architect’s plans for a house. It begins by representing the totality of the thing to be

built (e.g., a three-dimensional rendering of the house) and slowly refines the thing

to provide guidance for constructing each detail (e.g., the plumbing layout). Similarly,

the design model that is created for software provides a variety of different views of

the system.

There is no shortage of methods for deriving the various elements of a software

design. Some methods are data driven, allowing the data structure to dictate the pro-

gram architecture and the resultant processing components. Others are pattern

driven, using information about the problem domain (the requirements model) to de-

velop architectural styles and processing patterns. Still others are object oriented,

using problem domain objects as the driver for the creation of data structures and

the methods that manipulate them. Yet all embrace a set of design principles that can

be applied regardless of the method that is used:

Principle 1. Design should be traceable to the requirements model.
The requirements model describes the information domain of the problem,

user-visible functions, system behavior, and a set of requirements classes

that package business objects with the methods that service them. The de-

sign model translates this information into an architecture, a set of subsys-

tems that implement major functions, and a set of components that are the

realization of requirements classes. The elements of the design model should

be traceable to the requirements model.

Principle 2. Always consider the architecture of the system to be built.
Software architecture (Chapter 9) is the skeleton of the system to be built. It

affects interfaces, data structures, program control flow and behavior, the

manner in which testing can be conducted, the maintainability of the result-

ant system, and much more. For all of these reasons, design should start with

architectural considerations. Only after the architecture has been established

should component-level issues be considered.

Principle 3. Design of data is as important as design of processing
functions. Data design is an essential element of architectural design. The

manner in which data objects are realized within the design cannot be left to

chance. A well-structured data design helps to simplify program flow, makes

the design and implementation of software components easier, and makes

overall processing more efficient.

CHAPTER 4 PRINCIPLES THAT GUIDE PRACTICE 109

uote:

“See first that the
design is wise
and just: that
ascertained, pursue
it resolutely; do not
for one repulse
forego the purpose
that you resolved
to effect.”

William
Shakespeare

WebRef
Insightful comments
on the design process,
along with a discussion
of design aesthetics,
can be found at
cs.wwc.edu/
~aabyan/Design/.

pre75977_ch04.qxd 11/27/08 3:27 PM Page 109

Principle 4. Interfaces (both internal and external) must be designed
with care. The manner in which data flows between the components of a

system has much to do with processing efficiency, error propagation, and

design simplicity. A well-designed interface makes integration easier and

assists the tester in validating component functions.

Principle 5. User interface design should be tuned to the needs of the
end user. However, in every case, it should stress ease of use. The

user interface is the visible manifestation of the software. No matter how

sophisticated its internal functions, no matter how comprehensive its data

structures, no matter how well designed its architecture, a poor interface

design often leads to the perception that the software is “bad.”

Principle 6. Component-level design should be functionally independ-
ent. Functional independence is a measure of the “single-mindedness” of a

software component. The functionality that is delivered by a component

should be cohesive—that is, it should focus on one and only one function or

subfunction.5

Principle 7. Components should be loosely coupled to one another
and to the external environment. Coupling is achieved in many ways—

via a component interface, by messaging, through global data. As the level of

coupling increases, the likelihood of error propagation also increases and the

overall maintainability of the software decreases. Therefore, component cou-

pling should be kept as low as is reasonable.

Principle 8. Design representations (models) should be easily under-
standable. The purpose of design is to communicate information to practi-

tioners who will generate code, to those who will test the software, and to

others who may maintain the software in the future. If the design is difficult

to understand, it will not serve as an effective communication medium.

Principle 9. The design should be developed iteratively. With each
iteration, the designer should strive for greater simplicity. Like almost

all creative activities, design occurs iteratively. The first iterations work to

refine the design and correct errors, but later iterations should strive to make

the design as simple as is possible.

When these design principles are properly applied, you create a design that exhibits

both external and internal quality factors [Mye78]. External quality factors are those

properties of the software that can be readily observed by users (e.g., speed, reliability,

correctness, usability). Internal quality factors are of importance to software engineers.

They lead to a high-quality design from the technical perspective. To achieve internal

quality factors, the designer must understand basic design concepts (Chapter 8).

110 PART TWO MODELING

uote:

“The differences
are not minor—
they are rather like
the differences
between Salieri
and Mozart. Study
after study shows
that the very best
designers produce
structures that are
faster, smaller,
simpler, clearer,
and produced with
less effort.”

Frederick P.
Brooks

5 Additional discussion of cohesion can be found in Chapter 8.

pre75977_ch04.qxd 11/27/08 3:27 PM Page 110

4.3.4 Construction Principles

The construction activity encompasses a set of coding and testing tasks that lead to

operational software that is ready for delivery to the customer or end user. In mod-

ern software engineering work, coding may be (1) the direct creation of program-

ming language source code (e.g., Java), (2) the automatic generation of source code

using an intermediate design-like representation of the component to be built, or

(3) the automatic generation of executable code using a “fourth-generation pro-

gramming language” (e.g., Visual C��).

The initial focus of testing is at the component level, often called unit testing. Other

levels of testing include (1) integration testing (conducted as the system is con-

structed), validation testing that assesses whether requirements have been met for

the complete system (or software increment), and (3) acceptance testing that is con-

ducted by the customer in an effort to exercise all required features and functions.

The following set of fundamental principles and concepts are applicable to coding

and testing:

Coding Principles. The principles that guide the coding task are closely aligned

with programming style, programming languages, and programming methods.

However, there are a number of fundamental principles that can be stated:

Preparation principles: Before you write one line of code, be sure you

• Understand of the problem you’re trying to solve.

• Understand basic design principles and concepts.

• Pick a programming language that meets the needs of the software to be

built and the environment in which it will operate.

• Select a programming environment that provides tools that will make your

work easier.

• Create a set of unit tests that will be applied once the component you code is

completed.

Programming principles: As you begin writing code, be sure you

• Constrain your algorithms by following structured programming [Boh00]

practice.

• Consider the use of pair programming.

• Select data structures that will meet the needs of the design.

• Understand the software architecture and create interfaces that are

consistent with it.

• Keep conditional logic as simple as possible.

• Create nested loops in a way that makes them easily testable.

• Select meaningful variable names and follow other local coding standards.

CHAPTER 4 PRINCIPLES THAT GUIDE PRACTICE 111

uote:

“For much of my
life, I have been a
software voyeur,
peeking furtively
at other people’s
dirty code.
Occasionally, I find
a real jewel, a well-
structured program
written in a
consistent style,
free of kludges,
developed so that
each component is
simple and
organized, and
designed so that
the product is easy
to change.”

David Parnas

Avoid developing an
elegant program that
solves the wrong
problem. Pay particular
attention to the first
preparation principle.

pre75977_ch04.qxd 11/27/08 3:27 PM Page 111

• Write code that is self-documenting.

• Create a visual layout (e.g., indentation and blank lines) that aids

understanding.

Validation Principles: After you’ve completed your first coding pass,
be sure you

• Conduct a code walkthrough when appropriate.

• Perform unit tests and correct errors you’ve uncovered.

• Refactor the code.

More books have been written about programming (coding) and the principles and

concepts that guide it than about any other topic in the software process. Books on

the subject include early works on programming style [Ker78], practical software

construction [McC04], programming pearls [Ben99], the art of programming

[Knu98], pragmatic programming issues [Hun99], and many, many other subjects.

A comprehensive discussion of these principles and concepts is beyond the scope

of this book. If you have further interest, examine one or more of the references

noted.

Testing Principles. In a classic book on software testing, Glen Myers [Mye79]

states a number of rules that can serve well as testing objectives:

• Testing is a process of executing a program with the intent of finding

an error.

• A good test case is one that has a high probability of finding an as-yet-

undiscovered error.

• A successful test is one that uncovers an as-yet-undiscovered error.

These objectives imply a dramatic change in viewpoint for some software develop-

ers. They move counter to the commonly held view that a successful test is one in

which no errors are found. Your objective is to design tests that systematically un-

cover different classes of errors and to do so with a minimum amount of time and

effort.

If testing is conducted successfully (according to the objectives stated previously),

it will uncover errors in the software. As a secondary benefit, testing demonstrates

that software functions appear to be working according to specification, and that

behavioral and performance requirements appear to have been met. In addition, the

data collected as testing is conducted provide a good indication of software reliabil-

ity and some indication of software quality as a whole. But testing cannot show the

absence of errors and defects; it can show only that software errors and defects are

present. It is important to keep this (rather gloomy) statement in mind as testing is

being conducted.

112 PART TWO MODELING

WebRef
A wide variety of links
to coding standards can
be found at www
.literateprogramm
ing.com/fpstyle
.html.

What are the
objectives of

software testing?
?

In a broader software
design context, recall
that you begin “in the
large” by focusing on
software architecture
and end “in the small“
focusing on compo-
nents. For testing, you
simply reverse the
focus and test your
way out.

pre75977_ch04.qxd 11/27/08 3:27 PM Page 112

Davis [Dav95b] suggests a set of testing principles6 that have been adapted for use

in this book:

Principle 1. All tests should be traceable to customer requirements.7

The objective of software testing is to uncover errors. It follows that the most

severe defects (from the customer’s point of view) are those that cause the

program to fail to meet its requirements.

Principle 2. Tests should be planned long before testing begins. Test

planning (Chapter 17) can begin as soon as the requirements model is com-

plete. Detailed definition of test cases can begin as soon as the design model

has been solidified. Therefore, all tests can be planned and designed before

any code has been generated.

Principle 3. The Pareto principle applies to software testing. In this

context the Pareto principle implies that 80 percent of all errors uncovered

during testing will likely be traceable to 20 percent of all program compo-

nents. The problem, of course, is to isolate these suspect components and to

thoroughly test them.

Principle 4. Testing should begin “in the small” and progress toward
testing “in the large.” The first tests planned and executed generally focus

on individual components. As testing progresses, focus shifts in an attempt

to find errors in integrated clusters of components and ultimately in the

entire system.

Principle 5. Exhaustive testing is not possible. The number of path per-

mutations for even a moderately sized program is exceptionally large. For

this reason, it is impossible to execute every combination of paths during

testing. It is possible, however, to adequately cover program logic and to en-

sure that all conditions in the component-level design have been exercised.

4.3.5 Deployment Principles

As I noted earlier in Part 1 of this book, the deployment activity encompasses three

actions: delivery, support, and feedback. Because modern software process models

are evolutionary or incremental in nature, deployment happens not once, but a num-

ber of times as software moves toward completion. Each delivery cycle provides the

customer and end users with an operational software increment that provides usable

functions and features. Each support cycle provides documentation and human

assistance for all functions and features introduced during all deployment cycles to

CHAPTER 4 PRINCIPLES THAT GUIDE PRACTICE 113

6 Only a small subset of Davis’s testing principles are noted here. For more information, see
[Dav95b].

7 This principle refers to functional tests, i.e., tests that focus on requirements. Structural tests (tests
that focus on architectural or logical detail) may not address specific requirements directly.

pre75977_ch04.qxd 11/27/08 3:27 PM Page 113

date. Each feedback cycle provides the software team with important guidance that

results in modifications to the functions, features, and approach taken for the next

increment.

The delivery of a software increment represents an important milestone for any

software project. A number of key principles should be followed as the team pre-

pares to deliver an increment:

Principle 1. Customer expectations for the software must be managed.
Too often, the customer expects more than the team has promised to deliver,

and disappointment occurs immediately. This results in feedback that is not

productive and ruins team morale. In her book on managing expectations,

Naomi Karten [Kar94] states: “The starting point for managing expectations

is to become more conscientious about what you communicate and how.”

She suggests that a software engineer must be careful about sending the cus-

tomer conflicting messages (e.g., promising more than you can reasonably

deliver in the time frame provided or delivering more than you promise for

one software increment and then less than promised for the next).

Principle 2. A complete delivery package should be assembled and
tested. A CD-ROM or other media (including Web-based downloads)

containing all executable software, support data files, support documents,

and other relevant information should be assembled and thoroughly

beta-tested with actual users. All installation scripts and other operational

features should be thoroughly exercised in as many different computing

configurations (i.e., hardware, operating systems, peripheral devices, net-

working arrangements) as possible.

Principle 3. A support regime must be established before the software
is delivered. An end user expects responsiveness and accurate information

when a question or problem arises. If support is ad hoc, or worse, nonexist-

ent, the customer will become dissatisfied immediately. Support should be

planned, support materials should be prepared, and appropriate record-

keeping mechanisms should be established so that the software team can

conduct a categorical assessment of the kinds of support requested.

Principle 4. Appropriate instructional materials must be provided to
end users. The software team delivers more than the software itself.

Appropriate training aids (if required) should be developed; troubleshooting

guidelines should be provided, and when necessary, a “what’s different about

this software increment” description should be published.8

114 PART TWO MODELING

Be sure that your cus-
tomer knows what to
expect before a soft-
ware increment is
delivered. Otherwise,
you can bet the cus-
tomer will expect more
than you deliver.

8 During the communication activity, the software team should determine what types of help mate-
rials users want.

pre75977_ch04.qxd 11/27/08 3:27 PM Page 114

Principle 5. Buggy software should be fixed first, delivered later. Under

time pressure, some software organizations deliver low-quality increments

with a warning to the customer that bugs “will be fixed in the next release.”

This is a mistake. There’s a saying in the software business: “Customers will

forget you delivered a high-quality product a few days late, but they will

never forget the problems that a low-quality product caused them. The soft-

ware reminds them every day.”

The delivered software provides benefit for the end user, but it also provides use-

ful feedback for the software team. As the increment is put into use, end users should

be encouraged to comment on features and functions, ease of use, reliability, and

any other characteristics that are appropriate.

4.4 SUMMARY

Software engineering practice encompasses principles, concepts, methods, and

tools that software engineers apply throughout the software process. Every software

engineering project is different. Yet, a set of generic principles apply to the process

as a whole and to the practice of each framework activity regardless of the project

or the product.

A set of core principles help in the application of a meaningful software process

and the execution of effective software engineering methods. At the process level,

core principles establish a philosophical foundation that guides a software team as

it navigates through the software process. At the level of practice, core principles

establish a collection of values and rules that serve as a guide as you analyze a prob-

lem, design a solution, implement and test the solution, and ultimately deploy the

software in the user community.

Communication principles focus on the need to reduce noise and improve band-

width as the conversation between developer and customer progresses. Both parties

must collaborate for the best communication to occur.

Planning principles provide guidelines for constructing the best map for the

journey to a completed system or product. The plan may be designed solely for a

single software increment, or it may be defined for the entire project. Regardless,

it must address what will be done, who will do it, and when the work will be

completed.

Modeling encompasses both analysis and design, describing representations of

the software that progressively become more detailed. The intent of the models is to

solidify understanding of the work to be done and to provide technical guidance to

those who will implement the software. Modeling principles serve as a founda-

tion for the methods and notation that are used to create representations of the

software.

Construction incorporates a coding and testing cycle in which source code for a

component is generated and tested. Coding principles define generic actions that

CHAPTER 4 PRINCIPLES THAT GUIDE PRACTICE 115

pre75977_ch04.qxd 11/27/08 3:27 PM Page 115

should occur before code is written, while it is being created, and after it has been

completed. Although there are many testing principles, only one is dominant: test-

ing is a process of executing a program with the intent of finding an error.

Deployment occurs as each software increment is presented to the customer and

encompasses delivery, support, and feedback. Key principles for delivery consider

managing customer expectations and providing the customer with appropriate sup-

port information for the software. Support demands advance preparation. Feedback

allows the customer to suggest changes that have business value and provide the

developer with input for the next iterative software engineering cycle.

PROBLEMS AND POINTS TO PONDER

4.1. Since a focus on quality demands resources and time, is it possible to be agile and still
maintain a quality focus?

4.2. Of the eight core principles that guide process (discussed in Section 4.2.1), which do you
believe is most important?

4.3. Describe the concept of separation of concerns in your own words.

4.4. An important communication principle states “prepare before you communicate.” How
should this preparation manifest itself in the early work that you do? What work products might
result as a consequence of early preparation?

4.5. Do some research on “facilitation” for the communication activity (use the references pro-
vided or others) and prepare a set of guidelines that focus solely on facilitation.

4.6. How does agile communication differ from traditional software engineering communica-
tion? How is it similar?

4.7. Why is it necessary to “move on”?

4.8. Do some research on “negotiation” for the communication activity and prepare a set of
guidelines that focus solely on negotiation.

4.9. Describe what granularity means in the context of a project schedule.

4.10. Why are models important in software engineering work? Are they always necessary?
Are there qualifiers to your answer about necessity?

4.11. What three “domains” are considered during requirements modeling?

4.12. Try to add one additional principle to those stated for coding in Section 4.3.4.

4.13. What is a successful test?

4.14. Do you agree or disagree with the following statement: “Since we deliver multiple incre-
ments to the customer, why should we be concerned about quality in the early increments—we
can fix problems in later iterations.” Explain your answer.

4.15. Why is feedback important to the software team?

FURTHER READINGS AND INFORMATION SOURCES

Customer communication is a critically important activity in software engineering, yet few prac-
titioners spend any time reading about it. Withall (Software Requirements Patterns, Microsoft
Press, 2007) presents a variety of useful patterns that address communications problems. Sutliff

116 PART TWO MODELING

pre75977_ch04.qxd 11/27/08 3:27 PM Page 116

(User-Centred Requirements Engineering, Springer, 2002) focuses heavily on communications-
related challenges. Books by Weigers (Software Requirements, 2d ed., Microsoft Press, 2003),
Pardee (To Satisfy and Delight Your Customer, Dorset House, 1996), and Karten [Kar94] provide
much insight into methods for effective customer interaction. Although their book does not
focus on software, Hooks and Farry (Customer Centered Products, American Management Asso-
ciation, 2000) present useful generic guidelines for customer communication. Young (Effective
Requirements Practices, Addison-Wesley, 2001) emphasizes a “joint team” of customers and
developers who develop requirements collaboratively. Somerville and Kotonya (Requirements
Engineering: Processes and Techniques, Wiley, 1998) discuss “elicitation” concepts and tech-
niques and other requirements engineering principles.

Communication and planning concepts and principles are considered in many project man-
agement books. Useful project management offerings include books by Bechtold (Essentials of
Software Project Management, 2d ed., Management Concepts, 2007), Wysocki (Effective Project
Management: Traditional, Adaptive, Extreme, 4th ed., Wiley, 2006), Leach (Lean Project Manage-
ment: Eight Principles for Success, BookSurge Publishing, 2006), Hughes (Software Project Man-
agement, McGraw-Hill, 2005), and Stellman and Greene (Applied Software Project Management,
O’Reilly Media, Inc., 2005).

Davis [Dav95] has compiled an excellent collection of software engineering principles. In ad-
dition, virtually every book on software engineering contains a useful discussion of concepts
and principles for analysis, design, and testing. Among the most widely used offerings (in addi-
tion to this book!) are:

Abran, A., and J. Moore, SWEBOK: Guide to the Software Engineering Body of Knowledge, IEEE,
2002.

Christensen, M., and R. Thayer, A Project Manager’s Guide to Software Engineering Best Prac-
tices, IEEE-CS Press (Wiley), 2002.

Jalote, P., An Integrated Approach to Software Engineering, Springer, 2006.

Pfleeger, S., Software Engineering: Theory and Practice, 3d ed., Prentice-Hall, 2005.

Schach, S., Object-Oriented and Classical Software Engineering, McGraw-Hill, 7th ed., 2006.

Sommerville, I., Software Engineering, 8th ed., Addison-Wesley, 2006.

These books also present detailed discussion of modeling and construction principles.
Modeling principles are considered in many books dedicated to requirements analysis

and/or software design. Books by Lieberman (The Art of Software Modeling, Auerbach, 2007),
Rosenberg and Stephens (Use Case Driven Object Modeling with UML: Theory and Practice,
Apress, 2007), Roques (UML in Practice, Wiley, 2004), Penker and Eriksson (Business
Modeling with UML: Business Patterns at Work, Wiley, 2001) discuss modeling principles and
methods.

Norman’s (The Design of Everyday Things, Currency/Doubleday, 1990) is must reading for
every software engineer who intends to do design work. Winograd and his colleagues (Bringing
Design to Software, Addison-Wesley, 1996) have edited an excellent collection of essays that
address practical issues for software design. Constantine and Lockwood (Software for Use,
Addison-Wesley, 1999) present the concepts associated with “user centered design.” Tognazzini
(Tog on Software Design, Addison-Wesley, 1995) presents a worthwhile philosophical discussion
of the nature of design and the impact of decisions on quality and a team’s ability to produce
software that provides great value to its customer. Stahl and his colleagues (Model-
Driven Software Development: Technology, Engineering, Wiley, 2006) discuss the principles of
model-driven development.

Hundreds of books address one or more elements of the construction activity. Kernighan
and Plauger [Ker78] have written a classic text on programming style, McConnell [McC93]
presents pragmatic guidelines for practical software construction, Bentley [Ben99] suggests
a wide variety of programming pearls, Knuth [Knu99] has written a classic three-volume
series on the art of programming, and Hunt [Hun99] suggests pragmatic programming
guidelines.

Myers and his colleagues (The Art of Software Testing, 2d ed., Wiley, 2004) have developed a
major revision of his classic text and discuss many important testing principles. Books by Perry

CHAPTER 4 PRINCIPLES THAT GUIDE PRACTICE 117

pre75977_ch04.qxd 11/27/08 3:27 PM Page 117

(Effective Methods for Software Testing, 3d ed., Wiley, 2006), Whittaker (How to Break Software,
Addison-Wesley, 2002), Kaner and his colleagues (Lessons Learned in Software Testing, Wiley,
2001), and Marick (The Craft of Software Testing, Prentice-Hall, 1997) each present important testing
concepts and principles and much pragmatic guidance.

A wide variety of information sources on software engineering practice are available on the
Internet. An up-to-date list of World Wide Web references that are relevant to software engi-
neering practice can be found at the SEPA website: www.mhhe.com/engcs/compsci/
pressman/professional/olc/ser.htm.

118 PART TWO MODELING

pre75977_ch04.qxd 11/27/08 3:27 PM Page 118

http://www.mhhe.com/engcs/compsci/

Understanding the requirements of a problem is among the most difficult
tasks that face a software engineer. When you first think about it, devel-
oping a clear understanding of requirements doesn’t seem that hard. After

all, doesn’t the customer know what is required? Shouldn’t the end users have
a good understanding of the features and functions that will provide benefit?
Surprisingly, in many instances the answer to these questions is “no.” And even if
customers and end-users are explicit in their needs, those needs will change
throughout the project.

In the forward to a book by Ralph Young [You01] on effective requirements
practices, I wrote:

It’s your worst nightmare. A customer walks into your office, sits down, looks you

straight in the eye, and says, “I know you think you understand what I said, but what

you don’t understand is what I said is not what I meant.” Invariably, this happens late

119

C H A P T E R

5UNDERSTANDING
REQUIREMENTS

What is it? Before you begin any
technical work, it’s a good idea to
apply a set of requirements engi-
neering tasks. These tasks lead to an

understanding of what the business impact of the
software will be, what the customer wants, and
how end users will interact with the software.

Who does it? Software engineers (sometimes
referred to as system engineers or “analysts” in
the IT world) and other project stakeholders
(managers, customers, end users) all participate
in requirements engineering.

Why is it important? Designing and building an
elegant computer program that solves the wrong
problem serves no one’s needs. That’s why it’s
important to understand what the customer
wants before you begin to design and build a
computer-based system.

What are the steps? Requirements engineering
begins with inception—a task that defines the
scope and nature of the problem to be solved. It
moves onwards to elicitation—a task that helps
stakeholders define what is required, and then

Q U I C K
L O O K

elaboration—where basic requirements are
refined and modified. As stakeholders define the
problem, negotiation occurs—what are the
priorities, what is essential, when is it required?
Finally, the problem is specified in some manner
and then reviewed or validated to ensure that
your understanding of the problem and the
stakeholders’ understanding of the problem
coincide.

What is the work product? The intent of require-
ments engineering is to provide all parties with
a written understanding of the problem. This can
be achieved though a number of work products:
usage scenarios, functions and features lists,
requirements models, or a specification.

How do I ensure that I’ve done it right?
Requirements engineering work products are
reviewed with stakeholders to ensure that what
you have learned is what they really meant. A
word of warning: even after all parties agree,
things will change, and they will continue to
change throughout the project.

K E Y
C O N C E P T S

analysis
model 138
analysis
patterns142
collaboration . .126
elaboration122
elicitation 121
inception 121
negotiation122
quality function
deployment . . .131

pre75977_ch05.qxd 11/27/08 3:30 PM Page 119

It’s reasonable to argue that the techniques I’ll discuss in this chapter are not a

true “solution” to the challenges just noted. But they do provide a solid approach for

addressing these challenges.

5.1 REQUIREMENTS ENGINEERING

Designing and building computer software is challenging, creative, and just plain

fun. In fact, building software is so compelling that many software developers want

to jump right in before they have a clear understanding of what is needed. They argue

that things will become clear as they build, that project stakeholders will be able to

understand need only after examining early iterations of the software, that things

change so rapidly that any attempt to understand requirements in detail is a waste

of time, that the bottom line is producing a working program and all else is second-

ary. What makes these arguments seductive is that they contain elements of truth.1

But each is flawed and can lead to a failed software project.

The broad spectrum of tasks and techniques that lead to an understanding of re-

quirements is called requirements engineering. From a software process perspective,

requirements engineering is a major software engineering action that begins during

the communication activity and continues into the modeling activity. It must be

adapted to the needs of the process, the project, the product, and the people doing

the work.

Requirements engineering builds a bridge to design and construction. But where

does the bridge originate? One could argue that it begins at the feet of the project

stakeholders (e.g., managers, customers, end users), where business need is

defined, user scenarios are described, functions and features are delineated, and

project constraints are identified. Others might suggest that it begins with a broader

system definition, where software is but one component of the larger system

domain. But regardless of the starting point, the journey across the bridge takes you

120 PART TWO MODELING

uote:

“The hardest single
part of building a
software system
is deciding what to
build. No part of the
work so cripples the
resulting system if
done wrong. No
other part is more
difficult to rectify
later.”

Fred Brooks

Requirements
engineering establishes
a solid base for design
and construction.
Without it, the
resulting software has
a high probability of
not meeting
customer’s needs.

1 This is particularly true for small projects (less than one month) and smaller, relatively simple soft-
ware efforts. As software grows in size and complexity, these arguments begin to break down.

requirements
engineering . . .120
requirements
gathering 128
requirements
management . .124
specification . . .122
stakeholders . .125
use cases 133
validating
requirements . .144
validation123
viewpoints 126
work
products133

in the project, after deadline commitments have been made, reputations are on the line,

and serious money is at stake.

All of us who have worked in the systems and software business for more than a few

years have lived this nightmare, and yet, few of us have learned to make it go away. We

struggle when we try to elicit requirements from our customers. We have trouble under-

standing the information that we do acquire. We often record requirements in a disor-

ganized manner, and we spend far too little time verifying what we do record. We allow

change to control us, rather than establishing mechanisms to control change. In short, we

fail to establish a solid foundation for the system or software. Each of these problems is

challenging. When they are combined, the outlook is daunting for even the most experi-

enced managers and practitioners. But solutions do exist.

pre75977_ch05.qxd 11/27/08 3:30 PM Page 120

high above the project, allowing you to examine the context of the software work to

be performed; the specific needs that design and construction must address; the pri-

orities that guide the order in which work is to be completed; and the information,

functions, and behaviors that will have a profound impact on the resultant design.

Requirements engineering provides the appropriate mechanism for understand-

ing what the customer wants, analyzing need, assessing feasibility, negotiating a rea-

sonable solution, specifying the solution unambiguously, validating the specification,

and managing the requirements as they are transformed into an operational system

[Tha97]. It encompasses seven distinct tasks: inception, elicitation, elaboration,

negotiation, specification, validation, and management. It is important to note that

some of these tasks occur in parallel and all are adapted to the needs of the project.

Inception. How does a software project get started? Is there a single event that

becomes the catalyst for a new computer-based system or product, or does the need

evolve over time? There are no definitive answers to these questions. In some cases,

a casual conversation is all that is needed to precipitate a major software engineer-

ing effort. But in general, most projects begin when a business need is identified

or a potential new market or service is discovered. Stakeholders from the business

community (e.g., business managers, marketing people, product managers) define

a business case for the idea, try to identify the breadth and depth of the market, do a

rough feasibility analysis, and identify a working description of the project’s scope.

All of this information is subject to change, but it is sufficient to precipitate discus-

sions with the software engineering organization.2

At project inception,3 you establish a basic understanding of the problem, the peo-

ple who want a solution, the nature of the solution that is desired, and the effective-

ness of preliminary communication and collaboration between the other stakeholders

and the software team.

Elicitation. It certainly seems simple enough—ask the customer, the users, and

others what the objectives for the system or product are, what is to be accomplished,

how the system or product fits into the needs of the business, and finally, how the sys-

tem or product is to be used on a day-to-day basis. But it isn’t simple—it’s very hard.

Christel and Kang [Cri92] identify a number of problems that are encountered as

elicitation occurs.

• Problems of scope. The boundary of the system is ill-defined or the

customers/users specify unnecessary technical detail that may confuse,

rather than clarify, overall system objectives.

CHAPTER 5 UNDERSTANDING REQUIREMENTS 121

Expect to do a bit of
design during require-
ments work and a bit
of requirements work
during design.

uote:

“The seeds of
major software
disasters are
usually sown in the
first three months
of commencing the
software project.”

Caper Jones

2 If a computer-based system is to be developed, discussions begin within the context of a system
engineering process. For a detailed discussion of system engineering, visit the website that
accompanies this book.

3 Recall that the Unified Process (Chapter 2) defines a more comprehensive “inception phase” that
encompasses the inception, elicitation, and elaboration tasks discussed in this chapter.

Why is it
difficult to

gain a clear
understanding of
what the
customer wants?

?

pre75977_ch05.qxd 11/27/08 3:30 PM Page 121

122 PART TWO MODELING

• Problems of understanding. The customers/users are not completely sure

of what is needed, have a poor understanding of the capabilities and limita-

tions of their computing environment, don’t have a full understanding of the

problem domain, have trouble communicating needs to the system engineer,

omit information that is believed to be “obvious,” specify requirements that

conflict with the needs of other customers/users, or specify requirements

that are ambiguous or untestable.

• Problems of volatility. The requirements change over time.

To help overcome these problems, you must approach requirements gathering in an

organized manner.

Elaboration. The information obtained from the customer during inception and

elicitation is expanded and refined during elaboration. This task focuses on devel-

oping a refined requirements model (Chapters 6 and 7) that identifies various aspects

of software function, behavior, and information.

Elaboration is driven by the creation and refinement of user scenarios that de-

scribe how the end user (and other actors) will interact with the system. Each user

scenario is parsed to extract analysis classes—business domain entities that are

visible to the end user. The attributes of each analysis class are defined, and the serv-

ices4 that are required by each class are identified. The relationships and collabora-

tion between classes are identified, and a variety of supplementary diagrams are

produced.

Negotiation. It isn’t unusual for customers and users to ask for more than can be

achieved, given limited business resources. It’s also relatively common for different

customers or users to propose conflicting requirements, arguing that their version is

“essential for our special needs.”

You have to reconcile these conflicts through a process of negotiation. Customers,

users, and other stakeholders are asked to rank requirements and then discuss con-

flicts in priority. Using an iterative approach that prioritizes requirements, assesses

their cost and risk, and addresses internal conflicts, requirements are eliminated,

combined, and/or modified so that each party achieves some measure of satisfaction.

Specification. In the context of computer-based systems (and software), the term

specification means different things to different people. A specification can be a writ-

ten document, a set of graphical models, a formal mathematical model, a collection

of usage scenarios, a prototype, or any combination of these.

Some suggest that a “standard template” [Som97] should be developed and used

for a specification, arguing that this leads to requirements that are presented in a

Elaboration is a good
thing, but you have to
know when to stop.
The key is to describe
the problem in a way
that establishes a firm
base for design. If you
work beyond that
point, you’re doing
design.

4 A service manipulates the data encapsulated by the class. The terms operation and method are also
used. If you are unfamiliar with object-oriented concepts, a basic introduction is presented in
Appendix 2.

There should be no
winner and no loser in
an effective negotia-
tion. Both sides win,
because a “deal” that
both can live with is
solidified.

pre75977_ch05.qxd 11/27/08 3:30 PM Page 122

The formality and
format of a specifica-
tion varies with the size
and the complexity of
the software to be built.

consistent and therefore more understandable manner. However, it is sometimes

necessary to remain flexible when a specification is to be developed. For large sys-

tems, a written document, combining natural language descriptions and graphical

models may be the best approach. However, usage scenarios may be all that are re-

quired for smaller products or systems that reside within well-understood technical

environments.

CHAPTER 5 UNDERSTANDING REQUIREMENTS 123

Software Requirements Specification Template
A software requirements specification (SRS) is
a document that is created when a detailed

description of all aspects of the software to be built must be
specified before the project is to commence. It is important
to note that a formal SRS is not always written. In fact,
there are many instances in which effort expended on an
SRS might be better spent in other software engineering
activities. However, when software is to be developed by
a third party, when a lack of specification would create
severe business issues, or when a system is extremely
complex or business critical, an SRS may be justified.

Karl Wiegers [Wie03] of Process Impact Inc. has
developed a worthwhile template (available at
www.processimpact.com/process_assets/srs_
template.doc) that can serve as a guideline for those
who must create a complete SRS. A topic outline follows:

Table of Contents
Revision History

1. Introduction
1.1 Purpose
1.2 Document Conventions
1.3 Intended Audience and Reading Suggestions
1.4 Project Scope
1.5 References

2. Overall Description
2.1 Product Perspective

2.2 Product Features
2.3 User Classes and Characteristics
2.4 Operating Environment
2.5 Design and Implementation Constraints
2.6 User Documentation
2.7 Assumptions and Dependencies

3. System Features
3.1 System Feature 1
3.2 System Feature 2 (and so on)

4. External Interface Requirements
4.1 User Interfaces
4.2 Hardware Interfaces
4.3 Software Interfaces
4.4 Communications Interfaces

5. Other Nonfunctional Requirements
5.1 Performance Requirements
5.2 Safety Requirements
5.3 Security Requirements
5.4 Software Quality Attributes

6. Other Requirements

Appendix A: Glossary
Appendix B: Analysis Models
Appendix C: Issues List

A detailed description of each SRS topic can be obtained
by downloading the SRS template at the URL noted earlier
in this sidebar.

INFO

Validation. The work products produced as a consequence of requirements engi-

neering are assessed for quality during a validation step. Requirements validation

examines the specification5 to ensure that all software requirements have been

5 Recall that the nature of the specification will vary with each project. In some cases, the “specifi-
cation” is a collection of user scenarios and little else. In others, the specification may be a docu-
ment that contains scenarios, models, and written descriptions.

pre75977_ch05.qxd 11/27/08 3:30 PM Page 123

http://www.processimpact.com/process_assets/srs_

stated unambiguously; that inconsistencies, omissions, and errors have been

detected and corrected; and that the work products conform to the standards estab-

lished for the process, the project, and the product.

The primary requirements validation mechanism is the technical review (Chap-

ter 15). The review team that validates requirements includes software engineers,

customers, users, and other stakeholders who examine the specification looking

for errors in content or interpretation, areas where clarification may be required,

missing information, inconsistencies (a major problem when large products or

systems are engineered), conflicting requirements, or unrealistic (unachievable)

requirements.

124 PART TWO MODELING

INFO

Requirements management. Requirements for computer-based systems

change, and the desire to change requirements persists throughout the life of the

system. Requirements management is a set of activities that help the project team

identify, control, and track requirements and changes to requirements at any time as

the project proceeds.6 Many of these activities are identical to the software configu-

ration management (SCM) techniques discussed in Chapter 22.

6 Formal requirements management is initiated only for large projects that have hundreds of identi-
fiable requirements. For small projects, this requirements engineering action is considerably less
formal.

Requirements Validation
Checklist
It is often useful to examine each requirement

against a set of checklist questions. Here is a small subset
of those that might be asked:

• Are requirements stated clearly? Can they be
misinterpreted?

• Is the source (e.g., a person, a regulation, a document)
of the requirement identified? Has the final statement of
the requirement been examined by or against the
original source?

• Is the requirement bounded in quantitative terms?

• What other requirements relate to this requirement? Are
they clearly noted via a cross-reference matrix or other
mechanism?

• Does the requirement violate any system domain
constraints?

• Is the requirement testable? If so, can we specify tests
(sometimes called validation criteria) to exercise the
requirement?

• Is the requirement traceable to any system model that
has been created?

• Is the requirement traceable to overall system/product
objectives?

• Is the specification structured in a way that leads to
easy understanding, easy reference, and easy
translation into more technical work products?

• Has an index for the specification been created?

• Have requirements associated with performance,
behavior, and operational characteristics been clearly
stated? What requirements appear to be implicit?

A key concern during
requirements valida-
tion is consistency. Use
the analysis model to
ensure that require-
ments have been con-
sistently stated.

pre75977_ch05.qxd 11/27/08 3:30 PM Page 124

5.2 ESTABLISHING THE GROUNDWORK

In an ideal setting, stakeholders and software engineers work together on the same

team.8 In such cases, requirements engineering is simply a matter of conducting

meaningful conversations with colleagues who are well-known members of the

team. But reality is often quite different.

Customer(s) or end users may be located in a different city or country, may have

only a vague idea of what is required, may have conflicting opinions about the sys-

tem to be built, may have limited technical knowledge, and may have limited time to

interact with the requirements engineer. None of these things are desirable, but all

are fairly common, and you are often forced to work within the constraints imposed

by this situation.

In the sections that follow, I discuss the steps required to establish the ground-

work for an understanding of software requirements—to get the project started in a

way that will keep it moving forward toward a successful solution.

5.2.1 Identifying Stakeholders

Sommerville and Sawyer [Som97] define a stakeholder as “anyone who benefits

in a direct or indirect way from the system which is being developed.” I have already

CHAPTER 5 UNDERSTANDING REQUIREMENTS 125

Requirements Engineering

Objective: Requirements engineering tools
assist in requirements gathering, requirements

modeling, requirements management, and requirements
validation.

Mechanics: Tool mechanics vary. In general,
requirements engineering tools build a variety of
graphical (e.g., UML) models that depict the informational,
functional, and behavioral aspects of a system. These
models form the basis for all other activities in the
software process.

Representative Tools:7

A reasonably comprehensive (and up-to-date) listing of
requirements engineering tools can be found at the Volvere
Requirements resources site at www.volere.co.uk/
tools.htm. Requirements modeling tools are discussed in

Chapters 6 and 7. Tools noted below focus on requirement
management.

EasyRM, developed by Cybernetic Intelligence GmbH
(www.easy-rm.com), builds a project-specific
dictionary/glossary that contains detailed requirements
descriptions and attributes.

Rational RequisitePro, developed by Rational Software
(www-306.ibm.com/software/awdtools/
reqpro/), allows users to build a requirements
database; represent relationships among requirements;
and organize, prioritize, and trace requirements.

Many additional requirements management tools can be
found at the Volvere site noted earlier and at
www.jiludwig.com/Requirements_
Management_Tools.html.

SOFTWARE TOOLS

7 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.
In most cases, tool names are trademarked by their respective developers.

8 This approach is strongly recommended for projects that adopt an agile software development
philosophy.

A stakeholder is
anyone who has a
direct interest in or
benefits from the
system that is to be
developed.

pre75977_ch05.qxd 11/27/08 3:30 PM Page 125

http://www.volere.co.uk/
http://www.easy-rm.com
http://www.jiludwig.com/Requirements_

identified the usual suspects: business operations managers, product managers,

marketing people, internal and external customers, end users, consultants, product

engineers, software engineers, support and maintenance engineers, and others.

Each stakeholder has a different view of the system, achieves different benefits when

the system is successfully developed, and is open to different risks if the development

effort should fail.

At inception, you should create a list of people who will contribute input as re-

quirements are elicited (Section 5.3). The initial list will grow as stakeholders are

contacted because every stakeholder will be asked: “Whom else do you think I

should talk to?”

5.2.2 Recognizing Multiple Viewpoints

Because many different stakeholders exist, the requirements of the system will be

explored from many different points of view. For example, the marketing group is in-

terested in functions and features that will excite the potential market, making the

new system easy to sell. Business managers are interested in a feature set that can

be built within budget and that will be ready to meet defined market windows. End

users may want features that are familiar to them and that are easy to learn and use.

Software engineers may be concerned with functions that are invisible to nontech-

nical stakeholders but that enable an infrastructure that supports more marketable

functions and features. Support engineers may focus on the maintainability of the

software.

Each of these constituencies (and others) will contribute information to the re-

quirements engineering process. As information from multiple viewpoints is col-

lected, emerging requirements may be inconsistent or may conflict with one

another. You should categorize all stakeholder information (including inconsistent

and conflicting requirements) in a way that will allow decision makers to choose an

internally consistent set of requirements for the system.

5.2.3 Working toward Collaboration

If five stakeholders are involved in a software project, you may have five (or more)

different opinions about the proper set of requirements. Throughout earlier chapters,

I have noted that customers (and other stakeholders) must collaborate among them-

selves (avoiding petty turf battles) and with software engineering practitioners if a

successful system is to result. But how is this collaboration accomplished?

The job of a requirements engineer is to identify areas of commonality (i.e., re-

quirements on which all stakeholders agree) and areas of conflict or inconsistency

(i.e., requirements that are desired by one stakeholder but conflict with the

needs of another stakeholder). It is, of course, the latter category that presents a

challenge.

126 PART TWO MODELING

uote:

“Put three
stakeholders in a
room and ask them
what kind of
system they want.
You’re likely to get
four or more
different opinions.”

Author unknown

pre75977_ch05.qxd 11/27/08 3:30 PM Page 126

Collaboration does not necessarily mean that requirements are defined by

committee. In many cases, stakeholders collaborate by providing their view of

requirements, but a strong “project champion”(e.g., a business manager or a senior

technologist) may make the final decision about which requirements make the cut.

5.2.4 Asking the First Questions

Questions asked at the inception of the project should be “context free” [Gau89]. The

first set of context-free questions focuses on the customer and other stakeholders,

the overall project goals and benefits. For example, you might ask:

• Who is behind the request for this work?

• Who will use the solution?

• What will be the economic benefit of a successful solution?

• Is there another source for the solution that you need?

These questions help to identify all stakeholders who will have interest in the

software to be built. In addition, the questions identify the measurable benefit of

a successful implementation and possible alternatives to custom software devel-

opment.

The next set of questions enables you to gain a better understanding of the prob-

lem and allows the customer to voice his or her perceptions about a solution:

• How would you characterize “good” output that would be generated by a

successful solution?

• What problem(s) will this solution address?

• Can you show me (or describe) the business environment in which the

solution will be used?

• Will special performance issues or constraints affect the way the solution is

approached?

CHAPTER 5 UNDERSTANDING REQUIREMENTS 127

INFO

uote:

“It is better to
know some of the
questions than all
of the answers.”

James Thurber

What
questions

will help you gain
a preliminary
understanding of
the problem?

?

Using “Priority Points”
One way of resolving conflicting

requirements and at the same time better
understanding the relative importance of all requirements
is to use a “voting” scheme based on priority points.
All stakeholders are provided with some number of
priority points that can be “spent” on any number of
requirements. A list of requirements is presented, and
each stakeholder indicates the relative importance of

each (from his or her viewpoint) by spending one or
more priority points on it. Points spent cannot be reused.
Once a stakeholder’s priority points are exhausted,
no further action on requirements can be taken by that
person. Overall points spent on each requirement by
all stakeholders provide an indication of the overall
importance of each requirement.

pre75977_ch05.qxd 11/27/08 3:30 PM Page 127

The final set of questions focuses on the effectiveness of the communication

activity itself. Gause and Weinberg [Gau89] call these “meta-questions” and propose

the following (abbreviated) list:

• Are you the right person to answer these questions? Are your answers

“official”?

• Are my questions relevant to the problem that you have?

• Am I asking too many questions?

• Can anyone else provide additional information?

• Should I be asking you anything else?

These questions (and others) will help to “break the ice” and initiate the communi-

cation that is essential to successful elicitation. But a question-and-answer meeting

format is not an approach that has been overwhelmingly successful. In fact, the Q&A

session should be used for the first encounter only and then replaced by a require-

ments elicitation format that combines elements of problem solving, negotiation,

and specification. An approach of this type is presented in Section 5.3.

5.3 ELICIT ING REQUIREMENTS

Requirements elicitation (also called requirements gathering) combines elements of

problem solving, elaboration, negotiation, and specification. In order to encourage

a collaborative, team-oriented approach to requirements gathering, stakeholders

work together to identify the problem, propose elements of the solution, negotiate

different approaches and specify a preliminary set of solution requirements [Zah90].9

5.3.1 Collaborative Requirements Gathering

Many different approaches to collaborative requirements gathering have been pro-

posed. Each makes use of a slightly different scenario, but all apply some variation

on the following basic guidelines:

• Meetings are conducted and attended by both software engineers and other

stakeholders.

• Rules for preparation and participation are established.

• An agenda is suggested that is formal enough to cover all important points

but informal enough to encourage the free flow of ideas.

• A “facilitator” (can be a customer, a developer, or an outsider) controls the

meeting.

• A “definition mechanism” (can be work sheets, flip charts, or wall stickers or

an electronic bulletin board, chat room, or virtual forum) is used.

128 PART TWO MODELING

9 This approach is sometimes called a facilitated application specification technique (FAST).

uote:

“He who asks a
question is a fool
for five minutes;
he who does not
ask a question is a
fool forever.”

Chinese proverb

What are
the basic

guidelines for
conducting a
collaborative
requirements
gathering
meeting?

?

pre75977_ch05.qxd 11/27/08 3:30 PM Page 128

The goal is to identify the problem, propose elements of the solution, negotiate

different approaches, and specify a preliminary set of solution requirements in an at-

mosphere that is conducive to the accomplishment of the goal. To better understand

the flow of events as they occur, I present a brief scenario that outlines the sequence

of events that lead up to the requirements gathering meeting, occur during the meet-

ing, and follow the meeting.

During inception (Section 5.2) basic questions and answers establish the scope of

the problem and the overall perception of a solution. Out of these initial meetings,

the developer and customers write a one- or two-page “product request.”

A meeting place, time, and date are selected; a facilitator is chosen; and attendees

from the software team and other stakeholder organizations are invited to partici-

pate. The product request is distributed to all attendees before the meeting date.

As an example,10 consider an excerpt from a product request written by a mar-

keting person involved in the SafeHome project. This person writes the following nar-

rative about the home security function that is to be part of SafeHome:

Our research indicates that the market for home management systems is growing at a

rate of 40 percent per year. The first SafeHome function we bring to market should be the

home security function. Most people are familiar with “alarm systems” so this would be

an easy sell.

The home security function would protect against and/or recognize a variety of un-

desirable “situations” such as illegal entry, fire, flooding, carbon monoxide levels, and

others. It’ll use our wireless sensors to detect each situation. It can be programmed by the

homeowner, and will automatically telephone a monitoring agency when a situation is

detected.

In reality, others would contribute to this narrative during the requirements gath-

ering meeting and considerably more information would be available. But even with

additional information, ambiguity would be present, omissions would likely exist,

and errors might occur. For now, the preceding “functional description” will suffice.

While reviewing the product request in the days before the meeting, each at-

tendee is asked to make a list of objects that are part of the environment that sur-

rounds the system, other objects that are to be produced by the system, and objects

that are used by the system to perform its functions. In addition, each attendee is

asked to make another list of services (processes or functions) that manipulate or in-

teract with the objects. Finally, lists of constraints (e.g., cost, size, business rules) and

performance criteria (e.g., speed, accuracy) are also developed. The attendees are in-

formed that the lists are not expected to be exhaustive but are expected to reflect

each person’s perception of the system.

CHAPTER 5 UNDERSTANDING REQUIREMENTS 129

uote:

“We spend a lot of
time—the
majority of project
effort—not
implementing or
testing, but trying
to decide what to
build.”

Brian Lawrence

WebRef
Joint Application
Development (JAD) is
a popular technique
for requirements
gathering. A good
description can be
found at
www.carolla.com/
wp-jad.htm.

If a system or product
will serve many users,
be absolutely certain
that requirements are
elicited from a repre-
sentative cross section
of users. If only one
user defines all require-
ments, acceptance risk
is high.

10 This example (with extensions and variations) is used to illustrate important software engineering
methods in many of the chapters that follow. As an exercise, it would be worthwhile to conduct
your own requirements gathering meeting and develop a set of lists for it.

pre75977_ch05.qxd 11/27/08 3:30 PM Page 129

http://www.carolla.com/

Objects described for SafeHome might include the control panel, smoke detectors,

window and door sensors, motion detectors, an alarm, an event (a sensor has been

activated), a display, a PC, telephone numbers, a telephone call, and so on. The list

of services might include configuring the system, setting the alarm, monitoring the

sensors, dialing the phone, programming the control panel, and reading the display

(note that services act on objects). In a similar fashion, each attendee will develop

lists of constraints (e.g., the system must recognize when sensors are not operating,

must be user-friendly, must interface directly to a standard phone line) and perform-

ance criteria (e.g., a sensor event should be recognized within one second, and an

event priority scheme should be implemented).

The lists of objects can be pinned to the walls of the room using large sheets of

paper, stuck to the walls using adhesive-backed sheets, or written on a wall board.

Alternatively, the lists may have been posted on an electronic bulletin board, at an

internal website, or posed in a chat room environment for review prior to the meet-

ing. Ideally, each listed entry should be capable of being manipulated separately so

that lists can be combined, entries can be modified, and additions can be made. At

this stage, critique and debate are strictly prohibited.

After individual lists are presented in one topic area, the group creates a com-

bined list by eliminating redundant entries, adding any new ideas that come up dur-

ing the discussion, but not deleting anything. After you create combined lists for all

topic areas, discussion—coordinated by the facilitator—ensues. The combined list is

shortened, lengthened, or reworded to properly reflect the product/system to be de-

veloped. The objective is to develop a consensus list of objects, services, constraints,

and performance for the system to be built.

In many cases, an object or service described on a list will require further expla-

nation. To accomplish this, stakeholders develop mini-specifications for entries on

the lists.11 Each mini-specification is an elaboration of an object or service. For

example, the mini-spec for the SafeHome object Control Panel might be:

The control panel is a wall-mounted unit that is approximately 9 � 5 inches in size. The

control panel has wireless connectivity to sensors and a PC. User interaction occurs

through a keypad containing 12 keys. A 3 � 3 inch LCD color display provides user feed-

back. Software provides interactive prompts, echo, and similar functions.

The mini-specs are presented to all stakeholders for discussion. Additions, deletions,

and further elaboration are made. In some cases, the development of mini-specs will

uncover new objects, services, constraints, or performance requirements that will be

added to the original lists. During all discussions, the team may raise an issue that

cannot be resolved during the meeting. An issues list is maintained so that these

ideas will be acted on later.

130 PART TWO MODELING

Avoid the impulse to
shoot down a cus-
tomer’s idea as “too
costly” or “impracti-
cal.” The idea here is
to negotiate a list that
is acceptable to all. To
do this, you must keep
an open mind.

11 Rather than creating a mini-specification, many software teams elect to develop user scenarios
called use cases. These are considered in detail in Section 5.4 and in Chapter 6.

uote:

“Facts do not cease
to exist because
they are ignored.”

Aldous Huxley

pre75977_ch05.qxd 11/27/08 3:30 PM Page 130

5.3.2 Quality Function Deployment

Quality function deployment (QFD) is a quality management technique that translates

the needs of the customer into technical requirements for software. QFD “concen-

trates on maximizing customer satisfaction from the software engineering process”

[Zul92]. To accomplish this, QFD emphasizes an understanding of what is valuable

to the customer and then deploys these values throughout the engineering process.

QFD identifies three types of requirements [Zul92]:

Normal requirements. The objectives and goals that are stated for a prod-

uct or system during meetings with the customer. If these requirements are

present, the customer is satisfied. Examples of normal requirements might be

requested types of graphical displays, specific system functions, and defined

levels of performance.

Expected requirements. These requirements are implicit to the product

or system and may be so fundamental that the customer does not explicitly

state them. Their absence will be a cause for significant dissatisfaction.

Examples of expected requirements are: ease of human/machine interaction,

overall operational correctness and reliability, and ease of software

installation.

CHAPTER 5 UNDERSTANDING REQUIREMENTS 131

The scene: A meeting room. The first
requirements gathering meeting is in progress.

The players: Jamie Lazar, software team member;
Vinod Raman, software team member; Ed Robbins,
software team member; Doug Miller, software
engineering manager; three members of marketing; a
product engineering representative; and a facilitator.

The conversation:

Facilitator (pointing at whiteboard): So that’s the
current list of objects and services for the home security
function.

Marketing person: That about covers it from our
point of view.

Vinod: Didn’t someone mention that they wanted all
SafeHome functionality to be accessible via the Internet?
That would include the home security function, no?

Marketing person: Yes, that’s right . . . we’ll have to
add that functionality and the appropriate objects.

Facilitator: Does that also add some constraints?

Jamie: It does, both technical and legal.

Production rep: Meaning?

Jamie: We better make sure an outsider can’t hack into
the system, disarm it, and rob the place or worse. Heavy
liability on our part.

Doug: Very true.

Marketing: But we still need that . . . just be sure to stop
an outsider from getting in.

Ed: That’s easier said than done and . . .

Facilitator (interrupting): I don’t want to debate this
issue now. Let’s note it as an action item and proceed.

(Doug, serving as the recorder for the meeting, makes an
appropriate note.)

Facilitator: I have a feeling there’s still more to consider
here.

(The group spends the next 20 minutes refining and
expanding the details of the home security function.)

SAFEHOME

QFD defines require-
ments in a way that
maximizes customer
satisfaction.

Everyone wants to
implement lots of
exciting requirements,
but be careful. That’s
how “requirements
creep” sets in. On the
other hand, exciting
requirements lead to a
breakthrough product!

Conducting a Requirements Gathering Meeting

pre75977_ch05.qxd 11/27/08 3:30 PM Page 131

Exciting requirements. These features go beyond the customer’s expecta-

tions and prove to be very satisfying when present. For example, software for

a new mobile phone comes with standard features, but is coupled with a set

of unexpected capabilities (e.g., multitouch screen, visual voice mail) that

delight every user of the product.

Although QFD concepts can be applied across the entire software process [Par96a],

specific QFD techniques are applicable to the requirements elicitation activity. QFD

uses customer interviews and observation, surveys, and examination of historical

data (e.g., problem reports) as raw data for the requirements gathering activity.

These data are then translated into a table of requirements—called the customer

voice table—that is reviewed with the customer and other stakeholders. A variety of

diagrams, matrices, and evaluation methods are then used to extract expected re-

quirements and to attempt to derive exciting requirements [Aka04].

5.3.3 Usage Scenarios

As requirements are gathered, an overall vision of system functions and features be-

gins to materialize. However, it is difficult to move into more technical software en-

gineering activities until you understand how these functions and features will be

used by different classes of end users. To accomplish this, developers and users can

create a set of scenarios that identify a thread of usage for the system to be con-

structed. The scenarios, often called use cases [Jac92], provide a description of how

the system will be used. Use cases are discussed in greater detail in Section 5.4.

132 PART TWO MODELING

WebRef
Useful information on
QFD can be obtained at
www.qfdi.org.

The scene: A meeting room,
continuing the first requirements gathering meeting.

The players: Jamie Lazar, software team member;
Vinod Raman, software team member; Ed Robbins,
software team member; Doug Miller, software
engineering manager; three members of marketing; a
product engineering representative; and a facilitator.

The conversation:

Facilitator: We’ve been talking about security for
access to SafeHome functionality that will be accessible
via the Internet. I’d like to try something. Let’s develop a
usage scenario for access to the home security function.

Jamie: How?

Facilitator: We can do it a couple of different ways, but
for now, I’d like to keep things really informal. Tell us (he
points at a marketing person) how you envision accessing
the system.

Marketing person: Um . . . well, this is the kind of
thing I’d do if I was away from home and I had to let
someone into the house, say a housekeeper or repair guy,
who didn’t have the security code.

Facilitator (smiling): That’s the reason you’d do it . . .
tell me how you’d actually do this.

Marketing person: Um . . . the first thing I’d need is a
PC. I’d log on to a website we’d maintain for all users of
SafeHome. I’d provide my user id and . . .

Vinod (interrupting): The Web page would have to be
secure, encrypted, to guarantee that we’re safe and . . .

Facilitator (interrupting): That’s good information,
Vinod, but it’s technical. Let’s just focus on how the end
user will use this capability. OK?

Vinod: No problem.

Marketing person: So as I was saying, I’d log on to a
website and provide my user ID and two levels of passwords.

SAFEHOME

Developing a Preliminary User Scenario

pre75977_ch05.qxd 11/27/08 3:30 PM Page 132

http://www.qfdi.org

5.3.4 Elicitation Work Products

The work products produced as a consequence of requirements elicitation will vary

depending on the size of the system or product to be built. For most systems, the

work products include

• A statement of need and feasibility.

• A bounded statement of scope for the system or product.

• A list of customers, users, and other stakeholders who participated in

requirements elicitation.

• A description of the system’s technical environment.

• A list of requirements (preferably organized by function) and the domain

constraints that apply to each.

• A set of usage scenarios that provide insight into the use of the system or

product under different operating conditions.

• Any prototypes developed to better define requirements.

Each of these work products is reviewed by all people who have participated in re-

quirements elicitation.

5.4 DEVELOPING USE CASES

In a book that discusses how to write effective use cases, Alistair Cockburn

[Coc01b] notes that “a use case captures a contract . . . [that] describes the system’s

behavior under various conditions as the system responds to a request from one of

its stakeholders . . .” In essence, a use case tells a stylized story about how an end

user (playing one of a number of possible roles) interacts with the system under a

specific set of circumstances. The story may be narrative text, an outline of tasks

or interactions, a template-based description, or a diagrammatic representation.

Regardless of its form, a use case depicts the software or system from the end

user’s point of view.

CHAPTER 5 UNDERSTANDING REQUIREMENTS 133

Jamie: What if I forget my password?

Facilitator (interrupting): Good point, Jamie, but
let’s not address that now. We’ll make a note of that and
call it an exception. I’m sure there’ll be others.

Marketing person: After I enter the passwords, a
screen representing all SafeHome functions will appear.
I’d select the home security function. The system might
request that I verify who I am, say, by asking for my
address or phone number or something. It would then
display a picture of the security system control panel

along with a list of functions that I can perform—arm the
system, disarm the system, disarm one or more sensors.
I suppose it might also allow me to reconfigure security
zones and other things like that, but I’m not sure.

(As the marketing person continues talking, Doug takes
copious notes; these form the basis for the first informal
usage scenario. Alternatively, the marketing person could
have been asked to write the scenario, but this would be
done outside the meeting.)

What
information

is produced as a
consequence of
requirements
gathering?

?

pre75977_ch05.qxd 11/27/08 3:30 PM Page 133

The first step in writing a use case is to define the set of “actors” that will be

involved in the story. Actors are the different people (or devices) that use the system

or product within the context of the function and behavior that is to be described.

Actors represent the roles that people (or devices) play as the system operates.

Defined somewhat more formally, an actor is anything that communicates with the

system or product and that is external to the system itself. Every actor has one or

more goals when using the system.

It is important to note that an actor and an end user are not necessarily the same

thing. A typical user may play a number of different roles when using a system,

whereas an actor represents a class of external entities (often, but not always, peo-

ple) that play just one role in the context of the use case. As an example, consider a

machine operator (a user) who interacts with the control computer for a manufac-

turing cell that contains a number of robots and numerically controlled machines.

After careful review of requirements, the software for the control computer requires

four different modes (roles) for interaction: programming mode, test mode, moni-

toring mode, and troubleshooting mode. Therefore, four actors can be defined: pro-

grammer, tester, monitor, and troubleshooter. In some cases, the machine operator

can play all of these roles. In others, different people may play the role of each actor.

Because requirements elicitation is an evolutionary activity, not all actors are

identified during the first iteration. It is possible to identify primary actors [Jac92]

during the first iteration and secondary actors as more is learned about the system.

Primary actors interact to achieve required system function and derive the intended

benefit from the system. They work directly and frequently with the software.

Secondary actors support the system so that primary actors can do their work.

Once actors have been identified, use cases can be developed. Jacobson [Jac92]

suggests a number of questions12 that should be answered by a use case:

• Who is the primary actor, the secondary actor(s)?

• What are the actor’s goals?

• What preconditions should exist before the story begins?

• What main tasks or functions are performed by the actor?

• What exceptions might be considered as the story is described?

• What variations in the actor’s interaction are possible?

• What system information will the actor acquire, produce, or change?

• Will the actor have to inform the system about changes in the external

environment?

• What information does the actor desire from the system?

• Does the actor wish to be informed about unexpected changes?

134 PART TWO MODELING

Use cases are defined
from an actor’s point
of view. An actor is
a role that people
(users) or devices play
as they interact with
the software.

WebRef
An excellent paper on
use cases can be
downloaded from
www.ibm.com/
developerworks/
webservices/
library/
codesign7.html.

What do I
need to

know in order to
develop an
effective use
case?

?

12 Jacobson’s questions have been extended to provide a more complete view of use-case content.

pre75977_ch05.qxd 11/27/08 3:30 PM Page 134

http://www.ibm.com/

Recalling basic SafeHome requirements, we define four actors: homeowner

(a user), setup manager (likely the same person as homeowner, but playing a dif-

ferent role), sensors (devices attached to the system), and the monitoring and

response subsystem (the central station that monitors the SafeHome home secu-

rity function). For the purposes of this example, we consider only the homeowner

actor. The homeowner actor interacts with the home security function in a number

of different ways using either the alarm control panel or a PC:

• Enters a password to allow all other interactions.

• Inquires about the status of a security zone.

• Inquires about the status of a sensor.

• Presses the panic button in an emergency.

• Activates/deactivates the security system.

Considering the situation in which the homeowner uses the control panel, the basic

use case for system activation follows:13

1. The homeowner observes the SafeHome control panel (Figure 5.1) to determine if the

system is ready for input. If the system is not ready, a not ready message is displayed

on the LCD display, and the homeowner must physically close windows or doors so

that the not ready message disappears. [A not ready message implies that a sensor is

open; i.e., that a door or window is open.]

CHAPTER 5 UNDERSTANDING REQUIREMENTS 135

1 2 3

4 5 6

7 8 9

* 0

offSAFEHOME away stay

max test bypass

instant code chime

ready

#
armed power

alarm
check
fire

away
stay
instant
bypass
not ready

panic

FIGURE 5.1

SafeHome
control panel

13 Note that this use case differs from the situation in which the system is accessed via the Internet.
In this case, interaction occurs via the control panel, not the graphical user interface (GUI) provided
when a PC is used.

pre75977_ch05.qxd 11/27/08 3:30 PM Page 135

2. The homeowner uses the keypad to key in a four-digit password. The password is com-

pared with the valid password stored in the system. If the password is incorrect, the con-

trol panel will beep once and reset itself for additional input. If the password is correct,

the control panel awaits further action.

3. The homeowner selects and keys in stay or away (see Figure 5.1) to activate the system.

Stay activates only perimeter sensors (inside motion detecting sensors are deacti-

vated). Away activates all sensors.

4. When activation occurs, a red alarm light can be observed by the homeowner.

The basic use case presents a high-level story that describes the interaction between

the actor and the system.

In many instances, uses cases are further elaborated to provide considerably

more detail about the interaction. For example, Cockburn [Coc01b] suggests the fol-

lowing template for detailed descriptions of use cases:

Use case: InitiateMonitoring

Primary actor: Homeowner.

Goal in context: To set the system to monitor sensors when the homeowner

leaves the house or remains inside.

Preconditions: System has been programmed for a password and to recognize

various sensors.

Trigger: The homeowner decides to “set” the system, i.e., to turn on the

alarm functions.

Scenario:

1. Homeowner: observes control panel

2. Homeowner: enters password

3. Homeowner: selects “stay” or “away”

4. Homeowner: observes read alarm light to indicate that SafeHome has been armed

Exceptions:

1. Control panel is not ready: homeowner checks all sensors to determine which are

open; closes them.

2. Password is incorrect (control panel beeps once): homeowner reenters correct password.

3. Password not recognized: monitoring and response subsystem must be contacted to

reprogram password.

4. Stay is selected: control panel beeps twice and a stay light is lit; perimeter sensors are

activated.

5. Away is selected: control panel beeps three times and an away light is lit; all sensors

are activated.

Priority: Essential, must be implemented

When available: First increment

136 PART TWO MODELING

Use cases are often
written informally.
However, use the tem-
plate shown here to
ensure that you’ve
addressed all key
issues.

pre75977_ch05.qxd 11/27/08 3:30 PM Page 136

Frequency of use: Many times per day

Channel to actor: Via control panel interface

Secondary actors: Support technician, sensors

Channels to secondary actors:

Support technician: phone line

Sensors: hardwired and radio frequency interfaces

Open issues:

1. Should there be a way to activate the system without the use of a password or with an

abbreviated password?

2. Should the control panel display additional text messages?

3. How much time does the homeowner have to enter the password from the time the

first key is pressed?

4. Is there a way to deactivate the system before it actually activates?

Use cases for other homeowner interactions would be developed in a similar manner.

It is important to review each use case with care. If some element of the interaction

is ambiguous, it is likely that a review of the use case will indicate a problem.

CHAPTER 5 UNDERSTANDING REQUIREMENTS 137

The scene: A meeting room,
continuing the requirements gathering meeting

The players: Jamie Lazar, software team member;
Vinod Raman, software team member; Ed Robbins,
software team member; Doug Miller, software
engineering manager; three members of marketing; a
product engineering representative; and a facilitator.

The conversation:

Facilitator: We’ve spent a fair amount of time talking
about SafeHome home security functionality. During the
break I sketched a use case diagram to summarize the
important scenarios that are part of this function. Take
a look.

(All attendees look at Figure 5.2.)

Jamie: I’m just beginning to learn UML notation.14 So
the home security function is represented by the big box
with the ovals inside it? And the ovals represent use cases
that we’ve written in text?

Facilitator: Yep. And the stick figures represent actors—
the people or things that interact with the system as described
by the use case . . . oh, I use the labeled square to represent
an actor that’s not a person . . . in this case, sensors.

Doug: Is that legal in UML?

Facilitator: Legality isn’t the issue. The point is to
communicate information. I view the use of a humanlike
stick figure for representing a device to be misleading. So
I’ve adapted things a bit. I don’t think it creates a problem.

Vinod: Okay, so we have use-case narratives for each
of the ovals. Do we need to develop the more detailed
template-based narratives I’ve read about?

Facilitator: Probably, but that can wait until we’ve
considered other SafeHome functions.

Marketing person: Wait, I’ve been looking at this
diagram and all of a sudden I realize we missed something.

Facilitator: Oh really. Tell me what we’ve missed.

(The meeting continues.)

SAFEHOME

14 A brief UML tutorial is presented in Appendix 1 for those who are unfamiliar with the notation.

Developing a High-Level Use-Case Diagram

pre75977_ch05.qxd 11/27/08 3:30 PM Page 137

138 PART TWO MODELING

15 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.
In most cases, tool names are trademarked by their respective developers.

16 Throughout this book, I use the terms analysis model and requirements model synonymously. Both
refer to representations of the information, functional, and behavioral domains that describe prob-
lem requirements.

Use-Case Development

Objective: Assist in the development of
use cases by providing automated templates

and mechanisms for assessing clarity and consistency.

Mechanics: Tool mechanics vary. In general, use-case
tools provide fill-in-the-blank templates for creating effective
use cases. Most use-case functionality is embedded into a
set of broader requirements engineering functions.

Representative Tools:15

The vast majority of UML-based analysis modeling tools
provide both text and graphical support for use-case
development and modeling.
Objects by Design

(www.objectsbydesign.com/tools/
umltools_byCompany.html) provides
comprehensive links to tools of this type.

SOFTWARE TOOLS

5.5 BUILDING THE REQUIREMENTS MODEL1 6

The intent of the analysis model is to provide a description of the required informational,

functional, and behavioral domains for a computer-based system. The model changes

dynamically as you learn more about the system to be built, and other stakeholders un-

derstand more about what they really require. For that reason, the analysis model is a

snapshot of requirements at any given time. You should expect it to change.

Homeowner

System
administrator

Arms/disarms
system

Responds to
alarm event

Accesses
system

via Internet

Encounters
an error
condition

Reconfigures
sensors and

related
system features

Sensors

FIGURE 5.2

UML use case
diagram for
SafeHome
home security
function

pre75977_ch05.qxd 11/27/08 3:30 PM Page 138

http://www.objectsbydesign.com/tools/umltools_byCompany.html
http://www.objectsbydesign.com/tools/umltools_byCompany.html

As the requirements model evolves, certain elements will become relatively

stable, providing a solid foundation for the design tasks that follow. However, other

elements of the model may be more volatile, indicating that stakeholders do not yet

fully understand requirements for the system. The analysis model and the methods

that are used to build it are presented in detail in Chapters 6 and 7. I present a brief

overview in the sections that follow.

5.5.1 Elements of the Requirements Model

There are many different ways to look at the requirements for a computer-based

system. Some software people argue that it’s best to select one mode of represen-

tation (e.g., the use case) and apply it to the exclusion of all other modes. Other

practitioners believe that it’s worthwhile to use a number of different modes of rep-

resentation to depict the requirements model. Different modes of representation

force you to consider requirements from different viewpoints—an approach that has

a higher probability of uncovering omissions, inconsistencies, and ambiguity.

The specific elements of the requirements model are dictated by the analysis

modeling method (Chapters 6 and 7) that is to be used. However, a set of generic

elements is common to most requirements models.

Scenario-based elements. The system is described from the user’s point of view

using a scenario-based approach. For example, basic use cases (Section 5.4) and

their corresponding use-case diagrams (Figure 5.2) evolve into more elaborate

template-based use cases. Scenario-based elements of the requirements model

are often the first part of the model that is developed. As such, they serve as input for

the creation of other modeling elements. Figure 5.3 depicts a UML activity diagram17

for eliciting requirements and representing them using use cases. Three levels of

elaboration are shown, culminating in a scenario-based representation.

Class-based elements. Each usage scenario implies a set of objects that are

manipulated as an actor interacts with the system. These objects are categorized into

classes—a collection of things that have similar attributes and common behaviors. For

example, a UML class diagram can be used to depict a Sensor class for the SafeHome

security function (Figure 5.4). Note that the diagram lists the attributes of sensors (e.g.,

name, type) and the operations (e.g., identify, enable) that can be applied to modify

these attributes. In addition to class diagrams, other analysis modeling elements de-

pict the manner in which classes collaborate with one another and the relationships

and interactions between classes. These are discussed in more detail in Chapter 7.

Behavioral elements. The behavior of a computer-based system can have a pro-

found effect on the design that is chosen and the implementation approach that is

applied. Therefore, the requirements model must provide modeling elements that

depict behavior.

CHAPTER 5 UNDERSTANDING REQUIREMENTS 139

17 A brief UML tutorial is presented in Appendix 1 for those who are unfamiliar with the notation.

It is always a good
idea to get stakehold-
ers involved. One of
the best ways to do
this is to have each
stakeholder write use
cases that describe
how the software will
be used.

One way to isolate
classes is to look for
descriptive nouns in a
use-case script. At least
some of the nouns will
be candidate classes.
More on this in the
Chapter 8.

pre75977_ch05.qxd 11/27/08 3:30 PM Page 139

140 PART TWO MODELING

Formal prioritization?
Yes No

Conduct
meetings

Make lists of
functions, classes

Make lists of
constraints, etc.

 Use QFD to
prioritize

requirements

Informally
prioritize

requirements

Create
use cases

Draw use-case
diagram

Define
actors

Write
scenario

Complete
template

Elicit requirements

FIGURE 5.3

UML activity
diagrams for
eliciting
requirements

Name
Type
Location
Area
Characteristics

Identify()
Enable()
Disable()
Reconfigure()

Sensor
FIGURE 5.4

Class diagram
for sensor

A state is an externally
observable mode of
behavior. External
stimuli cause transi-
tions between states.

The state diagram is one method for representing the behavior of a system by de-

picting its states and the events that cause the system to change state. A state is any

externally observable mode of behavior. In addition, the state diagram indicates

actions (e.g., process activation) taken as a consequence of a particular event.

To illustrate the use of a state diagram, consider software embedded within the

SafeHome control panel that is responsible for reading user input. A simplified UML

state diagram is shown in Figure 5.5.

pre75977_ch05.qxd 11/27/08 3:30 PM Page 140

Flow-oriented elements. Information is transformed as it flows through a

computer-based system. The system accepts input in a variety of forms, applies func-

tions to transform it, and produces output in a variety of forms. Input may be a control

signal transmitted by a transducer, a series of numbers typed by a human operator, a

CHAPTER 5 UNDERSTANDING REQUIREMENTS 141

The scene: A meeting room,
continuing the requirements meeting.

The players: Jamie Lazar, software team member;
Vinod Raman, software team member; Ed Robbins,
software team member; Doug Miller, software
engineering manager; three members of marketing;
a product engineering representative; and a facilitator.

The conversation:

Facilitator: We’ve just about finished talking about
SafeHome home security functionality. But before we do,
I want to discuss the behavior of the function.

Marketing person: I don’t understand what you mean
by behavior.

Ed (smiling): That’s when you give the product a
“timeout” if it misbehaves.

Facilitator: Not exactly. Let me explain.

(The facilitator explains the basics of behavioral modeling
to the requirements gathering team.)

Marketing person: This seems a little technical. I’m
not sure I can help here.

Facilitator: Sure you can. What behavior do you
observe from the user’s point of view?

Marketing person: Uh . . . well, the system will be
monitoring the sensors. It’ll be reading commands from
the homeowner. It’ll be displaying its status.

Facilitator: See, you can do it.

Jamie: It’ll also be polling the PC to determine if there is
any input from it, for example, Internet-based access or
configuration information.

Vinod: Yeah, in fact, configuring the system is a state in
its own right.

Doug: You guys are rolling. Let’s give this a bit more
thought . . . is there a way to diagram this stuff?

Facilitator: There is, but let’s postpone that until after
the meeting.

SAFEHOME

System status = "Ready"
Display msg = "enter cmd"
Display status = steady

State name

State variables

State activities
Entry/subsystems ready
Do: poll user input panel
Do: read user input
Do: interpret user input

Reading
commands

FIGURE 5.5

UML state
diagram
notation

In addition to behavioral representations of the system as a whole, the behavior

of individual classes can also be modeled. Further discussion of behavioral model-

ing is presented in Chapter 7.

Preliminary Behavioral Modeling

pre75977_ch05.qxd 11/27/08 3:30 PM Page 141

packet of information transmitted on a network link, or a voluminous data file

retrieved from secondary storage. The transform(s) may comprise a single logical

comparison, a complex numerical algorithm, or a rule-inference approach of an expert

system. Output may light a single LED or produce a 200-page report. In effect, we can

create a flow model for any computer-based system, regardless of size and complex-

ity. A more detailed discussion of flow modeling is presented in Chapter 7.

5.5.2 Analysis Patterns

Anyone who has done requirements engineering on more than a few software

projects begins to notice that certain problems reoccur across all projects within a

specific application domain.18 These analysis patterns [Fow97] suggest solutions

(e.g., a class, a function, a behavior) within the application domain that can be

reused when modeling many applications.

Geyer-Schulz and Hahsler [Gey01] suggest two benefits that can be associated

with the use of analysis patterns:

First, analysis patterns speed up the development of abstract analysis models that cap-

ture the main requirements of the concrete problem by providing reusable analysis mod-

els with examples as well as a description of advantages and limitations. Second, analysis

patterns facilitate the transformation of the analysis model into a design model by sug-

gesting design patterns and reliable solutions for common problems.

Analysis patterns are integrated into the analysis model by reference to the pattern

name. They are also stored in a repository so that requirements engineers can use

search facilities to find and apply them. Information about an analysis pattern (and

other types of patterns) is presented in a standard template [Gey01]19 that is dis-

cussed in more detail in Chapter 12. Examples of analysis patterns and further dis-

cussion of this topic are presented in Chapter 7.

5.6 NEGOTIATING REQUIREMENTS

In an ideal requirements engineering context, the inception, elicitation, and elabo-

ration tasks determine customer requirements in sufficient detail to proceed to sub-

sequent software engineering activities. Unfortunately, this rarely happens. In reality,

you may have to enter into a negotiation with one or more stakeholders. In most

cases, stakeholders are asked to balance functionality, performance, and other prod-

uct or system characteristics against cost and time-to-market. The intent of this

negotiation is to develop a project plan that meets stakeholder needs while at the

142 PART TWO MODELING

18 In some cases, problems reoccur regardless of the application domain. For example, the features
and functions used to solve user interface problems are common regardless of the application
domain under consideration.

19 A variety of patterns templates have been proposed in the literature. If you have interest, see
[Fow97], [Gam95], [Yac03], and [Bus07] among many sources.

uote:

“A compromise is
the art of dividing
a cake in such a
way that everyone
believes he has the
biggest piece.”

Ludwig Erhard

pre75977_ch05.qxd 11/27/08 3:30 PM Page 142

same time reflecting the real-world constraints (e.g., time, people, budget) that have

been placed on the software team.

The best negotiations strive for a “win-win” result.20 That is, stakeholders win by

getting the system or product that satisfies the majority of their needs and you (as a

member of the software team) win by working to realistic and achievable budgets

and deadlines.

Boehm [Boe98] defines a set of negotiation activities at the beginning of each soft-

ware process iteration. Rather than a single customer communication activity, the

following activities are defined:

1. Identification of the system or subsystem’s key stakeholders.

2. Determination of the stakeholders’ “win conditions.”

3. Negotiation of the stakeholders’ win conditions to reconcile them into a set

of win-win conditions for all concerned (including the software team).

Successful completion of these initial steps achieves a win-win result, which becomes

the key criterion for proceeding to subsequent software engineering activities.

CHAPTER 5 UNDERSTANDING REQUIREMENTS 143

20 Dozens of books have been written on negotiating skills (e.g., [Lew06], [Rai06], [Fis06]). It is one of
the more important skills that you can learn. Read one.

WebRef
A brief paper on
negotiation for software
requirements can be
downloaded from
www.alexander-
egyed.com/
publications/
Software_
Requirements_
Negotiation-
Some_Lessons_
Learned.html.

The Art of Negotiation
Learning how to negotiate effectively can serve
you well throughout your personal and technical

life. The following guidelines are well worth considering:

1. Recognize that it’s not a competition. To be
successful, both parties have to feel they’ve won or
achieved something. Both will have to compromise.

2. Map out a strategy. Decide what you’d like to
achieve; what the other party wants to achieve, and
how you’ll go about making both happen.

3. Listen actively. Don’t work on formulating your
response while the other party is talking. Listen

to her. It’s likely you’ll gain knowledge that will help
you to better negotiate your position.

4. Focus on the other party’s interests. Don’t take hard
positions if you want to avoid conflict.

5. Don’t let it get personal. Focus on the problem that
needs to be solved.

6. Be creative. Don’t be afraid to think out of the box if
you’re at an impasse.

7. Be ready to commit. Once an agreement has been
reached, don’t waffle; commit to it and move on.

INFO

The Start of a Negotiation

The scene: Lisa Perez’s office, after
the first requirements gathering meeting.

The players: Doug Miller, software engineering
manager and Lisa Perez, marketing manager.

The conversation:

Lisa: So, I hear the first meeting went really well.

Doug: Actually, it did. You sent some good people to the
meeting . . . they really contributed.

SAFEHOME

pre75977_ch05.qxd 11/27/08 3:30 PM Page 143

http://www.alexander-egyed.com/
http://www.alexander-egyed.com/
http://www.alexander-egyed.com/

5.7 VALIDATING REQUIREMENTS

144 PART TWO MODELING

When I
review

requirements,
what questions
should I ask?

?

As each element of the requirements model is created, it is examined for inconsis-

tency, omissions, and ambiguity. The requirements represented by the model are pri-

oritized by the stakeholders and grouped within requirements packages that will be

implemented as software increments. A review of the requirements model addresses

the following questions:

• Is each requirement consistent with the overall objectives for the

system/product?

• Have all requirements been specified at the proper level of abstraction? That

is, do some requirements provide a level of technical detail that is inappro-

priate at this stage?

• Is the requirement really necessary or does it represent an add-on feature

that may not be essential to the objective of the system?

• Is each requirement bounded and unambiguous?

• Does each requirement have attribution? That is, is a source (generally, a

specific individual) noted for each requirement?

• Do any requirements conflict with other requirements?

• Is each requirement achievable in the technical environment that will house

the system or product?

• Is each requirement testable, once implemented?

• Does the requirements model properly reflect the information, function, and

behavior of the system to be built?

Lisa (smiling): Yeah, they actually told me they got into
it and it wasn’t a “propeller head activity.”

Doug (laughing): I’ll be sure to take off my techie
beanie the next time I visit . . . Look, Lisa, I think we may
have a problem with getting all of the functionality for the
home security system out by the dates your management
is talking about. It’s early, I know, but I’ve already been
doing a little back-of-the-envelope planning and . . .

Lisa (frowning): We’ve got to have it by that date,
Doug. What functionality are you talking about?

Doug: I figure we can get full home security functionality
out by the drop-dead date, but we’ll have to delay
Internet access ‘til the second release.

Lisa: Doug, it’s the Internet access that gives SafeHome
“gee whiz” appeal. We’re going to build our entire
marketing campaign around it. We’ve gotta have it!

Doug: I understand your situation, I really do. The
problem is that in order to give you Internet access,
we’ll have to have a fully secure website up and
running. That takes time and people. We’ll also have
to build a lot of additional functionality into the first
release . . . I don’t think we can do it with the resources
we’ve got.

Lisa (still frowning): I see, but you’ve got to figure out
a way to get it done. It’s pivotal to home security functions
and to other functions as well . . . those can wait until the
next releases . . . I’ll agree to that.

Lisa and Doug appear to be at an impasse, and yet they
must negotiate a solution to this problem. Can they both
“win” here? Playing the role of a mediator, what would you
suggest?

pre75977_ch05.qxd 11/27/08 3:30 PM Page 144

• Has the requirements model been “partitioned” in a way that exposes

progressively more detailed information about the system?

• Have requirements patterns been used to simplify the requirements model?

Have all patterns been properly validated? Are all patterns consistent with

customer requirements?

These and other questions should be asked and answered to ensure that the re-

quirements model is an accurate reflection of stakeholder needs and that it provides

a solid foundation for design.

5.8 SUMMARY

Requirements engineering tasks are conducted to establish a solid foundation for de-

sign and construction. Requirements engineering occurs during the communication

and modeling activities that have been defined for the generic software process.

Seven distinct requirements engineering functions—inception, elicitation, elabora-

tion, negotiation, specification, validation, and management—are conducted by

members of the software team.

At project inception, stakeholders establish basic problem requirements, define

overriding project constraints, and address major features and functions that must

be present for the system to meet its objectives. This information is refined and ex-

panded during elicitation—a requirements gathering activity that makes use of facil-

itated meetings, QFD, and the development of usage scenarios.

Elaboration further expands requirements in a model—a collection of scenario-

based, class-based, behavioral, and flow-oriented elements. The model may refer-

ence analysis patterns, solutions for analysis problems that have been seen to

reoccur across different applications.

As requirements are identified and the requirements model is being created, the

software team and other project stakeholders negotiate the priority, availability, and

relative cost of each requirement. The intent of this negotiation is to develop a realis-

tic project plan. In addition, each requirement and the requirements model as a whole

are validated against customer need to ensure that the right system is to be built.

PROBLEMS AND POINTS TO PONDER

5.1. Why is it that many software developers don’t pay enough attention to requirements engi-
neering? Are there ever circumstances where you can skip it?

5.2. You have been given the responsibility to elicit requirements from a customer who tells
you he is too busy to meet with you. What should you do?

5.3. Discuss some of the problems that occur when requirements must be elicited from three
or four different customers.

5.4. Why do we say that the requirements model represents a snapshot of a system in time?

CHAPTER 5 UNDERSTANDING REQUIREMENTS 145

pre75977_ch05.qxd 11/27/08 3:30 PM Page 145

5.5. Let’s assume that you’ve convinced the customer (you’re a very good salesperson) to agree
to every demand that you have as a developer. Does that make you a master negotiator? Why?

5.6. Develop at least three additional “context-free questions” that you might ask a stakeholder
during inception.

5.7. Develop a requirements gathering “kit.” The kit should include a set of guidelines for con-
ducting a requirements gathering meeting and materials that can be used to facilitate the cre-
ation of lists and any other items that might help in defining requirements.

5.8. Your instructor will divide the class into groups of four to six students. Half of the group
will play the role of the marketing department and half will take on the role of software
engineering. Your job is to define requirements for the SafeHome security function described
in this chapter. Conduct a requirements gathering meeting using the guidelines presented in
this chapter.

5.9. Develop a complete use case for one of the following activities:

a. Making a withdrawal at an ATM
b. Using your charge card for a meal at a restaurant
c. Buying a stock using an on-line brokerage account
d. Searching for books (on a specific topic) using an on-line bookstore
e. An activity specified by your instructor.

5.10. What do use case “exceptions” represent?

5.11. Describe what an analysis pattern is in your own words.

5.12. Using the template presented in Section 5.5.2, suggest one or more analysis pattern for
the following application domains:

a. Accounting software
b. E-mail software
c. Internet browsers
d. Word-processing software
e. Website creation software
f. An application domain specified by your instructor

5.13. What does win-win mean in the context of negotiation during the requirements engi-
neering activity?

5.14. What do you think happens when requirement validation uncovers an error? Who is
involved in correcting the error?

FURTHER READINGS AND INFORMATION SOURCES

Because it is pivotal to the successful creation of any complex computer-based system, re-
quirements engineering is discussed in a wide array of books. Hood and his colleagues
(Requirements Management, Springer, 2007) discuss a variety of requirements engineering is-
sues that span both systems and software engineering. Young (The Requirements Engineering
Handbook, Artech House Publishers, 2007) presents an in-depth discussion of requirements en-
gineering tasks. Wiegers (More About Software Requirements, Microsoft Press, 2006) provides
many practical techniques for requirements gathering and management. Hull and her
colleagues (Requirements Engineering, 2d ed., Springer-Verlag, 2004), Bray (An Introduction to
Requirements Engineering, Addison-Wesley, 2002), Arlow (Requirements Engineering, Addison-
Wesley, 2001), Gilb (Requirements Engineering, Addison-Wesley, 2000), Graham (Requirements
Engineering and Rapid Development, Addison-Wesley, 1999), and Sommerville and Kotonya
(Requirement Engineering: Processes and Techniques, Wiley, 1998) are but a few of many books
dedicated to the subject. Gottesdiener (Requirements by Collaboration: Workshops for Defining

146 PART TWO MODELING

pre75977_ch05.qxd 11/27/08 3:30 PM Page 146

Needs, Addison-Wesley, 2002) provides useful guidance for those who must establish a collab-
orative requirements gathering environment with stakeholders.

Lauesen (Software Requirements: Styles and Techniques, Addison-Wesley, 2002) presents a
comprehensive survey of requirement analysis methods and notation. Weigers (Software
Requirements, Microsoft Press, 1999) and Leffingwell and his colleagues (Managing Software
Requirements: A Use Case Approach, 2d ed., Addison-Wesley, 2003) present a useful collection of
requirement best practices and suggest pragmatic guidelines for most aspects of the require-
ments engineering process.

A patterns-based view of requirements engineering is described by Withall (Software Require-
ment Patterns, Microsoft Press, 2007). Ploesch (Assertions, Scenarios and Prototypes, Springer-
Verlag, 2003) discusses advanced techniques for developing software requirements. Windle and
Abreo (Software Requirements Using the Unified Process, Prentice-Hall, 2002) discuss require-
ments engineering within the context of the Unified Process and UML notation. Alexander and
Steven (Writing Better Requirements, Addison-Wesley, 2002) present a brief set of guidelines for
writing clear requirements, representing them as scenarios, and reviewing the end result.

Use-case modeling is often the driver for the creation of all other aspects of the analysis
model. The subject is discussed at length by Rosenberg and Stephens (Use Case Driven Object
Modeling with UML: Theory and Practice, Apress, 2007), Denny (Succeeding with Use Cases: Work-
ing Smart to Deliver Quality, Addison-Wesley, 2005), Alexander and Maiden (eds.) (Scenarios,
Stories, Use Cases: Through the Systems Development Life-Cycle, Wiley, 2004), Leffingwell and his
colleagues (Managing Software Requirements: A Use Case Approach, 2d ed., Addison-Wesley,
2003) present a useful collection of requirement best practices. Bittner and Spence (Use
Case Modeling, Addison-Wesley, 2002), Cockburn [Coc01], Armour and Miller (Advanced
Use Case Modeling: Software Systems, Addison-Wesley, 2000), and Kulak and his colleagues (Use
Cases: Requirements in Context, Addison-Wesley, 2000) discuss requirements gathering with an
emphasis on use-case modeling.

A wide variety of information sources on requirements engineering and analysis is available
on the Internet. An up-to-date list of World Wide Web references that are relevant to require-
ments engineering and analysis can be found at the SEPA website: www.mhhe.com/engcs/
compsci/pressman/professional/olc/ser.htm.

CHAPTER 5 UNDERSTANDING REQUIREMENTS 147

pre75977_ch05.qxd 11/27/08 3:30 PM Page 147

http://www.mhhe.com/engcs/

A t a technical level, software engineering begins with a series of
modeling tasks that lead to a specification of requirements and a design
representation for the software to be built. The requirements model1—

actually a set of models—is the first technical representation of a system.
In a seminal book on requirements modeling methods, Tom DeMarco [DeM79]

describes the process in this way:

Looking back over the recognized problems and failings of the analysis phase, I sug-

gest that we need to make the following additions to our set of analysis phase goals.

The products of analysis must be highly maintainable. This applies particularly to the

148

C H A P T E R

6 REQUIREMENTS MODELING: SCENARIOS,
INFORMATION, AND ANALYSIS CLASSES

K E Y
C O N C E P T S

activity diagram . .161
analysis classes . .167
analysis
packages 182
associations 180
class-based
modeling 167
CRC modeling . . .173
data modeling . . .164
domain analysis . .151
grammatical
parse 167

What is it? The written word is a
wonderful vehicle for communica-
tion, but it is not necessarily the best
way to represent the requirements for

computer software. Requirements modeling uses
a combination of text and diagrammatic forms
to depict requirements in a way that is relatively
easy to understand, and more important,
straightforward to review for correctness, com-
pleteness, and consistency.

Who does it? A software engineer (sometimes
called an “analyst”) builds the model using
requirements elicited from the customer.

Why is it important? To validate software require-
ments, you need to examine them from a number
of different points of view. In this chapter you’ll
consider requirements modeling from three dif-
ferent perspectives: scenario-based models, data
(information) models, and class-based models.
Each represents requirements in a different
“dimension,” thereby increasing the probability
that errors will be found, that inconsistency will
surface, and that omissions will be uncovered.

Q U I C K
L O O K

What are the steps? Scenario-based modeling
represents the system from the user’s point of view.
Data modeling represents the information space
and depicts the data objects that the software will
manipulate and the relationships among them.
Class-based modeling defines objects, attributes,
and relationships. Once preliminary models are
created, they are refined and analyzed to assess
their clarity, completeness, and consistency. In
Chapter 7, we extend the modeling dimensions
noted here with additional representations, pro-
viding a more robust view of requirements.

What is the work product? A wide array of text-
based and diagrammatic forms may be chosen
for the requirements model. Each of these repre-
sentations provides a view of one or more of the
model elements.

How do I ensure that I’ve done it right?
Requirements modeling work products must be
reviewed for correctness, completeness, and
consistency. They must reflect the needs of all
stakeholders and establish a foundation from
which design can be conducted.

1 In past editions of this book, I used the term analysis model, rather than requirements model. In this
edition, I’ve decided to use both phrases to represent the modeling activity that defines various as-
pects of the problem to be solved. Analysis is the action that occurs as requirements are derived.

pre75977_ch06.qxd 11/27/08 3:34 PM Page 148

Target Document [software requirements specification]. Problems of size must be dealt

with using an effective method of partitioning. The Victorian novel specification is

out. Graphics have to be used whenever possible. We have to differentiate between log-

ical [essential] and physical [implementation] considerations. . . . At the very least, we

need. . . . Something to help us partition our requirements and document that partition-

ing before specification. . . . Some means of keeping track of and evaluating interfaces. . . .

New tools to describe logic and policy, something better than narrative text.

Although DeMarco wrote about the attributes of analysis modeling more than a

quarter century ago, his comments still apply to modern requirements modeling

methods and notation.

6.1 REQUIREMENTS ANALYSIS

Requirements analysis results in the specification of software’s operational charac-

teristics, indicates software’s interface with other system elements, and establishes

constraints that software must meet. Requirements analysis allows you (regardless

of whether you’re called a software engineer, an analyst, or a modeler) to elaborate on

basic requirements established during the inception, elicitation, and negotiation

tasks that are part of requirements engineering (Chapter 5).

The requirements modeling action results in one or more of the following types

of models:

• Scenario-based models of requirements from the point of view of various

system “actors”

• Data models that depict the information domain for the problem

• Class-oriented models that represent object-oriented classes (attributes and

operations) and the manner in which classes collaborate to achieve system

requirements

• Flow-oriented models that represent the functional elements of the system

and how they transform data as it moves through the system

• Behavioral models that depict how the software behaves as a consequence of

external “events”

These models provide a software designer with information that can be translated

to architectural, interface, and component-level designs. Finally, the requirements

model (and the software requirements specification) provides the developer and the

customer with the means to assess quality once software is built.

In this chapter, I focus on scenario-based modeling—a technique that is growing

increasingly popular throughout the software engineering community; data

modeling—a more specialized technique that is particularly appropriate when an

application must create or manipulate a complex information space; and class

CHAPTER 6 REQUIREMENTS MODELING: SCENARIOS, INFORMATION, AND ANALYSIS CLASSES 149

requirements
modeling 153
scenario-based
modeling 154
swimlane
diagram 162
UML models 161
use cases 156

uote:

“Any one ‘view’
of requirements
is insufficient
to understand
or describe the
desired behavior of
a complex system.”

Alan M. Davis

The analysis model
and requirements
specification provide
a means for assessing
quality once the
software is built.

pre75977_ch06.qxd 11/27/08 3:34 PM Page 149

150 PART TWO MODELING

modeling—a representation of the object-oriented classes and the resultant collabo-

rations that allow a system to function. Flow-oriented models, behavioral models,

pattern-based modeling, and WebApp models are discussed in Chapter 7.

6.1.1 Overall Objectives and Philosophy

Throughout requirements modeling, your primary focus is on what, not how. What

user interaction occurs in a particular circumstance, what objects does the system

manipulate, what functions must the system perform, what behaviors does the sys-

tem exhibit, what interfaces are defined, and what constraints apply?2

In earlier chapters, I noted that complete specification of requirements may not

be possible at this stage. The customer may be unsure of precisely what is required

for certain aspects of the system. The developer may be unsure that a specific ap-

proach will properly accomplish function and performance. These realities mitigate

in favor of an iterative approach to requirements analysis and modeling. The analyst

should model what is known and use that model as the basis for design of the soft-

ware increment.3

The requirements model must achieve three primary objectives: (1) to describe

what the customer requires, (2) to establish a basis for the creation of a software de-

sign, and (3) to define a set of requirements that can be validated once the software

is built. The analysis model bridges the gap between a system-level description that

describes overall system or business functionality as it is achieved by applying soft-

ware, hardware, data, human, and other system elements and a software design

(Chapters 8 through 13) that describes the software’s application architecture, user in-

terface, and component-level structure. This relationship is illustrated in Figure 6.1.

uote:

“Requirements are
not architecture.
Requirements
are not design, nor
are they the
user interface.
Requirements are
need.”

Andrew Hunt
and David
Thomas

2 It should be noted that as customers become more technologically sophisticated, there is a trend
toward the specification of how as well as what. However, the primary focus should remain on
what.

3 Alternatively, the software team may choose to create a prototype (Chapter 2) in an effort to better
understand requirements for the system.

The analysis model
should describe what
the customer wants,
establish a basis for
design, and establish a
target for validation.

System
description

Analysis
model

Design
model

FIGURE 6.1

The
requirements
model as
a bridge
between the
system
description
and the design
model

pre75977_ch06.qxd 11/27/08 3:34 PM Page 150

It is important to note that all elements of the requirements model will be directly

traceable to parts of the design model. A clear division of analysis and design tasks

between these two important modeling activities is not always possible. Some

design invariably occurs as part of analysis, and some analysis will be conducted

during design.

6.1.2 Analysis Rules of Thumb

Arlow and Neustadt [Arl02] suggest a number of worthwhile rules of thumb that

should be followed when creating the analysis model:

• The model should focus on requirements that are visible within the problem or

business domain. The level of abstraction should be relatively high. “Don’t get

bogged down in details” [Arl02] that try to explain how the system will work.

• Each element of the requirements model should add to an overall understanding

of software requirements and provide insight into the information domain,

function, and behavior of the system.

• Delay consideration of infrastructure and other nonfunctional models until

design. That is, a database may be required, but the classes necessary to

implement it, the functions required to access it, and the behavior that will be

exhibited as it is used should be considered only after problem domain

analysis has been completed.

• Minimize coupling throughout the system. It is important to represent relation-

ships between classes and functions. However, if the level of “interconnect-

edness” is extremely high, effort should be made to reduce it.

• Be certain that the requirements model provides value to all stakeholders. Each

constituency has its own use for the model. For example, business stake-

holders should use the model to validate requirements; designers should use

the model as a basis for design; QA people should use the model to help plan

acceptance tests.

• Keep the model as simple as it can be. Don’t create additional diagrams when

they add no new information. Don’t use complex notational forms, when a

simple list will do.

6.1.3 Domain Analysis

In the discussion of requirements engineering (Chapter 5), I noted that analysis pat-

terns often reoccur across many applications within a specific business domain. If

these patterns are defined and categorized in a manner that allows you to recognize

and apply them to solve common problems, the creation of the analysis model is

expedited. More important, the likelihood of applying design patterns and executa-

ble software components grows dramatically. This improves time-to-market and

reduces development costs.

CHAPTER 6 REQUIREMENTS MODELING: SCENARIOS, INFORMATION, AND ANALYSIS CLASSES 151

uote:

“Problems worthy
of attack, prove
their worth by
hitting back.”

Piet Hein

WebRef
Many useful resources
for domain analysis
can be found at
www.iturls
.com/English/
Software
Engineering/
SE_mod5.asp.

Are there
basic

guidelines that
can help us as we
do requirements
analysis work?

?

pre75977_ch06.qxd 11/27/08 3:34 PM Page 151

http://www.iturls

152 PART TWO MODELING

But how are analysis patterns and classes recognized in the first place? Who de-

fines them, categorizes them, and readies them for use on subsequent projects? The

answers to these questions lie in domain analysis. Firesmith [Fir93] describes domain

analysis in the following way:

Software domain analysis is the identification, analysis, and specification of common re-

quirements from a specific application domain, typically for reuse on multiple projects

within that application domain. . . . [Object-oriented domain analysis is] the identification,

analysis, and specification of common, reusable capabilities within a specific application

domain, in terms of common objects, classes, subassemblies, and frameworks.

The “specific application domain” can range from avionics to banking, from multi-

media video games to software embedded within medical devices. The goal of do-

main analysis is straightforward: to find or create those analysis classes and/or

analysis patterns that are broadly applicable so that they may be reused.4

Using terminology that was introduced earlier in this book, domain analysis may

be viewed as an umbrella activity for the software process. By this I mean that do-

main analysis is an ongoing software engineering activity that is not connected to

any one software project. In a way, the role of a domain analyst is similar to the role

of a master toolsmith in a heavy manufacturing environment. The job of the tool-

smith is to design and build tools that may be used by many people doing similar but

not necessarily the same jobs. The role of the domain analyst5 is to discover and de-

fine analysis patterns, analysis classes, and related information that may be used by

many people working on similar but not necessarily the same applications.

Figure 6.2 [Ara89] illustrates key inputs and outputs for the domain analysis

process. Sources of domain knowledge are surveyed in an attempt to identify objects

that can be reused across the domain.

Domain analysis
doesn’t look at a
specific application, but
rather at the domain in
which the application
resides. The intent is
to identify common
problem solving
elements that are
applicable to all
applications within
the domain.

Domain
analysis

Sources of
domain

knowledge

Customer surveys

Expert advice

Current/future requirements

Existing applications

Technical literature

Domain
analysis
model

Functional models

Domain languages

Reuse standards

Class taxonomies

FIGURE 6.2 Input and output for domain analysis

4 A complementary view of domain analysis “involves modeling the domain so that software engi-
neers and other stakeholders can better learn about it . . . not all domain classes necessarily result
in the development of reusable classes . . .” [Let03a].

5 Do not make the assumption that because a domain analyst is at work, a software engineer need
not understand the application domain. Every member of a software team should have some un-
derstanding of the domain in which the software is to be placed.

pre75977_ch06.qxd 11/27/08 3:34 PM Page 152

CHAPTER 6 REQUIREMENTS MODELING: SCENARIOS, INFORMATION, AND ANALYSIS CLASSES 153

Domain Analysis

The scene: Doug Miller’s office, after
a meeting with marketing.

The players: Doug Miller, software engineering
manager, and Vinod Raman, a member of the software
engineering team.

The conversation:

Doug: I need you for a special project, Vinod. I’m going
to pull you out of the requirements gathering meetings.

Vinod (frowning): Too bad. That format actually
works . . . I was getting something out of it. What’s up?

Doug: Jamie and Ed will cover for you. Anyway,
marketing insists that we deliver the Internet capability
along with the home security function in the first release of
SafeHome. We’re under the gun on this . . . not enough
time or people, so we’ve got to solve both problems—the
PC interface and the Web interface—at once.

Vinod (looking confused): I didn’t know the plan was
set . . . we’re not even finished with requirements gathering.

Doug (a wan smile): I know, but the time lines are so
short that I decided to begin strategizing with marketing
right now . . . anyhow, we’ll revisit any tentative plan
once we have the info from all of the requirements
gathering meetings.

Vinod: Okay, what’s up? What do you want me to do?

Doug: Do you know what “domain analysis” is?

Vinod: Sort of. You look for similar patterns in Apps
that do the same kinds of things as the App you’re
building. If possible, you then steal the patterns and reuse
them in your work.

Doug: Not sure I like the word steal, but basically you
have it right. What I’d like you to do is to begin researching
existing user interfaces for systems that control something
like SafeHome. I want you to propose a set of patterns and
analysis classes that can be common to both the PC-based
interface that’ll sit in the house and the browser-based
interface that is accessible via the Internet.

Vinod: We can save time by making them the same . . .
why don’t we just do that?

Doug: Ah . . . it’s nice to have people who think like you
do. That’s the whole point—we can save time and effort if
both interfaces are nearly identical, implemented with the
same code, blah, blah, that marketing insists on.

Vinod: So you want, what—classes, analysis patterns,
design patterns?

Doug: All of ‘em. Nothing formal at this point. I just want
to get a head start on our internal analysis and design work.

Vinod: I’ll go to our class library and see what we’ve
got. I’ll also use a patterns template I saw in a book I was
reading a few months back.

Doug: Good. Go to work.

SAFEHOME

6.1.4 Requirements Modeling Approaches

One view of requirements modeling, called structured analysis, considers data and

the processes that transform the data as separate entities. Data objects are modeled

in a way that defines their attributes and relationships. Processes that manipulate

data objects are modeled in a manner that shows how they transform data as data

objects flow through the system.

A second approach to analysis modeling, called object-oriented analysis, focuses

on the definition of classes and the manner in which they collaborate with one an-

other to effect customer requirements. UML and the Unified Process (Chapter 2) are

predominantly object oriented.

Although the requirements model proposed in this book combines features of

both approaches, software teams often choose one approach and exclude all repre-

sentations from the other. The question is not which is best, but rather, what

uote:

“… analysis is
frustrating, full
of complex
interpersonal
relationships,
indefinite, and
difficult. In a word, it
is fascinating. Once
you’re hooked, the
old easy pleasures of
system building are
never again enough
to satisfy you.”

Tom DeMarco

pre75977_ch06.qxd 11/27/08 3:34 PM Page 153

154 PART TWO MODELING

combination of representations will provide stakeholders with the best model of

software requirements and the most effective bridge to software design.

Each element of the requirements model (Figure 6.3) presents the problem from

a different point of view. Scenario-based elements depict how the user interacts with

the system and the specific sequence of activities that occur as the software is used.

Class-based elements model the objects that the system will manipulate, the opera-

tions that will be applied to the objects to effect the manipulation, relationships

(some hierarchical) between the objects, and the collaborations that occur between

the classes that are defined. Behavioral elements depict how external events change

the state of the system or the classes that reside within it. Finally, flow-oriented ele-

ments represent the system as an information transform, depicting how data objects

are transformed as they flow through various system functions.

Analysis modeling leads to the derivation of each of these modeling elements.

However, the specific content of each element (i.e., the diagrams that are used to

construct the element and the model) may differ from project to project. As we have

noted a number of times in this book, the software team must work to keep it sim-

ple. Only those modeling elements that add value to the model should be used.

6.2 SCENARIO-BASED MODELING

Although the success of a computer-based system or product is measured in many

ways, user satisfaction resides at the top of the list. If you understand how end users

(and other actors) want to interact with a system, your software team will be better

able to properly characterize requirements and build meaningful analysis and design

What
different

points of view
can be used to
describe the
requirements
model?

?

uote:

“Why should we
build models? Why
not just build the
system itself? The
answer is that we
can construct
models in such a
way as to highlight,
or emphasize,
certain critical
features of a
system, while
simultaneously
de-emphasizing
other aspects of
the system.”

Ed Yourdon

Software
Requirements

Class
models
e.g.,
class diagrams
collaboration diagrams

Flow
models
e.g.,
DFDs
data models

Scenario-based
models
e.g.,
use cases
user stories

Behavioral
models
e.g.,
state diagrams
sequence diagrams

FIGURE 6.3

Elements of
the analysis
model

pre75977_ch06.qxd 11/27/08 3:34 PM Page 154

models. Hence, requirements modeling with UML6 begins with the creation of sce-

narios in the form of use cases, activity diagrams, and swimlane diagrams.

6.2.1 Creating a Preliminary Use Case

Alistair Cockburn characterizes a use case as a “contract for behavior” [Coc01b]. As

we discussed in Chapter 5, the “contract” defines the way in which an actor7 uses a

computer-based system to accomplish some goal. In essence, a use case captures

the interactions that occur between producers and consumers of information and

the system itself. In this section, I examine how use cases are developed as part

of the requirements modeling activity.8

In Chapter 5, I noted that a use case describes a specific usage scenario in straight-

forward language from the point of view of a defined actor. But how do you know

(1) what to write about, (2) how much to write about it, (3) how detailed to make your

description, and (4) how to organize the description? These are the questions that

must be answered if use cases are to provide value as a requirements modeling tool.

What to write about? The first two requirements engineering tasks—inception

and elicitation—provide you with the information you’ll need to begin writing use

cases. Requirements gathering meetings, QFD, and other requirements engineering

mechanisms are used to identify stakeholders, define the scope of the problem, spec-

ify overall operational goals, establish priorities, outline all known functional re-

quirements, and describe the things (objects) that will be manipulated by the system.

To begin developing a set of use cases, list the functions or activities performed

by a specific actor. You can obtain these from a list of required system functions,

through conversations with stakeholders, or by an evaluation of activity diagrams

(Section 6.3.1) developed as part of requirements modeling.

CHAPTER 6 REQUIREMENTS MODELING: SCENARIOS, INFORMATION, AND ANALYSIS CLASSES 155

uote:

“[Use cases] are
simply an aid to
defining what
exists outside the
system (actors)
and what should be
performed by the
system (use
cases).”

Ivar Jacobson

In some situations, use
cases become the
dominant requirements
engineering
mechanism. However,
this does not mean
that you should discard
other modeling
methods when they
are appropriate.

6 UML will be used as the modeling notation throughout this book. Appendix 1 provides a brief tuto-
rial for those readers who may be unfamiliar with basic UML notation.

7 An actor is not a specific person, but rather a role that a person (or a device) plays within a specific
context. An actor “calls on the system to deliver one of its services” [Coc01b].

8 Use cases are a particularly important part of analysis modeling for user interfaces. Interface analy-
sis is discussed in detail in Chapter 11.

The scene: A meeting room, during
the second requirements gathering meeting.

The players: Jamie Lazar, software team member;
Ed Robbins, software team member; Doug Miller,
software engineering manager; three members of
marketing; a product engineering representative; and a
facilitator.

The conversation:

Facilitator: It’s time that we begin talking about
the SafeHome surveillance function. Let’s develop
a user scenario for access to the surveillance
function.

Jamie: Who plays the role of the actor on this?

SAFEHOME

Developing Another Preliminary User Scenario

pre75977_ch06.qxd 11/27/08 3:34 PM Page 155

156 PART TWO MODELING

The SafeHome home surveillance function (subsystem) discussed in the sidebar

identifies the following functions (an abbreviated list) that are performed by the

homeowner actor:

• Select camera to view.

• Request thumbnails from all cameras.

• Display camera views in a PC window.

• Control pan and zoom for a specific camera.

• Selectively record camera output.

• Replay camera output.

• Access camera surveillance via the Internet.

As further conversations with the stakeholder (who plays the role of a homeowner)

progress, the requirements gathering team develops use cases for each of the func-

tions noted. In general, use cases are written first in an informal narrative fashion. If

more formality is required, the same use case is rewritten using a structured format

similar to the one proposed in Chapter 5 and reproduced later in this section as a

sidebar.

Facilitator: I think Meredith (a marketing person) has
been working on that functionality. Why don’t you play
the role?

Meredith: You want to do it the same way we did it last
time, right?

Facilitator: Right . . . same way.

Meredith: Well, obviously the reason for surveillance is
to allow the homeowner to check out the house while he
or she is away, to record and play back video that is
captured . . . that sort of thing.

Ed: Will we use compression to store the video?

Facilitator: Good question, Ed, but let’s postpone
implementation issues for now. Meredith?

Meredith: Okay, so basically there are two parts to the
surveillance function . . . the first configures the system
including laying out a floor plan—we have to have tools
to help the homeowner do this—and the second part is
the actual surveillance function itself. Since the layout is
part of the configuration activity, I’ll focus on the
surveillance function.

Facilitator (smiling): Took the words right out of my
mouth.

Meredith: Um . . . I want to gain access to the
surveillance function either via the PC or via the Internet.
My feeling is that the Internet access would be more
frequently used. Anyway, I want to be able to display
camera views on a PC and control pan and zoom for a
specific camera. I specify the camera by selecting it from
the house floor plan. I want to selectively record camera
output and replay camera output. I also want to be able
to block access to one or more cameras with a specific
password. I also want the option of seeing small windows
that show views from all cameras and then be able to
pick the one I want enlarged.

Jamie: Those are called thumbnail views.

Meredith: Okay, then I want thumbnail views of
all the cameras. I also want the interface for the
surveillance function to have the same look and feel
as all other SafeHome interfaces. I want it to be
intuitive, meaning I don’t want to have to read a manual
to use it.

Facilitator: Good job. Now, let’s go into this function in
a bit more detail . . .

pre75977_ch06.qxd 11/27/08 3:34 PM Page 156

To illustrate, consider the function access camera surveillance via the Internet—

display camera views (ACS-DCV). The stakeholder who takes on the role of the

homeowner actor might write the following narrative:

Use case: Access camera surveillance via the Internet—display camera views

(ACS-DCV)

Actor: homeowner

If I’m at a remote location, I can use any PC with appropriate browser software to log

on to the SafeHome Products website. I enter my user ID and two levels of passwords and

once I’m validated, I have access to all functionality for my installed SafeHome system. To

access a specific camera view, I select “surveillance” from the major function buttons dis-

played. I then select “pick a camera” and the floor plan of the house is displayed. I then se-

lect the camera that I’m interested in. Alternatively, I can look at thumbnail snapshots from

all cameras simultaneously by selecting “all cameras” as my viewing choice. Once I choose

a camera, I select “view” and a one-frame-per-second view appears in a viewing window

that is identified by the camera ID. If I want to switch cameras, I select “pick a camera” and

the original viewing window disappears and the floor plan of the house is displayed again.

I then select the camera that I’m interested in. A new viewing window appears.

A variation of a narrative use case presents the interaction as an ordered sequence

of user actions. Each action is represented as a declarative sentence. Revisiting the

ACS-DCV function, you would write:

Use case: Access camera surveillance via the Internet—display camera views

(ACS-DCV)

Actor: homeowner

1. The homeowner logs onto the SafeHome Products website.

2. The homeowner enters his or her user ID.

3. The homeowner enters two passwords (each at least eight characters in length).

4. The system displays all major function buttons.

5. The homeowner selects the “surveillance” from the major function buttons.

6. The homeowner selects “pick a camera.”

7. The system displays the floor plan of the house.

8. The homeowner selects a camera icon from the floor plan.

9. The homeowner selects the “view” button.

10. The system displays a viewing window that is identified by the camera ID.

11. The system displays video output within the viewing window at one frame per

second.

It is important to note that this sequential presentation does not consider any alterna-

tive interactions (the narrative is more free-flowing and did represent a few alterna-

tives). Use cases of this type are sometimes referred to as primary scenarios [Sch98a].

CHAPTER 6 REQUIREMENTS MODELING: SCENARIOS, INFORMATION, AND ANALYSIS CLASSES 157

uote:

“Use cases can be
used in many
[software]
processes. Our
favorite is a
process that is
iterative and risk
driven.”

Geri Schneider
and Jason
Winters

pre75977_ch06.qxd 11/27/08 3:34 PM Page 157

158 PART TWO MODELING

6.2.2 Refining a Preliminary Use Case

A description of alternative interactions is essential for a complete understanding of

the function that is being described by a use case. Therefore, each step in the primary

scenario is evaluated by asking the following questions [Sch98a]:

• Can the actor take some other action at this point?

• Is it possible that the actor will encounter some error condition at this point? If

so, what might it be?

• Is it possible that the actor will encounter some other behavior at this point (e.g.,

behavior that is invoked by some event outside the actor’s control)? If so, what

might it be?

Answers to these questions result in the creation of a set of secondary scenarios that

are part of the original use case but represent alternative behavior. For example, con-

sider steps 6 and 7 in the primary scenario presented earlier:

6. The homeowner selects “pick a camera.”

7. The system displays the floor plan of the house.

Can the actor take some other action at this point? The answer is “yes.” Referring to

the free-flowing narrative, the actor may choose to view thumbnail snapshots of all

cameras simultaneously. Hence, one secondary scenario might be “View thumbnail

snapshots for all cameras.”

Is it possible that the actor will encounter some error condition at this point? Any

number of error conditions can occur as a computer-based system operates. In this

context, we consider only error conditions that are likely as a direct result of the ac-

tion described in step 6 or step 7. Again the answer to the question is “yes.” A floor

plan with camera icons may have never been configured. Hence, selecting “pick a

camera” results in an error condition: “No floor plan configured for this house.”9 This

error condition becomes a secondary scenario.

Is it possible that the actor will encounter some other behavior at this point? Again

the answer to the question is “yes.” As steps 6 and 7 occur, the system may encounter

an alarm condition. This would result in the system displaying a special alarm noti-

fication (type, location, system action) and providing the actor with a number of op-

tions relevant to the nature of the alarm. Because this secondary scenario can occur

at any time for virtually all interactions, it will not become part of the ACS-DCV use

case. Rather, a separate use case—Alarm condition encountered—would be de-

veloped and referenced from other use cases as required.

How do I
examine

alternative
courses of action
when I develop a
use case?

?

9 In this case, another actor, the system administrator, would have to configure the floor plan,
install and initialize (e.g., assign an equipment ID) all cameras, and test each camera to be certain
that it is accessible via the system and through the floor plan.

pre75977_ch06.qxd 11/27/08 3:34 PM Page 158

CHAPTER 6 REQUIREMENTS MODELING: SCENARIOS, INFORMATION, AND ANALYSIS CLASSES 159

Each of the situations described in the preceding paragraphs is characterized as

a use-case exception. An exception describes a situation (either a failure condition or

an alternative chosen by the actor) that causes the system to exhibit somewhat

different behavior.

Cockburn [Coc01b] recommends using a “brainstorming” session to derive a

reasonably complete set of exceptions for each use case. In addition to the three

generic questions suggested earlier in this section, the following issues should also

be explored:

• Are there cases in which some “validation function” occurs during this use case?

This implies that validation function is invoked and a potential error condition

might occur.

• Are there cases in which a supporting function (or actor) will fail to respond

appropriately? For example, a user action awaits a response but the function

that is to respond times out.

• Can poor system performance result in unexpected or improper user actions? For

example, a Web-based interface responds too slowly, resulting in a user

making multiple selects on a processing button. These selects queue inap-

propriately and ultimately generate an error condition.

The list of extensions developed as a consequence of asking and answering these

questions should be “rationalized” [Co01b] using the following criteria: an exception

should be noted within the use case if the software can detect the condition

described and then handle the condition once it has been detected. In some cases,

an exception will precipitate the development of another use case (to handle the

condition noted).

6.2.3 Writing a Formal Use Case

The informal use cases presented in Section 6.2.1 are sometimes sufficient for

requirements modeling. However, when a use case involves a critical activity or

describes a complex set of steps with a significant number of exceptions, a more for-

mal approach may be desirable.

The ACS-DCV use case shown in the sidebar follows a typical outline for formal

use cases. The goal in context identifies the overall scope of the use case. The

precondition describes what is known to be true before the use case is initiated.

The trigger identifies the event or condition that “gets the use case started” [Coc01b].

The scenario lists the specific actions that are required by the actor and the appro-

priate system responses. Exceptions identify the situations uncovered as the prelim-

inary use case is refined (Section 6.2.2). Additional headings may or may not be

included and are reasonably self-explanatory.

pre75977_ch06.qxd 11/27/08 3:34 PM Page 159

160 PART TWO MODELING

WebRef
When are you finished
writing use cases? For
a worthwhile discussion
of this topic, see
ootips.org/use-
cases-done.html.

In many cases, there is no need to create a graphical representation of a usage

scenario. However, diagrammatic representation can facilitate understanding, par-

ticularly when the scenario is complex. As we noted earlier in this book, UML does

provide use-case diagramming capability. Figure 6.4 depicts a preliminary use-case

diagram for the SafeHome product. Each use case is represented by an oval. Only the

ACS-DCV use case has been discussed in this section.

Use case: Access camera surveillance
via the Internet—display camera
views (ACS-DCV)

Iteration: 2, last modification: January 14 by
V. Raman.

Primary actor: Homeowner.

Goal in context: To view output of camera placed
throughout the house from any
remote location via the Internet.

Preconditions: System must be fully configured;
appropriate user ID and passwords
must be obtained.

Trigger: The homeowner decides to take
a look inside the house while
away.

Scenario:

1. The homeowner logs onto the SafeHome Products
website.

2. The homeowner enters his or her user ID.
3. The homeowner enters two passwords (each at least

eight characters in length).
4. The system displays all major function buttons.
5. The homeowner selects the “surveillance” from the

major function buttons.
6. The homeowner selects “pick a camera.”
7. The system displays the floor plan of the house.
8. The homeowner selects a camera icon from the floor

plan.
9. The homeowner selects the “view” button.

10. The system displays a viewing window that is
identified by the camera ID.

11. The system displays video output within the viewing
window at one frame per second.

Exceptions:

1. ID or passwords are incorrect or not recognized—
see use case Validate ID and passwords.

2. Surveillance function not configured for this
system—system displays appropriate error message;
see use case Configure surveillance function.

3. Homeowner selects “View thumbnail snapshots for
all camera”—see use case View thumbnail
snapshots for all cameras.

4. A floor plan is not available or has not been
configured—display appropriate error message and
see use case Configure floor plan.

5. An alarm condition is encountered—see use case
Alarm condition encountered.

Priority: Moderate priority, to be
implemented after basic functions.

When available: Third increment.

Frequency of use: Moderate frequency.

Channel to actor: Via PC-based browser and
Internet connection.

Secondary actors: System administrator, cameras.

Channels to secondary actors:
1. System administrator: PC-based system.
2. Cameras: wireless connectivity.

Open issues:

1. What mechanisms protect unauthorized use of this
capability by employees of SafeHome Products?

2. Is security sufficient? Hacking into this feature would
represent a major invasion of privacy.

3. Will system response via the Internet be acceptable
given the bandwidth required for camera views?

4. Will we develop a capability to provide video at a
higher frames-per-second rate when high-
bandwidth connections are available?

SAFEHOME

Use Case Template for Surveillance

pre75977_ch06.qxd 11/27/08 3:34 PM Page 160

Every modeling notation has limitations, and the use case is no exception. Like

any other form of written description, a use case is only as good as its author(s). If

the description is unclear, the use case can be misleading or ambiguous. A use case

focuses on functional and behavioral requirements and is generally inappropriate for

nonfunctional requirements. For situations in which the requirements model must

have significant detail and precision (e.g., safety critical systems), a use case may not

be sufficient.

However, scenario-based modeling is appropriate for a significant majority of all

situations that you will encounter as a software engineer. If developed properly, the

use case can provide substantial benefit as a modeling tool.

6.3 UML MODELS THAT SUPPLEMENT THE USE CASE

There are many requirements modeling situations in which a text-based model—

even one as simple as a use case—may not impart information in a clear and con-

cise manner. In such cases, you can choose from a broad array of UML graphical

models.

6.3.1 Developing an Activity Diagram

The UML activity diagram supplements the use case by providing a graphical repre-

sentation of the flow of interaction within a specific scenario. Similar to the flowchart,

an activity diagram uses rounded rectangles to imply a specific system function,

arrows to represent flow through the system, decision diamonds to depict a branch-

ing decision (each arrow emanating from the diamond is labeled), and solid horizon-

tal lines to indicate that parallel activities are occurring. An activity diagram for the

ACS-DCV use case is shown in Figure 6.5. It should be noted that the activity dia-

gram adds additional detail not directly mentioned (but implied) by the use case.

CHAPTER 6 REQUIREMENTS MODELING: SCENARIOS, INFORMATION, AND ANALYSIS CLASSES 161

A UML activity diagram
represents the actions
and decisions that
occur as some function
is performed.

Home-
owner

Access camera
surveillance via the

Internet

Configure SafeHome
system parameters

Set alarm

Cameras

SafeHome
FIGURE 6.4

Preliminary
use-case
diagram for
the SafeHome
system

pre75977_ch06.qxd 11/27/08 3:34 PM Page 161

162 PART TWO MODELING

For example, a user may only attempt to enter userID and password a limited num-

ber of times. This is represented by a decision diamond below “Prompt for reentry.”

6.3.2 Swimlane Diagrams

The UML swimlane diagram is a useful variation of the activity diagram and allows

you to represent the flow of activities described by the use case and at the same time

indicate which actor (if there are multiple actors involved in a specific use case) or

analysis class (discussed later in this chapter) has responsibility for the action de-

scribed by an activity rectangle. Responsibilities are represented as parallel seg-

ments that divide the diagram vertically, like the lanes in a swimming pool.

Three analysis classes—Homeowner, Camera, and Interface—have direct or

indirect responsibilities in the context of the activity diagram represented in Figure 6.5.

Enter password
and user ID

Select major
function

Valid passwords/ID

Prompt for reentry

Invalid passwords/ID

Input tries remain

No input
tries remain

Select surveillance

Other functions
may also

be selected

Thumbnail views Select a specific camera

Select camera icon

Prompt for
another view

Select specific
camera - thumbnails

Exit this function See another camera

View camera output
in labeled window

FIGURE 6.5

Activity
diagram for
Access
camera
surveillance
via the
Internet—
display
camera views
function.

A UML swimlane
diagram represents the
flow of actions and
decisions and indicates
which actors perform
each.

pre75977_ch06.qxd 11/27/08 3:34 PM Page 162

CHAPTER 6 REQUIREMENTS MODELING: SCENARIOS, INFORMATION, AND ANALYSIS CLASSES 163

Enter password
and user ID

Select major function

Valid passwords/ID

Prompt for reentry

Invalid
passwords/ID

Input tries
remain

No input
tries remain

Select surveillance

Other functions
may also be

selected

Thumbnail views Select a specific camera

Select camera icon

Generate video
output

Select specific
camera - thumbnails

Exit this
function

See
another
camera

Homeowner Camera Interface

Prompt for
another view

View camera output
in labelled window

FIGURE 6.6 Swimlane diagram for Access camera surveillance via the Internet—display camera
views function

Referring to Figure 6.6, the activity diagram is rearranged so that activities associated

with a particular analysis class fall inside the swimlane for that class. For example, the

Interface class represents the user interface as seen by the homeowner. The activity

diagram notes two prompts that are the responsibility of the interface—“prompt for

reentry” and “prompt for another view.” These prompts and the decisions associated

with them fall within the Interface swimlane. However, arrows lead from that swim-

lane back to the Homeowner swimlane, where homeowner actions occur.

Use cases, along with the activity and swimlane diagrams, are procedurally ori-

ented. They represent the manner in which various actors invoke specific functions

uote:

“A good model
guides your
thinking, a bad one
warps it.”

Brian Marick

pre75977_ch06.qxd 11/27/08 3:34 PM Page 163

164 PART TWO MODELING

(or other procedural steps) to meet the requirements of the system. But a procedural

view of requirements represents only a single dimension of a system. In Section 6.4,

I examine the information space and how data requirements can be represented.

6.4 DATA MODELING CONCEPTS

If software requirements include the need to create, extend, or interface with a data-

base or if complex data structures must be constructed and manipulated, the soft-

ware team may choose to create a data model as part of overall requirements

modeling. A software engineer or analyst defines all data objects that are processed

within the system, the relationships between the data objects, and other information

that is pertinent to the relationships. The entity-relationship diagram (ERD) addresses

these issues and represents all data objects that are entered, stored, transformed,

and produced within an application.

6.4.1 Data Objects

A data object is a representation of composite information that must be understood

by software. By composite information, I mean something that has a number of dif-

ferent properties or attributes. Therefore, width (a single value) would not be a valid

data object, but dimensions (incorporating height, width, and depth) could be

defined as an object.

A data object can be an external entity (e.g., anything that produces or consumes

information), a thing (e.g., a report or a display), an occurrence (e.g., a telephone

call) or event (e.g., an alarm), a role (e.g., salesperson), an organizational unit (e.g.,

accounting department), a place (e.g., a warehouse), or a structure (e.g., a file). For

example, a person or a car can be viewed as a data object in the sense that either

can be defined in terms of a set of attributes. The description of the data object

incorporates the data object and all of its attributes.

A data object encapsulates data only—there is no reference within a data object

to operations that act on the data.10 Therefore, the data object can be represented as

a table as shown in Figure 6.7. The headings in the table reflect attributes of the ob-

ject. In this case, a car is defined in terms of make, model, ID number, body type, color,

and owner. The body of the table represents specific instances of the data object. For

example, a Chevy Corvette is an instance of the data object car.

6.4.2 Data Attributes

Data attributes define the properties of a data object and take on one of three different

characteristics. They can be used to (1) name an instance of the data object, (2) describe

the instance, or (3) make reference to another instance in another table. In addition,

one or more of the attributes must be defined as an identifier—that is, the identifier

WebRef
Useful information on
data modeling can be
found at www
.datamodel.org.

How does a
data object

manifest itself
within the context
of an application?

?

A data object is a
representation of any
composite information
that is processed by
software.

Attributes name a data
object, describe its
characteristics, and in
some cases, make
reference to another
object.

10 This distinction separates the data object from the class or object defined as part of the object-
oriented approach (Appendix 2).

pre75977_ch06.qxd 11/27/08 3:34 PM Page 164

CHAPTER 6 REQUIREMENTS MODELING: SCENARIOS, INFORMATION, AND ANALYSIS CLASSES 165

11 Readers who are unfamiliar with object-oriented concepts and terminology should refer to the brief
tutorial presented in Appendix 2.

Make Model ID# Body type Color Owner

Identifier

Instance
Lexus
Chevy
BMW
Ford

LS400
Corvette
750iL
Taurus

AB123. . .
X456. . .
XZ765. . .
Q12A45. . .

Sedan
Sports
Coupe
Sedan

White
Red
White
Blue

RSP
CCD
LJL
BLF

Ties one data object to another,
in this case, owner

Naming
attributes

Descriptive
attributes

Referential
attributes

FIGURE 6.7

Tabular
representation
of data objects

attribute becomes a “key” when we want to find an instance of the data object. In some

cases, values for the identifier(s) are unique, although this is not a requirement. Refer-

ring to the data object car, a reasonable identifier might be the ID number.

The set of attributes that is appropriate for a given data object is determined

through an understanding of the problem context. The attributes for car might serve

well for an application that would be used by a department of motor vehicles, but

these attributes would be useless for an automobile company that needs manufac-

turing control software. In the latter case, the attributes for car might also include ID

number, body type, and color, but many additional attributes (e.g., interior code, drive train

type, trim package designator, transmission type) would have to be added to make car a

meaningful object in the manufacturing control context.

A common question occurs when data objects
are discussed: Is a data object the same thing

as an object-oriented11 class? The answer is “no.”
A data object defines a composite data item; that is,

it incorporates a collection of individual data items
(attributes) and gives the collection of items a name (the
name of the data object).

An object-oriented class encapsulates data attributes
but also incorporates the operations (methods) that

manipulate the data implied by those attributes.
In addition, the definition of classes implies a
comprehensive infrastructure that is part of the object-
oriented software engineering approach. Classes
communicate with one another via messages, they can
be organized into hierarchies, and they provide
inheritance characteristics for objects that are an
instance of a class.

INFO

6.4.3 Relationships

Data objects are connected to one another in different ways. Consider the two data

objects, person and car. These objects can be represented using the simple notation

WebRef
A concept called
“normalization” is
important to those who
intend to do thorough
data modeling. A
useful introduction
can be found at
www
.datamodel.org.

Data Objects and Object-Oriented Classes—Are They the Same Thing?

pre75977_ch06.qxd 11/27/08 3:34 PM Page 165

166 PART TWO MODELING

INFO

person car

(a) A basic connection between data
objects

owns
insured to

drive

(b) Relationships between data
objects

person car

FIGURE 6.8

Relationships
between data
objects

illustrated in Figure 6.8a. A connection is established between person and car

because the two objects are related. But what are the relationships? To determine the

answer, you should understand the role of people (owners, in this case) and cars

within the context of the software to be built. You can establish a set of object/

relationship pairs that define the relevant relationships. For example,

• A person owns a car.

• A person is insured to drive a car.

The relationships owns and insured to drive define the relevant connections between

person and car. Figure 6.8b illustrates these object-relationship pairs graphically.

The arrows noted in Figure 6.8b provide important information about the direction-

ality of the relationship and often reduce ambiguity or misinterpretations.

12 Although the ERD is still used in some database design applications, UML notation (Appendix 1)
can now be used for data design.

13 The cardinality of an object-relationship pair specifies “the number of occurrences of one [object]
that can be related to the number of occurrences of another [object]” {Til93]. The modality of a re-
lationship is 0 if there is no explicit need for the relationship to occur or the relationship is optional.
The modality is 1 if an occurrence of the relationship is mandatory.

Relationships indicate
the manner in which
data objects are
connected to one
another.

Entity-Relationship Diagrams
The object-relationship pair is the cornerstone
of the data model. These pairs can be

represented graphically using the entity-relationship
diagram (ERD).12 The ERD was originally proposed by
Peter Chen [Che77] for the design of relational database
systems and has been extended by others. A set of
primary components is identified for the ERD: data objects,
attributes, relationships, and various type indicators. The
primary purpose of the ERD is to represent data objects
and their relationships.

Rudimentary ERD notation has already been
introduced. Data objects are represented by a labeled
rectangle. Relationships are indicated with a labeled line
connecting objects. In some variations of the ERD, the
connecting line contains a diamond that is labeled with the
relationship. Connections between data objects and
relationships are established using a variety of special
symbols that indicate cardinality and modality.13 If you
desire further information about data modeling and the
entity-relationship diagram, see [Hob06] or [Sim05].

pre75977_ch06.qxd 11/27/08 3:34 PM Page 166

6.5 CLASS-BASED MODELING

Class-based modeling represents the objects that the system will manipulate, the

operations (also called methods or services) that will be applied to the objects to

effect the manipulation, relationships (some hierarchical) between the objects, and

the collaborations that occur between the classes that are defined. The elements

of a class-based model include classes and objects, attributes, operations, class-

responsibility-collaborator (CRC) models, collaboration diagrams, and packages.

The sections that follow present a series of informal guidelines that will assist in

their identification and representation.

6.5.1 Identifying Analysis Classes

If you look around a room, there is a set of physical objects that can be easily iden-

tified, classified, and defined (in terms of attributes and operations). But when you

“look around” the problem space of a software application, the classes (and objects)

may be more difficult to comprehend.

We can begin to identify classes by examining the usage scenarios developed as

part of the requirements model and performing a “grammatical parse” [Abb83] on

the use cases developed for the system to be built. Classes are determined by un-

derlining each noun or noun phrase and entering it into a simple table. Synonyms

should be noted. If the class (noun) is required to implement a solution, then it is part

of the solution space; otherwise, if a class is necessary only to describe a solution, it

is part of the problem space.

CHAPTER 6 REQUIREMENTS MODELING: SCENARIOS, INFORMATION, AND ANALYSIS CLASSES 167

Data Modeling

Objective: Data modeling tools provide a
software engineer with the ability to represent

data objects, their characteristics, and their relationships.
Used primarily for large database applications and other
information systems projects, data modeling tools provide
an automated means for creating comprehensive entity-
relation diagrams, data object dictionaries, and related
models.

Mechanics: Tools in this category enable the user to
describe data objects and their relationships. In some cases,
the tools use ERD notation. In others, the tools model relations
using some other mechanism. Tools in this category are often
used as part of database design and enable the creation of
a database model by generating a database schema for
common database management systems (DBMS).

Representative Tools:14

AllFusion ERWin, developed by Computer Associates
(www3.ca.com), assists in the design of data objects,
proper structure, and key elements for databases.

ER/Studio, developed by Embarcadero Software
(www.embarcadero.com), supports entity-
relationship modeling.

Oracle Designer, developed by Oracle Systems
(www.oracle.com), “models business processes,
data entities and relationships [that] are transformed
into designs from which complete applications and
databases are generated.”

Visible Analyst, developed by Visible Systems
(www.visible.com), supports a variety of analysis
modeling functions including data modeling.

SOFTWARE TOOLS

14 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.
In most cases, tool names are trademarked by their respective developers.

uote:

“The really hard
problem is
discovering what
are the right
objects [classes] in
the first place.”

Carl Argila

pre75977_ch06.qxd 11/27/08 3:34 PM Page 167

http://www.embarcadero.com
http://www.oracle.com
http://www.visible.com
http://www.oracle.com
http://www.visible.com

168 PART TWO MODELING

But what should we look for once all of the nouns have been isolated? Analysis

classes manifest themselves in one of the following ways:

• External entities (e.g., other systems, devices, people) that produce or

consume information to be used by a computer-based system.

• Things (e.g., reports, displays, letters, signals) that are part of the information

domain for the problem.

• Occurrences or events (e.g., a property transfer or the completion of a series

of robot movements) that occur within the context of system operation.

• Roles (e.g., manager, engineer, salesperson) played by people who interact

with the system.

• Organizational units (e.g., division, group, team) that are relevant to an appli-

cation.

• Places (e.g., manufacturing floor or loading dock) that establish the context of

the problem and the overall function of the system.

• Structures (e.g., sensors, four-wheeled vehicles, or computers) that define a

class of objects or related classes of objects.

This categorization is but one of many that have been proposed in the literature.15

For example, Budd [Bud96] suggests a taxonomy of classes that includes producers

(sources) and consumers (sinks) of data, data managers, view or observer classes, and

helper classes.

It is also important to note what classes or objects are not. In general, a class

should never have an “imperative procedural name” [Cas89]. For example, if the de-

velopers of software for a medical imaging system defined an object with the name

InvertImage or even ImageInversion, they would be making a subtle mistake. The

Image obtained from the software could, of course, be a class (it is a thing that is

part of the information domain). Inversion of the image is an operation that is ap-

plied to the object. It is likely that inversion would be defined as an operation for the

object Image, but it would not be defined as a separate class to connote “image

inversion.” As Cashman [Cas89] states: “the intent of object-orientation is to encap-

sulate, but still keep separate, data and operations on the data.”

To illustrate how analysis classes might be defined during the early stages of mod-

eling, consider a grammatical parse (nouns are underlined, verbs italicized) for a

processing narrative16 for the SafeHome security function.

How do
analysis

classes manifest
themselves as
elements of the
solution space?

?

15 Another important categorization, defining entity, boundary, and controller classes, is discussed in
Section 6.5.4.

16 A processing narrative is similar to the use case in style but somewhat different in purpose. The
processing narrative provides an overall description of the function to be developed. It is not a sce-
nario written from one actor’s point of view. It is important to note, however, that a grammatical
parse can also be used for every use case developed as part of requirements gathering (elicitation).

pre75977_ch06.qxd 11/27/08 3:34 PM Page 168

The SafeHome security function enables the homeowner to configure the security system

when it is installed, monitors all sensors connected to the security system, and interacts

with the homeowner through the Internet, a PC, or a control panel.

During installation, the SafeHome PC is used to program and configure the system.

Each sensor is assigned a number and type, a master password is programmed for arming

and disarming the system, and telephone number(s) are input for dialing when a sensor

event occurs.

When a sensor event is recognized, the software invokes an audible alarm attached to

the system. After a delay time that is specified by the homeowner during system configu-

ration activities, the software dials a telephone number of a monitoring service, provides

information about the location, reporting the nature of the event that has been detected.

The telephone number will be redialed every 20 seconds until telephone connection is

obtained.

The homeowner receives security information via a control panel, the PC, or a browser,

collectively called an interface. The interface displays prompting messages and system

status information on the control panel, the PC ,or the browser window. Homeowner in-

teraction takes the following form . . .

Extracting the nouns, we can propose a number of potential classes:

Potential Class General Classification

homeowner role or external entity

sensor external entity

control panel external entity

installation occurrence

system (alias security system) thing

number, type not objects, attributes of sensor

master password thing

telephone number thing

sensor event occurrence

audible alarm external entity

monitoring service organizational unit or external entity

The list would be continued until all nouns in the processing narrative have been

considered. Note that I call each entry in the list a potential object. You must consider

each further before a final decision is made.

Coad and Yourdon [Coa91] suggest six selection characteristics that should be

used as you consider each potential class for inclusion in the analysis model:

1. Retained information. The potential class will be useful during analysis only if

information about it must be remembered so that the system can function.

2. Needed services. The potential class must have a set of identifiable operations

that can change the value of its attributes in some way.

CHAPTER 6 REQUIREMENTS MODELING: SCENARIOS, INFORMATION, AND ANALYSIS CLASSES 169

The grammatical parse
is not foolproof, but it
can provide you with
an excellent jump
start, if you’re strug-
gling to define data
objects and the trans-
forms that operate on
them.

How do I
determine

whether a
potential class
should, in fact,
become an
analysis class?

?

pre75977_ch06.qxd 11/27/08 3:34 PM Page 169

170 PART TWO MODELING

3. Multiple attributes. During requirement analysis, the focus should be on

“major” information; a class with a single attribute may, in fact, be useful

during design, but is probably better represented as an attribute of another

class during the analysis activity.

4. Common attributes. A set of attributes can be defined for the potential class

and these attributes apply to all instances of the class.

5. Common operations. A set of operations can be defined for the potential class

and these operations apply to all instances of the class.

6. Essential requirements. External entities that appear in the problem space and

produce or consume information essential to the operation of any solution for

the system will almost always be defined as classes in the requirements model.

To be considered a legitimate class for inclusion in the requirements model, a po-

tential object should satisfy all (or almost all) of these characteristics. The decision

for inclusion of potential classes in the analysis model is somewhat subjective, and

later evaluation may cause an object to be discarded or reinstated. However, the first

step of class-based modeling is the definition of classes, and decisions (even sub-

jective ones) must be made. With this in mind, you should apply the selection char-

acteristics to the list of potential SafeHome classes:

Potential Class Characteristic Number That Applies

homeowner rejected: 1, 2 fail even though 6 applies

sensor accepted: all apply

control panel accepted: all apply

installation rejected

system (alias security function) accepted: all apply

number, type rejected: 3 fails, attributes of sensor

master password rejected: 3 fails

telephone number rejected: 3 fails

sensor event accepted: all apply

audible alarm accepted: 2, 3, 4, 5, 6 apply

monitoring service rejected: 1, 2 fail even though 6 applies

It should be noted that (1) the preceding list is not all-inclusive, additional classes

would have to be added to complete the model; (2) some of the rejected potential

classes will become attributes for those classes that were accepted (e.g., number and

type are attributes of Sensor, and master password and telephone number may become

attributes of System); (3) different statements of the problem might cause different

“accept or reject” decisions to be made (e.g., if each homeowner had an individual

password or was identified by voice print, the Homeowner class would satisfy char-

acteristics 1 and 2 and would have been accepted).

uote:

“Classes struggle,
some classes
triumph, others are
eliminated.”

Mao Zedong

pre75977_ch06.qxd 11/27/08 3:34 PM Page 170

6.5.2 Specifying Attributes

Attributes describe a class that has been selected for inclusion in the requirements

model. In essence, it is the attributes that define the class—that clarify what is

meant by the class in the context of the problem space. For example, if we were to

build a system that tracks baseball statistics for professional baseball players, the

attributes of the class Player would be quite different than the attributes of the

same class when it is used in the context of the professional baseball pension sys-

tem. In the former, attributes such as name, position, batting average, fielding percentage,

years played, and games played might be relevant. For the latter, some of these attrib-

utes would be meaningful, but others would be replaced (or augmented) by attrib-

utes like average salary, credit toward full vesting, pension plan options chosen, mailing

address, and the like.

To develop a meaningful set of attributes for an analysis class, you should study

each use case and select those “things” that reasonably “belong” to the class. In ad-

dition, the following question should be answered for each class: “What data items

(composite and/or elementary) fully define this class in the context of the problem

at hand?”

To illustrate, we consider the System class defined for SafeHome. A homeowner

can configure the security function to reflect sensor information, alarm response

information, activation/deactivation information, identification information, and so

forth. We can represent these composite data items in the following manner:

identification information � system ID � verification phone number � system status

alarm response information � delay time � telephone number

activation/deactivation information � master password � number of allowable tries �

temporary password

Each of the data items to the right of the equal sign could be further defined to an

elementary level, but for our purposes, they constitute a reasonable list of attributes

for the System class (shaded portion of Figure 6.9).

Sensors are part of the overall SafeHome system, and yet they are not listed as

data items or as attributes in Figure 6.9. Sensor has already been defined as a class,

and multiple Sensor objects will be associated with the System class. In general,

we avoid defining an item as an attribute if more than one of the items is to be as-

sociated with the class.

6.5.3 Defining Operations

Operations define the behavior of an object. Although many different types of oper-

ations exist, they can generally be divided into four broad categories: (1) operations

that manipulate data in some way (e.g., adding, deleting, reformatting, selecting),

(2) operations that perform a computation, (3) operations that inquire about the state

CHAPTER 6 REQUIREMENTS MODELING: SCENARIOS, INFORMATION, AND ANALYSIS CLASSES 171

Attributes are the set
of data objects that
fully define the class
within the context of
the problem.

When you define
operations for an
analysis class, focus on
problem-oriented
behavior rather than
behaviors required for
implementation.

pre75977_ch06.qxd 11/27/08 3:34 PM Page 171

172 PART TWO MODELING

of an object, and (4) operations that monitor an object for the occurrence of a con-

trolling event. These functions are accomplished by operating on attributes and/or

associations (Section 6.5.5). Therefore, an operation must have “knowledge” of the

nature of the class’ attributes and associations.

As a first iteration at deriving a set of operations for an analysis class, you can

again study a processing narrative (or use case) and select those operations that rea-

sonably belong to the class. To accomplish this, the grammatical parse is again stud-

ied and verbs are isolated. Some of these verbs will be legitimate operations and can

be easily connected to a specific class. For example, from the SafeHome processing

narrative presented earlier in this chapter, we see that “sensor is assigned a number

and type” or “a master password is programmed for arming and disarming the

system.” These phrases indicate a number of things:

• That an assign() operation is relevant for the Sensor class.

• That a program() operation will be applied to the System class.

• That arm() and disarm() are operations that apply to System class.

Upon further investigation, it is likely that the operation program() will be divided into

a number of more specific suboperations required to configure the system. For ex-

ample, program() implies specifying phone numbers, configuring system character-

istics (e.g., creating the sensor table, entering alarm characteristics), and entering

password(s). But for now, we specify program() as a single operation.

In addition to the grammatical parse, you can gain additional insight into other

operations by considering the communication that occurs between objects. Objects

communicate by passing messages to one another. Before continuing with the spec-

ification of operations, I explore this matter in a bit more detail.

System

program()
display()
reset()
query()
arm()
disarm()

systemID
verificationPhoneNumber
systemStatus
delayTime
telephoneNumber
masterPassword
temporaryPassword
numberTries

FIGURE 6.9

Class diagram
for the system
class

pre75977_ch06.qxd 11/27/08 3:34 PM Page 172

CHAPTER 6 REQUIREMENTS MODELING: SCENARIOS, INFORMATION, AND ANALYSIS CLASSES 173

Class Models

The scene: Ed’s cubicle, as
requirements modeling begins.

The players: Jamie, Vinod, and Ed—all members of
the SafeHome software engineering team.

The conversation:

[Ed has been working to extract classes from the use case
template for ACS-DCV (presented in an earlier sidebar in
this chapter) and is presenting the classes he has
extracted to his colleagues.]

Ed: So when the homeowner wants to pick a camera, he
or she has to pick it from a floor plan. I’ve defined a
FloorPlan class. Here’s the diagram.

(They look at Figure 6.10.)

Jamie: So FloorPlan is an object that is put together
with walls, doors, windows, and cameras. That’s what
those labeled lines mean, right?

Ed: Yeah, they’re called “associations.” One class is
associated with another according to the associations I’ve
shown. [Associations are discussed in Section 6.5.5.]

Vinod: So the actual floor plan is made up of walls and
contains cameras and sensors that are placed within
those walls. How does the floor plan know where to put
those objects?

Ed: It doesn’t, but the other classes do. See the attributes
under, say, WallSegment, which is used to build a
wall. The wall segment has start and stop coordinates and
the draw() operation does the rest.

Jamie: And the same goes for windows and doors.
Looks like camera has a few extra attributes.

Ed: Yeah, I need them to provide pan and zoom
info.

Vinod: I have a question. Why does the camera have
an ID but the others don’t? I notice you have an attribute
called nextWall. How will WallSegment know what the
next wall will be?

Ed: Good question, but as they say, that’s a design
decision, so I’m going to delay that until . . .

Jamie: Give me a break . . . I’ll bet you’ve already
figured it out.

Ed (smiling sheepishly): True, I’m gonna use a list
structure which I’ll model when we get to design. If you
get religious about separating analysis and design, the
level of detail I have right here could be suspect.

Jamie: Looks pretty good to me, but I have a few more
questions.

(Jamie asks questions which result in minor modifications)

Vinod: Do you have CRC cards for each of the objects?
If so, we ought to role-play through them, just to make
sure nothing has been omitted.

Ed: I’m not quite sure how to do them.

Vinod: It’s not hard and they really pay off. I’ll show
you.

SAFEHOME

6.5.4 Class-Responsibility-Collaborator (CRC) Modeling

Class-responsibility-collaborator (CRC) modeling [Wir90] provides a simple means

for identifying and organizing the classes that are relevant to system or product

requirements. Ambler [Amb95] describes CRC modeling in the following way:

A CRC model is really a collection of standard index cards that represent classes. The

cards are divided into three sections. Along the top of the card you write the name of the

class. In the body of the card you list the class responsibilities on the left and the collab-

orators on the right.

In reality, the CRC model may make use of actual or virtual index cards. The intent is

to develop an organized representation of classes. Responsibilities are the attributes

and operations that are relevant for the class. Stated simply, a responsibility is

“anything the class knows or does” [Amb95]. Collaborators are those classes that are

uote:

“One purpose of
CRC cards is to fail
early, to fail often,
and to fail
inexpensively. It is
a lot cheaper to
tear up a bunch of
cards than it would
be to reorganize a
large amount of
source code.”

C. Horstmann

pre75977_ch06.qxd 11/27/08 3:34 PM Page 173

174 PART TWO MODELING

required to provide a class with the information needed to complete a responsibility.

In general, a collaboration implies either a request for information or a request for

some action.

A simple CRC index card for the FloorPlan class is illustrated in Figure 6.11. The

list of responsibilities shown on the CRC card is preliminary and subject to additions

or modification. The classes Wall and Camera are noted next to the responsibility

that will require their collaboration.

Classes. Basic guidelines for identifying classes and objects were presented

earlier in this chapter. The taxonomy of class types presented in Section 6.5.1 can be

extended by considering the following categories:

• Entity classes, also called model or business classes, are extracted directly

from the statement of the problem (e.g., FloorPlan and Sensor). These

FloorPlan

determineType()
positionFloorplan()
scale()
change color()

type
name
outsideDimensions

Camera

determineType()
translateLocation()
displayID()
displayView()
displayZoom()

type
ID
location
fieldView
panAngle
ZoomSetting

WallSegment
type
startCoordinates
stopCoordinates
nextWallSement

determineType()
draw()

Window
type
startCoordinates
stopCoordinates
nextWindow

determineType()
draw()

Is placed within

Wall
type
wallDimensions

determineType()
computeDimensions ()

Door
type
startCoordinates
stopCoordinates
nextDoor

determineType()
draw()

Is part of

Is used to build

Is used to build

Is used to build

FIGURE 6.10

Class diagram
for FloorPlan
(see sidebar
discussion)

WebRef

An excellent discussion
of these class types
can be found at
www.theumlcafe
.com/a0079.htm.

pre75977_ch06.qxd 11/27/08 3:34 PM Page 174

http://www.theumlcafe

classes typically represent things that are to be stored in a database and

persist throughout the duration of the application (unless they are specifically

deleted).

• Boundary classes are used to create the interface (e.g., interactive screen or

printed reports) that the user sees and interacts with as the software is used.

Entity objects contain information that is important to users, but they do not

display themselves. Boundary classes are designed with the responsibility of

managing the way entity objects are represented to users. For example, a

boundary class called CameraWindow would have the responsibility of

displaying surveillance camera output for the SafeHome system.

• Controller classes manage a “unit of work” [UML03] from start to finish. That

is, controller classes can be designed to manage (1) the creation or update of

entity objects, (2) the instantiation of boundary objects as they obtain infor-

mation from entity objects, (3) complex communication between sets of

objects, (4) validation of data communicated between objects or between the

user and the application. In general, controller classes are not considered

until the design activity has begun.

Responsibilities. Basic guidelines for identifying responsibilities (attributes and

operations) have been presented in Sections 6.5.2 and 6.5.3. Wirfs-Brock and her

colleagues [Wir90] suggest five guidelines for allocating responsibilities to classes:

1. System intelligence should be distributed across classes to best

address the needs of the problem. Every application encompasses a

certain degree of intelligence; that is, what the system knows and what it

can do. This intelligence can be distributed across classes in a number of

CHAPTER 6 REQUIREMENTS MODELING: SCENARIOS, INFORMATION, AND ANALYSIS CLASSES 175

Class:
Des

R e s Co llaabo rat o r :

Class:
De

Coo llabo rat o r :

Class:
D

CCo llabo rat o r :

Class: FloorPlan
Description

Responsibility: Collaborator:

Incorporates walls, doors, and windows
Shows position of video cameras

Defines floor plan name/type
Manages floor plan positioning
Scales floor plan for display
Scales floor plan for display

Wall
Camera

FIGURE 6.11

A CRC model
index card

uote:

“Objects can be
classified
scientifically into
three major
categories: those
that don’t work,
those that break
down, and those
that get lost.”

Russell Baker

What
guidelines

can be applied
for allocating
responsibilities
to classes?

?

pre75977_ch06.qxd 11/27/08 3:34 PM Page 175

176 PART TWO MODELING

different ways. “Dumb” classes (those that have few responsibilities) can

be modeled to act as servants to a few “smart” classes (those having many

responsibilities). Although this approach makes the flow of control in a

system straightforward, it has a few disadvantages: it concentrates all intelli-

gence within a few classes, making changes more difficult, and it tends to

require more classes, hence more development effort.

If system intelligence is more evenly distributed across the classes in an

application, each object knows about and does only a few things (that are

generally well focused), the cohesiveness of the system is improved.17 This

enhances the maintainability of the software and reduces the impact of side

effects due to change.

To determine whether system intelligence is properly distributed, the re-

sponsibilities noted on each CRC model index card should be evaluated to

determine if any class has an extraordinarily long list of responsibilities. This

indicates a concentration of intelligence.18 In addition, the responsibilities for

each class should exhibit the same level of abstraction. For example, among

the operations listed for an aggregate class called CheckingAccount a re-

viewer notes two responsibilities: balance-the-account and check-off-cleared-

checks. The first operation (responsibility) implies a complex mathematical

and logical procedure. The second is a simple clerical activity. Since these

two operations are not at the same level of abstraction, check-off-cleared-

checks should be placed within the responsibilities of CheckEntry, a class

that is encompassed by the aggregate class CheckingAccount.

2. Each responsibility should be stated as generally as possible. This

guideline implies that general responsibilities (both attributes and operations)

should reside high in the class hierarchy (because they are generic, they will

apply to all subclasses).

3. Information and the behavior related to it should reside within the

same class. This achieves the object-oriented principle called encapsulation.

Data and the processes that manipulate the data should be packaged as a

cohesive unit.

4. Information about one thing should be localized with a single class,

not distributed across multiple classes. A single class should take on

the responsibility for storing and manipulating a specific type of information.

This responsibility should not, in general, be shared across a number of

classes. If information is distributed, software becomes more difficult to

maintain and more challenging to test.

17 Cohesiveness is a design concept that is discussed in Chapter 8.
18 In such cases, it may be necessary to spit the class into multiple classes or complete subsystems in

order to distribute intelligence more effectively.

pre75977_ch06.qxd 11/27/08 3:34 PM Page 176

5. Responsibilities should be shared among related classes, when

appropriate. There are many cases in which a variety of related objects

must all exhibit the same behavior at the same time. As an example, consider

a video game that must display the following classes: Player, PlayerBody,

PlayerArms, PlayerLegs, PlayerHead. Each of these classes has its own

attributes (e.g., position, orientation, color, speed) and all must be updated and

displayed as the user manipulates a joystick. The responsibilities update()

and display() must therefore be shared by each of the objects noted. Player

knows when something has changed and update() is required. It collaborates

with the other objects to achieve a new position or orientation, but each

object controls its own display.

Collaborations. Classes fulfill their responsibilities in one of two ways: (1) A class

can use its own operations to manipulate its own attributes, thereby fulfilling a par-

ticular responsibility, or (2) a class can collaborate with other classes. Wirfs-Brock

and her colleagues [Wir90] define collaborations in the following way:

Collaborations represent requests from a client to a server in fulfillment of a client

responsibility. A collaboration is the embodiment of the contract between the client and

the server. . . . We say that an object collaborates with another object if, to fulfill a

responsibility, it needs to send the other object any messages. A single collaboration

flows in one direction—representing a request from the client to the server. From the

client’s point of view, each of its collaborations is associated with a particular responsi-

bility implemented by the server.

Collaborations are identified by determining whether a class can fulfill each respon-

sibility itself. If it cannot, then it needs to interact with another class. Hence, a

collaboration.

As an example, consider the SafeHome security function. As part of the activa-

tion procedure, the ControlPanel object must determine whether any sensors

are open. A responsibility named determine-sensor-status() is defined. If sensors are

open, ControlPanel must set a status attribute to “not ready.” Sensor information

can be acquired from each Sensor object. Therefore, the responsibility determine-

sensor-status() can be fulfilled only if ControlPanel works in collaboration with

Sensor.

To help in the identification of collaborators, you can examine three different

generic relationships between classes [Wir90]: (1) the is-part-of relationship, (2) the

has-knowledge-of relationship, and (3) the depends-upon relationship. Each of the

three generic relationships is considered briefly in the paragraphs that follow.

All classes that are part of an aggregate class are connected to the aggregate class

via an is-part-of relationship. Consider the classes defined for the video game noted

earlier, the class PlayerBody is-part-of Player, as are PlayerArms, PlayerLegs,

and PlayerHead. In UML, these relationships are represented as the aggregation

shown in Figure 6.12.

CHAPTER 6 REQUIREMENTS MODELING: SCENARIOS, INFORMATION, AND ANALYSIS CLASSES 177

pre75977_ch06.qxd 11/27/08 3:34 PM Page 177

178 PART TWO MODELING

When one class must acquire information from another class, the has-knowledge-

of relationship is established. The determine-sensor-status() responsibility noted ear-

lier is an example of a has-knowledge-of relationship.

The depends-upon relationship implies that two classes have a dependency that

is not achieved by has-knowledge-of or is-part-of. For example, PlayerHead must

always be connected to PlayerBody (unless the video game is particularly violent),

yet each object could exist without direct knowledge of the other. An attribute of the

PlayerHead object called center-position is determined from the center position of

PlayerBody. This information is obtained via a third object, Player, that acquires it

from PlayerBody. Hence, PlayerHead depends-upon PlayerBody.

In all cases, the collaborator class name is recorded on the CRC model index card

next to the responsibility that has spawned the collaboration. Therefore, the index

card contains a list of responsibilities and the corresponding collaborations that

enable the responsibilities to be fulfilled (Figure 6.11).

When a complete CRC model has been developed, stakeholders can review the

model using the following approach [Amb95]:

1. All participants in the review (of the CRC model) are given a subset of the

CRC model index cards. Cards that collaborate should be separated (i.e., no

reviewer should have two cards that collaborate).

2. All use-case scenarios (and corresponding use-case diagrams) should be

organized into categories.

3. The review leader reads the use case deliberately. As the review leader

comes to a named object, she passes a token to the person holding the corre-

sponding class index card. For example, a use case for SafeHome contains

the following narrative:

The homeowner observes the SafeHome control panel to determine if the system is

ready for input. If the system is not ready, the homeowner must physically close

Player

PlayerHead PlayerBody PlayerArms PlayerLegs

FIGURE 6.12

A composite
aggregate
class

pre75977_ch06.qxd 11/27/08 3:34 PM Page 178

windows/doors so that the ready indicator is present. [A not-ready indicator implies

that a sensor is open, i.e., that a door or window is open.]

When the review leader comes to “control panel,” in the use case narrative,

the token is passed to the person holding the ControlPanel index card. The

phrase “implies that a sensor is open” requires that the index card contains a

responsibility that will validate this implication (the responsibility determine-

sensor-status() accomplishes this). Next to the responsibility on the index card

is the collaborator Sensor. The token is then passed to the Sensor object.

4. When the token is passed, the holder of the Sensor card is asked to describe

the responsibilities noted on the card. The group determines whether one (or

more) of the responsibilities satisfies the use-case requirement.

5. If the responsibilities and collaborations noted on the index cards cannot

accommodate the use case, modifications are made to the cards. This may

include the definition of new classes (and corresponding CRC index cards) or

the specification of new or revised responsibilities or collaborations on

existing cards.

This modus operandi continues until the use case is finished. When all use cases

have been reviewed, requirements modeling continues.

CHAPTER 6 REQUIREMENTS MODELING: SCENARIOS, INFORMATION, AND ANALYSIS CLASSES 179

CRC Models

The scene: Ed’s cubicle, as
requirements modeling begins.

The players: Vinod and Ed—members of the
SafeHome software engineering team.

The conversation:

[Vinod has decided to show Ed how to develop CRC cards
by showing him an example.]

Vinod: While you’ve been working on surveillance and
Jamie has been tied up with security, I’ve been working
on the home management function.

Ed: What’s the status of that? Marketing kept changing
its mind.

Vinod: Here’s the first-cut use case for the whole
function . . . we’ve refined it a bit, but it should give you
an overall view . . .

Use case: SafeHome home management function.

Narrative: We want to use the home management
interface on a PC or an Internet connection to control
electronic devices that have wireless interface controllers.

The system should allow me to turn specific lights on and
off, to control appliances that are connected to a wireless
interface, to set my heating and air conditioning system to
temperatures that I define. To do this, I want to select the
devices from a floor plan of the house. Each device must
be identified on the floor plan. As an optional feature, I
want to control all audiovisual devices—audio, television,
DVD, digital recorders, and so forth.

With a single selection, I want to be able to set the
entire house for various situations. One is home, another
is away, a third is overnight travel, and a fourth is
extended travel. All of these situations will have settings
that will be applied to all devices. In the overnight travel
and extended travel states, the system should turn lights
on and off at random intervals (to make it look like
someone is home) and control the heating and air
conditioning system. I should be able to override these
setting via the Internet with appropriate password
protection . . .

Ed: The hardware guys have got all the wireless
interfacing figured out?

SAFEHOME

pre75977_ch06.qxd 11/27/08 3:34 PM Page 179

180 PART TWO MODELING

6.5.5 Associations and Dependencies

In many instances, two analysis classes are related to one another in some fashion,

much like two data objects may be related to one another (Section 6.4.3). In UML

these relationships are called associations. Referring back to Figure 6.10, the

FloorPlan class is defined by identifying a set of associations between FloorPlan

and two other classes, Camera and Wall. The class Wall is associated with

three classes that allow a wall to be constructed, WallSegment, Window,

and Door.

In some cases, an association may be further defined by indicating multiplicity. Re-

ferring to Figure 6.10, a Wall object is constructed from one or more WallSegment

objects. In addition, the Wall object may contain 0 or more Window objects and 0

or more Door objects. These multiplicity constraints are illustrated in Figure 6.13,

where “one or more” is represented using 1. .*, and “0 or more” by 0 . .*. In UML, the

asterisk indicates an unlimited upper bound on the range.19

Vinod (smiling): They’re working on it; say it’s no
problem. Anyway, I extracted a bunch of classes for
home management and we can use one as an example.
Let’s use the HomeManagementInterface class.

Ed: Okay . . . so the responsibilities are what . . . the
attributes and operations for the class and the
collaborations are the classes that the responsibilities
point to.

Vinod: I thought you didn’t understand CRC.

Ed: Maybe a little, but go ahead.

Vinod: So here’s my class definition for
HomeManagementInterface.

Attributes:

optionsPanel—contains info on buttons that enable user to
select functionality.

situationPanel—contains info on buttons that enable user
to select situation.

floorplan—same as surveillance object but this one
displays devices.

deviceIcons—info on icons representing lights,
appliances, HVAC, etc.

devicePanels—simulation of appliance or device control
panel; allows control.

Operations:

displayControl(), selectControl(), displaySituation(), select
situation(), accessFloorplan(), selectDeviceIcon(),
displayDevicePanel(), accessDevicePanel(), . . .

Class: HomeManagementInterface

Responsibility Collaborator

displayControl() OptionsPanel (class)

selectControl() OptionsPanel (class)

displaySituation() SituationPanel (class)

selectSituation() SituationPanel (class)

accessFloorplan() FloorPlan (class) . . .

. . .

Ed: So when the operation accessFloorplan() is invoked,
it collaborates with the FloorPlan object just like the one
we developed for surveillance. Wait, I have a description
of it here. (They look at Figure 6.10.)

Vinod: Exactly. And if we wanted to review the entire
class model, we could start with this index card, then go
to the collaborator’s index card, and from there to one of
the collaborator’s collaborators, and so on.

Ed: Good way to find omissions or errors.

Vinod: Yep.

An association defines
a relationship between
classes. Multiplicity
defines how many of
one class are related to
how many of another
class.

19 Other multiplicity relations—one to one, one to many, many to many, one to a specified range with
lower and upper limits, and others—may be indicated as part of an association.

pre75977_ch06.qxd 11/27/08 3:34 PM Page 180

In many instances, a client-server relationship exists between two analysis

classes. In such cases, a client class depends on the server class in some way and a

dependency relationship is established. Dependencies are defined by a stereotype. A

stereotype is an “extensibility mechanism” [Arl02] within UML that allows you to

define a special modeling element whose semantics are custom defined. In UML

stereotypes are represented in double angle brackets (e.g., <<stereotype>>).

As an illustration of a simple dependency within the SafeHome surveillance sys-

tem, a Camera object (in this case, the server class) provides a video image to a

DisplayWindow object (in this case, the client class). The relationship between

these two objects is not a simple association, yet a dependency association does

exist. In a use case written for surveillance (not shown), you learn that a special pass-

word must be provided in order to view specific camera locations. One way to

achieve this is to have Camera request a password and then grant permission to the

DisplayWindow to produce the video display. This can be represented as shown in

Figure 6.14 where <<access>> implies that the use of the camera output is controlled

by a special password.

CHAPTER 6 REQUIREMENTS MODELING: SCENARIOS, INFORMATION, AND ANALYSIS CLASSES 181

WallSegment Window Door

Wall

Is used to buildIs used to build

Is used to build1..*

1 1 1

0..* 0..*

FIGURE 6.13

Multiplicity

CameraDisplayWindow

{password}

<<access>>

FIGURE 6.14

Dependencies

What is a
stereotype??

pre75977_ch06.qxd 11/27/08 3:34 PM Page 181

182 PART TWO MODELING

6.5.6 Analysis Packages

An important part of analysis modeling is categorization. That is, various elements

of the analysis model (e.g., use cases, analysis classes) are categorized in a manner

that packages them as a grouping—called an analysis package—that is given a rep-

resentative name.

To illustrate the use of analysis packages, consider the video game that I intro-

duced earlier. As the analysis model for the video game is developed, a large num-

ber of classes are derived. Some focus on the game environment—the visual scenes

that the user sees as the game is played. Classes such as Tree, Landscape, Road,

Wall, Bridge, Building, and VisualEffect might fall within this category. Others

focus on the characters within the game, describing their physical features, actions,

and constraints. Classes such as Player (described earlier), Protagonist, Antago-

nist, and SupportingRoles might be defined. Still others describe the rules of the

game—how a player navigates through the environment. Classes such as

RulesOfMovement and ConstraintsOnAction are candidates here. Many other

categories might exist. These classes can be grouped in analysis packages as shown

in Figure 6.15.

The plus sign preceding the analysis class name in each package indicates that

the classes have public visibility and are therefore accessible from other packages.

Although they are not shown in the figure, other symbols can precede an element

within a package. A minus sign indicates that an element is hidden from all other

packages and a # symbol indicates that an element is accessible only to packages

contained within a given package.

Environment
+Tree
+Landscape
+Road
+Wall
+Bridge
+Building
+VisualEffect
+Scene

Characters
+Player
+Protagonist
+Antagonist
+SupportingRole

RulesOfTheGame
+RulesOfMovement
+ConstraintsOnAction

Package name
FIGURE 6.15

Packages

A package is used to
assemble a collection
of related classes.

pre75977_ch06.qxd 11/27/08 3:34 PM Page 182

6.6 SUMMARY

The objective of requirements modeling is to create a variety of representations that

describe what the customer requires, establish a basis for the creation of a software

design, and define a set of requirements that can be validated once the software is

built. The requirements model bridges the gap between a system-level representation

that describes overall system and business functionality and a software design that

describes the software’s application architecture, user interface, and component-

level structure.

Scenario-based models depict software requirements from the user’s point of

view. The use case—a narrative or template-driven description of an interaction

between an actor and the software—is the primary modeling element. Derived

during requirements elicitation, the use case defines the keys steps for a specific

function or interaction. The degree of use-case formality and detail varies, but the

end result provides necessary input to all other analysis modeling activities. Sce-

narios can also be described using an activity diagram—a flowchart-like graphical

representation that depicts the processing flow within a specific scenario. Swim-

lane diagrams illustrate how the processing flow is allocated to various actors or

classes.

Data modeling is used to describe the information space that will be constructed

or manipulated by the software. Data modeling begins by representing data

objects—composite information that must be understood by the software. The

attributes of each data object are identified and relationships between data objects

are described.

Class-based modeling uses information derived from scenario-based and data

modeling elements to identify analysis classes. A grammatical parse may be used to

extract candidate classes, attributes, and operations from text-based narratives.

Criteria for the definition of a class are defined. A set of class-responsibility-

collaborator index cards can be used to define relationships between classes. In

addition, a variety of UML modeling notation can be applied to define hierarchies,

relationships, associations, aggregations, and dependencies among classes. Analy-

sis packages are used to categorize and group classes in a manner that makes them

more manageable for large systems.

PROBLEMS AND POINTS TO PONDER

6.1. Is it possible to begin coding immediately after an analysis model has been created?
Explain your answer and then argue the counterpoint.

6.2. An analysis rule of thumb is that the model “should focus on requirements that are visible
within the problem or business domain.” What types of requirements are not visible in these do-
mains? Provide a few examples.

6.3. What is the purpose of domain analysis? How is it related to the concept of requirements
patterns?

CHAPTER 6 REQUIREMENTS MODELING: SCENARIOS, INFORMATION, AND ANALYSIS CLASSES 183

pre75977_ch06.qxd 11/27/08 3:34 PM Page 183

184 PART TWO MODELING

6.4. Is it possible to develop an effective analysis model without developing all four elements
shown in Figure 6.3? Explain.

6.5. You have been asked to build one of the following systems:

a. a network-based course registration system for your university.
b. a Web-based order-processing system for a computer store.
c. a simple invoicing system for a small business.
d. an Internet-based cookbook that is built into an electric range or microwave.

Select the system that is of interest to you and develop an entity-relationship diagram that de-
scribes data objects, relationships, and attributes.

6.6. The department of public works for a large city has decided to develop a Web-based pot-
hole tracking and repair system (PHTRS). A description follows:

Citizens can log onto a website and report the location and severity of potholes. As pot-
holes are reported they are logged within a “public works department repair system” and
are assigned an identifying number, stored by street address, size (on a scale of 1 to 10),
location (middle, curb, etc.), district (determined from street address), and repair prior-
ity (determined from the size of the pothole). Work order data are associated with each
pothole and include pothole location and size, repair crew identifying number, number
of people on crew, equipment assigned, hours applied to repair, hole status (work in
progress, repaired, temporary repair, not repaired), amount of filler material used, and
cost of repair (computed from hours applied, number of people, material and equipment
used). Finally, a damage file is created to hold information about reported damage due
to the pothole and includes citizen’s name, address, phone number, type of damage, and
dollar amount of damage. PHTRS is an online system; all queries are to be made inter-
actively.

a. Draw a UML use case diagram for the PHTRS system. You’ll have to make a number of
assumptions about the manner in which a user interacts with this system.

b. Develop a class model for the PHTRS system.

6.7. Write a template-based use case for the SafeHome home management system described
informally in the sidebar following Section 6.5.4.

6.8. Develop a complete set of CRC model index cards on the product or system you chose as
part of Problem 6.5.

6.9. Conduct a review of the CRC index cards with your colleagues. How many additional
classes, responsibilities, and collaborators were added as a consequence of the review?

6.10. What is an analysis package and how might it be used?

FURTHER READINGS AND INFORMATION SOURCES

Use cases can serve as the foundation for all requirements modeling approaches. The subject is
discussed at length by Rosenberg and Stephens (Use Case Driven Object Modeling with UML: The-
ory and Practice, Apress, 2007), Denny (Succeeding with Use Cases: Working Smart to Deliver Qual-
ity, Addison-Wesley, 2005), Alexander and Maiden (eds.) (Scenarios, Stories, Use Cases: Through
the Systems Development Life-Cycle, Wiley, 2004), Bittner and Spence (Use Case Modeling, Addi-
son-Wesley, 2002), Cockburn [Coc01b], and other references noted in both Chapters 5 and 6.

Data modeling presents a useful method for examining the information space. Books by
Hoberman [Hob06] and Simsion and Witt [Sim05] provide reasonably comprehensive treat-
ments. In addition, Allen and Terry (Beginning Relational Data Modeling, 2d ed., Apress, 2005),
Allen (Data Modeling for Everyone, Wrox Press, 2002), Teorey and his colleagues (Database
Modeling and Design: Logical Design, 4th ed., Morgan Kaufmann, 2005), and Carlis and
Maguire (Mastering Data Modeling, Addison-Wesley, 2000) present detailed tutorials for creating

pre75977_ch06.qxd 11/27/08 3:34 PM Page 184

CHAPTER 6 REQUIREMENTS MODELING: SCENARIOS, INFORMATION, AND ANALYSIS CLASSES 185

industry-quality data models. An interesting book by Hay (Data Modeling Patterns, Dorset House,
1995) presents typical data model patterns that are encountered in many different businesses.

UML modeling techniques that can be applied for both analysis and design are discussed by
O’Docherty (Object-Oriented Analysis and Design: Understanding System Development with UML
2.0, Wiley, 2005), Arlow and Neustadt (UML 2 and the Unified Process, 2d ed., Addison-Wesley,
2005), Roques (UML in Practice, Wiley, 2004), Dennis and his colleagues (Systems Analysis and
Design with UML Version 2.0, Wiley, 2004), Larman (Applying UML and Patterns, 2d ed., Prentice-
Hall, 2001), and Rosenberg and Scott (Use Case Driven Object Modeling with UML, Addison-
Wesley, 1999).

A wide variety of information sources on requirements modeling are available on the
Internet. An up-to-date list of World Wide Web references that are relevant to analysis
modeling can be found at the SEPA website: www.mhhe.com/engcs/compsci/pressman/
professional/olc/ser.htm.

pre75977_ch06.qxd 11/27/08 3:34 PM Page 185

http://www.mhhe.com/engcs/compsci/pressman/

A fter my discussion of use cases, data modeling, and class-based models
in Chapter 6, it’s reasonable to ask, “Aren’t those requirements modeling
representations enough?”

The only reasonable answer is, “That depends.”
For some types of software, the use case may be the only requirements mod-

eling representation that is required. For others, an object-oriented approach is
chosen and class-based models may be developed. But in other situations, com-
plex application requirements may demand an examination of how data objects
are transformed as they move through a system; how an application behaves as
a consequence of external events; whether existing domain knowledge can be
adapted to the current problem; or in the case of Web-based systems and appli-
cations, how content and functionality meld to provide an end user with the abil-
ity to successfully navigate a WebApp to achieve usage goals.

7.1 REQUIREMENTS MODELING STRATEGIES

One view of requirements modeling, called structured analysis, considers data and

the processes that transform the data as separate entities. Data objects are mod-

eled in a way that defines their attributes and relationships. Processes that

manipulate data objects are modeled in a manner that shows how they transform

data as data objects flow through the system. A second approach to analysis

186

C H A P T E R

7 REQUIREMENTS MODELING: FLOW,
BEHAVIOR, PATTERNS, AND WEBAPPS

K E Y
C O N C E P T S

analysis
patterns200
behavioral
model 195
configuration
model 211
content model . .207
control flow
model 191
data flow
model 188
functional
model 210
interaction
model 209
navigation
modeling 212
process
specification . . .192
sequence
diagrams 197
WebApps 205

What is it? The requirements model
has many different dimensions. In
this chapter you’ll learn about flow-

oriented models, behavioral models, and the spe-
cial requirements analysis considerations that
come into play when WebApps are developed.
Each of these modeling representations supple-
ments the use cases, data models, and class-
based models discussed in Chapter 6.

Who does it? A software engineer (sometimes
called an “analyst”) builds the model using
requirements elicited from various stakeholders.

Q U I C K
L O O K

Why is it important? Your insight into software
requirements grows in direct proportion to the
number of different requirements modeling
dimensions. Although you may not have the
time, the resources, or the inclination to develop
every representation suggested in this chapter
and Chapter 6, recognize that each different
modeling approach provides you with a differ-
ent way of looking at the problem. As a conse-
quence, you (and other stakeholders) will be
better able to assess whether you’ve properly
specified what must be accomplished.

pre75977_ch07.qxd 11/27/08 3:36 PM Page 186

modeled, called object-oriented analysis, focuses on the definition of classes and the

manner in which they collaborate with one another to effect customer requirements.

Although the analysis model that we propose in this book combines features of

both approaches, software teams often choose one approach and exclude all repre-

sentations from the other. The question is not which is best, but rather, what com-

bination of representations will provide stakeholders with the best model of software

requirements and the most effective bridge to software design.

7.2 FLOW-ORIENTED MODELING

Although data flow-oriented modeling is perceived as an outdated technique by

some software engineers, it continues to be one of the most widely used require-

ments analysis notations in use today.1 Although the data flow diagram (DFD) and

related diagrams and information are not a formal part of UML, they can be used to

complement UML diagrams and provide additional insight into system requirements

and flow.

The DFD takes an input-process-output view of a system. That is, data objects

flow into the software, are transformed by processing elements, and resultant data

objects flow out of the software. Data objects are represented by labeled arrows, and

transformations are represented by circles (also called bubbles). The DFD is pre-

sented in a hierarchical fashion. That is, the first data flow model (sometimes called

a level 0 DFD or context diagram) represents the system as a whole. Subsequent data

flow diagrams refine the context diagram, providing increasing detail with each

subsequent level.

CHAPTER 7 REQUIREMENTS MODELING: FLOW, BEHAVIOR, PATTERNS, AND WEBAPPS 187

What are the steps? Flow-oriented modeling
provides an indication of how data objects are
transformed by processing functions. Behavioral
modeling depicts the states of the system and its
classes and the impact of events on these states.
Pattern-based modeling makes use of existing
domain knowledge to facilitate requirements
analysis. WebApp requirements models are
especially adapted for the representation of
content, interaction, function, and configuration-
related requirements.

What is the work product? A wide array of text-
based and diagrammatic forms may be chosen
for the requirements model. Each of these repre-
sentations provides a view of one or more of the
model elements.

How do I ensure that I’ve done it right?
Requirements modeling work products must be
reviewed for correctness, completeness, and
consistency. They must reflect the needs of all
stakeholders and establish a foundation from
which design can be conducted.

1 Data flow modeling is a core modeling activity in structured analysis.

Some will suggest that
the DFD is old-school
and it has no place in
modern practice. That’s
a view that excludes a
potentially useful mode
of representation at the
analysis level. If it can
help, use the DFD.

pre75977_ch07.qxd 11/27/08 3:36 PM Page 187

188 PART TWO MODELING

7.2.1 Creating a Data Flow Model

The data flow diagram enables you to develop models of the information domain and

functional domain. As the DFD is refined into greater levels of detail, you perform an

implicit functional decomposition of the system. At the same time, the DFD refine-

ment results in a corresponding refinement of data as it moves through the processes

that embody the application.

A few simple guidelines can aid immeasurably during the derivation of a data flow

diagram: (1) the level 0 data flow diagram should depict the software/system as a

single bubble; (2) primary input and output should be carefully noted; (3) refinement

should begin by isolating candidate processes, data objects, and data stores to be

represented at the next level; (4) all arrows and bubbles should be labeled with

meaningful names; (5) information flow continuity must be maintained from level to

level,2 and (6) one bubble at a time should be refined. There is a natural tendency to

overcomplicate the data flow diagram. This occurs when you attempt to show too

much detail too early or represent procedural aspects of the software in lieu of

information flow.

To illustrate the use of the DFD and related notation, we again consider the

SafeHome security function. A level 0 DFD for the security function is shown in

Figure 7.1. The primary external entities (boxes) produce information for use by the

system and consume information generated by the system. The labeled arrows rep-

resent data objects or data object hierarchies. For example, user commands and

data encompasses all configuration commands, all activation/deactivation com-

mands, all miscellaneous interactions, and all data that are entered to qualify or

expand a command.

The level 0 DFD must now be expanded into a level 1 data flow model. But how

do we proceed? Following an approach suggested in Chapter 6, you should apply a

uote:

“The purpose of
data flow diagrams
is to provide a
semantic bridge
between users
and systems
developers.”

Kenneth Kozar

2 That is, the data objects that flow into the system or into any transformation at one level must be the
same data objects (or their constituent parts) that flow into the transformation at a more refined level.

Information flow
continuity must be
maintained as each
DFD level is refined.
This means that input
and output at one level
must be the same as
input and output at a
refined level.

Control
panel

User commands
and data

Sensors
Sensor
status

Control
panel

display

Telephone
line

AlarmSafeHome
software

Display
information

Telephone
number tones

Alarm
type

FIGURE 7.1

Context-level
DFD for the
SafeHome
security
function

pre75977_ch07.qxd 11/27/08 3:36 PM Page 188

CHAPTER 7 REQUIREMENTS MODELING: FLOW, BEHAVIOR, PATTERNS, AND WEBAPPS 189

“grammatical parse” [Abb83] to the use case narrative that describes the context-level

bubble. That is, we isolate all nouns (and noun phrases) and verbs (and verb phrases)

in a SafeHome processing narrative derived during the first requirements gathering

meeting. Recalling the parsed processing narrative text presented in Section 6.5.1:

The SafeHome security function enables the homeowner to configure the security system

when it is installed, monitors all sensors connected to the security system, and interacts

with the homeowner through the Internet, a PC, or a control panel.

During installation, the SafeHome PC is used to program and configure the system.

Each sensor is assigned a number and type, a master password is programmed for arming

and disarming the system, and telephone number(s) are input for dialing when a sensor

event occurs.

When a sensor event is recognized, the software invokes an audible alarm attached to

the system. After a delay time that is specified by the homeowner during system configura-

tion activities, the software dials a telephone number of a monitoring service, provides

information about the location, reporting the nature of the event that has been detected. The

telephone number will be redialed every 20 seconds until telephone connection is obtained.

The homeowner receives security information via a control panel, the PC, or a browser,

collectively called an interface. The interface displays prompting messages and system

status information on the control panel, the PC, or the browser window. Homeowner in-

teraction takes the following form . . .

Referring to the grammatical parse, verbs are SafeHome processes and can be rep-

resented as bubbles in a subsequent DFD. Nouns are either external entities (boxes),

data or control objects (arrows), or data stores (double lines). From the discussion in

Chapter 6, recall that nouns and verbs can be associated with one another (e.g., each

sensor is assigned a number and type; therefore number and type are attributes of the

data object sensor). Therefore, by performing a grammatical parse on the process-

ing narrative for a bubble at any DFD level, you can generate much useful informa-

tion about how to proceed with the refinement to the next level. Using this

information, a level 1 DFD is shown in Figure 7.2. The context level process shown

in Figure 7.1 has been expanded into six processes derived from an examination of

the grammatical parse. Similarly, the information flow between processes at level 1

has been derived from the parse. In addition, information flow continuity is main-

tained between levels 0 and 1.

The processes represented at DFD level 1 can be further refined into lower levels.

For example, the process monitor sensors can be refined into a level 2 DFD as shown

in Figure 7.3. Note once again that information flow continuity has been maintained

between levels.

The refinement of DFDs continues until each bubble performs a simple function.

That is, until the process represented by the bubble performs a function that would

be easily implemented as a program component. In Chapter 8, I discuss a concept,

called cohesion, that can be used to assess the processing focus of a given function.

For now, we strive to refine DFDs until each bubble is “single-minded.”

The grammatical parse
is not foolproof, but it
can provide you with an
excellent jump start, if
you’re struggling to
define data objects and
the transforms that
operate on them.

Be certain that the
processing narrative
you intend to parse is
written at the same
level of abstraction
throughout.

pre75977_ch07.qxd 11/27/08 3:36 PM Page 189

190 PART TWO MODELING

Configuration information

Read
sensors

Assess
against
setup

Configuration
data

Sensor ID,
type

Sensor
status

Generate
alarm
signal

Alarm
type

Alarm
data

Telephone
number

Dial
phone

Telephone
number tones

Format
for

display

Sensor
information

Sensor ID
type,

location

FIGURE 7.3

Level 2 DFD
that refines
the monitor
sensors process

Configuration information

Control
panel

Sensors

Control
panel

display

Telephone
line

Alarm

Interact
with
user

Configure
system

Activate/
deactivate

system

Process
password

Monitor
sensors

Display
messages
and status

User commands
and data

Password
Start
stop

Configure
request

Configuration
data

Configuration
data

Configuration
data

Valid ID msg.

A/d msg.

Sensor
status

Sensor
information

Alarm type

Telephone
number tones

Display
information

FIGURE 7.2

Level 1 DFD for
SafeHome
security
function

pre75977_ch07.qxd 11/27/08 3:36 PM Page 190

7.2.2 Creating a Control Flow Model

For some types of applications, the data model and the data flow diagram are all that

is necessary to obtain meaningful insight into software requirements. As I have al-

ready noted, however, a large class of applications are “driven” by events rather than

data, produce control information rather than reports or displays, and process infor-

mation with heavy concern for time and performance. Such applications require the

use of control flow modeling in addition to data flow modeling.

I have already noted that an event or control item is implemented as a Boolean value

(e.g., true or false, on or off, 1 or 0) or a discrete list of conditions (e.g., empty, jammed,

full). To select potential candidate events, the following guidelines are suggested:

• List all sensors that are “read” by the software.

• List all interrupt conditions.

• List all “switches” that are actuated by an operator.

• List all data conditions.

• Recalling the noun/verb parse that was applied to the processing narrative,

review all “control items” as possible control specification inputs/outputs.

• Describe the behavior of a system by identifying its states, identify how each

state is reached, and define the transitions between states.

• Focus on possible omissions—a very common error in specifying control; for

example, ask: “Is there any other way I can get to this state or exit from it?”

Among the many events and control items that are part of SafeHome software are

sensor event (i.e., a sensor has been tripped), blink flag (a signal to blink the

display), and start/stop switch (a signal to turn the system on or off).

7.2.3 The Control Specification

A control specification (CSPEC) represents the behavior of the system (at the level

from which it has been referenced) in two different ways.3 The CSPEC contains a

state diagram that is a sequential specification of behavior. It can also contain a pro-

gram activation table—a combinatorial specification of behavior.

Figure 7.4 depicts a preliminary state diagram4 for the level 1 control flow model

for SafeHome. The diagram indicates how the system responds to events as it trav-

erses the four states defined at this level. By reviewing the state diagram, you can

determine the behavior of the system and, more important, ascertain whether there

are “holes” in the specified behavior.

For example, the state diagram (Figure 7.4) indicates that the transitions from

the Idle state can occur if the system is reset, activated, or powered off. If the system is

CHAPTER 7 REQUIREMENTS MODELING: FLOW, BEHAVIOR, PATTERNS, AND WEBAPPS 191

How do I
select

potential events
for a control flow
diagram, state
diagram, or
CSPEC?

?

3 Additional behavioral modeling notation is presented in Section 7.3.
4 The state diagram notation used here conforms to UML notation. A “state transition diagram” is avail-

able in structured analysis, but the UML format is superior in information content and representation.

pre75977_ch07.qxd 11/27/08 3:36 PM Page 191

192 PART TWO MODELING

activated (i.e., alarm system is turned on), a transition to the Monitoring-

SystemStatus state occurs, display messages are changed as shown, and the pro-

cess monitorAndControlSystem is invoked. Two transitions occur out of the

MonitoringSystemStatus state—(1) when the system is deactivated, a transition oc-

curs back to the Idle state; (2) when a sensor is triggered into the ActingOnAlarm

state. All transitions and the content of all states are considered during the review.

A somewhat different mode of behavioral representation is the process activation

table. The PAT represents information contained in the state diagram in the context of

processes, not states. That is, the table indicates which processes (bubbles) in the flow

model will be invoked when an event occurs. The PAT can be used as a guide for a de-

signer who must build an executive that controls the processes represented at this

level. A PAT for the level 1 flow model of SafeHome software is shown in Figure 7.5.

The CSPEC describes the behavior of the system, but it gives us no information

about the inner working of the processes that are activated as a result of this behavior.

The modeling notation that provides this information is discussed in Section 7.2.4.

7.2.4 The Process Specification

The process specification (PSPEC) is used to describe all flow model processes that

appear at the final level of refinement. The content of the process specification can

Resetting

Entry/set systemStatus "inactive"
Entry/set displayMsg1 "Starting system"
Entry/set displayMsg2 "Please wait"
Entry/set displayStatus slowBlinking
Do: run diagnostics

Start/stop switch
power "on"

systemOK
Idle

Entry/set systemStatus "inactive"
Entry/set displayMsg1 "Ready"
Entry/set displayMsg2 ""
Entry/set displayStatus steady
KeyHit/handleKey

failureDetected/
set displayMsg2 "contact Vendor"

MonitoringSystemStatus

Entry/set systemStatus "monitoring"
Entry/set displayMsg1 "Armed"
Entry/set displayMsg2 ""
Entry/set displayStatus steady
Do: monitorAndControlSystem
KeyHit/handleKey

ActingOnAlarm

Entry/set systemStatus "monitorAndAlarm"
Entry/set displayMsg1 "ALARM"
Entry/set displayMsg2 triggeringSensor
Entry/set displayStatus fastBlinking
Do: monitorAndControlSystem
Do: soundAlarm
Do: notifyAlarmResponders
KeyHit/handleKey

Reset

falseAlarm

timeOut

sensorTriggered/
startTimer

sensorTriggered/
restartTimer

Activate

deactivatePassword

off/powerOff

deactivatePassword

FIGURE 7.4 State diagram for SafeHome security function

pre75977_ch07.qxd 11/27/08 3:36 PM Page 192

CHAPTER 7 REQUIREMENTS MODELING: FLOW, BEHAVIOR, PATTERNS, AND WEBAPPS 193

input events

process activation
monitor and control system 0 1 0 0 1 1
activate/deactivate system 0 1 0 0 0 0
display messages and status 1 0 1 1 1 1
interact with user 1 0 0 1 0 1

sensor event 0 0 0 0 1 0
blink flag 0 0 1 1 0 0
start stop switch 0 1 0 0 0 0
display action status complete 0 0 0 1 0 0
in-progress 0 0 1 0 0 0
time out 0 0 0 0 0 1

output
alarm signal 0 0 0 0 1 0

FIGURE 7.5

Process activa-
tion table for
SafeHome
security
function

Data Flow Modeling

The scene: Jamie’s cubicle, after the
last requirements gathering meeting has concluded.

The players: Jamie, Vinod, and Ed—all members of
the SafeHome software engineering team.

The conversation:

(Jamie has sketched out the models shown in Figures 7.1
through 7.5 and is showing them to Ed and Vinod.)

Jamie: I took a software engineering course in college,
and they taught us this stuff. The Prof said it’s a bit old-
fashioned, but you know what, it helps me to clarify
things.

Ed: That’s cool. But I don’t see any classes or objects here.

Jamie: No . . . this is just a flow model with a little
behavioral stuff thrown in.

Vinod: So these DFDs represent an I-P-O view of the
software, right.

Ed: I-P-O?

Vinod: Input-process-output. The DFDs are actually
pretty intuitive . . . if you look at ‘em for a moment, they
show how data objects flow through the system and get
transformed as they go.

Ed: Looks like we could convert every bubble into an
executable component . . . at least at the lowest level of
the DFD.

Jamie: That’s the cool part, you can. In fact, there’s a
way to translate the DFDs into an design architecture.

Ed: Really?

Jamie: Yeah, but first we’ve got to develop a complete
requirements model and this isn’t it.

Vinod: Well, it’s a first step, but we’re going to have to
address class-based elements and also behavioral aspects,
although the state diagram and PAT does some of that.

Ed: We’ve got a lot work to do and not much time to do it.

(Doug—the software engineering manager—walks into the
cubical.)

Doug: So the next few days will be spent developing the
requirements model, huh?

Jamie (looking proud): We’ve already begun.

Doug: Good, we’ve got a lot of work to do and not
much time to do it.

(The three software engineers look at one another and smile.)

SAFEHOME

pre75977_ch07.qxd 11/27/08 3:36 PM Page 193

194 PART TWO MODELING

include narrative text, a program design language (PDL) description5 of the process

algorithm, mathematical equations, tables, or UML activity diagrams. By providing a

PSPEC to accompany each bubble in the flow model, you can create a “mini-spec” that

serves as a guide for design of the software component that will implement the bubble.

To illustrate the use of the PSPEC, consider the process password transform repre-

sented in the flow model for SafeHome (Figure 7.2). The PSPEC for this function might

take the form:

PSPEC: process password (at control panel). The process password transform per-

forms password validation at the control panel for the SafeHome security function. Process

password receives a four-digit password from the interact with user function. The password

is first compared to the master password stored within the system. If the master password

matches, <valid id message = true> is passed to the message and status display function. If

the master password does not match, the four digits are compared to a table of secondary

passwords (these may be assigned to house guests and/or workers who require entry to

the home when the owner is not present). If the password matches an entry within the table,

<valid id message = true> is passed to the message and status display function. If there is no

match, <valid id message = false> is passed to the message and status display function.

If additional algorithmic detail is desired at this stage, a program design language

representation may also be included as part of the PSPEC. However, many believe

that the PDL version should be postponed until component design commences.

5 Program design language (PDL) mixes programming language syntax with narrative text to provide
procedural design detail. PDL is discussed briefly in Chapter 10.

6 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.
In most cases, tool names are trademarked by their respective developers.

The PSPEC is a “mini-
specification” for each
transform at the lowest
refined level of a DFD.

Structured Analysis

Objective: Structured analysis tools allow a
software engineer to create data models, flow

models, and behavioral models in a manner that enables
consistency and continuity checking and easy editing and
extension. Models created using these tools provide
the software engineer with insight into the analysis
representation and help to eliminate errors before they
propagate into design, or worse, into implementation itself.

Mechanics: Tools in this category use a “data
dictionary” as the central database for the description
of all data objects. Once entries in the dictionary are
defined, entity-relationship diagrams can be created
and object hierarchies can be developed. Data flow
diagramming features allow easy creation of this graphical
model and also provide features for the creation of PSPECs
and CSPECs. Analysis tools also enable the software

engineer to create behavioral models using the state
diagram as the operative notation.

Representative Tools:6

MacA&D, WinA&D, developed by Excel software
(www.excelsoftware.com), provides a set of
simple and inexpensive analysis and design tools for
Macs and Windows machines.

MetaCASE Workbench, developed by MetaCase Consulting
(www.metacase.com), is a metatool used to define
an analysis or design method (including structured
analysis) and its concepts, rules, notations, and
generators.

System Architect, developed by Popkin Software
(www.popkin.com) provides a broad range of
analysis and design tools including tools for data
modeling and structured analysis.

SOFTWARE TOOLS

pre75977_ch07.qxd 11/27/08 3:36 PM Page 194

http://www.excelsoftware.com
http://www.metacase.com
http://www.popkin.com
http://www.metacase.com

CHAPTER 7 REQUIREMENTS MODELING: FLOW, BEHAVIOR, PATTERNS, AND WEBAPPS 195

7.3 CREATING A BEHAVIORAL MODEL

The modeling notation that I have discussed to this point represents static elements

of the requirements model. It is now time to make a transition to the dynamic be-

havior of the system or product. To accomplish this, you can represent the behavior

of the system as a function of specific events and time.

The behavioral model indicates how software will respond to external events or

stimuli. To create the model, you should perform the following steps:

1. Evaluate all use cases to fully understand the sequence of interaction within

the system.

2. Identify events that drive the interaction sequence and understand how these

events relate to specific objects.

3. Create a sequence for each use case.

4. Build a state diagram for the system.

5. Review the behavioral model to verify accuracy and consistency.

Each of these steps is discussed in the sections that follow.

7.3.1 Identifying Events with the Use Case

In Chapter 6 you learned that the use case represents a sequence of activities that in-

volves actors and the system. In general, an event occurs whenever the system and

an actor exchange information. In Section 7.2.3, I indicated that an event is not the

information that has been exchanged, but rather the fact that information has been

exchanged.

A use case is examined for points of information exchange. To illustrate, we re-

consider the use case for a portion of the SafeHome security function.

The homeowner uses the keypad to key in a four-digit password. The password is

compared with the valid password stored in the system. If the password is incorrect, the

control panel will beep once and reset itself for additional input. If the password is

correct, the control panel awaits further action.

The underlined portions of the use case scenario indicate events. An actor should be

identified for each event; the information that is exchanged should be noted, and any

conditions or constraints should be listed.

As an example of a typical event, consider the underlined use case phrase “home-

owner uses the keypad to key in a four-digit password.” In the context of the

requirements model, the object, Homeowner,7 transmits an event to the object

ControlPanel. The event might be called password entered. The information

How do I
model the

software’s
reaction to some
external event?

?

7 In this example, we assume that each user (homeowner) that interacts with SafeHome has an
identifying password and is therefore a legitimate object.

pre75977_ch07.qxd 11/27/08 3:36 PM Page 195

196 PART TWO MODELING

transferred is the four digits that constitute the password, but this is not an essential

part of the behavioral model. It is important to note that some events have an ex-

plicit impact on the flow of control of the use case, while others have no direct im-

pact on the flow of control. For example, the event password entered does not

explicitly change the flow of control of the use case, but the results of the event

password compared (derived from the interaction “password is compared with the

valid password stored in the system”) will have an explicit impact on the information

and control flow of the SafeHome software.

Once all events have been identified, they are allocated to the objects involved.

Objects can be responsible for generating events (e.g., Homeowner generates

the password entered event) or recognizing events that have occurred elsewhere

(e.g., ControlPanel recognizes the binary result of the password compared event).

7.3.2 State Representations

In the context of behavioral modeling, two different characterizations of states must

be considered: (1) the state of each class as the system performs its function and

(2) the state of the system as observed from the outside as the system performs its

function.8

The state of a class takes on both passive and active characteristics [Cha93]. A

passive state is simply the current status of all of an object’s attributes. For example,

the passive state of the class Player (in the video game application discussed in

Chapter 6) would include the current position and orientation attributes of Player as

well as other features of Player that are relevant to the game (e.g., an attribute that

indicates magic wishes remaining). The active state of an object indicates the current sta-

tus of the object as it undergoes a continuing transformation or processing. The class

Player might have the following active states: moving, at rest, injured, being cured;

trapped, lost, and so forth. An event (sometimes called a trigger) must occur to force

an object to make a transition from one active state to another.

Two different behavioral representations are discussed in the paragraphs that

follow. The first indicates how an individual class changes state based on external

events and the second shows the behavior of the software as a function of time.

State diagrams for analysis classes. One component of a behavioral model is

a UML state diagram9 that represents active states for each class and the events (trig-

gers) that cause changes between these active states. Figure 7.6 illustrates a state di-

agram for the ControlPanel object in the SafeHome security function.

Each arrow shown in Figure 7.6 represents a transition from one active state of

an object to another. The labels shown for each arrow represent the event that

8 The state diagrams presented in Chapter 6 and in Section 7.3.2 depict the state of the system. Our
discussion in this section will focus on the state of each class within the analysis model.

9 If you are unfamiliar with UML, a brief introduction to this important modeling notation is presented
in Appendix 1.

The system has states
that represent specific
externally observable
behavior; a class has
states that represent
its behavior as the
system performs its
functions.

pre75977_ch07.qxd 11/27/08 3:36 PM Page 196

triggers the transition. Although the active state model provides useful insight into

the “life history” of an object, it is possible to specify additional information to pro-

vide more depth in understanding the behavior of an object. In addition to specify-

ing the event that causes the transition to occur, you can specify a guard and an

action [Cha93]. A guard is a Boolean condition that must be satisfied in order for the

transition to occur. For example, the guard for the transition from the “reading” state

to the “comparing” state in Figure 7.6 can be determined by examining the use case:

if (password input � 4 digits) then compare to stored password

In general, the guard for a transition usually depends upon the value of one or more

attributes of an object. In other words, the guard depends on the passive state of the

object.

An action occurs concurrently with the state transition or as a consequence of it

and generally involves one or more operations (responsibilities) of the object. For ex-

ample, the action connected to the password entered event (Figure 7.6) is an opera-

tion named validatePassword() that accesses a password object and performs a

digit-by-digit comparison to validate the entered password.

Sequence diagrams. The second type of behavioral representation, called a

sequence diagram in UML, indicates how events cause transitions from object to

object. Once events have been identified by examining a use case, the modeler

CHAPTER 7 REQUIREMENTS MODELING: FLOW, BEHAVIOR, PATTERNS, AND WEBAPPS 197

Reading

Locked

Selecting

Password
entered

Comparing

Password = incorrect
& numberOfTries < maxTries

Password = correct

Activation successful

Key hit

Do: validatePassword

numberOfTries > maxTries

Timer ≤ lockedTime

Timer > lockedTime

FIGURE 7.6

State diagram
for the
ControlPanel
class

pre75977_ch07.qxd 11/27/08 3:36 PM Page 197

198 PART TWO MODELING

creates a sequence diagram—a representation of how events cause flow from one

object to another as a function of time. In essence, the sequence diagram is a short-

hand version of the use case. It represents key classes and the events that cause

behavior to flow from class to class.

Figure 7.7 illustrates a partial sequence diagram for the SafeHome security func-

tion. Each of the arrows represents an event (derived from a use case) and indicates

how the event channels behavior between SafeHome objects. Time is measured ver-

tically (downward), and the narrow vertical rectangles represent time spent in pro-

cessing an activity. States may be shown along a vertical time line.

The first event, system ready, is derived from the external environment and chan-

nels behavior to the Homeowner object. The homeowner enters a password. A

request lookup event is passed to System, which looks up the password in a simple

database and returns a result (found or not found) to ControlPanel (now in the

comparing state). A valid password results in a password=correct event to System,

which activates Sensors with a request activation event. Ultimately, control is passed

back to the homeowner with the activation successful event.

Once a complete sequence diagram has been developed, all of the events that

cause transitions between system objects can be collated into a set of input events

and output events (from an object). This information is useful in the creation of an

effective design for the system to be built.

Unlike a state diagram
that represents
behavior without
noting the classes
involved, a sequence
diagram represents
behavior, by describing
how classes move
from state to state.

Control panel System

System
ready

Reading

Request lookup
Comparing

Result

Password entered

Password = correct
Request activation

Activation successful

Locked

Selecting

Timer > lockedTime

A

A

Activation successful

Homeowner Sensors

numberOfTries > maxTries

FIGURE 7.7 Sequence diagram (partial) for the SafeHome security function

pre75977_ch07.qxd 11/27/08 3:36 PM Page 198

7.4 PATTERNS FOR REQUIREMENTS MODELING

Software patterns are a mechanism for capturing domain knowledge in a way that

allows it to be reapplied when a new problem is encountered. In some cases, the

domain knowledge is applied to a new problem within the same application domain.

In other cases, the domain knowledge captured by a pattern can be applied by anal-

ogy to a completely different application domain.

The original author of an analysis pattern does not “create” the pattern, but,

rather, discovers it as requirements engineering work is being conducted. Once the

pattern has been discovered, it is documented by describing “explicitly the general

problem to which the pattern is applicable, the prescribed solution, assumptions and

constraints of using the pattern in practice, and often some other information about

the pattern, such as the motivation and driving forces for using the pattern, discus-

sion of the pattern’s advantages and disadvantages, and references to some known

examples of using that pattern in practical applications” [Dev01].

In Chapter 5, I introduced the concept of analysis patterns and indicated that these

patterns represent a solution that often incorporates a class, a function, or a behavior

within the application domain. The pattern can be reused when performing require-

ments modeling for an application within a domain.11 Analysis patterns are stored in

a repository so that members of the software team can use search facilities to find and

reuse them. Once an appropriate pattern is selected, it is integrated into the require-

ments model by reference to the pattern name.

CHAPTER 7 REQUIREMENTS MODELING: FLOW, BEHAVIOR, PATTERNS, AND WEBAPPS 199

Objective: Analysis modeling tools provide
the capability to develop scenario-based

models, class-based models, and behavioral models using
UML notation.

Mechanics: Tools in this category support the full range
of UML diagrams required to build an analysis model
(these tools also support design modeling). In addition
to diagramming, tools in this category (1) perform
consistency and correctness checks for all UML diagrams,
(2) provide links for design and code generation, (3) build
a database that enables the management and assessment
of large UML models required for complex systems.

Representative Tools:10

The following tools support a full range of UML diagrams
required for analysis modeling:

ArgoUML is an open source tool available at
argouml.tigris.org.

Enterprise Architect, developed by Sparx Systems
(www.sparxsystems.com.au).

PowerDesigner, developed by Sybase
(www.sybase.com).

Rational Rose, developed by IBM (Rational)
(www01.ibm.com/software/rational/).

System Architect, developed by Popkin Software
(www.popkin.com).

UML Studio, developed by Pragsoft Corporation
(www.pragsoft.com).

Visio, developed by Microsoft (www.microsoft.com).
Visual UML, developed by Visual Object Modelers

(www.visualuml.com).

SOFTWARE TOOLS

10 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.
In most cases, tool names are trademarked by their respective developers.

11 An in-depth discussion of the use of patterns during software design is presented in Chapter 12.

Generalized Analysis Modeling in UML

pre75977_ch07.qxd 11/27/08 3:36 PM Page 199

http://www.sparxsystems.com.au
http://www.sybase.com
http://www.popkin.com
http://www.pragsoft.com
http://www.microsoft.com
http://www.visualuml.com
http://www.microsoft.com
http://www.visualuml.com

200 PART TWO MODELING

7.4.1 Discovering Analysis Patterns

The requirements model is comprised of a wide variety of elements: scenario-based

(use cases), data-oriented (the data model), class-based, flow-oriented, and behav-

ioral. Each of these elements examines the problem from a different perspective, and

each provides an opportunity to discover patterns that may occur throughout an

application domain, or by analogy, across different application domains.

The most basic element in the description of a requirements model is the use case.

In the context of this discussion, a coherent set of use cases may serve as the basis

for discovering one or more analysis patterns. A semantic analysis pattern (SAP) “is a

pattern that describes a small set of coherent use cases that together describe a basic

generic application” [Fer00].

Consider the following preliminary use case for software required to control and

monitor a real-view camera and proximity sensor for an automobile:

Use case: Monitor reverse motion

Description: When the vehicle is placed in reverse gear, the control software enables a

video feed from a rear-placed video camera to the dashboard display. The control soft-

ware superimposes a variety of distance and orientation lines on the dashboard display

so that the vehicle operator can maintain orientation as the vehicle moves in reverse. The

control software also monitors a proximity sensor to determine whether an object is

inside 10 feet of the rear of the vehicle. It will automatically break the vehicle if the prox-

imity sensor indicates an object within x feet of the rear of the vehicle, where x is deter-

mined based on the speed of the vehicle.

This use case implies a variety of functionality that would be refined and elaborated

(into a coherent set of use cases) during requirements gathering and modeling.

Regardless of how much elaboration is accomplished, the use cases suggest a

simple, yet widely applicable SAP—the software-based monitoring and control of

sensors and actuators in a physical system. In this case, the “sensors” provide infor-

mation about proximity and video information. The “actuator” is the breaking sys-

tem of the vehicle (invoked if an object is very close to the vehicle). But in a more

general case, a widely applicable pattern is discovered.

Software in many different application domains is required to monitor sensors

and control physical actuators. It follows that an analysis pattern that describes

generic requirements for this capability could be used widely. The pattern, called

Actuator-Sensor, would be applicable as part of the requirements model for

SafeHome and is discussed in Section 7.4.2, which follows.

7.4.2 A Requirements Pattern Example: Actuator-Sensor12

One of the requirements of the SafeHome security function is the ability to monitory

security sensors (e.g., break-in sensors, fire, smoke or CO sensors, water sensors).

12 This section has been adapted from [Kon02] with the permission of the authors.

pre75977_ch07.qxd 11/27/08 3:36 PM Page 200

Internet-based extensions to SafeHome will require the ability to control the move-

ment (e.g., pan, zoom) of a security camera within a residence. The implication—

SafeHome software must manage various sensors and “actuators” (e.g., camera

control mechanisms).

Konrad and Cheng [Kon02] have suggested a requirements pattern named

Actuator-Sensor that provides useful guidance for modeling this requirement

within SafeHome software. An abbreviated version of the Actuator-Sensor pattern,

originally developed for automotive applications, follows.

Pattern Name. Actuator-Sensor

Intent. Specify various kinds of sensors and actuators in an embedded system.

Motivation. Embedded systems usually have various kinds of sensors and actua-

tors. These sensors and actuators are all either directly or indirectly connected to a

control unit. Although many of the sensors and actuators look quite different, their

behavior is similar enough to structure them into a pattern. The pattern shows how

to specify the sensors and actuators for a system, including attributes and opera-

tions. The Actuator-Sensor pattern uses a pull mechanism (explicit request for in-

formation) for PassiveSensors and a push mechanism (broadcast of information)

for the ActiveSensors.

Constraints

• Each passive sensor must have some method to read sensor input and attrib-

utes that represent the sensor value.

• Each active sensor must have capabilities to broadcast update messages

when its value changes.

• Each active sensor should send a life tick, a status message issued within a

specified time frame, to detect malfunctions.

• Each actuator must have some method to invoke the appropriate response

determined by the ComputingComponent.

• Each sensor and actuator should have a function implemented to check its

own operation state.

• Each sensor and actuator should be able to test the validity of the values

received or sent and set its operation state if the values are outside of the

specifications.

Applicability. Useful in any system in which multiple sensors and actuators are

present.

Structure. A UML class diagram for the Actuator-Sensor pattern is shown in Fig-

ure 7.8. Actuator, PassiveSensor, and ActiveSensor are abstract classes and de-

noted in italics. There are four different types of sensors and actuators in this pattern.

CHAPTER 7 REQUIREMENTS MODELING: FLOW, BEHAVIOR, PATTERNS, AND WEBAPPS 201

pre75977_ch07.qxd 11/27/08 3:36 PM Page 201

202 PART TWO MODELING

The Boolean, Integer, and Real classes represent the most common types of sen-

sors and actuators. The complex classes are sensors or actuators that use values that

cannot be easily represented in terms of primitive data types, such as a radar device.

Nonetheless, these devices should still inherit the interface from the abstract classes

since they should have basic functionalities such as querying the operation states.

Behavior. Figure 7.9 presents a UML sequence diagram for an example of the

Actuator-Sensor pattern as it might be applied for the SafeHome function that

controls the positioning (e.g., pan, zoom) of a security camera. Here, the

ControlPanel13 queries a sensor (a passive position sensor) and an actuator (pan

control) to check the operation state for diagnostic purposes before reading or set-

ting a value. The messages Set Physical Value and Get Physical Value are not messages

between objects. Instead, they describe the interaction between the physical devices

of the system and their software counterparts. In the lower part of the diagram,

below the horizontal line, the PositionSensor reports that the operation state is

zero. The ComputingComponent (represented as ControlPanel) then sends the

error code for a position sensor failure to the FaultHandler that will decide how this

error affects the system and what actions are required. It gets the data from the

sensors and computes the required response for the actuators.

Passive integer
sensor

Passive sensor Computing
component

Active sensor

Passive boolean
sensor

Passive complex
sensor

Passive real
sensor

Boolean
actuator

Integer
actuator

Complex
actuator

Real
actuator

Actuator

Active boolean
sensor

Active integer
sensor

Active complex
sensor

Active real
sensor

FIGURE 7.8 UML sequence diagram for the Actuator-Sensor pattern. Source: Adapted from [Kon02] with permission.

13 The original pattern uses the generic phrase ComputingComponent.

pre75977_ch07.qxd 11/27/08 3:36 PM Page 202

Participants. This section of the patterns description “itemizes the classes/

objects that are included in the requirements pattern” [Kon02] and describes the

responsibilities of each class/object (Figure 7.8). An abbreviated list follows:

• PassiveSensor abstract: Defines an interface for passive sensors.

• PassiveBooleanSensor: Defines passive Boolean sensors.

• PassiveIntegerSensor: Defines passive integer sensors.

• PassiveRealSensor: Defines passive real sensors.

• ActiveSensor abstract: Defines an interface for active sensors.

• ActiveBooleanSensor: Defines active Boolean sensors.

• ActiveIntegerSensor: Defines active integer sensors.

• ActiveRealSensor: Defines active real sensors.

• Actuator abstract: Defines an interface for actuators.

• BooleanActuator: Defines Boolean actuators.

• IntegerActuator: Defines integer actuators.

• RealActuator: Defines real actuators.

• ComputingComponent: The central part of the controller; it gets the data

from the sensors and computes the required response for the actuators.

CHAPTER 7 REQUIREMENTS MODELING: FLOW, BEHAVIOR, PATTERNS, AND WEBAPPS 203

FauntHandler

(PositionSensor.
OpState = 1)

PositionSensor ControlPanel

Get operation state

PanControl
Actuator

Senor
InputDevice

PositionSensor

Actuator
OutputDevice
PanControl

Get value

Get operation state

Get operation state

Set value

Set physical value

Store error

Get physical value

(PositionSensor.
OpState = 0)

FIGURE 7.9 UML Class diagram for the Actuator-Sensor pattern. Source: Reprinted from [Kon02] with permission.

pre75977_ch07.qxd 11/27/08 3:36 PM Page 203

204 PART TWO MODELING

• ActiveComplexSensor: Complex active sensors have the basic functionality

of the abstract ActiveSensor class, but additional, more elaborate, methods

and attributes need to be specified.

• PassiveComplexSensor: Complex passive sensors have the basic function-

ality of the abstract PassiveSensor class, but additional, more elaborate,

methods and attributes need to be specified.

• ComplexActuator: Complex actuators also have the base functionality of

the abstract Actuator class, but additional, more elaborate methods and

attributes need to be specified.

Collaborations. This section describes how objects and classes interact with one

another and how each carries out its responsibilities.

• When the ComputingComponent needs to update the value of a

PassiveSensor, it queries the sensors, requesting the value by sending the

appropriate message.

• ActiveSensors are not queried. They initiate the transmission of sensor

values to the computing unit, using the appropriate method to set the value

in the ComputingComponent. They send a life tick at least once during a

specified time frame in order to update their timestamps with the system

clock’s time.

• When the ComputingComponent needs to set the value of an actuator, it

sends the value to the actuator.

• The ComputingComponent can query and set the operation state of the

sensors and actuators using the appropriate methods. If an operation state is

found to be zero, then the error is sent to the FaultHandler, a class that contains

methods for handling error messages, such as starting a more elaborate recovery

mechanism or a backup device. If no recovery is possible, then the system can

only use the last known value for the sensor or the default value.

• The ActiveSensors offer methods to add or remove the addresses or

address ranges of the components that want to receive the messages in case

of a value change.

Consequences

1. Sensor and actuator classes have a common interface.

2. Class attributes can only be accessed through messages, and the class

decides whether or not to accept the message. For example, if a value of an

actuator is set above a maximum value, then the actuator class may not

accept the message, or it might use a default maximum value.

3. The complexity of the system is potentially reduced because of the uniformity

of interfaces for actuators and sensors.

pre75977_ch07.qxd 11/27/08 3:36 PM Page 204

The requirements pattern description might also provide references to other related

requirements and design patterns.

7.5 REQUIREMENTS MODELING FOR WEBAPPS1 4

Web developers are often skeptical when the idea of requirements analysis for

WebApps is suggested. “After all,” they argue, “the Web development process must

be agile, and analysis is time consuming. It’ll slow us down just when we need to be

designing and building the WebApp.”

Requirements analysis does take time, but solving the wrong problem takes even

more time. The question for every WebApp developer is simple—are you sure you

understand the requirements of the problem? If the answer is an unequivocal “yes,”

then it may be possible to skip requirements modeling, but if the answer is “no,” then

requirements modeling should be performed.

7.5.1 How Much Analysis Is Enough?

The degree to which requirements modeling for WebApps is emphasized depends on

the following factors:

• Size and complexity of WebApp increment.

• Number of stakeholders (analysis can help to identify conflicting requirements

coming from different sources).

• Size of the WebApp team.

• Degree to which members of the WebApp team have worked together before

(analysis can help develop a common understanding of the project).

• Degree to which the organization’s success is directly dependent on the

success of the WebApp.

The converse of the preceding points is that as the project becomes smaller, the

number of stakeholders fewer, the development team more cohesive, and the appli-

cation less critical, it is reasonable to apply a more lightweight analysis approach.

Although it is a good idea to analyze the problem before beginning design, it is

not true that all analysis must precede all design. In fact, the design of a specific part

of the WebApp only demands an analysis of those requirements that affect only that

part of the WebApp. As an example from SafeHome, you could validly design

the overall website aesthetics (layouts, color schemes, etc.) without having

analyzed the functional requirements for e-commerce capabilities. You only need to

analyze that part of the problem that is relevant to the design work for the incre-

ment to be delivered.

CHAPTER 7 REQUIREMENTS MODELING: FLOW, BEHAVIOR, PATTERNS, AND WEBAPPS 205

14 This section has been adapted from Pressman and Lowe [Pre08] with permission.

pre75977_ch07.qxd 11/27/08 3:36 PM Page 205

206 PART TWO MODELING

7.5.2 Requirements Modeling Input

An agile version of the generic software process discussed in Chapter 2 can be ap-

plied when WebApps are engineered. The process incorporates a communication

activity that identifies stakeholders and user categories, the business context, de-

fined informational and applicative goals, general WebApp requirements, and usage

scenarios—information that becomes input to requirements modeling. This infor-

mation is represented in the form of natural language descriptions, rough outlines,

sketches, and other informal representations.

Analysis takes this information, structures it using a formally defined representa-

tion scheme (where appropriate), and then produces more rigorous models as an

output. The requirements model provides a detailed indication of the true structure

of the problem and provides insight into the shape of the solution.

The SafeHome ACS-DCV (camera surveillance) function was introduced in Chap-

ter 6. When it was introduced, this function seemed relatively clear and was de-

scribed in some detail as part of a use case (Section 6.2.1). However, a reexamination

of the use case might uncover information that is missing, ambiguous, or unclear.

Some aspects of this missing information would naturally emerge during the

design. Examples might include the specific layout of the function buttons, their aes-

thetic look and feel, the size of snapshot views, the placement of camera views and

the house floor plan, or even minutiae such as the maximum and minimum length

of passwords. Some of these aspects are design decisions (such as the layout of the

buttons) and others are requirements (such as the length of the passwords) that don’t

fundamentally influence early design work.

But some missing information might actually influence the overall design itself

and relate more to an actual understanding of the requirements. For example:

Q1: What output video resolution is provided by SafeHome cameras?

Q2: What occurs if an alarm condition is encountered while the camera is

being monitored?

Q3: How does the system handle cameras that can be panned and zoomed?

Q4: What information should be provided along with the camera view? (For

example, location? time/date? last previous access?)

None of these questions were identified or considered in the initial development of

the use case, and yet, the answers could have a substantial effect on different aspects

of the design.

Therefore, it is reasonable to conclude that although the communication activity

provides a good foundation for understanding, requirements analysis refines this

understanding by providing additional interpretation. As the problem structure is de-

lineated as part of the requirements model, questions invariably arise. It is these

questions that fill in the gaps—or in some cases, actually help us to find the gaps in

the first place.

pre75977_ch07.qxd 11/27/08 3:36 PM Page 206

To summarize, the inputs to the requirements model will be the information col-

lected during the communication activity—anything from an informal e-mail to a de-

tailed project brief complete with comprehensive usage scenarios and product

specifications.

7.5.3 Requirements Modeling Output

Requirements analysis provides a disciplined mechanism for representing and eval-

uating WebApp content and function, the modes of interaction that users will en-

counter, and the environment and infrastructure in which the WebApp resides.

Each of these characteristics can be represented as a set of models that allow the

WebApp requirements to be analyzed in a structured manner. While the specific

models depend largely upon the nature of the WebApp, there are five main classes

of models:

• Content model—identifies the full spectrum of content to be provided by

the WebApp. Content includes text, graphics and images, video, and audio

data.

• Interaction model—describes the manner in which users interact with the

WebApp.

• Functional model—defines the operations that will be applied to WebApp

content and describes other processing functions that are independent of

content but necessary to the end user.

• Navigation model—defines the overall navigation strategy for the WebApp.

• Configuration model—describes the environment and infrastructure in

which the WebApp resides.

You can develop each of these models using a representation scheme (often

called a “language”) that allows its intent and structure to be communicated and

evaluated easily among members of the Web engineering team and other stake-

holders. As a consequence, a list of key issues (e.g., errors, omissions, inconsisten-

cies, suggestions for enhancement or modification, points of clarification) are

identified and acted upon.

7.5.4 Content Model for WebApps

The content model contains structural elements that provide an important view of

content requirements for a WebApp. These structural elements encompass content

objects and all analysis classes—user-visible entities that are created or manipulated

as a user interacts with the WebApp.15

Content can be developed prior to the implementation of the WebApp, while the

WebApp is being built, or long after the WebApp is operational. In every case, it is

CHAPTER 7 REQUIREMENTS MODELING: FLOW, BEHAVIOR, PATTERNS, AND WEBAPPS 207

15 Analysis classes were discussed in Chapter 6.

pre75977_ch07.qxd 11/27/08 3:36 PM Page 207

208 PART TWO MODELING

incorporated via navigational reference into the overall WebApp structure. A content

object might be a textual description of a product, an article describing a news event,

an action photograph taken at a sporting event, a user’s response on a discussion

forum, an animated representation of a corporate logo, a short video of a speech, or

an audio overlay for a collection of presentation slides. The content objects might be

stored as separate files, embedded directly into Web pages, or obtained dynamically

from a database. In other words, a content object is any item of cohesive informa-

tion that is to be presented to an end user.

Content objects can be determined directly from use cases by examining the

scenario description for direct and indirect references to content. For example, a

WebApp that supports SafeHome is established at SafeHomeAssured.com. A use

case, Purchasing Select SafeHome Components, describes the scenario required to

purchase a SafeHome component and contains the sentence:

I will be able to get descriptive and pricing information for each product component.

The content model must be capable of describing the content object Component.

In many instances, a simple list of content objects, coupled with a brief description

of each object, is sufficient to define the requirements for content that must be de-

signed and implemented. However, in some cases, the content model may benefit

from a richer analysis that graphically illustrates the relationships among content

objects and/or the hierarchy of content maintained by a WebApp.

For example, consider the data tree [Sri01] created for a SafeHomeAssured.com
component shown in Figure 7.10. The tree represents a hierarchy of information that

is used to describe a component. Simple or composite data items (one or more data

Marketing description

Photograph

Tech description

Schematic

Video

Wholesale price

Part number

Part name

Part typeComponent

Description

Price

Retail price

FIGURE 7.10

Data tree for
a SafeHome-
Assured.com
component

pre75977_ch07.qxd 11/27/08 3:36 PM Page 208

values) are represented as unshaded rectangles. Content objects are represented as

shaded rectangles. In the figure, description is defined by five content objects (the

shaded rectangles). In some cases, one or more of these objects would be further

refined as the data tree expands.

A data tree can be created for any content that is composed of multiple content

objects and data items. The data tree is developed in an effort to define hierarchical

relationships among content objects and to provide a means for reviewing content

so that omissions and inconsistencies are uncovered before design commences. In

addition, the data tree serves as the basis for content design.

7.5.5 Interaction Model for WebApps

The vast majority of WebApps enable a “conversation” between an end user and ap-

plication functionality, content, and behavior. This conversation can be described

using an interaction model that can be composed of one or more of the following

elements: (1) use cases, (2) sequence diagrams, (3) state diagrams,16 and/or (4) user

interface prototypes.

In many instances, a set of use cases is sufficient to describe the interaction at an

analysis level (further refinement and detail will be introduced during design). How-

ever, when the sequence of interaction is complex and involves multiple analysis

classes or many tasks, it is sometimes worthwhile to depict it using a more rigorous

diagrammatic form.

The layout of the user interface, the content it presents, the interaction mecha-

nisms it implements, and the overall aesthetic of the user-WebApp connections have

much to do with user satisfaction and the overall success of the WebApp. Although

it can be argued that the creation of a user interface prototype is a design activity, it

is a good idea to perform it during the creation of the analysis model. The sooner that

a physical representation of a user interface can be reviewed, the higher the likeli-

hood that end users will get what they want. The design of user interfaces is dis-

cussed in detail in Chapter 11.

Because WebApp construction tools are plentiful, relatively inexpensive, and

functionally powerful, it is best to create the interface prototype using such tools.

The prototype should implement the major navigational links and represent the

overall screen layout in much the same way that it will be constructed. For exam-

ple, if five major system functions are to be provided to the end user, the prototype

should represent them as the user will see them upon first entering the WebApp.

Will graphical links be provided? Where will the navigation menu be displayed?

What other information will the user see? Questions like these should be answered

by the prototype.

CHAPTER 7 REQUIREMENTS MODELING: FLOW, BEHAVIOR, PATTERNS, AND WEBAPPS 209

16 Sequence diagrams and state diagrams are modeled using UML notation. State diagrams are
described in Section 7.3. See Appendix 1 for additional detail.

pre75977_ch07.qxd 11/27/08 3:36 PM Page 209

210 PART TWO MODELING

7.5.6 Functional Model for WebApps

Many WebApps deliver a broad array of computational and manipulative functions

that can be associated directly with content (either using it or producing it) and that

are often a major goal of user-WebApp interaction. For this reason, functional re-

quirements must be analyzed, and when necessary, modeled.

The functional model addresses two processing elements of the WebApp, each

representing a different level of procedural abstraction: (1) user-observable func-

tionality that is delivered by the WebApp to end users, and (2) the operations con-

tained within analysis classes that implement behaviors associated with the class.

User-observable functionality encompasses any processing functions that are ini-

tiated directly by the user. For example, a financial WebApp might implement a va-

riety of financial functions (e.g., a college tuition savings calculator or a retirement

savings calculator). These functions may actually be implemented using operations

within analysis classes, but from the point of view of the end user, the function (more

correctly, the data provided by the function) is the visible outcome.

At a lower level of procedural abstraction, the requirements model describes the

processing to be performed by analysis class operations. These operations manipu-

late class attributes and are involved as classes collaborate with one another to

accomplish some required behavior.

Regardless of the level of procedural abstraction, the UML activity diagram can

be used to represent processing details. At the analysis level, activity diagrams

should be used only where the functionality is relatively complex. Much of the com-

plexity of many WebApps occurs not in the functionality provided, but rather with

the nature of the information that can be accessed and the ways in which this can

be manipulated.

An example of relatively complex functionality for SafeHomeAssured.com is

addressed by a use case entitled Get recommendations for sensor layout for my space.

The user has already developed a layout for the space to be monitored, and in this

use case, selects that layout and requests recommended locations for sensors within

the layout. SafeHomeAssured.com responds with a graphical representation of the

layout with additional information on the recommended locations for sensors. The

interaction is quite simple, the content is somewhat more complex, but the underly-

ing functionality it very sophisticated. The system must undertake a relatively com-

plex analysis of the floor layout in order to determine the optimal set of sensors. It

must examine room dimensions, the location of doors and windows, and coordinate

these with sensor capabilities and specifications. No small task! A set of activity

diagrams can be used to describe processing for this use case.

The second example is the use case Control cameras. In this use case, the inter-

action is relatively simple, but there is the potential for complex functionality, given

that this “simple” operation requires complex communication with devices located

remotely and accessible across the Internet. A further possible complication relates

pre75977_ch07.qxd 11/27/08 3:36 PM Page 210

to negotiation of control when multiple authorized people attempt to monitor

and/or control a single sensor at the same time.

Figure 7.11 depicts an activity diagram for the takeControlOfCamera() operation

that is part of the Camera analysis class used within the Control cameras use case.

It should be noted that two additional operations are invoked with the procedural

flow: requestCameraLock(), which tries to lock the camera for this user, and

getCurrentCameraUser(), which retrieves the name of the user who is currently con-

trolling the camera. The construction details indicating how these operations are in-

voked and the interface details for each operation are not considered until WebApp

design commences.

7.5.7 Configuration Models for WebApps

In some cases, the configuration model is nothing more than a list of server-side

and client-side attributes. However, for more complex WebApps, a variety of con-

figuration complexities (e.g., distributing load among multiple servers, caching

architectures, remote databases, multiple servers serving various objects on the

same Web page) may have an impact on analysis and design. The UML deployment

diagram can be used in situations in which complex configuration architectures

must be considered.

For SafeHomeAssured.com the public content and functionality should be

specified to be accessible across all major Web clients (i.e., those with more than

CHAPTER 7 REQUIREMENTS MODELING: FLOW, BEHAVIOR, PATTERNS, AND WEBAPPS 211

getCurrentCamera
User()

Report Camera
in use and name
of current user

Lock available Lock unavailable

Camera not in use Camera in use

requestCameraLock()

Report Camera
now locked for

user

Report Camera
unavailable

FIGURE 7.11

Activity
diagram
for the
takeControlOf-
Camera()
operation

pre75977_ch07.qxd 11/27/08 3:36 PM Page 211

212 PART TWO MODELING

1 percent market share or greater17). Conversely, it may be acceptable to restrict the

more complex control and monitoring functionality (which is only accessible to

Homeowner users) to a smaller set of clients. The configuration model for

SafeHomeAssured.com will also specify interoperability with existing product

databases and monitoring applications.

7.5.8 Navigation Modeling

Navigation modeling considers how each user category will navigate from one

WebApp element (e.g., content object) to another. The mechanics of navigation are

defined as part of design. At this stage, you should focus on overall navigation

requirements. The following questions should be considered:

• Should certain elements be easier to reach (require fewer navigation steps)

than others? What is the priority for presentation?

• Should certain elements be emphasized to force users to navigate in their

direction?

• How should navigation errors be handled?

• Should navigation to related groups of elements be given priority over

navigation to a specific element?

• Should navigation be accomplished via links, via search-based access, or by

some other means?

• Should certain elements be presented to users based on the context of

previous navigation actions?

• Should a navigation log be maintained for users?

• Should a full navigation map or menu (as opposed to a single “back” link or

directed pointer) be available at every point in a user’s interaction?

• Should navigation design be driven by the most commonly expected user

behaviors or by the perceived importance of the defined WebApp elements?

• Can a user “store” his previous navigation through the WebApp to expedite

future usage?

• For which user category should optimal navigation be designed?

• How should links external to the WebApp be handled? Overlaying the

existing browser window? As a new browser window? As a separate frame?

These and many other questions should be asked and answered as part of navigation

analysis.

17 Determining market share for browsers is notoriously problematic and varies depending on which
survey is used. Nevertheless, at the time of writing, Internet Explorer and Firefox are the only
browsers that were reported in excess of 30 percent, and Mozilla, Opera, and Safari the only other
ones consistently above 1 percent.

pre75977_ch07.qxd 11/27/08 3:36 PM Page 212

You and other stakeholders must also determine overall requirements for navi-

gation. For example, will a “site map” be provided to give users an overview of the

entire WebApp structure? Can a user take a “guided tour” that will highlight the most

important elements (content objects and functions) that are available? Will a user be

able to access content objects or functions based on defined attributes of those ele-

ments (e.g., a user might want to access all photographs of a specific building or all

functions that allow computation of weight)?

7.6 SUMMARY

Flow-oriented models focus on the flow of data objects as they are transformed by

processing functions. Derived from structured analysis, flow-oriented models use

the data flow diagram, a modeling notation that depicts how input is transformed

into output as data objects move through a system. Each software function that

transforms data is described by a process specification or narrative. In addition to

data flow, this modeling element also depicts control flow—a representation that

illustrates how events affect the behavior of a system.

Behavioral modeling depicts dynamic behavior. The behavioral model uses input

from scenario-based, flow-oriented, and class-based elements to represent the

states of analysis classes and the system as a whole. To accomplish this, states are

identified, the events that cause a class (or the system) to make a transition from one

state to another are defined, and the actions that occur as transition is accomplished

are also identified. State diagrams and sequence diagrams are the notation used for

behavioral modeling.

Analysis patterns enable a software engineer to use existing domain knowledge to

facilitate the creation of a requirements model. An analysis pattern describes a spe-

cific software feature or function that can be described by a coherent set of use cases.

It specifies the intent of the pattern, the motivation for its use, constraints that limit

its use, its applicability in various problem domains, the overall structure of the pat-

tern, its behavior and collaborations, and other supplementary information.

Requirements modeling for WebApps can use most, if not all, of the modeling el-

ements discussed in this book. However, these elements are applied within a set of

specialized models that address content, interaction, function, navigation, and the

client-server configuration in which the WebApp resides.

PROBLEMS AND POINTS TO PONDER

7.1. What is the fundamental difference between the structured analysis and object-oriented
strategies for requirements analysis?

7.2. In a data flow diagram, does an arrow represent a flow of control or something else?

7.3. What is “information flow continuity” and how is it applied as a data flow diagram is
refined?

CHAPTER 7 REQUIREMENTS MODELING: FLOW, BEHAVIOR, PATTERNS, AND WEBAPPS 213

pre75977_ch07.qxd 11/27/08 3:36 PM Page 213

214 PART TWO MODELING

7.4. How is a grammatical parse used in the creation of a DFD?

7.5. What is a control specification?

7.6. Are a PSPEC and a use case the same thing? If not, explain the differences.

7.7. There are two different types of “states” that behavioral models can represent. What are
they?

7.8. How does a sequence diagram differ from a state diagram. How are they similar?

7.9. Suggest three requirements patterns for a modern mobile phone and write a brief
description of each. Could these patterns be used for other devices. Provide an example.

7.10. Select one of the patterns you developed in Problem 7.9 and develop a reasonably com-
plete pattern description similar in content and style to the one presented in Section 7.4.2.

7.11. How much analysis modeling do you think would be required for SafeHomeAssured
.com? Would each of the model types described in Section 7.5.3 be required?

7.12. What is the purpose of the interaction model for a WebApp?

7.13. It could be argued that a WebApp functional model should be delayed until design.
Present pros and cons for this argument.

7.14. What is the purpose of a configuration model?

7.15. How does the navigation model differ from the interaction model?

FURTHER READINGS AND INFORMATION SOURCES

Dozens of books have been published on structured analysis. All cover the subject adequately,
but only a few do a truly excellent job. DeMarco and Plauger (Structured Analysis and System
Specification, Pearson, 1985) is a classic that remains a good introduction to the basic notation.
Books by Kendall and Kendall (Systems Analysis and Design, 5th ed., Prentice-Hall, 2002), Hoffer
et al. (Modern Systems Analysis and Design, Addison-Wesley, 3d ed., 2001), Davis and Yen (The
Information System Consultant’s Handbook: Systems Analysis and Design, CRC Press, 1998), and
Modell (A Professional’s Guide to Systems Analysis, 2d ed., McGraw-Hill, 1996) are worthwhile
references. Yourdon’s book (Modern Structured Analysis, Yourdon-Press, 1989) on the subject
remains among the most comprehensive coverage published to date.

Behavioral modeling presents an important dynamic view of system behavior. Books by
Wagner and his colleagues (Modeling Software with Finite State Machines: A Practical Approach,
Auerbach, 2006) and Boerger and Staerk (Abstract State Machines, Springer, 2003) present thor-
ough discussion of state diagrams and other behavioral representations.

The majority of books written about software patterns focus on software design. However,
books by Evans (Domain-Driven Design, Addison-Wesley, 2003) and Fowler ([Fow03] and
[Fow97]) address analysis patterns specifically.

An in-depth treatment of analysis modeling for WebApps is presented by Pressman and
Lowe [Pre08]. Papers contained within an anthology edited by Murugesan and Desphande (Web
Engineering: Managing Diversity and Complexity of Web Application Development, Springer, 2001)
treat various aspects of WebApp requirements. In addition, the annual Proceedings of the Inter-
national Conference on Web Engineering regularly addresses requirements modeling issues.

A wide variety of information sources on requirements modeling are available on the
Internet. An up-to-date list of World Wide Web references that are relevant to analysis
modeling can be found at the SEPA website: www.mhhe.com/engcs/compsci/pressman/
professional/olc/ser.htm.

pre75977_ch07.qxd 11/27/08 3:36 PM Page 214

http://www.mhhe.com/engcs/compsci/pressman/

Software design encompasses the set of principles, concepts, and practices
that lead to the development of a high-quality system or product. Design
principles establish an overriding philosophy that guides you in the design

work you must perform. Design concepts must be understood before the me-
chanics of design practice are applied, and design practice itself leads to the cre-
ation of various representations of the software that serve as a guide for the
construction activity that follows.

Design is pivotal to successful software engineering. In the early 1990s Mitch
Kapor, the creator of Lotus 1-2-3, presented a “software design manifesto” in
Dr. Dobbs Journal. He said:

What is design? It’s where you stand with a foot in two worlds—the world of technol-

ogy and the world of people and human purposes—and you try to bring the two

together. . . .

215

C H A P T E R

8DESIGN
CONCEPTS

What is it? Design is what almost
every engineer wants to do. It is the
place where creativity rules—where
stakeholder requirements, business

needs, and technical considerations all come
together in the formulation of a product or sys-
tem. Design creates a representation or model
of the software, but unlike the requirements
model (that focuses on describing required
data, function, and behavior), the design model
provides detail about software architecture,
data structures, interfaces, and components that
are necessary to implement the system.

Who does it? Software engineers conduct each of
the design tasks.

Why is it important? Design allows you to model
the system or product that is to be built. This
model can be assessed for quality and
improved before code is generated, tests are
conducted, and end users become involved in
large numbers. Design is the place where soft-
ware quality is established.

What are the steps? Design depicts the soft-
ware in a number of different ways. First, the

Q U I C K
L O O K

architecture of the system or product must be
represented. Then, the interfaces that connect
the software to end users, to other systems and
devices, and to its own constituent components
are modeled. Finally, the software components
that are used to construct the system are
designed. Each of these views represents a dif-
ferent design action, but all must conform to a
set of basic design concepts that guide software
design work.

What is the work product? A design model that
encompasses architectural, interface, component-
level, and deployment representations is the
primary work product that is produced during
software design.

How do I ensure that I’ve done it right? The
design model is assessed by the software team
in an effort to determine whether it contains
errors, inconsistencies, or omissions; whether
better alternatives exist; and whether the
model can be implemented within the con-
straints, schedule, and cost that have been
established.

K E Y
C O N C E P T S

abstraction223

architecture . . .223

aspects 228

cohesion227

data design . . .234

design process .219

functional
independence . .227

good design . . .219

information
hiding 226

pre75977_ch08.qxd 11/27/08 3:38 PM Page 215

The Roman architecture critic Vitruvius advanced the notion that well-designed build-

ings were those which exhibited firmness, commodity, and delight. The same might be

said of good software. Firmness: A program should not have any bugs that inhibit its func-

tion. Commodity: A program should be suitable for the purposes for which it was in-

tended. Delight: The experience of using the program should be a pleasurable one. Here

we have the beginnings of a theory of design for software.

The goal of design is to produce a model or representation that exhibits firmness,

commodity, and delight. To accomplish this, you must practice diversification and

then convergence. Belady [Bel81] states that “diversification is the acquisition of a

repertoire of alternatives, the raw material of design: components, component solu-

tions, and knowledge, all contained in catalogs, textbooks, and the mind.” Once this

diverse set of information is assembled, you must pick and choose elements from the

repertoire that meet the requirements defined by requirements engineering and the

analysis model (Chapters 5 through 7). As this occurs, alternatives are considered

and rejected and you converge on “one particular configuration of components, and

thus the creation of the final product” [Bel81].

Diversification and convergence combine intuition and judgment based on expe-

rience in building similar entities, a set of principles and/or heuristics that guide the

way in which the model evolves, a set of criteria that enables quality to be judged,

and a process of iteration that ultimately leads to a final design representation.

Software design changes continually as new methods, better analysis, and broader

understanding evolve.1 Even today, most software design methodologies lack the

depth, flexibility, and quantitative nature that are normally associated with more clas-

sical engineering design disciplines. However, methods for software design do exist,

criteria for design quality are available, and design notation can be applied. In this

chapter, I explore the fundamental concepts and principles that are applicable to all

software design, the elements of the design model, and the impact of patterns on

the design process. In Chapters 9 through 13 I’ll present a variety of software

design methods as they are applied to architectural, interface, and component-

level design as well as pattern-based and Web-oriented design approaches.

8.1 DESIGN WITHIN THE CONTEXT OF SOFTWARE ENGINEERING

Software design sits at the technical kernel of software engineering and is applied

regardless of the software process model that is used. Beginning once software re-

quirements have been analyzed and modeled, software design is the last software

engineering action within the modeling activity and sets the stage for construction

(code generation and testing).

216 PART TWO MODELING

modularity 225

object-oriented
design 230

patterns224

quality
attributes220

quality
guidelines219

refactoring 229

separation of
concerns225

software
design 221

stepwise
refinement 228

1 Those readers with further interest in the philosophy of software design might have interest in

Philippe Kruchen’s intriguing discussion of “post-modern” design [Kru05a].

uote:

“The most common
miracle of software
engineering is the
transition from
analysis to design
and design to code.”

Richard Due’

pre75977_ch08.qxd 11/27/08 3:38 PM Page 216

Each of the elements of the requirements model (Chapters 6 and 7) provides in-

formation that is necessary to create the four design models required for a complete

specification of design. The flow of information during software design is illustrated

in Figure 8.1. The requirements model, manifested by scenario-based, class-based,

flow-oriented, and behavioral elements, feed the design task. Using design notation

and design methods discussed in later chapters, design produces a data/class de-

sign, an architectural design, an interface design, and a component design.

The data/class design transforms class models (Chapter 6) into design class real-

izations and the requisite data structures required to implement the software. The

objects and relationships defined in the CRC diagram and the detailed data content

depicted by class attributes and other notation provide the basis for the data design

action. Part of class design may occur in conjunction with the design of software

architecture. More detailed class design occurs as each software component is

designed.

The architectural design defines the relationship between major structural ele-

ments of the software, the architectural styles and design patterns that can be used

to achieve the requirements defined for the system, and the constraints that affect

the way in which architecture can be implemented [Sha96]. The architectural design

representation—the framework of a computer-based system—is derived from the

requirements model.

CHAPTER 8 DESIGN CONCEPTS 217

Software design
should always begin
with a consideration of
data—the foundation
for all other elements
of the design. After the
foundation is laid, the
architecture must be
derived. Only then
should you perform
other design tasks.

Analysis Model

Use cases - text
Use-case diagrams
Activity diagrams
Swimlane diagrams

Data flow diagrams
Control-flow diagrams
Processing narratives

Flow-oriented
elements

Behavioral
elements

Class-based
elements

Scenerio-based
elements

Class diagrams
Analysis packages
CRC models
Collaboration diagrams

State diagrams
Sequence diagrams

Data/Class Design

Interface Design

Architectural Design

Component-
Level Design

Design Model

FIGURE 8.1 Translating the requirements model into the design model

pre75977_ch08.qxd 11/27/08 3:38 PM Page 217

The interface design describes how the software communicates with systems that

interoperate with it, and with humans who use it. An interface implies a flow of

information (e.g., data and/or control) and a specific type of behavior. Therefore,

usage scenarios and behavioral models provide much of the information required

for interface design.

The component-level design transforms structural elements of the software ar-

chitecture into a procedural description of software components. Information ob-

tained from the class-based models, flow models, and behavioral models serve as

the basis for component design.

During design you make decisions that will ultimately affect the success of soft-

ware construction and, as important, the ease with which software can be main-

tained. But why is design so important?

The importance of software design can be stated with a single word—quality.

Design is the place where quality is fostered in software engineering. Design provides

you with representations of software that can be assessed for quality. Design is the

only way that you can accurately translate stakeholder’s requirements into a finished

software product or system. Software design serves as the foundation for all the soft-

ware engineering and software support activities that follow. Without design, you risk

building an unstable system—one that will fail when small changes are made; one

that may be difficult to test; one whose quality cannot be assessed until late in the

software process, when time is short and many dollars have already been spent.

218 PART TWO MODELING

uote:

“There are two
ways of
constructing a
software design.
One way is to
make it so simple
that there are
obviously no
deficiencies, and
the other way is to
make it so
complicated that
there are no
obvious
deficiencies. The
first method is far
more difficult.”

C. A. R. Hoare

Design versus Coding

The scene: Jamie’s cubicle, as the
team prepares to translate requirements into design.

The players: Jamie, Vinod, and Ed—all members of
the SafeHome software engineering team.

The conversation:

Jamie: You know, Doug [the team manager] is obsessed
with design. I gotta be honest, what I really love doing is
coding. Give me C++ or Java, and I’m happy.

Ed: Nah . . . you like to design.

Jamie: You’re not listening; coding is where it’s at.

Vinod: I think what Ed means is you don’t really like
coding; you like to design and express it in code. Code is
the language you use to represent the design.

Jamie: And what’s wrong with that?

Vinod: Level of abstraction.

Jamie: Huh?

Ed: A programming language is good for representing
details like data structures and algorithms, but it’s not so
good for representing architecture or component-to-
component collaboration . . . stuff like that.

Vinod: And a screwed-up architecture can ruin even the
best code.

Jamie (thinking for a minute): So, you’re saying
that I can’t represent architecture in code . . . that’s not true.

Vinod: You can certainly imply architecture in code, but
in most programming languages, it’s pretty difficult to get
a quick, big-picture read on architecture by examining
the code.

Ed: And that’s what we want before we begin coding.

Jamie: Okay, maybe design and coding are different,
but I still like coding better.

SAFEHOME

pre75977_ch08.qxd 11/27/08 3:38 PM Page 218

8.2 THE DESIGN PROCESS

Software design is an iterative process through which requirements are translated

into a “blueprint” for constructing the software. Initially, the blueprint depicts a holis-

tic view of software. That is, the design is represented at a high level of abstraction—

a level that can be directly traced to the specific system objective and more detailed

data, functional, and behavioral requirements. As design iterations occur, subse-

quent refinement leads to design representations at much lower levels of abstraction.

These can still be traced to requirements, but the connection is more subtle.

8.2.1 Software Quality Guidelines and Attributes

Throughout the design process, the quality of the evolving design is assessed with a

series of technical reviews discussed in Chapter 15. McGlaughlin [McG91] suggests

three characteristics that serve as a guide for the evaluation of a good design:

• The design must implement all of the explicit requirements contained in the

requirements model, and it must accommodate all of the implicit require-

ments desired by stakeholders.

• The design must be a readable, understandable guide for those who generate

code and for those who test and subsequently support the software.

• The design should provide a complete picture of the software, addressing the

data, functional, and behavioral domains from an implementation perspective.

Each of these characteristics is actually a goal of the design process. But how is each

of these goals achieved?

Quality Guidelines. In order to evaluate the quality of a design representation,

you and other members of the software team must establish technical criteria for

good design. In Section 8.3, I discuss design concepts that also serve as software

quality criteria. For the time being, consider the following guidelines:

1. A design should exhibit an architecture that (1) has been created using rec-

ognizable architectural styles or patterns, (2) is composed of components

that exhibit good design characteristics (these are discussed later in this

chapter), and (3) can be implemented in an evolutionary fashion,2 thereby

facilitating implementation and testing.

2. A design should be modular; that is, the software should be logically parti-

tioned into elements or subsystems.

3. A design should contain distinct representations of data, architecture,

interfaces, and components.

CHAPTER 8 DESIGN CONCEPTS 219

uote:

“. . . writing a
clever piece of code
that works is one
thing; designing
something that can
support a long-
lasting business is
quite another.”

C. Ferguson

What are the
characteris-

tics of a good
design?

?

2 For smaller systems, design can sometimes be developed linearly.

pre75977_ch08.qxd 11/27/08 3:38 PM Page 219

4. A design should lead to data structures that are appropriate for the classes to

be implemented and are drawn from recognizable data patterns.

5. A design should lead to components that exhibit independent functional

characteristics.

6. A design should lead to interfaces that reduce the complexity of connections

between components and with the external environment.

7. A design should be derived using a repeatable method that is driven by infor-

mation obtained during software requirements analysis.

8. A design should be represented using a notation that effectively communi-

cates its meaning.

These design guidelines are not achieved by chance. They are achieved through the

application of fundamental design principles, systematic methodology, and thorough

review.

220 PART TWO MODELING

Design is important because it allows a
software team to assess the quality3 of the

software before it is implemented—at a time when errors,
omissions, or inconsistencies are easy and inexpensive to
correct. But how do we assess quality during design? The
software can’t be tested, because there is no executable
software to test. What to do?

During design, quality is assessed by conducting a series
of technical reviews (TRs). TRs are discussed in detail in
Chapter 15,4 but it’s worth providing a summary of the
technique at this point. A technical review is a meeting
conducted by members of the software team. Usually two,
three, or four people participate depending on the scope of
the design information to be reviewed. Each person plays

a role: the review leader plans the meeting, sets an agenda,
and runs the meeting; the recorder takes notes so that
nothing is missed; the producer is the person whose work
product (e.g., the design of a software component) is being
reviewed. Prior to the meeting, each person on the review
team is given a copy of the design work product and is asked
to read it, looking for errors, omissions, or ambiguity. When
the meeting commences, the intent is to note all problems
with the work product so that they can be corrected before
implementation begins. The TR typically lasts between 90
minutes and 2 hours. At the conclusion of the TR, the review
team determines whether further actions are required on the
part of the producer before the design work product can be
approved as part of the final design model.

INFO

3 The quality factors discussed in Chapter 23 can assist the review team as it assesses quality.

4 You might consider reviewing Chapter 15 at this time. Technical reviews are a critical part of the

design process and are an important mechanism for achieving design quality.

Quality Attributes. Hewlett-Packard [Gra87] developed a set of software quality

attributes that has been given the acronym FURPS—functionality, usability, reliabil-

ity, performance, and supportability. The FURPS quality attributes represent a target

for all software design:

• Functionality is assessed by evaluating the feature set and capabilities of the

program, the generality of the functions that are delivered, and the security of

the overall system.

uote:

“Quality isn’t
something you lay
on top of subjects
and objects like
tinsel on a
Christmas tree.”

Robert Pirsig

Assessing Design Quality—The Technical Review

pre75977_ch08.qxd 11/27/08 3:38 PM Page 220

• Usability is assessed by considering human factors (Chapter 11), overall

aesthetics, consistency, and documentation.

• Reliability is evaluated by measuring the frequency and severity of failure, the

accuracy of output results, the mean-time-to-failure (MTTF), the ability to

recover from failure, and the predictability of the program.

• Performance is measured by considering processing speed, response time,

resource consumption, throughput, and efficiency.

• Supportability combines the ability to extend the program (extensibility),

adaptability, serviceability—these three attributes represent a more common

term, maintainability—and in addition, testability, compatibility, configura-

bility (the ability to organize and control elements of the software configura-

tion, Chapter 22), the ease with which a system can be installed, and the ease

with which problems can be localized.

Not every software quality attribute is weighted equally as the software design is de-

veloped. One application may stress functionality with a special emphasis on secu-

rity. Another may demand performance with particular emphasis on processing

speed. A third might focus on reliability. Regardless of the weighting, it is important

to note that these quality attributes must be considered as design commences, not

after the design is complete and construction has begun.

8.2.2 The Evolution of Software Design

The evolution of software design is a continuing process that has now spanned al-

most six decades. Early design work concentrated on criteria for the development of

modular programs [Den73] and methods for refining software structures in a top-

down manner [Wir71]. Procedural aspects of design definition evolved into a philos-

ophy called structured programming [Dah72], [Mil72]. Later work proposed methods

for the translation of data flow [Ste74] or data structure (e.g., [Jac75], [War74]) into

a design definition. Newer design approaches (e.g., [Jac92], [Gam95]) proposed an

object-oriented approach to design derivation. More recent emphasis in software de-

sign has been on software architecture [Kru06] and the design patterns that can be

used to implement software architectures and lower levels of design abstractions

(e.g., [Hol06] [Sha05]). Growing emphasis on aspect-oriented methods (e.g., [Cla05],

[Jac04]), model-driven development [Sch06], and test-driven development [Ast04]

emphasize techniques for achieving more effective modularity and architectural

structure in the designs that are created.

A number of design methods, growing out of the work just noted, are being ap-

plied throughout the industry. Like the analysis methods presented in Chapters 6 and

7, each software design method introduces unique heuristics and notation, as well

as a somewhat parochial view of what characterizes design quality. Yet, all of these

methods have a number of common characteristics: (1) a mechanism for the trans-

lation of the requirements model into a design representation, (2) a notation for

CHAPTER 8 DESIGN CONCEPTS 221

Software designers
tend to focus on the
problem to be solved.
Just don’t forget that
the FURPS attributes
are always part of the
problem. They must be
considered.

uote:

“A designer knows
that he has
achieved perfection
not when there is
nothing left to add,
but when there is
nothing left to take
away.”

Antoine de
St-Expurey

What
character-

istics are common
to all design
methods?

?

pre75977_ch08.qxd 11/27/08 3:38 PM Page 221

representing functional components and their interfaces, (3) heuristics for refine-

ment and partitioning, and (4) guidelines for quality assessment.

Regardless of the design method that is used, you should apply a set of basic con-

cepts to data, architectural, interface, and component-level design. These concepts

are considered in the sections that follow.

222 PART TWO MODELING

Generic Task Set for Design

1. Examine the information domain
model, and design appropriate data

structures for data objects and their attributes.
2. Using the analysis model, select an architectural style

that is appropriate for the software.
3. Partition the analysis model into design subsystems

and allocate these subsystems within the architecture:
Be certain that each subsystem is functionally

cohesive.
Design subsystem interfaces.
Allocate analysis classes or functions to each

subsystem.
4. Create a set of design classes or components:

Translate analysis class description into a design
class.

Check each design class against design criteria;
consider inheritance issues.

Define methods and messages associated with each
design class.

Evaluate and select design patterns for a design
class or a subsystem.

Review design classes and revise as required.
5. Design any interface required with external systems

or devices.
6. Design the user interface:

Review results of task analysis.
Specify action sequence based on user scenarios.
Create behavioral model of the interface.
Define interface objects, control mechanisms.
Review the interface design and revise as required.

7. Conduct component-level design.
Specify all algorithms at a relatively low level of

abstraction.
Refine the interface of each component.
Define component-level data structures.
Review each component and correct all errors

uncovered.
8. Develop a deployment model.

TASK SET

8.3 DESIGN CONCEPTS

A set of fundamental software design concepts has evolved over the history of soft-

ware engineering. Although the degree of interest in each concept has varied over

the years, each has stood the test of time. Each provides the software designer with

a foundation from which more sophisticated design methods can be applied. Each

helps you answer the following questions:

• What criteria can be used to partition software into individual components?

• How is function or data structure detail separated from a conceptual repre-

sentation of the software?

• What uniform criteria define the technical quality of a software design?

M. A. Jackson [Jac75] once said: “The beginning of wisdom for a [software engi-

neer] is to recognize the difference between getting a program to work, and getting

it right.” Fundamental software design concepts provide the necessary framework

for “getting it right.”

pre75977_ch08.qxd 11/27/08 3:38 PM Page 222

In the sections that follow, I present a brief overview of important software design

concepts that span both traditional and object-oriented software development.

8.3.1 Abstraction

When you consider a modular solution to any problem, many levels of abstraction

can be posed. At the highest level of abstraction, a solution is stated in broad terms

using the language of the problem environment. At lower levels of abstraction, a

more detailed description of the solution is provided. Problem-oriented terminology

is coupled with implementation-oriented terminology in an effort to state a solution.

Finally, at the lowest level of abstraction, the solution is stated in a manner that can

be directly implemented.

As different levels of abstraction are developed, you work to create both proce-

dural and data abstractions. A procedural abstraction refers to a sequence of instruc-

tions that have a specific and limited function. The name of a procedural abstraction

implies these functions, but specific details are suppressed. An example of a proce-

dural abstraction would be the word open for a door. Open implies a long sequence

of procedural steps (e.g., walk to the door, reach out and grasp knob, turn knob and

pull door, step away from moving door, etc.).5

A data abstraction is a named collection of data that describes a data object. In

the context of the procedural abstraction open, we can define a data abstraction

called door. Like any data object, the data abstraction for door would encompass

a set of attributes that describe the door (e.g., door type, swing direction, opening

mechanism, weight, dimensions). It follows that the procedural abstraction open

would make use of information contained in the attributes of the data abstraction

door.

8.3.2 Architecture

Software architecture alludes to “the overall structure of the software and the ways

in which that structure provides conceptual integrity for a system” [Sha95a]. In its

simplest form, architecture is the structure or organization of program components

(modules), the manner in which these components interact, and the structure of data

that are used by the components. In a broader sense, however, components can be

generalized to represent major system elements and their interactions.

One goal of software design is to derive an architectural rendering of a system.

This rendering serves as a framework from which more detailed design activities are

conducted. A set of architectural patterns enables a software engineer to solve

common design problems.

CHAPTER 8 DESIGN CONCEPTS 223

uote:

“Abstraction is one
of the fundamental
ways that we as
humans cope with
complexity.”

Grady Booch

5 It should be noted, however, that one set of operations can be replaced with another, as long as the

function implied by the procedural abstraction remains the same. Therefore, the steps required to

implement open would change dramatically if the door were automatic and attached to a sensor.

As a designer, work
hard to derive both
procedural and data
abstractions that serve
the problem at hand.
If they can serve an
entire domain of
problems, that’s even
better.

WebRef
An in-depth discussion
of software architecture
can be found at
www.sei.cmu.edu/
ata/ata_init.html.

pre75977_ch08.qxd 11/27/08 3:38 PM Page 223

http://www.sei.cmu.edu/

Shaw and Garlan [Sha95a] describe a set of properties that should be specified as

part of an architectural design:

Structural properties. This aspect of the architectural design representation defines

the components of a system (e.g., modules, objects, filters) and the manner in which

those components are packaged and interact with one another. For example, objects are

packaged to encapsulate both data and the processing that manipulates the data and in-

teract via the invocation of methods.

Extra-functional properties. The architectural design description should address

how the design architecture achieves requirements for performance, capacity, reliability,

security, adaptability, and other system characteristics.

Families of related systems. The architectural design should draw upon repeatable

patterns that are commonly encountered in the design of families of similar systems. In

essence, the design should have the ability to reuse architectural building blocks.

Given the specification of these properties, the architectural design can be repre-

sented using one or more of a number of different models [Gar95]. Structural models

represent architecture as an organized collection of program components.

Framework models increase the level of design abstraction by attempting to identify

repeatable architectural design frameworks that are encountered in similar types of

applications. Dynamic models address the behavioral aspects of the program archi-

tecture, indicating how the structure or system configuration may change as a func-

tion of external events. Process models focus on the design of the business or

technical process that the system must accommodate. Finally, functional models can

be used to represent the functional hierarchy of a system.

A number of different architectural description languages (ADLs) have been devel-

oped to represent these models [Sha95b]. Although many different ADLs have been

proposed, the majority provide mechanisms for describing system components and

the manner in which they are connected to one another.

You should note that there is some debate about the role of architecture in design.

Some researchers argue that the derivation of software architecture should be sep-

arated from design and occurs between requirements engineering actions and more

conventional design actions. Others believe that the derivation of architecture is an

integral part of the design process. The manner in which software architecture is

characterized and its role in design are discussed in Chapter 9.

8.3.3 Patterns

Brad Appleton defines a design pattern in the following manner: “A pattern is a

named nugget of insight which conveys the essence of a proven solution to a recur-

ring problem within a certain context amidst competing concerns” [App00]. Stated

in another way, a design pattern describes a design structure that solves a particular

design problem within a specific context and amid “forces” that may have an impact

on the manner in which the pattern is applied and used.

224 PART TWO MODELING

uote:

“A software
architecture is the
development work
product that gives
the highest return
on investment with
respect to quality,
schedule, and
cost.”

Len Bass et al.

Don’t just let architec-
ture happen. If you do,
you’ll spend the rest of
the project trying to
force fit the design.
Design architecture
explicitly.

uote:

“Each pattern
describes a
problem which
occurs over and
over again in our
environment, and
then describes the
core of the solution
to that problem, in
such a way that
you can use this
solution a million
times over, without
ever doing it the
same way twice.”

Christopher
Alexander

pre75977_ch08.qxd 11/27/08 3:38 PM Page 224

The intent of each design pattern is to provide a description that enables a

designer to determine (1) whether the pattern is applicable to the current work,

(2) whether the pattern can be reused (hence, saving design time), and (3) whether

the pattern can serve as a guide for developing a similar, but functionally or struc-

turally different pattern. Design patterns are discussed in detail in Chapter 12.

8.3.4 Separation of Concerns

Separation of concerns is a design concept [Dij82] that suggests that any complex

problem can be more easily handled if it is subdivided into pieces that can each be

solved and/or optimized independently. A concern is a feature or behavior that is

specified as part of the requirements model for the software. By separating concerns

into smaller, and therefore more manageable pieces, a problem takes less effort and

time to solve.

For two problems, p1 and p2, if the perceived complexity of p1 is greater than the

perceived complexity of p2, it follows that the effort required to solve p1 is greater

than the effort required to solve p2. As a general case, this result is intuitively obvi-

ous. It does take more time to solve a difficult problem.

It also follows that the perceived complexity of two problems when they are com-

bined is often greater than the sum of the perceived complexity when each is taken

separately. This leads to a divide-and-conquer strategy—it’s easier to solve a com-

plex problem when you break it into manageable pieces. This has important impli-

cations with regard to software modularity.

Separation of concerns is manifested in other related design concepts: modular-

ity, aspects, functional independence, and refinement. Each will be discussed in the

subsections that follow.

8.3.5 Modularity

Modularity is the most common manifestation of separation of concerns. Software

is divided into separately named and addressable components, sometimes called

modules, that are integrated to satisfy problem requirements.

It has been stated that “modularity is the single attribute of software that allows a

program to be intellectually manageable” [Mye78]. Monolithic software (i.e., a large

program composed of a single module) cannot be easily grasped by a software engi-

neer. The number of control paths, span of reference, number of variables, and over-

all complexity would make understanding close to impossible. In almost all

instances, you should break the design into many modules, hoping to make under-

standing easier and, as a consequence, reduce the cost required to build the software.

Recalling my discussion of separation of concerns, it is possible to conclude that

if you subdivide software indefinitely the effort required to develop it will become

negligibly small! Unfortunately, other forces come into play, causing this conclusion

to be (sadly) invalid. Referring to Figure 8.2, the effort (cost) to develop an individual

software module does decrease as the total number of modules increases. Given the

CHAPTER 8 DESIGN CONCEPTS 225

The argument for sepa-
ration of concerns can
be taken too far. If
you divide a problem
into an inordinate
number of very
small problems,
solving each will be
easy, but putting the
solution together—
integration—
may be very difficult.

pre75977_ch08.qxd 11/27/08 3:38 PM Page 225

same set of requirements, more modules means smaller individual size. However, as

the number of modules grows, the effort (cost) associated with integrating the mod-

ules also grows. These characteristics lead to a total cost or effort curve shown in the

figure. There is a number, M, of modules that would result in minimum development

cost, but we do not have the necessary sophistication to predict M with assurance.

The curves shown in Figure 8.2 do provide useful qualitative guidance when mod-

ularity is considered. You should modularize, but care should be taken to stay in the

vicinity of M. Undermodularity or overmodularity should be avoided. But how do you

know the vicinity of M? How modular should you make software? The answers to

these questions require an understanding of other design concepts considered later

in this chapter.

You modularize a design (and the resulting program) so that development can be

more easily planned; software increments can be defined and delivered; changes can

be more easily accommodated; testing and debugging can be conducted more effi-

ciently, and long-term maintenance can be conducted without serious side effects.

8.3.6 Information Hiding

The concept of modularity leads you to a fundamental question: “How do I decom-

pose a software solution to obtain the best set of modules?” The principle of infor-

mation hiding [Par72] suggests that modules be “characterized by design decisions

that (each) hides from all others.” In other words, modules should be specified and

designed so that information (algorithms and data) contained within a module is in-

accessible to other modules that have no need for such information.

Hiding implies that effective modularity can be achieved by defining a set of inde-

pendent modules that communicate with one another only that information neces-

sary to achieve software function. Abstraction helps to define the procedural (or

informational) entities that make up the software. Hiding defines and enforces access

constraints to both procedural detail within a module and any local data structure

used by the module [Ros75].

226 PART TWO MODELING

M

Region of minimum
cost

Number of modules

C
os

t o
r e

ffo
rt

Cost/module

Cost to integrate

Total software cost
FIGURE 8.2

Modularity
and software
cost

What is the
right number

of modules for a
given system?

?

The intent of information
hiding is to hide the
details of data structures
and procedural processing
behind a module inter-
face. Knowledge of the
details need not be
known by users of the
module.

pre75977_ch08.qxd 11/27/08 3:38 PM Page 226

The use of information hiding as a design criterion for modular systems provides

the greatest benefits when modifications are required during testing and later dur-

ing software maintenance. Because most data and procedural detail are hidden from

other parts of the software, inadvertent errors introduced during modification are

less likely to propagate to other locations within the software.

8.3.7 Functional Independence

The concept of functional independence is a direct outgrowth of separation of con-

cerns, modularity, and the concepts of abstraction and information hiding. In land-

mark papers on software design, Wirth [Wir71] and Parnas [Par72] allude to

refinement techniques that enhance module independence. Later work by Stevens,

Myers, and Constantine [Ste74] solidified the concept.

Functional independence is achieved by developing modules with “single-

minded” function and an “aversion” to excessive interaction with other modules.

Stated another way, you should design software so that each module addresses a

specific subset of requirements and has a simple interface when viewed from other

parts of the program structure. It is fair to ask why independence is important.

Software with effective modularity, that is, independent modules, is easier to de-

velop because function can be compartmentalized and interfaces are simplified

(consider the ramifications when development is conducted by a team). Independent

modules are easier to maintain (and test) because secondary effects caused by de-

sign or code modification are limited, error propagation is reduced, and reusable

modules are possible. To summarize, functional independence is a key to good de-

sign, and design is the key to software quality.

Independence is assessed using two qualitative criteria: cohesion and coupling.

Cohesion is an indication of the relative functional strength of a module. Coupling is

an indication of the relative interdependence among modules.

Cohesion is a natural extension of the information-hiding concept described in

Section 8.3.6. A cohesive module performs a single task, requiring little interaction

with other components in other parts of a program. Stated simply, a cohesive mod-

ule should (ideally) do just one thing. Although you should always strive for high co-

hesion (i.e., single-mindedness), it is often necessary and advisable to have a

software component perform multiple functions. However, “schizophrenic” compo-

nents (modules that perform many unrelated functions) are to be avoided if a good

design is to be achieved.

Coupling is an indication of interconnection among modules in a software struc-

ture. Coupling depends on the interface complexity between modules, the point at

which entry or reference is made to a module, and what data pass across the inter-

face. In software design, you should strive for the lowest possible coupling. Simple

connectivity among modules results in software that is easier to understand and less

prone to a “ripple effect” [Ste74], caused when errors occur at one location and prop-

agate throughout a system.

CHAPTER 8 DESIGN CONCEPTS 227

Why should
you strive

to create
independent
modules?

?

Cohesion is a
qualitative indication
of the degree to which
a module focuses on
just one thing.

Coupling is a
qualitative indication of
the degree to which a
module is connected to
other modules and to
the outside world.

pre75977_ch08.qxd 11/27/08 3:38 PM Page 227

8.3.8 Refinement

Stepwise refinement is a top-down design strategy originally proposed by Niklaus

Wirth [Wir71]. A program is developed by successively refining levels of procedural

detail. A hierarchy is developed by decomposing a macroscopic statement of func-

tion (a procedural abstraction) in a stepwise fashion until programming language

statements are reached.

Refinement is actually a process of elaboration. You begin with a statement of

function (or description of information) that is defined at a high level of abstraction.

That is, the statement describes function or information conceptually but provides

no information about the internal workings of the function or the internal structure

of the information. You then elaborate on the original statement, providing more and

more detail as each successive refinement (elaboration) occurs.

Abstraction and refinement are complementary concepts. Abstraction enables

you to specify procedure and data internally but suppress the need for “outsiders” to

have knowledge of low-level details. Refinement helps you to reveal low-level de-

tails as design progresses. Both concepts allow you to create a complete design

model as the design evolves.

8.3.9 Aspects

As requirements analysis occurs, a set of “concerns” is uncovered. These concerns

“include requirements, use cases, features, data structures, quality-of-service issues,

variants, intellectual property boundaries, collaborations, patterns and contracts”

[AOS07]. Ideally, a requirements model can be organized in a way that allows you to

isolate each concern (requirement) so that it can be considered independently. In

practice, however, some of these concerns span the entire system and cannot be

easily compartmentalized.

As design begins, requirements are refined into a modular design representation.

Consider two requirements, A and B. Requirement A crosscuts requirement B “if a

software decomposition [refinement] has been chosen in which B cannot be satis-

fied without taking A into account” [Ros04].

For example, consider two requirements for the SafeHomeAssured.com WebApp.

Requirement A is described via the ACS-DCV use case discussed in Chapter 6. A

design refinement would focus on those modules that would enable a registered user

to access video from cameras placed throughout a space. Requirement B is a generic

security requirement that states that a registered user must be validated prior to using

SafeHomeAssured.com. This requirement is applicable for all functions that are

available to registered SafeHome users. As design refinement occurs, A* is a design

representation for requirement A and B* is a design representation for requirement B.

Therefore, A* and B* are representations of concerns, and B* crosscuts A*.

An aspect is a representation of a crosscutting concern. Therefore, the design rep-

resentation, B*, of the requirement a registered user must be validated prior to using

SafeHomeAssured.com, is an aspect of the SafeHome WebApp. It is important to

228 PART TWO MODELING

There is a tendency to
move immediately to
full detail, skipping
refinement steps. This
leads to errors and
omissions and makes
the design much more
difficult to review.
Perform stepwise
refinement.

uote:

“It’s hard to read
through a book on
the principles of
magic without
glancing at the
cover periodically
to make sure it
isn’t a book on
software design.”

Bruce Tognazzini

A crosscutting concern
is some characteristic
of the system that
applies across many
different requirements.

pre75977_ch08.qxd 11/27/08 3:38 PM Page 228

identify aspects so that the design can properly accommodate them as refinement

and modularization occur. In an ideal context, an aspect is implemented as a sepa-

rate module (component) rather than as software fragments that are “scattered” or

“tangled” throughout many components [Ban06]. To accomplish this, the design ar-

chitecture should support a mechanism for defining an aspect—a module that en-

ables the concern to be implemented across all other concerns that it crosscuts.

8.3.10 Refactoring

An important design activity suggested for many agile methods (Chapter 3),

refactoring is a reorganization technique that simplifies the design (or code) of a

component without changing its function or behavior. Fowler [Fow00] defines refac-

toring in the following manner: “Refactoring is the process of changing a software

system in such a way that it does not alter the external behavior of the code [design]

yet improves its internal structure.”

When software is refactored, the existing design is examined for redundancy, un-

used design elements, inefficient or unnecessary algorithms, poorly constructed or

inappropriate data structures, or any other design failure that can be corrected to yield

a better design. For example, a first design iteration might yield a component that

exhibits low cohesion (i.e., it performs three functions that have only limited relation-

ship to one another). After careful consideration, you may decide that the component

should be refactored into three separate components, each exhibiting high cohesion.

CHAPTER 8 DESIGN CONCEPTS 229

WebRef
Excellent resources for
refactoring can be
found at www
.refactoring.com.

WebRef
A variety of refactoring
patterns can be found at
http://c2.com/cgi/
wiki?Refactoring
Patterns.

Design Concepts

The scene: Vinod’s cubicle, as
design modeling begins.

The players: Vinod, Jamie, and Ed—members of the
SafeHome software engineering team. Also, Shakira, a
new member of the team.

The conversation:

[All four team members have just returned from a morning
seminar entitiled “Applying Basic Design Concepts,”
offered by a local computer science professor.]

Vinod: Did you get anything out of the seminar?

Ed: Knew most of the stuff, but it’s not a bad idea to hear
it again, I suppose.

Jamie: When I was an undergrad CS major, I never
really understood why information hiding was as
important as they say it is.

Vinod: Because . . . bottom line . . . it’s a technique for
reducing error propagation in a program. Actually,
functional independence also accomplishes the same thing.

Shakira: I wasn’t a CS grad, so a lot of the stuff the
instructor mentioned is new to me. I can generate
good code and fast. I don’t see why this stuff is so
important.

Jamie: I’ve seen your work, Shak, and you know what,
you do a lot of this stuff naturally . . . that’s why your
designs and code work.

Shakira (smiling): Well, I always do try to partition
the code, keep it focused on one thing, keep interfaces
simple and constrained, reuse code whenever I can . . .
that sort of thing.

Ed: Modularity, functional independence, hiding,
patterns . . . see.

Jamie: I still remember the very first programming
course I took . . . they taught us to refine the code
iteratively.

Vinod: Same thing can be applied to design, you know.

Vinod: The only concepts I hadn’t heard of before were
“aspects” and “refactoring.”

SAFEHOME

pre75977_ch08.qxd 11/27/08 3:38 PM Page 229

http://c2.com/cgi/

The result will be software that is easier to integrate, easier to test, and easier to

maintain.

8.3.11 Object-Oriented Design Concepts

The object-oriented (OO) paradigm is widely used in modern software engineering.

Appendix 2 has been provided for those readers who may be unfamiliar with OO

design concepts such as classes and objects, inheritance, messages, and polymor-

phism, among others.

8.3.12 Design Classes

The requirements model defines a set of analysis classes (Chapter 6). Each describes

some element of the problem domain, focusing on aspects of the problem that are

user visible. The level of abstraction of an analysis class is relatively high.

As the design model evolves, you will define a set of design classes that refine the

analysis classes by providing design detail that will enable the classes to be imple-

mented, and implement a software infrastructure that supports the business solu-

tion. Five different types of design classes, each representing a different layer of the

design architecture, can be developed [Amb01]:

• User interface classes define all abstractions that are necessary for human-

computer interaction (HCI). In many cases, HCI occurs within the context of

a metaphor (e.g., a checkbook, an order form, a fax machine), and the design

classes for the interface may be visual representations of the elements of the

metaphor.

• Business domain classes are often refinements of the analysis classes defined

earlier. The classes identify the attributes and services (methods) that are

required to implement some element of the business domain.

• Process classes implement lower-level business abstractions required to fully

manage the business domain classes.

• Persistent classes represent data stores (e.g., a database) that will persist

beyond the execution of the software.

• System classes implement software management and control functions that

enable the system to operate and communicate within its computing envi-

ronment and with the outside world.

230 PART TWO MODELING

Shakira: That’s used in Extreme Programming, I think
she said.

Ed: Yep. It’s not a whole lot different than refinement, only
you do it after the design or code is completed. Kind of an
optimization pass through the software, if you ask me.

Jamie: Let’s get back to SafeHome design. I think we
should put these concepts on our review checklist as we
develop the design model for SafeHome.

Vinod: I agree. But as important, let’s all commit to think
about them as we develop the design.

What types
of classes

does the designer
create?

?

pre75977_ch08.qxd 11/27/08 3:38 PM Page 230

As the architecture forms, the level of abstraction is reduced as each analysis class

is transformed into a design representation. That is, analysis classes represent data

objects (and associated services that are applied to them) using the jargon of the

business domain. Design classes present significantly more technical detail as a

guide for implementation.

Arlow and Neustadt [Arl02] suggest that each design class be reviewed to ensure

that it is “well-formed.” They define four characteristics of a well-formed design

class:

Complete and sufficient. A design class should be the complete encapsu-

lation of all attributes and methods that can reasonably be expected (based

on a knowledgeable interpretation of the class name) to exist for the class.

For example, the class Scene defined for video-editing software is complete

only if it contains all attributes and methods that can reasonably be associ-

ated with the creation of a video scene. Sufficiency ensures that the design

class contains only those methods that are sufficient to achieve the intent of

the class, no more and no less.

Primitiveness. Methods associated with a design class should be focused

on accomplishing one service for the class. Once the service has been imple-

mented with a method, the class should not provide another way to accom-

plish the same thing. For example, the class VideoClip for video-editing

software might have attributes start-point and end-point to indicate the start

and end points of the clip (note that the raw video loaded into the system

may be longer than the clip that is used). The methods, setStartPoint() and

setEndPoint(), provide the only means for establishing start and end points

for the clip.

High cohesion. A cohesive design class has a small, focused set of responsi-

bilities and single-mindedly applies attributes and methods to implement

those responsibilities. For example, the class VideoClip might contain a set of

methods for editing the video clip. As long as each method focuses solely on

attributes associated with the video clip, cohesion is maintained.

Low coupling. Within the design model, it is necessary for design classes to

collaborate with one another. However, collaboration should be kept to an

acceptable minimum. If a design model is highly coupled (all design classes

collaborate with all other design classes), the system is difficult to implement,

to test, and to maintain over time. In general, design classes within a subsys-

tem should have only limited knowledge of other classes. This restriction,

called the Law of Demeter [Lie03], suggests that a method should only send

messages to methods in neighboring classes.6

CHAPTER 8 DESIGN CONCEPTS 231

What is a
“well-

formed” design
class?

?

6 A less formal way of stating the Law of Demeter is “Each unit should only talk to its friends; Don’t

talk to strangers.”

pre75977_ch08.qxd 11/27/08 3:38 PM Page 231

232 PART TWO MODELING

The scene: Ed’s cubicle, as design
modeling begins.

The players: Vinod and Ed—members of the
SafeHome software engineering team.

The conversation:

[Ed is working on the FloorPlan class (see sidebar dis-
cussion in Section 6.5.3 and Figure 6.10) and has refined
it for the design model.]

Ed: So you remember the FloorPlan class, right? It’s
used as part of the surveillance and home management
functions.

Vinod (nodding): Yeah, I seem to recall that we used
it as part of our CRC discussions for home management.

Ed: We did. Anyway, I’m refining it for design. Want to
show how we’ll actually implement the FloorPlan class.
My idea is to implement it as a set of linked lists [a
specific data structure] So . . . I had to refine the analysis
class FloorPlan (Figure 6.10) and actually, sort of
simplify it.

Vinod: The analysis class showed only things in the
problem domain, well, actually on the computer screen,
that were visible to the end user, right?

Ed: Yep, but for the FloorPlan design class, I’ve got
to add some things that are implementation specific. I
needed to show that FloorPlan is an aggregation of
segments—hence the Segment class—and that the
Segment class is composed of lists for wall segments,
windows, doors, and so on. The class Camera
collaborates with FloorPlan, and obviously, there can
be many cameras in the floor plan.

Vinod: Phew, let’s see a picture of this new FloorPlan
design class.

[Ed shows Vinod the drawing shown in Figure 8.3.]

Vinod: Okay, I see what you’re trying to do. This allows
you to modify the floor plan easily because new items can
be added to or deleted from the list—the aggregation—
without any problems.
Ed (nodding): Yeah, I think it’ll work.
Vinod: So do I.

SAFEHOME

FloorPlan

addCamera()
addWall()
addWindow()
deleteSegment()
draw()

type
outsideDimensions

WallSegment

Segment

startCoordinate
endCoordinate
getType()
draw()

Window

Camera
type
id
fieldView
panAngle
zoomSetting

1 *

1
*

FIGURE 8.3

Design class
for FloorPlan
and composite
aggregation
for the class
(see sidebar
discussion)

Refining an Analysis Class into a Design Class

pre75977_ch08.qxd 11/27/08 3:38 PM Page 232

8.4 THE DESIGN MODEL

The design model can be viewed in two different dimensions as illustrated in

Figure 8.4. The process dimension indicates the evolution of the design model as de-

sign tasks are executed as part of the software process. The abstraction dimension

represents the level of detail as each element of the analysis model is transformed

into a design equivalent and then refined iteratively. Referring to Figure 8.4, the

dashed line indicates the boundary between the analysis and design models. In some

cases, a clear distinction between the analysis and design models is possible. In other

cases, the analysis model slowly blends into the design and a clear distinction is less

obvious.

The elements of the design model use many of the same UML diagrams7 that

were used in the analysis model. The difference is that these diagrams are refined

and elaborated as part of design; more implementation-specific detail is provided,

and architectural structure and style, components that reside within the architec-

ture, and interfaces between the components and with the outside world are all

emphasized.

CHAPTER 8 DESIGN CONCEPTS 233

Process dimension

A
b
st

ra
ct

io
n
 d

im
en

si
o
n

Architecture
elements

Interface
elements

Component-level
elements

Deployment-level
elements

Low

High

Class diagrams
Analysis packages
CRC models
Collaboration
 diagrams
Data flow diagrams
Control-flow diagrams
Processing narratives

Use cases - text
Use-case diagrams
Activity diagrams
Swimlane diagrams
Collaboration
 diagrams
State diagrams
Sequence diagrams

Design class
 realizations
Subsystems
Collaboration
 diagrams

Refinements to:

Deployment diagrams

Class diagrams
Analysis packages
CRC models
Collaboration diagrams
Data flow diagrams
Control-flow diagrams
Processing narratives
State diagrams
Sequence diagrams

Component diagrams
Design classes
Activity diagrams
Sequence diagrams

Refinements to:
Component diagrams
Design classes
Activity diagrams
Sequence diagrams

Design class realizations
Subsystems
Collaboration diagrams
Component diagrams
Design classes
Activity diagrams
Sequence diagrams

Analysis model

Design model

Requirements:
 Constraints
 Interoperability
 Targets and
 configuration

Technical interface
 design
Navigation design
GUI design

 Design class
 realizations
 Subsystems
 Collaboration
 diagrams

FIGURE 8.4 Dimensions of the design model

The design model has
four major elements:
data, architecture,
components, and
interface.

7 Appendix 1 provides a tutorial on basic UML concepts and notation.

pre75977_ch08.qxd 11/27/08 3:38 PM Page 233

You should note, however, that model elements indicated along the horizontal axis

are not always developed in a sequential fashion. In most cases preliminary architec-

tural design sets the stage and is followed by interface design and component-level

design, which often occur in parallel. The deployment model is usually delayed until

the design has been fully developed.

You can apply design patterns (Chapter 12) at any point during design. These pat-

terns enable you to apply design knowledge to domain-specific problems that have

been encountered and solved by others.

8.4.1 Data Design Elements

Like other software engineering activities, data design (sometimes referred to as data

architecting) creates a model of data and/or information that is represented at a high

level of abstraction (the customer/user’s view of data). This data model is then re-

fined into progressively more implementation-specific representations that can be

processed by the computer-based system. In many software applications, the archi-

tecture of the data will have a profound influence on the architecture of the software

that must process it.

The structure of data has always been an important part of software design. At

the program component level, the design of data structures and the associated

algorithms required to manipulate them is essential to the creation of high-quality

applications. At the application level, the translation of a data model (derived as part

of requirements engineering) into a database is pivotal to achieving the business

objectives of a system. At the business level, the collection of information stored in

disparate databases and reorganized into a “data warehouse” enables data mining

or knowledge discovery that can have an impact on the success of the business itself.

In every case, data design plays an important role. Data design is discussed in more

detail in Chapter 9.

8.4.2 Architectural Design Elements

The architectural design for software is the equivalent to the floor plan of a house. The

floor plan depicts the overall layout of the rooms; their size, shape, and relationship

to one another; and the doors and windows that allow movement into and out of the

rooms. The floor plan gives us an overall view of the house. Architectural design el-

ements give us an overall view of the software.

The architectural model [Sha96] is derived from three sources: (1) information

about the application domain for the software to be built; (2) specific requirements

model elements such as data flow diagrams or analysis classes, their relationships

and collaborations for the problem at hand; and (3) the availability of architectural

styles (Chapter 9) and patterns (Chapter 12).

The architectural design element is usually depicted as a set of interconnected

subsystems, often derived from analysis packages within the requirements model.

Each subsystem may have it’s own architecture (e.g., a graphical user interface might

234 PART TWO MODELING

uote:

“Questions about
whether design
is necessary or
affordable are
quite beside the
point: design is
inevitable. The
alternative to
good design is bad
design, not no
design at all.”

Douglas Martin

At the architectural
(application) level,
data design focuses on
files or databases; at
the component level,
data design considers
the data structures that
are required to
implement local data
objects.

uote:

“You can use an
eraser on the
drafting table or a
sledge hammer on
the construction
site.”

Frank Lloyd
Wright

pre75977_ch08.qxd 11/27/08 3:38 PM Page 234

be structured according to a preexisting architectural style for user interfaces). Tech-

niques for deriving specific elements of the architectural model are presented in

Chapter 9.

8.4.3 Interface Design Elements

The interface design for software is analogous to a set of detailed drawings (and

specifications) for the doors, windows, and external utilities of a house. These

drawings depict the size and shape of doors and windows, the manner in which they

operate, the way in which utility connections (e.g., water, electrical, gas, telephone)

come into the house and are distributed among the rooms depicted in the floor plan.

They tell us where the doorbell is located, whether an intercom is to be used to an-

nounce a visitor’s presence, and how a security system is to be installed. In essence,

the detailed drawings (and specifications) for the doors, windows, and external util-

ities tell us how things and information flow into and out of the house and within the

rooms that are part of the floor plan. The interface design elements for software de-

pict information flows into and out of the system and how it is communicated among

the components defined as part of the architecture.

There are three important elements of interface design: (1) the user interface (UI);

(2) external interfaces to other systems, devices, networks, or other producers or

consumers of information; and (3) internal interfaces between various design com-

ponents. These interface design elements allow the software to communicate exter-

nally and enable internal communication and collaboration among the components

that populate the software architecture.

UI design (increasingly called usability design) is a major software engineering ac-

tion and is considered in detail in Chapter 11. Usability design incorporates aesthetic

elements (e.g., layout, color, graphics, interaction mechanisms), ergonomic ele-

ments (e.g., information layout and placement, metaphors, UI navigation), and tech-

nical elements (e.g., UI patterns, reusable components). In general, the UI is a unique

subsystem within the overall application architecture.

The design of external interfaces requires definitive information about the entity

to which information is sent or received. In every case, this information should be

collected during requirements engineering (Chapter 5) and verified once the inter-

face design commences.8 The design of external interfaces should incorporate error

checking and (when necessary) appropriate security features.

The design of internal interfaces is closely aligned with component-level design

(Chapter 10). Design realizations of analysis classes represent all operations and the

messaging schemes required to enable communication and collaboration between

operations in various classes. Each message must be designed to accommodate

the requisite information transfer and the specific functional requirements of the

CHAPTER 8 DESIGN CONCEPTS 235

uote:

“The public is more
familiar with bad
design than good
design. It is, in
effect, conditioned
to prefer bad
design, because
that is what it lives
with. The new
becomes
threatening, the
old reassuring.”

Paul Rand

There are three parts
to the interface design
element: the user
interface, interfaces to
system external to the
application, and inter-
faces to components
within the application.

uote:

“Every now and
then go away, have
a little relaxation,
for when you come
back to your work
your judgment will
be surer. Go some
distance away
because then the
work appears
smaller and more
of it can be taken in
at a glance and a
lack of harmony
and proportion is
more readily seen.”

Leonardo
DaVinci

8 Interface characteristics can change with time. Therefore, a designer should ensure that the spec-

ification for the interface is accurate and complete.

pre75977_ch08.qxd 11/27/08 3:38 PM Page 235

operation that has been requested. If the classic input-process-output approach to

design is chosen, the interface of each software component is designed based on data

flow representations and the functionality described in a processing narrative.

In some cases, an interface is modeled in much the same way as a class. In UML,

an interface is defined in the following manner [OMG03a]: “An interface is a speci-

fier for the externally-visible [public] operations of a class, component, or other clas-

sifier (including subsystems) without specification of internal structure.” Stated more

simply, an interface is a set of operations that describes some part of the behavior of

a class and provides access to these operations.

For example, the SafeHome security function makes use of a control panel that al-

lows a homeowner to control certain aspects of the security function. In an advanced

version of the system, control panel functions may be implemented via a wireless

PDA or mobile phone.

The ControlPanel class (Figure 8.5) provides the behavior associated with a key-

pad, and therefore, it must implement the operations readKeyStroke () and decodeKey ().

If these operations are to be provided to other classes (in this case, WirelessPDA

and MobilePhone), it is useful to define an interface as shown in the figure. The

interface, named KeyPad, is shown as an <<interface>> stereotype or as a small,

labeled circle connected to the class with a line. The interface is defined with no

attributes and the set of operations that are necessary to achieve the behavior of

a keypad.

The dashed line with an open triangle at its end (Figure 8.5) indicates that the

ControlPanel class provides KeyPad operations as part of its behavior. In UML, this

236 PART TWO MODELING

ControlPanel

LCDdisplay
LEDindicators
keyPadCharacteristics
speaker
wirelessInterface
readKeyStroke()
decodeKey()
displayStatus()
lightLEDs()
sendControlMsg()

KeyPad

readKeystroke()
decodeKey()

<<Interface>>

WirelessPDA

MobilePhone

KeyPad

FIGURE 8.5

Interface
representation
for Control-
Panel

WebRef
Extremely valuable
information on UI
design can be found at
www.useit.com.

uote:

“A common
mistake that
people make when
trying to design
something
completely
foolproof was to
underestimate the
ingenuity of
complete fools.”

Douglas Adams

pre75977_ch08.qxd 11/27/08 3:39 PM Page 236

http://www.useit.com

is characterized as a realization. That is, part of the behavior of ControlPanel will

be implemented by realizing KeyPad operations. These operations will be provided

to other classes that access the interface.

8.4.4 Component-Level Design Elements

The component-level design for software is the equivalent to a set of detailed draw-

ings (and specifications) for each room in a house. These drawings depict wiring and

plumbing within each room, the location of electrical receptacles and wall switches,

faucets, sinks, showers, tubs, drains, cabinets, and closets. They also describe the

flooring to be used, the moldings to be applied, and every other detail associated

with a room. The component-level design for software fully describes the internal

detail of each software component. To accomplish this, the component-level design

defines data structures for all local data objects and algorithmic detail for all pro-

cessing that occurs within a component and an interface that allows access to all

component operations (behaviors).

Within the context of object-oriented software engineering, a component is rep-

resented in UML diagrammatic form as shown in Figure 8.6. In this figure, a compo-

nent named SensorManagement (part of the SafeHome security function) is

represented. A dashed arrow connects the component to a class named Sensor that

is assigned to it. The SensorManagement component performs all functions asso-

ciated with SafeHome sensors including monitoring and configuring them. Further

discussion of component diagrams is presented in Chapter 10.

The design details of a component can be modeled at many different levels of

abstraction. A UML activity diagram can be used to represent processing logic.

Detailed procedural flow for a component can be represented using either

pseudocode (a programming language-like representation described in Chapter 10)

or some other diagrammatic form (e.g., flowchart or box diagram). Algorithmic

structure follows the rules established for structured programming (i.e., a set of con-

strained procedural constructs). Data structures, selected based on the nature of the

data objects to be processed, are usually modeled using pseudocode or the pro-

gramming language to be used for implementation.

8.4.5 Deployment-Level Design Elements

Deployment-level design elements indicate how software functionality and subsys-

tems will be allocated within the physical computing environment that will support

CHAPTER 8 DESIGN CONCEPTS 237

uote:

“The details are
not the details.
They make the
design.”

Charles Eames

SensorManagement Sensor

FIGURE 8.6

A UML
component
diagram

pre75977_ch08.qxd 11/27/08 3:39 PM Page 237

the software. For example, the elements of the SafeHome product are configured

to operate within three primary computing environments—a home-based PC, the

SafeHome control panel, and a server housed at CPI Corp. (providing Internet-based

access to the system).

During design, a UML deployment diagram is developed and then refined as

shown in Figure 8.7. In the figure, three computing environments are shown (in

actuality, there would be more including sensors, cameras, and others). The sub-

systems (functionality) housed within each computing element are indicated. For

example, the personal computer houses subsystems that implement security, sur-

veillance, home management, and communications features. In addition, an exter-

nal access subsystem has been designed to manage all attempts to access the

SafeHome system from an external source. Each subsystem would be elaborated to

indicate the components that it implements.

The diagram shown in Figure 8.7 is in descriptor form. This means that the de-

ployment diagram shows the computing environment but does not explicitly indicate

configuration details. For example, the “personal computer” is not further identified.

It could be a Mac or a Windows-based PC, a Sun workstation, or a Linux-box. These

details are provided when the deployment diagram is revisited in instance form

during the latter stages of design or as construction begins. Each instance of the

deployment (a specific, named hardware configuration) is identified.

238 PART TWO MODELING

CPI serverControl panel

Personal computer

Security

HomeManagement

Surveillance

Communication

Security HomeownerAccess

ExternalAccess

FIGURE 8.7

A UML
deployment
diagram

Deployment diagrams
begin in descriptor
form, where the
deployment environ-
ment is described in
general terms. Later,
instance form is used
and elements of the
configuration are
explicitly described.

pre75977_ch08.qxd 11/27/08 3:39 PM Page 238

8.5 SUMMARY

Software design commences as the first iteration of requirements engineering

comes to a conclusion. The intent of software design is to apply a set of principles,

concepts, and practices that lead to the development of a high-quality system or

product. The goal of design is to create a model of software that will implement all

customer requirements correctly and bring delight to those who use it. Software de-

signers must sift through many design alternatives and converge on a solution that

best suits the needs of project stakeholders.

The design process moves from a “big picture” view of software to a more narrow

view that defines the detail required to implement a system. The process begins by

focusing on architecture. Subsystems are defined; communication mechanisms

among subsystems are established; components are identified, and a detailed de-

scription of each component is developed. In addition, external, internal, and user

interfaces are designed.

Design concepts have evolved over the first 60 years of software engineering

work. They describe attributes of computer software that should be present regard-

less of the software engineering process that is chosen, the design methods that are

applied, or the programming languages that are used. In essence, design concepts

emphasize the need for abstraction as a mechanism for creating reusable software

components; the importance of architecture as a way to better understand the over-

all structure of a system; the benefits of pattern-based engineering as a technique for

designing software with proven capabilities; the value of separation of concerns and

effective modularity as a way to make software more understandable, more testable,

and more maintainable; the consequences of information hiding as a mechanism

for reducing the propagation of side effects when errors do occur; the impact of

functional independence as a criterion for building effective modules; the use of

refinement as a design mechanism; a consideration of aspects that crosscut system

requirements; the application of refactoring for optimizing the design that is derived;

and the importance of object-oriented classes and the characteristics that are related

to them.

The design model encompasses four different elements. As each of these ele-

ments is developed, a more complete view of the design evolves. The architectural

element uses information derived from the application domain, the requirements

model, and available catalogs for patterns and styles to derive a complete structural

representation of the software, its subsystems, and components. Interface design el-

ements model external and internal interfaces and the user interface. Component-

level elements define each of the modules (components) that populate the

architecture. Finally, deployment-level design elements allocate the architecture, its

components, and the interfaces to the physical configuration that will house the

software.

CHAPTER 8 DESIGN CONCEPTS 239

pre75977_ch08.qxd 11/27/08 3:39 PM Page 239

PROBLEMS AND POINTS TO PONDER

8.1. Do you design software when you “write” a program? What makes software design differ-
ent from coding?

8.2. If a software design is not a program (and it isn’t), then what is it?

8.3. How do we assess the quality of a software design?

8.4. Examine the task set presented for design. Where is quality assessed within the task set?
How is this accomplished? How are the quality attributes discussed in Section 8.2.1 achieved?

8.5. Provide examples of three data abstractions and the procedural abstractions that can be
used to manipulate them.

8.6. Describe software architecture in your own words.

8.7. Suggest a design pattern that you encounter in a category of everyday things (e.g.,
consumer electronics, automobiles, appliances). Briefly describe the pattern.

8.8. Describe separation of concerns in your own words. Is there a case when a divide-and-
conquer strategy may not be appropriate? How might such a case affect the argument for
modularity?

8.9. When should a modular design be implemented as monolithic software? How can this be
accomplished? Is performance the only justification for implementation of monolithic software?

8.10. Discuss the relationship between the concept of information hiding as an attribute of
effective modularity and the concept of module independence.

8.11. How are the concepts of coupling and software portability related? Provide examples to
support your discussion.

8.12. Apply a “stepwise refinement approach” to develop three different levels of procedural
abstractions for one or more of the following programs: (a) Develop a check writer that, given a
numeric dollar amount, will print the amount in words normally required on a check. (b) Itera-
tively solve for the roots of a transcendental equation. (c) Develop a simple task scheduling
algorithm for an operating system.

8.13. Consider the software required to implement a full navigation capability (using GPS) in a
mobile, handheld communication device. Describe two or three crosscutting concerns that
would be present. Discuss how you would represent one of these concerns as an aspect.

8.14. Does “refactoring” mean that you modify the entire design iteratively? If not, what does
it mean?

8.15. Briefly describe each of the four elements of the design model.

FURTHER READINGS AND INFORMATION SOURCES

Donald Norman has written two books (The Design of Everyday Things, Doubleday, 1990, and The
Psychology of Everyday Things, Harpercollins, 1988) that have become classics in the design
literature and “must” reading for anyone who designs anything that humans use. Adams
(Conceptual Blockbusting, 3d ed., Addison-Wesley, 1986) has written a book that is essential
reading for designers who want to broaden their way of thinking. Finally, a classic text by Polya
(How to Solve It, 2d ed., Princeton University Press, 1988) provides a generic problem-solving
process that can help software designers when they are faced with complex problems.

Following in the same tradition, Winograd et al. (Bringing Design to Software, Addison-
Wesley, 1996) discusses software designs that work, those that don’t, and why. A fascinating
book edited by Wixon and Ramsey (Field Methods Casebook for Software Design, Wiley, 1996)

240 PART TWO MODELING

pre75977_ch08.qxd 11/27/08 3:39 PM Page 240

suggests field research methods (much like those used by anthropologists) to understand how
end users do the work they do and then design software that meets their needs. Beyer and
Holtzblatt (Contextual Design: A Customer-Centered Approach to Systems Designs, Academic
Press, 1997) offer another view of software design that integrates the customer/user into every
aspect of the software design process. Bain (Emergent Design, Addison-Wesley, 2008) couples
patterns, refactoring, and test-driven development into an effective design approach.

Comprehensive treatment of design in the context of software engineering is presented
by Fox (Introduction to Software Engineering Design, Addison-Wesley, 2006) and Zhu (Software
Design Methodology, Butterworth-Heinemann, 2005). McConnell (Code Complete, 2d ed., Mi-
crosoft Press, 2004) presents an excellent discussion of the practical aspects of designing high-
quality computer software. Robertson (Simple Program Design, 3d ed., Boyd and Fraser
Publishing, 1999) presents an introductory discussion of software design that is useful for those
beginning their study of the subject. Budgen (Software Design, 2d ed., Addison-Wesley, 2004) in-
troduces a variety of popular design methods, comparing and contrasting each. Fowler and his
colleagues (Refactoring: Improving the Design of Existing Code, Addison-Wesley, 1999) discusses
techniques for the incremental optimization of software designs. Rosenberg and Stevens (Use
Case Driven Object Modeling with UML, Apress, 2007) discuss the development of object-oriented
designs using use cases as a foundation.

An excellent historical survey of software design is contained in an anthology edited by Free-
man and Wasserman (Software Design Techniques, 4th ed., IEEE, 1983). This tutorial reprints
many of the classic papers that have formed the basis for current trends in software design.
Measures of design quality, presented from both the technical and management perspectives,
are considered by Card and Glass (Measuring Software Design Quality, Prentice-Hall, 1990).

A wide variety of information sources on software design are available on the Internet. An
up-to-date list of World Wide Web references that are relevant to software design and design
engineering can be found at the SEPA website: www.mhhe.com/engcs/compsci/
pressman/professional/olc/ser.htm.

CHAPTER 8 DESIGN CONCEPTS 241

pre75977_ch08.qxd 11/27/08 3:39 PM Page 241

http://www.mhhe.com/engcs/compsci/

Design has been described as a multistep process in which representations
of data and program structure, interface characteristics, and procedural
detail are synthesized from information requirements. This description is

extended by Freeman [Fre80]:

[D]esign is an activity concerned with making major decisions, often of a structural

nature. It shares with programming a concern for abstracting information represen-

tation and processing sequences, but the level of detail is quite different at the

extremes. Design builds coherent, well-planned representations of programs that

concentrate on the interrelationships of parts at the higher level and the logical oper-

ations involved at the lower levels.

As I noted in Chapter 8, design is information driven. Software design methods
are derived from consideration of each of the three domains of the analysis model.
The data, functional, and behavioral domains serve as a guide for the creation of
the software design.

Methods required to create “coherent, well-planned representations” of the
data and architectural layers of the design model are presented in this chapter.
The objective is to provide a systematic approach for the derivation of the
architectural design—the preliminary blueprint from which software is
constructed.

242

C H A P T E R

9 ARCHITECTURAL
DESIGN

K E Y
C O N C E P T S

archetypes 257
architectural
description
language 264
architecture 243

alternatives . . .261
components . . .258
complexity 263
data centered . .250
data flow251
design 255
genres 247
layered 253
object oriented . .252
patterns253
refinement 258
styles 249
template 247

ATAM262
factoring 268
instantiation260
mapping265

What is it? Architectural design
represents the structure of data and
program components that are re-
quired to build a computer-based

system. It considers the architectural style that the
system will take, the structure and properties of
the components that constitute the system, and
the interrelationships that occur among all ar-
chitectural components of a system.

Who does it? Although a software engineer can
design both data and architecture, the job is of-
ten allocated to specialists when large, complex
systems are to be built. A database or data

Q U I C K
L O O K

warehouse designer creates the data architec-
ture for a system. The “system architect” selects
an appropriate architectural style from the re-
quirements derived during software require-
ments analysis.

Why is it important? You wouldn’t attempt to build
a house without a blueprint, would you? You also
wouldn’t begin drawing blueprints by sketching
the plumbing layout for the house. You’d need to
look at the big picture—the house itself—before
you worry about details. That’s what architectural
design does—it provides you with the big picture
and ensures that you’ve got it right.

pre75977_ch09.qxd 11/27/08 3:42 PM Page 242

9.1 SOFTWARE ARCHITECTURE

In their landmark book on the subject, Shaw and Garlan [Sha96] discuss software

architecture in the following manner:

Ever since the first program was divided into modules, software systems have had archi-

tectures, and programmers have been responsible for the interactions among the mod-

ules and the global properties of the assemblage. Historically, architectures have been

implicit—accidents of implementation, or legacy systems of the past. Good software

developers have often adopted one or several architectural patterns as strategies for

system organization, but they use these patterns informally and have no means to make

them explicit in the resulting system.

Today, effective software architecture and its explicit representation and design have

become dominant themes in software engineering.

9.1.1 What Is Architecture?

When you consider the architecture of a building, many different attributes come to

mind. At the most simplistic level, you think about the overall shape of the physical

structure. But in reality, architecture is much more. It is the manner in which the var-

ious components of the building are integrated to form a cohesive whole. It is the

way in which the building fits into its environment and meshes with other buildings

in its vicinity. It is the degree to which the building meets its stated purpose and sat-

isfies the needs of its owner. It is the aesthetic feel of the structure—the visual im-

pact of the building—and the way textures, colors, and materials are combined to

create the external facade and the internal “living environment.” It is small details—

the design of lighting fixtures, the type of flooring, the placement of wall hangings,

the list is almost endless. And finally, it is art.

But architecture is also something else. It is “thousands of decisions, both big and

small” [Tyr05]. Some of these decisions are made early in design and can have a

profound impact on all other design actions. Others are delayed until later, thereby

CHAPTER 9 ARCHITECTURAL DESIGN 243

What are the steps? Architectural design begins
with data design and then proceeds to the deri-
vation of one or more representations of the ar-
chitectural structure of the system. Alternative
architectural styles or patterns are analyzed to
derive the structure that is best suited to customer
requirements and quality attributes. Once an al-
ternative has been selected, the architecture is
elaborated using an architectural design
method.

What is the work product? An architecture
model encompassing data architecture and pro-
gram structure is created during architectural
design. In addition, component properties and
relationships (interactions) are described.

How do I ensure that I’ve done it right? At
each stage, software design work products are
reviewed for clarity, correctness, completeness,
and consistency with requirements and with one
another.

uote:

“The architecture
of a system is a
comprehensive
framework that
describes its form
and structure—its
components and
how they fit
together.”

Jerrold Grochow

pre75977_ch09.qxd 11/27/08 3:42 PM Page 243

eliminating overly restrictive constraints that would lead to a poor implementation

of the architectural style.

But what about software architecture? Bass, Clements, and Kazman [Bas03]

define this elusive term in the following way:

The software architecture of a program or computing system is the structure or structures

of the system, which comprise software components, the externally visible properties of

those components, and the relationships among them.

The architecture is not the operational software. Rather, it is a representation that

enables you to (1) analyze the effectiveness of the design in meeting its stated re-

quirements, (2) consider architectural alternatives at a stage when making design

changes is still relatively easy, and (3) reduce the risks associated with the construc-

tion of the software.

This definition emphasizes the role of “software components” in any architectural

representation. In the context of architectural design, a software component can be

something as simple as a program module or an object-oriented class, but it can also

be extended to include databases and “middleware” that enable the configuration of

a network of clients and servers. The properties of components are those character-

istics that are necessary for an understanding of how the components interact with

other components. At the architectural level, internal properties (e.g., details of an al-

gorithm) are not specified. The relationships between components can be as simple

as a procedure call from one module to another or as complex as a database access

protocol.

Some members of the software engineering community (e.g., [Kaz03]) make a

distinction between the actions associated with the derivation of a software archi-

tecture (what I call “architectural design”) and the actions that are applied to derive

the software design. As one reviewer of this edition noted:

There is a distinct difference between the terms architecture and design. A design is an

instance of an architecture similar to an object being an instance of a class. For example,

consider the client-server architecture. I can design a network-centric software system in

many different ways from this architecture using either the Java platform (Java EE) or

Microsoft platform (.NET framework). So, there is one architecture, but many designs can

be created based on that architecture. Therefore, you cannot mix “architecture” and

“design” with each other.

Although I agree that a software design is an instance of a specific software

architecture, the elements and structures that are defined as part of an architec-

ture are the root of every design that evolves from them. Design begins with a

consideration of architecture.

In this book the design of software architecture considers two levels of the design

pyramid (Figure 8.1)—data design and architectural design. In the context of the pre-

ceding discussion, data design enables you to represent the data component of the

architecture in conventional systems and class definitions (encompassing attributes

244 PART TWO MODELING

Software architecture
must model the
structure of a system
and the manner in
which data and
procedural components
collaborate with one
another.

uote:

“Marry your
architecture in
haste, repent at
your leisure.”

Barry Boehm

WebRef
Useful pointers to
many software
architecture sites can
be obtained at
www2.umassd
.edu/SECenter/
SAResources.html.

pre75977_ch09.qxd 11/27/08 3:42 PM Page 244

and operations) in object-oriented systems. Architectural design focuses on the

representation of the structure of software components, their properties, and inter-

actions.

9.1.2 Why Is Architecture Important?

In a book dedicated to software architecture, Bass and his colleagues [Bas03] iden-

tify three key reasons that software architecture is important:

• Representations of software architecture are an enabler for communication

between all parties (stakeholders) interested in the development of a

computer-based system.

• The architecture highlights early design decisions that will have a profound

impact on all software engineering work that follows and, as important, on

the ultimate success of the system as an operational entity.

• Architecture “constitutes a relatively small, intellectually graspable model of

how the system is structured and how its components work together” [Bas03].

The architectural design model and the architectural patterns contained within it

are transferable. That is, architecture genres, styles, and patterns (Sections 9.2

through 9.4) can be applied to the design of other systems and represent a set of

abstractions that enable software engineers to describe architecture in predictable

ways.

9.1.3 Architectural Descriptions

Each of us has a mental image of what the word architecture means. In reality, how-

ever, it means different things to different people. The implication is that different

stakeholders will see an architecture from different viewpoints that are driven by dif-

ferent sets of concerns. This implies that an architectural description is actually a set

of work products that reflect different views of the system.

For example, the architect of a major office building must work with a variety of

different stakeholders. The primary concern of the owner of the building (one stake-

holder) is to ensure that it is aesthetically pleasing and that it provides sufficient of-

fice space and infrastructure to ensure its profitability. Therefore, the architect must

develop a description using views of the building that address the owner’s concerns.

The viewpoints used are a three-dimensional drawings of the building (to illustrate

the aesthetic view) and a set of two-dimensional floor plans to address this stake-

holder’s concern for office space and infrastructure.

But the office building has many other stakeholders, including the structural

steel fabricator who will provide steel for the building skeleton. The structural steel

fabricator needs detailed architectural information about the structural steel that will

support the building, including types of I-beams, their dimensions, connectivity,

materials, and many other details. These concerns are addressed by different work

products that represent different views of the architecture. Specialized drawings

CHAPTER 9 ARCHITECTURAL DESIGN 245

uote:

“Architecture is far
too important to
leave in the hands
of a single person,
no matter how
bright they are.”

Scott Ambler

The architectural model
provides a Gestalt view
of the system,
allowing the software
engineer to examine it
as a whole.

Your effort should
focus on architectural
representations that
will guide all other
aspects of design.
Spend the time to
carefully review the
architecture. A mistake
here will have a long-
term negative impact.

pre75977_ch09.qxd 11/27/08 3:42 PM Page 245

(another viewpoint) of the structural steel skeleton of the building focus on only one

of many of the fabricator’s concerns.

An architectural description of a software-based system must exhibit character-

istics that are analogous to those noted for the office building. Tyree and Akerman

[Tyr05] note this when they write: “Developers want clear, decisive guidance on how

to proceed with design. Customers want a clear understanding on the environmen-

tal changes that must occur and assurances that the architecture will meet their busi-

ness needs. Other architects want a clear, salient understanding of the architecture’s

key aspects.” Each of these “wants” is reflected in a different view represented using

a different viewpoint.

The IEEE Computer Society has proposed IEEE-Std-1471-2000, Recommended

Practice for Architectural Description of Software-Intensive Systems, [IEE00], with the

following objectives: (1) to establish a conceptual framework and vocabulary for use

during the design of software architecture, (2) to provide detailed guidelines for rep-

resenting an architectural description, and (3) to encourage sound architectural

design practices.

The IEEE standard defines an architectural description (AD) as “a collection of prod-

ucts to document an architecture.” The description itself is represented using multiple

views, where each view is “a representation of a whole system from the perpective of

a related set of [stakeholder] concerns.” A view is created according to rules and con-

ventions defined in a viewpoint—“a specification of the conventions for constructing

and using a view” [IEE00]. A number of different work products that are used to de-

velop different views of the software architecture are discussed later in this chapter.

9.1.4 Architectural Decisions

Each view developed as part of an architectural description addresses a specific

stakeholder concern. To develop each view (and the architectural description as a

whole) the system architect considers a variety of alternatives and ultimately decides

on the specific architectural features that best meet the concern. Therefore, archi-

tectural decisions themselves can be considered to be one view of the architecture.

The reasons that decisions were made provide insight into the structure of a system

and its conformance to stakeholder concerns.

As a system architect, you can use the template suggested in the sidebar to docu-

ment each major decision. By doing this, you provide a rationale for your work and

establish an historical record that can be useful when design modifications must

be made.

246 PART TWO MODELING

9.2 ARCHITECTURAL GENRES

Although the underlying principles of architectural design apply to all types of archi-

tecture, the architectural genre will often dictate the specific architectural approach to

the structure that must be built. In the context of architectural design, genre implies a

pre75977_ch09.qxd 11/27/08 3:42 PM Page 246

CHAPTER 9 ARCHITECTURAL DESIGN 247

Architecture Decision Description Template

Each major architectural decision can be
documented for later review by stakeholders who

want to understand the architecture description that has
been proposed. The template presented in this sidebar is
an adapted and abbreviated version of a template
proposed by Tyree and Ackerman [Tyr05].

Design issue: Describe the architectural design
issues that are to be addressed.

Resolution: State the approach you’ve chosen
to address the design issue.

Category: Specify the design category that
the issue and resolution address
(e.g., data design, content
structure, component structure,
integration, presentation).

Assumptions: Indicate any assumptions that
helped shape the decision.

Constraints: Specify any environmental
constraints that helped shape the
decision (e.g., technology
standards, available patterns,
project-related issues).

Alternatives: Briefly describe the architectural
design alternatives that were
considered and why they were
rejected.

Argument: State why you chose the
resolution over other alternatives.

Implications: Indicate the design consequences
of making the decision. How will
the resolution affect other
architectural design issues? Will
the resolution constrain the design
in any way?

Related decisions: What other documented decisions
are related to this decision?

Related concerns: What other requirements are
related to this decision?

Work products: Indicate where this decision will
be reflected in the architecture
description.

Notes: Reference any team notes or other
documentation that was used to
make the decision.

INFO

A number of different
architectural styles
may be applicable to a
specific genre (also
called an application
domain).

specific category within the overall software domain. Within each category, you en-

counter a number of subcategories. For example, within the genre of buildings, you

would encounter the following general styles: houses, condos, apartment buildings,

office buildings, industrial building, warehouses, and so on. Within each general style,

more specific styles might apply (Section 9.3). Each style would have a structure that

can be described using a set of predictable patterns.

In his evolving Handbook of Software Architecture [Boo08], Grady Booch suggests

the following architectural genres for software-based systems:

• Artificial intelligence—Systems that simulate or augment human cognition,

locomotion, or other organic processes.

• Commercial and nonprofit—Systems that are fundamental to the

operation of a business enterprise.

• Communications—Systems that provide the infrastructure for transferring

and managing data, for connecting users of that data, or for presenting data

at the edge of an infrastructure.

• Content authoring—Systems that are used to create or manipulate textual

or multimedia artifacts.

pre75977_ch09.qxd 11/27/08 3:42 PM Page 247

248 PART TWO MODELING

• Devices—Systems that interact with the physical world to provide some

point service for an individual.

• Entertainment and sports—Systems that manage public events or that

provide a large group entertainment experience.

• Financial—Systems that provide the infrastructure for transferring and

managing money and other securities.

• Games—Systems that provide an entertainment experience for individuals

or groups.

• Government—Systems that support the conduct and operations of a local,

state, federal, global, or other political entity.

• Industrial—Systems that simulate or control physical processes.

• Legal—Systems that support the legal industry.

• Medical—Systems that diagnose or heal or that contribute to medical

research.

• Military—Systems for consultation, communications, command, control,

and intelligence (C4I) as well as offensive and defensive weapons.

• Operating systems—Systems that sit just above hardware to provide basic

software services.

• Platforms—Systems that sit just above operating systems to provide

advanced services.

• Scientific—Systems that are used for scientific research and applications.

• Tools—Systems that are used to develop other systems.

• Transportation—Systems that control water, ground, air, or space vehicles.

• Utilities—Systems that interact with other software to provide some point

service.

From the standpoint of architectural design, each genre represents a unique chal-

lenge. As an example, consider the software architecture for a game system. Game

systems, sometimes called immersive interactive applications, require the computa-

tion of intensive algorithms, sophisticated computer graphics, streaming multimedia

data sources, real-time interactivity via conventional and unconventional inputs,

and a variety of other specialized concerns.

Alexandre Francois [Fra03] suggests a software architecture for Immersipresence1

that can be applied for a gaming environment. He describes the architecture in the

following manner:

SAI (Software Architecture for Immersipresence) is a new software architecture model

for designing, analyzing and implementing applications performing distributed,

uote:

“Programming
without an overall
architecture or
design in mind is
like exploring a
cave with only a
flashlight: You
don’t know where
you’ve been, you
don’t know where
you’re going, and
you don’t know
quite where you
are.”

Danny Thorpe

1 Francois uses the term immersipresence for immersive, interactive applications.

pre75977_ch09.qxd 11/27/08 3:42 PM Page 248

asynchronous parallel processing of generic data streams. The goal of SAI is to provide a

universal framework for the distributed implementation of algorithms and their easy

integration into complex systems. . . . The underlying extensible data model and hybrid

(shared repository and message-passing) distributed asynchronous parallel processing

model allow natural and efficient manipulation of generic data streams, using existing

libraries or native code alike. The modularity of the style facilitates distributed code de-

velopment, testing, and reuse, as well as fast system design and integration, maintenance

and evolution.

A detailed discussion of SAI is beyond the scope of this book. However, it is impor-

tant to recognize that the gaming system genre can be addressed with an architec-

tural style (Section 9.3) that has been specifically designed to address gaming system

concerns. If you have further interest, see [Fra03].

9.3 ARCHITECTURAL STYLES

When a builder uses the phrase “center hall colonial” to describe a house, most peo-

ple familiar with houses in the United States will be able to conjure a general image

of what the house will look like and what the floor plan is likely to be. The builder

has used an architectural style as a descriptive mechanism to differentiate the house

from other styles (e.g., A-frame, raised ranch, Cape Cod). But more important, the

architectural style is also a template for construction. Further details of the house

must be defined, its final dimensions must be specified, customized features may

be added, building materials are to be determined, but the style—a “center hall

colonial”—guides the builder in his work.

The software that is built for computer-based systems also exhibits one of many

architectural styles. Each style describes a system category that encompasses (1) a

set of components (e.g., a database, computational modules) that perform a function

required by a system; (2) a set of connectors that enable “communication, coordina-

tion and cooperation” among components; (3) constraints that define how compo-

nents can be integrated to form the system; and (4) semantic models that enable a

designer to understand the overall properties of a system by analyzing the known

properties of its constituent parts [Bas03].

An architectural style is a transformation that is imposed on the design of an en-

tire system. The intent is to establish a structure for all components of the system.

In the case where an existing architecture is to be reengineered (Chapter 29), the

imposition of an architectural style will result in fundamental changes to the struc-

ture of the software including a reassignment of the functionality of components

[Bos00].

An architectural pattern, like an architectural style, imposes a transformation on

the design of an architecture. However, a pattern differs from a style in a number of

fundamental ways: (1) the scope of a pattern is less broad, focusing on one aspect

of the architecture rather than the architecture in its entirety; (2) a pattern imposes a

CHAPTER 9 ARCHITECTURAL DESIGN 249

uote:

“There is at the
back of every
artist’s mind, a
pattern or type of
architecture.”

G. K. Chesterton

What is an
architectural

style?
?

WebRef
Attribute-based
architectural styles
(ABAS) can be used as
building blocks for
software architectures.
Information can be
obtained at
www.sei.cmu
.edu/architecture/
abas.html.

pre75977_ch09.qxd 11/27/08 3:42 PM Page 249

http://www.sei.cmu

rule on the architecture, describing how the software will handle some aspect of its

functionality at the infrastructure level (e.g., concurrency) [Bos00]; (3) architectural

patterns (Section 9.4) tend to address specific behavioral issues within the context of

the architecture (e.g., how real-time applications handle synchronization or inter-

rupts). Patterns can be used in conjunction with an architectural style to shape the

overall structure of a system. In Section 9.3.1, I consider commonly used architec-

tural styles and patterns for software.

250 PART TWO MODELING

Canonical Architectural Structures

In essence, software architecture represents a
structure in which some collection of entities (often

called components) is connected by a set of defined
relationships (often called connectors). Both components
and connectors are associated with a set of properties that
allow the designer to differentiate the types of components
and connectors that can be used. But what kinds of
structures (components, connectors, and properties) can be
used to describe an architecture? Bass and Kazman
[Bas03] suggest five canonical or foundation architectural
structures:

Functional structure. Components represent function
or processing entities. Connectors represent interfaces that
provide the ability to “use” or “pass data to” a component.
Properties describe the nature of the components and the
organization of the interfaces.

Implementation structure. “Components can be
packages, classes, objects, procedures, functions,
methods, etc., all of which are vehicles for packaging
functionality at various levels of abstraction” [Bas03].
Connectors include the ability to pass data and control,
share data, “use”, and “is-an-instance-of.” Properties

focus on quality characteristics (e.g., maintainability,
reusability) that result when the structure is implemented.

Concurrency structure. Components represent “units
of concurrency” that are organized as parallel tasks or
threads. “Relations [connectors] include synchronizes-with,
is-higher-priority-than, sends-data-to, can’t-run-without, and
can’t-run-with. Properties relevant to this structure include
priority, preemptability, and execution time” [Bas03].

Physical structure. This structure is similar to the
deployment model developed as part of design. The
components are the physical hardware on which software
resides. Connectors are the interfaces between hardware
components, and properties address capacity, bandwidth,
performance, and other attributes.

Developmental structure. This structure defines the
components, work products, and other information sources
that are required as software engineering proceeds.
Connectors represent the relationships among work prod-
ucts, and properties identify the characteristics of each item.

Each of these structures presents a different view of
software architecture, exposing information that is useful to
the software team as modeling and construction proceed.

INFO

9.3.1 A Brief Taxonomy of Architectural Styles

Although millions of computer-based systems have been created over the past

60 years, the vast majority can be categorized into one of a relatively small number

of architectural styles:

Data-centered architectures. A data store (e.g., a file or database) resides at

the center of this architecture and is accessed frequently by other components that

update, add, delete, or otherwise modify data within the store. Figure 9.1 illus-

trates a typical data-centered style. Client software accesses a central repository.

In some cases the data repository is passive. That is, client software accesses the

data independent of any changes to the data or the actions of other client soft-

ware. A variation on this approach transforms the repository into a “blackboard”

uote:

“The use of
patterns and styles
of design is
pervasive in
engineering
disciplines.”

Mary Shaw and
David Garlan

pre75977_ch09.qxd 11/27/08 3:42 PM Page 250

CHAPTER 9 ARCHITECTURAL DESIGN 251

Client
software

Client
software

Client
software

Client
software

Client
software

Client
software

Client
software

Client
software

Data store
(repository or
blackboard)

FIGURE 9.1

Data-centered
architecture

that sends notifications to client software when data of interest to the client

changes.

Data-centered architectures promote integrability [Bas03]. That is, existing

components can be changed and new client components added to the architecture

without concern about other clients (because the client components operate

independently). In addition, data can be passed among clients using the black-

board mechanism (i.e., the blackboard component serves to coordinate the trans-

fer of information between clients). Client components independently execute

processes.

Data-flow architectures. This architecture is applied when input data are to be

transformed through a series of computational or manipulative components into

output data. A pipe-and-filter pattern (Figure 9.2) has a set of components, called

filters, connected by pipes that transmit data from one component to the next. Each

filter works independently of those components upstream and downstream, is de-

signed to expect data input of a certain form, and produces data output (to the next

filter) of a specified form. However, the filter does not require knowledge of the

workings of its neighboring filters.

If the data flow degenerates into a single line of transforms, it is termed batch se-

quential. This structure accepts a batch of data and then applies a series of sequen-

tial components (filters) to transform it.

Call and return architectures. This architectural style enables you to achieve a

program structure that is relatively easy to modify and scale. A number of substyles

[Bas03] exist within this category:

• Main program/subprogram architectures. This classic program structure

decomposes function into a control hierarchy where a “main” program

pre75977_ch09.qxd 11/27/08 3:42 PM Page 251

252 PART TWO MODELING

invokes a number of program components that in turn may invoke still other

components. Figure 9.3 illustrates an architecture of this type.

• Remote procedure call architectures. The components of a main

program/subprogram architecture are distributed across multiple computers

on a network.

Object-oriented architectures. The components of a system encapsulate data

and the operations that must be applied to manipulate the data. Communication and

coordination between components are accomplished via message passing.

Main program

Controller
subprogram

Controller
subprogram

Controller
subprogram

Application
subprogram

Application
subprogram

Application
subprogram

Application
subprogram

Application
subprogram

Application
subprogram

Application
subprogram

FIGURE 9.3 Main program/subprogram architecture

Filter

Pipes

Filter

Filter

Filter Filter

FilterFilter

Filter

Pipes and filters

Filter

Filter

FIGURE 9.2

Data-flow
architecture

pre75977_ch09.qxd 11/27/08 3:42 PM Page 252

CHAPTER 9 ARCHITECTURAL DESIGN 253

Layered architectures. The basic structure of a layered architecture is illustrated

in Figure 9.4. A number of different layers are defined, each accomplishing opera-

tions that progressively become closer to the machine instruction set. At the outer

layer, components service user interface operations. At the inner layer, components

perform operating system interfacing. Intermediate layers provide utility services

and application software functions.

These architectural styles are only a small subset of those available.2 Once

requirements engineering uncovers the characteristics and constraints of the sys-

tem to be built, the architectural style and/or combination of patterns that best

fits those characteristics and constraints can be chosen. In many cases, more

than one pattern might be appropriate and alternative architectural styles can be

designed and evaluated. For example, a layered style (appropriate for most sys-

tems) can be combined with a data-centered architecture in many database

applications.

9.3.2 Architectural Patterns

As the requirements model is developed, you’ll notice that the software must address

a number of broad problems that span the entire application. For example, the

requirements model for virtually every e-commerce application is faced with the

following problem: How do we offer a broad array of goods to a broad array of

customers and allow those customers to purchase our goods online?

Core layer

Components

User interface layer

Application layer

Utility layer

FIGURE 9.4

Layered
architecture

2 See [Bus07], [Gor06], [Roz05], [Bas03], [Bos00], or [Hof00] for a detailed discussion of architectural
styles and patterns.

uote:

“Maybe it’s in the
basement. Let me
go upstairs and
check.”

M. C. Escher

pre75977_ch09.qxd 11/27/08 3:42 PM Page 253

254 PART TWO MODELING

The scene: Jamie’s cubicle, as design
modeling begins.

The players: Jamie and Ed—members of the
SafeHome software engineering team.

The conversation:

Ed (frowning): We’ve been modeling the security
function using UML . . . you know classes, relationships,
that sort of stuff. So I guess the object-oriented
architecture3 is the right way to go.

Jamie: But . . .?

Ed: But . . . I have trouble visualizing what an object-
oriented architecture is. I get the call and return
architecture, sort of a conventional process hierarchy, but
OO . . . I don’t know, it seems sort of amorphous.

Jamie (smiling): Amorphous, huh?

Ed: Yeah . . . what I mean is I can’t visualize a real
structure, just design classes floating in space.

Jamie: Well, that’s not true. There are class hierarchies
. . . think of the hierarchy (aggregation) we did for the
FloorPlan object [Figure 8.3]. An OO architecture is a
combination of that structure and the interconnections—
you know, collaborations—between the classes. We can
show it by fully describing the attributes and operations,
the messaging that goes on, and the structure of the
classes.

Ed: I’m going to spend an hour mapping out a call and
return architecture; then I’ll go back and consider an OO
architecture.

Jamie: Doug’ll have no problem with that. He said that
we should consider architectural alternatives. By the
way, there’s absolutely no reason why both of these
architectures couldn’t be used in combination with one
another.

Ed: Good. I’m on it.

SAFEHOME

3 It can be argued that the SafeHome architecture should be considered at a higher level than the
architecture noted. SafeHome has a variety of subsystems—home monitoring functionality, the
company’s monitoring site, and the subsystem running on the owner’s PC. Within subsystems,
concurrent processes (e.g., those monitoring sensors) and event handling are prevalent. Some
architectural decisions at this level are made during product engineering, but architectural design
within software engineering may very well have to consider these issues.

Choosing an Architectural Style

The requirements model also defines a context in which this question must be

answered. For example, an e-commerce business that sells golf equipment to

consumers will operate in a different context than an e-commerce business that sells

high-priced industrial equipment to medium and large corporations. In addition, a

set of limitations and constraints may affect the way in which you address the prob-

lem to be solved.

Architectural patterns address an application-specific problem within a specific

context and under a set of limitations and constraints. The pattern proposes an

architectural solution that can serve as the basis for architectural design.

Earlier in this chapter, I noted that most applications fit within a specific domain

or genre and that one or more architectural styles may be appropriate for that genre.

For example, the overall architectural style for an application might be call-and-

return or object-oriented. But within that style, you will encounter a set of common

problems that might best be addressed with specific architectural patterns. Some

of these problems and a more complete discussion of architectural patterns are

presented in Chapter 12.

pre75977_ch09.qxd 11/27/08 3:42 PM Page 254

CHAPTER 9 ARCHITECTURAL DESIGN 255

9.3.3 Organization and Refinement

Because the design process often leaves you with a number of architectural alterna-

tives, it is important to establish a set of design criteria that can be used to assess an

architectural design that is derived. The following questions [Bas03] provide insight

into an architectural style:

Control. How is control managed within the architecture? Does a distinct

control hierarchy exist, and if so, what is the role of components within this

control hierarchy? How do components transfer control within the system?

How is control shared among components? What is the control topology

(i.e., the geometric form that the control takes)? Is control synchronized or

do components operate asynchronously?

Data. How are data communicated between components? Is the flow of data

continuous, or are data objects passed to the system sporadically? What is the

mode of data transfer (i.e., are data passed from one component to another

or are data available globally to be shared among system components)? Do

data components (e.g., a blackboard or repository) exist, and if so, what is

their role? How do functional components interact with data components?

Are data components passive or active (i.e., does the data component

actively interact with other components in the system)? How do data and

control interact within the system?

These questions provide the designer with an early assessment of design quality and

lay the foundation for more detailed analysis of the architecture.

9.4 ARCHITECTURAL DESIGN

As architectural design begins, the software to be developed must be put into

context—that is, the design should define the external entities (other systems, de-

vices, people) that the software interacts with and the nature of the interaction. This

information can generally be acquired from the requirements model and all other

information gathered during requirements engineering. Once context is modeled

and all external software interfaces have been described, you can identify a set of

architectural archetypes. An archetype is an abstraction (similar to a class) that rep-

resents one element of system behavior. The set of archetypes provides a collection

of abstractions that must be modeled architecturally if the system is to be con-

structed, but the archetypes themselves do not provide enough implementation de-

tail. Therefore, the designer specifies the structure of the system by defining and

refining software components that implement each archetype. This process contin-

ues iteratively until a complete architectural structure has been derived. In the

sections that follow we examine each of these architectural design tasks in a bit

more detail.

How do I
assess an

architectural style
that has been
derived?

?

uote:

“A doctor can bury
his mistakes, but
an architect can
only advise his
client to plant
vines.”

Frank Lloyd
Wright

pre75977_ch09.qxd 11/27/08 3:42 PM Page 255

9.4.1 Representing the System in Context

At the architectural design level, a software architect uses an architectural context di-

agram (ACD) to model the manner in which software interacts with entities external

to its boundaries. The generic structure of the architectural context diagram is illus-

trated in Figure 9.5.

Referring to the figure, systems that interoperate with the target system (the

system for which an architectural design is to be developed) are represented as

• Superordinate systems—those systems that use the target system as part of

some higher-level processing scheme.

• Subordinate systems—those systems that are used by the target system and

provide data or processing that are necessary to complete target system

functionality.

• Peer-level systems—those systems that interact on a peer-to-peer basis (i.e.,

information is either produced or consumed by the peers and the target

system.

• Actors—entities (people, devices) that interact with the target system by

producing or consuming information that is necessary for requisite processing.

Each of these external entities communicates with the target system through an in-

terface (the small shaded rectangles).

To illustrate the use of the ACD, consider the home security function of the

SafeHome product. The overall SafeHome product controller and the Internet-based

system are both superordinate to the security function and are shown above the

256 PART TWO MODELING

Superordinate systems

Subordinate systems

Depends on

Uses
Uses

Used by

Peers

Actors

Target system

FIGURE 9.5

Architectural
context
diagram
Source: Adapted from
[Bos00].

Architectural context
represents how the
software interacts with
entities external to its
boundaries.

How do
systems

interoperate with
one another?

?

pre75977_ch09.qxd 11/27/08 3:42 PM Page 256

function in Figure 9.6. The surveillance function is a peer system and uses (is used by)

the home security function in later versions of the product. The homeowner and con-

trol panels are actors that are both producers and consumers of information

used/produced by the security software. Finally, sensors are used by the security

software and are shown as subordinate to it.

As part of the architectural design, the details of each interface shown in Fig-

ure 9.6 would have to be specified. All data that flow into and out of the target sys-

tem must be identified at this stage.

9.4.2 Defining Archetypes

An archetype is a class or pattern that represents a core abstraction that is critical to

the design of an architecture for the target system. In general, a relatively small set

of archetypes is required to design even relatively complex systems. The target sys-

tem architecture is composed of these archetypes, which represent stable elements

of the architecture but may be instantiated many different ways based on the

behavior of the system.

In many cases, archetypes can be derived by examining the analysis classes de-

fined as part of the requirements model. Continuing the discussion of the SafeHome

home security function, you might define the following archetypes:

• Node. Represents a cohesive collection of input and output elements of

the home security function. For example a node might be comprised of

(1) various sensors and (2) a variety of alarm (output) indicators.

• Detector. An abstraction that encompasses all sensing equipment that feeds

information into the target system.

CHAPTER 9 ARCHITECTURAL DESIGN 257

Archetypes are the
abstract building blocks
of an architectural
design.

Target system:
security function

Uses
Uses PeersHomeowner

SafeHome
product

Internet-based
system

Surveillance
function

Sensors

Control
panel

Sensors

 Uses

FIGURE 9.6

Architectural
context
diagram for
the SafeHome
security
function

pre75977_ch09.qxd 11/27/08 3:42 PM Page 257

• Indicator. An abstraction that represents all mechanisms (e.g., alarm siren,

flashing lights, bell) for indicating that an alarm condition is occurring.

• Controller. An abstraction that depicts the mechanism that allows the

arming or disarming of a node. If controllers reside on a network, they have

the ability to communicate with one another.

Each of these archetypes is depicted using UML notation as shown in Figure 9.7.

Recall that the archetypes form the basis for the architecture but are abstractions that

must be further refined as architectural design proceeds. For example, Detector

might be refined into a class hierarchy of sensors.

9.4.3 Refining the Architecture into Components

As the software architecture is refined into components, the structure of the system

begins to emerge. But how are these components chosen? In order to answer this

question, you begin with the classes that were described as part of the require-

ments model.4 These analysis classes represent entities within the application

(business) domain that must be addressed within the software architecture. Hence,

the application domain is one source for the derivation and refinement of compo-

nents. Another source is the infrastructure domain. The architecture must accom-

modate many infrastructure components that enable application components

but have no business connection to the application domain. For example, mem-

ory management components, communication components, database compo-

nents, and task management components are often integrated into the software

architecture.

258 PART TWO MODELING

Controller

Node

Communicates with

Detector Indicator

FIGURE 9.7

UML relation-
ships for
SafeHome
security
function
archetypes
Source: Adapted from
[Bos00].

4 If a conventional (non-object-oriented) approach is chosen, components are derived from the data
flow model. I discuss this approach briefly in Section 9.6.

uote:

“The structure of a
software system
provides the
ecology in which
code is born,
matures, and dies.
A well-designed
habitat allows for
the successful
evolution of all the
components
needed in a
software system.”

R. Pattis

pre75977_ch09.qxd 11/27/08 3:42 PM Page 258

The interfaces depicted in the architecture context diagram (Section 9.4.1) imply

one or more specialized components that process the data that flows across the

interface. In some cases (e.g., a graphical user interface), a complete subsystem

architecture with many components must be designed.

Continuing the SafeHome home security function example, you might define the

set of top-level components that address the following functionality:

• External communication management—coordinates communication of the

security function with external entities such as other Internet-based systems

and external alarm notification.

• Control panel processing—manages all control panel functionality.

• Detector management—coordinates access to all detectors attached to the

system.

• Alarm processing—verifies and acts on all alarm conditions.

Each of these top-level components would have to be elaborated iteratively and then

positioned within the overall SafeHome architecture. Design classes (with appro-

priate attributes and operations) would be defined for each. It is important to note,

however, that the design details of all attributes and operations would not be speci-

fied until component-level design (Chapter 10).

The overall architectural structure (represented as a UML component diagram) is

illustrated in Figure 9.8. Transactions are acquired by external communication man-

agement as they move in from components that process the SafeHome GUI and the

CHAPTER 9 ARCHITECTURAL DESIGN 259

SafeHome
executive

External
communication
management

GUI Internet
interface

Function
selection

Security Surveillance Home
management

Control panel
processing

Detector
management

Alarm
processing

-

FIGURE 9.8 Overall architectural structure for SafeHome with top-level components

pre75977_ch09.qxd 11/27/08 3:42 PM Page 259

Internet interface. This information is managed by a SafeHome executive compo-

nent that selects the appropriate product function (in this case security). The control

panel processing component interacts with the homeowner to arm/disarm the se-

curity function. The detector management component polls sensors to detect an

alarm condition, and the alarm processing component produces output when an

alarm is detected.

9.4.4 Describing Instantiations of the System

The architectural design that has been modeled to this point is still relatively high

level. The context of the system has been represented, archetypes that indicate the

important abstractions within the problem domain have been defined, the overall

structure of the system is apparent, and the major software components have

been identified. However, further refinement (recall that all design is iterative) is

still necessary.

To accomplish this, an actual instantiation of the architecture is developed. By this

I mean that the architecture is applied to a specific problem with the intent of demon-

strating that the structure and components are appropriate.

Figure 9.9 illustrates an instantiation of the SafeHome architecture for the security

system. Components shown in Figure 9.8 are elaborated to show additional detail.

For example, the detector management component interacts with a scheduler infra-

structure component that implements polling of each sensor object used by the se-

curity system. Similar elaboration is performed for each of the components

represented in Figure 9.8.

260 PART TWO MODELING

Architectural Design

Objective: Architectural design tools model
the overall software structure by representing

component interface, dependencies and relationships, and
interactions.

Mechanics: Tool mechanics vary. In most cases,
architectural design capability is part of the functionality
provided by automated tools for analysis and design
modeling.

Representative Tools:5

Adalon, developed by Synthis Corp. (www.synthis.
com), is a specialized design tool for the design and

construction of specific Web-based component
architectures.

ObjectiF, developed by microTOOL GmbH
(www.microtool.de/objectiF/en/), is a
UML-based design tool that leads to architectures
(e.g., Coldfusion, J2EE, Fusebox) amenable to
component-based software engineering
(Chapter 29).

Rational Rose, developed by Rational
(www-306.ibm.com/software/rational/),
is a UML-based design tool that supports all
aspects of architectural design.

SOFTWARE TOOLS

5 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.
In most cases, tool names are trademarked by their respective developers.

pre75977_ch09.qxd 11/27/08 3:42 PM Page 260

http://www.synthis.com
http://www.synthis.com
http://www.microtool.de/objectiF/en/

CHAPTER 9 ARCHITECTURAL DESIGN 261

External
communication
management

GUI Internet
interface

Security

Control
panel

processing

Detector
management

Alarm
processing

Keypad
processing

CP display
functions

Scheduler Phone
communication

Alarm

SafeHome
executive

Sensor

FIGURE 9.9 An instantiation of the security function with component elaboration

9.5 ASSESS ING ALTERNATIVE ARCHITECTURAL DESIGNS

In their book on the evaluation of software architectures, Clements and his

colleagues [Cle03] state:

To put it bluntly, an architecture is a bet, a wager on the success of a system. Wouldn’t it

be nice to know in advance if you’ve placed your bet on a winner, as opposed to waiting

until the system is mostly completed before knowing whether it will meet its requirements

or not? If you’re buying a system or paying for its development, wouldn’t you like to have

some assurance that it’s started off down the right path? If you’re the architect yourself,

wouldn’t you like to have a good way to validate your intuitions and experience, so that

you can sleep at night knowing that the trust placed in your design is well founded?

Indeed, answers to these questions would have value. Design results in a number of

architectural alternatives that are each assessed to determine which is the most

appropriate for the problem to be solved. In the sections that follow, I present two

different approaches for the assessment of alternative architectural designs. The first

method uses an iterative method to assess design trade-offs. The second approach

applies a pseudo-quantitative technique for assessing design quality.

pre75977_ch09.qxd 11/27/08 3:42 PM Page 261

262 PART TWO MODELING

WebRef
In-depth information
on ATAM can be
obtained at:
www.sei.cmu.edu/
activities/
architecture/
ata_method.html.

9.5.1 An Architecture Trade-Off Analysis Method

The Software Engineering Institute (SEI) has developed an architecture trade-off analy-

sis method (ATAM) [Kaz98] that establishes an iterative evaluation process for software

architectures. The design analysis activities that follow are performed iteratively:

1. Collect scenarios. A set of use cases (Chapters 5 and 6) is developed to

represent the system from the user’s point of view.

2. Elicit requirements, constraints, and environment description. This information

is determined as part of requirements engineering and is used to be certain

that all stakeholder concerns have been addressed.

3. Describe the architectural styles/patterns that have been chosen to address the

scenarios and requirements. The architectural style(s) should be described

using one of the following architectural views:

• Module view for analysis of work assignments with components and the

degree to which information hiding has been achieved.

• Process view for analysis of system performance.

• Data flow view for analysis of the degree to which the architecture meets

functional requirements.

4. Evaluate quality attributes by considering each attribute in isolation. The num-

ber of quality attributes chosen for analysis is a function of the time available

for review and the degree to which quality attributes are relevant to the sys-

tem at hand. Quality attributes for architectural design assessment include

reliability, performance, security, maintainability, flexibility, testability, porta-

bility, reusability, and interoperability.

5. Identify the sensitivity of quality attributes to various architectural attributes for a

specific architectural style. This can be accomplished by making small changes in

the architecture and determining how sensitive a quality attribute, say perform-

ance, is to the change. Any attributes that are significantly affected by variation

in the architecture are termed sensitivity points.

6. Critique candidate architectures (developed in step 3) using the sensitivity analy-

sis conducted in step 5. The SEI describes this approach in the following

manner [Kaz98]:

Once the architectural sensitivity points have been determined, finding trade-off

points is simply the identification of architectural elements to which multiple attrib-

utes are sensitive. For example, the performance of a client-server architecture might

be highly sensitive to the number of servers (performance increases, within some

range, by increasing the number of servers). . . . The number of servers, then, is a

trade-off point with respect to this architecture.

These six steps represent the first ATAM iteration. Based on the results of steps 5 and

6, some architecture alternatives may be eliminated, one or more of the remaining

pre75977_ch09.qxd 11/27/08 3:42 PM Page 262

http://www.sei.cmu.edu/

architectures may be modified and represented in more detail, and then the ATAM

steps are reapplied.6

CHAPTER 9 ARCHITECTURAL DESIGN 263

Architecture Assessment

The scene: Doug Miller’s office as
architectural design modeling proceeds.

The players: Vinod, Jamie, and Ed—members of the
SafeHome software engineering team and Doug Miller,
manager of the software engineering group.

The conversation:

Doug: I know you guys are deriving a couple of
different architectures for the SafeHome product, and
that’s a good thing. I guess my question is, how are we
going to choose the one that’s best?

Ed: I’m working on a call and return style and then
either Jamie or I are going to derive an OO architecture.

Doug: Okay, and how do we choose?

Jamie: I took a CS course in design in my senior year, and
I remember that there are a number of ways to do it.

Vinod: There are, but they’re a bit academic. Look, I
think we can do our assessment and choose the right one
using use cases and scenarios.

Doug: Isn’t that the same thing?

Vinod: Not when you’re talking about architectural
assessment. We already have a complete set of use cases.
So we apply each to both architectures and see how the

system reacts, how components and connectors work in
the use case context.

Ed: That’s a good idea. Makes sure we didn’t leave
anything out.

Vinod: True, but it also tells us whether the architectural
design is convoluted, whether the system has to twist itself
into a pretzel to get the job done.

Jamie: Scenarios aren’t just another name for use cases.

Vinod: No, in this case a scenario implies something
different.

Doug: You’re talking about a quality scenario or a
change scenario, right?

Vinod: Yes. What we do is go back to the stakeholders
and ask them how SafeHome is likely to change over the
next, say, three years. You know, new versions, features,
that sort of thing. We build a set of change scenarios.
We also develop a set of quality scenarios that define
the attributes we’d like to see in the software
architecture.

Jamie: And we apply them to the alternatives.

Vinod: Exactly. The style that handles the use cases and
scenarios best is the one we choose.

SAFEHOME

9.5.2 Architectural Complexity

A useful technique for assessing the overall complexity of a proposed architecture is

to consider dependencies between components within the architecture. These de-

pendencies are driven by information/control flow within the system. Zhao [Zha98]

suggests three types of dependencies:

Sharing dependencies represent dependence relationships among consumers who use the

same resource or producers who produce for the same consumers. For example, for two

components u and v, if u and v refer to the same global data, then there exists a shared

dependence relationship between u and v.

Flow dependencies represent dependence relationships between producers and con-

sumers of resources. For example, for two components u and v, if u must complete before

6 The Software Architecture Analysis Method (SAAM) is an alternative to ATAM and is well-worth
examining by those readers interested in architectural analysis. A paper on SAAM can be down-
loaded from www.sei.cmu.edu/publications/articles/saam-metho-propert-sas.html.

pre75977_ch09.qxd 11/27/08 3:42 PM Page 263

http://www.sei.cmu.edu/publications/articles/saam-metho-propert-sas.html

264 PART TWO MODELING

control flows into v (prerequisite), or if u communicates with v by parameters, then there

exists a flow dependence relationship between u and v.

Constrained dependencies represent constraints on the relative flow of control among

a set of activities. For example, for two components u and v, u and v cannot execute at

the same time (mutual exclusion), then there exists a constrained dependence relation-

ship between u and v.

The sharing and flow dependencies noted by Zhao are similar to the concept of cou-

pling discussed in Chapter 8. Coupling is an important design concept that is appli-

cable at the architectural level and at the component level. Simple metrics for

evaluating coupling are discussed in Chapter 23.

9.5.3 Architectural Description Languages

The architect of a house has a set of standardized tools and notation that allow the

design to be represented in an unambiguous, understandable fashion. Although the

software architect can draw on UML notation, other diagrammatic forms, and a few

related tools, there is a need for a more formal approach to the specification of an

architectural design.

Architectural description language (ADL) provides a semantics and syntax for describ-

ing a software architecture. Hofmann and his colleagues [Hof01] suggest that an ADL

should provide the designer with the ability to decompose architectural components,

compose individual components into larger architectural blocks, and represent inter-

faces (connection mechanisms) between components. Once descriptive, language-

based techniques for architectural design have been established, it is more likely that

effective assessment methods for architectures will be established as the design evolves.

The following summary of a number of important
ADLs was prepared by Rickard Land [Lan02]

and is reprinted with the author’s permission. It should be
noted that the first five ADLs listed have been developed for
research purposes and are not commercial products.

Rapide (http://poset.stanford.edu/rapide/)
builds on the notion of partial ordered sets, and thus
introduces quite new (but seemingly powerful)
programming constructs.

UniCon (www.cs.cmu.edu/~UniCon) is “an
architectural description language intended to aid
designers in defining software architectures in terms of
abstractions that they find useful.”

Aesop (www.cs.cmu.edu/~able/aesop/)
addresses the problem of style reuse. With Aesop, it is
possible to define styles and use them when constructing
an actual system.

Wright (www.cs.cmu.edu/~able/wright/) is a
formal language including the following elements:
components with ports, connectors with roles, and glue
to attach roles to ports. Architectural styles can be
formalized in the language with predicates, thus
allowing for static checks to determine the consistency
and completeness of an architecture.

Acme (www.cs.cmu.edu/~acme/) can be seen as
a second-generation ADL, in that its intention is to
identify a kind of least common denominator for
ADLs.

UML (www.uml.org/) includes many of the artifacts
needed for architectural descriptions—processes,
nodes, views, etc. For informal descriptions, UML is
well suited just because it is a widely understood
standard. It, however, lacks the full strength needed for
an adequate architectural description.

SOFTWARE TOOLS

Architectural Description Languages

pre75977_ch09.qxd 11/27/08 3:42 PM Page 264

http://poset.stanford.edu/rapide/
http://www.cs.cmu.edu/~UniCon
http://www.cs.cmu.edu/~able/aesop/
http://www.cs.cmu.edu/~able/wright/
http://www.cs.cmu.edu/~acme/
http://www.uml.org/

CHAPTER 9 ARCHITECTURAL DESIGN 265

9.6 ARCHITECTURAL MAPPING USING DATA FLOW

The architectural styles discussed in Section 9.3.1 represent radically different archi-

tectures. So it should come as no surprise that a comprehensive mapping that

accomplishes the transition from the requirements model to a variety of architectural

styles does not exist. In fact, there is no practical mapping for some architectural

styles, and the designer must approach the translation of requirements to design for

these styles in using the techniques discussed in Section 9.4.

To illustrate one approach to architectural mapping, consider the call and return

architecture—an extremely common structure for many types of systems. The call

and return architecture can reside within other more sophisticated architectures

discussed earlier in this chapter. For example, the architecture of one or more

components of a client-server architecture might be call and return.

A mapping technique, called structured design [You79], is often characterized as a

data flow-oriented design method because it provides a convenient transition from a

data flow diagram (Chapter 7) to software architecture.7 The transition from informa-

tion flow (represented as a DFD) to program structure is accomplished as part of a six-

step process: (1) the type of information flow is established, (2) flow boundaries are

indicated, (3) the DFD is mapped into the program structure, (4) control hierarchy is

defined, (5) the resultant structure is refined using design measures and heuristics, and

(6) the architectural description is refined and elaborated.

As a brief example of data flow mapping, I present a step-by-step “transform”

mapping for a small part of the SafeHome security function.8 In order to perform the

mapping, the type of information flow must be determined. One type of information

flow is called transform flow and exhibits a linear quality. Data flows into the system

along an incoming flow path where it is transformed from an external world

representation into internalized form. Once it has been internalized, it is processed

at a transform center. Finally, it flows out of the system along an outgoing flow path

that transforms the data into external world form.9

9.6.1 Transform Mapping

Transform mapping is a set of design steps that allows a DFD with transform flow

characteristics to be mapped into a specific architectural style. To illustrate this

approach, we again consider the SafeHome security function.10 One element of the

analysis model is a set of data flow diagrams that describe information flow within

7 It should be noted that other elements of the requirements model are also used during the mapping
method.

8 A more detailed discussion of structured design is presented within the website that accompanies
this book.

9 Another important type of information flow, transaction flow, is not considered in this example, but is
addressed in the structured design example presented within the website that accompanies this book.

10 We consider only the portion of the SafeHome security function that uses the control panel. Other
features discussed throughout this book are not considered here.

pre75977_ch09.qxd 11/27/08 3:42 PM Page 265

266 PART TWO MODELING

the security function. To map these data flow diagrams into a software architecture,

you would initiate the following design steps:

Step 1. Review the fundamental system model. The fundamental system model

or context diagram depicts the security function as a single transformation, repre-

senting the external producers and consumers of data that flow into and out of the

function. Figure 9.10 depicts a level 0 context model, and Figure 9.11 shows refined

data flow for the security function.

Control
panel

User commands
and data

Sensors
Sensor
status

Control
panel

display

Telephone
line

Alarm
SafeHome
software

Display
information

Telephone
number tones

Alarm
type

FIGURE 9.10

Context-level
DFD for the
SafeHome
security
function

telephone
line

Configuration information

Control
panel

Sensors

Control
panel

display

Telephone
line

Alarm

Interact
with
user

Configure
system

Activate/
deactivate

system

Process
password

Monitor
sensors

Display
messages
and status

User commands
and data

Password
Start
stop

Configure
request

Configuration
data

Configuration
data

Configuration
data

Valid ID msg.

A/D msg.

Sensor
status

Sensor
information

Alarm type

Telephone
number tones

Display
information

FIGURE 9.11

Level 1 DFD for
the SafeHome
security
function

pre75977_ch09.qxd 11/27/08 3:42 PM Page 266

Step 2. Review and refine data flow diagrams for the software. Information

obtained from the requirements model is refined to produce greater detail. For

example, the level 2 DFD for monitor sensors (Figure 9.12) is examined, and a level 3

data flow diagram is derived as shown in Figure 9.13. At level 3, each transform in

CHAPTER 9 ARCHITECTURAL DESIGN 267

If the DFD is refined
further at this time, strive
to derive bubbles that
exhibit high cohesion.

Configuration information

Read
sensors

Assess
against
setup

Configuration
data

Sensor ID,
type

Sensor
status

Generate
alarm
signal

Alarm
type

Alarm
data

Telephone
number

Dial
phone

Telephone
number tones

Format
for

display

Sensor
information

Sensor ID
type,

location

FIGURE 9.12

Level 2 DFD
that refines the
monitor
sensors
transform

Generate
pulses to

line

Telephone
number tones

Set up
connection
to phone

net

Select
phone
number

Establish
alarm

conditions

Acquire
response

info

Read
sensors

Generate
alarm
signal

Format
display

Generate
display

Configuration information

Configuration data

Sensor
status

Sensor
ID, setting

Alarm
condition code,
sensor ID, timing

information
List of

numbers

Telephone
number

Tone
ready

telephone
number

Alarm
data

Sensor
ID type,
location

Formated
ID, type,
location

Alarm
type

Sensor
information

FIGURE 9.13 Level 3 DFD for monitor sensors with flow boundaries

pre75977_ch09.qxd 11/27/08 3:42 PM Page 267

the data flow diagram exhibits relatively high cohesion (Chapter 8). That is, the

process implied by a transform performs a single, distinct function that can be

implemented as a component in the SafeHome software. Therefore, the DFD in

Figure 9.13 contains sufficient detail for a “first cut” at the design of architecture for

the monitor sensors subsystem, and we proceed without further refinement.

Step 3. Determine whether the DFD has transform or transaction flow11

characteristics. Evaluating the DFD (Figure 9.13), we see data entering the soft-

ware along one incoming path and exiting along three outgoing paths. Therefore, an

overall transform characteristic will be assumed for information flow.

Step 4. Isolate the transform center by specifying incoming and outgoing

flow boundaries. Incoming data flows along a path in which information is

converted from external to internal form; outgoing flow converts internalized data

to external form. Incoming and outgoing flow boundaries are open to interpretation.

That is, different designers may select slightly different points in the flow as bound-

ary locations. In fact, alternative design solutions can be derived by varying the

placement of flow boundaries. Although care should be taken when boundaries are

selected, a variance of one bubble along a flow path will generally have little impact

on the final program structure.

Flow boundaries for the example are illustrated as shaded curves running verti-

cally through the flow in Figure 9.13. The transforms (bubbles) that constitute the

transform center lie within the two shaded boundaries that run from top to bottom

in the figure. An argument can be made to readjust a boundary (e.g., an incoming

flow boundary separating read sensors and acquire response info could be proposed).

The emphasis in this design step should be on selecting reasonable boundaries,

rather than lengthy iteration on placement of divisions.

Step 5. Perform “first-level factoring.” The program architecture derived using

this mapping results in a top-down distribution of control. Factoring leads to a

program structure in which top-level components perform decision making and low-

level components perform most input, computation, and output work. Middle-level

components perform some control and do moderate amounts of work.

When transform flow is encountered, a DFD is mapped to a specific structure

(a call and return architecture) that provides control for incoming, transform, and

outgoing information processing. This first-level factoring for the monitor sensors

subsystem is illustrated in Figure 9.14. A main controller (called monitor sensors

executive) resides at the top of the program structure and coordinates the following

subordinate control functions:

• An incoming information processing controller, called sensor input controller,

coordinates receipt of all incoming data.

268 PART TWO MODELING

You will often
encounter both other
types of data flow
within the same flow-
oriented model. The
flows are partitioned,
and program structure
is derived using the
appropriate mapping.

Vary the location of
flow boundaries in an
effort to explore alter-
native program struc-
tures. This takes very
little time and provides
important insight.

11 In transaction flow, a single data item, called a transaction, causes the data flow to branch along
one of a number of flow paths defined by the nature of the transaction.

pre75977_ch09.qxd 11/27/08 3:42 PM Page 268

CHAPTER 9 ARCHITECTURAL DESIGN 269

• A transform flow controller, called alarm conditions controller, supervises all

operations on data in internalized form (e.g., a module that invokes various

data transformation procedures).

• An outgoing information processing controller, called alarm output controller,

coordinates production of output information.

Although a three-pronged structure is implied by Figure 9.14, complex flows in

large systems may dictate two or more control modules for each of the generic

control functions described previously. The number of modules at the first level

should be limited to the minimum that can accomplish control functions and still

maintain good functional independence characteristics.

Step 6. Perform “second-level factoring.” Second-level factoring is accom-

plished by mapping individual transforms (bubbles) of a DFD into appropriate

modules within the architecture. Beginning at the transform center boundary and

moving outward along incoming and then outgoing paths, transforms are mapped

into subordinate levels of the software structure. The general approach to second-

level factoring is illustrated in Figure 9.15.

Although Figure 9.15 illustrates a one-to-one mapping between DFD transforms

and software modules, different mappings frequently occur. Two or even three bub-

bles can be combined and represented as one component, or a single bubble may

be expanded to two or more components. Practical considerations and measures

Monitor
sensors

executive

Alarm
conditions
controller

Alarm
output

controller

Sensor
input

controller

FIGURE 9.14

First-level
factoring for
monitor
sensors

Don’t become
dogmatic at this stage.
It may be necessary to
establish two or more
controllers for input
processing or computa-
tion, based on the
complexity of the
system to be built. If
common sense dictates
this approach, do it!

Eliminate redundant
control modules. That is,
if a control module does
nothing except control
one other module, its
control function should
be imploded to a higher-
level module.

pre75977_ch09.qxd 11/27/08 3:42 PM Page 269

of design quality dictate the outcome of second-level factoring. Review and refine-

ment may lead to changes in this structure, but it can serve as a “first-iteration”

design.

Second-level factoring for incoming flow follows in the same manner. Factoring

is again accomplished by moving outward from the transform center boundary on

the incoming flow side. The transform center of monitor sensors subsystem soft-

ware is mapped somewhat differently. Each of the data conversion or calculation

transforms of the transform portion of the DFD is mapped into a module subordi-

nate to the transform controller. A completed first-iteration architecture is shown

in Figure 9.16.

The components mapped in the preceding manner and shown in Figure 9.16

represent an initial design of software architecture. Although components are

named in a manner that implies function, a brief processing narrative (adapted from

the process specification developed for a data transformation created during

requirements modeling) should be written for each. The narrative describes the

270 PART TWO MODELING

Monitor
sensors

executive

Alarm
conditions
controller

Alarm
output

controller

Sensor
input

controller

Generate
alarm
signal

Format
display

Generate
display

Set up
connection
to phone

net Generate
pulses to

lineTransform
flow boundary

Generate
alarm
signal

Set up
connection

to phone net
Format
display

Generate
pulses to line

Generate
display

FIGURE 9.15

Second-level
factoring for
monitor
sensors

Keep “worker” modules
low in the program
structure. This will lead
to an architecture that is
easier to maintain.

pre75977_ch09.qxd 11/27/08 3:42 PM Page 270

CHAPTER 9 ARCHITECTURAL DESIGN 271

component interface, internal data structures, a functional narrative, and a brief

discussion of restrictions and special features (e.g., file input-output, hardware-

dependent characteristics, special timing requirements).

Step 7. Refine the first-iteration architecture using design heuristics for

improved software quality. A first-iteration architecture can always be refined by

applying concepts of functional independence (Chapter 8). Components are exploded

or imploded to produce sensible factoring, separation of concerns, good cohesion,

minimal coupling, and most important, a structure that can be implemented without

difficulty, tested without confusion, and maintained without grief.

Refinements are dictated by the analysis and assessment methods described

briefly in Section 9.5, as well as practical considerations and common sense. There

are times, for example, when the controller for incoming data flow is totally unnec-

essary, when some input processing is required in a component that is subordi-

nate to the transform controller, when high coupling due to global data cannot be

avoided, or when optimal structural characteristics cannot be achieved. Software

requirements coupled with human judgment is the final arbiter.

The objective of the preceding seven steps is to develop an architectural repre-

sentation of software. That is, once structure is defined, we can evaluate and refine

software architecture by viewing it as a whole. Modifications made at this time

require little additional work, yet can have a profound impact on software quality.

You should pause for a moment and consider the difference between the design

approach described and the process of “writing programs.” If code is the only repre-

sentation of software, you and your colleagues will have great difficulty evaluating

or refining at a global or holistic level and will, in fact, have difficulty “seeing the

forest for the trees.”

Alarm
output

controller

Generate
alarm
signal

Set up
connection

to phone net
Format
display

Generate
pulses to line

Generate
display

Alarm
conditions
controller

Select
phone
number

Establish
alarm

conditions

Monitor
sensors

executive

Sensor
input

controller

Acquire
response

info

Read
sensors

FIGURE 9.16

First-iteration
structure for
monitor
sensors

uote:

“Make it as simple
as possible. But no
simpler.”

Albert Einstein

pre75977_ch09.qxd 11/27/08 3:42 PM Page 271

272 PART TWO MODELING

The scene: Jamie’s cubicle, as
design modeling begins.

The players: Jamie and Ed—members of the
SafeHome software engineering team.

The conversation:

[Ed has just completed a first-cut design of the monitor
sensors subsystem. He stops in to ask Jamie her
opinion.]

Ed: So here’s the architecture that I derived.

[Ed shows Jamie Figure 9.16, which she studies for a few
moments.]

Jamie: That’s cool, but I think we can do a few things to
make it simpler . . . and better.

Ed: Such as?

Jamie: Well, why did you use the sensor input controller
component?

Ed: Because you need a controller for the mapping.

Jamie: Not really. The controller doesn’t do much, since
we’re managing a single flow path for incoming data.
We can eliminate the controller with no ill effects.

Ed: I can live with that. I’ll make the change and . . .

Jamie (smiling): Hold up! We can also implode the
components establish alarm conditions and select phone
number. The transform controller you show isn’t really
necessary, and the small decrease in cohesion is tolerable.

Ed: Simplification, huh?

Jamie: Yep. And while we’re making refinements, it
would be a good idea to implode the components format
display and generate display. Display formatting for the
control panel is simple. We can define a new module
called produce display.

Ed (sketching): So this is what you think we should do?”

[Shows Jamie Figure 9.17.]

Jamie: It’s a good start.

SAFEHOME

Alarm
output

controller

Generate
alarm
signal

Set up
connection

to phone net
Produce
display

Generate
pulses to line

Establish
alarm

conditions

Monitor
sensors

executive

Acquire
response

info

Read
sensors

FIGURE 9.17

Refined
program
structure for
monitor
sensors

Refining a First-Cut Architecture

9.6.2 Refining the Architectural Design

Any discussion of design refinement should be prefaced with the following com-

ment: “Remember that an ‘optimal design’ that doesn’t work has questionable

merit.” You should be concerned with developing a representation of software that

will meet all functional and performance requirements and merit acceptance based

on design measures and heuristics.

What
happens

after the
architecture has
been created?

?

pre75977_ch09.qxd 11/27/08 3:42 PM Page 272

CHAPTER 9 ARCHITECTURAL DESIGN 273

Refinement of software architecture during early stages of design is to be en-

couraged. As I discussed earlier in this chapter, alternative architectural styles may

be derived, refined, and evaluated for the “best” approach. This approach to opti-

mization is one of the true benefits derived by developing a representation of soft-

ware architecture.

It is important to note that structural simplicity often reflects both elegance and

efficiency. Design refinement should strive for the smallest number of components

that is consistent with effective modularity and the least complex data structure that

adequately serves information requirements.

9.7 SUMMARY

Software architecture provides a holistic view of the system to be built. It depicts the

structure and organization of software components, their properties, and the con-

nections between them. Software components include program modules and the

various data representations that are manipulated by the program. Therefore, data

design is an integral part of the derivation of the software architecture. Architecture

highlights early design decisions and provides a mechanism for considering the ben-

efits of alternative system structures.

A number of different architectural styles and patterns are available to the soft-

ware engineer and may be applied within a given architectural genre. Each style de-

scribes a system category that encompasses a set of components that perform a

function required by a system; a set of connectors that enable communication, co-

ordination, and cooperation among components; constraints that define how com-

ponents can be integrated to form the system; and semantic models that enable a

designer to understand the overall properties of a system.

In a general sense, architectural design is accomplished using four distinct steps.

First, the system must be represented in context. That is, the designer should define

the external entities that the software interacts with and the nature of the interac-

tion. Once context has been specified, the designer should identify a set of top-level

abstractions, called archetypes, that represent pivotal elements of the system’s be-

havior or function. After abstractions have been defined, the design begins to move

closer to the implementation domain. Components are identified and represented

within the context of an architecture that supports them. Finally, specific instantia-

tions of the architecture are developed to “prove” the design in a real-world context.

As a simple example of architectural design, the mapping method presented in

this chapter uses data flow characteristics to derive a commonly used architectural

style. A data flow diagram is mapped into program structure using a transform map-

ping approach. Transform mapping is applied to an information flow that exhibits

distinct boundaries between incoming and outgoing data. The DFD is mapped into a

structure that allocates control to input, processing, and output along three sepa-

rately factored module hierarchies. Once an architecture has been derived, it is elab-

orated and then analyzed using quality criteria.

pre75977_ch09.qxd 11/27/08 3:42 PM Page 273

PROBLEMS AND POINTS TO PONDER

9.1. Using the architecture of a house or building as a metaphor, draw comparisons with
software architecture. How are the disciplines of classical architecture and the software archi-
tecture similar? How do they differ?

9.2. Present two or three examples of applications for each of the architectural styles noted in
Section 9.3.1.

9.3. Some of the architectural styles noted in Section 9.3.1 are hierarchical in nature and oth-
ers are not. Make a list of each type. How would the architectural styles that are not hierarchi-
cal be implemented?

9.4. The terms architectural style, architectural pattern, and framework (not discussed in this
book) are often encountered in discussions of software architecture. Do some research and
describe how each of these terms differs from its counterparts.

9.5. Select an application with which you are familiar. Answer each of the questions posed for
control and data in Section 9.3.3.

9.6. Research the ATAM (using [Kaz98]) and present a detailed discussion of the six steps
presented in Section 9.5.1.

9.7. If you haven’t done so, complete Problem 6.6. Use the design methods described in this
chapter to develop a software architecture for the PHTRS.

9.8. Using a data flow diagram and a processing narrative, describe a computer-based system
that has distinct transform flow characteristics. Define flow boundaries and map the DFD into a
software architecture using the technique described in Section 9.6.1.

FURTHER READINGS AND INFORMATION SOURCES

The literature on software architecture has exploded over the past decade. Books by Gorton
(Essential Software Architecture, Springer, 2006), Reekie and McAdam (A Software Architecture
Primer, Angophora Press, 2006), Albin (The Art of Software Architecture, Wiley, 2003), and Bass
and his colleagues (Software Architecture in Practice, 2d ed., Addison-Wesley, 2002) present
worthwhile introductions to an intellectually challenging topic area.

Buschman and his colleagues (Pattern-Oriented Software Architecture, Wiley, 2007) and
Kuchana (Software Architecture Design Patterns in Java, Auerbach, 2004) discuss pattern-oriented
aspects of architectural design. Rozanski and Woods (Software Systems Architecture, Addison-
Wesley, 2005), Fowler (Patterns of Enterprise Application Architecture, Addison-Wesley, 2003),
Clements and his colleagues (Documenting Software Architecture: View and Beyond, Addison-
Wesley, 2002), Bosch [Bos00], and Hofmeister and his colleagues [Hof00] provide in-depth treat-
ments of software architecture.

Hennesey and Patterson (Computer Architecture, 4th ed., Morgan-Kaufmann, 2007) take a
distinctly quantitative view of software architectural design issues. Clements and his colleagues
(Evaluating Software Architectures, Addison-Wesley, 2002) consider the issues associated with
the assessment of architectural alternatives and the selection of the best architecture for a given
problem domain.

Implementation-specific books on architecture address architectural design within a specific
development environment or technology. Marks and Bell (Service-Oriented Architecture, Wiley,
2006) discuss a design approach that links business and computational resources with the re-
quirements defined by customers. Stahl and his colleagues (Model-Driven Software Development,
Wiley, 2006) discuss architecture within the context of domain-specific modeling approaches.
Radaideh and Al-ameed (Architecture of Reliable Web Applications Software, GI Global, 2007) con-
sider architectures that are appropriate for WebApps. Clements and Northrop (Software Product
Lines: Practices and Patterns, Addison-Wesley, 2001) address the design of architectures that

274 PART TWO MODELING

pre75977_ch09.qxd 12/3/08 1:58 PM Page 274

CHAPTER 9 ARCHITECTURAL DESIGN 275

support software product lines. Shanley (Protected Mode Software Architecture, Addison-Wesley,
1996) provides architectural design guidance for anyone designing PC-based real-time operating
systems, multitask operating systems, or device drivers.

Current software architecture research is documented yearly in the Proceedings of the Inter-
national Workshop on Software Architecture, sponsored by the ACM and other computing organ-
izations, and the Proceedings of the International Conference on Software Engineering.

A wide variety of information sources on architectural design are available on the Internet.
An up-to-date list of World Wide Web references that are relevant to architectural design can be
found at the SEPA website: www.mhhe.com/engcs/compsci/pressman/professional/
olc/ser.htm.

pre75977_ch09.qxd 12/3/08 1:58 PM Page 275

http://www.mhhe.com/engcs/compsci/pressman/professional/

Component-level design occurs after the first iteration of architectural
design has been completed. At this stage, the overall data and program
structure of the software has been established. The intent is to translate

the design model into operational software. But the level of abstraction of the
existing design model is relatively high, and the abstraction level of the opera-
tional program is low. The translation can be challenging, opening the door to the
introduction of subtle errors that are difficult to find and correct in later stages of
the software process. In a famous lecture, Edsgar Dijkstra, a major contributor to
our understanding of software design, stated [Dij72]:

Software seems to be different from many other products, where as a rule higher qual-

ity implies a higher price. Those who want really reliable software will discover that

they must find a means of avoiding the majority of bugs to start with, and as a result,

276

C H A P T E R

10 COMPONENT-LEVEL
DESIGN

K E Y
C O N C E P T S

cohesion286
components

classifying 307
adaptation 305
composition . . .305
object-
oriented 277
qualification . . .304
traditional 298
WebApp296

component-based
development303
content design . . .297
coupling 288

What is it? A complete set of soft-
ware components is defined during
architectural design. But the internal
data structures and processing

details of each component are not represented
at a level of abstraction that is close to code.
Component-level design defines the data struc-
tures, algorithms, interface characteristics, and
communication mechanisms allocated to each
software component.

Who does it? A software engineer performs
component-level design.

Why is it important? You have to be able to de-
termine whether the software will work before
you build it. The component-level design repre-
sents the software in a way that allows you to re-
view the details of the design for correctness and
consistency with other design representations
(i.e., the data, architectural, and interface de-
signs). It provides a means for assessing whether
data structures, interfaces, and algorithms will
work.

What are the steps? Design representations
of data, architecture, and interfaces form the

Q U I C K
L O O K

foundation for component-level design. The
class definition or processing narrative for each
component is translated into a detailed design
that makes use of diagrammatic or text-based
forms that specify internal data structures, local
interface detail, and processing logic. Design
notation encompasses UML diagrams and sup-
plementary forms. Procedural design is specified
using a set of structured programming con-
structs. It is often possible to acquire existing
reusable software components rather than build-
ing new ones.

What is the work product? The design for each
component, represented in graphical, tabular,
or text-based notation, is the primary work
product produced during component-level
design.

How do I ensure that I’ve done it right? A design
review is conducted. The design is examined to
determine whether data structures, interfaces, pro-
cessing sequences, and logical conditions are cor-
rect and will produce the appropriate data or
control transformation allocated to the component
during earlier design steps.

pre75977_ch10.qxd 11/27/08 3:46 PM Page 276

CHAPTER 10 COMPONENT-LEVEL DESIGN 277

design
guidelines285
domain
engineering 303
tabular design
notation 300

the programming process will become cheaper . . . effective programmers . . . should not

waste their time debugging—they should not introduce bugs to start with.

Although these words were spoken many years ago, they remain true today. As you
translate the design model into source code, you should follow a set of design
principles that not only perform the translation but also do not “introduce bugs to
start with.”

It is possible to represent the component-level design using a programming lan-
guage. In essence, the program is created using the architectural design model as a
guide. An alternative approach is to represent the component-level design using
some intermediate (e.g., graphical, tabular, or text-based) representation that can be
translated easily into source code. Regardless of the mechanism that is used to
represent the component-level design, the data structures, interfaces, and algo-
rithms defined should conform to a variety of well-established design guidelines that
help you to avoid errors as the procedural design evolves. In this chapter, I examine
these design guidelines and the methods available for achieving them.

uote:

“The details are
not the details.
They make the
design.”

Charles Eames

10.1 WHAT IS A COMPONENT?

A component is a modular building block for computer software. More formally, the

OMG Unified Modeling Language Specification [OMG03a] defines a component as

“. . . a modular, deployable, and replaceable part of a system that encapsulates

implementation and exposes a set of interfaces.”

As we discussed in Chapter 9, components populate the software architecture

and, as a consequence, play a role in achieving the objectives and requirements of

the system to be built. Because components reside within the software architec-

ture, they must communicate and collaborate with other components and with

entities (e.g., other systems, devices, people) that exist outside the boundaries of

the software.

The true meaning of the term component will differ depending on the point of view

of the software engineer who uses it. In the sections that follow, I examine three im-

portant views of what a component is and how it is used as design modeling proceeds.

10.1.1 An Object-Oriented View

In the context of object-oriented software engineering, a component contains a set

of collaborating classes.1 Each class within a component has been fully elaborated

to include all attributes and operations that are relevant to its implementation. As

part of the design elaboration, all interfaces that enable the classes to communicate

and collaborate with other design classes must also be defined. To accomplish this,

you begin with the requirements model and elaborate analysis classes (for compo-

nents that relate to the problem domain) and infrastructure classes (for components

that provide support services for the problem domain).

From an object-
oriented viewpoint, a
component is a set of
collaborating classes.

1 In some cases, a component may contain a single class.

pre75977_ch10.qxd 11/27/08 3:46 PM Page 277

278 PART TWO MODELING

PrintJob

computeJob

initiateJob

numberOfPages
numberOfSides
paperType
 paperWeight
 paperSize
 paperColor
magnification
colorRequirements
productionFeatures
 collationOptions
 bindingOptions
 coverStock
 bleed
 priority
totalJobCost
WOnumber

PrintJob

computePageCost()
computePaperCost()
computeProdCost()
computeTotalJobCost()
buildWorkOrder()
checkPriority()
passJobto Production()

Elaborated design class<<interface>>
computeJob

computePageCost()
computePaperCost()
computeProdCost()
computeTotalJobCost()

<<interface>>
initiateJob

buildWorkOrder()
checkPriority()
passJobto Production()

Design
component

numberOfPages
numberOfSides
paperType
magnification
productionFeatures

PrintJob

computeJobCost()
passJobtoPrinter()

Analysis class

FIGURE 10.1

Elaboration of
a design
component

To illustrate this process of design elaboration, consider software to be built for a

sophisticated print shop. The overall intent of the software is to collect the cus-

tomer’s requirements at the front counter, cost a print job, and then pass the job on

to an automated production facility. During requirements engineering, an analysis

class called PrintJob was derived. The attributes and operations defined during

analysis are noted at the top of Figure 10.1. During architectural design, PrintJob is

defined as a component within the software architecture and is represented using

the shorthand UML notation2 shown in the middle right of the figure. Note that

PrintJob has two interfaces, computeJob, which provides job costing capability, and

initiateJob, which passes the job along to the production facility. These are repre-

sented using the “lollipop” symbols shown to the left of the component box.

2 Readers who are unfamiliar with UML notation should refer to Appendix 1.

pre75977_ch10.qxd 11/27/08 3:46 PM Page 278

Component-level design begins at this point. The details of the component PrintJob

must be elaborated to provide sufficient information to guide implementation. The orig-

inal analysis class is elaborated to flesh out all attributes and operations required to im-

plement the class as the component PrintJob. Referring to the lower right portion of

Figure 10.1, the elaborated design class PrintJob contains more detailed attribute

information as well as an expanded description of operations required to implement

the component. The interfaces computeJob and initiateJob imply communication and

collaboration with other components (not shown here). For example, the operation

computePageCost() (part of the computeJob interface) might collaborate with a

PricingTable component that contains job pricing information. The checkPriority()

operation (part of the initiateJob interface) might collaborate with a JobQueue compo-

nent to determine the types and priorities of jobs currently awaiting production.

This elaboration activity is applied to every component defined as part of the

architectural design. Once it is completed, further elaboration is applied to each

attribute, operation, and interface. The data structures appropriate for each attribute

must be specified. In addition, the algorithmic detail required to implement the pro-

cessing logic associated with each operation is designed. This procedural design

activity is discussed later in this chapter. Finally, the mechanisms required to imple-

ment the interface are designed. For object-oriented software, this may encompass

the description of all messaging that is required to effect communication between

objects within the system.

10.1.2 The Traditional View

In the context of traditional software engineering, a component is a functional element

of a program that incorporates processing logic, the internal data structures that are re-

quired to implement the processing logic, and an interface that enables the component

to be invoked and data to be passed to it. A traditional component, also called a module,

resides within the software architecture and serves one of three important roles: (1) a

control component that coordinates the invocation of all other problem domain com-

ponents, (2) a problem domain component that implements a complete or partial func-

tion that is required by the customer, or (3) an infrastructure component that is

responsible for functions that support the processing required in the problem domain.

Like object-oriented components, traditional software components are derived

from the analysis model. In this case, however, the data flow-oriented element of the

analysis model serves as the basis for the derivation. Each transform (bubble) repre-

sented at the lowest levels of the data flow diagram is mapped (Section 9.6) into a

module hierarchy. Control components (modules) reside near the top of the hierar-

chy (program architecture), and problem domain components tend to reside toward

the bottom of the hierarchy. To achieve effective modularity, design concepts like

functional independence (Chapter 8) are applied as components are elaborated.

To illustrate this process of design elaboration for traditional components, again

consider software to be built for a sophisticated print shop. A set of data flow diagrams

CHAPTER 10 COMPONENT-LEVEL DESIGN 279

Recall that analysis
modeling and design
modeling are both
iterative actions. Elabo-
rating the original
analysis class may
require additional
analysis steps, which
are then followed with
design modeling steps
to represent the
elaborated design class
(the details of the
component).

uote:

“A complex system
that works is
invariably found to
have evolved from
a simple system
that worked.”

John Gall

pre75977_ch10.qxd 11/27/08 3:46 PM Page 279

280 PART TWO MODELING

As the design for each
software component is
elaborated, the focus
shifts to the design of
specific data structures
and procedural design
to manipulate the data
structures. However,
don’t forget the
architecture that must
house the components
or the global data
structures that
may serve many
components.

would be derived during requirements modeling. Assume that these are mapped into

an architecture shown in Figure 10.2. Each box represents a software component.

Note that the shaded boxes are equivalent in function to the operations defined for the

PrintJob class discussed in Section 10.1.1. In this case, however, each operation is

represented as a separate module that is invoked as shown in the figure. Other mod-

ules are used to control processing and are therefore control components.

During component-level design, each module in Figure 10.2 is elaborated. The

module interface is defined explicitly. That is, each data or control object that flows

across the interface is represented. The data structures that are used internal to the

module are defined. The algorithm that allows the module to accomplish its intended

function is designed using the stepwise refinement approach discussed in Chapter 8.

The behavior of the module is sometimes represented using a state diagram.

To illustrate this process, consider the module ComputePageCost. The intent of this

module is to compute the printing cost per page based on specifications provided by

the customer. Data required to perform this function are: number of pages in the docu-

ment, total number of documents to be produced, one- or two-side printing, color requirements,

and size requirements. These data are passed to ComputePageCost via the module’s in-

terface. ComputePageCost uses these data to determine a page cost that is based on

the size and complexity of the job—a function of all data passed to the module via

the interface. Page cost is inversely proportional to the size of the job and directly

proportional to the complexity of the job.

Read
print job

data

Job
management

system

Select
jobmgmt
function

Develop
job cost

Build
work order

Send job
to

production

Compute
page cost

Compute
paper cost

Compute
prod cost

Check
priority

Pass job to
production

FIGURE 10.2

Structure chart
for a tradi-
tional system

pre75977_ch10.qxd 11/27/08 3:46 PM Page 280

Figure 10.3 represents the component-level design using a modified UML

notation. The ComputePageCost module accesses data by invoking the module

getJobData, which allows all relevant data to be passed to the component, and a

database interface, accessCostsDB, which enables the module to access a database

that contains all printing costs. As design continues, the ComputePageCost module is

elaborated to provide algorithm detail and interface detail (Figure 10.3). Algorithm

detail can be represented using the pseudocode text shown in the figure or with

a UML activity diagram. The interfaces are represented as a collection of input and

output data objects or items. Design elaboration continues until sufficient detail is

provided to guide construction of the component.

10.1.3 A Process-Related View

The object-oriented and traditional views of component-level design presented in

Sections 10.1.1 and 10.1.2 assume that the component is being designed from

scratch. That is, you have to create a new component based on specifications

derived from the requirements model. There is, of course, another approach.

CHAPTER 10 COMPONENT-LEVEL DESIGN 281

ComputePageCost

Design component

accessCostsDB

getJobData

Elaborated module

PageCost

in: numberPages
in: numberDocs
in: sides= 1, 2
in: color=1, 2, 3, 4
in: page size = A, B, C, D
out: page cost
in: job size
in: color=1, 2, 3, 4
in: pageSize = A, B, C, D
out: BPC
out: SF job size (JS) =

 numberPages * numberDocs;
 lookup base page cost (BPC) -->
 accessCostsDB (JS, color);
 lookup size factor (SF) -->
 accessCostDB (JS, color, size)
 job complexity factor (JCF) =
 1 + [(sides-1)*sideCost + SF]
 pagecost = BPC * JCF

getJobData (numberPages, numberDocs,
 sides, color, pageSize, pageCost)
accessCostsDB(jobSize, color, pageSize,
BPC, SF)
computePageCost()

FIGURE 10.3 Component-level design for ComputePageCost

pre75977_ch10.qxd 11/27/08 3:46 PM Page 281

282 PART TWO MODELING

Over the past two decades, the software engineering community has emphasized the

need to build systems that make use of existing software components or design patterns.

In essence, a catalog of proven design or code-level components is made available to

you as design work proceeds. As the software architecture is developed, you choose

components or design patterns from the catalog and use them to populate the architec-

ture. Because these components have been created with reusability in mind, a complete

description of their interface, the function(s) they perform, and the communication and

collaboration they require are all available to you. I discuss some of the important

aspects of component-based software engineering (CBSE) later in Section 10.6.

Component-Based Standards and Frameworks

One of the key elements that lead to the
success or failure of CBSE is the availability

of component-based standards, sometimes called
middleware. Middleware is a collection of infrastructure
components that enable problem domain components to
communicate with one another across a network or
within a complex system. Software engineers who want
to use component-based development as their software
process can choose from among the following
standards:

OMG CORBA—www.corba.org/
Microsoft COM—www.microsoft.com/com/

tech/complus.asp
Microsoft .NET—http://msdn2.microsoft.com/

en-us/netframework/default.aspx
Sun JavaBeans—http://java.sun.com/

products/ejb/

The websites noted present a wide array of tutorials, white
papers, tools, and general resources on these important
middleware standards.

INFO

10.2 DESIGNING CLASS-BASED COMPONENTS

As I have already noted, component-level design draws on information developed

as part of the requirements model (Chapters 6 and 7) and represented as part of

the architectural model (Chapter 9). When an object-oriented software engineering

approach is chosen, component-level design focuses on the elaboration of problem

domain specific classes and the definition and refinement of infrastructure classes

contained in the requirements model. The detailed description of the attributes,

operations, and interfaces used by these classes is the design detail required as a

precursor to the construction activity.

10.2.1 Basic Design Principles

Four basic design principles are applicable to component-level design and have been

widely adopted when object-oriented software engineering is applied. The underlying

motivation for the application of these principles is to create designs that are more

amenable to change and to reduce the propagation of side effects when changes do

occur. You can use these principles as a guide as each software component is developed.

The Open-Closed Principle (OCP). “A module [component] should be open

for extension but closed for modification” [Mar00]. This statement seems to be a

pre75977_ch10.qxd 11/27/08 3:46 PM Page 282

http://www.corba.org/
http://www.microsoft.com/com/
http://msdn2.microsoft.com/
http://java.sun.com/

CHAPTER 10 COMPONENT-LEVEL DESIGN 283

contradiction, but it represents one of the most important characteristics of a good

component-level design. Stated simply, you should specify the component in a way

that allows it to be extended (within the functional domain that it addresses) with-

out the need to make internal (code or logic-level) modifications to the component

itself. To accomplish this, you create abstractions that serve as a buffer between the

functionality that is likely to be extended and the design class itself.

For example, assume that the SafeHome security function makes use of a Detector

class that must check the status of each type of security sensor. It is likely that as time

passes, the number and types of security sensors will grow. If internal processing logic

is implemented as a sequence of if-then-else constructs, each addressing a different

sensor type, the addition of a new sensor type will require additional internal pro-

cessing logic (still another if-then-else). This is a violation of OCP.

One way to accomplish OCP for the Detector class is illustrated in Figure 10.4.

The sensor interface presents a consistent view of sensors to the detector compo-

nent. If a new type of sensor is added no change is required for the Detector class

(component). The OCP is preserved.

Detector<<interface>>
Sensor

read()
enable()
disable()
test()

Window/
doorSensor

SmokeSensor MotionDetector HeatSensor CO2Sensor

FIGURE 10.4

Following the
OCP

The OCP in Action

The scene: Vinod’s cubicle.

The players: Vinod and Shakira—members of the
SafeHome software engineering team.

The conversation:

Vinod: I just got a call from Doug [the team manager].
He says marketing wants to add a new sensor.

Shakira (smirking): Not again, jeez!

Vinod: Yeah . . . and you’re not going to believe what
these guys have come up with.

Shakira: Amaze me.

Vinod (laughing): They call it a doggie angst sensor.

Shakira: Say what?

Vinod: It’s for people who leave their pets home in
apartments or condos or houses that are close to one

SAFEHOME

pre75977_ch10.qxd 11/27/08 3:46 PM Page 283

284 PART TWO MODELING

The Liskov Substitution Principle (LSP). “Subclasses should be substitutable for

their base classes” [Mar00]. This design principle, originally proposed by Barbara Liskov

[Lis88], suggests that a component that uses a base class should continue to function

properly if a class derived from the base class is passed to the component instead. LSP

demands that any class derived from a base class must honor any implied contract be-

tween the base class and the components that use it. In the context of this discussion,

a “contract” is a precondition that must be true before the component uses a base class

and a postcondition that should be true after the component uses a base class. When

you create derived classes, be sure they conform to the pre- and postconditions.

Dependency Inversion Principle (DIP). “Depend on abstractions. Do not depend

on concretions” [Mar00]. As we have seen in the discussion of the OCP, abstractions

are the place where a design can be extended without great complication. The more

a component depends on other concrete components (rather than on abstractions

such as an interface), the more difficult it will be to extend.

The Interface Segregation Principle (ISP). “Many client-specific interfaces

are better than one general purpose interface” [Mar00]. There are many instances in

which multiple client components use the operations provided by a server class. ISP

suggests that you should create a specialized interface to serve each major category

of clients. Only those operations that are relevant to a particular category of clients

should be specified in the interface for that client. If multiple clients require the same

operations, it should be specified in each of the specialized interfaces.

As an example, consider the FloorPlan class that is used for the SafeHome secu-

rity and surveillance functions (Chapter 6). For the security functions, FloorPlan is

used only during configuration activities and uses the operations placeDevice(),

showDevice(), groupDevice(), and removeDevice() to place, show, group, and remove

sensors from the floor plan. The SafeHome surveillance function uses the four

If you dispense with
design and hack out
code, just remember
that code is the
ultimate “concretion.”
You’re violating DIP.

another. The dog starts to bark. The neighbor gets angry
and complains. With this sensor, if the dog barks for
more than, say, a minute, the sensor sets a special alarm
mode that calls the owner on his or her cell phone.

Shakira: You’re kidding me, right?

Vinod: Nope. Doug wants to know how much time it’s
going to take to add it to the security function.

Shakira (thinking a moment): Not much . . . look.
[She shows Vinod Figure 10.4] We’ve isolated the actual
sensor classes behind the sensor interface. As long as
we have specs for the doggie sensor, adding it should be
a piece of cake. Only thing I’ll have to do is create an
appropriate component . . . uh, class, for it. No change
to the Detector component at all.

Vinod: So I’ll tell Doug it’s no big deal.

Shakira: Knowing Doug, he’ll keep us focused and not
deliver the doggie thing until the next release.

Vinod: That’s not a bad thing, but you can implement
now if he wants you to?

Shakira: Yeah, the way we designed the interface lets
me do it with no hassle.

Vinod (thinking a moment): Have you ever heard
of the open-closed principle?

Shakira (shrugging): Never heard of it.

Vinod (smiling): Not a problem.

pre75977_ch10.qxd 11/27/08 3:46 PM Page 284

operations noted for security, but also requires special operations to manage

cameras: showFOV() and showDeviceID(). Hence, the ISP suggests that client compo-

nents from the two SafeHome functions have specialized interfaces defined for

them. The interface for security would encompass only the operations placeDevice(),

showDevice(), groupDevice(), and removeDevice(). The interface for surveillance

would incorporate the operations placeDevice(), showDevice(), groupDevice(), and

removeDevice(), along with showFOV() and showDeviceID().

Although component-level design principles provide useful guidance, compo-

nents themselves do not exist in a vacuum. In many cases, individual components

or classes are organized into subsystems or packages. It is reasonable to ask how

this packaging activity should occur. Exactly how should components be organized

as the design proceeds? Martin [Mar00] suggests additional packaging principles

that are applicable to component-level design:

The Release Reuse Equivalency Principle (REP). “The granule of reuse is the

granule of release” [Mar00]. When classes or components are designed for reuse, there

is an implicit contract that is established between the developer of the reusable entity

and the people who will use it. The developer commits to establish a release control

system that supports and maintains older versions of the entity while the users slowly

upgrade to the most current version. Rather than addressing each class individually,

it is often advisable to group reusable classes into packages that can be managed and

controlled as newer versions evolve.

The Common Closure Principle (CCP). “Classes that change together belong

together.” [Mar00]. Classes should be packaged cohesively. That is, when classes are

packaged as part of a design, they should address the same functional or behavioral

area. When some characteristic of that area must change, it is likely that only those

classes within the package will require modification. This leads to more effective

change control and release management.

The Common Reuse Principle (CRP). “Classes that aren’t reused together should

not be grouped together” [Mar00]. When one or more classes within a package

changes, the release number of the package changes. All other classes or packages

that rely on the package that has been changed must now update to the most recent

release of the package and be tested to ensure that the new release operates without

incident. If classes are not grouped cohesively, it is possible that a class with no rela-

tionship to other classes within a package is changed. This will precipitate unneces-

sary integration and testing. For this reason, only classes that are reused together

should be included within a package.

10.2.2 Component-Level Design Guidelines

In addition to the principles discussed in Section 10.2.1, a set of pragmatic design

guidelines can be applied as component-level design proceeds. These guidelines

apply to components, their interfaces, and the dependencies and inheritance

CHAPTER 10 COMPONENT-LEVEL DESIGN 285

Designing components
for reuse requires more
than good technical
design. It also requires
effective configuration
control mechanisms
(Chapter 22).

pre75977_ch10.qxd 11/27/08 3:46 PM Page 285

286 PART TWO MODELING

characteristics that have an impact on the resultant design. Ambler [Amb02b] sug-

gests the following guidelines:

Components. Naming conventions should be established for components that are

specified as part of the architectural model and then refined and elaborated as part

of the component-level model. Architectural component names should be drawn

from the problem domain and should have meaning to all stakeholders who view the

architectural model. For example, the class name FloorPlan is meaningful to every-

one reading it regardless of technical background. On the other hand, infrastructure

components or elaborated component-level classes should be named to reflect

implementation-specific meaning. If a linked list is to be managed as part of the

FloorPlan implementation, the operation manageList() is appropriate, even if a non-

technical person might misinterpret it.3

You can choose to use stereotypes to help identify the nature of components at

the detailed design level. For example, <<infrastructure>> might be used to identify an

infrastructure component, <<database>> could be used to identify a database that

services one or more design classes or the entire system; <<table>> can be used to

identify a table within a database.

Interfaces. Interfaces provide important information about communication and

collaboration (as well as helping us to achieve the OCP). However, unfettered repre-

sentation of interfaces tends to complicate component diagrams. Ambler [Amb02c]

recommends that (1) lollipop representation of an interface should be used in lieu of

the more formal UML box and dashed arrow approach, when diagrams grow complex;

(2) for consistency, interfaces should flow from the left-hand side of the component

box; (3) only those interfaces that are relevant to the component under consideration

should be shown, even if other interfaces are available. These recommendations are

intended to simplify the visual nature of UML component diagrams.

Dependencies and Inheritance. For improved readability, it is a good idea

to model dependencies from left to right and inheritance from bottom (derived

classes) to top (base classes). In addition, component interdependencies should

be represented via interfaces, rather than by representation of a component-to-

component dependency. Following the philosophy of the OCP, this will help to

make the system more maintainable.

10.2.3 Cohesion

In Chapter 8, I described cohesion as the “single-mindedness” of a component.

Within the context of component-level design for object-oriented systems, cohesion

What should
we consider

when we name
components?

?

3 It is unlikely that someone from marketing or the customer organization (a nontechnical type)
would examine detailed design information.

pre75977_ch10.qxd 11/27/08 3:46 PM Page 286

implies that a component or class encapsulates only attributes and operations that

are closely related to one another and to the class or component itself. Lethbridge

and Laganiére [Let01] define a number of different types of cohesion (listed in order

of the level of the cohesion4):

Functional. Exhibited primarily by operations, this level of cohesion occurs

when a component performs a targeted computation and then returns a

result.

Layer. Exhibited by packages, components, and classes, this type of cohe-

sion occurs when a higher layer accesses the services of a lower layer,

but lower layers do not access higher layers. Consider, for example, the

SafeHome security function requirement to make an outgoing phone call if an

alarm is sensed. It might be possible to define a set of layered packages as

shown in Figure 10.5. The shaded packages contain infrastructure compo-

nents. Access is from the control panel package downward.

Communicational. All operations that access the same data are defined

within one class. In general, such classes focus solely on the data in ques-

tion, accessing and storing it.

Classes and components that exhibit functional, layer, and communicational

cohesion are relatively easy to implement, test, and maintain. You should strive to

achieve these levels of cohesion whenever possible. It is important to note, however,

that pragmatic design and implementation issues sometimes force you to opt for

lower levels of cohesion.

CHAPTER 10 COMPONENT-LEVEL DESIGN 287

4 In general, the higher the level of cohesion, the easier the component is to implement, test, and
maintain.)

Detector

Control panel

Phone

Modem

T-com

FIGURE 10.5

Layer cohesion

Although an under-
standing of the various
levels of cohesion is
instructive, it is more
important to be aware
of the general concept
as you design
components. Keep
cohesion as high as is
possible.

pre75977_ch10.qxd 11/27/08 3:46 PM Page 287

288 PART TWO MODELING

Cohesion in Action

The scene: Jamie’s cubicle.

The players: Jamie and Ed—members of the
SafeHome software engineering team who are working
on the surveillance function.

The conversation:

Ed: I have a first-cut design of the camera component.

Jamie: Wanna do a quick review?

Ed: I guess . . . but really, I’d like your input on
something.

(Jamie gestures for him to continue.)

Ed: We originally defined five operations for camera.
Look . . .

determineType() tells me the type of camera.

translateLocation() allows me to move the camera
around the floor plan.

displayID() gets the camera ID and displays it near the
camera icon.

displayView() shows me the field of view of the camera
graphically.

displayZoom() shows me the magnification of the cam-
era graphically.

Ed: I’ve designed each separately, and they’re pretty
simple operations. So I thought it might be a good idea to
combine all of the display operations into just one that’s
called displayCamera()—it’ll show the ID, the view, and
the zoom. Whaddaya think?

Jamie (grimacing): Not sure that’s such a good
idea.

Ed (frowning): Why, all of these little ops can cause
headaches.

Jamie: The problem with combining them is we lose
cohesion, you know, the displayCamera() op won’t be
single-minded.

Ed (mildly exasperated): So what? The whole thing
will be less than 100 source lines, max. It’ll be easier to
implement, I think.

Jamie: And what if marketing decides to change the
way that we represent the view field?

Ed: I just jump into the displayCamera() op and make the
mod.

Jamie: What about side effects?

Ed: Whaddaya mean?

Jamie: Well, say you make the change but
inadvertently create a problem with the ID display.

Ed: I wouldn’t be that sloppy.

Jamie: Maybe not, but what if some support person
two years from now has to make the mod. He might not
understand the op as well as you do, and, who knows, he
might be sloppy.

Ed: So you’re against it?

Jamie: You’re the designer . . . it’s your decision . . . just
be sure you understand the consequences of low
cohesion.

Ed (thinking a moment): Maybe we’ll go with
separate display ops.

Jamie: Good decision.

SAFEHOME

10.2.4 Coupling

In earlier discussions of analysis and design, I noted that communication and

collaboration are essential elements of any object-oriented system. There is, however,

a darker side to this important (and necessary) characteristic. As the amount of com-

munication and collaboration increases (i.e., as the degree of “connectedness” between

classes increases), the complexity of the system also increases. And as complexity

increases, the difficulty of implementing, testing, and maintaining software grows.

Coupling is a qualitative measure of the degree to which classes are connected to

one another. As classes (and components) become more interdependent, coupling

increases. An important objective in component-level design is to keep coupling as

low as is possible.

pre75977_ch10.qxd 11/27/08 3:47 PM Page 288

Class coupling can manifest itself in a variety of ways. Lethbridge and Laganiére

[Let01] define the following coupling categories:

Content coupling. Occurs when one component “surreptitiously modifies

data that is internal to another component” [Let01]. This violates information

hiding—a basic design concept.

Common coupling. Occurs when a number of components all make use of

a global variable. Although this is sometimes necessary (e.g., for establishing

default values that are applicable throughout an application), common cou-

pling can lead to uncontrolled error propagation and unforeseen side effects

when changes are made.

Control coupling. Occurs when operation A() invokes operation B() and

passes a control flag to B. The control flag then “directs” logical flow within

B. The problem with this form of coupling is that an unrelated change in B

can result in the necessity to change the meaning of the control flag that A

passes. If this is overlooked, an error will result.

Stamp coupling. Occurs when ClassB is declared as a type for an argu-

ment of an operation of ClassA. Because ClassB is now a part of the defini-

tion of ClassA, modifying the system becomes more complex.

Data coupling. Occurs when operations pass long strings of data argu-

ments. The “bandwidth” of communication between classes and components

grows and the complexity of the interface increases. Testing and mainte-

nance are more difficult.

Routine call coupling. Occurs when one operation invokes another. This

level of coupling is common and is often quite necessary. However, it does

increase the connectedness of a system.

Type use coupling. Occurs when component A uses a data type defined in

component B (e.g., this occurs whenever “a class declares an instance vari-

able or a local variable as having another class for its type” [Let01]). If the type

definition changes, every component that uses the definition must also

change.

Inclusion or import coupling. Occurs when component A imports or in-

cludes a package or the content of component B.

External coupling. Occurs when a component communicates or collabo-

rates with infrastructure components (e.g., operating system functions,

database capability, telecommunication functions). Although this type of cou-

pling is necessary, it should be limited to a small number of components or

classes within a system.

Software must communicate internally and externally. Therefore, coupling is a fact

of life. However, the designer should work to reduce coupling whenever possible and

understand the ramifications of high coupling when it cannot be avoided.

CHAPTER 10 COMPONENT-LEVEL DESIGN 289

As the design for each
software component is
elaborated, the focus
shifts to the design of
specific data structures
and procedural design
to manipulate the data
structures. However,
don’t forget the
architecture that must
house the components
or the global data
structures that
may serve many
components.

pre75977_ch10.qxd 11/27/08 3:47 PM Page 289

290 PART TWO MODELING

If you’re working in a
non-OO environment,
the first three steps
focus on refinement of
data objects and
processing functions
(transforms) identified
as part of the require-
ments model.

Coupling in Action

The scene: Shakira’s cubicle.

The players: Vinod and Shakira—members of the
SafeHome software team who are working on the security
function.

The conversation:

Shakira: I had what I thought was a great idea . . .
then I thought about it a little, and it seemed like a not so
great idea. I finally rejected it, but I just thought I’d run it
by you.

Vinod: Sure. What’s the idea?

Shakira: Well, each of the sensors recognizes an alarm
condition of some kind, right?

Vinod (smiling): That’s why we call them sensors,
Shakira.

Shakira (exasperated): Sarcasm, Vinod, you’ve got
to work on your interpersonal skills.

Vinod: You were saying?

Shakira: Okay, anyway, I figured . . . why not create an
operation within each sensor object called makeCall() that

would collaborate directly with the OutgoingCall
component, well, with an interface to the OutgoingCall
component.

Vinod (pensive): You mean rather than having
that collaboration occur out of a component like
ControlPanel or something?

Shakira: Yeah . . . but then I said to myself, that
means that every sensor object will be connected to the
OutgoingCall component, and that means that its
indirectly coupled to the outside world and . . . well, I just
thought it made things complicated.

Vinod: I agree. In this case, it’s a better idea to let the
sensor interface pass info to the ControlPanel and let
it initiate the outgoing call. Besides, different sensors
might result in different phone numbers. You don’t
want the senor to store that information because if it
changes . . .

Shakira: It just didn’t feel right.

Vinod: Design heuristics for coupling tell us it’s not right.

Shakira: Whatever . . .

SAFEHOME

10.3 CONDUCTING COMPONENT-LEVEL DESIGN

Earlier in this chapter I noted that component-level design is elaborative in nature.

You must transform information from requirements and architectural models into

a design representation that provides sufficient detail to guide the construction

(coding and testing) activity. The following steps represent a typical task set for

component-level design, when it is applied for an object-oriented system.

Step 1. Identify all design classes that correspond to the problem domain.

Using the requirements and architectural model, each analysis class and architec-

tural component is elaborated as described in Section 10.1.1.

Step 2. Identify all design classes that correspond to the infrastructure

domain. These classes are not described in the requirements model and are often

missing from the architecture model, but they must be described at this point. As we

have noted earlier, classes and components in this category include GUI components

(often available as reusable components), operating system components, and object

and data management components.

Step 3. Elaborate all design classes that are not acquired as reusable

components. Elaboration requires that all interfaces, attributes, and operations

uote:

“If I had more
time, I would have
written a shorter
letter.”

Blaise Pascal

pre75977_ch10.qxd 11/27/08 3:47 PM Page 290

necessary to implement the class be described in detail. Design heuristics (e.g., com-

ponent cohesion and coupling) must be considered as this task is conducted.

Step 3a. Specify message details when classes or components collaborate.

The requirements model makes use of a collaboration diagram to show how analy-

sis classes collaborate with one another. As component-level design proceeds, it is

sometimes useful to show the details of these collaborations by specifying the struc-

ture of messages that are passed between objects within a system. Although this de-

sign activity is optional, it can be used as a precursor to the specification of interfaces

that show how components within the system communicate and collaborate.

Figure 10.6 illustrates a simple collaboration diagram for the printing system dis-

cussed earlier. Three objects, ProductionJob, WorkOrder, and JobQueue, collab-

orate to prepare a print job for submission to the production stream. Messages are

passed between objects as illustrated by the arrows in the figure. During require-

ments modeling the messages are specified as shown in the figure. However, as de-

sign proceeds, each message is elaborated by expanding its syntax in the following

manner [Ben02]:

[guard condition] sequence expression (return value) :�

message name (argument list)

where a [guard condition] is written in Object Constraint Language (OCL)5 and speci-

fies any set of conditions that must be met before the message can be sent; sequence

expression is an integer value (or other ordering indicator, e.g., 3.1.2) that indicates

the sequential order in which a message is sent; (return value) is the name of the

information that is returned by the operation invoked by the message; message name

identifies the operation that is to be invoked, and (argument list) is the list of attributes

that are passed to the operation.

CHAPTER 10 COMPONENT-LEVEL DESIGN 291

:ProductionJob

:WorkOrder
:JobQueue

1: buildJob
(WOnumber)

2: submitJob
(WOnumber)

FIGURE 10.6

Collaboration
diagram with
messaging

5 OCL is discussed briefly in Appendix 1.

pre75977_ch10.qxd 11/27/08 3:47 PM Page 291

292 PART TWO MODELING

PrintJob

computeJob

initiateJob

ProductionJob

buildJob

submitJob

WorkOrder

appropriate attributes

buildWorkOrder ()
getJobDescription

JobQueue

appropriate attributes

checkPriority ()

<<interface>>
 initiateJob

passJobToProduction()

FIGURE 10.7 Refactoring interfaces and class definitions for PrintJob

Step 3b. Identify appropriate interfaces for each component. Within the

context of component-level design, a UML interface is “a group of externally visible

(i.e., public) operations. The interface contains no internal structure, it has no attrib-

utes, no associations . . .” [Ben02]. Stated more formally, an interface is the equiva-

lent of an abstract class that provides a controlled connection between design

classes. The elaboration of interfaces is illustrated in Figure 10.1. In essence, opera-

tions defined for the design class are categorized into one or more abstract classes.

Every operation within the abstract class (the interface) should be cohesive; that is,

it should exhibit processing that focuses on one limited function or subfunction.

Referring to Figure 10.1, it can be argued that the interface initiateJob does not

exhibit sufficient cohesion. In actuality, it performs three different subfunctions—

building a work order, checking job priority, and passing a job to production. The

interface design should be refactored. One approach might be to reexamine the de-

sign classes and define a new class WorkOrder that would take care of all activities

associated with the assembly of a work order. The operation buildWorkOrder() be-

comes a part of that class. Similarly, we might define a class JobQueue that would

incorporate the operation checkPriority(). A class ProductionJob would encompass

all information associated with a production job to be passed to the production

facility. The interface initiateJob would then take the form shown in Figure 10.7.

The interface initiateJob is now cohesive, focusing on one function. The interfaces

associated with ProductionJob, WorkOrder, and JobQueue are similarly

single-minded.

Step 3c. Elaborate attributes and define data types and data structures

required to implement them. In general, data structures and types used to define

attributes are defined within the context of the programming language that is to be

pre75977_ch10.qxd 11/27/08 3:47 PM Page 292

used for implementation. UML defines an attribute’s data type using the following

syntax:

name : type-expression � initial-value {property string}

where name is the attribute name, type expression is the data type, initial value is the value

that the attribute takes when an object is created, and property-string defines a prop-

erty or characteristic of the attribute.

During the first component-level design iteration, attributes are normally de-

scribed by name. Referring once again to Figure 10.1, the attribute list for PrintJob

lists only the names of the attributes. However, as design elaboration proceeds, each

attribute is defined using the UML attribute format noted. For example, paperType-

weight is defined in the following manner:

paperType-weight: string � “A” { contains 1 of 4 values - A, B, C, or D}

which defines paperType-weight as a string variable initialized to the value A that can

take on one of four values from the set {A,B,C, D}.

If an attribute appears repeatedly across a number of design classes, and it has a

relatively complex structure, it is best to create a separate class to accommodate the

attribute.

Step 3d. Describe processing flow within each operation in detail. This may

be accomplished using a programming language-based pseudocode or with a UML

activity diagram. Each software component is elaborated through a number of iter-

ations that apply the stepwise refinement concept (Chapter 8).

The first iteration defines each operation as part of the design class. In every case,

the operation should be characterized in a way that ensures high cohesion; that is,

the operation should perform a single targeted function or subfunction. The next

iteration does little more than expand the operation name. For example, the operation

computePaperCost() noted in Figure 10.1 can be expanded in the following manner:

computePaperCost (weight, size, color): numeric

This indicates that computePaperCost() requires the attributes weight, size, and color as

input and returns a value that is numeric (actually a dollar value) as output.

If the algorithm required to implement computePaperCost() is simple and

widely understood, no further design elaboration may be necessary. The software

engineer who does the coding will provide the detail necessary to implement the

operation. However, if the algorithm is more complex or arcane, further design

elaboration is required at this stage. Figure 10.8 depicts a UML activity diagram for

computePaperCost(). When activity diagrams are used for component-level design

specification, they are generally represented at a level of abstraction that is some-

what higher than source code. An alternative approach—the use of pseudocode for

design specification—is discussed in Section 10.5.3.

CHAPTER 10 COMPONENT-LEVEL DESIGN 293

Use stepwise
elaboration as you
refine the component
design. Always ask,
“Is there a way this
can be simplified and
yet still accomplish the
same result?”

pre75977_ch10.qxd 11/27/08 3:47 PM Page 293

294 PART TWO MODELING

Step 4. Describe persistent data sources (databases and files) and identify

the classes required to manage them. Databases and files normally transcend

the design description of an individual component. In most cases, these persistent

data stores are initially specified as part of architectural design. However, as design

elaboration proceeds, it is often useful to provide additional detail about the struc-

ture and organization of these persistent data sources.

Step 5. Develop and elaborate behavioral representations for a class or

component. UML state diagrams were used as part of the requirements model to

represent the externally observable behavior of the system and the more localized

behavior of individual analysis classes. During component-level design, it is some-

times necessary to model the behavior of a design class.

The dynamic behavior of an object (an instantiation of a design class as the

program executes) is affected by events that are external to it and the current state

Validate attributes
input

accessPaperDB(weight)

returns baseCostperPage

Size = B paperCostperPage =
paperCostperPage*1.2

Size = C paperCostperPage =
paperCostperPage*1.4

Size = D paperCostperPage =
paperCostperPage*1.6

Color is custom paperCostperPage =
paperCostperPage*1.14

Color is standard

paperCostperPage =
 baseCostperPage

Returns
(paperCostperPage)

FIGURE 10.8

UML activity
diagram for
compute-
PaperCost()

pre75977_ch10.qxd 11/27/08 3:47 PM Page 294

(mode of behavior) of the object. To understand the dynamic behavior of an object,

you should examine all use cases that are relevant to the design class throughout its

life. These use cases provide information that helps you to delineate the events that

affect the object and the states in which the object resides as time passes and events

occur. The transitions between states (driven by events) are represented using a UML

statechart [Ben02] as illustrated in Figure 10.9.

The transition from one state (represented by a rectangle with rounded corners)

to another occurs as a consequence of an event that takes the form:

Event-name (parameter-list) [guard-condition] / action expression

where event-name identifies the event, parameter-list incorporates data that are

associated with the event, guard-condition is written in Object Constraint Language

(OCL) and specifies a condition that must be met before the event can occur, and

action expression defines an action that occurs as the transition takes place.

Referring to Figure 10.9, each state may define entry/ and exit/ actions that occur as

transition into the state occurs and as transition out of the state occurs, respectively. In

most cases, these actions correspond to operations that are relevant to the class that is

being modeled. The do/ indicator provides a mechanism for indicating activities that

CHAPTER 10 COMPONENT-LEVEL DESIGN 295

buildingJobData

entry/readJobData()
exit/displayJobData()
do/checkConsistency()
include/dataInput

entry/computeJob
exit/save totalJobCost

formingJob

entry/buildJob
exit/save WOnumber
do/

computingJobCost

submittingJob

entry/submitJob
exit/initiateJob
do/place on JobQueue

Behavior within the
state buildingJobData

dataInputCompleted [all data
items consistent]/displayUserOptions

dataInputIncomplete

deliveryDateAccepted [customer is authorized]/
printJobEstimate

jobCostAccepted [customer is authorized]/
getElectronicSignature

jobSubmitted [all authorizations acquired]/
printWorkOrder

FIGURE 10.9

Statechart
fragment for
PrintJob class

pre75977_ch10.qxd 11/27/08 3:47 PM Page 295

296 PART TWO MODELING

occur while in the state, and the include/ indicator provides a means for elaborating the

behavior by embedding more statechart detail within the definition of a state.

It is important to note that the behavioral model often contains information that

is not immediately obvious in other design models. For example, careful examina-

tion of the statechart in Figure 10.9 indicates that the dynamic behavior of the

PrintJob class is contingent upon two customer approvals as costs and schedule

data for the print job are derived. Without approvals (the guard condition ensures

that the customer is authorized to approve) the print job cannot be submitted

because there is no way to reach the submittingJob state.

Step 6. Elaborate deployment diagrams to provide additional implementa-

tion detail. Deployment diagrams (Chapter 8) are used as part of architectural

design and are represented in descriptor form. In this form, major system functions

(often represented as subsystems) are represented within the context of the com-

puting environment that will house them.

During component-level design, deployment diagrams can be elaborated to rep-

resent the location of key packages of components. However, components generally

are not represented individually within a component diagram. The reason for this is

to avoid diagrammatic complexity. In some cases, deployment diagrams are elabo-

rated into instance form at this time. This means that the specific hardware and

operating system environment(s) that will be used is (are) specified and the location

of component packages within this environment is indicated.

Step 7. Refactor every component-level design representation and always

consider alternatives. Throughout this book, I have emphasized that design

is an iterative process. The first component-level model you create will not be as

complete, consistent, or accurate as the nth iteration you apply to the model. It is

essential to refactor as design work is conducted.

In addition, you should not suffer from tunnel vision. There are always alterna-

tive design solutions, and the best designers consider all (or most) of them before

settling on the final design model. Develop alternatives and consider each care-

fully, using the design principles and concepts presented in Chapter 8 and in this

chapter.

10.4 COMPONENT-LEVEL DESIGN FOR WEBAPPS

The boundary between content and function is often blurred when Web-based

systems and applications (WebApps) are considered. Therefore, it is reasonable to

ask: What is a WebApp component?

In the context of this chapter, a WebApp component is (1) a well-defined cohesive

function that manipulates content or provides computational or data processing for

an end user or (2) a cohesive package of content and functionality that provides the

pre75977_ch10.qxd 11/27/08 3:47 PM Page 296

end user with some required capability. Therefore, component-level design for

WebApps often incorporates elements of content design and functional design.

10.4.1 Content Design at the Component Level

Content design at the component level focuses on content objects and the

manner in which they may be packaged for presentation to a WebApp end user.

As an example, consider a Web-based video surveillance capability within

SafeHomeAssured.com. Among many capabilities, the user can select and control

any of the cameras represented as part of a floor plan, require video-capture thumb-

nail images from all the cameras, and display streaming video from any one camera.

In addition, the user can control pan and zoom for a camera using appropriate

control icons.

A number of potential content components can be defined for the video surveil-

lance capability: (1) the content objects that represent the space layout (the floor

plan) with additional icons representing the location of sensors and video cameras,

(2) the collection of thumbnail video captures (each a separate data object), and

(3) the streaming video window for a specific camera. Each of these components can

be separately named and manipulated as a package.

Consider a floor plan that depicts four cameras placed strategically throughout a

house. Upon user request, a video frame is captured from each camera and is iden-

tified as a dynamically generated content object, VideoCaptureN, where N identi-

fies cameras 1 to 4. A content component, named Thumbnail-Images, combines

all four VideoCaptureN content objects and displays them on the video surveillance

page.

The formality of content design at the component level should be tuned to the

characteristics of the WebApp to be built. In many cases, content objects need not

be organized as components and can be manipulated individually. However, as the

size and complexity (of the WebApp, content objects, and their interrelationships)

grows, it may be necessary to organize content in a way that allows easier reference

and design manipulation.6 In addition, if content is highly dynamic (e.g., the content

for an online auction site), it becomes important to establish a clear structural model

that incorporates content components.

10.4.2 Functional Design at the Component Level

Modern Web applications deliver increasingly sophisticated processing functions

that (1) perform localized processing to generate content and navigation capability

in a dynamic fashion, (2) provide computation or data processing capability that is

appropriate for the WebApp’s business domain, (3) provide sophisticated database

query and access, or (4) establish data interfaces with external corporate systems. To

CHAPTER 10 COMPONENT-LEVEL DESIGN 297

6 Content components can also be reused in other WebApps.

pre75977_ch10.qxd 11/27/08 3:47 PM Page 297

298 PART TWO MODELING

achieve these (and many other) capabilities, you will design and construct WebApp

functional components that are similar in form to software components for

conventional software.

WebApp functionality is delivered as a series of components developed in paral-

lel with the information architecture to ensure that they are consistent. In essence

you begin by considering both the requirements model and the initial information

architecture and then examining how functionality affects the user’s interaction with

the application, the information that is presented, and the user tasks that are

conducted.

During architectural design, WebApp content and functionality are combined to

create a functional architecture. A functional architecture is a representation of the

functional domain of the WebApp and describes the key functional components in

the WebApp and how these components interact with each other.

For example, the pan and zoom functions for the SafeHomeAssured.com video

surveillance capability are implemented as part of a CameraControl component.

Alternatively, pan and zoom can be implemented as the operations, pan() and zoom(),

which are part of a Camera class. In either case, the functionality implied by pan and

zoom must be implemented as modules within SafeHomeAssured.com.

10.5 DESIGNING TRADITIONAL COMPONENTS

The foundations of component-level design for traditional software components7

were formed in the early 1960s and were solidified with the work of Edsger Dijkstra

and his colleagues ([Boh66], [Dij65], [Dij76b]). In the late 1960s, Dijkstra and others

proposed the use of a set of constrained logical constructs from which any program

could be formed. The constructs emphasized “maintenance of functional domain.”

That is, each construct had a predictable logical structure and was entered at the

top and exited at the bottom, enabling a reader to follow procedural flow more

easily.

The constructs are sequence, condition, and repetition. Sequence implements

processing steps that are essential in the specification of any algorithm. Condition

provides the facility for selected processing based on some logical occurrence, and

repetition allows for looping. These three constructs are fundamental to structured

programming—an important component-level design technique.

The structured constructs were proposed to limit the procedural design of

software to a small number of predictable logical structures. Complexity metrics

(Chapter 23) indicate that the use of the structured constructs reduces program com-

plexity and thereby enhances readability, testability, and maintainability. The use of

7 A traditional software component implements an element of processing that addresses a function
or subfunction in the problem domain or some capability in the infrastructure domain. Often called
modules, procedures, or subroutines, traditional components do not encapsulate data in the same
way that object-oriented components do.

Structured
programming is a
design technique that
constrains logic flow
to three constructs:
sequence, condition,
and repetition.

pre75977_ch10.qxd 11/27/08 3:47 PM Page 298

a limited number of logical constructs also contributes to a human understanding

process that psychologists call chunking. To understand this process, consider the

way in which you are reading this page. You do not read individual letters but rather

recognize patterns or chunks of letters that form words or phrases. The structured

constructs are logical chunks that allow a reader to recognize procedural elements

of a module, rather than reading the design or code line by line. Understanding is

enhanced when readily recognizable logical patterns are encountered.

Any program, regardless of application area or technical complexity, can be

designed and implemented using only the three structured constructs. It should be

noted, however, that dogmatic use of only these constructs can sometimes cause

practical difficulties. Section 10.5.1 considers this issue in further detail.

10.5.1 Graphical Design Notation

”A picture is worth a thousand words,” but it’s rather important to know which

picture and which 1000 words. There is no question that graphical tools, such as the

UML activity diagram or the flowchart, provide useful pictorial patterns that readily

depict procedural detail. However, if graphical tools are misused, the wrong picture

may lead to the wrong software.

The activity diagram allows you to represent sequence, condition, and repetition—

all elements of structured programming—and is a descendent of an earlier picto-

rial design representation (still used widely) called a flowchart. A flowchart, like

an activity diagram, is quite simple pictorially. A box is used to indicate a process-

ing step. A diamond represents a logical condition, and arrows show the flow

of control. Figure 10.10 illustrates three structured constructs. The sequence is

CHAPTER 10 COMPONENT-LEVEL DESIGN 299

First
task

Next
task

Sequence

Selection

Condition

TF

If-then-else

Repetition

Else-part Then-part

Case
condition

Case part
T

T

T

F
T

T

F
FF

F Do while Repeat until

FIGURE 10.10

Flowchart
constructs

pre75977_ch10.qxd 11/27/08 3:47 PM Page 299

300 PART TWO MODELING

How do I
build a

decision table?
?

represented as two processing boxes connected by a line (arrow) of control.

Condition, also called if-then-else, is depicted as a decision diamond that, if true,

causes then-part processing to occur, and if false, invokes else-part processing.

Repetition is represented using two slightly different forms. The do while tests a con-

dition and executes a loop task repetitively as long as the condition holds true. A

repeat until executes the loop task first and then tests a condition and repeats the

task until the condition fails. The selection (or select-case) construct shown in the fig-

ure is actually an extension of the if-then-else. A parameter is tested by successive

decisions until a true condition occurs and a case part processing path is executed.

In general, the dogmatic use of only the structured constructs can introduce inef-

ficiency when an escape from a set of nested loops or nested conditions is required.

More important, additional complication of all logical tests along the path of escape

can cloud software control flow, increase the possibility of error, and have a nega-

tive impact on readability and maintainability. What can you do?

You’re left with two options: (1) The procedural representation is redesigned so

that the “escape branch” is not required at a nested location in the flow of control or

(2) the structured constructs are violated in a controlled manner; that is, a con-

strained branch out of the nested flow is designed. Option 1 is obviously the ideal

approach, but option 2 can be accommodated without violating the spirit of struc-

tured programming.

10.5.2 Tabular Design Notation

In many software applications, a module may be required to evaluate a complex

combination of conditions and select appropriate actions based on these conditions.

Decision tables [Hur83] provide a notation that translates actions and conditions

(described in a processing narrative or a use case) into a tabular form. The table is

difficult to misinterpret and may even be used as a machine-readable input to a

table-driven algorithm.

Decision table organization is illustrated in Figure 10.11. Referring to the figure,

the table is divided into four sections. The upper left-hand quadrant contains a list

of all conditions. The lower left-hand quadrant contains a list of all actions that are

possible based on combinations of conditions. The right-hand quadrants form a

matrix that indicates condition combinations and the corresponding actions that

will occur for a specific combination. Therefore, each column of the matrix may be

interpreted as a processing rule. The following steps are applied to develop a deci-

sion table:

1. List all actions that can be associated with a specific procedure (or component).

2. List all conditions (or decisions made) during execution of the procedure.

3. Associate specific sets of conditions with specific actions, eliminating impos-

sible combinations of conditions; alternatively, develop every possible per-

mutation of conditions.

4. Define rules by indicating what actions occur for a set of conditions.

Use a decision table
when a complex set of
conditions and actions
are encountered within
a component.

pre75977_ch10.qxd 11/27/08 3:47 PM Page 300

To illustrate the use of a decision table, consider the following excerpt from an

informal use case that has just been proposed for the print shop system:

Three types of customers are defined: a regular customer, a silver customer, and a gold

customer (these types are assigned by the amount of business the customer does with the

print shop over a 12 month period). A regular customer receives normal print rates and

delivery. A silver customer gets an 8 percent discount on all quotes and is placed ahead

of all regular customers in the job queue. A gold customer gets a 15 percent reduction in

quoted prices and is placed ahead of both regular and silver customers in the job queue.

A special discount of x percent in addition to other discounts can be applied to any

customer’s quote at the discretion of management.

Figure 10.11 illustrates a decision table representation of the preceding informal use

case. Each of the six rules indicates one of six viable conditions. As a general rule, the

decision table can be used effectively to supplement other procedural design notation.

10.5.3 Program Design Language

Program design language (PDL), also called structured English or pseudocode, incorpo-

rates the logical structure of a programming language with the free-form expressive

ability of a natural language (e.g., English). Narrative text (e.g., English) is embedded

within a programming language-like syntax. Automated tools (e.g., [Cai03]) can be

used to enhance the application of PDL.

A basic PDL syntax should include constructs for component definition, interface

description, data declaration, block structuring, condition constructs, repetition con-

structs, and input-output (I/O) constructs. It should be noted that PDL can be

extended to include keywords for multitasking and/or concurrent processing, inter-

rupt handling, interprocess synchronization, and many other features. The applica-

tion design for which PDL is to be used should dictate the final form for the design

language. The format and semantics for some of these PDL constructs are presented

in the example that follows.

CHAPTER 10 COMPONENT-LEVEL DESIGN 301

Conditions

Regular customer

Silver customer

Gold customer

Special discount

Actions

No discount

Apply 8 percent discount

Apply 15 percent discount

Apply additional x percent
discount

T

F

T

T

T

T

T

F

1 3 5 64

F

T T

T

2
Rules

FIGURE 10.11

Decision table
nomenclature

pre75977_ch10.qxd 11/27/08 3:47 PM Page 301

302 PART TWO MODELING

To illustrate the use of PDL, consider a procedural design for the SafeHome secu-

rity function discussed in earlier chapters. The system monitors alarms for fire,

smoke, burglar, water, and temperature (e.g., the heating system fails while the

homeowner is away during winter) and produces an alarm bell and calls a monitor-

ing service, generating a voice-synthesized message.

Recall that PDL is not a programming language. You can adapt as required with-

out worry about syntax errors. However, the design for the monitoring software

would have to be reviewed (do you see any problems?) and further refined before

code could be written. The following PDL8 provides an elaboration of the procedural

design for an early version of an alarm management component.

component alarmManagement;

The intent of this component is to manage control panel switches and input from sensors by

type and to act on any alarm condition that is encountered.

set default values for systemStatus (returned value), all data items

initialize all system ports and reset all hardware

check controlPanelSwitches (cps)

if cps = “test” then invoke alarm set to “on”

if cps = “alarmOff” then invoke alarm set to “off”

if cps = “newBoundingValue” then invoke keyboardInput

if cps = “burglarAlarmOff” invoke deactivateAlarm;

•

•

•

default for cps = none

reset all signalValues and switches

do for all sensors

invoke checkSensor procedure returning signalValue

if signalValue > bound [alarmType]

then phoneMessage = message [alarmType]

set alarmBell to “on” for alarmTimeSeconds

set system status = “alarmCondition”

parbegin

invoke alarm procedure with “on”, alarmTimeSeconds;

invoke phone procedure set to alarmType, phoneNumber

endpar

else skip

endif

enddofor

end alarmManagement

8 The level of detail represented by the PDL is defined locally. Some people prefer a more natural
language-oriented description, while others prefer something that is close to code.

pre75977_ch10.qxd 11/27/08 3:47 PM Page 302

Note that the designer for the alarmManagement component has used the con-

struct parbegin … parend that specifies a parallel block. All tasks specified within the

parbegin block are executed in parallel. In this case, implementation details are not

considered.

10.6 COMPONENT-BASED DEVELOPMENT

In the software engineering context, reuse is an idea both old and new. Programmers

have reused ideas, abstractions, and processes since the earliest days of computing,

but the early approach to reuse was ad hoc. Today, complex, high-quality computer-

based systems must be built in very short time periods and demand a more organ-

ized approach to reuse.

Component-based software engineering (CBSE) is a process that emphasizes the

design and construction of computer-based systems using reusable software

“components.” Clements [Cle95] describes CBSE in the following way:

[CBSE] embodies the “buy, don’t build” philosophy espoused by Fred Brooks and others.

In the same way that early subroutines liberated the programmer from thinking about

details, [CBSE] shifts the emphasis from programming software to composing software

systems. Implementation has given way to integration as the focus.

But a number of questions arise. Is it possible to construct complex systems by

assembling them from a catalog of reusable software components? Can this be

accomplished in a cost- and time-effective manner? Can appropriate incentives be

established to encourage software engineers to reuse rather than reinvent? Is

management willing to incur the added expense associated with creating reusable

software components? Can the library of components necessary to accomplish reuse

be created in a way that makes it accessible to those who need it? Can components

that do exist be found by those who need them?

Increasingly, the answer to each of these questions is “yes.” In the rest of this

section, I examine some of the issues that must be considered to make CBSE

successful within a software engineering organization.

10.6.1 Domain Engineering

The intent of domain engineering is to identify, construct, catalog, and disseminate a

set of software components that have applicability to existing and future software in

a particular application domain.9 The overall goal is to establish mechanisms that

enable software engineers to share these components—to reuse them—during work

on new and existing systems. Domain engineering includes three major activities—

analysis, construction, and dissemination.

CHAPTER 10 COMPONENT-LEVEL DESIGN 303

uote:

“Domain
engineering is
about finding
commonalities
among systems to
identify
components that
can be applied to
many systems . . .”

Paul Clements

9 In Chapter 9 we referred to architectural genres that identify specific application domains.

pre75977_ch10.qxd 11/27/08 3:47 PM Page 303

304 PART TWO MODELING

The overall approach to domain analysis is often characterized within the context

of object-oriented software engineering. The steps in the process are defined as:

1. Define the domain to be investigated.

2. Categorize the items extracted from the domain.

3. Collect a representative sample of applications in the domain.

4. Analyze each application in the sample and define analysis classes.

5. Develop a requirements model for the classes.

It is important to note that domain analysis is applicable to any software engineer-

ing paradigm and may be applied for conventional as well as object-oriented

development.

10.6.2 Component Qualification, Adaptation, and Composition

Domain engineering provides the library of reusable components that are required

for component-based software engineering. Some of these reusable components are

developed in-house, others can be extracted from existing applications, and still

others may be acquired from third parties.

Unfortunately, the existence of reusable components does not guarantee that

these components can be integrated easily or effectively into the architecture chosen

for a new application. It is for this reason that a sequence of component-based

development actions is applied when a component is proposed for use.

Component Qualification. Component qualification ensures that a candidate

component will perform the function required, will properly “fit” into the architectural

style (Chapter 9) specified for the system, and will exhibit the quality characteristics

(e.g., performance, reliability, usability) that are required for the application.

An interface description provides useful information about the operation and use of

a software component, but it does not provide all of the information required to deter-

mine if a proposed component can, in fact, be reused effectively in a new application.

Among the many factors considered during component qualification are [Bro96]:

• Application programming interface (API).

• Development and integration tools required by the component.

• Run-time requirements, including resource usage (e.g., memory or storage),

timing or speed, and network protocol.

• Service requirements, including operating system interfaces and support

from other components.

• Security features, including access controls and authentication protocol.

• Embedded design assumptions, including the use of specific numerical or

nonnumerical algorithms.

• Exception handling.

The analysis process
we discuss in this
section focuses on
reusable components.
However, the analysis
of complete COTS
systems (e.g.,
e-commerce Apps,
sales force automation
Apps) can also be a
part of domain
analysis.

What
factors are

considered during
component
qualification?

?

pre75977_ch10.qxd 11/27/08 3:47 PM Page 304

Each of these factors is relatively easy to assess when reusable components that

have been developed in-house are proposed. If good software engineering practices

were applied during the development of a component, answers to the questions

implied by the list can be developed. However, it is much more difficult to determine

the internal workings of commercial off-the-shelf (COTS) or third-party components

because the only available information may be the interface specification itself.

Component Adaptation. In an ideal setting, domain engineering creates a library

of components that can be easily integrated into an application architecture. The

implication of “easy integration” is that (1) consistent methods of resource manage-

ment have been implemented for all components in the library, (2) common activi-

ties such as data management exist for all components, and (3) interfaces within the

architecture and with the external environment have been implemented in a consis-

tent manner.

In reality, even after a component has been qualified for use within an application

architecture, conflicts may occur in one or more of the areas just noted. To avoid

these conflicts, an adaptation technique called component wrapping [Bro96] is some-

times used. When a software team has full access to the internal design and code for

a component (often not the case unless open-source COTS components are used),

white-box wrapping is applied. Like its counterpart in software testing (Chapter 18),

white-box wrapping examines the internal processing details of the component and

makes code-level modifications to remove any conflict. Gray-box wrapping is applied

when the component library provides a component extension language or API that

enables conflicts to be removed or masked. Black-box wrapping requires the intro-

duction of pre- and postprocessing at the component interface to remove or mask

conflicts. You must determine whether the effort required to adequately wrap a com-

ponent is justified or whether a custom component (designed to eliminate the

conflicts encountered) should be engineered instead.

Component Composition. The component composition task assembles quali-

fied, adapted, and engineered components to populate the architecture established

for an application. To accomplish this, an infrastructure must be established to bind

the components into an operational system. The infrastructure (usually a library of

specialized components) provides a model for the coordination of components and

specific services that enable components to coordinate with one another and

perform common tasks.

Because the potential impact of reuse and CBSE on the software industry is

enormous, a number of major companies and industry consortia have proposed

standards for component software.10

CHAPTER 10 COMPONENT-LEVEL DESIGN 305

In addition to assessing
whether the cost of
adaptation for reuse is
justified, you should
also assess whether
achieving required
functionality and
performance can be
done cost effectively.

10 Greg Olsen [Ols06] provides an excellent discussion of past and present industry efforts to make
CBSE a reality.

pre75977_ch10.qxd 11/27/08 3:47 PM Page 305

306 PART TWO MODELING

OMG/CORBA. The Object Management Group has published a common

object request broker architecture (OMG/CORBA). An object request broker

(ORB) provides a variety of services that enable reusable components

(objects) to communicate with other components, regardless of their location

within a system.

Microsoft COM and .NET. Microsoft has developed a component object

model (COM) that provides a specification for using components produced by

various vendors within a single application running under the Windows op-

erating system. From the point of view of the application, “the focus is not on

how [COM objects are] implemented, only on the fact that the object has an

interface that it registers with the system, and that it uses the component

system to communicate with other COM objects” [Har98a]. The Microsoft

.NET framework encompasses COM and provides a reusable class library that

covers a wide array of application domains.

Sun JavaBeans Components. The JavaBeans component system is a

portable, platform-independent CBSE infrastructure developed using the Java

programming language. The JavaBeans component system encompasses a

set of tools, called the Bean Development Kit (BDK), that allows developers to

(1) analyze how existing Beans (components) work, (2) customize their

behavior and appearance, (3) establish mechanisms for coordination and

communication, (4) develop custom Beans for use in a specific application,

and (5) test and evaluate Bean behavior.

None of these standards dominate the industry. Although many developers

have standardized on one, it is likely that large software organizations may

choose to use a standard based on the application categories and platforms that

are chosen.

10.6.3 Analysis and Design for Reuse

Although the CBSE process encourages the use of existing software components,

there are times when new software components must be developed and integrated

with existing COTS and in-house components. Because these new components

become members of the in-house library of reusable components, they should be

engineered for reuse.

Design concepts such as abstraction, hiding, functional independence, refine-

ment, and structured programming, along with object-oriented methods, testing,

software quality assurance (SQA), and correctness verification methods (Chapter 21),

all contribute to the creation of software components that are reusable. In this sub-

section, I consider the reuse-specific issues that are complementary to solid software

engineering practices.

The requirements model is analyzed to determine those elements that point to

existing reusable components. Elements of the requirements model are compared to

WebRef
The latest information
on JavaBeans can
be obtained at
java.sun.com/
products/
javabeans/docs/.

WebRef
The latest information
on COM and .NET can
be obtained at
www.microsoft
.com/COM and
msdn2.microsoft
.com/en-us/
netframework
default.aspx.

WebRef
The latest information
on CORBA can be
obtained at
www.omg.org.

pre75977_ch10.qxd 11/27/08 3:47 PM Page 306

http://www.omg.org
http://www.microsoft

descriptions of reusable components in a process that is sometimes referred to as

“specification matching” [Bel95]. If specification matching points to an existing com-

ponent that fits the needs of the current application, you can extract the component

from a reuse library (repository) and use it in the design of a new system. If compo-

nents cannot be found (i.e., there is no match), a new component is created. It is at

this point—when you begin to create a new component—that design for reuse (DFR)

should be considered.

As we have already noted, DFR requires that you apply solid software design con-

cepts and principles (Chapter 8). But the characteristics of the application domain

must also be considered. Binder [Bin93] suggests a number of key issues11 that form

a basis for design for reuse:

Standard data. The application domain should be investigated and standard

global data structures (e.g., file structures or a complete database) should be

identified. All design components can then be characterized to make use of

these standard data structures.

Standard interface protocols. Three levels of interface protocol should be

established: the nature of intramodular interfaces, the design of external

technical (nonhuman) interfaces, and the human-computer interface.

Program templates. An architectural style (Chapter 9) is chosen and can

serve as a template for the architectural design of a new software.

Once standard data, interfaces, and program templates have been established, you

have a framework in which to create the design. New components that conform to

this framework have a higher probability for subsequent reuse.

10.6.4 Classifying and Retrieving Components

Consider a large university library. Hundreds of thousands of books, periodicals, and

other information resources are available for use. But to access these resources,

a categorization scheme must be developed. To navigate this large volume of

information, librarians have defined a classification scheme that includes a Library

of Congress classification code, keywords, author names, and other index entries. All

enable the user to find the needed resource quickly and easily.

Now, consider a large component repository. Tens of thousands of reusable soft-

ware components reside in it. But how do you find the one that you need? To answer

this question, another question arises: How do we describe software components in

unambiguous, classifiable terms? These are difficult questions, and no definitive

answer has yet been developed. In this section I explore current directions that will

enable future software engineers to navigate reuse libraries.

CHAPTER 10 COMPONENT-LEVEL DESIGN 307

DFR can be quite
difficult when compo-
nents must be inter-
faced or integrated
with legacy systems or
with multiple systems
whose architecture and
interfacing protocols
are inconsistent.

11 In general, DFR preparations should be undertaken as part of domain engineering.

pre75977_ch10.qxd 11/27/08 3:47 PM Page 307

308 PART TWO MODELING

A reusable software component can be described in many ways, but an ideal

description encompasses what Tracz [Tra95] has called the 3C model—concept,

content, and context. The concept of a software component is “a description of what

the component does” [Whi95]. The interface to the component is fully described and

the semantics—represented within the context of pre- and postconditions—is iden-

tified. The concept should communicate the intent of the component. The content of

a component describes how the concept is realized. In essence, the content is infor-

mation that is hidden from casual users and need be known only to those who intend

to modify or test the component. The context places a reusable software component

within its domain of applicability. That is, by specifying conceptual, operational, and

implementation features, the context enables a software engineer to find the appro-

priate component to meet application requirements.

To be of use in a pragmatic setting, concept, content, and context must be trans-

lated into a concrete specification scheme. Dozens of papers and articles have been

written about classification schemes for reusable software components (e.g., see

[Cec06] for an overview of current trends).

Classification enables you to find and retrieve candidate reusable components,

but a reuse environment must exist to integrate these components effectively. A

reuse environment exhibits the following characteristics:

• A component database capable of storing software components and the clas-

sification information necessary to retrieve them.

• A library management system that provides access to the database.

• A software component retrieval system (e.g., an object request broker) that

enables a client application to retrieve components and services from the

library server.

• CBSE tools that support the integration of reused components into a new

design or implementation.

Each of these functions interact with or is embodied within the confines of a reuse

library.

The reuse library is one element of a larger software repository (Chapter 22) and

provides facilities for the storage of software components and a wide variety of

reusable work products (e.g., specifications, designs, patterns, frameworks, code

fragments, test cases, user guides). The library encompasses a database and the

tools that are necessary to query the database and retrieve components from it. The

component classification scheme serves as the basis for library queries.

Queries are often characterized using the context element of the 3C model de-

scribed earlier in this section. If an initial query results in a voluminous list of candi-

date components, the query is refined to narrow the list. Concept and content

information are then extracted (after candidate components are found) to assist you

in selecting the proper component.

What are
the key

characteristics of
a component
reuse
environment?

?

WebRef
A comprehensive
collection of resources
on CBSE can be found
at www.cbd-hq
.com/.

pre75977_ch10.qxd 11/27/08 3:47 PM Page 308

http://www.cbd-hq

CHAPTER 10 COMPONENT-LEVEL DESIGN 309

CBSE

Objective: To aid in modeling, design,
review, and integration of software components

as part of a larger system.

Mechanics: Tools mechanics vary. In general, CBSE tools
assist in one or more of the following capabilities:
specification and modeling of the software architecture,
browsing and selection of available software components;
integration of components.

Representative Tools12

ComponentSource (www.componentsource.com)
provides a wide array of COTS software components
(and tools) supported within many different
component standards.

Component Manager, developed by Flashline
(www.flashline.com), “is an application that
enables, promotes, and measures software component
reuse.”

Select Component Factory, developed by Select Business
Solutions (www.selectbs.com), “is an integrated
set of products for software design, design review,
service/component management, requirements
management and code generation.”

Software Through Pictures-ACD, distributed by Aonix
(www.aonix.com), enables comprehensive
modeling using UML for the OMG model driven
architecture—an open, vendor-neutral approach
for CBSE.

SOFTWARE TOOLS

12 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.
In most cases, tool names are trademarked by their respective developers.

10.7 SUMMARY

The component-level design process encompasses a sequence of activities that

slowly reduces the level of abstraction with which software is represented.

Component-level design ultimately depicts the software at a level of abstraction that

is close to code.

Three different views of component-level design may be taken, depending on

the nature of the software to be developed. The object-oriented view focuses on the

elaboration of design classes that come from both the problem and infrastructure

domain. The traditional view refines three different types of components or modules:

control modules, problem domain modules, and infrastructure modules. In both

cases, basic design principles and concepts that lead to high-quality software are ap-

plied. When considered from a process viewpoint, component-level design draws on

reusable software components and design patterns that are pivotal elements of

component-based software engineering.

A number of important principles and concepts guide the designer as classes are

elaborated. Ideas encompassed in the Open-Closed Principle and the Dependency

Inversion Principle and concepts such as coupling and cohesion guide the software

engineer in building testable, implementable, and maintainable software compo-

nents. To conduct component-level design in this context, classes are elaborated by

specifying messaging details, identifying appropriate interfaces, elaborating attrib-

utes and defining data structures to implement them, describing processing flow

pre75977_ch10.qxd 11/27/08 3:47 PM Page 309

http://www.componentsource.com
http://www.flashline.com
http://www.selectbs.com
http://www.aonix.com
http://www.selectbs.com

310 PART TWO MODELING

within each operation, and representing behavior at a class or component level. In

every case, design iteration (refactoring) is an essential activity.

Traditional component-level design requires the representation of data struc-

tures, interfaces, and algorithms for a program module in sufficient detail to guide

in the generation of programming language source code. To accomplish this, the

designer uses one of a number of design notations that represent component-level

detail in either graphical, tabular, or text-based formats.

Component-level design for WebApps considers both content and functionality as

it is delivered by a Web-based system. Content design at the component level focuses

on content objects and the manner in which they may be packaged for presentation

to a WebApp end user. Functional design for WebApps focuses on processing func-

tions that manipulate content, perform computations, query and access a database,

and establish interfaces with other systems. All component-level design principles

and guidelines apply.

Structured programming is a procedural design philosophy that constrains the

number and type of logical constructs used to represent algorithmic detail. The in-

tent of structured programming is to assist the designer in defining algorithms that

are less complex and therefore easier to read, test, and maintain.

Component-based software engineering identifies, constructs, catalogs, and dis-

seminates a set of software components in a particular application domain. These

components are then qualified, adapted, and integrated for use in a new system.

Reusable components should be designed within an environment that establishes

standard data structures, interface protocols, and program architectures for each

application domain.

PROBLEMS AND POINTS TO PONDER

10.1. The term component is sometimes a difficult one to define. First provide a generic defini-
tion, and then provide more explicit definitions for object-oriented and traditional software.
Finally, pick three programming languages with which you are familiar and illustrate how each
defines a component.

10.2. Why are control components necessary in traditional software and generally not required
in object-oriented software?

10.3. Describe the OCP in your own words. Why is it important to create abstractions that serve
as an interface between components?

10.4. Describe the DIP in your own words. What might happen if a designer depends too heav-
ily on concretions?

10.5. Select three components that you have developed recently and assess the types of cohesion
that each exhibits. If you had to define the primary benefit of high cohesion, what would it be?

10.6. Select three components that you have developed recently and assess the types of cou-
pling that each exhibits. If you had to define the primary benefit of low coupling, what would
it be?

10.7. Is it reasonable to say that problem domain components should never exhibit external
coupling? If you agree, what types of component would exhibit external coupling?

pre75977_ch10.qxd 11/27/08 3:47 PM Page 310

10.8. Develop (1) an elaborated design class, (2) interface descriptions, (3) an activity diagram
for one of the operations within the class, and (4) a detailed statechart diagram for one of the
SafeHome classes that we have discussed in earlier chapters.

10.9. Are stepwise refinement and refactoring the same thing? If not, how do they differ?

10.10. What is a WebApp component?

10.11. Select a small portion of an existing program (approximately 50 to 75 source lines).
Isolate the structured programming constructs by drawing boxes around them in the source
code. Does the program excerpt have constructs that violate the structured programming
philosophy? If so, redesign the code to make it conform to structured programming constructs.
If not, what do you notice about the boxes that you’ve drawn?

10.12. All modern programming languages implement the structured programming con-
structs. Provide examples from three programming languages.

10.13. Select a small coded component and represent it using (1) an activity diagram, (2) a
flowchart, (3) a decision table, and (4) PDL.

10.14. Why is “chunking” important during the component-level design review process?

FURTHER READINGS AND INFORMATION SOURCES

Many books on component-based development and component reuse have been published
in recent years. Apperly and his colleagues (Service- and Component-Based Development,
Addison-Wesley, 2003), Heineman and Councill (Component Based Software Engineering,
Addison-Wesley, 2001), Brown (Large Scale Component-Based Development, Prentice-Hall,
2000), Allen (Realizing e-Business with Components, Addison-Wesley, 2000), Herzum and Sims
(Business Component Factory, Wiley, 1999), Allen, Frost, and Yourdon (Component-Based Devel-
opment for Enterprise Systems: Applying the Select Perspective, Cambridge University Press, 1998)
cover all important aspects of the CBSE process. Cheesman and Daniels (UML Components,
Addison-Wesley, 2000) discuss CBSE with a UML emphasis.

Gao and his colleagues (Testing and Quality Assurance for Component-Based Software, Artech
House, 2006) and Gross (Component-Based Software Testing with UML, Springer, 2005) discuss
testing and SQA issues for component-based systems.

Dozens of books describing the industry’s component-based standards have been published
in recent years. These address the inner workings of the standards themselves but also consider
many important CBSE topics.

The work of Linger, Mills, and Witt (Structured Programming—Theory and Practice, Addison-
Wesley, 1979) remains a definitive treatment of the subject. The text contains a good PDL as well
as detailed discussions of the ramifications of structured programming. Other books that focus
on procedural design issues for traditional systems include those by Robertson (Simple Program
Design, 3d ed., Course Technology, 2000), Farrell (A Guide to Programming Logic and Design,
Course Technology, 1999), Bentley (Programming Pearls, 2d ed., Addison-Wesley, 1999), and
Dahl (Structured Programming, Academic Press, 1997).

Relatively few recent books have been dedicated solely to component-level design. In gen-
eral, programming language books address procedural design in some detail but always in the
context of the language that is introduced by the book. Hundreds of titles are available.

A wide variety of information sources on component-level design are available on the
Internet. An up-to-date list of World Wide Web references that are relevant to component-level
design can be found at the SEPA website: www.mhhe.com/engcs/compsci/pressman/
professional/olc/ser.htm.

CHAPTER 10 COMPONENT-LEVEL DESIGN 311

pre75977_ch10.qxd 11/27/08 3:47 PM Page 311

http://www.mhhe.com/engcs/compsci/pressman/

We live in a world of high-technology products, and virtually all of
them—consumer electronics, industrial equipment, corporate systems,
military systems, personal computer software, and WebApps—require

human interaction. If a product is to be successful, it must exhibit good usability—
a qualitative measure of the ease and efficiency with which a human can employ
the functions and features offered by the high-technology product.

Whether an interface has been designed for a digital music player or the
weapons control system for a fighter aircraft, usability matters. If interface mech-
anisms have been well designed, the user glides through the interaction using a
smooth rhythm that allows work to be accomplished effortlessly. But if the inter-
face is poorly conceived, the user moves in fits and starts, and the end result is
frustration and poor work efficiency.

For the first three decades of the computing era, usability was not a dominant
concern among those who built software. In his classic book on design, Donald
Norman [Nor88] argued that it was time for a change in attitude:

To make technology that fits human beings, it is necessary to study human beings. But

now we tend to study only the technology. As a result, people are required to conform

to technology. It is time to reverse this trend, time to make technology that conforms

to people.

312

C H A P T E R

11 USER INTERFACE
DESIGN

K E Y
C O N C E P T S

accessibility . . .334
command
labeling 333
control 313
design
evaluation 342
error handling . .333
golden rules . . .313
help facilities . .332
interface

analysis 320
consistent . . .316
design 328
models317

internationali-
zation 334
memory load . .314

What is it? User interface design
creates an effective communication
medium between a human and a
computer. Following a set of interface

design principles, design identifies interface ob-
jects and actions and then creates a screen layout
that forms the basis for a user interface prototype.

Who does it? A software engineer designs the
user interface by applying an iterative process
that draws on predefined design principles.

Why is it important? If software is difficult to use,
if it forces you into mistakes, or if it frustrates
your efforts to accomplish your goals, you won’t
like it, regardless of the computational power it
exhibits, the content it delivers, or the functional-
ity it offers. The interface has to be right because
it molds a user’s perception of the software.

What are the steps? User interface design begins
with the identification of user, task, and environ-

Q U I C K
L O O K

mental requirements. Once user tasks have been
identified, user scenarios are created and ana-
lyzed to define a set of interface objects and
actions. These form the basis for the creation of
screen layout that depicts graphical design and
placement of icons, definition of descriptive
screen text, specification and titling for windows,
and specification of major and minor menu
items. Tools are used to prototype and ultimately
implement the design model, and the result is
evaluated for quality.

What is the work product? User scenarios are
created and screen layouts are generated. An
interface prototype is developed and modified in
an iterative fashion.

How do I ensure that I’ve done it right? An in-
terface prototype is “test driven” by the users,
and feedback from the test drive is used for the
next iterative modification of the prototype.

pre75977_ch11.qxd 11/27/08 3:55 PM Page 312

CHAPTER 11 USER INTERFACE DESIGN 313

As technologists studied human interaction, two dominant issues arose. First, a set

of golden rules (discussed in Section 11.1) were identified. These applied to all hu-

man interaction with technology products. Second, a set of interaction mechanisms

were defined to enable software designers to build systems that properly imple-

mented the golden rules. These interaction mechanisms, collectively called the

graphical user interface (GUI), have eliminated some of the most egregious problems

associated with human interfaces. But even in a “Windows world,” we all have

encountered user interfaces that are difficult to learn, difficult to use, confusing,

counterintuitive, unforgiving, and in many cases, totally frustrating. Yet, someone

spent time and energy building each of these interfaces, and it is not likely that the

builder created these problems purposely.

11.1 THE GOLDEN RULES

In his book on interface design, Theo Mandel [Man97] coins three golden rules:

1. Place the user in control.

2. Reduce the user’s memory load.

3. Make the interface consistent.

These golden rules actually form the basis for a set of user interface design princi-

ples that guide this important aspect of software design.

11.1.1 Place the User in Control

During a requirements-gathering session for a major new information system, a key

user was asked about the attributes of the window-oriented graphical interface.

“What I really would like,” said the user solemnly, “is a system that reads my mind.

It knows what I want to do before I need to do it and makes it very easy for me to get

it done. That’s all, just that.”

My first reaction was to shake my head and smile, but I paused for a moment.

There was absolutely nothing wrong with the user’s request. She wanted a system

that reacted to her needs and helped her get things done. She wanted to control the

computer, not have the computer control her.

Most interface constraints and restrictions that are imposed by a designer are

intended to simplify the mode of interaction. But for whom?

As a designer, you may be tempted to introduce constraints and limitations to

simplify the implementation of the interface. The result may be an interface that is

easy to build, but frustrating to use. Mandel [Man97] defines a number of design

principles that allow the user to maintain control:

Define interaction modes in a way that does not force a user into unneces-

sary or undesired actions. An interaction mode is the current state of the inter-

face. For example, if spell check is selected in a word-processor menu, the software

principles and
guidelines336
process 319
response time . .332
task analysis . .322
task
elaboration324
usability317
user analysis . .321
WebApp interface
design 335

uote:

“It’s better to
design the user
experience than
rectify it.”

Jon Meads

pre75977_ch11.qxd 11/27/08 3:55 PM Page 313

314 PART TWO MODELING

moves to a spell-checking mode. There is no reason to force the user to remain in

spell-checking mode if the user desires to make a small text edit along the way. The

user should be able to enter and exit the mode with little or no effort.

Provide for flexible interaction. Because different users have different interac-

tion preferences, choices should be provided. For example, software might allow a

user to interact via keyboard commands, mouse movement, a digitizer pen, a mul-

titouch screen, or voice recognition commands. But every action is not amenable to

every interaction mechanism. Consider, for example, the difficulty of using keyboard

command (or voice input) to draw a complex shape.

Allow user interaction to be interruptible and undoable. Even when involved

in a sequence of actions, the user should be able to interrupt the sequence to do

something else (without losing the work that had been done). The user should also

be able to “undo” any action.

Streamline interaction as skill levels advance and allow the interaction to

be customized. Users often find that they perform the same sequence of interac-

tions repeatedly. It is worthwhile to design a “macro” mechanism that enables an

advanced user to customize the interface to facilitate interaction.

Hide technical internals from the casual user. The user interface should move

the user into the virtual world of the application. The user should not be aware of the

operating system, file management functions, or other arcane computing technol-

ogy. In essence, the interface should never require that the user interact at a level

that is “inside” the machine (e.g., a user should never be required to type operating

system commands from within application software).

Design for direct interaction with objects that appear on the screen. The

user feels a sense of control when able to manipulate the objects that are necessary

to perform a task in a manner similar to what would occur if the object were a phys-

ical thing. For example, an application interface that allows a user to “stretch” an

object (scale it in size) is an implementation of direct manipulation.

11.1.2 Reduce the User’s Memory Load

The more a user has to remember, the more error-prone the interaction with the

system will be. It is for this reason that a well-designed user interface does not tax

the user’s memory. Whenever possible, the system should “remember” pertinent in-

formation and assist the user with an interaction scenario that assists recall. Man-

del [Man97] defines design principles that enable an interface to reduce the user’s

memory load:

Reduce demand on short-term memory. When users are involved in complex

tasks, the demand on short-term memory can be significant. The interface should be

designed to reduce the requirement to remember past actions, inputs, and results.

uote:

“I have always
wished that my
computer would be
as easy to use as
my telephone. My
wish has come
true. I no longer
know how to use
my telephone.”

Bjarne
Stronstrup
(originator of
C��)

pre75977_ch11.qxd 11/27/08 3:55 PM Page 314

CHAPTER 11 USER INTERFACE DESIGN 315

This can be accomplished by providing visual cues that enable a user to recognize

past actions, rather than having to recall them.

Establish meaningful defaults. The initial set of defaults should make sense for

the average user, but a user should be able to specify individual preferences. How-

ever, a “reset” option should be available, enabling the redefinition of original default

values.

Define shortcuts that are intuitive. When mnemonics are used to accomplish

a system function (e.g., alt-P to invoke the print function), the mnemonic should be

tied to the action in a way that is easy to remember (e.g., first letter of the task to be

invoked).

The visual layout of the interface should be based on a real-world

metaphor. For example, a bill payment system should use a checkbook and check

register metaphor to guide the user through the bill paying process. This enables the

user to rely on well-understood visual cues, rather than memorizing an arcane

interaction sequence.

Disclose information in a progressive fashion. The interface should be or-

ganized hierarchically. That is, information about a task, an object, or some be-

havior should be presented first at a high level of abstraction. More detail should

be presented after the user indicates interest with a mouse pick. An example, com-

mon to many word-processing applications, is the underlining function. The func-

tion itself is one of a number of functions under a text style menu. However, every

underlining capability is not listed. The user must pick underlining; then all un-

derlining options (e.g., single underline, double underline, dashed underline) are

presented.

Violating a UI Golden Rule

The scene: Vinod’s cubicle, as user
interface design begins.

The players: Vinod and Jamie, members of the
SafeHome software engineering team.

The conversation:

Jamie: I’ve been thinking about the surveillance function
interface.

Vinod (smiling): Thinking is good.

Jamie: I think maybe we can simplify matters some.

Vinod: Meaning?

Jamie: Well, what if we eliminate the floor plan entirely.
It’s flashy, but it’s going to take serious development effort.
Instead we just ask the user to specify the camera he
wants to see and then display the video in a video
window.

Vinod: How does the homeowner remember how many
cameras are set up and where they are?

Jamie (mildly irritated): He’s the homeowner; he
should know.

Vinod: But what if he doesn’t?

Jamie: He should.

SAFEHOME

pre75977_ch11.qxd 11/27/08 3:55 PM Page 315

316 PART TWO MODELING

11.1.3 Make the Interface Consistent

The interface should present and acquire information in a consistent fashion. This

implies that (1) all visual information is organized according to design rules that are

maintained throughout all screen displays, (2) input mechanisms are constrained

to a limited set that is used consistently throughout the application, and (3) mecha-

nisms for navigating from task to task are consistently defined and implemented.

Mandel [Man97] defines a set of design principles that help make the interface

consistent:

Allow the user to put the current task into a meaningful context. Many in-

terfaces implement complex layers of interactions with dozens of screen images. It

is important to provide indicators (e.g., window titles, graphical icons, consistent

color coding) that enable the user to know the context of the work at hand. In

addition, the user should be able to determine where he has come from and what

alternatives exist for a transition to a new task.

Maintain consistency across a family of applications. A set of applications (or

products) should all implement the same design rules so that consistency is main-

tained for all interaction.

If past interactive models have created user expectations, do not make

changes unless there is a compelling reason to do so. Once a particular in-

teractive sequence has become a de facto standard (e.g., the use of alt-S to save a

file), the user expects this in every application he encounters. A change (e.g., using

alt-S to invoke scaling) will cause confusion.

The interface design principles discussed in this and the preceding sections

provide you with basic guidance. In the sections that follow, you’ll learn about the

interface design process itself.

Vinod: That’s not the point . . . what if he forgets?

Jamie: Uh, we could provide a list of operational
cameras and their locations.

Vinod: That’s possible, but why should he have to ask
for a list?

Jamie: Okay, we provide the list whether he asks
or not.

Vinod: Better. At least he doesn’t have to remember stuff
that we can give him.

Jamie (thinking for a moment): But you like the
floor plan, don’t you?

Vinod: Uh huh.

Jamie: Which one will marketing like, do you
think?

Vinod: You’re kidding, right?

Jamie: No.

Vinod: Duh . . . the one with the flash . . . they love
sexy product features . . . they’re not interested in which
is easier to build.

Jamie (sighing): Okay, maybe I’ll prototype both.

Vinod: Good idea . . . then we let the customer
decide.

uote:

“Things that look
different should act
different. Things
that look the same
should act the
same.”

Larry Marine

pre75977_ch11.qxd 11/27/08 3:55 PM Page 316

CHAPTER 11 USER INTERFACE DESIGN 317

11.2 USER INTERFACE ANALYSIS AND DESIGN

The overall process for analyzing and designing a user interface begins with the

creation of different models of system function (as perceived from the outside). You

begin by delineating the human- and computer-oriented tasks that are required to

achieve system function and then considering the design issues that apply to all

interface designs. Tools are used to prototype and ultimately implement the design

model, and the result is evaluated by end users for quality.

11.2.1 Interface Analysis and Design Models

Four different models come into play when a user interface is to be analyzed and de-

signed. A human engineer (or the software engineer) establishes a user model, the

software engineer creates a design model, the end user develops a mental image that

is often called the user’s mental model or the system perception, and the implementers

Usability
In an insightful paper on usability, Larry
Constantine [Con95] asks a question that has

significant bearing on the subject: “What do users want,
anyway?” He answers this way:

What users really want are good tools. All software
systems, from operating systems and languages to
data entry and decision support applications, are
just tools. End users want from the tools we
engineer for them much the same as we expect from
the tools we use. They want systems that are easy to
learn and that help them do their work. They want
software that doesn’t slow them down, that doesn’t
trick or confuse them, that doesn’t make it easier to
make mistakes or harder to finish the job.

Constantine argues that usability is not derived from
aesthetics, state-of-the-art interaction mechanisms, or
built-in interface intelligence. Rather, it occurs when the
architecture of the interface fits the needs of the people
who will be using it.

A formal definition of usability is somewhat illusive.
Donahue and his colleagues [Don99] define it in the
following manner: “Usability is a measure of how well
a computer system . . . facilitates learning; helps learners
remember what they’ve learned; reduces the likelihood
of errors; enables them to be efficient, and makes them
satisfied with the system.”

The only way to determine whether “usability” exists
within a system you are building is to conduct usability

assessment or testing. Watch users interact with the system
and answer the following questions [Con95]:

• Is the system usable without continual help or instruction?

• Do the rules of interaction help a knowledgeable user
to work efficiently?

• Do interaction mechanisms become more flexible as
users become more knowledgeable?

• Has the system been tuned to the physical and social
environment in which it will be used?

• Is the user aware of the state of the system? Does the
user know where she is at all times?

• Is the interface structured in a logical and consistent
manner?

• Are interaction mechanisms, icons, and procedures
consistent across the interface?

• Does the interaction anticipate errors and help the user
correct them?

• Is the interface tolerant of errors that are made?

• Is the interaction simple?

If each of these questions is answered “yes,” it is likely that
usability has been achieved.

Among the many measurable benefits derived from a
usable system are [Don99]: increased sales and customer
satisfaction, competitive advantage, better reviews in the
media, better word of mouth, reduced support costs,
improved end-user productivity, reduced training costs,
reduced documentation costs, reduced likelihood of
litigation from unhappy customers.

INFO

WebRef
An excellent source of
UI design information
can be found at
www.useit.com.

pre75977_ch11.qxd 11/27/08 3:55 PM Page 317

http://www.useit.com

318 PART TWO MODELING

of the system create an implementation model. Unfortunately, each of these models

may differ significantly. Your role, as an interface designer, is to reconcile these dif-

ferences and derive a consistent representation of the interface.

The user model establishes the profile of end users of the system. In his introduc-

tory column on “user-centric design,” Jeff Patton [Pat07] notes:

The truth is, designers and developers—myself included—often think about users. How-

ever, in the absence of a strong mental model of specific users, we self-substitute. Self-

substitution isn’t user centric—it’s self-centric.

To build an effective user interface, “all design should begin with an understanding

of the intended users, including profiles of their age, gender, physical abilities, edu-

cation, cultural or ethnic background, motivation, goals and personality” [Shn04]. In

addition, users can be categorized as:

Novices. No syntactic knowledge1 of the system and little semantic knowledge2

of the application or computer usage in general.

Knowledgeable, intermittent users. Reasonable semantic knowledge of the appli-

cation but relatively low recall of syntactic information necessary to use the

interface.

Knowledgeable, frequent users. Good semantic and syntactic knowledge that of-

ten leads to the “power-user syndrome”; that is, individuals who look for short-

cuts and abbreviated modes of interaction.

The user’s mental model (system perception) is the image of the system that end

users carry in their heads. For example, if the user of a particular word processor

were asked to describe its operation, the system perception would guide the re-

sponse. The accuracy of the description will depend upon the user’s profile (e.g.,

novices would provide a sketchy response at best) and overall familiarity with soft-

ware in the application domain. A user who understands word processors fully but

has worked with the specific word processor only once might actually be able to pro-

vide a more complete description of its function than the novice who has spent

weeks trying to learn the system.

The implementation model combines the outward manifestation of the computer-

based system (the look and feel of the interface), coupled with all supporting infor-

mation (books, manuals, videotapes, help files) that describes interface syntax and

semantics. When the implementation model and the user’s mental model are coin-

cident, users generally feel comfortable with the software and use it effectively. To

accomplish this “melding” of the models, the design model must have been

uote:

“If there’s a ’trick’
to it, the UI is
broken.”

Douglas
Anderson

Even a novice user
wants shortcuts; even
knowledgeable,
frequent users
sometimes need
guidance. Give them
what they need.

1 In this context, syntactic knowledge refers to the mechanics of interaction that are required to use
the interface effectively.

2 Semantic knowledge refers to the underlying sense of the application—an understanding of the
functions that are performed, the meaning of input and output, and the goals and objectives of the
system.

The user’s mental
model shapes how the
user perceives the
interface and whether
the UI meets the user’s
needs.

pre75977_ch11.qxd 11/27/08 3:55 PM Page 318

CHAPTER 11 USER INTERFACE DESIGN 319

developed to accommodate the information contained in the user model, and the

implementation model must accurately reflect syntactic and semantic information

about the interface.

The models described in this section are “abstractions of what the user is doing

or thinks he is doing or what somebody else thinks he ought to be doing when he

uses an interactive system” [Mon84]. In essence, these models enable the interface

designer to satisfy a key element of the most important principle of user interface

design: “Know the user, know the tasks.”

11.2.2 The Process

The analysis and design process for user interfaces is iterative and can be repre-

sented using a spiral model similar to the one discussed in Chapter 2. Referring to

Figure 11.1, the user interface analysis and design process begins at the interior of

the spiral and encompasses four distinct framework activities [Man97]: (1) interface

analysis and modeling, (2) interface design, (3) interface construction, and (4) inter-

face validation. The spiral shown in Figure 11.1 implies that each of these tasks will

occur more than once, with each pass around the spiral representing additional

elaboration of requirements and the resultant design. In most cases, the construc-

tion activity involves prototyping—the only practical way to validate what has been

designed.

Interface analysis focuses on the profile of the users who will interact with the

system. Skill level, business understanding, and general receptiveness to the new

system are recorded; and different user categories are defined. For each user cate-

gory, requirements are elicited. In essence, you work to understand the system

perception (Section 11.2.1) for each class of users.

Once general requirements have been defined, a more detailed task analysis is

conducted. Those tasks that the user performs to accomplish the goals of the system

uote:

“… pay attention
to what users do,
not what they say.”

Jakob Nielsen

Interface designInterface construction

Interface analysis and modelingInterface validation

FIGURE 11.1

The user
interface
design process

uote:

“It’s better to
design the user
experience than
rectify it.”

Jon Meads

pre75977_ch11.qxd 11/27/08 3:55 PM Page 319

320 PART TWO MODELING

are identified, described, and elaborated (over a number of iterative passes through

the spiral). Task analysis is discussed in more detail in Section 11.3. Finally, analysis

of the user environment focuses on the physical work environment. Among the

questions to be asked are

• Where will the interface be located physically?

• Will the user be sitting, standing, or performing other tasks unrelated to the

interface?

• Does the interface hardware accommodate space, light, or noise constraints?

• Are there special human factors considerations driven by environmental

factors?

The information gathered as part of the analysis action is used to create an analysis

model for the interface. Using this model as a basis, the design action commences.

The goal of interface design is to define a set of interface objects and actions (and

their screen representations) that enable a user to perform all defined tasks in a

manner that meets every usability goal defined for the system. Interface design is

discussed in more detail in Section 11.4.

Interface construction normally begins with the creation of a prototype that en-

ables usage scenarios to be evaluated. As the iterative design process continues, a

user interface tool kit (Section 11.5) may be used to complete the construction of the

interface.

Interface validation focuses on (1) the ability of the interface to implement every

user task correctly, to accommodate all task variations, and to achieve all general

user requirements; (2) the degree to which the interface is easy to use and easy

to learn, and (3) the users’ acceptance of the interface as a useful tool in their

work.

As I have already noted, the activities described in this section occur iteratively.

Therefore, there is no need to attempt to specify every detail (for the analysis or de-

sign model) on the first pass. Subsequent passes through the process elaborate task

detail, design information, and the operational features of the interface.

11.3 INTERFACE ANALYSIS3

A key tenet of all software engineering process models is this: understand the prob-

lem before you attempt to design a solution. In the case of user interface design, un-

derstanding the problem means understanding (1) the people (end users) who will

interact with the system through the interface, (2) the tasks that end users must

What do we
need to

know about the
environment as
we begin UI
design?

?

3 It is reasonable to argue that this section should be placed in Chapter 5, 6, or 7, since requirements
analysis issues are discussed there. It has been positioned here because interface analysis and de-
sign are intimately connected to one another, and the boundary between the two is often fuzzy.

pre75977_ch11.qxd 11/27/08 3:55 PM Page 320

CHAPTER 11 USER INTERFACE DESIGN 321

perform to do their work, (3) the content that is presented as part of the interface,

and (4) the environment in which these tasks will be conducted. In the sections that

follow, I examine each of these elements of interface analysis with the intent of

establishing a solid foundation for the design tasks that follow.

11.3.1 User Analysis

The phrase “user interface” is probably all the justification needed to spend some

time understanding the user before worrying about technical matters. Earlier I noted

that each user has a mental image of the software that may be different from the

mental image developed by other users. In addition, the user’s mental image may be

vastly different from the software engineer’s design model. The only way that you

can get the mental image and the design model to converge is to work to understand

the users themselves as well as how these people will use the system. Information

from a broad array of sources can be used to accomplish this:

User Interviews. The most direct approach, members of the software team

meet with end users to better understand their needs, motivations, work cul-

ture, and a myriad of other issues. This can be accomplished in one-on-one

meetings or through focus groups.

Sales input. Sales people meet with users on a regular basis and can gather

information that will help the software team to categorize users and better

understand their requirements.

Marketing input. Market analysis can be invaluable in the definition of

market segments and an understanding of how each segment might use the

software in subtly different ways.

Support input. Support staff talks with users on a daily basis. They are the

most likely source of information on what works and what doesn’t, what

users like and what they dislike, what features generate questions and what

features are easy to use.

The following set of questions (adapted from [Hac98]) will help you to better

understand the users of a system:

• Are users trained professionals, technicians, clerical, or manufacturing

workers?

• What level of formal education does the average user have?

• Are the users capable of learning from written materials or have they

expressed a desire for classroom training?

• Are users expert typists or keyboard phobic?

• What is the age range of the user community?

• Will the users be represented predominately by one gender?

• How are users compensated for the work they perform?

How do we
learn what

the user wants
from the UI?

?

Above all, spend time
talking to actual users,
but be careful. One
strong opinion doesn’t
necessarily mean that
the majority of users
will agree.

How do we learn
about the
demographics and
characteristics of end
users?

pre75977_ch11.qxd 11/27/08 3:55 PM Page 321

322 PART TWO MODELING

• Do users work normal office hours or do they work until the job is done?

• Is the software to be an integral part of the work users do or will it be used

only occasionally?

• What is the primary spoken language among users?

• What are the consequences if a user makes a mistake using the system?

• Are users experts in the subject matter that is addressed by the system?

• Do users want to know about the technology that sits behind the interface?

Once these questions are answered, you’ll know who the end users are, what is likely

to motivate and please them, how they can be grouped into different user classes or

profiles, what their mental models of the system are, and how the user interface must

be characterized to meet their needs.

11.3.2 Task Analysis and Modeling

The goal of task analysis is to answer the following questions:

• What work will the user perform in specific circumstances?

• What tasks and subtasks will be performed as the user does the work?

• What specific problem domain objects will the user manipulate as work is

performed?

• What is the sequence of work tasks—the workflow?

• What is the hierarchy of tasks?

To answer these questions, you must draw upon techniques that I have discussed

earlier in this book, but in this instance, these techniques are applied to the user

interface.

Use cases. In earlier chapters you learned that the use case describes the manner

in which an actor (in the context of user interface design, an actor is always a person)

interacts with a system. When used as part of task analysis, the use case is devel-

oped to show how an end user performs some specific work-related task. In most

instances, the use case is written in an informal style (a simple paragraph) in the

first-person. For example, assume that a small software company wants to build

a computer-aided design system explicitly for interior designers. To get a better

understanding of how they do their work, actual interior designers are asked to

describe a specific design function. When asked: “How do you decide where to put

furniture in a room?” an interior designer writes the following informal use case:

I begin by sketching the floor plan of the room, the dimensions and the location of win-

dows and doors. I’m very concerned about light as it enters the room, about the view out

of the windows (if it’s beautiful, I want to draw attention to it), about the running length

of an unobstructed wall, about the flow of movement through the room. I then look at the

list of furniture my customer and I have chosen—tables, chairs, sofa, cabinets, the list of

The user’s goal is to
accomplish one or
more tasks via the UI.
To accomplish this,
the UI must provide
mechanisms that allow
the user to achieve
her goal.

pre75977_ch11.qxd 11/27/08 3:55 PM Page 322

CHAPTER 11 USER INTERFACE DESIGN 323

accents—lamps, rugs, paintings, sculpture, plants, smaller pieces, and my notes on any

desires my customer has for placement. I then draw each item from my lists using a tem-

plate that is scaled to the floor plan. I label each item I draw and use pencil because I al-

ways move things. I consider a number of alternative placements and decide on the one

I like best. Then, I draw a rendering (a 3-D picture) of the room to give my customer a feel

for what it’ll look like.

This use case provides a basic description of one important work task for the

computer-aided design system. From it, you can extract tasks, objects, and the

overall flow of the interaction. In addition, other features of the system that would

please the interior designer might also be conceived. For example, a digital photo

could be taken looking out each window in a room. When the room is rendered, the

actual outside view could be represented through each window.

Use Cases for UI Design

The scene: Vinod’s cubicle, as user
interface design continues.

The players: Vinod and Jamie, members of the
SafeHome software engineering team.

The conversation:

Jamie: I pinned down our marketing contact and had
her write a use case for the surveillance interface.

Vinod: From whose point of view?

Jamie: The homeowner, who else is there?

Vinod: There’s also the system administrator role, even
if it’s the homeowner playing the role, it’s a different point
of view. The “administrator” sets the system up, configures
stuff, lays out the floor plan, places the cameras . . .

Jamie: All I had her do was play the role of the
homeowner when he wants to see video.

Vinod: That’s okay. It’s one of the major behaviors of the
surveillance function interface. But we’re going to have to
examine the system administration behavior as well.

Jamie (irritated): You’re right.

[Jamie leaves to find the marketing person. She returns a
few hours later.]

Jamie: I was lucky, I found her and we worked through
the administrator use case together. Basically, we’re going
to define “administration” as one function that’s applicable
to all other SafeHome functions. Here’s what we came
up with.

[Jamie shows the informal use case to Vinod.]

Informal use case: I want to be able to set or edit
the system layout at any time. When I set up the system,
I select an administration function. It asks me whether
I want to do a new setup or whether I want to edit
an existing setup. If I select a new setup, the system
displays a drawing screen that will enable me to draw
the floor plan onto a grid. There will be icons for walls,
windows, and doors so that drawing is easy. I just
stretch the icons to their appropriate lengths. The system
will display the lengths in feet or meters (I can select
the measurement system). I can select from a library
of sensors and cameras and place them on the floor
plan. I get to label each, or the system will do automatic
labeling. I can establish settings for sensors and cameras
from appropriate menus. If I select edit, I can move
sensors or cameras, add new ones or delete existing
ones, edit the floor plan, and edit the settings for
cameras and sensors. In every case, I expect the system
to do consistency checking and to help me avoid
mistakes.

Vinod (after reading the scenario): Okay, there
are probably some useful design patterns [Chapter 12] or
reusable components for GUIs for drawing programs. I’ll
betcha 50 bucks we can implement some or most of the
administrator interface using them.

Jamie: Agreed. I’ll check it out.

SAFEHOME

pre75977_ch11.qxd 11/27/08 3:55 PM Page 323

324 PART TWO MODELING

Task elaboration. In Chapter 8, I discussed stepwise elaboration (also called func-

tional decomposition or stepwise refinement) as a mechanism for refining the pro-

cessing tasks that are required for software to accomplish some desired function.

Task analysis for interface design uses an elaborative approach to assist in under-

standing the human activities the user interface must accommodate.

Task analysis can be applied in two ways. As I have already noted, an interactive,

computer-based system is often used to replace a manual or semimanual activity. To

understand the tasks that must be performed to accomplish the goal of the activity, you

must understand the tasks that people currently perform (when using a manual ap-

proach) and then map these into a similar (but not necessarily identical) set of tasks that

are implemented in the context of the user interface. Alternatively, you can study an

existing specification for a computer-based solution and derive a set of user tasks that

will accommodate the user model, the design model, and the system perception.

Regardless of the overall approach to task analysis, you must first define and clas-

sify tasks. I have already noted that one approach is stepwise elaboration. For

example, let’s reconsider the computer-aided design system for interior designers dis-

cussed earlier. By observing an interior designer at work, you notice that interior

design comprises a number of major activities: furniture layout (note the use case dis-

cussed earlier), fabric and material selection, wall and window coverings selection,

presentation (to the customer), costing, and shopping. Each of these major tasks can

be elaborated into subtasks. For example, using information contained in the use case,

furniture layout can be refined into the following tasks: (1) draw a floor plan based on

room dimensions, (2) place windows and doors at appropriate locations, (3a) use fur-

niture templates to draw scaled furniture outlines on the floor plan, (3b) use accents

templates to draw scaled accents on the floor plan, (4) move furniture outlines and

accent outlines to get the best placement, (5) label all furniture and accent outlines,

(6) draw dimensions to show location, and (7) draw a perspective-rendering view for

the customer. A similar approach could be used for each of the other major tasks.

Subtasks 1 to 7 can each be refined further. Subtasks 1 to 6 will be performed by

manipulating information and performing actions within the user interface. On the

other hand, subtask 7 can be performed automatically in software and will result in

little direct user interaction.4 The design model of the interface should accommodate

each of these tasks in a way that is consistent with the user model (the profile of a

“typical” interior designer) and system perception (what the interior designer expects

from an automated system).

Object elaboration. Rather than focusing on the tasks that a user must perform,

you can examine the use case and other information obtained from the user and

extract the physical objects that are used by the interior designer. These objects can

Task elaboration is
quite useful, but it can
also be dangerous.
Just because you have
elaborated a task, do
not assume that there
isn’t another way to
do it, and that the
other way will be
tried when the UI is
implemented.

4 However, this may not be the case. The interior designer might want to specify the perspective to be
drawn, the scaling, the use of color, and other information. The use case related to drawing per-
spective renderings would provide the information you need to address this task.

pre75977_ch11.qxd 11/27/08 3:55 PM Page 324

CHAPTER 11 USER INTERFACE DESIGN 325

be categorized into classes. Attributes of each class are defined, and an evaluation

of the actions applied to each object provide a list of operations. For example, the

furniture template might translate into a class called Furniture with attributes that

might include size, shape, location, and others. The interior designer would select the

object from the Furniture class, move it to a position on the floor plan (another ob-

ject in this context), draw the furniture outline, and so forth. The tasks select, move,

and draw are operations. The user interface analysis model would not provide a lit-

eral implementation for each of these operations. However, as the design is elabo-

rated, the details of each operation are defined.

Workflow analysis. When a number of different users, each playing different

roles, makes use of a user interface, it is sometimes necessary to go beyond task

analysis and object elaboration and apply workflow analysis. This technique allows

you to understand how a work process is completed when several people (and roles)

are involved. Consider a company that intends to fully automate the process of pre-

scribing and delivering prescription drugs. The entire process5 will revolve around a

Web-based application that is accessible by physicians (or their assistants), pharma-

cists, and patients. Workflow can be represented effectively with a UML swimlane

diagram (a variation on the activity diagram).

We consider only a small part of the work process: the situation that occurs when

a patient asks for a refill. Figure 11.2 presents a swimlane diagram that indicates the

tasks and decisions for each of the three roles noted earlier. This information may

have been elicited via interview or from use cases written by each actor. Regardless,

the flow of events (shown in the figure) enables you to recognize a number of key

interface characteristics:

1. Each user implements different tasks via the interface; therefore, the look and

feel of the interface designed for the patient will be different than the one

defined for pharmacists or physicians.

2. The interface design for pharmacists and physicians must accommodate

access to and display of information from secondary information sources

(e.g., access to inventory for the pharmacist and access to information about

alternative medications for the physician).

3. Many of the activities noted in the swimlane diagram can be further elabo-

rated using task analysis and/or object elaboration (e.g., Fills prescription

could imply a mail-order delivery, a visit to a pharmacy, or a visit to a special

drug distribution center).

Hierarchical representation. A process of elaboration occurs as you begin to

analyze the interface. Once workflow has been established, a task hierarchy can be

defined for each user type. The hierarchy is derived by a stepwise elaboration of

Although object
elaboration is useful,
it should not be used
as a stand-alone
approach. The user’s
voice must be consid-
ered during task
analysis.

5 This example has been adapted from [Hac98].

uote:

“It is far better
to adapt the
technology to the
user than to force
the user to adapt
to the technology.”

Larry Marine

pre75977_ch11.qxd 11/27/08 3:55 PM Page 325

326 PART TWO MODELING

Patient Pharmacist Physician

Requests that a
prescription be refilled

No refills
remaining

Checks patient
records

Determines status of
prescription

Refills
remaining

Refill not
allowed

Approves refill

Evaluates alternative
medication

None

Receives request to
contact physician

Alternative
available

Checks inventory for
refill or alternative

Out of stockReceives out of stock
notification

Receives time/date
to pick up

In stock

Picks up
prescription

Fills
prescription

FIGURE 11.2 Swimlane diagram for prescription refill function

pre75977_ch11.qxd 11/27/08 3:56 PM Page 326

CHAPTER 11 USER INTERFACE DESIGN 327

each task identified for the user. For example, consider the following user task and

subtask hierarchy.

User task: Requests that a prescription be refilled

• Provide identifying information.

• Specify name.

• Specify userid.

• Specify PIN and password.

• Specify prescription number.

• Specify date refill is required.

To complete the task, three subtasks are defined. One of these subtasks, provide iden-

tifying information, is further elaborated in three additional sub-subtasks.

11.3.3 Analysis of Display Content

The user tasks identified in Section 11.3.2 lead to the presentation of a variety of

different types of content. For modern applications, display content can range from

character-based reports (e.g., a spreadsheet), graphical displays (e.g., a histogram,

a 3-D model, a picture of a person), or specialized information (e.g., audio or video

files). The analysis modeling techniques discussed in Chapters 6 and 7 identify the

output data objects that are produced by an application. These data objects may be

(1) generated by components (unrelated to the interface) in other parts of an

application, (2) acquired from data stored in a database that is accessible from the

application, or (3) transmitted from systems external to the application in question.

During this interface analysis step, the format and aesthetics of the content (as it

is displayed by the interface) are considered. Among the questions that are asked

and answered are:

• Are different types of data assigned to consistent geographic locations on

the screen (e.g., photos always appear in the upper right-hand corner)?

• Can the user customize the screen location for content?

• Is proper on-screen identification assigned to all content?

• If a large report is to be presented, how should it be partitioned for ease of

understanding?

• Will mechanisms be available for moving directly to summary information for

large collections of data?

• Will graphical output be scaled to fit within the bounds of the display device

that is used?

• How will color be used to enhance understanding?

• How will error messages and warnings be presented to the user?

The answers to these (and other) questions will help you to establish requirements

for content presentation.

How do we
determine

the format and
aesthetics of
content displayed
as part of the UI?

?

pre75977_ch11.qxd 11/27/08 3:56 PM Page 327

328 PART TWO MODELING

11.3.4 Analysis of the Work Environment

Hackos and Redish [Hac98] discuss the importance of work environment analysis

when they state:

People do not perform their work in isolation. They are influenced by the activity around

them, the physical characteristics of the workplace, the type of equipment they are using,

and the work relationships they have with other people. If the products you design do not

fit into the environment, they may be difficult or frustrating to use.

In some applications the user interface for a computer-based system is placed in a

“user-friendly location” (e.g., proper lighting, good display height, easy keyboard

access), but in others (e.g., a factory floor or an airplane cockpit), lighting may be

suboptimal, noise may be a factor, a keyboard or mouse may not be an option, dis-

play placement may be less than ideal. The interface designer may be constrained by

factors that mitigate against ease of use.

In addition to physical environmental factors, the workplace culture also comes

into play. Will system interaction be measured in some manner (e.g., time per trans-

action or accuracy of a transaction)? Will two or more people have to share infor-

mation before an input can be provided? How will support be provided to users of

the system? These and many related questions should be answered before the inter-

face design commences.

11.4 INTERFACE DESIGN STEPS

Once interface analysis has been completed, all tasks (or objects and actions)

required by the end user have been identified in detail and the interface design

activity commences. Interface design, like all software engineering design, is an it-

erative process. Each user interface design step occurs a number of times, elaborat-

ing and refining information developed in the preceding step.

Although many different user interface design models (e.g., [Nor86], [Nie00]) have

been proposed, all suggest some combination of the following steps:

1. Using information developed during interface analysis (Section 11.3), define

interface objects and actions (operations).

2. Define events (user actions) that will cause the state of the user interface to

change. Model this behavior.

3. Depict each interface state as it will actually look to the end user.

4. Indicate how the user interprets the state of the system from information pro-

vided through the interface.

In some cases, you can begin with sketches of each interface state (i.e., what the

user interface looks like under various circumstances) and then work backward to

define objects, actions, and other important design information. Regardless of the

sequence of design tasks, you should (1) always follow the golden rules discussed

uote:

“Interactive design
[is] a seamless
blend of graphic
arts, technology,
and psychology.”

Brad Wieners

pre75977_ch11.qxd 11/27/08 3:56 PM Page 328

CHAPTER 11 USER INTERFACE DESIGN 329

in Section 11.1, (2) model how the interface will be implemented, and (3) consider

the environment (e.g., display technology, operating system, development tools)

that will be used.

11.4.1 Applying Interface Design Steps

The definition of interface objects and the actions that are applied to them is an

important step in interface design. To accomplish this, user scenarios are parsed

in much the same way as described in Chapter 6. That is, a use case is written.

Nouns (objects) and verbs (actions) are isolated to create a list of objects and

actions.

Once the objects and actions have been defined and elaborated iteratively, they

are categorized by type. Target, source, and application objects are identified. A

source object (e.g., a report icon) is dragged and dropped onto a target object (e.g., a

printer icon). The implication of this action is to create a hard-copy report. An

application object represents application-specific data that are not directly manipu-

lated as part of screen interaction. For example, a mailing list is used to store names

for a mailing. The list itself might be sorted, merged, or purged (menu-based ac-

tions), but it is not dragged and dropped via user interaction.

When you are satisfied that all important objects and actions have been de-

fined (for one design iteration), screen layout is performed. Like other interface

design activities, screen layout is an interactive process in which graphical de-

sign and placement of icons, definition of descriptive screen text, specification

and titling for windows, and definition of major and minor menu items are con-

ducted. If a real-world metaphor is appropriate for the application, it is specified

at this time, and the layout is organized in a manner that complements the

metaphor.

To provide a brief illustration of the design steps noted previously, consider a user

scenario for the SafeHome system (discussed in earlier chapters). A preliminary use

case (written by the homeowner) for the interface follows:

Preliminary use case: I want to gain access to my SafeHome system from any remote

location via the Internet. Using browser software operating on my notebook computer

(while I’m at work or traveling), I can determine the status of the alarm system, arm or

disarm the system, reconfigure security zones, and view different rooms within the house

via preinstalled video cameras.

To access SafeHome from a remote location, I provide an identifier and a password.

These define levels of access (e.g., all users may not be able to reconfigure the system) and

provide security. Once validated, I can check the status of the system and change the sta-

tus by arming or disarming SafeHome. I can reconfigure the system by displaying a floor

plan of the house, viewing each of the security sensors, displaying each currently config-

ured zone, and modifying zones as required. I can view the interior of the house via strate-

gically placed video cameras. I can pan and zoom each camera to provide different views

of the interior.

pre75977_ch11.qxd 11/27/08 3:56 PM Page 329

330 PART TWO MODELING

Based on this use case, the following homeowner tasks, objects, and data items are

identified:

• accesses the SafeHome system

• enters an ID and password to allow remote access

• checks system status

• arms or disarms SafeHome system

• displays floor plan and sensor locations

• displays zones on floor plan

• changes zones on floor plan

• displays video camera locations on floor plan

• selects video camera for viewing

• views video images (four frames per second)

• pans or zooms the video camera

Objects (boldface) and actions (italics) are extracted from this list of homeowner

tasks. The majority of objects noted are application objects. However, video

camera location (a source object) is dragged and dropped onto video camera

(a target object) to create a video image (a window with video display).

A preliminary sketch of the screen layout for video monitoring is created (Fig-

ure 11.3).6 To invoke the video image, a video camera location icon, C, located in the

floor plan displayed in the monitoring window is selected. In this case a camera lo-

cation in the living room (LR) is then dragged and dropped onto the video camera

icon in the upper left-hand portion of the screen. The video image window appears,

displaying streaming video from the camera located in the LR. The zoom and pan

control slides are used to control the magnification and direction of the video image.

To select a view from another camera, the user simply drags and drops a different

camera location icon into the camera icon in the upper left-hand corner of the

screen.

The layout sketch shown would have to be supplemented with an expansion of

each menu item within the menu bar, indicating what actions are available for the

video monitoring mode (state). A complete set of sketches for each homeowner task

noted in the user scenario would be created during the interface design.

11.4.2 User Interface Design Patterns

Graphical user interfaces have become so common that a wide variety of user inter-

face design patterns has emerged. As I noted earlier in this book, a design pattern is

Although automated
tools can be useful in
developing layout
prototypes, sometimes
a pencil and paper are
all that are needed.

6 Note that this differs somewhat from the implementation of these features in earlier chapters. This
might be considered a first draft design and represents one alternative that might be considered.

pre75977_ch11.qxd 11/27/08 3:56 PM Page 330

CHAPTER 11 USER INTERFACE DESIGN 331

an abstraction that prescribes a design solution to a specific, well-bounded design

problem.

As an example of a commonly encountered interface design problem, consider a

situation in which a user must enter one or more calendar dates, sometimes months

in advance. There are many possible solutions to this simple problem, and a num-

ber of different patterns that might be proposed. Laakso [Laa00] suggests a pattern

called CalendarStrip that produces a continuous, scrollable calendar in which the

current date is highlighted and future dates may be selected by picking them from

the calendar. The calendar metaphor is well known to every user and provides an

effective mechanism for placing a future date in context.

A vast array of interface design patterns has been proposed over the past

decade. A more detailed discussion of user interface design patterns is presented

in Chapter 12. In addition, Erickson [Eri08] provides pointers to many Web-based

collections.

11.4.3 Design Issues

As the design of a user interface evolves, four common design issues almost always

surface: system response time, user help facilities, error information handling, and

Access Configure System Status View Monitoring

Monitoring

First Floor

SS S

S

S

S

S

S

M

M

Video Image—LR

LR

DR

KIT
C

C

C

SafeHome
Connect

Status

Video Camera

In Out

RL

S
M
C

door/window sensor
motion detector (beam shown)
video camera location

FIGURE 11.3

Preliminary
screen layout

WebRef
A wide variety of UI
design patterns has
been proposed. For
pointers to a variety of
patterns sites, visit
www.hcipatterns
.org.

pre75977_ch11.qxd 11/27/08 3:56 PM Page 331

http://www.hcipatterns

332 PART TWO MODELING

command labeling. Unfortunately, many designers do not address these issues until

relatively late in the design process (sometimes the first inkling of a problem doesn’t

occur until an operational prototype is available). Unnecessary iteration, project

delays, and end-user frustration often result. It is far better to establish each as a

design issue to be considered at the beginning of software design, when changes are

easy and costs are low.

Response time. System response time is the primary complaint for many interac-

tive applications. In general, system response time is measured from the point at

which the user performs some control action (e.g., hits the return key or clicks a

mouse) until the software responds with desired output or action.

System response time has two important characteristics: length and variability.

If system response is too long, user frustration and stress are inevitable. Variability

refers to the deviation from average response time, and in many ways, it is the

most important response time characteristic. Low variability enables the user to

establish an interaction rhythm, even if response time is relatively long. For ex-

ample, a 1-second response to a command will often be preferable to a response

that varies from 0.1 to 2.5 seconds. When variability is significant, the user is al-

ways off balance, always wondering whether something “different” has occurred

behind the scenes.

Help facilities. Almost every user of an interactive, computer-based system re-

quires help now and then. In some cases, a simple question addressed to a knowl-

edgeable colleague can do the trick. In others, detailed research in a multivolume set

of “user manuals” may be the only option. In most cases, however, modern software

provides online help facilities that enable a user to get a question answered or

resolve a problem without leaving the interface.

A number of design issues [Rub88] must be addressed when a help facility is con-

sidered:

• Will help be available for all system functions and at all times during system

interaction? Options include help for only a subset of all functions and

actions or help for all functions.

• How will the user request help? Options include a help menu, a special

function key, or a HELP command.

• How will help be represented? Options include a separate window, a

reference to a printed document (less than ideal), or a one- or two-line

suggestion produced in a fixed screen location.

• How will the user return to normal interaction? Options include a

return button displayed on the screen, a function key, or control

sequence.

uote:

“A common
mistake that
people make when
trying to design
something
completely
foolproof is to
underestimate the
ingenuity of
complete fools.”

Douglas Adams

pre75977_ch11.qxd 11/27/08 3:56 PM Page 332

CHAPTER 11 USER INTERFACE DESIGN 333

• How will help information be structured? Options include a “flat” structure in

which all information is accessed through a keyword, a layered hierarchy of

information that provides increasing detail as the user proceeds into the

structure, or the use of hypertext.

Error handling. Error messages and warnings are “bad news” delivered to users

of interactive systems when something has gone awry. At their worst, error

messages and warnings impart useless or misleading information and serve only to

increase user frustration. There are few computer users who have not encountered

an error of the form: “Application XXX has been forced to quit because an error of type

1023 has been encountered.” Somewhere, an explanation for error 1023 must exist;

otherwise, why would the designers have added the identification? Yet, the error

message provides no real indication of what went wrong or where to look to get

additional information. An error message presented in this manner does nothing to

assuage user anxiety or to help correct the problem.

In general, every error message or warning produced by an interactive system

should have the following characteristics:

• The message should describe the problem in jargon that the user can

understand.

• The message should provide constructive advice for recovering from the

error.

• The message should indicate any negative consequences of the error (e.g.,

potentially corrupted data files) so that the user can check to ensure that they

have not occurred (or correct them if they have).

• The message should be accompanied by an audible or visual cue. That is, a

beep might be generated to accompany the display of the message, or the

message might flash momentarily or be displayed in a color that is easily

recognizable as the “error color.”

• The message should be “nonjudgmental.” That is, the wording should never

place blame on the user.

Because no one really likes bad news, few users will like an error message no mat-

ter how well designed. But an effective error message philosophy can do much to

improve the quality of an interactive system and will significantly reduce user frus-

tration when problems do occur.

Menu and command labeling. The typed command was once the most com-

mon mode of interaction between user and system software and was commonly

used for applications of every type. Today, the use of window-oriented, point-and-

pick interfaces has reduced reliance on typed commands, but some power-users

continue to prefer a command-oriented mode of interaction. A number of design

What
character-

istics should a
“good’” error
message have?

?

uote:

“The interface from
hell—’to correct
this error and
continue, enter any
11-digit prime
number …’”

Author unknown

pre75977_ch11.qxd 11/27/08 3:56 PM Page 333

334 PART TWO MODELING

issues arise when typed commands or menu labels are provided as a mode of

interaction:

• Will every menu option have a corresponding command?

• What form will commands take? Options include a control sequence (e.g.,

alt-P), function keys, or a typed word.

• How difficult will it be to learn and remember the commands? What can be

done if a command is forgotten?

• Can commands be customized or abbreviated by the user?

• Are menu labels self-explanatory within the context of the interface?

• Are submenus consistent with the function implied by a master menu item?

As I noted earlier in this chapter, conventions for command usage should be es-

tablished across all applications. It is confusing and often error-prone for a user

to type alt-D when a graphics object is to be duplicated in one application and

alt-D when a graphics object is to be deleted in another. The potential for error is

obvious.

Application accessibility. As computing applications become ubiquitous, soft-

ware engineers must ensure that interface design encompasses mechanisms that

enable easy access for those with special needs. Accessibility for users (and software

engineers) who may be physically challenged is an imperative for ethical, legal, and

business reasons. A variety of accessibility guidelines (e.g., [W3C03])—many de-

signed for Web applications but often applicable to all types of software—provide de-

tailed suggestions for designing interfaces that achieve varying levels of accessibility.

Others (e.g., [App08], [Mic08]) provide specific guidelines for “assistive technology”

that addresses the needs of those with visual, hearing, mobility, speech, and learn-

ing impairments.

Internationalization. Software engineers and their managers invariably underes-

timate the effort and skills required to create user interfaces that accommodate the

needs of different locales and languages. Too often, interfaces are designed for one

locale and language and then jury-rigged to work in other countries. The challenge

for interface designers is to create “globalized” software. That is, user interfaces

should be designed to accommodate a generic core of functionality that can be de-

livered to all who use the software. Localization features enable the interface to be

customized for a specific market.

A variety of internationalization guidelines (e.g., [IBM03]) are available to soft-

ware engineers. These guidelines address broad design issues (e.g., screen layouts

may differ in various markets) and discrete implementation issues (e.g., different

alphabets may create specialized labeling and spacing requirements). The Unicode

standard [Uni03] has been developed to address the daunting challenge of manag-

ing dozens of natural languages with hundreds of characters and symbols.

WebRef
Guidelines for
developing accessible
software can be
found at
www3.ibm.com/
able/guidelines/
software/
accesssoftware
.html.

pre75977_ch11.qxd 11/27/08 3:56 PM Page 334

CHAPTER 11 USER INTERFACE DESIGN 335

User Interface Development

Objective: These tools enable a software
engineer to create a sophisticated GUI with

relatively little custom software development. The tools
provide access to reusable components and make the
creation of an interface a matter of selecting from
predefined capabilities that are assembled using the tool.

Mechanics: Modern user interfaces are constructed
using a set of reusable components that are coupled with
some custom components developed to provide
specialized features. Most user interface development tools
enable a software engineer to create an interface using
“drag and drop” capability. That is, the developer selects
from many predefined capabilities (e.g., forms builders,
interaction mechanisms, command processing capability)
and places these capabilities within the content of the
interface to be created.

Representative Tools:7

LegaSuite GUI, developed by Seagull Software
(www.seagullsoftware.com), enabled the
creation of browser-based GUIs and provide facilities
for reengineering antiquated interfaces.

Motif Common Desktop Environment, developed by The
Open Group (www.osf.org/tech/desktop/cde/),
is an integrated graphical user interface for open
systems desktop computing. It delivers a single,
standard graphical interface for the management of
data and files (the graphical desktop) and
applications.

Altia Design 8.0, developed by Altia (www.altia.com),
is a tool for creating GUIs on a variety of different
platforms (e.g., automotive, handheld, industrial).

SOFTWARE TOOLS

7 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.
8 Each of us has bookmarked a Web page, only to revisit it later and have no indication of the web-

site or the context for the page (as well as no way to move to another location within the site).

11.5 WEBAPP INTERFACE DESIGN

Every user interface—whether it is designed for a WebApp, a traditional software

application, a consumer product, or an industrial device—should exhibit the usabil-

ity characteristics that were discussed earlier in this chapter. Dix [Dix99] argues that

you should design a WebApp interface so that it answers three primary questions for

the end user:

Where am I? The interface should (1) provide an indication of the WebApp that has

been accessed8 and (2) inform the user of her location in the content hierarchy.

What can I do now? The interface should always help the user understand his

current options—what functions are available, what links are live, what content

is relevant?

Where have I been, where am I going? The interface must facilitate navigation.

Hence, it must provide a “map” (implemented in a way that is easy to under-

stand) of where the user has been and what paths may be taken to move else-

where within the WebApp.

An effective WebApp interface must provide answers for each of these questions as

the end user navigates through content and functionality.

If it is likely that users
may enter your
WebApp at various
locations and levels in
the content hierarchy,
be sure to design every
page with navigation
features that will lead
the user to other points
of interest.

pre75977_ch11.qxd 11/27/08 3:56 PM Page 335

http://www.seagullsoftware.com
http://www.osf.org/tech/desktop/cde/
http://www.altia.com
http://www.seagullsoftware.com

336 PART TWO MODELING

11.5.1 Interface Design Principles and Guidelines

The user interface of a WebApp is its “first impression.” Regardless of the value of its

content, the sophistication of its processing capabilities and services, and the over-

all benefit of the WebApp itself, a poorly designed interface will disappoint the

potential user and may, in fact, cause the user to go elsewhere. Because of the sheer

volume of competing WebApps in virtually every subject area, the interface must

“grab” a potential user immediately.

Bruce Tognozzi [Tog01] defines a set of fundamental characteristics that all

interfaces should exhibit and in doing so, establishes a philosophy that should be

followed by every WebApp interface designer:

Effective interfaces are visually apparent and forgiving, instilling in their users a sense of

control. Users quickly see the breadth of their options, grasp how to achieve their goals,

and do their work.

Effective interfaces do not concern the user with the inner workings of the system.

Work is carefully and continuously saved, with full option for the user to undo any activ-

ity at any time.

Effective applications and services perform a maximum of work, while requiring a

minimum of information from users.

In order to design WebApp interfaces that exhibit these characteristics, Tognozzi

[Tog01] identifies a set of overriding design principles:9

Anticipation. A WebApp should be designed so that it anticipates the user’s next

move. For example, consider a customer support WebApp developed by a manufac-

turer of computer printers. A user has requested a content object that presents

information about a printer driver for a newly released operating system. The

designer of the WebApp should anticipate that the user might request a download

of the driver and should provide navigation facilities that allow this to happen

without requiring the user to search for this capability.

Communication. The interface should communicate the status of any activity initi-

ated by the user. Communication can be obvious (e.g., a text message) or subtle (e.g.,

an image of a sheet of paper moving through a printer to indicate that printing is

under way). The interface should also communicate user status (e.g., the user’s iden-

tification) and her location within the WebApp content hierarchy.

Consistency. The use of navigation controls, menus, icons, and aesthetics (e.g., color,

shape, layout) should be consistent throughout the WebApp. For example, if underlined

blue text implies a navigation link, content should never incorporate blue underlined

text that does not imply a link. In addition, an object, say a yellow triangle, used to

A good WebApp
interface is
understandable and
forgiving, providing the
user with a sense of
control.

Is there a set
of basic prin-

ciples that can be
applied as you
design a GUI?

?

9 Tognozzi’s original principles have been adapted and extended for use this book. See [Tog01] for
further discussion of these principles.

uote:

“If a site is
perfectly usable
but it lacks an
elegant and
appropriate design
style, it will fail.”

Curt Cloninger

pre75977_ch11.qxd 11/27/08 3:56 PM Page 336

CHAPTER 11 USER INTERFACE DESIGN 337

indicate a caution message before the user invokes a particular function or action,

should not be used for other purposes elsewhere in the WebApp. Finally, every

feature of the interface should respond in a manner that is consistent with user

expectations.10

Controlled autonomy. The interface should facilitate user movement throughout

the WebApp, but it should do so in a manner that enforces navigation conventions that

have been established for the application. For example, navigation to secure portions

of the WebApp should be controlled by userID and password, and there should be no

navigation mechanism that enables a user to circumvent these controls.

Efficiency. The design of the WebApp and its interface should optimize the user’s

work efficiency, not the efficiency of the developer who designs and builds it or the client-

server environment that executes it. Tognozzi [Tog01] discusses this when he writes:

“This simple truth is why it is so important for everyone involved in a software proj-

ect to appreciate the importance of making user productivity goal one and to under-

stand the vital difference between building an efficient system and empowering

an efficient user.”

Flexibility. The interface should be flexible enough to enable some users to accomplish

tasks directly and others to explore the WebApp in a somewhat random fashion. In every

case, it should enable the user to understand where he is and provide the user with

functionality that can undo mistakes and retrace poorly chosen navigation paths.

Focus. The WebApp interface (and the content it presents) should stay focused on the

user task(s) at hand. In all hypermedia there is a tendency to route the user to loosely

related content. Why? Because it’s very easy to do! The problem is that the user can

rapidly become lost in many layers of supporting information and lose sight of the

original content that she wanted in the first place.

Fitt’s law. “The time to acquire a target is a function of the distance to and size of the

target” [Tog01]. Based on a study conducted in the 1950s [Fit54], Fitt’s law “is an

effective method of modeling rapid, aimed movements, where one appendage (like a

hand) starts at rest at a specific start position, and moves to rest within a target area”

[Zha02]. If a sequence of selections or standardized inputs (with many different

options within the sequence) is defined by a user task, the first selection (e.g., mouse

pick) should be physically close to the next selection. For example, consider a WebApp

home page interface at an e-commerce site that sells consumer electronics.

Each user option implies a set of follow-on user choices or actions. For example,

the “buy a product” option requires that the user enter a product category followed

by the product name. The product category (e.g., audio equipment, televisions, DVD

10 Tognozzi [Tog01] notes that the only way to be sure that user expectations are properly understood
is through comprehensive user testing (Chapter 20).

WebRef
A search on the Web
will uncover many
available libraries, e.g.,
Java API packages,
interfaces, and classes
at java.sun.com or
COM, DCOM, and
Type Libraries at
msdn.Microsoft
.com.

uote:

“The best journey
is the one with the
fewest steps.
Shorten the
distance between
the user and their
goal.”

Author unknown

pre75977_ch11.qxd 11/27/08 3:56 PM Page 337

338 PART TWO MODELING

players) appears as a pull-down menu as soon as “buy a product” is picked. There-

fore, the next choice is immediately obvious (it is nearby) and the time to acquire it

is negligible. If, on the other hand, the choice appeared on a menu that was located

on the other side of the screen, the time for the user to acquire it (and then make the

choice) would be far too long.

Human interface objects. A vast library of reusable human interface objects has

been developed for WebApps. Use them. Any interface object that can be “seen, heard,

touched or otherwise perceived” [Tog01] by an end user can be acquired from any

one of a number of object libraries.

Latency reduction. Rather than making the user wait for some internal operation to

complete (e.g., downloading a complex graphical image), the WebApp should use mul-

titasking in a way that lets the user proceed with work as if the operation has been com-

pleted. In addition to reducing latency, delays must be acknowledged so that the user

understands what is happening. This includes (1) providing audio feedback when a

selection does not result in an immediate action by the WebApp, (2) displaying an

animated clock or progress bar to indicate that processing is under way, and (3) pro-

viding some entertainment (e.g., an animation or text presentation) while lengthy

processing occurs.

Learnability. A WebApp interface should be designed to minimize learning time, and

once learned, to minimize relearning required when the WebApp is revisited. In general

the interface should emphasize a simple, intuitive design that organizes content and

functionality into categories that are obvious to the user.

Metaphors. An interface that uses an interaction metaphor is easier to learn and

easier to use, as long as the metaphor is appropriate for the application and the user. A

metaphor should call on images and concepts from the user’s experience, but it does

not need to be an exact reproduction of a real-world experience. For example, an

e-commerce site that implements automated bill paying for a financial institution,

uses a checkbook metaphor (not surprisingly) to assist the user in specifying and

scheduling bill payments. However, when a user “writes” a check, he need not enter

the complete payee name but can pick from a list of payees or have the system select

based on the first few typed letters. The metaphor remains intact, but the user gets

an assist from the WebApp.

Maintain work product integrity. A work product (e.g., a form completed by the

user, a user-specified list) must be automatically saved so that it will not be lost if an error

occurs. Each of us has experienced the frustration associated with completing a

lengthy WebApp form only to have the content lost because of an error (made by us,

by the WebApp, or in transmission from client to server). To avoid this, a WebApp

should be designed to autosave all user-specified data. The interface should support

this function and provide the user with an easy mechanism for recovering “lost”

information.

Metaphors are an
excellent idea because
they mirror real-world
experience. Just be
sure that the metaphor
you choose is well
known to end users.

pre75977_ch11.qxd 11/27/08 3:56 PM Page 338

CHAPTER 11 USER INTERFACE DESIGN 339

Readability. All information presented through the interface should be readable by

young and old. The interface designer should emphasize readable type styles, font

sizes, and color background choices that enhance contrast.

Track state. When appropriate, the state of the user interaction should be tracked and

stored so that a user can logoff and return later to pick up where she left off. In general,

cookies can be designed to store state information. However, cookies are a contro-

versial technology, and other design solutions may be more palatable for some users.

Visible navigation. A well-designed WebApp interface provides “the illusion that users

are in the same place, with the work brought to them” [Tog01]. When this approach

is used, navigation is not a user concern. Rather, the user retrieves content objects

and selects functions that are displayed and executed through the interface.

Interface Design Review

The scene: Doug Miller’s office.

The players: Doug Miller (manager of the SafeHome
software engineering group) and Vinod Raman, a member
of the SafeHome product software engineering team.

The conversation:

Doug: Vinod, have you and the team had a chance to
review the SafeHomeAssured.com e-commerce
interface prototype?

Vinod: Yeah . . . we all went through it from a technical
point of view, and I have a bunch of notes. I e-mailed
‘em to Sharon [manager of the WebApp team for the
outsourcing vendor for the SafeHome e-commerce
website] yesterday.

Doug: You and Sharon can get together and discuss the
small stuff . . . give me a summary of the important issues.

Vinod: Overall, they’ve done a good job, nothing
ground breaking, but it’s a typical e-commerce interface,
decent aesthetics, reasonable layout, they’ve hit all the
important functions . . .

Doug (smiling ruefully): But?

Vinod: Well, there are a few things

Doug: Such as . . .

Vinod (showing Doug a sequence of story-
boards for the interface prototype): Here’s the
major functions menu that’s displayed on the home page:

Learn about SafeHome.

Describe your home.

Get SafeHome component recommendations.

Purchase a SafeHome system.

Get technical support.

The problem isn’t with these functions. They’re all okay,
but the level of abstraction isn’t right.

Doug: They’re all major functions, aren’t they?

Vinod: They are, but here’s the thing . . . you can
purchase a system by inputting a list of components . . .
no real need to describe the house if you don’t want to.
I’d suggest only four menu options on the home page:

Learn about SafeHome.

Specify the SafeHome system you need.

Purchase a SafeHome system.

Get technical support.

When you select Specify the SafeHome system
you need, you’ll then have the following options:

Select SafeHome components.

Get SafeHome component recommendations.

If you’re a knowledgeable user, you’ll select components
from a set of categorized pull-down menus for sensors,
cameras, control panels, etc. If you need help, you’ll ask
for a recommendation and that will require that you
describe your house. I think it’s a bit more logical.

Doug: I agree. Have you talked with Sharon about this?

Vinod: No, I want to discuss this with marketing first;
then I’ll give her a call.

SAFEHOME

pre75977_ch11.qxd 11/27/08 3:56 PM Page 339

340 PART TWO MODELING

Nielsen and Wagner [Nie96] suggest a few pragmatic interface design guidelines

(based on their redesign of a major WebApp) that provide a nice complement to the

principles suggested earlier in this section:

• Reading speed on a computer monitor is approximately 25 percent slower

than reading speed for hardcopy. Therefore, do not force the user to read

voluminous amounts of text, particularly when the text explains the

operation of the WebApp or assists in navigation.

• Avoid “under construction” signs—an unnecessary link is sure to disappoint.

• Users prefer not to scroll. Important information should be placed within the

dimensions of a typical browser window.

• Navigation menus and head bars should be designed consistently and should

be available on all pages that are available to the user. The design should not

rely on browser functions to assist in navigation.

• Aesthetics should never supersede functionality. For example, a simple

button might be a better navigation option than an aesthetically pleasing, but

vague image or icon whose intent is unclear.

• Navigation options should be obvious, even to the casual user. The user

should not have to search the screen to determine how to link to other

content or services.

A well-designed interface improves the user’s perception of the content or services

provided by the site. It need not necessarily be flashy, but it should always be well

structured and ergonomically sound.

11.5.2 Interface Design Workflow for WebApps

Earlier in this chapter I noted that user interface design begins with the identification

of user, task, and environmental requirements. Once user tasks have been identified,

user scenarios (use cases) are created and analyzed to define a set of interface

objects and actions.

Information contained within the requirements model forms the basis for the

creation of a screen layout that depicts graphical design and placement of icons, def-

inition of descriptive screen text, specification and titling for windows, and specifi-

cation of major and minor menu items. Tools are then used to prototype and

ultimately implement the interface design model. The following tasks represent a

rudimentary workflow for WebApp interface design:

1. Review information contained in the requirements model and refine

as required.

2. Develop a rough sketch of the WebApp interface layout. An interface

prototype (including the layout) may have been developed as part of the

requirements modeling activity. If the layout already exists, it should be

reviewed and refined as required. If the interface layout has not been

uote:

“People have very
little patience for
poorly designed
WWW sites.”

Jakob Nielsen
and
Annette Wagner

pre75977_ch11.qxd 11/27/08 3:56 PM Page 340

CHAPTER 11 USER INTERFACE DESIGN 341

developed, you should work with stakeholders to develop it at this time. A

schematic first-cut layout sketch is shown in Figure 11.4.

3. Map user objectives into specific interface actions. For the vast major-

ity of WebApps, the user will have a relatively small set of primary objectives.

These should be mapped into specific interface actions as shown in Figure 11.4.

In essence, you must answer the following question: “How does the interface

enable the user to accomplish each objective?”

4. Define a set of user tasks that are associated with each action. Each

interface action (e.g., “buy a product”) is associated with a set of user tasks.

These tasks have been identified during requirements modeling. During de-

sign, they must be mapped into specific interactions that encompass naviga-

tion issues, content objects, and WebApp functions.

5. Storyboard screen images for each interface action. As each action is

considered, a sequence of storyboard images (screen images) should be created

to depict how the interface responds to user interaction. Content objects should

be identified (even if they have not yet been designed and developed), WebApp

functionality should be shown, and navigation links should be indicated.

6. Refine interface layout and storyboards using input from aesthetic

design. In most cases, you’ll be responsible for rough layout and story-

boarding, but the aesthetic look and feel for a major commercial site is

often developed by artistic, rather than technical, professionals. Aesthetic

design (Chapter 13) is integrated with the work performed by the interface

designer.

List of user objectives

Objective #1
Objective #2
Objective #3
Objective #4
Objective #5

Objective #n

Navigation
menu

Menu bar
major functions

Graphic, logo, and company name

Graphic

Home page text copy

FIGURE 11.4

Mapping user
objectives into
interface
actions

pre75977_ch11.qxd 11/27/08 3:56 PM Page 341

342 PART TWO MODELING

7. Identify user interface objects that are required to implement the

interface. This task may require a search through an existing object library

to find those reusable objects (classes) that are appropriate for the WebApp

interface. In addition, any custom classes are specified at this time.

8. Develop a procedural representation of the user’s interaction with

the interface. This optional task uses UML sequence diagrams and/or

activity diagrams (Appendix 1) to depict the flow of activities (and decisions)

that occur as the user interacts with the WebApp.

9. Develop a behavioral representation of the interface. This optional

task makes use of UML state diagrams (Appendix 1) to represent state

transitions and the events that cause them. Control mechanisms (i.e., the

objects and actions available to the user to alter a WebApp state) are

defined.

10. Describe the interface layout for each state. Using design information

developed in Tasks 2 and 5, associate a specific layout or screen image with

each WebApp state described in Task 8.

11. Refine and review the interface design model. Review of the interface

should focus on usability.

It is important to note that the final task set you choose should be adapted to the

special requirements of the application that is to be built.

11.6 DESIGN EVALUATION

Once you create an operational user interface prototype, it must be evaluated

to determine whether it meets the needs of the user. Evaluation can span a formal-

ity spectrum that ranges from an informal “test drive,” in which a user provides

impromptu feedback to a formally designed study that uses statistical methods for

the evaluation of questionnaires completed by a population of end users.

The user interface evaluation cycle takes the form shown in Figure 11.5. After the

design model has been completed, a first-level prototype is created. The prototype is

evaluated by the user,11 who provides you with direct comments about the efficacy

of the interface. In addition, if formal evaluation techniques are used (e.g., ques-

tionnaires, rating sheets), you can extract information from these data (e.g.,

80 percent of all users did not like the mechanism for saving data files). Design mod-

ifications are made based on user input, and the next level prototype is created. The

evaluation cycle continues until no further modifications to the interface design are

necessary.

11 It is important to note that experts in ergonomics and interface design may also conduct reviews
of the interface. These reviews are called heuristic evaluations or cognitive walkthroughs.

pre75977_ch11.qxd 11/27/08 3:56 PM Page 342

CHAPTER 11 USER INTERFACE DESIGN 343

The prototyping approach is effective, but is it possible to evaluate the quality of

a user interface before a prototype is built? If you identify and correct potential

problems early, the number of loops through the evaluation cycle will be reduced

and development time will shorten. If a design model of the interface has been

created, a number of evaluation criteria [Mor81] can be applied during early design

reviews:

1. The length and complexity of the requirements model or written specification

of the system and its interface provide an indication of the amount of learn-

ing required by users of the system.

2. The number of user tasks specified and the average number of actions per

task provide an indication of interaction time and the overall efficiency of the

system.

3. The number of actions, tasks, and system states indicated by the design model

imply the memory load on users of the system.

4. Interface style, help facilities, and error handling protocol provide a general

indication of the complexity of the interface and the degree to which it will be

accepted by the user.

Once the first prototype is built, you can collect a variety of qualitative and quanti-

tative data that will assist in evaluating the interface. To collect qualitative data, ques-

tionnaires can be distributed to users of the prototype. Questions can be: (1) simple

yes/no response, (2) numeric response, (3) scaled (subjective) response, (4) Likert

Build
prototype #n

interface

Evaluation
is studied by

designer

User
evaluates
interface

Design
modifications

are made

Build
prototype #1

interface

Preliminary
design

Interface design
is complete

FIGURE 11.5

The interface
design evalua-
tion cycle

pre75977_ch11.qxd 11/27/08 3:56 PM Page 343

344 PART TWO MODELING

scales (e.g., strongly agree, somewhat agree), (5) percentage (subjective) response,

or (6) open-ended.

If quantitative data are desired, a form of time-study analysis can be conducted.

Users are observed during interaction, and data—such as number of tasks correctly

completed over a standard time period, frequency of actions, sequence of actions,

time spent “looking” at the display, number and types of errors, error recovery time,

time spent using help, and number of help references per standard time period—are

collected and used as a guide for interface modification.

A complete discussion of user interface evaluation methods is beyond the scope

of this book. For further information, see [Hac98] and [Sto05].

11.7 SUMMARY

The user interface is arguably the most important element of a computer-based sys-

tem or product. If the interface is poorly designed, the user’s ability to tap the com-

putational power and informational content of an application may be severely

hindered. In fact, a weak interface may cause an otherwise well-designed and solidly

implemented application to fail.

Three important principles guide the design of effective user interfaces: (1) place

the user in control, (2) reduce the user’s memory load, and (3) make the interface con-

sistent. To achieve an interface that abides by these principles, an organized design

process must be conducted.

The development of a user interface begins with a series of analysis tasks. User

analysis defines the profiles of various end users and is gathered from a variety of

business and technical sources. Task analysis defines user tasks and actions using

either an elaborative or object-oriented approach, applying use cases, task and ob-

ject elaboration, workflow analysis, and hierarchical task representations to fully

understand the human-computer interaction. Environmental analysis identifies the

physical and social structures in which the interface must operate.

Once tasks have been identified, user scenarios are created and analyzed to define

a set of interface objects and actions. This provides a basis for the creation of a screen

layout that depicts graphical design and placement of icons, definition of descriptive

screen text, specification and titling for windows, and specification of major and minor

menu items. Design issues such as response time, command and action structure, er-

ror handling, and help facilities are considered as the design model is refined. A variety

of implementation tools are used to build a prototype for evaluation by the user.

Like interface design for conventional software, the design of WebApp interfaces

describes the structure and organization of the user interface and includes a repre-

sentation of screen layout, a definition of the modes of interaction, and a description

of navigation mechanisms. A set of interface design principles and an interface de-

sign workflow guide a WebApp designer when layout and interface control mecha-

nisms are designed.

pre75977_ch11.qxd 11/27/08 3:56 PM Page 344

CHAPTER 11 USER INTERFACE DESIGN 345

The user interface is the window into the software. In many cases, the interface

molds a user’s perception of the quality of the system. If the “window” is smudged,

wavy, or broken, the user may reject an otherwise powerful computer-based system.

PROBLEMS AND POINTS TO PONDER

11.1. Describe the worst interface that you have ever worked with and critique it relative to the
concepts introduced in this chapter. Describe the best interface that you have ever worked with
and critique it relative to the concepts introduced in this chapter.

11.2. Develop two additional design principles that “place the user in control.”

11.3. Develop two additional design principles that “reduce the user’s memory load.”

11.4. Develop two additional design principles that “make the interface consistent.”

11.5. Consider one of the following interactive applications (or an application assigned by your
instructor):

a. A desktop publishing system
b. A computer-aided design system
c. An interior design system (as described in Section 11.3.2)
d. An automated course registration system for a university
e. A library management system
f. An Internet-based polling booth for public elections
g. A home banking system
h. An interactive application assigned by your instructor

Develop a user model, design model, mental model, and an implementation model, for any one
of these systems.

11.6. Perform a detailed task analysis for any one of the systems listed in Problem 11.5 Use
either an elaborative or object-oriented approach.

11.7. Add at least five additional questions to the list developed for content analysis in
Section 11.3.3.

11.8. Continuing Problem 11.5, define interface objects and actions for the application you
have chosen. Identify each object type.

11.9. Develop a set of screen layouts with a definition of major and minor menu items for the
system you chose in Problem 11.5.

11.10. Develop a set of screen layouts with a definition of major and minor menu items for the
SafeHome system. You may elect to take a different approach than the one shown for the screen
layout in Figure 11.3.

11.11. Describe your approach to user help facilities for the task analysis design model and
task analysis you have performed as part of Problems 11.5 through 11.8.

11.12. Provide a few examples that illustrate why response time variability can be an issue.

11.13. Develop an approach that would automatically integrate error messages and a user
help facility. That is, the system would automatically recognize the error type and provide a help
window with suggestions for correcting it. Perform a reasonably complete software design that
considers appropriate data structures and algorithms.

11.14. Develop an interface evaluation questionnaire that contains 20 generic questions that
would apply to most interfaces. Have 10 classmates complete the questionnaire for an interac-
tive system that you all use. Summarize the results and report them to your class.

pre75977_ch11.qxd 11/27/08 3:56 PM Page 345

346 PART TWO MODELING

FURTHER READINGS AND INFORMATION SOURCES

Although his book is not specifically about human-computer interfaces, much of what Donald
Norman (The Design of Everyday Things, reissue edition, Currency/Doubleday, 1990) has to say
about the psychology of effective design applies to the user interface. It is recommended read-
ing for anyone who is serious about doing high-quality interface design.

Graphical user interfaces are ubiquitous in the modern world of computing. Whether it’s an
ATM, a mobile phone, an electronic dashboard in an automobile, a website, or a business appli-
cation, the user interface provides a window into the software. It is for this reason that books
addressing interface design abound. Butow (User Interface Design for Mere Mortals, Addison-
Wesley, 2007), Galitz (The Essential Guide to User Interface Design, 3d ed., Wiley, 2007), Lehikonen
and his colleagues (Personal Content Experience: Managing Digital Life in the Mobile Age, Wiley-
Interscience, 2007), Cooper and his colleagues (About Face 3: The Essentials of Interaction Design,
3d ed., Wiley, 2007), Ballard (Designing the Mobile User Experience, Wiley, 2007), Nielsen
(Coordinating User Interfaces for Consistency, Morgan-Kaufmann, 2006), Lauesen (User Interface
Design: A Software Engineering Perspective, Addison-Wesley, 2005), Barfield (The User Interface:
Concepts and Design, Bosko Books, 2004) all discuss usability, user interface concepts, principles,
and design techniques and contain many useful examples.

Older books by Beyer and Holtzblatt (Contextual Design: A Customer Centered Approach to Sys-
tems Design, Morgan-Kaufmann, 2002), Raskin (The Humane Interface, Addison-Wesley, 2000),
Constantine and Lockwood (Software for Use, ACM Press, 1999), and Mayhew (The Usability En-
gineering Lifecycle, Morgan-Kaufmann, 1999) present treatments that provide additional design
guidelines and principles as well as suggestions for interface requirements elicitation, design
modeling, implementation, and testing.

Johnson (GUI Bloopers: Don’ts and Do’s for Software Developers and Web Designers, Morgan-
Kaufmann, 2000) provides useful guidance for those that learn more effectively by examining
counterexamples. An enjoyable book by Cooper (The Inmates Are Running the Asylum, Sams
Publishing, 1999) discusses why high-tech products drive us crazy and how to design ones that
don’t.

A wide variety of information sources on user interface design are available on the Internet.
An up-to-date list of World Wide Web references that are relevant to user interface design can
be found at the SEPA website: www.mhhe.com/engcs/compsci/pressman/professional/
olc/ser.htm.

pre75977_ch11.qxd 11/27/08 3:56 PM Page 346

http://www.mhhe.com/engcs/compsci/pressman/professional/

Each of us has encountered a design problem and silently thought: I wonder
if anyone has developed a solution for this? The answer is almost always—
yes! The problem is finding the solution; ensuring that it does, in fact, fit

the problem you’ve encountered; understanding the constraints that may restrict
the manner in which the solution is applied; and finally, translating the proposed
solution into your design environment.

But what if the solution were codified in some manner? What if there was a stan-
dard way of describing a problem (so you could look it up), and an organized
method for representing the solution to the problem? It turns out that software
problems have been codified and described using a standardized template, and so-
lutions to them (along with constraints) have been proposed. Called design patterns,

347

C H A P T E R

12PATTERN-BASED
DESIGN

What is it? Pattern-based design
creates a new application by finding
a set of proven solutions to a clearly
delineated set of problems. Each

problem and its solution is described by a design
pattern that has been cataloged and vetted by
other software engineers who have encountered
the problem and implemented the solution while
designing other applications. Each design pat-
tern provides you with a proven approach to
one part of the problem to be solved.

Who does it? A software engineer examines each
problem encountered for a new application and
then attempts to find a relevant solution by
searching one or more patterns repositories.

Why is it important? Have you ever heard the
phrase “reinventing the wheel”? It happens all
the time in software development, and it’s a
waste of time and energy. By using existing
design patterns, you can acquire a proven solu-
tion for a specific problem. As each pattern is
applied, solutions are integrated and the appli-
cation to be built moves closer to a complete
design.

Q U I C K
L O O K

What are the steps? The requirements model is
examined in order to isolate the hierarchical set
of problems to be solved. The problem space is
partitioned so that subsets of problems associ-
ated with specific software functions and fea-
tures can be identified. Problems can also be
organized by type: architectural, component-
level, algorithmic, user interface, etc. Once a
subset of problems is defined, one or more pat-
tern repositories are searched to determine if an
existing design pattern, represented at an ap-
propriate level of abstraction, exists. Patterns
that are applicable are adapted to the specific
needs of the software to be built. Custom prob-
lem solving is applied in situations for which no
patterns can be found.

What is the work product? A design model that
depicts the architectural structure, user interface,
and component-level detail is developed.

How do I ensure that I’ve done it right? As each
design pattern is translated into some element of
the design model, work products are reviewed for
clarity, correctness, completeness, and consis-
tency with requirements and with one another.

K E Y
C O N C E P T S

design
mistakes 359
forces 349
frameworks . . .352
granularity 369
pattern
languages 353
patterns

architectural . .360
behavioral . . .351

pre75977_ch12.qxd 11/27/08 3:58 PM Page 347

this codified method for describing problems and their solution allows the software
engineering community to capture design knowledge in a way that enables it to be
reused.

The early history of software patterns begins not with a computer scientist but a
building architect, Christopher Alexander, who recognized that a recurring set of
problems were encountered whenever a building was designed. He characterized
these recurring problems and their solutions as patterns, describing them in the
following manner [Ale77]:

Each pattern describes a problem that occurs over and over again in our environment and

then describes the core of the solution to that problem in such a way that you can use the

solution a million times over without ever doing it the same way twice.

Alexander’s ideas were first translated into the software world in books by Gamma
[Gam95], Buschmann [Bus96], and their many colleagues.1 Today, dozens of pattern
repositories exist, and pattern-based design can be applied in many different appli-
cation domains.

348 PART TWO MODELING

component-
level 362
generative . . .350
creational350
structural 351
user
interface 366
WebApps 368

12.1 DESIGN PATTERNS

A design pattern can be characterized as “a three-part rule which expresses a rela-

tion between a certain context, a problem, and a solution” [Ale79]. For software

design, context allows the reader to understand the environment in which the prob-

lem resides and what solution might be appropriate within that environment. A set

of requirements, including limitations and constraints, acts as a system of forces that

influences how the problem can be interpreted within its context and how the solu-

tion can be effectively applied.

To better understand these concepts, consider a situation2 in which a person must

travel between New York and Los Angeles. In this context, travel will occur within

an industrialized country (the United States), using an existing transportation infra-

structure (e.g., roads, airlines, railways). The system of forces that will affect the way

in which the travel problem is solved will include: how quickly the person wants to

get from New York to LA, whether the trip will include site-seeing or stopovers, how

much money the person can spend, whether the trip is intended to accomplish a spe-

cific purpose, and the personal vehicles the person has at her disposal. Given these

forces, the problem (traveling from New York to LA) can be better defined. For

example, investigation (requirements gathering) indicates that the person has very

little money, owns only a bicycle (and is an avid cyclist), wants to make the trip to

raise money for her favorite charity, and has plenty of time to spare. The solution to

the problem, given the context and the system of forces, might be a cross-country

1 Earlier discussions of software patterns do exist, but these two classic books were the first cohesive
treatments of the subject.

2 This example has been adapted from [Cor98].

Forces are those
characteristics of the
problem and attributes
of the solution that
constrain the way in
which the design can
be developed.

pre75977_ch12.qxd 11/27/08 3:58 PM Page 348

bike trip. If the forces were different (e.g., travel time must be minimized and the pur-

pose of the trip is a business meeting), another solution might be more appropriate.

It is reasonable to argue that most problems have multiple solutions, but that a

solution is effective only if it is appropriate within the context of the existing prob-

lem. It is the system of forces that causes a designer to choose a specific solution.

The intent is to provide a solution that best satisfies the system of forces, even when

these forces are contradictory. Finally, every solution has consequences that may

have an impact on other aspects of the software and may themselves become part

of the system of forces for other problems to be solved within the larger system.

Coplien [Cop05] characterizes an effective design pattern in the following way:

• It solves a problem: Patterns capture solutions, not just abstract principles or

strategies.

• It is a proven concept: Patterns capture solutions with a track record, not theo-

ries or speculation.

• The solution isn’t obvious: Many problem-solving techniques (such as software

design paradigms or methods) try to derive solutions from first principles. The

best patterns generate a solution to a problem indirectly—a necessary approach

for the most difficult problems of design.

• It describes a relationship: Patterns don’t just describe modules, but describe

deeper system structures and mechanisms.

• The pattern has a significant human component (minimize human intervention).

All software serves human comfort or quality of life; the best patterns explicitly

appeal to aesthetics and utility.

Stated even more pragmatically, a good design pattern captures hard-earned, prag-

matic design knowledge in a way that enables others to reuse that knowledge “a mil-

lion times over without ever doing it the same way twice.” A design pattern saves you

from “reinventing the wheel,” or worse, inventing a “new wheel” that is slightly out of

round, too small for its intended use, and too narrow for the ground it will roll over. De-

sign patterns, if used effectively, will invariably make you a better software designer.

12.1.1 Kinds of Patterns

One of the reasons that software engineers are interested in (and intrigued by)

design patterns is that human beings are inherently good at pattern recognition. If

we weren’t, we’d be frozen in space and time—unable to learn from past experience,

unwilling to venture forward because of our inability to recognize situations that

might lead to high risk, unhinged by a world that seems to have no regularity or log-

ical consistency. Luckily, none of this occurs because we do recognize patterns in

virtually every aspect of our lives.

In the real world, the patterns we recognize are learned over a lifetime of experi-

ence. We recognize them instantly and inherently understand what they mean

and how they might be used. Some of these patterns provide us with insight into

CHAPTER 12 PATTERN-BASED DESIGN 349

uote:

“Our responsibility
is to do what we
can, learn what we
can, improve the
solutions, and pass
them on.”

Richard P.
Feynman

pre75977_ch12.qxd 11/27/08 3:58 PM Page 349

recurring phenomenon. For example, you’re on your way home from work on the

interstate when your navigation system (or car radio) informs you that a serious

accident has occurred on the interstate in the opposing direction. You’re 4 miles from

the accident, but already you begin to see traffic slowing, recognizing a pattern that

we’ll call RubberNecking. People in the travel lanes moving in your direction are

slowing at the sight of the accident to get a better view of what happened on the

opposite side of the highway. The RubberNecking pattern yields remarkably pre-

dictable results (a traffic jam), but it does nothing more than describe a phenome-

non. In patterns jargon, it might be called a nongenerative pattern because it

describes a context and a problem but it does not provide any clear-cut solution.

When software design patterns are considered, we strive to identify and document

generative patterns. That is, we identify a pattern that describes an important and

repeatable aspect of a system and that provides us with a way to build that aspect

within a system of forces that are unique to a given context. In an ideal setting, a col-

lection of generative design patterns could be used to “generate” an application or

computer-based system whose architecture enables it to adapt to change. Some-

times called generativity, “the successive application of several patterns, each encap-

sulating its own problem and forces, unfolds a larger solution which emerges

indirectly as a result of the smaller solutions” [App00].

Design patterns span a broad spectrum of abstraction and application.

Architectural patterns describe broad-based design problems that are solved using a

structural approach. Data patterns describe recurring data-oriented problems and the

data modeling solutions that can be used to solve them. Component patterns (also

referred to as design patterns) address problems associated with the development of

subsystems and components, the manner in which they communicate with one

another, and their placement within a larger architecture. Interface design patterns

describe common user interface problems and their solution with a system of forces

that includes the specific characteristics of end users. WebApp patterns address a

problem set that is encountered when building WebApps and often incorporates

many of the other patterns categories just mentioned. At a lower level of abstraction,

idioms describe how to implement all or part of a specific algorithm or data structure

for a software component within the context of a specific programming language.

In their seminal book on design patterns, Gamma and his colleagues3 [Gam95]

focus on three types of patterns that are particularly relevant to object-oriented

design: creational patterns, structural patterns, and behavioral patterns.

Creational patterns focus on the “creation, composition, and representation” of

objects. Gamma and his colleagues [Gam95] note that creational patterns

“encapsulate knowledge about which concrete classes the system uses“ but at

the same time “hide how instances of these classes are created and put together.”

Creational patterns provide mechanisms that make the instantiation of objects

350 PART TWO MODELING

A “generative” pattern
describes the problem,
a context, and forces,
but it also describes a
pragmatic solution to
the problem.

Is there a
way to

categorize pattern
types?

?

3 Gamma and his colleagues [Gam95] are often referred to as the “Gang of Four” (GoF) in patterns
literature.

pre75977_ch12.qxd 11/27/08 3:58 PM Page 350

easier within a system and enforce “constraints on the type and number of objects

that can be created within a system” [Maa07].

Structural patterns focus on problems and solutions associated with how classes

and objects are organized and integrated to build a larger structure. In essence, they

help to establish relationships between entities within a system. For example, struc-

tural patterns that focus on class-oriented issues might provide inheritance mecha-

nisms that lead to more effective program interfaces. Structural patterns that focus

on objects suggest techniques for combining objects within other objects or inte-

grating objects into a larger structure.

Behavioral patterns address problems associated with the assignment of respon-

sibility between objects and the manner in which communication is effected

between objects.

CHAPTER 12 PATTERN-BASED DESIGN 351

A wide variety of design patterns that fit into
creational, structural, and behavioral categories

have been proposed and can be found on the Web.
Wikipedia (www.wikipedia.org) notes the following
sampling:

Creational Patterns
• Abstract factory pattern: centralize decision of

what factory to instantiate.

• Factory method pattern: centralize creation of
an object of a specific type choosing one of several
implementations.

• Builder pattern: separate the construction of a
complex object from its representation so that the
same construction process can create different
representations.

• Prototype pattern: used when the inherent cost of
creating a new object in the standard way (e.g., using
the “new” keyword) is prohibitively expensive for a
given application.

• Singleton pattern: restrict instantiation of a class to
one object.

Structural Patterns
• Adapter pattern: “adapts” one interface for a class

into one that a client expects.

• Aggregate pattern: a version of the composite
pattern with methods for aggregation of children.

• Bridge pattern: decouple an abstraction from its
implementation so that the two can vary independently.

• Composite pattern: a tree structure of objects
where every object has the same interface.

• Container pattern: create objects for the sole
purpose of holding other objects and managing them.

• Proxy pattern: a class functioning as an interface to
another thing.

• Pipes and filters: a chain of processes where the
output of each process is the input of the next.

Behavioral Patterns
• Chain of responsibility pattern: Command

objects are handled or passed on to other objects by
logic-containing processing objects.

• Command pattern: Command objects encapsulate
an action and its parameters.

• Event listener: Data are distributed to objects that
are registered to receive them.

• Interpreter pattern: Implement a specialized
computer language to rapidly solve a specific set of
problems.

• Iterator pattern: Iterators are used to access the
elements of an aggregate object sequentially without
exposing its underlying representation.

• Mediator pattern: Provides a unified interface to a
set of interfaces in a subsystem.

• Visitor pattern: A way to separate an algorithm
from an object.

• Single-serving visitor pattern: Optimize the
implementation of a visitor that is allocated, used only
once, and then deleted.

• Hierarchical visitor pattern: Provide a way to visit
every node in a hierarchical data structure such as a tree.

Comprehensive descriptions of each of these patterns can
be obtained via links at www.wikipedia.org.

INFO

Creational, Structural, and Behavioral Patterns

pre75977_ch12.qxd 11/27/08 3:58 PM Page 351

http://www.wikipedia.org
http://www.wikipedia.org

12.1.2 Frameworks

Patterns themselves may not be sufficient to develop a complete design. In some

cases it may be necessary to provide an implementation-specific skeletal infrastruc-

ture, called a framework, for design work. That is, you can select a “reusable mini-

architecture that provides the generic structure and behavior for a family of software

abstractions, along with a context . . . which specifies their collaboration and use

within a given domain” [Amb98].

A framework is not an architectural pattern, but rather a skeleton with a collec-

tion of “plug points” (also called hooks and slots) that enable it to be adapted to a spe-

cific problem domain. The plug points enable you to integrate problem-specific

classes or functionality within the skeleton. In an object-oriented context, a frame-

work is a collection of cooperating classes.

Gamma and his colleagues [Gam95] describe the differences between design

patterns and frameworks in the following manner:

1. Design patterns are more abstract than frameworks. Frameworks can be embodied

in code, but only examples of patterns can be embodied in code. A strength of

frameworks is that they can be written down in programming languages and not

only studied but executed and reused directly. . . .

2. Design patterns are smaller architectural elements than frameworks. A typical

framework contains several design patterns but the reverse is never true.

3. Design patterns are less specialized than frameworks. Frameworks always have a

particular application domain. In contrast, design patterns can be used in nearly any

kind of application. While more specialized design patterns are certainly possible,

even these wouldn’t dictate an application architecture.

In essence, the designer of a framework will argue that one reusable mini-

architecture is applicable to all software to be developed within a limited domain of

application. To be most effective, frameworks are applied with no changes. Addi-

tional design elements may be added, but only via the plug points that allow the

designer to flesh out the framework skeleton.

12.1.3 Describing a Pattern

Pattern-based design begins with the recognition of patterns within the application

you intend to build, continues with a search to determine whether others have

addressed the pattern, and concludes with the application of an appropriate pattern

to the problem at hand. The second of these three tasks is often the most difficult.

How do you find patterns that fit your needs?

An answer to this question must rely on effective communication of the problem

the pattern addresses, the context in which the pattern resides, the system of forces

that mold the context, and the solution that is proposed. To communicate this

information unambiguously, a standard form or template for pattern descriptions is

required. Although a number of different pattern templates have been proposed,

352 PART TWO MODELING

A framework is a
reusable “mini-
architecture” that
serves as a foundation
from which other
design patterns can be
applied.

pre75977_ch12.qxd 11/27/08 3:58 PM Page 352

almost all contain a major subset of the content suggested by Gamma and his

colleagues [Gam95]. A simplified pattern template is shown in the sidebar.

CHAPTER 12 PATTERN-BASED DESIGN 353

INFO

The names of design patterns should be chosen with care. One of the key techni-

cal problems in pattern-based design is the inability to find existing patterns when

hundreds or thousands of candidate patterns exist. The search for the “right” pattern

is aided immeasurably by a meaningful pattern name.

A pattern template provides a standardized means for describing a design pattern.

Each of the template entries represents characteristics of the design pattern that can

be searched (e.g., via a database) so that the appropriate pattern can be found.

12.1.4 Pattern Languages and Repositories

When we use the term language, the first thing that comes to mind is either a natu-

ral language (e.g., English, Spanish, Chinese) or a programming language (e.g., C��,

Java). In both cases the language has a syntax and semantics that are used to com-

municate ideas or procedural instructions in an effective manner.

When the term language is used in the context of design patterns, it takes on a

slightly different meaning. A pattern language encompasses a collection of patterns,

each described using a standardized template (Section 12.1.3) and interrelated to

show how these patterns collaborate to solve problems across an application

domain.4

In a natural language, words are organized into sentences that impart meaning.

The structure of sentences is described by the language’s syntax. In a pattern lan-

guage, design patterns are organized in a way that provides a “structured method of

describing good design practices within a particular domain.”5

uote:

“Patterns are half-
baked—meaning
you always have
to finish them
yourself and adapt
them to your own
environment.”

Martin Fowler

4 Christopher Alexander originally proposed pattern languages for building architecture and urban
planning. Today, pattern languages have been developed for everything from the social sciences to
the software engineering process.

5 This Wikipedia description can be found at http://en.wikipedia.org/wiki/Pattern_language.

Design Pattern Template

Pattern name—describes the essence of the
pattern in a short but expressive name

Problem—describes the problem that the pattern addresses
Motivation—provides an example of the problem
Context—describes the environment in which the problem

resides including the application domain
Forces—lists the system of forces that affect the manner in

which the problem must be solved; includes a discussion
of limitations and constraints that must be considered

Solution—provides a detailed description of the solution
proposed for the problem

Intent—describes the pattern and what it does
Collaborations—describes how other patterns contribute to

the solution
Consequences—describes the potential trade-offs that must

be considered when the pattern is implemented and
the consequences of using the pattern

Implementation—identifies special issues that should be
considered when implementing the pattern

Known uses—provides examples of actual uses of the
design pattern in real applications

Related patterns—cross-references related design patterns

pre75977_ch12.qxd 11/27/08 3:58 PM Page 353

http://en.wikipedia.org/wiki/Pattern_language

In a way, a pattern language is analogous to a hypertext instruction manual for

problem solving in a specific application domain. The problem domain under con-

sideration is first described hierarchically, beginning with broad design problems as-

sociated with the domain and then refining each of the broad problems into lower

levels of abstraction. In a software context, broad design problems tend to be archi-

tectural in nature and address the overall structure of the application and the data or

content that serve it. Architectural problems are refined to lower levels of abstrac-

tion, leading to design patterns that solve subproblems and collaborate with one

another at the component (or class) level. Rather than a sequential list of patterns,

a pattern language represents an interconnected collection in which the user can

begin with a broad design problem and “burrow down” to uncover specific problems

and their solutions.

Dozens of pattern languages have been proposed for software design [Hil08]. In

most cases, the design patterns that are part of pattern language are stored in a Web-

accessible patterns repository (e.g., [Boo08], [Cha03], [HPR02]). The repository pro-

vides an index of all design patterns and contains hypermedia links that enable the

user to understand the collaborations between patterns.

12.2 PATTERN-BASED SOFTWARE DESIGN

The best designers in any field have an uncanny ability to see patterns that charac-

terize a problem and corresponding patterns that can be combined to create a solu-

tion. The software developers at Microsoft [Mic04] discuss this when they write:

While pattern-based design is relatively new in the field of software development, indus-

trial technology has used pattern-based design for decades, perhaps even centuries.

Catalogs of mechanisms and standard configurations provide design elements that are

used to engineer automobiles, aircraft, machine tools, and robots. Applying pattern-

based design to software development promises the same benefits to software as it does

to industrial technology: predictability, risk mitigation, and increased productivity.

Throughout the design process, you should look for every opportunity to apply

existing design patterns (when they meet the needs of the design) rather than creat-

ing new ones.

12.2.1 Pattern-Based Design in Context

Pattern-based design is not used in a vacuum. The concepts and techniques dis-

cussed for architectural, component-level, and user interface design (Chapters 9

through 11) are all used in conjunction with a pattern-based approach.

In Chapter 8, I noted that a set of quality guidelines and attributes serve as the

basis for all software design decisions. The decisions themselves are influenced by

a set of fundamental design concepts (e.g., separation of concerns, stepwise refine-

ment, functional independence) that are achieved using heuristics that have evolved

over many decades, and best practices (e.g., techniques, modeling notation) that

354 PART TWO MODELING

WebRef
For a listing of useful
patterns languages
see c2.com/ppr/
titles.html.
Additional information
can be obtained at
hillside.net/
patterns/.

If you can’t find a
pattern language that
addresses your
problem domain, look
for analogies in
another set of
patterns.

pre75977_ch12.qxd 11/27/08 3:58 PM Page 354

have been proposed to make design easier to perform and more effective as a basis

for construction.

The role of pattern-based design in all of this is illustrated in Figure 12.1. A soft-

ware designer begins with a requirements model (either explicit or implied) that

presents an abstract representation of the system. The requirements model describes

the problem set, establishes the context, and identifies the system of forces that hold

sway. It may imply the design in an abstract manner, but the requirements model

does little to represent the design explicitly.

As you begin your work as a designer, it’s always important to keep quality

attributes in mind. These attributes (e.g., a design must implement all explicit require-

ments addressed in the requirements model) establish a way to assess software qual-

ity but do little to help you actually achieve it. The design you create should exhibit

the fundamental design concepts discussed in Chapter 8. Therefore, you should ap-

ply proven techniques for translating the abstractions contained in the requirements

model into a more concrete form that is the software design. To accomplish this,

you’ll use the methods and modeling tools available for architectural, component-

level, and interface design. But only when you’re faced with a problem, context, and

system of forces that have not been solved before. If a solution already exists, use it!

And that means applying a pattern-based design approach.

CHAPTER 12 PATTERN-BASED DESIGN 355

Design begins

Consider
design concepts

Extract
problem, context

forces

Requirements
model

Consider
design quality

attributes

Begin
pattern-based
design tasks

Apply other
design methods

and notation

yes no

Addressed by
pattern?

Design
model

FIGURE 12.1

Pattern-based
design in
context

pre75977_ch12.qxd 11/27/08 3:58 PM Page 355

12.2.2 Thinking in Patterns

In an excellent book on pattern-based design, Shalloway and Trott [Sha05] comment

on a “new way of thinking” when one uses patterns as part of the design activity:

I had to open my mind to a new way of thinking. And when I did so, I heard [Christopher]

Alexander say that “good software design cannot be achieved simply by adding together

performing parts.”

Good design begins by considering context—the big picture. As context is evaluated,

you extract a hierarchy of problems that must be solved. Some of these problems will

be global in nature, while others will address specific features and functions of the

software. All will be affected by a system of forces that will influence the nature of

the solution that is proposed.

Shalloway and Trott [Sha05] suggest the following approach6 that enables a

designer to think in patterns:

1. Be sure you understand the big picture—the context in which the software to

be built resides. The requirements model should communicate this to you.

2. Examining the big picture, extract the patterns that are present at that level

of abstraction.

3. Begin your design with “big picture” patterns that establish a context or

skeleton for further design work.

4. “Work inward from the context” [Sha05] looking for patterns at lower levels

of abstraction that contribute to the design solution.

5. Repeat steps 1 to 4 until the complete design is fleshed out.

6. Refine the design by adapting each pattern to the specifics of the software

you’re trying to build.

It’s important to note that patterns are not independent entities. Design patterns that

are present at a high level of abstraction will invariably influence the manner in

which other patterns are applied at lower levels of abstraction. In addition, patterns

often collaborate with one another. The implication—when you select an architec-

tural pattern, it may very well influence the component-level design patterns you

choose. Likewise, when you select a specific interface design pattern, you are some-

times forced to use other patterns that collaborate with it.

To illustrate, consider the SafeHomeAssured.com WebApp. If you consider the

big picture, the WebApp must address a number of fundamental problems such as:

• How to provide information about SafeHome products and services

• How to sell SafeHome products and services to customers

• How to establish Internet-based monitoring and control of an installed

security system

356 PART TWO MODELING

Pattern-
based design

looks interesting
for the problem
I have to solve.
How do I get
started?

?

6 Based on the work of Christopher Alexander [Ale79].

pre75977_ch12.qxd 11/27/08 3:58 PM Page 356

Each of these fundamental problems can be further refined into a set of subprob-

lems. For example How to sell via the Internet implies an E-commerce pattern that

itself implies a large number of patterns at lower levels of abstraction. The

E-commerce pattern (likely, an architectural pattern) implies mechanisms for

setting up a customer account, displaying the products to be sold, selecting prod-

ucts for purchase, and so forth. Hence, if you think in patterns, it is important to

determine whether a pattern for setting up an account exists. If SetUpAccount

is available as a viable pattern for the problem context, it may collaborate with

other patterns such as BuildInputForm, ManageFormsInput, and Validate-

FormsEntry. Each of these patterns delineates problems to be solved and solu-

tions that may be applied.

12.2.3 Design Tasks

The following design tasks are applied when a pattern-based design philosophy is

used:

1. Examine the requirements model and develop a problem hierarchy.

Describe each problem and subproblem by isolating the problem, the

context, and the system of forces that apply. Work from broad problems (high

level of abstraction) to smaller subproblems (at lower levels of abstraction).

2. Determine if a reliable pattern language has been developed for the

problem domain. As I noted in Section 12.1.4, a pattern language addresses

problems associated with a specific application domain. The SafeHome

software team would look for a pattern language developed specifically for

home security products. If that level of pattern language specificity could not

be found, the team would partition the SafeHome software problem into a

series of generic problem domains (e.g., digital device monitoring problems,

user interface problems, digital video management problems) and search for

appropriate pattern languages.

3. Beginning with a broad problem, determine whether one or more

architectural patterns is available for it. If an architectural pattern is

available, be certain to examine all collaborating patterns. If the pattern is

appropriate, adapt the design solution proposed and build a design model

element that adequately represents it. As I noted in Section 12.2.2, a broad

problem for the SafeHomeAssured.com WebApp is addressed with an

E-commerce pattern. This pattern will suggest a specific architecture for

addressing e-commerce requirements.

4. Using the collaborations provided for the architectural pattern,

examine subsystem or component-level problems and search for

appropriate patterns to address them. It may be necessary to search

through other pattern repositories as well as the list of patterns that corre-

sponds to the architectural solution. If an appropriate pattern is found, adapt

CHAPTER 12 PATTERN-BASED DESIGN 357

What are the
tasks

required to create
a pattern-based
design?

?

pre75977_ch12.qxd 11/27/08 3:58 PM Page 357

the design solution proposed and build a design model element that

adequately represents it. Be certain to apply step 7.

5. Repeat steps 2 through 5 until all broad problems have been

addressed. The implication is to begin with the big picture and elaborate to

solve problems at increasingly more detailed levels.

6. If user interface design problems have been isolated (this is almost

always the case), search the many user interface design pattern

repositories for appropriate patterns. Proceed in a manner similar to

steps 3, 4, and 5.

7. Regardless of its level of abstraction, if a pattern language and/or

patterns repository or individual pattern shows promise, compare

the problem to be solved against the existing pattern(s) presented.

Be certain to examine context and forces to ensure that the pattern does, in

fact, provide a solution that is amenable to the problem.

8. Be certain to refine the design as it is derived from patterns using

design quality criteria as a guide.

Although this design approach is top-down, real-life design solutions are sometimes

more complex. Gillis [Gil06] comments on this when he writes:

Design patterns in software engineering are meant to be used in a deductive, rationalis-

tic fashion. So you have this general problem or requirement, X, design pattern Y solves

X, therefore use Y. Now, when I reflect on my own process—and I’ve got reason to believe

that I’m not alone here—I find that it’s more organic than that, more inductive than

deductive, more bottom-up than top-down.

Obviously, there’s a balance to be achieved. When a project is in the initial bootstrap

phase and I’m trying to make the jump from abstract requirements to a concrete design

solution, I’ll often perform a sort of breadth-first search . . . I’ve found design patterns to

be helpful, allowing me to quickly frame up the design problem in concrete terms.

In addition, the pattern-based approach must be used in conjunction with other soft-

ware design concepts and techniques.

12.2.4 Building a Pattern-Organizing Table

As pattern-based design proceeds, you may encounter trouble organizing and

categorizing candidate patterns from multiple pattern languages and repositories.

To help organize your evaluation of candidate patterns, Microsoft [Mic04] suggests

the creation of a pattern-organizing table that takes the general form shown in

Figure 12.2.

A pattern-organizing table can be implemented as a spreadsheet model using the

form shown in the figure. An abbreviated list of problem statements, organized by

data/content, architecture, component-level, and user interface issues, is presented

in the left-hand (shaded) column. Four pattern types—database, application,

358 PART TWO MODELING

Entries in the table can
be supplemented with
an indication of the
relative applicability
of the pattern.

pre75977_ch12.qxd 11/27/08 3:58 PM Page 358

implementation, and infrastructure—are listed across the top row. The names of

candidate patterns are noted in the cells of the table.

To provide entries for the organizing table, you’ll search through pattern

languages and repositories for patterns that address a particular problem statement.

When one or more candidate patterns is found, it is entered in the row correspon-

ding to the problem statement and the column that corresponds to the pattern type.

The name of the pattern is entered as a hyperlink to the URL of the Web address that

contains a complete description of the pattern.

12.2.5 Common Design Mistakes

Pattern-based design can make you a better software designer, but it is not a

panacea. Like all design methods, you must begin with first principles, emphasizing

software quality fundamentals and ensuring that the design does, in fact, address the

needs expressed by the requirements model.

A number of common mistakes occur when pattern-based design is used. In some

cases, not enough time has been spent to understand the underlying problem and its

context and forces, and as a consequence, you select a pattern that looks right but

is inappropriate for the solution required. Once the wrong pattern is selected, you

refuse to see your error and force-fit the pattern. In other cases, the problem has

forces that are not considered by the pattern you’ve chosen, resulting in a poor or

CHAPTER 12 PATTERN-BASED DESIGN 359

Problem statement ...

Problem statement ...

Problem statement ...

User interface

Problem statement ...

Problem statement ...

Problem statement ...

Component-level

Problem statement ...

Problem statement ...

Problem statement ...

Architecture

Problem statement ...

Problem statement ...

Problem statement ... PatternName(s)

PatternName(s)

PatternName(s)

PatternName(s)

PatternName(s)

PatternName(s) PatternName(s)

PatternName(s) PatternName(s)

PatternName(s) PatternName(s)

PatternName(s) PatternName(s)

PatternName(s) PatternName(s)

PatternName(s)

PatternName(s)

PatternName(s)

PatternName(s)

PatternName(s)

Database

Data/Content

Application Implementation Infrastructure

FIGURE 12.2

A pattern-
organizing
table
Source: Adapted from
[Mic04].

Don’t force a pattern,
even if it addresses the
problem at hand. If the
context and forces are
wrong, look for
another pattern.

pre75977_ch12.qxd 11/27/08 3:58 PM Page 359

erroneous fit. Sometimes a pattern is applied too literally and the required adapta-

tions for your problem space are not implemented.

Can these mistakes be avoided? In most cases the answer is “yes.” Every good de-

signer looks for a second opinion and welcomes review of her work. The review tech-

niques discussed in Chapter 15 can help to ensure that the pattern-based design you’ve

developed will result in a high-quality solution for the software problem to be solved.

12.3 ARCHITECTURAL PATTERNS

If a house builder decides to construct a center-hall colonial, there is a single archi-

tectural style that can be applied. The details of the style (e.g., number of fireplaces,

façade of the house, placement of doors and windows) can vary considerably, but once

the decision on the overall architecture of the house is made, the style is imposed

on the design.7

Architectural patterns are a bit different. For example, every house (and every

architectural style for houses) employs a Kitchen pattern. The Kitchen pattern and

patterns it collaborates with address problems associated with the storage and

preparation of food, the tools required to accomplish these tasks, and rules for place-

ment of these tools relative to workflow in the room. In addition, the pattern might

address problems associated with countertops, lighting, wall switches, a central is-

land, flooring, and so on. Obviously, there is more than a single design for a kitchen,

often dictated by the context and system of forces. But every design can be conceived

within the context of the “solution” suggested by the Kitchen pattern.

As I have already noted, architectural patterns for software define a specific

approach for handling some characteristic of the system. Bosch [Bos00] and Booch

[Boo08] define a number of architectural pattern domains. Representative examples

are provided in the paragraphs that follow:

Access control. There are many situations in which access to data, features, and

functionality delivered by an application is limited to specifically defined end users.

From an architectural point of view, access to some portion of the software archi-

tecture must be controlled rigorously.

Concurrency. Many applications must handle multiple tasks in a manner that sim-

ulates parallelism (i.e., this occurs whenever multiple “parallel” tasks or components

are managed by a single processor). There are a number of different ways in which

an application can handle concurrency, and each can be presented by a different

architectural pattern. For example, one approach is to use an OperatingSystem-

ProcessManagement pattern that provides built-in OS features that allow

360 PART TWO MODELING

7 This implies that there will be a central foyer and hallway, that rooms will be placed to the left and
right of the foyer, that the house will have two (or more) stories, that the bedrooms of the house
will be upstairs, and so on. These “rules” are imposed once the decision is made to use the center-
hall colonial style.

A software architecture
may have a number of
architectural patterns
that address issues
such as concurrency,
persistence, and
distribution.

What are
some typical

architectural
pattern domains?

?

pre75977_ch12.qxd 11/27/08 3:58 PM Page 360

components to execute concurrently. The pattern also incorporates OS functionality

that manages communication between processes, scheduling, and other capabilities

required to achieve concurrency. Another approach might be to define a task sched-

uler at the application level. A TaskScheduler pattern contains a set of active ob-

jects that each contains a tick() operation [Bos00]. The scheduler periodically invokes

tick() for each object, which then performs the functions it must perform before re-

turning control back to the scheduler which then invokes the tick() operation for the

next concurrent object.

Distribution. The distribution problem addresses the manner in which systems or

components within systems communicate with one another in a distributed environ-

ment. Two subproblems are considered: (1) the way in which entities connect to one

another, and (2) the nature of the communication that occurs. The most common

architectural pattern established to address the distribution problem is the Broker

pattern.Abrokeractsasa“middleman”betweentheclientcomponentandaservercom-

ponent. The client sends a message to the broker (containing all appropriate information

for the communication to be effected) and the broker completes the connection.

Persistence. Data persists if it survives past the execution of the process that created

it. Persistent data are stored in a database or file and may be read or modified by other

processes at a later time. In object-oriented environments, the idea of a persistent ob-

ject extends the persistence concept a bit further. The values of all of the object’s at-

tributes, the general state of the object, and other supplementary information are stored

for future retrieval and use. In general, two architectural patterns are used to achieve

persistence—a DatabaseManagementSystem pattern that applies the storage and

retrieval capability of a DBMS to the application architecture or an Application Level-

Persistence pattern that builds persistence features into the application architecture

(e.g., word processing software that manages its own document structure).

Before any one of the representative architectural patterns noted in the preceding

paragraphs can be chosen, it must be assessed for its appropriateness for the appli-

cation and the overall architectural style, as well as the context and system of forces

that it specifies.

CHAPTER 12 PATTERN-BASED DESIGN 361

Design Pattern Repositories
There are many sources for design patterns avail-
able on the Web. Some patterns can be obtained

from individually published pattern languages, while
others are available as part of a patterns portal or patterns
repository. The following Web sources are worth a look:

Hillside.net http://hillside.net/patterns/
One of the Web’s most comprehensive collections of
patterns and pattern languages.

Portland Pattern Repository
http://c2.com/ppr/index.html
Contains pointers to a wide variety of patterns
resources and collections.

Pattern Index http://c2.com/cgi/wiki?PatternIndex
An “eclectic collection of patterns”

Booch’s Architecture Patterns Handbook
www.booch.com/architecture/index.jsp

INFO

pre75977_ch12.qxd 11/27/08 3:58 PM Page 361

http://hillside.net/patterns/
http://c2.com/ppr/index.html
http://c2.com/cgi/wiki?PatternIndex
http://www.booch.com/architecture/index.jsp

12.4 COMPONENT-LEVEL DESIGN PATTERNS

Component-level design patterns provide you with proven solutions that address one

or more subproblems extracted from the requirements model. In many cases, design

patterns of this type focus on some functional element of a system. For example, the

SafeHomeAssured.com application must address the following design subproblem:

How can we get product specifications and related information for any SafeHome device?

Having enunciated the subproblem that must be solved, you should now consider

context and the system of forces that affect the solution. Examining the appropriate

requirements model use case, you learn that the consumer uses the specification for

a SafeHome device (e.g., a security sensor or camera) for informational purposes.

However, other information that is related to the specification (e.g., pricing) may be

used when e-commerce functionality is selected.

The solution to the subproblem involves a search. Since searching is a very com-

mon problem, it should come as no surprise that there are many search-related

patterns. Looking through a number of patterns repositories, you find the following

patterns, along with the problem that each solves:

AdvancedSearch. Users must find a specific item in a large collection of

items.

HelpWizard. Users need help on a certain topic related to the website or

when they need to find a specific page within the site.

SearchArea. Users must find a page.

SearchTips. Users need to know how to control the search engine.

362 PART TWO MODELING

Bibliographic reference to hundreds of architectural
and component design patterns

UI Patterns Collections
UI/HCI Patterns

www.hcipatterns.org/patterns.html
Jennifer Tidwell’s UI patterns

www.time-tripper.com/uipatterns/
Mobile UI Design Patterns

http://patterns.littlespringsdesign.com/
wikka.php?wakka=Mobile

Patterns
Pattern Language for UI Design

www.maplefish.com/todd/papers/
Experiences.html

Interaction Design Library for Games
www.eelke.com/research/usability.html

UI Design Patterns
www.cs.helsinki.fi/u/salaakso/patterns/

Specialized Design Patterns:
Aircraft Avionics

http://g.oswego.edu/dl/acs/acs/acs.html
Business Information Systems

www.objectarchitects.de/arcus/cookbook/
Distributed Processing

www.cs.wustl.edu/~schmidt/
IBM Patterns for e-Business www128.ibm.com/

developerworks/patterns/
Yahoo! Design Pattern Library

http://developer.yahoo.com/ypatterns/
WebPatterns.org http://webpatterns.org/

pre75977_ch12.qxd 11/27/08 3:58 PM Page 362

http://www.hcipatterns.org/patterns.html
http://www.time-tripper.com/uipatterns/
http://patterns.littlespringsdesign.com/
http://www.maplefish.com/todd/papers/
http://www.eelke.com/research/usability.html
http://www.cs.helsinki.fi/u/salaakso/patterns/
http://g.oswego.edu/dl/acs/acs/acs.html
http://www.objectarchitects.de/arcus/cookbook/
http://www.cs.wustl.edu/~schmidt/
http://developer.yahoo.com/ypatterns/
http://webpatterns.org/

SearchResults. Users have to process a list of search results.

SearchBox. Users have to find an item or specific information.

For SafeHomeAssured.com the number of products is not particularly large,

and each has a relatively simple categorization, so AdvancedSearch and

HelpWizard are probably not necessary. Similarly, the search is simple enough

not to require SearchTips. The description of SearchBox, however, is given (in

part) as:

Search Box

(Adapted from www.welie.com/patterns/showPattern.php?patternID=search.)

Problem: The users need to find an item or specific information.

Motivation: Any situation in which a keyword search is applied across a

collection of content objects organized as Web pages.

Context: Rather than using navigation to acquire information or content,

the user wants to do a direct search through content contained

on multiple Web pages. Any website that already has primary

navigation. User may want to search for an item in a category.

User might want to further specify a query.

Forces: The website already has primary navigation. Users may want to

search for an item in a category. Users might want to further

specify a query using simple Boolean operators.

Solution: Offer search functionality consisting of a search label, a keyword

field, a filter if applicable, and a “go” button. Pressing the return

key has the same function as selecting the go button. Also pro-

vide Search Tips and examples in a separate page. A link to that

page is placed next to the search functionality. The edit box for

the search term is large enough to accommodate three typical

user queries (typically around 20 characters). If the number of

filters is more than 2, use a combo box for filters selection,

otherwise a radio button.

The search results are presented on a new page with a clear

label containing at least “Search results” or similar. The search

function is repeated in the top part of the page with the entered

keywords, so that the users know what the keywords were.

The pattern description continues with other entries as described in Section 12.1.3.

The pattern goes on to describe how the search results are accessed, presented,

matched, and so on. Based on this, the SafeHomeAssured.com team can design the

components required to implement the search or (more likely) acquire existing

reusable components.

CHAPTER 12 PATTERN-BASED DESIGN 363

pre75977_ch12.qxd 11/27/08 3:58 PM Page 363

http://www.welie.com/patterns/showPattern.php?patternID=search

12.5 USER INTERFACE DESIGN PATTERNS

Hundreds of user interface (UI) patterns have been proposed in recent years. Most

fall within one of the following 10 categories of patterns (discussed with a represen-

tative example8) as described by Tidwell [Tid02] and vanWelie [Wel01]:

Whole UI. Provide design guidance for top-level structure and navigation

throughout the entire interface.

Pattern: TopLevelNavigation

Brief description: Used when a site or application implements a number

of major functions. Provides a top-level menu, often coupled with a logo or

364 PART TWO MODELING

8 An abbreviated pattern template is used here. Full pattern descriptions (along with dozens of other
patterns) can be found at [Tid02] and [Wel01].

Applying Patterns

The scene: Informal discussion during
the design of a software increment that implements sensor
control via the Internet for SafeHomeAssured.com.

The players: Jamie (responsible for design) and Vinod
(SafeHomeAssured.com chief system architect).

The conversation:

Vinod: So how is the design of the camera control
interface coming along?

Jamie: Not too bad. I’ve designed most of the capability
to connect to the actual sensors without too many problems.
I’ve also started thinking about the interface for the users to
actually move, pan, and zoom the cameras from a remote
Web page, but I’m not sure I’ve got it right yet.

Vinod: What have you come up with?

Jamie: Well, the requirements are that the camera control
needs to be highly interactive—as the user moves the control,
the camera should move as soon as possible. So, I was
thinking of having a set of buttons laid out like a normal
camera, but when the user clicks them, it controls the camera.

Vinod: Hmmm. Yeah, that would work, but I’m not sure
it’s right—for each click of a control you need to wait for
the whole client-server communication to occur, and so
you won’t get a good sense of quick feedback.

Jamie: That’s what I thought—and why I wasn’t very
happy with the approach, but I’m not sure how else
I might do it.

Vinod: Well, why not just use the
InteractiveDeviceControl pattern!

Jamie: Uhmmm—what’s that? I haven’t heard of it?

Vinod: It’s basically a pattern for exactly the problem
you are describing. The solution it proposes is basically to
create a control connection to the server with the device,
through which control commands can be sent. That way
you don’t need to send normal HTTP requests. And the
pattern even shows how you can implement this using
some simple AJAX techniques. You have some simple
client-side JavaScript that communicates directly with the
server and sends the commands as soon as the user does
anything.

Jamie: Cool! That’s just what I needed to solve this
thing. Where do I find it?

Vinod: It’s available in an online repository. Here’s
the URL.

Jamie: I’ll go check it out.

Vinod: Yep—but remember to check the consequences
field for the pattern. I seem to remember that there was
something in there about needing to be careful about
issues of security. I think it might be because you are
creating a separate control channel and so bypassing the
normal Web security mechanisms.

Jamie: Good point. I probably wouldn’t have thought
of that! Thanks.

SAFEHOME

pre75977_ch12.qxd 11/27/08 3:58 PM Page 364

CHAPTER 12 PATTERN-BASED DESIGN 365

identifying graphic, that enables direct navigation to any of the system’s

major functions.

Details: Major functions (generally limited to between four and seven func-

tion names) are listed across the top of the display (vertical column formats

are also possible) in a horizontal line of text. Each name provides a link to

the appropriate function or information source. Often used with the

BreadCrumbs pattern discussed later.

Navigation elements: Each function/content name represents a link to the

appropriate function or content.

Page layout. Address the general organization of pages (for websites) or distinct

screen displays (for interactive applications).

Pattern: CardStack

Brief description: Used when a number of specific subfunctions or content

categories related to a feature or function must be selected in random order.

Provides the appearance of a stack of tabbed cards, each selectable with

a mouse click and each representing specific subfunctions or content

categories.

Details: Tabbed cards are a well-understood metaphor and are easy for the

user to manipulate. Each tabbed card (divider) may have a slightly different

format. Some may require input and have buttons or other navigation mech-

anisms; others may be informational. May be combined with other patterns

such as DropDownList, Fill-in-the-Blanks, and others.

Navigation elements: A mouse click on a tab causes the appropriate card

to appear. Navigation features within the card may also be present, but in

general, these should initiate a function that is related to card data, not cause

an actual link to some other display.

Forms and input. Consider a variety of design techniques for completing form-

level input.

Pattern: Fill-in-the-Blanks

Brief description: Allow alphanumeric data to be entered in a “text box.”

Details: Data may be entered within a text box. In general, the data are

validated and processed after some text or graphic indicator (e.g., a button

containing “go,” “submit,” “next”) is picked. In many cases this pattern can be

combined with drop-down list or other patterns (e.g., SEARCH <drop down

list> FOR <f ill-in-the-blanks text box>).

Navigation elements: A text or graphic indicator that initiates validation

and processing.

Tables. Provide design guidance for creating and manipulating tabular data of all

kinds.

pre75977_ch12.qxd 11/27/08 3:58 PM Page 365

Pattern: SortableTable

Brief description: Display a long list of records that can be sorted by

selecting a toggle mechanism for any column label.

Details: Each row in the table represents a complete record. Each column

represents one field in the record. Each column header is actually a selec-

table button that can be toggled to initiate an ascending or descending sort

on the field associated with the column for all records displayed. The table is

generally resizable and may have a scrolling mechanism if the number of

records is larger than available window space.

Navigation elements: Each column header initiates a sort on all records.

No other navigation is provided, although in some cases, each record may

itself contain navigation links to other content or functionality.

Direct data manipulation. Address data editing, modification, and transformation.

Pattern: BreadCrumbs

Brief description: Provides a full navigation path when the user is working

with a complex hierarchy of pages or display screens.

Details: Each page or display screen is given a unique identifier. The naviga-

tion path to the current location is specified in a predefined location for every

display. The path takes the form: home>major topic page>subtopic page>

specific page>current page.

Navigation elements: Any of the entries within the bread crumbs display

can be used as a pointer to link back to a higher level of the hierarchy.

Navigation. Assist the user in navigating through hierarchical menus, Web

pages, and interactive display screens.

Pattern: EditInPlace

Brief description: Provide simple text editing capability for certain types of

content in the location that it is displayed. No need for the user to enter a text

editing function or mode explicitly.

Details: The user sees content on the display that must be changed. A

mouse double click on the content indicates to the system that editing is

desired. The content is highlighted to signify that editing mode is available

and the user makes appropriate changes.

Navigation elements: None.

Searching. Enable content-specific searches through information maintained

within a website or contained by persistent data stores that are accessible via an

interactive application.

Pattern: SimpleSearch

Brief description: Provides the ability to search a website or persistent data

source for a simple data item described by an alphanumeric string.

366 PART TWO MODELING

pre75977_ch12.qxd 11/27/08 3:58 PM Page 366

Details: Provides the ability to search either locally (one page or one file) or

globally (entire site or complete database) for the search string. Generates a

list of “hits” in order of their probability of meeting the user’s needs. Does not

provide multiple item searches or special Boolean operations (see advanced

search pattern).

Navigation elements: Each entry in the list of hits represents a navigation

link to the data referenced by the entry.

Page elements. Implement specific elements of a Web page or display screen.

Pattern: Wizard

Brief description: Takes the user through a complex task one step at a

time, providing guidance for the completion of the task through a series of

simple window displays.

Details: Classic example is a registration process that contains four steps.

The wizard pattern generates a window for each step, requesting specific

information from the user one step at a time.

Navigation elements: Forward and back navigation allows the user to

revisit each step in the wizard process.

E-commerce. Specific to websites, these patterns implement recurring elements

of e-commerce applications.

Pattern: ShoppingCart

Brief description: Provides a list of items selected for purchase.

Details: Lists item, quantity, product code, availability (in stock, out of stock),

price, delivery information, shipping costs, and other relevant purchase infor-

mation. Also provides ability to edit (e.g., remove, change quantity).

Navigation elements: Contains ability to proceed with shopping or go to

checkout.

Miscellaneous. Patterns that do not easily fit into one of the preceding cate-

gories. In some cases, these patterns are domain dependent or occur only for

specific classes of users.

Pattern: ProgressIndicator

Brief description: Provides an indication of progress when an operation

takes longer than n seconds.

Details: Represented as an animated icon or a message box that contains

some visual indication (e.g., a rotating “barber pole,” a slider with a percent

complete indicator) that processing is under way. May also contain a text

content indication of the status of processing.

Navigation elements: Often contains a button that allows the user to

pause or cancel processing.

CHAPTER 12 PATTERN-BASED DESIGN 367

pre75977_ch12.qxd 11/27/08 3:58 PM Page 367

Each of the preceding example patterns (and all patterns within each category)

would also have a complete component-level design, including design classes,

attributes, operations, and interfaces.

A comprehensive discussion of user interface patterns is beyond the scope of this

book. If you have further interest, see [Duy02], [Bor01], [Tid02], and [Wel01] for

further information.

12.6 WEBAPP DESIGN PATTERNS

Throughout this chapter you’ve learned that there are different types of patterns and

many different ways they can be categorized. When you consider the design prob-

lems that must be solved when a WebApp is to be built, it’s worth considering pat-

tern categories by focusing on two dimensions: the design focus of the pattern and

its level of granularity. Design focus identifies which aspect of the design model is

relevant (e.g., information architecture, navigation, interaction). Granularity identi-

fies the level of abstraction that is being considered (e.g., does the pattern apply to

the entire WebApp, to a single Web page, to a subsystem, or an individual WebApp

component?).

12.6.1 Design Focus

In earlier chapters I emphasized a design progression that begins by considering

architecture, component-level issues, and user interface representations. At each

step, the problems you consider and the solutions you propose begin at a high level

of abstraction and slowly become more detailed and specific. Stated another way,

design focus becomes “narrower” as you move further into design. The problems

(and solutions) you will encounter when designing an information architecture for a

WebApp are different from the problems (and solutions) that are encountered when

performing interface design. Therefore, it should come as no surprise that patterns

for WebApp design can be developed for different levels of design focus, so that you

can address the unique problems (and related solutions) that are encountered at

each level. WebApp patterns can be categorized using the following levels of

design focus:

• Information architecture patterns relate to the overall structure of

the information space, and the ways in which users will interact with the

information.

• Navigation patterns define navigation link structures, such as hierarchies,

rings, tours, and so on.

• Interaction patterns contribute to the design of the user interface. Patterns

in this category address how the interface informs the user of the conse-

quences of a specific action, how a user expands content based on usage

368 PART TWO MODELING

Your focus becomes
“narrower” the further
you move into design.

pre75977_ch12.qxd 11/27/08 3:58 PM Page 368

context and user desires, how to best describe the destination that is implied

by a link, how to inform the user about the status of an ongoing interaction,

and interface-related issues.

• Presentation patterns assist in the presentation of content as it is presented

to the user via the interface. Patterns in this category address how to organize

user interface control functions for better usability, how to show the relation-

ship between an interface action and the content objects it affects, and how

to establish effective content hierarchies.

• Functional patterns define the workflows, behaviors, processing, commu-

nication, and other algorithmic elements within a WebApp.

In most cases, it would be fruitless to explore the collection of information architec-

ture patterns when a problem in interaction design is encountered. You would ex-

amine interaction patterns, because that is the design focus that is relevant to the

work being performed.

12.6.2 Design Granularity

When a problem involves “big picture” issues, you should attempt to develop

solutions (and use relevant patterns) that focus on the big picture. Conversely, when

the focus is very narrow (e.g., uniquely selecting one item from a small set of five or

fewer items), the solution (and the corresponding pattern) is targeted quite nar-

rowly. In terms of the level of granularity, patterns can be described at the follow-

ing levels:

• Architectural patterns. This level of abstraction will typically relate to

patterns that define the overall structure of the WebApp, indicate the rela-

tionships among different components or increments, and define the rules

for specifying relationships among the elements (pages, packages, compo-

nents, subsystems) of the architecture.

• Design patterns. These address a specific element of the design such as

an aggregation of components to solve some design problem, relationships

among elements on a page, or the mechanisms for effecting component-to-

component communication. An example might be the Broadsheet pattern

for the layout of a WebApp home page.

• Component patterns. This level of abstraction relates to individual small-

scale elements of a WebApp. Examples include individual interaction

elements (e.g., radio buttons), navigation items (e.g., how might you format

links?) or functional elements (e.g., specific algorithms).

It is also possible to define the relevance of different patterns to different classes

of applications or domains. For example, a collection of patterns (at different levels

of design focus and granularity) might be particularly relevant to e-business.

CHAPTER 12 PATTERN-BASED DESIGN 369

pre75977_ch12.qxd 11/27/08 3:58 PM Page 369

370 PART TWO MODELING

12.7 SUMMARY

Design patterns provide a codified mechanism for describing problems and their

solution in a way that allows the software engineering community to capture design

knowledge for reuse. A pattern describes a problem, indicates the context enabling

the user to understand the environment in which the problem resides, and lists a sys-

tem of forces that indicate how the problem can be interpreted within its context and

how the solution can be applied. In software engineering work, we identify and doc-

ument generative patterns that describe an important and repeatable aspect of a sys-

tem and then provide us with a way to build that aspect within a system of forces

that is unique to a given context.

Architectural patterns describe broad-based design problems that are solved

using a structural approach. Data patterns describe recurring data-oriented prob-

lems and the data modeling solutions that can be used to solve them. Component

patterns (also referred to as design patterns) address problems associated with the

development of subsystems and components, the manner in which they communi-

cate with one another, and their placement within a larger architecture. Interface

design patterns describe common user interface problems and their solution with

a system of forces that includes the specific characteristics of end users. WebApp

patterns address a problem set that is encountered when building WebApps and of-

ten incorporates many of the other patterns categories just mentioned. A framework

Hypermedia Design Patterns Repositories

The IAWiki website (http://iawiki.net/
WebsitePatterns), a collaborative

discussion space for information architects, contains
many useful resources. Among them are links to a
number of useful hypermedia patterns catalogs and
repositories. Hundreds of design patterns are
represented:

Hypermedia Design Patterns Repository
www.designpattern.lu.unisi.ch/

InteractionPatterns by Tom Erickson
www.pliant.org/personal/Tom_Erickson/
InteractionPatterns.html

Web Design Patterns by Martijn vanWelie
www.welie.com/patterns/

Web Patterns for UI Design
http://harbinger.sims.berkeley.edu/
ui_designpatterns/webpatterns2/
webpatterns/home.php

Patterns for Personal Websites
www.rdrop.com/%7Ehalf/Creations/Writin
gs/Web.patterns/index.html

Improving Web Information Systems with Navigational
Patterns http://www8.org/w8-papers/
5b-hypertext- media/improving/
improving.html

An HTML 2.0 Pattern Language
www.anamorph.com/docs/patterns/
default.html

Common Ground—A Pattern Language for HCI Design
www.mit.edu/~jtidwell/interaction_patterns
.html

Patterns for Personal Websites www.rdrop.com/
~half/Creations/Writings/Web.patterns/
index.html

Indexing Pattern Language www.cs.brown.edu/
~rms/InformationStructures/Indexing/
Overview.html

INFO

pre75977_ch12.qxd 11/27/08 3:58 PM Page 370

http://iawiki.net/WebsitePatterns
http://iawiki.net/WebsitePatterns
http://www.designpattern.lu.unisi.ch/
http://www.pliant.org/personal/Tom_Erickson/
http://www.welie.com/patterns/
http://harbinger.sims.berkeley.edu/
http://www.rdrop.com/%7Ehalf/Creations/Writin
http://www8.org/w8-papers/
http://www.anamorph.com/docs/patterns/
http://www.mit.edu/~jtidwell/interaction_patterns
http://www.rdrop.com/
http://www.cs.brown.edu/

provides an infrastructure in which patterns may reside and idioms describe pro-

gramming language–specific implementation detail for all or part of a specific algo-

rithm or data structure. A standard form or template is used for pattern descriptions.

A pattern language encompasses a collection of patterns, each described using a

standardized template and interrelated to show how these patterns collaborate to

solve problems across an application domain.

Pattern-based design is used in conjunction with architectural, component-level,

and user interface design methods. The design approach begins with an examina-

tion of the requirements model to isolate problems, define context, and describe the

system of forces. Next, pattern languages for the problem domain are searched to

determine if patterns exist for the problems that have been isolated. Once appropri-

ate patterns have been found, they are used as a design guide.

PROBLEMS AND POINTS TO PONDER

12.1. Discuss the three “parts” of a design pattern and provide a concrete example of each from
some field other than software.

12.2. What is the difference between a nongenerative and a generative pattern?

12.3. How do architectural patterns differ from component patterns?

12.4. What is a framework and how does it differ from a pattern? What is an idiom and how
does it differ from a pattern?

12.5. Using the design pattern template presented in Section 12.1.3, develop a complete
pattern description for a pattern suggested by your instructor.

12.6. Develop a skeletal pattern language for a sport with which you are familiar. You can
begin by addressing the context, the system of forces, and the broad problems that a coach and
team must solve. You need only specify pattern names and provide a one-sentence description
for each pattern.

12.7. Find five patterns repositories and present an abbreviated description of the types of
patterns contained in each.

12.8. When Christopher Alexander says “good design cannot be achieved simply by adding
together performing parts,” what do you think he means?

12.9. Using the pattern-based design tasks noted in Section 12.2.3, develop a skeletal design
for the “interior design system” described in Section 11.3.2.

12.10. Build a pattern-organizing table for the patterns you used in Problem 12.9.

12.11. Using the design pattern template presented in Section 12.1.3, develop a complete
pattern description for the Kitchen pattern mentioned in Section 12.3.

12.12. The gang of four [Gam95] have proposed a variety of component patterns that are
applicable to object-oriented systems. Select one (these are available on the Web) and
discuss it.

12.13. Find three patterns repositories for user interface patterns. Select one pattern from each
and present an abbreviated description of it.

12.14. Find three patterns repositories for WebApp patterns. Select one pattern from each and
present an abbreviated description of it.

CHAPTER 12 PATTERN-BASED DESIGN 371

pre75977_ch12.qxd 11/27/08 3:58 PM Page 371

FURTHER READING AND INFORMATION SOURCES

Over the past decade, many books on pattern-based design have been written for software
engineers. Gamma and his colleagues [Gam95] have written the seminal book on the subject.
More recent contributions include books by Lasater (Design Patterns, Wordware Publishing, Inc.,
2007), Holzner (Design Patterns for Dummies, For Dummies, 2006), Freeman and her colleagues
(Head First Design Patterns, O’Reilly Media, Inc., 2005), and Shalloway and Trott (Design Patterns
Explained, 2d. ed., Addison-Wesley, 2004). A special issues of IEEE Software (July/August, 2007)
discusses a wide variety of software patterns topics. Kent Beck (Implementation Patterns,
Addison-Wesley, 2008) addresses patterns for coding and implementation issues that are
encountered during the construction activity.

Other books focus on design patterns as they are supplied in specific application develop-
ment and language environments. Contributions in this area include: Bowers (Pro CSS and
HTML Design Patterns, Apress, 2007), Tropashko and Burleson (SQL Design Patterns: Expert Guide
to SQL Programming, Rampant Techpress, 2007), Mahemoff (Ajax Design Patterns, O’Reilly
Media, Inc., 2006), Metsker and Wake (Design Patterns in Java, Addison-Wesley, 2006), Nilsson
(Applying Domain-Driven Design and Patterns: With Examples in C# and .NET, Addison-Wesley,
2006), Sweat (PHPArchitect’s Guide to PHP Design Patterns, Marco Tabini & Associates, Inc.,
2005), Metsker (Design Patterns C#, Addison-Wesley, 2004), Grand and Merrill (Visual Basic .NET
Design Patterns, Wiley, 2003), Crawford and Kaplan (J2EE Design Patterns, O’Reilly Media, Inc.,
2003), Juric et al. (J2EE Design Patterns Applied, Wrox Press, 2002), and Marinescu and Roman
(EJB Design Patterns, Wiley, 2002).

Still other books address specific application domains. These include contributions by
Kuchana (Software Architecture Design Patterns in Java, Auerbach, 2004), Joshi (C�� Design
Patterns and Derivatives Pricing, Cambridge University Press, 2004), Douglass (Real-Time Design
Patterns, Addison-Wesley, 2002), and Schmidt and Rising (Design Patterns in Communication
Software, Cambridge University Press, 2001).

Classic books by the architect Christopher Alexander (Notes on the Synthesis of Form, Harvard
University Press, 1964, and A Pattern Language: Towns, Buildings, Construction, Oxford Univer-
sity Press, 1977) are worthwhile reading for a software designer who intends to fully understand
design patterns.

A wide variety of information sources on pattern-based design are available on the Internet.
An up-to-date list of World Wide Web references that are relevant to pattern-based design can
be found at the SEPA website: www.mhhe.com/engcs/compsci/pressman/professional/
olc/ser.htm.

372 PART TWO MODELING

pre75977_ch12.qxd 11/27/08 3:58 PM Page 372

http://www.mhhe.com/engcs/compsci/pressman/professional/

In his authoritative book on Web design, Jakob Nielsen [Nie00] states: “There
are essentially two basic approaches to design: the artistic ideal of expressing
yourself and the engineering ideal of solving a problem for a customer.” Dur-

ing the first decade of Web development, the artistic idea was the approach that
many developers chose. Design occurred in an ad hoc manner and was usually
conducted as HTML was generated. Design evolved out of an artistic vision that
evolved as WebApp construction occurred.

Even today, many Web developers use WebApps as poster children for “limited
design.” They argue that WebApp immediacy and volatility mitigate against
formal design; that design evolves as an application is built (coded), and that
relatively little time should be spent on creating a detailed design model. This
argument has merit, but only for relatively simple WebApps. When content and

373

C H A P T E R

13WEBAPP DESIGN

What is it? Design for WebApps
encompasses technical and nontech-
nical activities that include: establish-
ing the look and feel of the WebApp,

creating the aesthetic layout of the user inter-
face, defining the overall architectural structure,
developing the content and functionality that
reside within the architecture, and planning the
navigation that occurs within the WebApp.

Who does it? Web engineers, graphic designers,
content developers, and other stakeholders all
participate in the creation of a WebApp design
model.

Why is it important? Design allows you to create
a model that can be assessed for quality and
improved before content and code are gener-
ated, tests are conducted, and end users become
involved in large numbers. Design is the place
where WebApp quality is established.

What are the steps? WebApp design encom-
passes six major steps that are driven by informa-
tion obtained during requirements modeling.
Content design uses the content model (developed
during analysis) as the basis for establishing

Q U I C K
L O O K

the design of content objects. Aesthetic design
(also called graphic design) establishes the look
and feel that the end user sees. Architectural
design focuses on the overall hypermedia struc-
ture of all content objects and functions.
Interface design establishes the layout and inter-
action mechanisms that define the user interface.
Navigation design defines how the end user
navigates through the hypermedia structure,
and component design represents the detailed
internal structure of functional elements of the
WebApp.

What is the work product? A design model that
encompasses content, aesthetics, architecture,
interface, navigation, and component-level de-
sign issues is the primary work product that is
produced during WebApp design.

How do I ensure that I’ve done it right? Each
element of the design model is reviewed in an
effort to uncover errors, inconsistencies, or omis-
sions. In addition, alternative solutions are con-
sidered, and the degree to which the current
design model will lead to an effective implemen-
tation is also assessed.

K E Y
C O N C E P T S

content
architecture . . .384
objects 382

design
aesthetic 380
architectural . . .383
component-
level 390
content 382
goals 377
graphic381
navigation 388

pre75977_ch13.qxd 11/27/08 5:47 PM Page 373

function are complex; when the size of the WebApp encompasses hundreds or thou-
sands of content objects, functions, and analysis classes; and when the success of
the WebApp will have a direct impact on the success of the business, design cannot
and should not be taken lightly.

This reality leads us to Nielsen’s second approach—“the engineering ideal of solv-
ing a problem for a customer.” Web engineering1 adopts this philosophy, and a more
rigorous approach to WebApp design enables developers to achieve it.

374 PART TWO MODELING

pyramid 378
quality 374

MVC
architecture 386
OOHDM 390
WebApp
architecture 386

1 Web engineering [Pre08] is an adapted version of the software engineering approach that is pre-
sented throughout this book. It proposes an agile, yet disciplined framework for building industry-
quality Web-based systems and applications.

2 These quality attributes are quite similar to those presented in Chapters 8 and 14. The implication:
quality characteristics are universal for all software.

13.1 WEBAPP DESIGN QUALITY

Design is the engineering activity that leads to a high-quality product. This leads us

to a recurring question that is encountered in all engineering disciplines: What

is quality? In this section I’ll examine the answer within the context of WebApp

development.

Every person who has surfed the Web or used a corporate Intranet has an opin-

ion about what makes a “good” WebApp. Individual viewpoints vary widely. Some

users enjoy flashy graphics; others want simple text. Some demand copious

information; others desire an abbreviated presentation. Some like sophisticated an-

alytical tools or database access; others like to keep it simple. In fact, the user’s per-

ception of “goodness” (and the resultant acceptance or rejection of the WebApp as a

consequence) might be more important than any technical discussion of WebApp

quality.

But how is WebApp quality perceived? What attributes must be exhibited to

achieve goodness in the eyes of end users and at the same time exhibit the techni-

cal characteristics of quality that will enable you to correct, adapt, enhance, and sup-

port the application over the long term?

In reality, all of the technical characteristics of design quality discussed in Chapter 8

and the generic quality attributes presented in Chapter 14 apply to WebApps. How-

ever, the most relevant of these generic attributes—usability, functionality, reliabil-

ity, efficiency, and maintainability—provide a useful basis for assessing the quality of

Web-based systems.

Olsina and his colleagues [Ols99] have prepared a “quality requirement tree” that

identifies a set of technical attributes—usability, functionality, reliability, efficiency,

and maintainability—that lead to high-quality WebApps.2 Figure 13.1 summarizes

their work. The criteria noted in the figure are of particular interest if you design,

build, and maintain WebApps over the long term.

uote:

“If products are
designed to better
fit the natural
tendencies of
human behavior,
then people will
be more satisfied,
more fulfilled, and
more productive.”

Susan
Weinschenk

pre75977_ch13.qxd 11/27/08 5:47 PM Page 374

Offutt [Off02] extends the five major quality attributes noted in Figure 13.1 by

adding the following attributes:

Security. WebApps have become heavily integrated with critical corporate and

government databases. E-commerce applications extract and then store sensitive

customer information. For these and many other reasons, WebApp security is para-

mount in many situations. The key measure of security is the ability of the WebApp

and its server environment to rebuff unauthorized access and/or thwart an outright

malevolent attack. A detailed discussion of WebApp security is beyond the scope of

this book. If you have further interest, see [Vac06], [Kiz05], or [Kal03].

Availability. Even the best WebApp will not meet users’ needs if it is unavailable.

In a technical sense, availability is the measure of the percentage of time that a

WebApp is available for use. The typical end user expects WebApps to be available

24/7/365. Anything less is deemed unacceptable.3 But “up-time” is not the only in-

dicator of availability. Offutt [Off02] suggests that “using features available on only

one browser or one platform” makes the WebApp unavailable to those with a differ-

ent browser/platform configuration. The user will invariably go elsewhere.

Scalability. Can the WebApp and its server environment be scaled to handle 100,

1000, 10,000, or 100,000 users? Will the WebApp and the systems with which it is

interfaced handle significant variation in volume or will responsiveness drop dra-

matically (or cease altogether)? It is not enough to build a WebApp that is successful.

It is equally important to build a WebApp that can accommodate the burden of suc-

cess (significantly more end users) and become even more successful.

CHAPTER 13 WEBAPP DESIGN 375

Web
application

quality

Usability

Global site understandability
Online feedback and help features
Interface and aesthetic features
Special features

Searching and retrieving capability
Navigation and browsing features
Application domain-related features

Correct link processing
Error recovery
User input validation and recovery

Ease of correction
Adaptability
Extensibility

Response time performance
Page generation speed
Graphics generation speed

Functionality

Reliability

Efficiency

Maintainability

FIGURE 13.1

Quality
requirements
tree.
Source: [Ols99].

What are
the major

attributes of
quality for
WebApps?

?

3 This expectation is, of course, unrealistic. Major WebApps must schedule “downtime” for fixes and
upgrades.

pre75977_ch13.qxd 11/27/08 5:47 PM Page 375

Time-to-market. Although time-to-market is not a true quality attribute in the

technical sense, it is a measure of quality from a business point of view. The first

WebApp to address a specific market segment often captures a disproportionate

number of end users.

376 PART TWO MODELING

The following checklist, adapted from
information presented at Webreference.com,

provides a set of questions that will help both Web
designers and end users assess overall WebApp quality:

• Can content and/or function and/or navigation options
be tailored to the user’s preferences?

• Can content and/or functionality be customized to the
bandwidth at which the user communicates?

• Have graphics and other nontext media been used
appropriately? Are graphics file sizes optimized for
display efficiency?

• Are tables organized and sized in a manner that makes
them understandable and displayed efficiently?

• Is HTML optimized to eliminate inefficiencies?
• Is the overall page design easy to read and navigate?
• Do all pointers provide links to information that is of

interest to users?
• Is it likely that most links have persistence on the

Web?
• Is the WebApp instrumented with site management

utilities that include tools for usage tracking, link testing,
local searching, and security?

INFO

WebApp Design—Quality Checklist

Billions of Web pages are available for those in search of information. Even well-

targeted Web searches result in an avalanche of content. With so many sources

of information to choose from, how does the user assess the quality (e.g., veracity,

accuracy, completeness, timeliness) of the content that is presented within a WebApp?

Tillman [Til00] suggests a useful set of criteria for assessing the quality of content:

• Can the scope and depth of content be easily determined to ensure that it

meets the user’s needs?

• Can the background and authority of the content’s authors be easily identified?

• Is it possible to determine the currency of the content, the last update, and

what was updated?

• Are the content and its location stable (i.e., will they remain at the referenced

URL)?

In addition to these content-related questions, the following might be added:

• Is content credible?

• Is content unique? That is, does the WebApp provide some unique benefit to

those who use it?

• Is content valuable to the targeted user community?

• Is content well organized? Indexed? Easily accessible?

The checklists noted in this section represent only a small sampling of the issues that

should be addressed as the design of a WebApp evolves.

What should
we consider

when assessing
content quality?

?

pre75977_ch13.qxd 11/27/08 5:47 PM Page 376

13.2 DESIGN GOALS

In her regular column on Web design, Jean Kaiser [Kai02] suggests a set of design

goals that are applicable to virtually every WebApp regardless of application domain,

size, or complexity:

Simplicity. Although it may seem old-fashioned, the aphorism “all things in mod-

eration” applies to WebApps. There is a tendency among some designers to provide

the end user with “too much”—exhaustive content, extreme visuals, intrusive ani-

mation, enormous Web pages, the list is long. Better to strive for moderation and

simplicity.

Content should be informative but succinct and should use a delivery mode

(e.g., text, graphics, video, audio) that is appropriate to the information that is being

delivered. Aesthetics should be pleasing, but not overwhelming (e.g., too many colors

tend to distract the user rather than enhancing the interaction). Architecture should

achieve WebApp objectives in the simplest possible manner. Navigation should be

straightforward and navigation mechanisms should be intuitively obvious to the end

user. Functions should be easy to use and easier to understand.

Consistency. This design goal applies to virtually every element of the design

model. Content should be constructed consistently (e.g., text formatting and font

styles should be the same across all text documents; graphic art should have a con-

sistent look, color scheme, and style). Graphic design (aesthetics) should present a

consistent look across all parts of the WebApp. Architectural design should establish

templates that lead to a consistent hypermedia structure. Interface design should de-

fine consistent modes of interaction, navigation, and content display. Navigation

mechanisms should be used consistently across all WebApp elements. As Kaiser

[Kai02] notes: “Remember that to a visitor, a Web site is a physical place. It is con-

fusing if pages within a site are not consistent in design.“

Identity. The aesthetic, interface, and navigational design of a WebApp must be

consistent with the application domain for which it is to be built. A website for a hip-

hop group will undoubtedly have a different look and feel than a WebApp designed

for a financial services company. The WebApp architecture will be entirely different,

interfaces will be constructed to accommodate different categories of users; naviga-

tion will be organized to accomplish different objectives. You (and other design con-

tributors) should work to establish an identity for the WebApp through the design.

Robustness. Based on the identity that has been established, a WebApp often

makes an implicit “promise” to a user. The user expects robust content and functions

that are relevant to the user’s needs. If these elements are missing or insufficient, it

is likely that the WebApp will fail.

Navigability. I have already noted that navigation should be simple and consis-

tent. It should also be designed in a manner that is intuitive and predictable. That is,

CHAPTER 13 WEBAPP DESIGN 377

uote:

“Just because you
can, doesn’t mean
you should.”

Jean Kaiser

uote:

“To some, Web
design focuses on
visual look and
feel . . . To others,
Web design is
about structuring
information and
navigation through
the document
space. Others might
even consider Web
design to be about
the technology . . .
In reality, design
includes all of these
things and maybe
more.”

Thomas Powell

pre75977_ch13.qxd 11/27/08 5:47 PM Page 377

the user should understand how to move about the WebApp without having to

search for navigation links or instructions. For example, if a field of graphic icons or

images contains selected icons or images that will be used as navigation mecha-

nisms, these must be identified visually. Nothing is more frustrating than trying to

find the appropriate live link among many graphical images.

It is also important to position links to major WebApp content and functions in a

predictable location on every Web page. If page scrolling is required (and this is often

the case), links at the top and bottom of the page make the user’s navigation tasks

easier.

Visual Appeal. Of all software categories, Web applications are unquestionably

the most visual, the most dynamic, and the most unapologetically aesthetic. Beauty

(visual appeal) is undoubtedly in the eye of the beholder, but many design charac-

teristics (e.g., the look and feel of content; interface layout; color coordination; the

balance of text, graphics, and other media; navigation mechanisms) do contribute to

visual appeal.

Compatibility. A WebApp will be used in a variety of environments (e.g., different

hardware, Internet connection types, operating systems, browsers) and must be

designed to be compatible with each.

13.3 A DESIGN PYRAMID FOR WEBAPPS

What is WebApp design? This simple question is more difficult to answer than one

might believe. In our book [Pre08] on Web engineering, David Lowe and I discuss this

when we write:

The creation of an effective design will typically require a diverse set of skills. Sometimes,

for small projects, a single developer may need to be multi-skilled. For larger projects, it

may be advisable and/or feasible to draw on the expertise of specialists: Web engineers,

graphic designers, content developers, programmers, database specialists, information

architects, network engineers, security experts, and testers. Drawing on these diverse

skills allows the creation of a model that can be assessed for quality and improved before

content and code are generated, tests are conducted, and end-users become involved in

large numbers. If analysis is where WebApp quality is established, then design is where the

quality is truly embedded.

The appropriate mix of design skills will vary depending upon the nature of the

WebApp. Figure 13.2 depicts a design pyramid for WebApps. Each level of the pyra-

mid represents a design action that is described in the sections that follow.

13.4 WEBAPP INTERFACE DESIGN

When a user interacts with a computer-based system, a set of fundamental

principles and overriding design guidelines apply. These have been discussed in

378 PART TWO MODELING

uote:

“If a site is
perfectly usable
but it lacks an
elegant and
appropriate design
style, it will fail.”

Curt Cloninger

pre75977_ch13.qxd 11/27/08 5:47 PM Page 378

Chapter 11.4 Although WebApps present a few special user interface design chal-

lenges, the basic principles and guidelines are applicable.

One of the challenges of interface design for WebApps is the indeterminate nature

of the user’s entry point. That is, the user may enter the WebApp at a “home” loca-

tion (e.g., the home page) or may be linked into some lower level of the WebApp

architecture. In some cases, the WebApp can be designed in a way that reroutes the

user to a home location, but if this is undesirable, the WebApp design must provide

interface navigation features that accompany all content objects and are available

regardless of how the user enters the system.

The objectives of a WebApp interface are to: (1) establish a consistent window

into the content and functionality provided by the interface, (2) guide the user

through a series of interactions with the WebApp, and (3) organize the navigation

options and content available to the user. To achieve a consistent interface, you

should first use aesthetic design (Section 13.5) to establish a coherent “look.” This

encompasses many characteristics, but must emphasize the layout and form of nav-

igation mechanisms. To guide user interaction, you may draw on an appropriate

metaphor5 that enables the user to gain an intuitive understanding of the interface.

To implement navigation options, you can select from one of a number of interac-

tion mechanisms:

• Navigation menus—keyword menus (organized vertically or horizontally) that

list key content and/or functionality. These menus may be implemented so

CHAPTER 13 WEBAPP DESIGN 379

Interface
design

Aesthetic design

Content design

Navigation design

Architecture design

Component design

user

technology

FIGURE 13.2

A design
pyramid for
WebApps

4 Section 11.5 is dedicated to WebApp interface design. If you have not already done so, read it at
this time.

5 In this context, a metaphor is a representation (drawn from the user’s real-world experience) that
can be modeled within the context of the interface. A simple example might be a slider switch that
is used to control the auditory volume of an .mpg file.

pre75977_ch13.qxd 11/27/08 5:47 PM Page 379

that the user can choose from a hierarchy of subtopics that is displayed when

the primary menu option is selected.

• Graphic icons—button, switches, and similar graphical images that enable the

user to select some property or specify a decision.

• Graphic images—some graphical representation that is selectable by the user

and implements a link to a content object or WebApp functionality.

It is important to note that one or more of these control mechanisms should be

provided at every level of the content hierarchy.

13.5 AESTHETIC DESIGN

Aesthetic design, also called graphic design, is an artistic endeavor that complements

the technical aspects of WebApp design. Without it, a WebApp may be functional, but

unappealing. With it, a WebApp draws its users into a world that embraces them on

a visceral, as well as an intellectual level.

But what is aesthetic? There is an old saying, “beauty exists in the eye of the be-

holder.” This is particularly appropriate when aesthetic design for WebApps is con-

sidered. To perform effective aesthetic design, return to the user hierarchy developed

as part of the requirements model (Chapter 5) and ask, Who are the WebApp’s users

and what “look” do they desire?

13.5.1 Layout Issues

Every Web page has a limited amount of “real estate” that can be used to support non-

functional aesthetics, navigation features, informational content, and user-directed

functionality. The development of this real estate is planned during aesthetic design.

Like all aesthetic issues, there are no absolute rules when screen layout is de-

signed. However, a number of general layout guidelines are worth considering:

Don’t be afraid of white space. It is inadvisable to pack every square

inch of a Web page with information. The resulting clutter makes it difficult

for the user to identify needed information or features and create visual

chaos that is not pleasing to the eye.

Emphasize content. After all, that’s the reason the user is there. Nielsen

[Nie00] suggests that the typical Web page should be 80 percent content with

the remaining real estate dedicated to navigation and other features.

Organize layout elements from top-left to bottom-right. The vast

majority of users will scan a Web page in much the same way as they scan

the page of a book—top-left to bottom-right.6 If layout elements have specific

380 PART TWO MODELING

What
interaction

mechanisms are
available to
WebApp
designers?

?

Not every Web
engineer (or

software engineer) has
artistic (aesthetic)
talent. If you fall into
this category, hire an
experienced graphic
designer for aesthetic
design work.

?

uote:

“We find that
people quickly
evaluate a site by
visual design
alone.”

Stanford
Guidelines for
Web Credibility

6 There are exceptions that are cultural and language-based, but this rule does hold for most users.

pre75977_ch13.qxd 11/27/08 5:47 PM Page 380

priorities, high-priority elements should be placed in the upper-left portion of

the page real estate.

Group navigation, content, and function geographically within the

page. Humans look for patterns in virtually all things. If there are no dis-

cernable patterns within a Web page, user frustration is likely to increase

(due to unnecessary searching for needed information).

Don’t extend your real estate with the scrolling bar. Although scroll-

ing is often necessary, most studies indicate that users would prefer not to

scroll. It is better to reduce page content or to present necessary content on

multiple pages.

Consider resolution and browser window size when designing layout.

Rather than defining fixed sizes within a layout, the design should specify all

layout items as a percentage of available space [Nie00].

13.5.2 Graphic Design Issues

Graphic design considers every aspect of the look and feel of a WebApp. The

graphic design process begins with layout (Section 13.5.1) and proceeds into a con-

sideration of global color schemes; text types, sizes, and styles; the use of supple-

mentary media (e.g., audio, video, animation); and all other aesthetic elements of

an application.

Acomprehensivediscussionofgraphicdesign issues forWebApps isbeyondthescope

of this book. You can obtain design tips and guidelines from many websites that are

dedicated to the subject (e.g., www.graphic-design.com, www.grantasticdesigns
.com, www.wpdfd.com) or from one or more print resources (e.g., [Roc06] and

[Gor02]).

CHAPTER 13 WEBAPP DESIGN 381

Well-Designed Websites
Sometimes, the best way to understand good

WebApp design is to look at a few examples. In
his article, “The Top Twenty Web Design Tips,” Marcelle
Toor (www.graphic-design.com/Web/feature/
tips.html) suggests the following websites as examples of
good graphic design:

www.creativepro.com/designresource/home/
787.html—a design firm headed by Primo Angeli

www.workbook.com—this site showcases work by
illustrators and designers

www.pbs.org/riverofsong—a television series for
public TV and radio about American music

www.RKDINC.com—a design firm with online
portfolio and good design tips

www.creativehotlist.com/index.html—a good
source for well-designed sites developed by ad
agencies, graphics arts firms, and other
communications specialists

www.btdnyc.com—a design firm headed by Beth
Toudreau

INFO

Users tend to tolerate
vertical scrolling more
readily than horizontal
scrolling. Avoid wide
page formats.

pre75977_ch13.qxd 11/27/08 5:47 PM Page 381

http://www.graphic-design.com
http://www.grantasticdesigns
http://www.wpdfd.com
http://www.graphic-design.com/Web/feature/tips.html
http://www.graphic-design.com/Web/feature/tips.html
http://www.creativepro.com/designresource/home/
http://www.workbook.com%E2%80%94this
http://www.pbs.org/riverofsong%E2%80%94a
http://www.RKDINC.com%E2%80%94a
http://www.creativehotlist.com/index.html%E2%80%94a
http://www.btdnyc.com%E2%80%94a

13.6 CONTENT DESIGN

Content design focuses on two different design tasks, each addressed by individuals

with different skill sets. First, a design representation for content objects and the mech-

anisms required to establish their relationship to one another is developed. In addition,

the information within a specific content object is created. The latter task may be con-

ducted by copywriters, graphic designers, and others who generate the content to be

used within a WebApp.

13.6.1 Content Objects

The relationship between content objects defined as part of a requirements model

for the WebApp and design objects representing content is analogous to the rela-

tionship between analysis classes and design components described in earlier chap-

ters. In the context of WebApp design, a content object is more closely aligned with

a data object for traditional software. A content object has attributes that include

content-specific information (normally defined during WebApp requirements mod-

eling) and implementation-specific attributes that are specified as part of design.

As an example, consider an analysis class, ProductComponent, developed for

the SafeHome e-commerce system. The analysis class attribute, description, is repre-

sented as a design class named CompDescription composed of five content objects:

MarketingDescription, Photograph, TechDescription, Schematic, and Video

shown as shaded objects noted in Figure 13.3. Information contained within the con-

tent object is noted as attributes. For example, Photograph (a .jpg image) has the at-

tributes horizontal dimension, vertical dimension, and border style.

UML association and an aggregation7 may be used to represent relationships

between content objects. For example, the UML association shown in Figure 13.3

indicates that one CompDescription is used for each instance of the

ProductComponent class. CompDescription is composed on the five content ob-

jects shown. However, the multiplicity notation shown indicates that Schematic and

Videoare optional (0 occurrences are possible), oneMarketingDescriptionand one

TechDescription are required, and one or more instances of Photograph are used.

13.6.2 Content Design Issues

Once all content objects are modeled, the information that each object is to deliver

must be authored and then formatted to best meet the customer’s needs. Content au-

thoring is the job of specialists in the relevant area who design the content object by

providing an outline of information to be delivered and an indication of the types of

generic content objects (e.g., descriptive text, graphic images, photographs) that will

be used to deliver the information. Aesthetic design (Section 13.5) may also be

applied to represent the proper look and feel for the content.

382 PART TWO MODELING

uote:

“Good designers
can create
normalcy out
of chaos; they
can clearly
communicate ideas
through the
organizing and
manipulating of
words and
pictures.”

Jeffery Veen

7 Both of these representations are discussed in Appendix 1.

pre75977_ch13.qxd 11/27/08 5:47 PM Page 382

As content objects are designed, they are “chunked” [Pow02] to form WebApp

pages. The number of content objects incorporated into a single page is a function

of user needs, constraints imposed by download speed of the Internet connection,

and restrictions imposed by the amount of scrolling that the user will tolerate.

13.7 ARCHITECTURE DESIGN

Architecture design is tied to the goals established for a WebApp, the content to be

presented, the users who will visit, and the navigation philosophy that has been

established. As an architectural designer, you must identify content architecture and

WebApp architecture. Content architecture8 focuses on the manner in which content

objects (or composite objects such as Web pages) are structured for presentation and

navigation. WebApp architecture addresses the manner in which the application is

structured to manage user interaction, handle internal processing tasks, effect nav-

igation, and present content.

In most cases, architecture design is conducted in parallel with interface design,

aesthetic design, and content design. Because the WebApp architecture may have a

CHAPTER 13 WEBAPP DESIGN 383

ProductComponent

partNumber
partName
partType
description
price

createNewItem()
displayDescription()
display TechSpec

MarketingDescription

text color
font style
font size
line spacing
text usage size
background color

Photograph

horizontal dimension
vertical dimension
border style

Schematic

horizontal dimension
vertical dimension
border style

TechDescription

text color
font style
font size
line spacing
text image size
background color

Video

horizontal dimension
vertical dimension
border style
audio volume

CompDescription

1

1

1

1

Is part of

0..1

0..1 0..11 1..*

Sensor Camera Control Panel SoftFeature

FIGURE 13.3

Design repre-
sentation of
content objects

uote:

“. . . the
architectural
structure of a well
designed site is not
always apparent to
the user—nor
should it be.”

Thomas Powell

8 The term information architecture is also used to connote structures that lead to better organization,
labeling, navigation, and searching of content objects.

pre75977_ch13.qxd 11/27/08 5:47 PM Page 383

strong influence on navigation, the decisions made during this design action will

influence work conducted during navigation design.

13.7.1 Content Architecture

The design of content architecture focuses on the definition of the overall hyperme-

dia structure of the WebApp. Although custom architectures are sometimes created,

you always have the option of choosing from four different content structures

[Pow00]:

Linear structures (Figure 13.4) are encountered when a predictable sequence of in-

teractions (with some variation or diversion) is common. A classic example might be

a tutorial presentation in which pages of information along with related graphics,

short videos, or audio are presented only after prerequisite information has been

presented. The sequence of content presentation is predefined and generally linear.

Another example might be a product order entry sequence in which specific infor-

mation must be specified in a specific order. In such cases, the structures shown in

Figure 13.4 are appropriate. As content and processing become more complex, the

purely linear flow shown on the left of the figure gives way to more sophisticated lin-

ear structures in which alternative content may be invoked or a diversion to acquire

complementary content (structure shown on the right side of Figure 13.4) occurs.

Grid structures (Figure 13.5) are an architectural option that you can apply when

WebApp content can be organized categorically in two (or more) dimensions. For

example, consider a situation in which an e-commerce site sells golf clubs. The hori-

zontal dimension of the grid represents the type of club to be sold (e.g., woods, irons,

wedges, putters). The vertical dimension represents the offerings provided by vari-

ous golf club manufacturers. Hence, a user might navigate the grid horizontally to

find the putters column and then vertically to examine the offerings provided by

384 PART TWO MODELING

What types
of content

architectures are
commonly
encountered?

?

Linear Linear
with

optional flow

Linear
with

diversions

FIGURE 13.4

Linear
structures

pre75977_ch13.qxd 11/27/08 5:47 PM Page 384

those manufacturers that sell putters. This WebApp architecture is useful only when

highly regular content is encountered [Pow00].

Hierarchical structures (Figure 13.6) are undoubtedly the most common WebApp

architecture. Unlike the partitioned software hierarchies discussed in Chapter 9 that

encourage flow of control only along vertical branches of the hierarchy, a WebApp

hierarchical structure can be designed in a manner that enables (via hypertext branch-

ing) flow of control horizontally across vertical branches of the structure. Hence, con-

tent presented on the far left-hand branch of the hierarchy can have hypertext links

that lead directly to content that exists in the middle or right-hand branch of the

structure. It should be noted, however, that although such branching allows rapid nav-

igation across WebApp content, it can lead to confusion on the part of the user.

A networked or “pure web” structure (Figure 13.7) is similar in many ways to the

architecture that evolves for object-oriented systems. Architectural components

CHAPTER 13 WEBAPP DESIGN 385

FIGURE 13.5

Grid structure

FIGURE 13.6

Hierarchical
structure

pre75977_ch13.qxd 11/27/08 5:47 PM Page 385

(in this case, Web pages) are designed so that they may pass control (via hypertext

links) to virtually every other component in the system. This approach allows con-

siderable navigation flexibility, but at the same time, can be confusing to a user.

The architectural structures discussed in the preceding paragraphs can be com-

bined to form composite structures. The overall architecture of a WebApp may be

hierarchical, but part of the structure may exhibit linear characteristics, while

another part of the architecture may be networked. Your goal as an architectural

designer is to match the WebApp structure to the content to be presented and the

processing to be conducted.

13.7.2 WebApp Architecture

WebApp architecture describes an infrastructure that enables a Web-based system or

application to achieve its business objectives. Jacyntho and his colleagues [Jac02b]

describe the basic characteristics of this infrastructure in the following manner:

Applications should be built using layers in which different concerns are taken into

account; in particular, application data should be separated from the page’s contents

(navigation nodes) and these contents, in turn, should be clearly separated from the

interface look-and-feel (pages).

The authors suggest a three-layer design architecture that decouples interface from

navigation and from application behavior. They argue that keeping interface, appli-

cation, and navigation separate simplifies implementation and enhances reuse.

The Model-View-Controller (MVC) architecture [Kra88]9 is one of a number of

suggested WebApp infrastructure models that decouple the user interface from the

386 PART TWO MODELING

FIGURE 13.7

Network
structure

9 It should be noted that MVC is actually an architectural design pattern developed for the Smalltalk
environment (see www.cetus-links.org/oo_smalltalk.html) and can be used for any interactive
application.

pre75977_ch13.qxd 11/27/08 5:47 PM Page 386

http://www.cetus-links.org/oo_smalltalk.html

WebApp functionality and informational content. The model (sometimes referred to

as the “model object”) contains all application-specific content and processing logic,

including all content objects, access to external data/information sources, and all

processing functionality that is application specific. The view contains all interface-

specific functions and enables the presentation of content and processing logic, in-

cluding all content objects, access to external data/information sources, and all

processing functionality required by the end user. The controller manages access

to the model and the view and coordinates the flow of data between them. In a

WebApp, “the view is updated by the controller with data from the model based on

user input” [WMT02]. A schematic representation of the MVC architecture is shown

in Figure 13.8.

Referring to the figure, user requests or data are handled by the controller. The con-

troller also selects the view object that is applicable based on the user request. Once

the type of request is determined, a behavior request is transmitted to the model,

which implements the functionality or retrieves the content required to accommodate

the request. The model object can access data stored in a corporate database, as part

of a local data store, or as a collection of independent files. The data developed by the

model must be formatted and organized by the appropriate view object and then

transmitted from the application server back to the client-based browser for display

on the customer’s machine.

In many cases, WebApp architecture is defined within the context of the develop-

ment environment in which the application is to be implemented. If you have further

interest, see [Fow03] for a discussion of development environments and their role in

the design of Web application architectures.

CHAPTER 13 WEBAPP DESIGN 387

The MVC architecture
decouples the user
interface from WebApp
functionality and
information content.

Browser

Client

HTML data

User
request
or data

Controller
Manages user requests
Selects model behavior
Selects view response

View
Prepares data from model
Request updates from model
Presents view selected by
controller

Model
Encapsulates functionality
Encapsulates content objects
Incorporates all WebApp states

View selection

Behavior request
(state change)

Update request

Server

External data

Data from
model

FIGURE 13.8

The MVC
Architecture
Source: Adapted from
[Jac02].

pre75977_ch13.qxd 11/27/08 5:47 PM Page 387

13.8 NAVIGATION DESIGN

Once the WebApp architecture has been established and the components (pages,

scripts, applets, and other processing functions) of the architecture have been iden-

tified, you must define navigation pathways that enable users to access WebApp

content and functions. To accomplish this, you should (1) identify the semantics of

navigation for different users of the site, and (2) define the mechanics (syntax) of

achieving the navigation.

13.8.1 Navigation Semantics

Like many WebApp design actions, navigation design begins with a consideration of

the user hierarchy and related use cases (Chapter 5) developed for each category

of user (actor). Each actor may use the WebApp somewhat differently and therefore

have different navigation requirements. In addition, the use cases developed for

each actor will define a set of classes that encompass one or more content objects

or WebApp functions. As each user interacts with the WebApp, she encounters a

series of navigation semantic units (NSUs)—“a set of information and related naviga-

tion structures that collaborate in the fulfillment of a subset of related user

requirements” [Cac02].

An NSU is composed of a set of navigation elements called ways of navigating

(WoN) [Gna99]. A WoN represents the best navigation pathway to achieve a naviga-

tional goal for a specific type of user. Each WoN is organized as a set of navigational

nodes (NN) that are connected by navigational links. In some cases, a navigational

link may be another NSU. Therefore, the overall navigation structure for a WebApp

may be organized as a hierarchy of NSUs.

To illustrate the development of an NSU, consider the use case Select SafeHome

Components:

Use Case: Select SafeHome Components

The WebApp will recommend product components (e.g., control panels, sensors, cam-

eras) and other features (e.g., PC-based functionality implemented in software) for each

room and exterior entrance. If I request alternatives, the WebApp will provide them, if

they exist. I will be able to get descriptive and pricing information for each product

component. The WebApp will create and display a bill-of-materials as I select various

components. I’ll be able to give the bill-of-materials a name and save it for future

reference (see use case Save Configuration).

The underlined items in the use-case description represent classes and content objects

that will be incorporated into one or more NSUs that will enable a new customer to

perform the scenario described in the Select SafeHome Components use case.

Figure 13.9 depicts a partial semantic analysis of the navigation implied by

the Select SafeHome Components use case. Using the terminology intro-

duced earlier, the figure also represents a way of navigating (WoN) for the

388 PART TWO MODELING

uote:

“Just wait, Gretel,
until the moon
rises, and then we
shall see the
crumbs of bread
which I have
strewn about, they
will show us our
way home again.”

Hansel and
Gretel

An NSU describes
the navigation
requirements for each
use case. In essence,
the NSU shows how
an actor moves
between content
objects or WebApp
functions.

pre75977_ch13.qxd 11/27/08 5:47 PM Page 388

SafeHomeAssured.com WebApp. Important problem domain classes are shown

along with selected content objects (in this case the package of content objects

named CompDescription, an attribute of the ProductComponent class). These items

are navigation nodes. Each of the arrows represents a navigation link10 and is

labeled with the user-initiated action that causes the link to occur.

You can create an NSU for each use case associated with each user role. For

example, a new customer for SafeHomeAssured.com may have three different

use cases, all resulting in access to different information and WebApp functions. An

NSU is created for each goal.

During the initial stages of navigation design, the WebApp content architecture is

assessed to determine one or more WoN for each use case. As noted earlier, a WoN

identifies navigation nodes (e.g., content) and then links that enable navigation

between them. The WoN are then organized into NSUs.

13.8.2 Navigation Syntax

As design proceeds, your next task is to define the mechanics of navigation. A num-

ber of options are available as you develop an approach for implementing each NSU:

• Individual navigation link—includes text-based links, icons, buttons and

switches, and graphical metaphors. You must choose navigation links that

are appropriate for the content and consistent with the heuristics that lead to

high-quality interface design.

• Horizontal navigation bar—lists major content or functional categories in a

bar containing appropriate links. In general, between four and seven cate-

gories are listed.

CHAPTER 13 WEBAPP DESIGN 389

<<navigation link>>
select Room

<<navigation link>>
view BillOfMaterials

<<navigation link>>
return to Room

<<navigation link>>
purchase ProductComponent

<<navigation link>>
recommend component(s)

<<navigation link>>
request alternative

<<navigation link>>
show ProductComponent

<<navigation link>>
show description<<navigation link>>

purchase ProductComponent

Room

BillOfMaterials

ProductComponent

CompDescription

techDescription photograph

schematic video

MarketingDescription

FIGURE 13.9

Creating an
NSU

uote:

”The problem of
Web site navigation
is conceptual,
technical, spatial,
philosophical and
logistic.
Consequently,
solutions tend to
call for complex
improvisational
combinations of
art, science and
organizational
psychology.”

Tim Horgan

10 These are sometimes referred to as navigation semantic links (NSL) [Cac02].

In most situations,
choose either hori-
zontal or vertical navi-
gation mechanisms,
but not both.

pre75977_ch13.qxd 11/27/08 5:47 PM Page 389

• Vertical navigation column—(1) lists major content or functional categories, or

(2) lists virtually all major content objects within the WebApp. If you choose

the second option, such navigation columns can “expand” to present content

objects as part of a hierarchy (i.e., selecting an entry in the original column

causes an expansion that lists a second layer of related content objects).

• Tabs—a metaphor that is nothing more than a variation of the navigation bar

or column, representing content or functional categories as tab sheets that

are selected when a link is required.

• Site maps—provide an all-inclusive table of contents for navigation to all

content objects and functionality contained within the WebApp.

In addition to choosing the mechanics of navigation, you should also establish

appropriate navigation conventions and aids. For example, icons and graphical links

should look “clickable” by beveling the edges to give the image a three-dimensional

look. Audio or visual feedback should be designed to provide the user with an indi-

cation that a navigation option has been chosen. For text-based navigation, color

should be used to indicate navigation links and to provide an indication of links

already traveled. These are but a few of dozens of design conventions that make

navigation user-friendly.

13.9 COMPONENT-LEVEL DESIGN

Modern WebApps deliver increasingly sophisticated processing functions that (1) per-

form localized processing to generate content and navigation capability in a dynamic

fashion, (2) provide computation or data processing capability that are appropriate for

the WebApp’s business domain, (3) provide sophisticated database query and access,

and (4) establish data interfaces with external corporate systems. To achieve these

(and many other) capabilities, you must design and construct program components

that are identical in form to software components for traditional software.

The design methods discussed in Chapter 10 apply to WebApp components

with little, if any, modification. The implementation environment, programming lan-

guages, and design patterns, frameworks, and software may vary somewhat, but the

overall design approach remains the same.

13.10 OBJECT-ORIENTED HYPERMEDIA DESIGN METHOD (OOHDM)

A number of design methods for Web applications have been proposed over the past

decade. To date, no single method has achieved dominance.11 In this section I pres-

ent a brief overview of one of the most widely discussed WebApp design methods—

OOHDM.

390 PART TWO MODELING

The site map should be
accessible from every
page. The map itself
should be organized so
that the structure of
WebApp information is
readily apparent.

11 In fact, relatively few Web developers use a specific method when designing a WebApp. Hopefully,
this ad hoc approach to design will change as time passes.

pre75977_ch13.qxd 11/27/08 5:47 PM Page 390

Daniel Schwabe and his colleagues [Sch95, Sch98b] originally proposed the

Object-Oriented Hypermedia Design Method (OOHDM), which is composed of four

different design activities: conceptual design, navigational design, abstract inter-

face design, and implementation. A summary of these design activities is shown in

Figure 13.10 and discussed briefly in the sections that follow.

13.10.1 Conceptual Design for OOHDM

OOHDM conceptual design creates a representation of the subsystems, classes, and re-

lationships that define the application domain for the WebApp. UML may be used12 to

create appropriate class diagrams, aggregations, and composite class representations,

collaboration diagrams, and other information that describes the application domain.

As a simple example of OOHDM conceptual design, consider the SafeHomeAssured
.com e-commerce application. A partial “conceptual schema” is shown in Figure 13.11.

The class diagrams, aggregations, and related information developed as part of

WebApp analysis are reused during conceptual design to represent relationships

between classes.

13.10.2 Navigational Design for OOHDM

Navigational design identifies a set of “objects” that are derived from the classes

defined in conceptual design. A series of “navigational classes” or “nodes” are

CHAPTER 13 WEBAPP DESIGN 391

Work products

Design mechanisms

Design concerns
Modeling semantics
of the application
domain

Classes, subsystems,
relationships, attributes

Classification,
composition,
aggregation,
generalization
specialization

Conceptual design Navigational design
Abstract interface

design Implementation

Nodes links, access
structures, navigational
contexts, navigational
transformations

Mapping between
conceptual and
navigation objects

Takes into account user
profile and task.
Emphasis on cognitive
aspects.

Abstract interface
objects, responses to
external events,
transformations

Mapping between
navigation and
perceptible objects

Modeling perceptible
objects, implementing
chosen metaphors.
Describe interface for
navigational objects.

Executable
WebApp

Resource
provided by
target
environment

Correctness;
application
performance;
completeness

FIGURE 13.10 Summary of the OOHDM method.
Source: Adapted from [Sch95].

12 OOHDM does not prescribe a specific notation; however, the use of UML is common when this
method is applied.

pre75977_ch13.qxd 11/27/08 5:47 PM Page 391

defined to encapsulate these objects. UML may be used to create appropriate use

cases, state charts, and sequence diagrams—all representations that assist you in

better understanding navigational requirements. In addition, design patterns for nav-

igational design may be used as the design is developed. OOHDM uses a predefined

set of navigation classes—nodes, links, anchors, and access structures [Sch98b].

Access structures are more elaborate and include mechanisms such as a WebApp

index, a site map, or a guided tour.

Once navigation classes are defined, OOHDM “structures the navigation space by

grouping navigation objects into sets called contexts” [Sch98b]. A context includes a

description of the local navigation structure, restriction imposed on the access of

content objects, and methods (operations) required to effect access of content

objects. A context template (analogous to CRC cards discussed in Chapter 6) is de-

veloped and may be used to track the navigation requirements of each category of

user through the various contexts defined in OOHDM. Doing this, specific navigation

paths (what we called WoN in Section 13.8.1) emerge.

13.10.3 Abstract Interface Design and Implementation

The abstract interface design action specifies the interface objects that the user sees

as WebApp interaction occurs. A formal model of interface objects, called an abstract

data view (ADV), is used to represent the relationship between interface objects and

navigation objects, and the behavioral characteristics of interface objects.

392 PART TWO MODELING

ProductComponent

partNumber
partName
partType
description
price

createNewItem()
getDescription()
getTechSpec

BillOfMaterials

identifier
BoMList
numberItems
priceTotal

addEntry()
deleteEntry()
editEntry()
name()
computePrice()

BoMItem

quantity
partNumber
partName
partType
price

addtoList()
deletefromList()
getNextListEntry()

Order

orderNumber
customerInfo
billOfMaterials
shippingInfo
billingInfo

Room

roomName
dimensions
exteriorWindows
exteriorDoors

Sensor Camera Control Panel SoftFeature

customer continues
component selection

customer
requests purchase

component recommendation
requested

customer selects component

FIGURE 13.11 Partial conceptual schema for SafeHomeAssured.com

pre75977_ch13.qxd 11/27/08 5:47 PM Page 392

The ADV model defines a “static layout” [Sch98b] that represents the interface

metaphor and includes a representation of navigation objects within the interface

and the specification of the interface objects (e.g., menus, buttons, icons) that assist

in navigation and interaction. In addition, the ADV model contains a behavioral

component (similar to the UML state diagram) that indicates how external events

“trigger navigation and which interface transformations occur when the user inter-

acts with the application” [Sch01a].

The OOHDM implementation activity represents a design iteration that is spe-

cific to the environment in which the WebApp will operate. Classes, navigation,

and the interface are each characterized in a manner that can be constructed for

the client-server environment, operating systems, support software, program-

ming languages, and other environmental characteristics that are relevant to the

problem.

13.11 SUMMARY

The quality of a WebApp—defined in terms of usability, functionality, reliability, effi-

ciency, maintainability, security, scalability, and time-to-market—is introduced dur-

ing design. To achieve these quality attributes, a good WebApp design should exhibit

the following characteristics: simplicity, consistency, identity, robustness, navigabil-

ity, and visual appeal. To achieve these characteristics, the WebApp design activity

focuses on six different elements of the design.

Interface design describes the structure and organization of the user interface and

includes a representation of screen layout, a definition of the modes of interaction,

and a description of navigation mechanisms. A set of interface design principles and

an interface design workflow guide you when layout and interface control mecha-

nisms are designed.

Aesthetic design, also called graphic design, describes the “look and feel” of the

WebApp and includes color schemes; geometric layout; text size, font, and place-

ment; the use of graphics; and related aesthetic decisions. A set of graphic design

guidelines provides the basis for a design approach.

Content design defines the layout, structure, and outline for all content that is pre-

sented as part of the WebApp and establishes the relationships between content

objects. Content design begins with the representation of content objects, their as-

sociations, and relationships. A set of browsing primitives establishes the basis for

navigation design.

Architecture design identifies the overall hypermedia structure for the WebApp

and encompasses both content architecture and WebApp architecture. Architectural

styles for content include linear, grid, hierarchical, and network structures. WebApp

architecture describes an infrastructure that enables a Web-based system or appli-

cation to achieve its business objectives.

CHAPTER 13 WEBAPP DESIGN 393

pre75977_ch13.qxd 11/27/08 5:47 PM Page 393

Navigation design represents the navigational flow between content objects and

for all WebApp functions. Navigation semantics are defined by describing a set of

navigation semantic units. Each unit is composed of ways of navigating and naviga-

tional links and nodes. Navigation syntax depicts the mechanisms used for effecting

the navigation described as part of the semantics.

Component design develops the detailed processing logic required to implement

functional components that implement a complete WebApp function. Design

techniques described in Chapter 10 are applicable for the engineering of WebApp

components.

The Object-Oriented Hypermedia Design Method (OOHDM) is one of a number

of methods proposed for WebApp design. OOHDM suggests a design process that

includes conceptual design, navigational design, abstract interface design, and

implementation.

PROBLEMS AND POINTS TO PONDER

13.1. Why is the “artistic ideal” an insufficient design philosophy when modern WebApps are
built? Is there ever a case in which the artistic ideal is the philosophy to follow?

13.2. In this chapter we select a broad array of quality attributes for WebApps. Select the three
that you believe are most important, and make an argument that explains why each should be
emphasized in WebApp design work.

13.3. Add at least five additional questions to the WebApp Design—Quality Checklist presented
in Section 13.1.

13.4. You are a WebApp designer for FutureLearning Corporation, a distance learning company.
You intend to implement an Internet-based “learning engine” that will enable you to deliver
course content to a student. The learning engine provides the basic infrastructure for delivering
learning content on any subject (content designers will prepare appropriate content). Develop
a prototype interface design for the learning engine.

13.5. What is the most aesthetically pleasing website you have ever visited and why?

13.6. Consider the content object Order, generated once a user of SafeHomeAssured.com
has completed the selection of all components and is ready to finalize his purchase. Develop a
UML description for Order along with all appropriate design representations.

13.7. What is the difference between content architecture and WebApp architecture?

13.8. Reconsidering the FutureLearning “learning engine” described in Problem 13.4, select a
content architecture that would be appropriate for the WebApp. Discuss why you made the
choice.

13.9. Use UML to develop three or four design representations for content objects that would
be encountered as the “learning engine” described in Problem 13.4 is designed.

13.10. Do a bit of additional research on the MVC architecture and decide whether it would be
an appropriate WebApp architecture for the “learning engine” discussed in Problem 13.4.

13.11. What is the difference between navigation syntax and navigation semantics?

13.12. Define two or three NSUs for the SafeHomeAssured.com WebApp. Describe each in
some detail.

13.13. Write a brief paper on a hypermedia design method other than OOHDM.

394 PART TWO MODELING

pre75977_ch13.qxd 11/27/08 5:47 PM Page 394

FURTHER READINGS AND INFORMATION SOURCES

Van Duyne and his colleagues (The Design of Sites, 2d ed., Prentice Hall, 2007) have written a
comprehensive book that covers most important aspects of the WebApp design process. Design
process models and design patterns are covered in detail. Wodtke (Information Architecture, New
Riders Publishing, 2003), Rosenfeld and Morville (Information Architecture for the World Wide
Web, O’Reilly & Associates, 2002), and Reiss (Practical Information Architecture, Addison-Wesley,
2000) address content architecture and other topics.

Although hundreds of books have been written on “Web design,” very few of these discuss
any meaningful technical methods for doing design work. At best, a variety of useful guidelines
for WebApp design is presented, worthwhile examples of Web pages and Java programming are
shown, and the technical details important for implementing modern WebApps are discussed.
Among the many offerings in this category are books by Sklar (Principles of Web Design, 4th ed.,
Course Technology, 2008), McIntire (Visual Design for the Modern Web, New Riders Press, 2007),
Niederst (Web Design in a Nutshell, 3d ed., O-Reilly, 2006), Eccher (Advanced Professional Web
Design, Charles River Media, 2006), Cederholm (Bulletproof Web Design, New Riders Press, 2005),
and Shelly and his colleagues (Web Design, 2d ed., Course Technology, 2005). Powell’s [Pow02]
encyclopedic discussion and Nielsen’s [Nie00] in-depth discussion of design are also worthwhile
additions to any library.

Books by Beaird (The Principles of Beautiful Web Design, SitePoint, 2007), Clarke and
Holzschlag (Transcending CSS: The Fine Art of Web Design, New Riders Press, 2006), and Golbeck
(Art Theory for Web Design, Addison Wesley, 2005) emphasize aesthetic design and are worth-
while reading for practitioners who have little background in the subject.

The agile view of design (and other topics) for WebApps is presented by Wallace and his
colleagues (Extreme Programming for Web Projects, Addison-Wesley, 2003). Conallen (Building
Web Applications with UML, 2d ed., Addison-Wesley, 2002) and Rosenberg and Scott (Applying
Use-Case Driven Object Modeling with UML, Addison-Wesley, 2001) present detailed examples of
WebApps modeled using UML.

Design techniques are also mentioned within the context of books written about specific
development environments. Interested readers should examine books on HTML, CSS, J2EE,
Java, .NET, XML, Perl, Ruby on Rails, Ajax, and a variety of WebApp creation applications
(Dreamweaver, HomePage, Frontpage, GoLive, MacroMedia Flash, etc.) for useful design tidbits.

A wide variety of information sources on design for WebApps is available on the Internet.
An up-to-date list of World Wide Web references that are relevant to WebApp design can be
found at the SEPA website: www.mhhe.com/engcs/compsci/pressman/professional/
olc/ser.htm.

CHAPTER 13 WEBAPP DESIGN 395

pre75977_ch13.qxd 11/27/08 5:47 PM Page 395

http://www.mhhe.com/engcs/compsci/pressman/professional/

pre75977_ch13.qxd 11/27/08 5:47 PM Page 396

QUALITY MANAGEMENT

397

P A R T

Three

In this part of Software Engineering: A Practitioner’s Approach
you’ll learn about the principles, concepts, and techniques that
are applied to manage and control software quality. These

questions are addressed in the chapters that follow:

• What are the generic characteristics of high-quality software?

• How do we review quality and how are effective reviews
conducted?

• What is software quality assurance?

• What strategies are applicable for software testing?

• What methods are used to design effective test cases?

• Are there realistic methods that will ensure that software is
correct?

• How can we manage and control changes that always occur
as software is built?

• What measures and metrics can be used to assess the quality
of requirements and design models, source code, and test
cases?

Once these questions are answered you’ll be better prepared to
ensure that high-quality software has been produced.

pre75977_ch14.qxd 11/27/08 5:51 PM Page 397

The drumbeat for improved software quality began in earnest as software
became increasingly integrated in every facet of our lives. By the 1990s,
major corporations recognized that billions of dollars each year were be-

ing wasted on software that didn’t deliver the features and functionality that were
promised. Worse, both government and industry became increasingly concerned
that a major software fault might cripple important infrastructure, costing tens
of billions more. By the turn of the century, CIO Magazine [Lev01] trumpeted
the headline, “Let’s Stop Wasting $78 Billion a Year,” lamenting the fact that
“American businesses spend billions for software that doesn’t do what it’s sup-
posed to do.” InformationWeek [Ric01] echoed the same concern:

Despite good intentions, defective code remains the hobgoblin of the software indus-

try, accounting for as much as 45% of computer-system downtime and costing U.S.

companies about $100 billion last year in lost productivity and repairs, says the

Standish Group, a market research firm. That doesn’t include the cost of losing angry

customers. Because IT shops write applications that rely on packaged infrastructure

software, bad code can wreak havoc on custom apps as well. . . .

Just how bad is bad software? Definitions vary, but experts say it takes only three or

four defects per 1,000 lines of code to make a program perform poorly. Factor in that most

programmers inject about one error for every 10 lines of code they write, multiply that by

the millions of lines of code in many commercial products, then figure it costs software

vendors at least half their development budgets to fix errors while testing. Get the picture?

398

C H A P T E R

14 QUALITY
CONCEPTS

K E Y
C O N C E P T S

cost of quality . .407

good enough . . .406

liability 410

management
actions 411

quality 399

quality
dilemma 406

quality
dimensions 401

quality factors .402

quantitative
view 405

risks 409

security 410

What is it? The answer isn’t as easy
as you might think. You know quality
when you see it, and yet, it can be an
elusive thing to define. But for com-

puter software, quality is something that we must
define, and that’s what I’ll do in this chapter.

Who does it? Everyone—software engineers,
managers, all stakeholders—involved in the
software process is responsible for quality.

Why is it important? You can do it right, or you
can do it over again. If a software team stresses
quality in all software engineering activities, it
reduces the amount of rework that it must do.
That results in lower costs, and more importantly,
improved time-to-market.

Q U I C K
L O O K

What are the steps? To achieve high-quality
software, four activities must occur: proven soft-
ware engineering process and practice, solid
project management, comprehensive quality
control, and the presence of a quality assurance
infrastructure.

What is the work product? Software that
meets its customer’s needs, performs accurately
and reliably, and provides value to all who
use it.

How do I ensure that I’ve done it right? Track
quality by examining the results of all quality
control activities, and measure quality by exam-
ining errors before delivery and defects
released to the field.

pre75977_ch14.qxd 11/27/08 5:51 PM Page 398

CHAPTER 14 QUALITY CONCEPTS 399

In 2005, ComputerWorld [Hil05] lamented that “bad software plagues nearly every
organization that uses computers, causing lost work hours during computer down-
time, lost or corrupted data, missed sales opportunities, high IT support and mainte-
nance costs, and low customer satisfaction. A year later, InfoWorld [Fos06] wrote
about the “the sorry state of software quality” reporting that the quality problem had
not gotten any better.

Today, software quality remains an issue, but who is to blame? Customers blame
developers, arguing that sloppy practices lead to low-quality software. Developers
blame customers (and other stakeholders), arguing that irrational delivery dates and
a continuing stream of changes force them to deliver software before it has been fully
validated. Who’s right? Both—and that’s the problem. In this chapter, I consider soft-
ware quality as a concept and examine why it’s worthy of serious consideration
whenever software engineering practices are applied.

14.1 WHAT IS QUALITY?

In his mystical book, Zen and the Art of Motorcycle Maintenance, Robert Persig [Per74]

commented on the thing we call quality:

Quality . . . you know what it is, yet you don’t know what it is. But that’s self-contradictory.

But some things are better than others; that is, they have more quality. But when you try

to say what the quality is, apart from the things that have it, it all goes poof! There’s noth-

ing to talk about. But if you can’t say what Quality is, how do you know what it is, or how

do you know that it even exists? If no one knows what it is, then for all practical purposes

it doesn’t exist at all. But for all practical purposes it really does exist. What else are the

grades based on? Why else would people pay fortunes for some things and throw others

in the trash pile? Obviously some things are better than others . . . but what’s the better-

ness? . . . So round and round you go, spinning mental wheels and nowhere finding any-

place to get traction. What the hell is Quality? What is it?

Indeed—what is it?

At a somewhat more pragmatic level, David Garvin [Gar84] of the Harvard Busi-

ness School suggests that “quality is a complex and multifaceted concept” that can

be described from five different points of view. The transcendental view argues (like

Persig) that quality is something that you immediately recognize, but cannot explic-

itly define. The user view sees quality in terms of an end user’s specific goals. If a

product meets those goals, it exhibits quality. The manufacturer’s view defines qual-

ity in terms of the original specification of the product. If the product conforms to the

spec, it exhibits quality. The product view suggests that quality can be tied to inher-

ent characteristics (e.g., functions and features) of a product. Finally, the value-based

view measures quality based on how much a customer is willing to pay for a prod-

uct. In reality, quality encompasses all of these views and more.

Quality of design refers to the characteristics that designers specify for a product.

The grade of materials, tolerances, and performance specifications all contribute to

the quality of design. As higher-grade materials are used, tighter tolerances and

What are the different
ways in which quality
can be viewed?

pre75977_ch14.qxd 11/27/08 5:51 PM Page 399

greater levels of performance are specified, the design quality of a product increases,

if the product is manufactured according to specifications.

In software development, quality of design encompasses the degree to which the

design meets the functions and features specified in the requirements model. Quality

of conformance focuses on the degree to which the implementation follows the

design and the resulting system meets its requirements and performance goals.

But are quality of design and quality of conformance the only issues that software

engineers must consider? Robert Glass [Gla98] argues that a more “intuitive” rela-

tionship is in order:

user satisfaction � compliant product � good quality � delivery within budget and schedule

At the bottom line, Glass contends that quality is important, but if the user isn’t

satisfied, nothing else really matters. DeMarco [DeM98] reinforces this view when he

states: “A product’s quality is a function of how much it changes the world for the

better.” This view of quality contends that if a software product provides substantial

benefit to its end users, they may be willing to tolerate occasional reliability or per-

formance problems.

14.2 SOFTWARE QUALITY

Even the most jaded software developers will agree that high-quality software is an

important goal. But how do we define software quality? In the most general sense,

software quality can be defined1 as: An effective software process applied in a manner

that creates a useful product that provides measurable value for those who produce it

and those who use it.

There is little question that the preceding definition could be modified or extended

and debated endlessly. For the purposes of this book, the definition serves to

emphasize three important points:

1. An effective software process establishes the infrastructure that supports any

effort at building a high-quality software product. The management aspects

of process create the checks and balances that help avoid project chaos—a

key contributor to poor quality. Software engineering practices allow the

developer to analyze the problem and design a solid solution—both critical

to building high-quality software. Finally, umbrella activities such as change

management and technical reviews have as much to do with quality as any

other part of software engineering practice.

2. A useful product delivers the content, functions, and features that the end

user desires, but as important, it delivers these assets in a reliable, error-free

400 PART THREE QUALITY MANAGEMENT

uote:

“People forget how
fast you did a job—
but they always
remember how
well you did it.”

Howard Newton

1 This definition has been adapted from [Bes04] and replaces a more manufacturing-oriented view
presented in earlier editions of this book.

pre75977_ch14.qxd 11/27/08 5:51 PM Page 400

way. A useful product always satisfies those requirements that have been

explicitly stated by stakeholders. In addition, it satisfies a set of implicit

requirements (e.g., ease of use) that are expected of all high-quality software.

3. By adding value for both the producer and user of a software product, high-

quality software provides benefits for the software organization and the end-

user community. The software organization gains added value because

high-quality software requires less maintenance effort, fewer bug fixes, and

reduced customer support. This enables software engineers to spend more

time creating new applications and less on rework. The user community

gains added value because the application provides a useful capability in

a way that expedites some business process. The end result is (1) greater

software product revenue, (2) better profitability when an application

supports a business process, and/or (3) improved availability of information

that is crucial for the business.

14.2.1 Garvin’s Quality Dimensions

David Garvin [Gar87] suggests that quality should be considered by taking a multidi-

mensional viewpoint that begins with an assessment of conformance and termi-

nates with a transcendental (aesthetic) view. Although Garvin’s eight dimensions of

quality were not developed specifically for software, they can be applied when soft-

ware quality is considered:

Performance quality. Does the software deliver all content, functions, and

features that are specified as part of the requirements model in a way that

provides value to the end user?

Feature quality. Does the software provide features that surprise and

delight first-time end users?

Reliability. Does the software deliver all features and capability without

failure? Is it available when it is needed? Does it deliver functionality that is

error-free?

Conformance. Does the software conform to local and external software

standards that are relevant to the application? Does it conform to de facto

design and coding conventions? For example, does the user interface con-

form to accepted design rules for menu selection or data input?

Durability. Can the software be maintained (changed) or corrected

(debugged) without the inadvertent generation of unintended side effects?

Will changes cause the error rate or reliability to degrade with time?

Serviceability. Can the software be maintained (changed) or corrected

(debugged) in an acceptably short time period? Can support staff acquire all

information they need to make changes or correct defects? Douglas Adams

[Ada93] makes a wry comment that seems appropriate here: “The difference

CHAPTER 14 QUALITY CONCEPTS 401

pre75977_ch14.qxd 11/27/08 5:51 PM Page 401

between something that can go wrong and something that can’t possibly go

wrong is that when something that can’t possibly go wrong goes wrong it

usually turns out to be impossible to get at or repair.”

Aesthetics. There’s no question that each of us has a different and very

subjective vision of what is aesthetic. And yet, most of us would agree that

an aesthetic entity has a certain elegance, a unique flow, and an obvious

“presence” that are hard to quantify but are evident nonetheless. Aesthetic

software has these characteristics.

Perception. In some situations, you have a set of prejudices that will influ-

ence your perception of quality. For example, if you are introduced to a soft-

ware product that was built by a vendor who has produced poor quality in

the past, your guard will be raised and your perception of the current soft-

ware product quality might be influenced negatively. Similarly, if a vendor

has an excellent reputation, you may perceive quality, even when it does not

really exist.

Garvin’s quality dimensions provide you with a “soft” look at software quality.

Many (but not all) of these dimensions can only be considered subjectively. For this

reason, you also need a set of “hard” quality factors that can be categorized in two

broad groups: (1) factors that can be directly measured (e.g., defects uncovered dur-

ing testing) and (2) factors that can be measured only indirectly (e.g., usability or

maintainability). In each case measurement must occur. You should compare the

software to some datum and arrive at an indication of quality.

14.2.2 McCall’s Quality Factors

McCall, Richards, and Walters [McC77] propose a useful categorization of factors

that affect software quality. These software quality factors, shown in Figure 14.1,

focus on three important aspects of a software product: its operational characteris-

tics, its ability to undergo change, and its adaptability to new environments.

Referring to the factors noted in Figure 14.1, McCall and his colleagues provide

the following descriptions:

Correctness. The extent to which a program satisfies its specification and fulfills the

customer’s mission objectives.

Reliability. The extent to which a program can be expected to perform its intended func-

tion with required precision. [It should be noted that other, more complete definitions of

reliability have been proposed (see Chapter 25).]

Efficiency. The amount of computing resources and code required by a program to

perform its function.

Integrity. Extent to which access to software or data by unauthorized persons can be

controlled.

Usability. Effort required to learn, operate, prepare input for, and interpret output of a

program.

402 PART THREE QUALITY MANAGEMENT

pre75977_ch14.qxd 11/27/08 5:51 PM Page 402

Maintainability. Effort required to locate and fix an error in a program. [This is a very

limited definition.]

Flexibility. Effort required to modify an operational program.

Testability. Effort required to test a program to ensure that it performs its intended

function.

Portability. Effort required to transfer the program from one hardware and/or software

system environment to another.

Reusability. Extent to which a program [or parts of a program] can be reused in other

applications—related to the packaging and scope of the functions that the program

performs.

Interoperability. Effort required to couple one system to another.

It is difficult, and in some cases impossible, to develop direct measures2 of these

quality factors. In fact, many of the metrics defined by McCall et al. can be measured

only indirectly. However, assessing the quality of an application using these factors

will provide you with a solid indication of software quality.

14.2.3 ISO 9126 Quality Factors

The ISO 9126 standard was developed in an attempt to identify the key quality

attributes for computer software. The standard identifies six key quality attributes:

Functionality. The degree to which the software satisfies stated needs as

indicated by the following subattributes: suitability, accuracy, interoperability,

compliance, and security.

Reliability. The amount of time that the software is available for use as indi-

cated by the following subattributes: maturity, fault tolerance, recoverability.

CHAPTER 14 QUALITY CONCEPTS 403

PRODUCT OPERATION

PRODUCT TRANSITIONPRODUCT REVISION

Correctness Usability Efficiency
Reliability Integrity

Maintainability
Flexibility
Testability

Portability
Reusability
Interoperability

FIGURE 14.1

McCall’s
software
quality factors

uote:

“The bitterness
of poor quality
remains long after
the sweetness of
meeting the
schedule has been
forgotten.”

Karl Weigers
(unattributed
quote)

2 A direct measure implies that there is a single countable value that provides a direct indication of
the attribute being examined. For example, the “size” of a program can be measured directly by
counting the number of lines of code.

pre75977_ch14.qxd 11/27/08 5:51 PM Page 403

Usability. The degree to which the software is easy to use as indicated by

the following subattributes: understandability, learnability, operability.

Efficiency. The degree to which the software makes optimal use of system

resources as indicated by the following subattributes: time behavior, resource

behavior.

Maintainability. The ease with which repair may be made to the software as

indicated by the following subattributes: analyzability, changeability, stability,

testability.

Portability. The ease with which the software can be transposed from one

environment to another as indicated by the following subattributes: adapt-

ability, installability, conformance, replaceability.

Like other software quality factors discussed in the preceding subsections, the ISO

9126 factors do not necessarily lend themselves to direct measurement. However,

they do provide a worthwhile basis for indirect measures and an excellent checklist

for assessing the quality of a system.

14.2.4 Targeted Quality Factors

The quality dimensions and factors presented in Sections 14.2.1 and 14.2.2 focus on

the software as a whole and can be used as a generic indication of the quality of an

application. A software team can develop a set of quality characteristics and associ-

ated questions that would probe3 the degree to which each factor has been satisfied.

For example, McCall identifies usability as an important quality factor. If you were

asked to review a user interface and assess its usability, how would you proceed?

You might start with the subattributes suggested by McCall—understandability,

learnability, and operability—but what do these mean in a pragmatic sense?

To conduct your assessment, you’ll need to address specific, measurable (or at

least, recognizable) attributes of the interface. For example [Bro03]:

Intuitiveness. The degree to which the interface follows expected usage patterns

so that even a novice can use it without significant training.

• Is the interface layout conducive to easy understanding?

• Are interface operations easy to locate and initiate?

• Does the interface use a recognizable metaphor?

• Is input specified to economize key strokes or mouse clicks?

• Does the interface follow the three golden rules? (Chapter 11)

• Do aesthetics aid in understanding and usage?

404 PART THREE QUALITY MANAGEMENT

uote:

“Any activity
becomes creative
when the doer
cares about doing
it right, or better.”

John Updike

Although it’s tempting
to develop quantitative
measures for the
quality factors noted
here, you can also
create a simple
checklist of attributes
that provide a solid
indication that the
factor is present.

3 These characteristics and questions would be addressed as part of a software review (Chapter 15).

pre75977_ch14.qxd 11/27/08 5:51 PM Page 404

Efficiency. The degree to which operations and information can be located or

initiated.

• Does the interface layout and style allow a user to locate operations and

information efficiently?

• Can a sequence of operations (or data input) be performed with an economy

of motion?

• Are output data or content presented so that it is understood immediately?

• Have hierarchical operations been organized in a way that minimizes the

depth to which a user must navigate to get something done?

Robustness. The degree to which the software handles bad input data or inap-

propriate user interaction.

• Will the software recognize the error if data at or just outside prescribed

boundaries is input? More importantly, will the software continue to operate

without failure or degradation?

• Will the interface recognize common cognitive or manipulative mistakes and

explicitly guide the user back on the right track?

• Does the interface provide useful diagnosis and guidance when an error

condition (associated with software functionality) is uncovered?

Richness. The degree to which the interface provides a rich feature set.

• Can the interface be customized to the specific needs of a user?

• Does the interface provide a macro capability that enables a user to identify a

sequence of common operations with a single action or command?

As the interface design is developed, the software team would review the design

prototype and ask the questions noted. If the answer to most of these questions is

“yes,” it is likely that the user interface exhibits high quality. A collection of questions

similar to these would be developed for each quality factor to be assessed.

14.2.5 The Transition to a Quantitative View

In the preceding subsections, I have presented a variety of qualitative factors for the

“measurement” of software quality. The software engineering community strives to

develop precise measures for software quality and is sometimes frustrated by the

subjective nature of the activity. Cavano and McCall [Cav78] discuss this situation:

The determination of quality is a key factor in every day events—wine tasting contests,

sporting events [e.g., gymnastics], talent contests, etc. In these situations, quality is

judged in the most fundamental and direct manner: side by side comparison of objects

under identical conditions and with predetermined concepts. The wine may be judged

according to clarity, color, bouquet, taste, etc. However, this type of judgment is very sub-

jective; to have any value at all, it must be made by an expert.

CHAPTER 14 QUALITY CONCEPTS 405

pre75977_ch14.qxd 11/27/08 5:51 PM Page 405

Subjectivity and specialization also apply to determining software quality. To help

solve this problem, a more precise definition of software quality is needed as well as a

way to derive quantitative measurements of software quality for objective analysis. . . .

Since there is no such thing as absolute knowledge, one should not expect to measure

software quality exactly, for every measurement is partially imperfect. Jacob Bronkowski

described this paradox of knowledge in this way: “Year by year we devise more precise

instruments with which to observe nature with more fineness. And when we look at the

observations we are discomfited to see that they are still fuzzy, and we feel that they are

as uncertain as ever.”

In Chapter 23, I’ll present a set of software metrics that can be applied to the quan-

titative assessment of software quality. In all cases, the metrics represent indirect

measures; that is, we never really measure quality but rather some manifestation of

quality. The complicating factor is the precise relationship between the variable that

is measured and the quality of software.

14.3 THE SOFTWARE QUALITY DILEMMA

In an interview [Ven03] published on the Web, Bertrand Meyer discusses what I call

the quality dilemma:

If you produce a software system that has terrible quality, you lose because no one will

want to buy it. If on the other hand you spend infinite time, extremely large effort, and

huge sums of money to build the absolutely perfect piece of software, then it’s going to

take so long to complete and it will be so expensive to produce that you’ll be out of busi-

ness anyway. Either you missed the market window, or you simply exhausted all your

resources. So people in industry try to get to that magical middle ground where the prod-

uct is good enough not to be rejected right away, such as during evaluation, but also not

the object of so much perfectionism and so much work that it would take too long or cost

too much to complete.

It’s fine to state that software engineers should strive to produce high-quality

systems. It’s even better to apply good practices in your attempt to do so. But the

situation discussed by Meyer is real life and represents a dilemma for even the best

software engineering organizations.

14.3.1 “Good Enough” Software

Stated bluntly, if we are to accept the argument made by Meyer, is it acceptable

to produce “good enough” software? The answer to this question must be “yes,”

because major software companies do it every day. They create software with known

bugs and deliver it to a broad population of end users. They recognize that some of

the functions and features delivered in Version 1.0 may not be of the highest quality

and plan for improvements in Version 2.0. They do this knowing that some cus-

tomers will complain, but they recognize that time-to-market may trump better qual-

ity as long as the delivered product is “good enough.”

406 PART THREE QUALITY MANAGEMENT

When you’re faced
with the quality
dilemma (and
everyone is faced
with it at one time
or another), try to
achieve balance—
enough effort to
produce acceptable
quality without burying
the project.

pre75977_ch14.qxd 11/27/08 5:51 PM Page 406

Exactly what is “good enough”? Good enough software delivers high-quality func-

tions and features that users desire, but at the same time it delivers other more

obscure or specialized functions and features that contain known bugs. The soft-

ware vendor hopes that the vast majority of end users will overlook the bugs because

they are so happy with other application functionality.

This idea may resonate with many readers. If you’re one of them, I can only ask

you to consider some of the arguments against “good enough.”

It is true that “good enough” may work in some application domains and for a few

major software companies. After all, if a company has a large marketing budget and

can convince enough people to buy version 1.0, it has succeeded in locking them in.

As I noted earlier, it can argue that it will improve quality in subsequent versions. By

delivering a good enough version 1.0, it has cornered the market.

If you work for a small company be wary of this philosophy. When you deliver a

good enough (buggy) product, you risk permanent damage to your company’s repu-

tation. You may never get a chance to deliver version 2.0 because bad buzz may

cause your sales to plummet and your company to fold.

If you work in certain application domains (e.g., real-time embedded software) or

build application software that is integrated with hardware (e.g., automotive soft-

ware, telecommunications software), delivering software with known bugs can be

negligent and open your company to expensive litigation. In some cases, it can even

be criminal. No one wants good enough aircraft avionics software!

So, proceed with caution if you believe that “good enough” is a short cut that can

solve your software quality problems. It can work, but only for a few and only in a

limited set of application domains.4

14.3.2 The Cost of Quality

The argument goes something like this—we know that quality is important, but it costs

us time and money—too much time and money to get the level of software quality we

really want. On its face, this argument seems reasonable (see Meyer’s comments ear-

lier in this section). There is no question that quality has a cost, but lack of quality also

has a cost—not only to end users who must live with buggy software, but also to the

software organization that has built and must maintain it. The real question is this:

which cost should we be worried about? To answer this question, you must understand

both the cost of achieving quality and the cost of low-quality software.

The cost of quality includes all costs incurred in the pursuit of quality or in per-

forming quality-related activities and the downstream costs of lack of quality. To

understand these costs, an organization must collect metrics to provide a baseline

for the current cost of quality, identify opportunities for reducing these costs, and

provide a normalized basis of comparison. The cost of quality can be divided into

costs associated with prevention, appraisal, and failure.

CHAPTER 14 QUALITY CONCEPTS 407

4 A worthwhile discussion of the pros and cons of “good enough” software can be found in [Bre02].

pre75977_ch14.qxd 11/27/08 5:52 PM Page 407

Prevention costs include (1) the cost of management activities required to plan and

coordinate all quality control and quality assurance activities, (2) the cost of added

technical activities to develop complete requirements and design models, (3) test

planning costs, and (4) the cost of all training associated with these activities.

Appraisal costs include activities to gain insight into product condition the “first

time through” each process. Examples of appraisal costs include:

• Cost of conducting technical reviews (Chapter 15) for software engineering

work products

• Cost of data collection and metrics evaluation (Chapter 23)

• Cost of testing and debugging (Chapters 18 through 21)

Failure costs are those that would disappear if no errors appeared before or after

shipping a product to customers. Failure costs may be subdivided into internal failure

costs and external failure costs. Internal failure costs are incurred when you detect an

error in a product prior to shipment. Internal failure costs include

• Cost required to perform rework (repair) to correct an error

• Cost that occurs when rework inadvertently generates side effects that must

be mitigated

• Costs associated with the collection of quality metrics that allow an organi-

zation to assess the modes of failure

External failure costs are associated with defects found after the product has been

shipped to the customer. Examples of external failure costs are complaint resolution,

product return and replacement, help line support, and labor costs associated with

warranty work. A poor reputation and the resulting loss of business is another

external failure cost that is difficult to quantify but nonetheless very real. Bad things

happen when low-quality software is produced.

In an indictment of software developers who refuse to consider external failure

costs, Cem Kaner [Kan95] states:

Many of the external failure costs, such as goodwill, are difficult to quantify, and many com-

panies therefore ignore them when calculating their cost-benefit tradeoffs. Other external

failure costs can be reduced (e.g. by providing cheaper, lower-quality, post-sale support, or

by charging customers for support) without increasing customer satisfaction. By ignoring

the costs to our customers of bad products, quality engineers encourage quality-related

decision-making that victimizes our customers, rather than delighting them.

As expected, the relative costs to find and repair an error or defect increase dra-

matically as we go from prevention to detection to internal failure to external failure

costs. Figure 14.2, based on data collected by Boehm and Basili [Boe01b] and illus-

trated by Cigital Inc. [Cig07], illustrates this phenomenon.

The industry average cost to correct a defect during code generation is approxi-

mately $977 per error. The industry average cost to correct the same error if it is

408 PART THREE QUALITY MANAGEMENT

Don’t be afraid to incur
significant prevention
costs. Rest assured
that your investment
will provide an
excellent return.

uote:

“It takes less time
to do a thing right
than to explain
why you did it
wrong.”

H. W.
Longfellow

pre75977_ch14.qxd 11/27/08 5:52 PM Page 408

discovered during system testing is $7,136 per error. Cigital Inc. [Cig07] considers a

large application that has 200 errors introduced during coding.

According to industry average data, the cost of finding and correcting defects during the

coding phase is $977 per defect. Thus, the total cost for correcting the 200 “critical”

defects during this phase (200 � $977) is approximately $195,400.

Industry average data shows that the cost of finding and correcting defects during the

system testing phase is $7,136 per defect. In this case, assuming that the system testing

phase revealed approximately 50 critical defects (or only 25% of those found by Cigital in

the coding phase), the cost of finding and fixing those defects (50 � $7,136) would have

been approximately $356,800. This would also have resulted in 150 critical errors going

undetected and uncorrected. The cost of finding and fixing these remaining 150 defects

in the maintenance phase (150 � $14,102) would have been $2,115,300. Thus, the total

cost of finding and fixing the 200 defects after the coding phase would have been

$2,472,100 ($2,115,300 � $356,800).

Even if your software organization has costs that are half of the industry average

(most have no idea what their costs are!), the cost savings associated with early

quality control and assurance activities (conducted during requirements analysis

and design) are compelling.

14.3.3 Risks

In Chapter 1 of this book, I wrote “people bet their jobs, their comforts, their safety, their

entertainment, their decisions, and their very lives on computer software. It better be

right.” The implication is that low-quality software increases risks for both the devel-

oper and the end user. In the preceding subsection, I discussed one of these risks (cost).

But the downside of poorly designed and implemented applications does not always

stop with dollars and time. An extreme example [Gag04] might serve to illustrate.

CHAPTER 14 QUALITY CONCEPTS 409

Requirements

$139 $455 $977

$7,136

$14,102

Design Coding Testing Maintenance

$16,000.00

$14,000.00

$12,000.00

$10,000.00

$8,000.00

$6,000.00

$4,000.00

$2,000.00

$-

FIGURE 14.2

Relative cost of
correcting errors
and defects
Source: Adapted from
[Boe01b].

pre75977_ch14.qxd 11/27/08 5:52 PM Page 409

Throughout the month of November 2000 at a hospital in Panama, 28 patients

received massive overdoses of gamma rays during treatment for a variety of cancers.

In the months that followed, 5 of these patients died from radiation poisoning and

15 others developed serious complications. What caused this tragedy? A software

package, developed by a U.S. company, was modified by hospital technicians to

compute doses of radiation for each patient.

The three Panamanian medical physicists, who “tweeked” the software to provide

additional capability, were charged with second-degree murder. The U.S. company

is faced with serious litigation in two countries. Gage and McCormick comment:

This is not a cautionary tale for medical technicians, even though they can find them-

selves fighting to stay out of jail if they misunderstand or misuse technology. This also

is not a tale of how human beings can be injured or worse by poorly designed or poorly

explained software, although there are plenty of examples to make the point. This is a

warning for any creator of computer programs: that software quality matters, that appli-

cations must be foolproof, and that—whether embedded in the engine of a car, a robotic

arm in a factory or a healing device in a hospital—poorly deployed code can kill.

Poor quality leads to risks, some of them very serious.

14.3.4 Negligence and Liability

The story is all too common. A governmental or corporate entity hires a major soft-

ware developer or consulting company to analyze requirements and then design and

construct a software-based “system” to support some major activity. The system

might support a major corporate function (e.g., pension management) or some gov-

ernmental function (e.g., health care administration or homeland security).

Work begins with the best of intentions on both sides, but by the time the system is

delivered, things have gone bad. The system is late, fails to deliver desired features and

functions, is error-prone, and does not meet with customer approval. Litigation ensues.

In most cases, the customer claims that the developer has been negligent (in the

manner in which it has applied software practices) and is therefore not entitled to

payment. The developer often claims that the customer has repeatedly changed its

requirements and has subverted the development partnership in other ways. In every

case, the quality of the delivered system comes into question.

14.3.5 Quality and Security

As the criticality of Web-based systems and applications grows, application security

has become increasingly important. Stated simply, software that does not exhibit

high quality is easier to hack, and as a consequence, low-quality software can indi-

rectly increase the security risk with all of its attendant costs and problems.

In an interview in ComputerWorld, author and security expert Gary McGraw com-

ments [Wil05]:

Software security relates entirely and completely to quality. You must think about secu-

rity, reliability, availability, dependability—at the beginning, in the design, architecture,

test, and coding phases, all through the software life cycle [process]. Even people aware

410 PART THREE QUALITY MANAGEMENT

pre75977_ch14.qxd 11/27/08 5:52 PM Page 410

of the software security problem have focused on late life-cycle stuff. The earlier you find

the software problem, the better. And there are two kinds of software problems. One is

bugs, which are implementation problems. The other is software flaws—architectural

problems in the design. People pay too much attention to bugs and not enough on flaws.

To build a secure system, you must focus on quality, and that focus must begin dur-

ing design. The concepts and methods discussed in Part 2 of this book lead to a soft-

ware architecture that reduces “flaws.” By eliminating architectural flaws (thereby

improving software quality), you will make it far more difficult to hack the software.

14.3.6 The Impact of Management Actions

Software quality is often influenced as much by management decisions as it is by

technology decisions. Even the best software engineering practices can be subverted

by poor business decisions and questionable project management actions.

In Part 4 of this book I discuss project management within the context of the soft-

ware process. As each project task is initiated, a project leader will make decisions

that can have a significant impact on product quality.

Estimation decisions. As I note in Chapter 26, a software team is rarely given the

luxury of providing an estimate for a project before delivery dates are established and

an overall budget is specified. Instead, the team conducts a “sanity check” to ensure

that delivery dates and milestones are rational. In many cases there is enormous

time-to-market pressure that forces a team to accept unrealistic delivery dates. As a

consequence, shortcuts are taken, activities that lead to higher-quality software may

be skipped, and product quality suffers. If a delivery date is irrational, it is important

to hold your ground. Explain why you need more time, or alternatively, suggest a

subset of functionality that can be delivered (with high quality) in the time allotted.

Scheduling decisions. When a software project schedule is established

(Chapter 27), tasks are sequenced based on dependencies. For example, because

component A depends on processing that occurs within components B, C, and D,

component A cannot be scheduled for testing until components B, C, and D are fully

tested. A project schedule would reflect this. But if time is very short, and A must be

available for further critical testing, you might decide to test A without its subordi-

nate components (which are running slightly behind schedule), so that you can make

it available for other testing that must be done before delivery. After all, the deadline

looms. As a consequence, A may have defects that are hidden, only to be discovered

much later. Quality suffers.

Risk-oriented decisions. Risk management (Chapter 28) is one of the key attrib-

utes of a successful software project. You really do need to know what might go

wrong and establish a contingency plan if it does. Too many software teams prefer

blind optimism, establishing a development schedule under the assumption that

nothing will go wrong. Worse, they don’t have a way of handling things that do go

wrong. As a consequence, when a risk becomes a reality, chaos reigns, and as the

degree of craziness rises, the level of quality invariably falls.

CHAPTER 14 QUALITY CONCEPTS 411

pre75977_ch14.qxd 11/27/08 5:52 PM Page 411

The software quality dilemma can best be summarized by stating Meskimen’s

Law—There’s never time to do it right, but always time to do it over again. My advice:

taking the time to do it right is almost never the wrong decision.

14.4 ACHIEVING SOFTWARE QUALITY

Software quality doesn’t just appear. It is the result of good project management and

solid software engineering practice. Management and practice are applied within

the context of four broad activities that help a software team achieve high software

quality: software engineering methods, project management techniques, quality

control actions, and software quality assurance.

14.4.1 Software Engineering Methods

If you expect to build high-quality software, you must understand the problem to be

solved. You must also be capable of creating a design that conforms to the problem

while at the same time exhibiting characteristics that lead to software that exhibits

the quality dimensions and factors discussed in Section 14.2.

In Part 2 of this book, I presented a wide array of concepts and methods that can

lead to a reasonably complete understanding of the problem and a comprehensive

design that establishes a solid foundation for the construction activity. If you apply

those concepts and adopt appropriate analysis and design methods, the likelihood

of creating high-quality software will increase substantially.

14.4.2 Project Management Techniques

The impact of poor management decisions on software quality has been discussed in

Section 14.3.6. The implications are clear: if (1) a project manager uses estimation to

verify that delivery dates are achievable, (2) schedule dependencies are understood

and the team resists the temptation to use short cuts, (3) risk planning is conducted so

problems do not breed chaos, software quality will be affected in a positive way.

In addition, the project plan should include explicit techniques for quality and

change management. Techniques that lead to good project management practices

are discussed in Part 4 of this book.

14.4.3 Quality Control

Quality control encompasses a set of software engineering actions that help to

ensure that each work product meets its quality goals. Models are reviewed to ensure

that they are complete and consistent. Code may be inspected in order to uncover

and correct errors before testing commences. A series of testing steps is applied to

uncover errors in processing logic, data manipulation, and interface communication.

A combination of measurement and feedback allows a software team to tune the

process when any of these work products fail to meet quality goals. Quality control

activities are discussed in detail throughout the remainder of Part 3 of this book.

412 PART THREE QUALITY MANAGEMENT

What do I
need to do to

affect quality in a
positive way?

?

What is
software

quality control?
?

pre75977_ch14.qxd 11/27/08 5:52 PM Page 412

14.4.4 Quality Assurance

Quality assurance establishes the infrastructure that supports solid software engi-

neering methods, rational project management, and quality control actions—all

pivotal if you intend to build high-quality software. In addition, quality assurance

consists of a set of auditing and reporting functions that assess the effectiveness and

completeness of quality control actions. The goal of quality assurance is to provide

management and technical staff with the data necessary to be informed about prod-

uct quality, thereby gaining insight and confidence that actions to achieve product

quality are working. Of course, if the data provided through quality assurance iden-

tifies problems, it is management’s responsibility to address the problems and apply

the necessary resources to resolve quality issues. Software quality assurance is dis-

cussed in detail in Chapter 16.

14.5 SUMMARY

Concern for the quality of the software-based systems has grown as software

becomes integrated into every aspect of our daily lives. But it is difficult to develop

a comprehensive description of software quality. In this chapter quality has been

defined as an effective software process applied in a manner that creates a useful

product that provides measurable value for those who produce it and those who

use it.

A wide variety of software quality dimensions and factors have been proposed

over the years. All try to define a set of characteristics that, if achieved, will lead to

high software quality. McCall’s and the ISO 9126 quality factors establish character-

istics such as reliability, usability, maintainability, functionality, and portability as

indicators that quality exists.

Every software organization is faced with the software quality dilemma. In

essence, everyone wants to build high-quality systems, but the time and effort

required to produce “perfect” software are simply unavailable in a market-driven

world. The question becomes, should we build software that is “good enough”?

Although many companies do just that, there is a significant downside that must be

considered.

Regardless of the approach that is chosen, quality does have a cost that can be

discussed in terms of prevention, appraisal, and failure. Prevention costs include all

software engineering actions that are designed to prevent defects in the first place.

Appraisal costs are associated with those actions that assess software work prod-

ucts to determine their quality. Failure costs encompass the internal price of failure

and the external effects that poor quality precipitates.

Software quality is achieved through the application of software engineering

methods, solid management practices, and comprehensive quality control—all sup-

ported by a software quality assurance infrastructure. In the chapters that follow,

quality control and assurance are discussed in some detail.

CHAPTER 14 QUALITY CONCEPTS 413

WebRef
Useful links to SQA
resources can be found at
www.niwotridge
.com/Resources/
PM-
SWEResources/
SoftwareQuality
Assurance.htm

pre75977_ch14.qxd 11/27/08 5:52 PM Page 413

http://www.niwotridge

PROBLEMS AND POINTS TO PONDER

14.1. Describe how you would assess the quality of a university before applying to it. What
factors would be important? Which would be critical?

14.2. Garvin [Gar84] describes five different views of quality. Provide an example of each using
one or more well-known electronic products with which you are familiar.

14.3. Using the definition of software quality proposed in Section 14.2, do you think it’s possi-
ble to create a useful product that provides measurable value without using an effective
process? Explain your answer.

14.4. Add two additional questions to each of Garvin’s quality dimensions presented in Section
14.2.1.

14.5. McCall’s quality factors were developed during the 1970s. Almost every aspect of
computing has changed dramatically since the time that they were developed, and yet,
McCall’s factors continue to apply to modern software. Can you draw any conclusions based on
this fact?

14.6. Using the subattributes noted for the ISO 9126 quality factor “maintainability” in Section
14.2.3, develop a set of questions that explore whether or not these attributes are present.
Follow the example shown in Section 14.2.4.

14.7. Describe the software quality dilemma in your own words.

14.8. What is “good enough” software? Name a specific company and specific products that
you believe were developed using the good enough philosophy.

14.9. Considering each of the four aspects of the cost of quality, which do you think is the most
expensive and why?

14.10. Do a Web search and find three other examples of “risks” to the public that can be
directly traced to poor software quality. Consider beginning your search at http://
catless.ncl.ac.uk/risks.

14.11. Are quality and security the same thing? Explain.

14.12. Explain why it is that many of us continue to live by Meskimen’s law. What is it about
the software business that causes this?

FURTHER READINGS AND INFORMATION SOURCES

Basic software quality concepts are considered in books by Henry and Hanlon (Software Quality
Assurance, Prentice-Hall, 2008), Khan and his colleagues (Software Quality: Concepts and
Practice, Alpha Science International, Ltd., 2006), O’Regan (A Practical Approach to Software
Quality, Springer, 2002), and Daughtrey (Fundamental Concepts for the Software Quality Engineer,
ASQ Quality Press, 2001).

Duvall and his colleagues (Continuous Integration: Improving Software Quality and Reducing
Risk, Addison-Wesley, 2007), Tian (Software Quality Engineering, Wiley-IEEE Computer Society
Press, 2005), Kandt (Software Engineering Quality Practices, Auerbach, 2005), Godbole (Software
Quality Assurance: Principles and Practice, Alpha Science International, Ltd., 2004), and Galin
(Software Quality Assurance: From Theory to Implementation, Addison-Wesley, 2003) present
detailed treatments of SQA. Quality assurance in the context of the agile process is considered
by Stamelos and Sfetsos (Agile Software Development Quality Assurance, IGI Global, 2007).

Solid design leads to high software quality. Jayasawal and Patton (Design for Trustworthy
Software, Prentice-Hall, 2006) and Ploesch (Contracts, Scenarios and Prototypes, Springer, 2004)
discuss tools and techniques for developing “robust” software.

414 PART THREE QUALITY MANAGEMENT

pre75977_ch14.qxd 11/27/08 5:52 PM Page 414

http://catless.ncl.ac.uk/risks
http://catless.ncl.ac.uk/risks

Measurement is an important component of software quality engineering. Ejiogu (Software
Metrics: The Discipline of Software Quality, BookSurge Publishing, 2005), Kan (Metrics and Mod-
els in Software Quality Engineering, Addison-Wesley, 2002), and Nance and Arthur (Managing
Software Quality, Springer, 2002) discuss important quality-related metrics and models. The
team-oriented aspects of software quality are considered by Evans (Achieving Software Quality
through Teamwork, Artech House Publishers, 2004).

A wide variety of information sources on software quality is available on the Internet. An up-to-
date list of World Wide Web references relevant to software quality can be found at the SEPA
website: www.mhhe.com/engcs/compsci/pressman/professional/olc/ser.htm.

CHAPTER 14 QUALITY CONCEPTS 415

pre75977_ch14.qxd 11/27/08 5:52 PM Page 415

http://www.mhhe.com/engcs/compsci/pressman/professional/olc/ser.htm

Software reviews are a “filter” for the software process. That is, reviews are
applied at various points during software engineering and serve to uncover
errors and defects that can then be removed. Software reviews “purify” soft-

ware engineering work products, including requirements and design models,
code, and testing data. Freedman and Weinberg [Fre90] discuss the need for
reviews this way:

Technical work needs reviewing for the same reason that pencils need erasers: To err

is human. The second reason we need technical reviews is that although people are

good at catching some of their own errors, large classes of errors escape the origina-

tor more easily than they escape anyone else. The review process is, therefore, the

answer to the prayer of Robert Burns:

O wad some power the giftie give us

to see ourselves as other see us

A review—any review—is a way of using the diversity of a group of people to:

1. Point out needed improvements in the product of a single person or team;

416

C H A P T E R

15 REVIEW
TECHNIQUES

K E Y
C O N C E P T S

defect
amplification . . .418
defects417
error density . .421
errors 417
record keeping . .427
review

metrics420
reporting 427

reviews
cost
effectiveness . .421
informal 424
sample-
driven 429
technical426

What is it? You’ll make mistakes as
you develop software engineering
work products. There’s no shame in
that—as long as you try hard, very

hard, to find and correct the mistakes before
they are delivered to end users. Technical
reviews are the most effective mechanism for
finding mistakes early in the software process.

Who does it? Software engineers perform techni-
cal reviews, also called peer reviews, with their
colleagues.

Why is it important? If you find an error early in
the process, it is less expensive to correct. In addi-
tion, errors have a way of amplifying as the
process proceeds. So a relatively minor error left
untreated early in the process can be amplified
into a major set of errors later in the project.
Finally, reviews save time by reducing the amount
of rework that will be required late in the project.

Q U I C K
L O O K

What are the steps? Your approach to reviews
will vary depending on the degree of formality
you select. In general, six steps are employed,
although not all are used for every type of
review: planning, preparation, structuring the
meeting, noting errors, making corrections
(done outside the review), and verifying that
corrections have been performed properly.

What is the work product? The output of a
review is a list of issues and/or errors that have
been uncovered. In addition, the technical status
of the work product is also indicated.

How do I ensure that I’ve done it right? First,
select the type of review that is appropriate for
your development culture. Follow the guidelines
that lead to successful reviews. If the reviews
that you conduct lead to higher-quality soft-
ware, you’ve done it right.

pre75977_ch15.qxd 11/27/08 5:54 PM Page 416

2. Confirm those parts of a product in which improvement is either not desired or not

needed;

3. Achieve technical work of more uniform, or at least more predictable, quality than can be

achieved without reviews, in order to make technical work more manageable.

Many different types of reviews can be conducted as part of software engineering.

Each has its place. An informal meeting around the coffee machine is a form of

review, if technical problems are discussed. A formal presentation of software

architecture to an audience of customers, management, and technical staff is also a

form of review. In this book, however, I focus on technical or peer reviews, exempli-

fied by casual reviews, walkthroughs, and inspections. A technical review (TR) is the

most effective filter from a quality control standpoint. Conducted by software engi-

neers (and others) for software engineers, the TR is an effective means for uncover-

ing errors and improving software quality.

15.1 COST IMPACT OF SOFTWARE DEFECTS

Within the context of the software process, the terms defect and fault are synony-

mous. Both imply a quality problem that is discovered after the software has been

released to end users (or to another framework activity in the software process). In

earlier chapters, we used the term error to depict a quality problem that is discovered

by software engineers (or others) before the software is released to the end user (or

to another framework activity in the software process).

CHAPTER 15 REVIEW TECHNIQUES 417

Reviews are like a
filter in the software
process workflow. Too
few, and the flow is
“dirty.” Too many, and
the flow slows to a
trickle. Use metrics to
determine which
reviews work and
emphasize them.
Remove ineffective
reviews from the flow
to accelerate the
process.

1 If software process improvement is considered, a quality problem that is propagated from one
process framework activity (e.g., modeling) to another (e.g., construction) can also be called a
“defect” (because the problem should have been found before a work product (e.g., a design model)
was “released” to the next activity.

Bugs, Errors, and Defects
The goal of software quality control, and in a
broader sense, quality management in general,

is to remove quality problems in the software. These
problems are referred to by various names—bugs, faults,
errors, or defects to name a few. Are each of these terms
synonymous, or are there subtle differences between them?

In this book I make a clear distinction between an error
(a quality problem found before the software is released to
end users) and a defect (a quality problem found only after
the software has been released to end users1). I make this
distinction because errors and defects have very different
economic, business, psychological, and human impact. As

software engineers, we want to find and correct as many
errors as possible before the customer and/or end user
encounter them. We want to avoid defects—because
defects (justifiably) make software people look bad.

It is important to note, however, that the temporal
distinction made between errors and defects in this book is
not mainstream thinking. The general consensus within the
software engineering community is that defects and errors,
faults, and bugs are synonymous. That is, the point in time
that the problem was encountered has no bearing on the
term used to describe the problem. Part of the argument in
favor of this view is that it is sometimes difficult to make a

INFO

pre75977_ch15.qxd 11/27/08 5:54 PM Page 417

418 PART THREE QUALITY MANAGEMENT

The primary objective of technical reviews is to find errors during the process so

that they do not become defects after release of the software. The obvious benefit of

technical reviews is the early discovery of errors so that they do not propagate to the

next step in the software process.

A number of industry studies indicate that design activities introduce between 50

and 65 percent of all errors (and ultimately, all defects) during the software process.

However, review techniques have been shown to be up to 75 percent effective

[Jon86] in uncovering design flaws. By detecting and removing a large percentage of

these errors, the review process substantially reduces the cost of subsequent activi-

ties in the software process.

15.2 DEFECT AMPLIF ICATION AND REMOVAL

A defect amplification model [IBM81] can be used to illustrate the generation and

detection of errors during the design and code generation actions of a software

process. The model is illustrated schematically in Figure 15.1. A box represents a soft-

ware engineering action. During the action, errors may be inadvertently generated.

Review may fail to uncover newly generated errors and errors from previous steps,

resulting in some number of errors that are passed through. In some cases, errors

passed through from previous steps are amplified (amplification factor, x) by current

work. The box subdivisions represent each of these characteristics and the percent of

efficiency for detecting errors, a function of the thoroughness of the review.

Figure 15.2 illustrates a hypothetical example of defect amplification for a software

process in which no reviews are conducted. Referring to the figure, each test step is

assumed to uncover and correct 50 percent of all incoming errors without intro-

ducing any new errors (an optimistic assumption). Ten preliminary design defects are

amplified to 94 errors before testing commences. Twelve latent errors (defects) are

released to the field. Figure 15.3 considers the same conditions except that design and

code reviews are conducted as part of each software engineering action. In this case,

10 initial preliminary (architectural) design errors are amplified to 24 errors before

testing commences. Only three latent errors exist. The relative costs associated with

the discovery and correction of errors, overall cost (with and without review for our

hypothetical example) can be established. The number of errors uncovered during

each of the steps noted in Figures 15.2 and 15.3 is multiplied by the cost to remove an

clear distinction between pre- and post-release (e.g.,
consider an incremental process used in agile
development).

Regardless of how you choose to interpret these
terms, recognize that the point in time at which a
problem is discovered does matter and that software

engineers should try hard—very hard—to find problems
before their customers and end users encounter them. If
you have further interest in this issue, a reasonably
thorough discussion of the terminology surrounding
“bugs” can be found at
www.softwaredevelopment.ca/bugs.shtml.

The primary objective
of an FTR is to find
errors before they are
passed on to another
software engineering
activity or released to
the end user.

uote:

“Some maladies, as
doctors say, at their
beginning are easy
to cure but difficult
to recognize … but
in the course of time
when they have not
at first been
recognized and
treated, become
easy to recognize
but difficult to
cure.”

Niccolo
Machiavelli

pre75977_ch15.qxd 11/27/08 5:54 PM Page 418

http://www.softwaredevelopment.ca/bugs.shtml

CHAPTER 15 REVIEW TECHNIQUES 419

Errors passed through

Development step
Defects Detection

Errors from
previous step

Amplified errors 1 : x

Newly generated errors

Percent
efficiency
for error
detection

Errors passed
to next step

FIGURE 15.1

Defect amplifi-
cation model

6

Preliminary design

0

10

0

0% 10
6

4

Detail design

4 × 1.5
 x = 1.5

25

0% 3710

27

Code/unit test

10

25

27 × 3
 x = 3 20% 94

To integration

94 Integration test

0

0

50% 47
Validation test

0

0

50%
24

System test

0

0

50% 12

Latent errors
(defects)

FIGURE 15.2

Defect amplifi-
cation—no
reviews

Preliminary design

0

10

0 Detail design

25

Code/unit test

25

To integration

Integration test

0

0

50%

Validation test

0

0

50%

System test

0

0

50%

Latent errors
(defects)

3 2

1

70%

50%

2

1 1.5

24

6

3

2460%

5

10 3

•

•

15 5

10

12

FIGURE 15.3

Defect amplifi-
cation—
reviews
conducted

pre75977_ch15.qxd 11/27/08 5:54 PM Page 419

error (1.5 cost units for design, 6.5 cost units before test, 15 cost units during test, and

67 cost units after release).2 Using these data, the total cost for development and

maintenance when reviews are conducted is 783 cost units. When no reviews are

conducted, total cost is 2177 units—nearly three times more costly.

To conduct reviews, you must expend time and effort, and your development

organization must spend money. However, the results of the preceding example

leave little doubt that you can pay now or pay much more later.

15.3 REVIEW METRICS AND THEIR USE

Technical reviews are one of many actions that are required as part of good software

engineering practice. Each action requires dedicated human effort, Since available

project effort is finite, it is important for a software engineering organization to

understand the effectiveness of each action by defining a set of metrics (Chapter 23)

that can be used to assess their efficacy.

Although many metrics can be defined for technical reviews, a relatively small

subset can provide useful insight. The following review metrics can be collected for

each review that is conducted:

• Preparation effort, Ep—the effort (in person-hours) required to review a work

product prior to the actual review meeting

• Assessment effort, Ea—the effort (in person-hours) that is expended during the

actual review

• Rework effort, Er—the effort (in person-hours) that is dedicated to the correc-

tion of those errors uncovered during the review

• Work product size, WPS—a measure of the size of the work product that has

been reviewed (e.g., the number of UML models, or the number of document

pages, or the number of lines of code)

• Minor errors found, Errminor—the number of errors found that can be catego-

rized as minor (requiring less than some prespecified effort to correct)

• Major errors found, Errmajor—the number of errors found that can be catego-

rized as major (requiring more than some prespecified effort to correct)

These metrics can be further refined by associating the type of work product that was

reviewed for the metrics collected.

15.3.1 Analyzing Metrics

Before analysis can begin, a few simple computations must occur. The total review

effort and the total number of errors discovered are defined as:

Ereview � Ep � Ea � Er

Errtot � Errminor � Errmajor

420 PART THREE QUALITY MANAGEMENT

2 These multipliers are somewhat different than the data presented in Figure 14.2, which is more
current. However, they serve to illustrate the costs of defect amplification nicely.

pre75977_ch15.qxd 11/27/08 5:54 PM Page 420

Error density represents the errors found per unit of work product reviewed.

Error density �

For example, if a requirements model is reviewed to uncover errors, inconsistencies,

and omissions, it would be possible to compute the error density in a number of dif-

ferent ways. The requirements model contains 18 UML diagrams as part of 32 over-

all pages of descriptive materials. The review uncovers 18 minor errors and 4 major

errors. Therefore, Errtot � 22. Error density is 1.2 errors per UML diagram or 0.68

errors per requirements model page.

If reviews are conducted for a number of different types of work products (e.g.,

requirements model, design model, code, test cases), the percentage of errors

uncovered for each review can be computed against the total number of errors

found for all reviews. In addition, the error density for each work product can be

computed.

Once data are collected for many reviews conducted across many projects, aver-

age values for error density enable you to estimate the number of errors to be found

in a new (as yet unreviewed document). For example, if the average error density for

a requirements model is 0.6 errors per page, and a new requirement model is 32

pages long, a rough estimate suggests that your software team will find about 19 or

20 errors during the review of the document. If you find only 6 errors, you’ve done

an extremely good job in developing the requirements model or your review

approach was not thorough enough.

Once testing has been conducted (Chapters 17 through 20), it is possible to collect

additional error data, including the effort required to find and correct errors uncov-

ered during testing and the error density of the software. The costs associated with

finding and correcting an error during testing can be compared to those for reviews.

This is discussed in Section 15.3.2.

15.3.2 Cost Effectiveness of Reviews

It is difficult to measure the cost effectiveness of any technical review in real time. A

software engineering organization can assess the effectiveness of reviews and their

cost benefit only after reviews have been completed, review metrics have been col-

lected, average data have been computed, and then the downstream quality of the

software is measured (via testing).

Returning to the example presented in Section 15.3.1, the average error density

for requirements models was determined to be 0.6 errors per page. The effort

required to correct a minor model error (immediately after the review) was found to

require 4 person-hours. The effort required for a major requirement error was found

to be 18 person-hours. Examining the review data collected, you find that minor

errors occur about 6 times more frequently than major errors. Therefore, you can

estimate that the average effort to find and correct a requirements error during

review is about 6 person-hours.

Errtot

WPS

CHAPTER 15 REVIEW TECHNIQUES 421

pre75977_ch15.qxd 11/27/08 5:54 PM Page 421

Requirements-related errors uncovered during testing require an average of 45

person-hours to find and correct (no data are available on the relative severity of the

error). Using the averages noted, we get:

Effort saved per error � Etesting � Ereviews

45 � 6 � 30 person-hours/error

Since 22 errors were found during the review of the requirements model, a saving of

about 660 person-hours of testing effort would be achieved. And that’s just for

requirements-related errors. Errors associated with design and code would add to

the overall benefit. The bottom line—effort saved leads to shorter delivery cycles and

improved time to market.

In his book on peer reviews, Karl Wiegers [Wie02] discusses anecdotal data from

major companies that have used inspections (a relatively formal type of technical

review) as part of their software quality control activities. Hewlett Packard reported

a 10 to 1 return on investment for inspections and noted that actual product delivery

accelerated by an average of 1.8 calendar months. AT&T indicated that inspections

reduced the overall cost of software errors by a factor of 10 and that quality improved

by an order of magnitude and productivity increased by 14 percent. Others report

similar benefits. Technical reviews (for design and other technical activities) provide

a demonstrable cost benefit and actually save time.

But for many software people, this statement is counterintuitive. “Reviews take

time,” software people argue, “and we don’t have the time to spare!” They argue that

time is a precious commodity on every software project and the ability to review

“every work product in detail” absorbs too much time.

The examples presented earlier in this section indicate otherwise. More impor-

tantly, industry data for software reviews has been collected for more than two

decades and is summarized qualitatively using the graphs illustrated in Figure 15.4.

422 PART THREE QUALITY MANAGEMENT

Planning
Requirements

Without
inspections

With
inspections

Deployment

Design Code Test

Effort

Time

FIGURE 15.4

Effort
expended with
and without
reviews
Source: Adapted from
[Fag86].

pre75977_ch15.qxd 11/27/08 5:54 PM Page 422

Referring to the figure, the effort expended when reviews are used does increase

early in the development of a software increment, but this early investment for

reviews pays dividends because testing and corrective effort is reduced. As impor-

tant, the deployment date for development with reviews is sooner than the deploy-

ment date without reviews. Reviews don’t take time, they save it!

15.4 REVIEWS: A FORMALITY SPECTRUM

Technical reviews should be applied with a level of formality that is appropriate for

the product to be built, the project time line, and the people who are doing the work.

Figure 15.5 depicts a reference model for technical reviews [Lai02] that identifies four

characteristics that contribute to the formality with which a review is conducted.

Each of the reference model characteristics helps to define the level of review

formality. The formality of a review increases when (1) distinct roles are explicitly

defined for the reviewers, (2) there is a sufficient amount of planning and prepara-

tion for the review, (3) a distinct structure for the review (including tasks and inter-

nal work products) is defined, and (4) follow-up by the reviewers occurs for any

corrections that are made.

To understand the reference model, let’s assume that you’ve decided to review the

interface design for SafeHomeAssured.com. You can do this in a variety of different

ways that range from relatively casual to extremely rigorous. If you decide that the

casual approach is most appropriate, you ask a few colleagues (peers) to examine

the interface prototype in an effort to uncover potential problems. All of you decide

that there will be no advance preparation, but that you will evaluate the prototype in

a reasonably structured way—looking at layout first, aesthetics next, navigation op-

tions after that, and so on. As the designer, you decide to take a few notes, but noth-

ing formal.

CHAPTER 15 REVIEW TECHNIQUES 423

Review

Planning
& preparation

Roles
individuals

play

Meeting
structure

Correction &
verification

FIGURE 15.5

Reference
model for
technical
reviews

pre75977_ch15.qxd 11/27/08 5:54 PM Page 423

But what if the interface is pivotal to the success of the entire project? What if human

lives depended on an interface that was ergonomically sound? You might decide that

a more rigorous approach was necessary. A review team would be formed. Each per-

son on the team would have a specific role to play—leading the team, recording find-

ings, presenting the material, and so on. Each reviewer would be given access to the

work product (in this case, the interface prototype) before the review and would spend

time looking for errors, inconsistencies, and omissions. A set of specific tasks would

be conducted based on an agenda that was developed before the review occurred. The

results of the review would be formally recorded, and the team would decide on the

status of the work product based on the outcome of the review. Members of the review

team might also verify that the corrections made were done properly.

In this book I consider two broad categories of technical reviews: informal reviews

and more formal technical reviews. Within each broad category, a number of differ-

ent approaches can be chosen. These are presented in the sections that follow.

15.5 INFORMAL REVIEWS

Informal reviews include a simple desk check of a software engineering work

product with a colleague, a casual meeting (involving more than two people) for

the purpose of reviewing a work product, or the review-oriented aspects of pair

programming (Chapter 3).

A simple desk check or a casual meeting conducted with a colleague is a review.

However, because there is no advance planning or preparation, no agenda or meet-

ing structure, and no follow-up on the errors that are uncovered, the effectiveness of

such reviews is considerably lower than more formal approaches. But a simple desk

check can and does uncover errors that might otherwise propagate further into the

software process.

One way to improve the efficacy of a desk check review is to develop a set of sim-

ple review checklists for each major work product produced by the software team.

The questions posed within the checklist are generic, but they will serve to guide the

reviewers as they check the work product. For example, let’s reexamine a desk check

of the interface prototype for SafeHomeAssured.com. Rather than simply playing

with the prototype at the designer’s workstation, the designer and a colleague

examine the prototype using a checklist for interfaces:

• Is the layout designed using standard conventions? Left to right? Top to

bottom?

• Does the presentation need to be scrolled?

• Are color and placement, typeface, and size used effectively?

• Are all navigation options or functions represented at the same level of

abstraction?

• Are all navigation choices clearly labeled?

424 PART THREE QUALITY MANAGEMENT

pre75977_ch15.qxd 11/27/08 5:54 PM Page 424

and so on. Any errors or issues noted by the reviewers are recorded by the designer

for resolution at a later time. Desk checks may be scheduled in an ad hoc manner,

or they may be mandated as part of good software engineering practice. In general,

the amount of material to be reviewed is relatively small and the overall time spent

on a desk check spans little more than one or two hours.

In Chapter 3, I described pair programming in the following manner: “XP recom-

mends that two people work together at one computer workstation to create code

for a story. This provides a mechanism for real-time problem solving (two heads are

often better than one) and real-time quality assurance.”

Pair programming can be characterized as a continuous desk check. Rather than

scheduling a review at some point in time, pair programming encourages continu-

ous review as a work product (design or code) is created. The benefit is immediate

discovery of errors and better work product quality as a consequence.

In their discussion of the efficacy of pair programming, Williams and Kessler

[Wil00] state:

Anecdotal and initial statistical evidence indicates that pair programming is a powerful

technique for productively generating high quality software products. The pair works and

shares ideas together to tackle the complexities of software development. They continu-

ously perform inspections on each other’s artifacts leading to the earliest, most efficient

form of defect removal possible. In addition, they keep each other intently focused on the

task at hand.

Some software engineers argue that the inherent redundancy built into pair pro-

gramming is wasteful of resources. After all, why assign two people to a job that one

person can accomplish? The answer to this question can be found in Section 15.3.2.

If the quality of the work product produced as a consequence of pair programming

is significantly better than the work of an individual, the quality-related savings can

more than justify the “redundancy” implied by pair programming.

CHAPTER 15 REVIEW TECHNIQUES 425

Review Checklists
Even when reviews are well organized and
properly conducted, it’s not a bad idea to

provide reviewers with a “crib sheet.” That is, it’s
worthwhile to have a checklist that provides each reviewer
with the questions that should be asked about the specific
work product that is undergoing review.

One of the most comprehensive collections of review
checklists has been developed by NASA at the Goddard
Space Flight Center and is available at http://
sw-assurance.gsfc.nasa.gov/disciplines/
quality/index.php

Other useful technical review checklists have also been
proposed by:

Process Impact (www.processimpact.com/
pr_goodies.shtml)

Software Dioxide (www.softwaredioxide.com/
Channels/ConView.asp?id=6309)

Macadamian (www.macadamian.com)
The Open Group Architecture Review Checklist

(www.opengroup.org/architecture/
togaf7-doc/arch/p4/comp/clists/syseng.htm)

DFAS [downloadable] (www.dfas.mil/
technology/pal/ssps/docstds/spm036.doc)

INFO

pre75977_ch15.qxd 11/27/08 5:54 PM Page 425

http://sw-assurance.gsfc.nasa.gov/disciplines/
http://sw-assurance.gsfc.nasa.gov/disciplines/
http://www.processimpact.com/pr_goodies.shtml
http://www.processimpact.com/pr_goodies.shtml
http://www.softwaredioxide.com/Channels/ConView.asp?id=6309
http://www.softwaredioxide.com/Channels/ConView.asp?id=6309
http://www.macadamian.com
http://www.opengroup.org/architecture/togaf7-doc/arch/p4/comp/clists/syseng.htm
http://www.opengroup.org/architecture/togaf7-doc/arch/p4/comp/clists/syseng.htm
http://www.dfas.mil/technology/pal/ssps/docstds/spm036.doc
http://www.dfas.mil/technology/pal/ssps/docstds/spm036.doc

15.6 FORMAL TECHNICAL REVIEWS

A formal technical review (FTR) is a software quality control activity performed by

software engineers (and others). The objectives of an FTR are: (1) to uncover errors

in function, logic, or implementation for any representation of the software; (2) to

verify that the software under review meets its requirements; (3) to ensure that the

software has been represented according to predefined standards; (4) to achieve

software that is developed in a uniform manner; and (5) to make projects more man-

ageable. In addition, the FTR serves as a training ground, enabling junior engineers

to observe different approaches to software analysis, design, and implementation.

The FTR also serves to promote backup and continuity because a number of people

become familiar with parts of the software that they may not have otherwise seen.

The FTR is actually a class of reviews that includes walkthroughs and inspections.

Each FTR is conducted as a meeting and will be successful only if it is properly

planned, controlled, and attended. In the sections that follow, guidelines similar to

those for a walkthrough are presented as a representative formal technical review.

If you have interest in software inspections, as well as additional information on

walkthroughs, see [Rad02], [Wie02], or [Fre90].

15.6.1 The Review Meeting

Regardless of the FTR format that is chosen, every review meeting should abide by

the following constraints:

• Between three and five people (typically) should be involved in the review.

• Advance preparation should occur but should require no more than two

hours of work for each person.

• The duration of the review meeting should be less than two hours.

Given these constraints, it should be obvious that an FTR focuses on a specific (and

small) part of the overall software. For example, rather than attempting to review an

entire design, walkthroughs are conducted for each component or small group of

components. By narrowing the focus, the FTR has a higher likelihood of uncovering

errors.

The focus of the FTR is on a work product (e.g., a portion of a requirements model,

a detailed component design, source code for a component). The individual who has

developed the work product—the producer—informs the project leader that the work

product is complete and that a review is required. The project leader contacts a

review leader, who evaluates the product for readiness, generates copies of product

materials, and distributes them to two or three reviewers for advance preparation.

Each reviewer is expected to spend between one and two hours reviewing the prod-

uct, making notes, and otherwise becoming familiar with the work. Concurrently, the

review leader also reviews the product and establishes an agenda for the review

meeting, which is typically scheduled for the next day.

426 PART THREE QUALITY MANAGEMENT

uote:

“There is no urge
so great as for one
man to edit
another man’s
work.”

Mark Twain

WebRef

The NASA SATC
Formal Inspection
Guidebook can be
downloaded from
satc.gsfc.nasa
.gov/Documents/
fi/gdb/fi.pdf.

An FTR focuses on a
relatively small portion
of a work product.

pre75977_ch15.qxd 11/27/08 5:54 PM Page 426

The review meeting is attended by the review leader, all reviewers, and the pro-

ducer. One of the reviewers takes on the role of a recorder, that is, the individual who

records (in writing) all important issues raised during the review. The FTR begins

with an introduction of the agenda and a brief introduction by the producer. The pro-

ducer then proceeds to “walk through” the work product, explaining the material,

while reviewers raise issues based on their advance preparation. When valid prob-

lems or errors are discovered, the recorder notes each.

At the end of the review, all attendees of the FTR must decide whether to: (1) ac-

cept the product without further modification, (2) reject the product due to severe er-

rors (once corrected, another review must be performed), or (3) accept the product

provisionally (minor errors have been encountered and must be corrected, but no

additional review will be required). After the decision is made, all FTR attendees

complete a sign-off, indicating their participation in the review and their concur-

rence with the review team’s findings.

15.6.2 Review Reporting and Record Keeping

During the FTR, a reviewer (the recorder) actively records all issues that have been

raised. These are summarized at the end of the review meeting, and a review issues

list is produced. In addition, a formal technical review summary report is completed. A

review summary report answers three questions:

1. What was reviewed?

2. Who reviewed it?

3. What were the findings and conclusions?

The review summary report is a single page form (with possible attachments). It be-

comes part of the project historical record and may be distributed to the project

leader and other interested parties.

The review issues list serves two purposes: (1) to identify problem areas within

the product and (2) to serve as an action item checklist that guides the producer as

corrections are made. An issues list is normally attached to the summary report.

You should establish a follow-up procedure to ensure that items on the issues list

have been properly corrected. Unless this is done, it is possible that issues raised can

“fall between the cracks.” One approach is to assign the responsibility for follow-up

to the review leader.

15.6.3 Review Guidelines

Guidelines for conducting formal technical reviews must be established in advance,

distributed to all reviewers, agreed upon, and then followed. A review that is un-

controlled can often be worse than no review at all. The following represents a min-

imum set of guidelines for formal technical reviews:

1. Review the product, not the producer. An FTR involves people and egos. Con-

ducted properly, the FTR should leave all participants with a warm feeling of

CHAPTER 15 REVIEW TECHNIQUES 427

In some situations, it’s
a good idea to have
someone other than
the producer walk
through the product
undergoing review.
This leads to a literal
interpretation of the
work product and
better error recogni-
tion.

Don’t point out errors
harshly. One way to be
gentle is to ask a
question that enables
the producer to
discover the error.

pre75977_ch15.qxd 11/27/08 5:54 PM Page 427

accomplishment. Conducted improperly, the FTR can take on the aura of an

inquisition. Errors should be pointed out gently; the tone of the meeting

should be loose and constructive; the intent should not be to embarrass or

belittle. The review leader should conduct the review meeting to ensure that

the proper tone and attitude are maintained and should immediately halt a

review that has gotten out of control.

2. Set an agenda and maintain it. One of the key maladies of meetings of all

types is drift. An FTR must be kept on track and on schedule. The review

leader is chartered with the responsibility for maintaining the meeting sched-

ule and should not be afraid to nudge people when drift sets in.

3. Limit debate and rebuttal. When an issue is raised by a reviewer, there may

not be universal agreement on its impact. Rather than spending time debat-

ing the question, the issue should be recorded for further discussion off-line.

4. Enunciate problem areas, but don’t attempt to solve every problem noted. A re-

view is not a problem-solving session. The solution of a problem can often

be accomplished by the producer alone or with the help of only one other in-

dividual. Problem solving should be postponed until after the review meeting.

5. Take written notes. It is sometimes a good idea for the recorder to make notes

on a wall board, so that wording and priorities can be assessed by other re-

viewers as information is recorded. Alternatively, notes may be entered di-

rectly into a notebook computer.

6. Limit the number of participants and insist upon advance preparation. Two

heads are better than one, but 14 are not necessarily better than 4. Keep the

number of people involved to the necessary minimum. However, all review

team members must prepare in advance. Written comments should be

solicited by the review leader (providing an indication that the reviewer

has reviewed the material).

7. Develop a checklist for each product that is likely to be reviewed. A checklist

helps the review leader to structure the FTR meeting and helps each reviewer

to focus on important issues. Checklists should be developed for analysis,

design, code, and even testing work products.

8. Allocate resources and schedule time for FTRs. For reviews to be effective, they

should be scheduled as tasks during the software process. In addition, time

should be scheduled for the inevitable modifications that will occur as the

result of an FTR.

9. Conduct meaningful training for all reviewers. To be effective all review partici-

pants should receive some formal training. The training should stress both

process-related issues and the human psychological side of reviews. Freed-

man and Weinberg [Fre90] estimate a one-month learning curve for every

20 people who are to participate effectively in reviews.

428 PART THREE QUALITY MANAGEMENT

uote:

“A meeting is too
often an event in
which minutes are
taken and hours
are wasted.”

Author unknown

uote:

“It is one of the
most beautiful
compensations of
life, that no man
can sincerely try to
help another
without helping
himself.”

Ralph Waldo
Emerson

pre75977_ch15.qxd 11/27/08 5:54 PM Page 428

10. Review your early reviews. Debriefing can be beneficial in uncovering prob-

lems with the review process itself. The very first product to be reviewed

should be the review guidelines themselves.

Because many variables (e.g., number of participants, type of work products, tim-

ing and length, specific review approach) have an impact on a successful review, a

software organization should experiment to determine what approach works best in

a local context.

15.6.4 Sample-Driven Reviews

In an ideal setting, every software engineering work product would undergo a for-

mal technical review. In the real word of software projects, resources are limited and

time is short. As a consequence, reviews are often skipped, even though their value

as a quality control mechanism is recognized.

Thelin and his colleagues [The01] suggest a sample-driven review process in

which samples of all software engineering work products are inspected to determine

which work products are most error prone. Full FTR resources are then focused only

on those work products that are likely (based on data collected during sampling) to

be error prone.

To be effective, the sample-driven review process must attempt to quantify those

work products that are primary targets for full FTRs. To accomplish this, the follow-

ing steps are suggested [The01]:

1. Inspect a fraction ai of each software work product i. Record the number of

faults fi found within ai.

2. Develop a gross estimate of the number of faults within work product i by

multiplying fi by 1/ai.

3. Sort the work products in descending order according to the gross estimate

of the number of faults in each.

4. Focus available review resources on those work products that have the high-

est estimated number of faults.

The fraction of the work product that is sampled must be representative of the work

product as a whole and large enough to be meaningful to the reviewers who do the

sampling. As ai increases, the likelihood that the sample is a valid representation of

the work product also increases. However, the resources required to do sampling

also increase. A software engineering team must establish the best value for ai for

the types of work products produced.3

CHAPTER 15 REVIEW TECHNIQUES 429

3 Thelin and his colleagues have conducted a detailed simulation that can assist in making this
determination. See [The01] for details.

Reviews take time, but
it’s time well spend.
However, if time is
short and you have no
other option, do not
dispense with reviews.
Rather, use sample-
driven reviews.

pre75977_ch15.qxd 11/27/08 5:54 PM Page 429

15.7 SUMMARY

The intent of every technical review is to find errors and uncover issues that would have

a negative impact on the software to be deployed. The sooner an error is uncovered and

corrected, the less likely that error will propagate to other software engineering work

products and amplify itself, resulting in significantly more effort to correct it.

To determine whether quality control activities are working, a set of metrics

should be collected. Review metrics focus on the effort required to conduct the re-

view and the types and severity of errors uncovered during the review. Once metrics

data are collected, they can be used to assess the efficacy of the reviews you do con-

duct. Industry data indicates that reviews provide a significant return on investment.

A reference model for review formality identifies the roles people play, planning

and preparation, meeting structure, correction approach, and verification as the

characteristics that indicate the degree of formality with which a review is con-

ducted. Informal reviews are casual in nature, but can still be used effectively to un-

cover errors. Formal reviews are more structured and have the highest probability of

leading to high-quality software.

430 PART THREE QUALITY MANAGEMENT

Quality Issues

The scene: Doug Miller’s office as the
SafeHome software project begins.

The players: Doug Miller (manager of the SafeHome
software engineering team) and other members of the
product software engineering team.

The conversation:

Doug: I know we didn’t spend time developing a quality
plan for this project, but we’re already into it and we
have to consider quality … right?

Jamie: Sure. We’ve already decided that as we develop the
requirements model [Chapters 6 and 7], Ed has committed to
develop a testing procedure for each requirement.

Doug: That’s really good, but we’re not going to wait
until testing to evaluate quality, are we?

Vinod: No! Of course not. We’ve got reviews scheduled
into the project plan for this software increment. We’ll
begin quality control with the reviews.

Jamie: I’m a bit concerned that we won’t have enough
time to conduct all the reviews. In fact, I know we won’t.

Doug: Hmmm. So what do you propose?

Jamie: I say we select those elements of the requirements
and design model that are most critical to SafeHome and
review them.

Vinod: But what if we miss something in a part of the
model we don’t review?

Shakira: I read something about a sampling technique
[Section 15.6.4] that might help us target candidates for
review. (Shakira explains the approach.)

Jamie: Maybe … but I’m not sure we even have time to
sample every element of the models.

Vinod: What do you want us to do, Doug?

Doug: Let’s steal something from Extreme Programming
[Chapter 3]. We’ll develop the elements of each model in
pairs—two people—and conduct an informal review of
each as we go. We’ll then target “critical” elements for a
more formal team review, but keep those reviews to a
minimum. That way, everything gets looked at by more
than one set of eyes, but we still maintain our delivery
dates.

Jamie: That means we’re going to have to revise the
schedule.

Doug: So be it. Quality trumps schedule on this project.

SAFEHOME

pre75977_ch15.qxd 11/27/08 5:54 PM Page 430

Informal reviews are characterized by minimal planning and preparation and little

record keeping. Desk checks and pair programming fall into the informal review category.

A formal technical review is a stylized meeting that has been shown to be ex-

tremely effective in uncovering errors. Walkthroughs and inspections establish de-

fined roles for each reviewer, encourage planning and advance preparation, require

the application of defined review guidelines, and mandate record keeping and sta-

tus reporting. Sample-driven reviews can be used when it is not possible to conduct

formal technical reviews for all work products.

PROBLEMS AND POINTS TO PONDER

15.1. Explain the difference between an error and a defect.

15.2. Why can’t we just wait until testing to find and correct all software errors?

15.3. Assume that 10 errors have been introduced in the requirements model and that each
error will be amplified by a factor of 2:1 into design and an addition 20 design errors are intro-
duced and then amplified 1.5:1 into code where an additional 30 errors are introduced. Assume
further that all unit testing will find 30 percent of all errors, integration will find 30 percent of
the remaining errors, and validation tests will find 50 percent of the remaining errors. No
reviews are conducted. How many errors will be released to the field.

15.4. Reconsider the situation described in Problem 15.3, but now assume that requirements,
design, and code reviews are conducted and are 60 percent effective in uncovering all errors at
that step. How many errors will be released to the field?

15.5. Reconsider the situation described in Problems 15.3 and 15.4. If each of the errors
released to the field costs $4,800 to find and correct and each error found in review costs $240
to find and correct, how much money is saved by conducting reviews?

15.6. Describe the meaning of Figure 15.4 in your own words.

15.7. Which of the reference model characteristics do you think has the strongest bearing on
review formality? Explain why.

15.8. Can you think of a few instances in which a desk check might create problems rather than
provide benefits?

15.9. A formal technical review is effective only if everyone has prepared in advance. How do you
recognize a review participant who has not prepared? What do you do if you’re the review leader?

15.10. Considering all of the review guidelines presented in Section 15.6.3, which do you think
is most important and why?

FURTHER READINGS AND INFORMATION SOURCES

There have been relatively few books written on software reviews. Recent editions that provide
worthwhile guidance include books by Wong (Modern Software Review, IRM Press, 2006), Radice
(High Quality, Low Cost Software Inspections, Paradoxicon Publishers, 2002), Wiegers (Peer
Reviews in Software: A Practical Guide, Addison-Wesley, 2001), and Gilb and Graham (Software
Inspection, Addison-Wesley, 1993). Freedman and Weinberg (Handbook of Walkthroughs,
Inspections and Technical Reviews, Dorset House, 1990) remains a classic text and continues to
provide worthwhile information about this important subject.

A wide variety of information sources on software reviews is available on the Internet.
An up-to-date list of World Wide Web references relevant to software reviews can be found
at the SEPA website: www.mhhe.com/engcs/compsci/pressman/professional/olc/
ser.htm.

CHAPTER 15 REVIEW TECHNIQUES 431

pre75977_ch15.qxd 11/27/08 5:54 PM Page 431

http://www.mhhe.com/engcs/compsci/pressman/professional/olc/

The software engineering approach described in this book works toward a
single goal: to produce on-time, high-quality software. Yet many readers
will be challenged by the question: “What is software quality?”

Philip Crosby [Cro79], in his landmark book on quality, provides a wry answer
to this question:

The problem of quality management is not what people don’t know about it. The prob-

lem is what they think they do know. . . .

In this regard, quality has much in common with sex. Everybody is for it. (Under

certain conditions, of course.) Everyone feels they understand it. (Even though they

wouldn’t want to explain it.) Everyone thinks execution is only a matter of following

natural inclinations. (After all, we do get along somehow.) And, of course, most peo-

ple feel that problems in these areas are caused by other people. (If only they would

take the time to do things right.)

432

C H A P T E R

16 SOFTWARE QUALITY
ASSURANCE

K E Y
C O N C E P T S

formal
approaches438
goals 436

ISO 9001:2000
standard 445
Six Sigma441
software
reliability 442
software
safety 443
SQA

elements of . . .434
plan 445
statistical 439
tasks 436

What is it? It’s not enough to talk the
talk by saying that software quality is
important. You have to (1) explicitly
define what is meant when you say

“software quality,” (2) create a set of activities that
will help ensure that every software engineering
work product exhibits high quality, (3) perform
quality control and assurance activities on every
software project, (4) use metrics to develop strate-
gies for improving your software process and, as
a consequence, the quality of the end product.

Who does it? Everyone involved in the software
engineering process is responsible for quality.

Why is it important? You can do it right, or you
can do it over again. If a software team stresses
quality in all software engineering activities, it
reduces the amount of rework that it must do.
That results in lower costs, and more importantly,
improved time-to-market.

What are the steps? Before software quality
assurance (SQA) activities can be initiated, it is

Q U I C K
L O O K

important to define software quality at a num-
ber of different levels of abstraction. Once you
understand what quality is, a software team
must identify a set of SQA activities that will fil-
ter errors out of work products before they are
passed on.

What is the work product? A Software Quality
Assurance Plan is created to define a software
team’s SQA strategy. During modeling and cod-
ing, the primary SQA work product is the output
of technical reviews (Chapter 15). During testing
(Chapters 17 through 20), test plans and proce-
dures are produced. Other work products asso-
ciated with process improvement may also be
generated.

How do I ensure that I’ve done it right? Find
errors before they become defects! That is,
work to improve your defect removal efficiency
(Chapter 23), thereby reducing the amount
of rework that your software team has to
perform.

pre75977_ch16.qxd 11/27/08 6:07 PM Page 432

Indeed, quality is a challenging concept—one that I addressed in some detail in
Chapter 14.1

Some software developers continue to believe that software quality is something
you begin to worry about after code has been generated. Nothing could be further
from the truth! Software quality assurance (often called quality management) is an um-
brella activity (Chapter 2) that is applied throughout the software process.

Software quality assurance (SQA) encompasses (1) an SQA process, (2) specific
quality assurance and quality control tasks (including technical reviews and a multi-
tiered testing strategy), (3) effective software engineering practice (methods and
tools), (4) control of all software work products and the changes made to them
(Chapter 22), (5) a procedure to ensure compliance with software development stan-
dards (when applicable), and (6) measurement and reporting mechanisms.

In this chapter, I focus on the management issues and the process-specific activ-
ities that enable a software organization to ensure that it does “the right things at the
right time in the right way.”

16.1 BACKGROUND ISSUES

Quality control and assurance are essential activities for any business that produces

products to be used by others. Prior to the twentieth century, quality control was the

sole responsibility of the craftsperson who built a product. As time passed and mass

production techniques became commonplace, quality control became an activity

performed by people other than the ones who built the product.

The first formal quality assurance and control function was introduced at Bell

Labs in 1916 and spread rapidly throughout the manufacturing world. During the

1940s, more formal approaches to quality control were suggested. These relied on

measurement and continuous process improvement [Dem86] as key elements of

quality management.

Today, every company has mechanisms to ensure quality in its products. In fact,

explicit statements of a company’s concern for quality have become a marketing

ploy during the past few decades.

The history of quality assurance in software development parallels the history of

quality in hardware manufacturing. During the early days of computing (1950s and

1960s), quality was the sole responsibility of the programmer. Standards for quality

assurance for software were introduced in military contract software development

during the 1970s and have spread rapidly into software development in the com-

mercial world [IEE93]. Extending the definition presented earlier, software quality

assurance is a “planned and systematic pattern of actions” [Sch98c] that are required

to ensure high quality in software. The scope of quality assurance responsibility

might best be characterized by paraphrasing a once-popular automobile commercial:

“Quality Is Job #1.” The implication for software is that many different constituencies

CHAPTER 16 SOFTWARE QUALITY ASSURANCE 433

1 If you have not read Chapter 14, you should do so now.

uote:

“You made too
many wrong
mistakes.”

Yogi Berra

pre75977_ch16.qxd 11/27/08 6:07 PM Page 433

434 PART THREE QUALITY MANAGEMENT

have software quality assurance responsibility—software engineers, project man-

agers, customers, salespeople, and the individuals who serve within an SQA group.

The SQA group serves as the customer’s in-house representative. That is, the

people who perform SQA must look at the software from the customer’s point of

view. Does the software adequately meet the quality factors noted in Chapter 14? Has

software development been conducted according to preestablished standards? Have

technical disciplines properly performed their roles as part of the SQA activity? The

SQA group attempts to answer these and other questions to ensure that software

quality is maintained.

16.2 ELEMENTS OF SOFTWARE QUALITY ASSURANCE

Software quality assurance encompasses a broad range of concerns and activities

that focus on the management of software quality. These can be summarized in the

following manner [Hor03]:

Standards. The IEEE, ISO, and other standards organizations have pro-

duced a broad array of software engineering standards and related docu-

ments. Standards may be adopted voluntarily by a software engineering

organization or imposed by the customer or other stakeholders. The job of

SQA is to ensure that standards that have been adopted are followed and

that all work products conform to them.

Reviews and audits. Technical reviews are a quality control activity

performed by software engineers for software engineers (Chapter 15).

Their intent is to uncover errors. Audits are a type of review performed by

SQA personnel with the intent of ensuring that quality guidelines are being

followed for software engineering work. For example, an audit of the

review process might be conducted to ensure that reviews are being

performed in a manner that will lead to the highest likelihood of

uncovering errors.

Testing. Software testing (Chapters 17 through 20) is a quality control func-

tion that has one primary goal—to find errors. The job of SQA is to ensure

that testing is properly planned and efficiently conducted so that it has the

highest likelihood of achieving its primary goal.

Error/defect collection and analysis. The only way to improve is to

measure how you’re doing. SQA collects and analyzes error and defect data

to better understand how errors are introduced and what software engineer-

ing activities are best suited to eliminating them.

Change management. Change is one of the most disruptive aspects of

any software project. If it is not properly managed, change can lead to con-

fusion, and confusion almost always leads to poor quality. SQA ensures that

adequate change management practices (Chapter 22) have been instituted.

WebRef
An in-depth discussion
of SQA, including
a wide array of
definitions, can
be obtained at
www.swqual
.com/newsletter/
vol2/no1/
vol2no1.html.

pre75977_ch16.qxd 11/27/08 6:07 PM Page 434

http://www.swqual

Education. Every software organization wants to improve its software

engineering practices. A key contributor to improvement is education of soft-

ware engineers, their managers, and other stakeholders. The SQA organiza-

tion takes the lead in software process improvement (Chapter 30) and is a

key proponent and sponsor of educational programs.

Vendor management. Three categories of software are acquired from

external software vendors—shrink-wrapped packages (e.g., Microsoft Office),

a tailored shell [Hor03] that provides a basic skeletal structure that is custom

tailored to the needs of a purchaser, and contracted software that is custom

designed and constructed from specifications provided by the customer

organization. The job of the SQA organization is to ensure that high-quality

software results by suggesting specific quality practices that the vendor

should follow (when possible), and incorporating quality mandates as part of

any contract with an external vendor.

Security management. With the increase in cyber crime and new govern-

ment regulations regarding privacy, every software organization should insti-

tute policies that protect data at all levels, establish firewall protection for

WebApps, and ensure that software has not been tampered with internally.

SQA ensures that appropriate process and technology are used to achieve

software security.

Safety. Because software is almost always a pivotal component of human-

rated systems (e.g., automotive or aircraft applications), the impact of hidden

defects can be catastrophic. SQA may be responsible for assessing the impact

of software failure and for initiating those steps required to reduce risk.

Risk management. Although the analysis and mitigation of risk (Chapter

28) is the concern of software engineers, the SQA organization ensures that

risk management activities are properly conducted and that risk-related

contingency plans have been established.

In addition to each of these concerns and activities, SQA works to ensure that soft-

ware support activities (e.g., maintenance, help lines, documentation, and manuals)

are conducted or produced with quality as a dominant concern.

CHAPTER 16 SOFTWARE QUALITY ASSURANCE 435

uote:

“Excellence is the
unlimited ability to
improve the quality
of what you have
to offer.”

Rick Petin

Quality Management Resources
There are dozens of quality management
resources available on the Web, including

professional societies, standards organizations, and
general information sources. The sites that follow provide
a good starting point:

American Society for Quality (ASQ) Software Division
www.asq.org/software

Association for Computer Machinery www.acm.org
Data and Analysis Center for Software (DACS)

www.dacs.dtic.mil/
International Organization for Standardization (ISO)

www.iso.ch
ISO SPICE

www.isospice.com

INFO

pre75977_ch16.qxd 11/27/08 6:07 PM Page 435

http://www.asq.org/software
http://www.acm.org
http://www.dacs.dtic.mil/
http://www.iso.ch
http://www.isospice.com

16.3 SQA TASKS, GOALS, AND METRICS

Software quality assurance is composed of a variety of tasks associated with two dif-

ferent constituencies—the software engineers who do technical work and an SQA

group that has responsibility for quality assurance planning, oversight, record keep-

ing, analysis, and reporting.

Software engineers address quality (and perform quality control activities) by

applying solid technical methods and measures, conducting technical reviews, and

performing well-planned software testing.

16.3.1 SQA Tasks

The charter of the SQA group is to assist the software team in achieving a high-

quality end product. The Software Engineering Institute recommends a set of SQA

actions that address quality assurance planning, oversight, record keeping, analysis,

and reporting. These actions are performed (or facilitated) by an independent SQA

group that:

Prepares an SQA plan for a project. The plan is developed as part of

project planning and is reviewed by all stakeholders. Quality assurance

actions performed by the software engineering team and the SQA group are

governed by the plan. The plan identifies evaluations to be performed,

audits and reviews to be conducted, standards that are applicable to the

project, procedures for error reporting and tracking, work products that

are produced by the SQA group, and feedback that will be provided to the

software team.

Participates in the development of the project’s software process

description. The software team selects a process for the work to be

performed. The SQA group reviews the process description for compli-

ance with organizational policy, internal software standards, externally

imposed standards (e.g., ISO-9001), and other parts of the software

project plan.

436 PART THREE QUALITY MANAGEMENT

Malcolm Baldridge National Quality Award
www.quality.nist.gov

Software Engineering Institute
www.sei.cmu.edu/

Software Testing and Quality Engineering
www.stickyminds.com

Six Sigma Resources
www.isixsigma.com/
www.asq.org/sixsigma/

TickIT International: Quality certification topics
www.tickit.org/international.htm

Total Quality Management (TQM)
General information:

www.gslis.utexas.edu/~rpollock/tqm.html
Articles: www.work911.com/tqmarticles.htm
Glossary:

www.quality.org/TQM-MSI/TQM-glossary
.html

What is the
role of an

SQA group?
?

pre75977_ch16.qxd 11/27/08 6:07 PM Page 436

http://www.quality.nist.gov
http://www.sei.cmu.edu/
http://www.stickyminds.com
http://www.isixsigma.com/
http://www.asq.org/sixsigma/
http://www.tickit.org/international.htm
http://www.gslis.utexas.edu/~rpollock/tqm.html
http://www.work911.com/tqmarticles.htm
http://www.quality.org/TQM-MSI/TQM-glossary

Reviews software engineering activities to verify compliance with the

defined software process. The SQA group identifies, documents, and tracks

deviations from the process and verifies that corrections have been made.

Audits designated software work products to verify compliance with

those defined as part of the software process. The SQA group reviews

selected work products; identifies, documents, and tracks deviations; verifies

that corrections have been made; and periodically reports the results of its

work to the project manager.

Ensures that deviations in software work and work products are

documented and handled according to a documented procedure.

Deviations may be encountered in the project plan, process description,

applicable standards, or software engineering work products.

Records any noncompliance and reports to senior management.

Noncompliance items are tracked until they are resolved.

In addition to these actions, the SQA group coordinates the control and management

of change (Chapter 22) and helps to collect and analyze software metrics.

16.3.2 Goals, Attributes, and Metrics

The SQA actions described in the preceding section are performed to achieve a set

of pragmatic goals:

Requirements quality. The correctness, completeness, and consistency

of the requirements model will have a strong influence on the quality of all

work products that follow. SQA must ensure that the software team has

properly reviewed the requirements model to achieve a high level of quality.

Design quality. Every element of the design model should be assessed by

the software team to ensure that it exhibits high quality and that the design

itself conforms to requirements. SQA looks for attributes of the design that

are indicators of quality.

Code quality. Source code and related work products (e.g., other descrip-

tive information) must conform to local coding standards and exhibit charac-

teristics that will facilitate maintainability. SQA should isolate those attributes

that allow a reasonable analysis of the quality of code.

Quality control effectiveness. A software team should apply limited re-

sources in a way that has the highest likelihood of achieving a high-quality

result. SQA analyzes the allocation of resources for reviews and testing to

assess whether they are being allocated in the most effective manner.

Figure 16.1 (adapted from [Hya96]) identifies the attributes that are indicators for

the existence of quality for each of the goals discussed. Metrics that can be used to

indicate the relative strength of an attribute are also shown.

CHAPTER 16 SOFTWARE QUALITY ASSURANCE 437

uote:

“Quality is never
an accident; it is
always the result of
high intention,
sincere effort,
intelligent direction
and skillful
execution; it
represents the wise
choice of many
alternatives.”

William A.
Foster

pre75977_ch16.qxd 11/27/08 6:07 PM Page 437

438 PART THREE QUALITY MANAGEMENT

FIGURE 16.1

Goal Attribute Metric

Requirement quality Ambiguity Number of ambiguous modifiers (e.g., many, large,
human-friendly)

Completeness Number of TBA, TBD

Understandability Number of sections/subsections

Volatility Number of changes per requirement

Time (by activity) when change is requested

Traceability Number of requirements not traceable to design/code

Model clarity Number of UML models

Number of descriptive pages per model

Number of UML errors

Design quality Architectural integrity Existence of architectural model

Component completeness Number of components that trace to architectural model

Complexity of procedural design

Interface complexity Average number of pick to get to a typical function or content

Layout appropriateness

Patterns Number of patterns used

Code quality Complexity Cyclomatic complexity

Maintainability Design factors (Chapter 8)

Understandability Percent internal comments

Variable naming conventions

Reusability Percent reused components

Documentation Readability index

QC effectiveness Resource allocation Staff hour percentage per activity

Completion rate Actual vs. budgeted completion time

Review effectiveness See review metrics (Chapter 14)

Testing effectiveness Number of errors found and criticality

Effort required to correct an error

Origin of error

Software quality goals, attributes, and metrics
Source: Adapted from [Hya96].

16.4 FORMAL APPROACHES TO SQA

In the preceding sections, I have argued that software quality is everyone’s job and

that it can be achieved through competent software engineering practice as well as

through the application of technical reviews, a multi-tiered testing strategy, better

control of software work products and the changes made to them, and the applica-

tion of accepted software engineering standards. In addition, quality can be defined

pre75977_ch16.qxd 11/27/08 6:07 PM Page 438

in terms of a broad array of quality attributes and measured (indirectly) using a

variety of indices and metrics.

Over the past three decades, a small, but vocal, segment of the software engineer-

ing community has argued that a more formal approach to software quality assurance

is required. It can be argued that a computer program is a mathematical object. A rig-

orous syntax and semantics can be defined for every programming language, and a

rigorous approach to the specification of software requirements (Chapter 21) is avail-

able. If the requirements model (specification) and the programming language can be

represented in a rigorous manner, it should be possible to apply mathematic proof of

correctness to demonstrate that a program conforms exactly to its specifications.

Attempts to prove programs correct are not new. Dijkstra [Dij76a] and Linger,

Mills, and Witt [Lin79], among others, advocated proofs of program correctness and

tied these to the use of structured programming concepts (Chapter 10).

16.5 STATISTICAL SOFTWARE QUALITY ASSURANCE

Statistical quality assurance reflects a growing trend throughout industry to become

more quantitative about quality. For software, statistical quality assurance implies

the following steps:

1. Information about software errors and defects is collected and categorized.

2. An attempt is made to trace each error and defect to its underlying cause

(e.g., nonconformance to specifications, design error, violation of standards,

poor communication with the customer).

3. Using the Pareto principle (80 percent of the defects can be traced to 20 per-

cent of all possible causes), isolate the 20 percent (the vital few).

4. Once the vital few causes have been identified, move to correct the problems

that have caused the errors and defects.

This relatively simple concept represents an important step toward the creation of

an adaptive software process in which changes are made to improve those elements

of the process that introduce error.

16.5.1 A Generic Example

To illustrate the use of statistical methods for software engineering work, assume

that a software engineering organization collects information on errors and defects

for a period of one year. Some of the errors are uncovered as software is being de-

veloped. Others (defects) are encountered after the software has been released to its

end users. Although hundreds of different problems are uncovered, all can be

tracked to one (or more) of the following causes:

• Incomplete or erroneous specifications (IES)

• Misinterpretation of customer communication (MCC)

CHAPTER 16 SOFTWARE QUALITY ASSURANCE 439

WebRef
Useful information on
SQA and formal quality
methods can be found
at www.gslis
.utexas.edu/
~rpollock/tqm
.html.

What steps
are required

to perform
statistical SQA?

?

uote:

“A statistical
analysis, properly
conducted, is a
delicate dissection
of uncertainties,
a surgery of
suppositions.”

M. J. Moroney

pre75977_ch16.qxd 11/27/08 6:07 PM Page 439

http://www.gslis

• Intentional deviation from specifications (IDS)

• Violation of programming standards (VPS)

• Error in data representation (EDR)

• Inconsistent component interface (ICI)

• Error in design logic (EDL)

• Incomplete or erroneous testing (IET)

• Inaccurate or incomplete documentation (IID)

• Error in programming language translation of design (PLT)

• Ambiguous or inconsistent human/computer interface (HCI)

• Miscellaneous (MIS)

To apply statistical SQA, the table in Figure 16.2 is built. The table indicates that IES,

MCC, and EDR are the vital few causes that account for 53 percent of all errors. It

should be noted, however, that IES, EDR, PLT, and EDL would be selected as the vital

few causes if only serious errors are considered. Once the vital few causes are

determined, the software engineering organization can begin corrective action. For

example, to correct MCC, you might implement requirements gathering techniques

(Chapter 5) to improve the quality of customer communication and specifications. To

improve EDR, you might acquire tools for data modeling and perform more stringent

data design reviews.

It is important to note that corrective action focuses primarily on the vital few. As

the vital few causes are corrected, new candidates pop to the top of the stack.

Statistical quality assurance techniques for software have been shown to provide

substantial quality improvement [Art97]. In some cases, software organizations

440 PART THREE QUALITY MANAGEMENT

Total Serious Moderate Minor

Error No. % No. % No. % No. %

IES 205 22% 34 27% 68 18% 103 24%

MCC 156 17% 12 9% 68 18% 76 17%

IDS 48 5% 1 1% 24 6% 23 5%

VPS 25 3% 0 0% 15 4% 10 2%

EDR 130 14% 26 20% 68 18% 36 8%

ICI 58 6% 9 7% 18 5% 31 7%

EDL 45 5% 14 11% 12 3% 19 4%

IET 95 10% 12 9% 35 9% 48 11%

IID 36 4% 2 2% 20 5% 14 3%

PLT 60 6% 15 12% 19 5% 26 6%

HCI 28 3% 3 2% 17 4% 8 2%

MIS 56 6% 0 0% 15 4% 41 9%

Totals 942 100% 128 100% 379 100% 435 100%

FIGURE 16.2

Data collection
for statistical
SQA

uote:

“20 percent of the
code has 80
percent of the
errors. Find them,
fix them!”

Lowell Arthur

pre75977_ch16.qxd 11/27/08 6:07 PM Page 440

have achieved a 50 percent reduction per year in defects after applying these

techniques.

The application of the statistical SQA and the Pareto principle can be summarized

in a single sentence: Spend your time focusing on things that really matter, but first be

sure that you understand what really matters!

16.5.2 Six Sigma for Software Engineering

Six Sigma is the most widely used strategy for statistical quality assurance in indus-

try today. Originally popularized by Motorola in the 1980s, the Six Sigma strategy

“is a rigorous and disciplined methodology that uses data and statistical analysis to

measure and improve a company’s operational performance by identifying and elim-

inating defects’ in manufacturing and service-related processes” [ISI08]. The term

Six Sigma is derived from six standard deviations—3.4 instances (defects) per million

occurrences—implying an extremely high quality standard. The Six Sigma method-

ology defines three core steps:

• Define customer requirements and deliverables and project goals via well-

defined methods of customer communication.

• Measure the existing process and its output to determine current quality

performance (collect defect metrics).

• Analyze defect metrics and determine the vital few causes.

If an existing software process is in place, but improvement is required, Six Sigma

suggests two additional steps:

• Improve the process by eliminating the root causes of defects.

• Control the process to ensure that future work does not reintroduce the

causes of defects.

These core and additional steps are sometimes referred to as the DMAIC (define,

measure, analyze, improve, and control) method.

If an organization is developing a software process (rather than improving an

existing process), the core steps are augmented as follows:

• Design the process to (1) avoid the root causes of defects and (2) to meet

customer requirements.

• Verify that the process model will, in fact, avoid defects and meet customer

requirements.

This variation is sometimes called the DMADV (define, measure, analyze, design,

and verify) method.

A comprehensive discussion of Six Sigma is best left to resources dedicated to the

subject. If you have further interest, see [ISI08], [Pyz03], and [Sne03].

CHAPTER 16 SOFTWARE QUALITY ASSURANCE 441

What are the
core steps of

the Six Sigma
methodology?

?

pre75977_ch16.qxd 11/27/08 6:07 PM Page 441

16.6 SOFTWARE RELIABIL ITY

There is no doubt that the reliability of a computer program is an important element

of its overall quality. If a program repeatedly and frequently fails to perform, it mat-

ters little whether other software quality factors are acceptable.

Software reliability, unlike many other quality factors, can be measured directly

and estimated using historical and developmental data. Software reliability is defined

in statistical terms as “the probability of failure-free operation of a computer program

in a specified environment for a specified time” [Mus87]. To illustrate, program X is

estimated to have a reliability of 0.999 over eight elapsed processing hours. In other

words, if program X were to be executed 1000 times and require a total of eight hours

of elapsed processing time (execution time), it is likely to operate correctly (without

failure) 999 times.

Whenever software reliability is discussed, a pivotal question arises: What is meant

by the term failure? In the context of any discussion of software quality and reliabil-

ity, failure is nonconformance to software requirements. Yet, even within this defini-

tion, there are gradations. Failures can be only annoying or catastrophic. One failure

can be corrected within seconds, while another requires weeks or even months to

correct. Complicating the issue even further, the correction of one failure may in fact

result in the introduction of other errors that ultimately result in other failures.

16.6.1 Measures of Reliability and Availability

Early work in software reliability attempted to extrapolate the mathematics of hard-

ware reliability theory to the prediction of software reliability. Most hardware-related

reliability models are predicated on failure due to wear rather than failure due to de-

sign defects. In hardware, failures due to physical wear (e.g., the effects of tempera-

ture, corrosion, shock) are more likely than a design-related failure. Unfortunately,

the opposite is true for software. In fact, all software failures can be traced to design

or implementation problems; wear (see Chapter 1) does not enter into the picture.

There has been an ongoing debate over the relationship between key concepts in

hardware reliability and their applicability to software. Although an irrefutable link

has yet to be established, it is worthwhile to consider a few simple concepts that

apply to both system elements.

If we consider a computer-based system, a simple measure of reliability is mean-

time-between-failure (MTBF):

MTBF � MTTF � MTTR

where the acronyms MTTF and MTTR are mean-time-to-failure and mean-time-to-

repair,2 respectively.

442 PART THREE QUALITY MANAGEMENT

uote:

“The unavoidable
price of reliability
is simplicity.”

C. A. R. Hoare

Software reliability
problems can almost
always be traced
to defects in design or
implementation.

2 Although debugging (and related corrections) may be required as a consequence of failure, in many
cases the software will work properly after a restart with no other change.

It is important to note
that MTBF and related
measures are based on
CPU time, not wall
clock time.

pre75977_ch16.qxd 11/27/08 6:07 PM Page 442

Many researchers argue that MTBF is a far more useful measure than other

quality-related software metrics discussed in Chapter 23. Stated simply, an end user

is concerned with failures, not with the total defect count. Because each defect con-

tained within a program does not have the same failure rate, the total defect count

provides little indication of the reliability of a system. For example, consider a pro-

gram that has been in operation for 3000 processor hours without failure. Many de-

fects in this program may remain undetected for tens of thousand of hours before

they are discovered. The MTBF of such obscure errors might be 30,000 or even

60,000 processor hours. Other defects, as yet undiscovered, might have a failure rate

of 4000 or 5000 hours. Even if every one of the first category of errors (those with

long MTBF) is removed, the impact on software reliability is negligible.

However, MTBF can be problematic for two reasons: (1) it projects a time span be-

tween failures, but does not provide us with a projected failure rate, and (2) MTBF can

be misinterpreted to mean average life span even though this is not what it implies.

An alternative measure of reliability is failures-in-time (FIT)—a statistical measure

of how many failures a component will have over one billion hours of operation.

Therefore, 1 FIT is equivalent to one failure in every billion hours of operation.

In addition to a reliability measure, you should also develop a measure of avail-

ability. Software availability is the probability that a program is operating according to

requirements at a given point in time and is defined as

Availability � � 100%

The MTBF reliability measure is equally sensitive to MTTF and MTTR. The avail-

ability measure is somewhat more sensitive to MTTR, an indirect measure of the

maintainability of software.

16.6.2 Software Safety

Software safety is a software quality assurance activity that focuses on the identification

and assessment of potential hazards that may affect software negatively and cause an

entire system to fail. If hazards can be identified early in the software process, software

design features can be specified that will either eliminate or control potential hazards.

A modeling and analysis process is conducted as part of software safety. Initially,

hazards are identified and categorized by criticality and risk. For example, some of

the hazards associated with a computer-based cruise control for an automobile

might be: (1) causes uncontrolled acceleration that cannot be stopped, (2) does not

respond to depression of brake pedal (by turning off), (3) does not engage when

switch is activated, and (4) slowly loses or gains speed. Once these system-level haz-

ards are identified, analysis techniques are used to assign severity and probability of

occurrence.3 To be effective, software must be analyzed in the context of the entire

MTTF
MTTF � MTTR

CHAPTER 16 SOFTWARE QUALITY ASSURANCE 443

Some aspects of
availability (not
discussed here) have
nothing to do with
failure. For example,
scheduling downtime
(for support functions)
causes the software to
be unavailable.

uote:

“The safety of the
people shall be the
highest law.”

Cicero

3 This approach is similar to the risk analysis methods described in Chapter 28. The primary differ-
ence is the emphasis on technology issues rather than project-related topics.

pre75977_ch16.qxd 11/27/08 6:07 PM Page 443

system. For example, a subtle user input error (people are system components) may

be magnified by a software fault to produce control data that improperly positions a

mechanical device. If and only if a set of external environmental conditions is met,

the improper position of the mechanical device will cause a disastrous failure. Analy-

sis techniques [Eri05] such as fault tree analysis, real-time logic, and Petri net mod-

els can be used to predict the chain of events that can cause hazards and the

probability that each of the events will occur to create the chain.

Once hazards are identified and analyzed, safety-related requirements can be

specified for the software. That is, the specification can contain a list of undesirable

events and the desired system responses to these events. The role of software in

managing undesirable events is then indicated.

Although software reliability and software safety are closely related to one another,

it is important to understand the subtle difference between them. Software reliability

uses statistical analysis to determine the likelihood that a software failure will occur.

However, the occurrence of a failure does not necessarily result in a hazard or mishap.

Software safety examines the ways in which failures result in conditions that can lead

to a mishap. That is, failures are not considered in a vacuum, but are evaluated in the

context of an entire computer-based system and its environment.

A comprehensive discussion of software safety is beyond the scope of this book.

If you have further interest in software safety and related system issues, see [Smi05],

[Dun02], and [Lev95].

16.7 THE ISO 9000 QUALITY STANDARDS4

A quality assurance system may be defined as the organizational structure, responsi-

bilities, procedures, processes, and resources for implementing quality management

[ANS87]. Quality assurance systems are created to help organizations ensure their

products and services satisfy customer expectations by meeting their specifications.

These systems cover a wide variety of activities encompassing a product’s entire life

cycle including planning, controlling, measuring, testing and reporting, and improv-

ing quality levels throughout the development and manufacturing process. ISO 9000

describes quality assurance elements in generic terms that can be applied to any

business regardless of the products or services offered.

To become registered to one of the quality assurance system models contained in ISO

9000, a company’s quality system and operations are scrutinized by third-party auditors

for compliance to the standard and for effective operation. Upon successful registration,

a company is issued a certificate from a registration body represented by the auditors.

Semiannual surveillance audits ensure continued compliance to the standard.

444 PART THREE QUALITY MANAGEMENT

uote:

“I cannot imagine
any condition
which would
cause this ship to
founder. Modern
shipbuilding has
gone beyond that.”

E. I. Smith,
captain of the
Titanic

WebRef
A worthwhile collection
of papers on software
safety can be found at
www.safeware-
eng.com/.

4 This section, written by Michael Stovsky, has been adapted from “Fundamentals of ISO 9000,”
a workbook developed for Essential Software Engineering, a video curriculum developed by R. S.
Pressman & Associates, Inc. Reprinted with permission.

pre75977_ch16.qxd 11/27/08 6:07 PM Page 444

http://www.safeware-eng.com/
http://www.safeware-eng.com/
http://www.safeware-eng.com/

The requirements delineated by ISO 9001:2000 address topics such as manage-

ment responsibility, quality system, contract review, design control, document and

data control, product identification and traceability, process control, inspection and

testing, corrective and preventive action, control of quality records, internal quality

audits, training, servicing, and statistical techniques. In order for a software organi-

zation to become registered to ISO 9001:2000, it must establish policies and proce-

dures to address each of the requirements just noted (and others) and then be able

to demonstrate that these policies and procedures are being followed. If you desire

further information on ISO 9001:2000, see [Ant06], [Mut03], or [Dob04].

CHAPTER 16 SOFTWARE QUALITY ASSURANCE 445

WebRef
Extensive links to ISO
9000/9001 resources
can be found at
www.tantara.ab
.ca/info.htm.

The ISO 9001:2000 Standard
The following outline defines the basic
elements of the ISO 9001:2000 standard.

Comprehensive information on the standard can be
obtained from the International Organization for
Standardization (www.iso.ch) and other Internet
sources (e.g., www.praxiom.com).

Establish the elements of a quality management system.
Develop, implement, and improve the system.
Define a policy that emphasizes the importance of the
system.

Document the quality system.
Describe the process.
Produce an operational manual.
Develop methods for controlling (updating) documents.
Establish methods for record keeping.

Support quality control and assurance.
Promote the importance of quality among all stakeholders.
Focus on customer satisfaction.

Define a quality plan that addresses objectives,
responsibilities, and authority.

Define communication mechanisms among stakeholders.
Establish review mechanisms for the quality management

system.
Identify review methods and feedback mechanisms.
Define follow-up procedures.

Identify quality resources including personnel, training,
and infrastructure elements.

Establish control mechanisms.
For planning
For customer requirements
For technical activities (e.g., analysis, design, testing)
For project monitoring and management

Define methods for remediation.
Assess quality data and metrics.
Define approach for continuous process and quality
improvement.

INFO

16.8 THE SQA PLAN

The SQA Plan provides a road map for instituting software quality assurance. Developed

by the SQA group (or by the software team if an SQA group does not exist), the plan

serves as a template for SQA activities that are instituted for each software project.

A standard for SQA plans has been published by the IEEE [IEE93]. The standard

recommends a structure that identifies: (1) the purpose and scope of the plan, (2) a

description of all software engineering work products (e.g., models, documents,

source code) that fall within the purview of SQA, (3) all applicable standards and

practices that are applied during the software process, (4) SQA actions and tasks

pre75977_ch16.qxd 11/27/08 6:07 PM Page 445

http://www.tantara.ab
http://www.iso.ch
http://www.praxiom.com
http://www.praxiom.com

(including reviews and audits) and their placement throughout the software

process, (5) the tools and methods that support SQA actions and tasks, (6) software

configuration management (Chapter 22) procedures, (7) methods for assembling,

safeguarding, and maintaining all SQA-related records, and (8) organizational roles

and responsibilities relative to product quality.

446 PART THREE QUALITY MANAGEMENT

Software Quality Management

Objective: The objective of SQA tools is to
assist a project team in assessing and

improving the quality of software work product.

Mechanics: Tools mechanics vary. In general, the intent
is to assess the quality of a specific work product. Note:
A wide array of software testing tools (see Chapters 17
through 20) are often included within the SQA tools
category.

Representative Tools:5

ARM, developed by NASA (satc.gsfc.nasa.gov/
tools/index.html), provides measures that can be

used to assess the quality of a software requirements
document.

QPR ProcessGuide and Scorecard, developed by QPR
Software (www.qpronline.com), provides support
for Six Sigma and other quality management
approaches.

Quality Tools and Templates, developed by iSixSigma
(www.isixsigma.com/tt/), describes a wide array
of useful tools and methods for quality management.

NASA Quality Resources, developed by the Goddard
Space Flight Center (sw-assurance.gsfc.nasa
.gov/index.php) provides useful forms, templates,
checklists, and tools for SQA.

SOFTWARE TOOLS

5 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.
In most cases, tool names are trademarked by their respective developers.

16.9 SUMMARY

Software quality assurance is a software engineering umbrella activity that is applied

at each step in the software process. SQA encompasses procedures for the effective

application of methods and tools, oversight of quality control activities such as tech-

nical reviews and software testing, procedures for change management, procedures

for assuring compliance to standards, and measurement and reporting mechanisms.

To properly conduct software quality assurance, data about the software engi-

neering process should be collected, evaluated, and disseminated. Statistical SQA

helps to improve the quality of the product and the software process itself. Software

reliability models extend measurements, enabling collected defect data to be ex-

trapolated into projected failure rates and reliability predictions.

In summary, you should note the words of Dunn and Ullman [Dun82]: “Software

quality assurance is the mapping of the managerial precepts and design disciplines

of quality assurance onto the applicable managerial and technological space of

software engineering.” The ability to ensure quality is the measure of a mature

engineering discipline. When the mapping is successfully accomplished, mature

software engineering is the result.

pre75977_ch16.qxd 11/27/08 6:07 PM Page 446

http://www.qpronline.com
http://www.isixsigma.com/tt/

PROBLEMS AND POINTS TO PONDER

16.1. Some people say that “variation control is the heart of quality control.” Since every pro-
gram that is created is different from every other program, what are the variations that we look
for and how do we control them?

16.2. Is it possible to assess the quality of software if the customer keeps changing what it is
supposed to do?

16.3. Quality and reliability are related concepts but are fundamentally different in a number
of ways. Discuss the differences.

16.4. Can a program be correct and still not be reliable? Explain.

16.5. Can a program be correct and still not exhibit good quality? Explain.

16.6. Why is there often tension between a software engineering group and an independent
software quality assurance group? Is this healthy?

16.7. You have been given the responsibility for improving the quality of software across your
organization. What is the first thing that you should do? What’s next?

16.8. Besides counting errors and defects, are there other countable characteristics of software
that imply quality? What are they and can they be measured directly?

16.9. The MTBF concept for software is open to criticism. Explain why?

16.10. Consider two safety-critical systems that are controlled by computer. List at least three
hazards for each that can be directly linked to software failures.

16.11. Acquire a copy of ISO 9001:2000 and ISO 9000-3. Prepare a presentation that discusses
three ISO 9001 requirements and how they apply in a software context.

FURTHER READINGS AND INFORMATION SOURCES

Books by Hoyle (Quality Management Fundamentals, Butterworth-Heinemann, 2007), Tian
(Software Quality Engineering, Wiley-IEEE Computer Society Press, 2005), El Emam (The ROI from
Software Quality, Auerbach, 2005), Horch (Practical Guide to Software Quality Management, Artech
House, 2003), and Nance and Arthur (Managing Software Quality, Springer, 2002) are excellent
management-level presentations on the benefits of formal quality assurance programs for com-
puter software. Books by Deming [Dem86], Juran (Juran on Quality by Design, Free Press, 1992),
and Crosby ([Cro79] and Quality Is Still Free, McGraw-Hill, 1995) do not focus on software, but
are must reading for senior managers with software development responsibility. Gluckman and
Roome (Everyday Heroes of the Quality Movement, Dorset House, 1993) humanizes quality issues
by telling the story of the players in the quality process. Kan (Metrics and Models in Software Qual-
ity Engineering, Addison-Wesley, 1995) presents a quantitative view of software quality.

Books by Evans (Total Quality: Management, Organization and Strategy, 4th ed., South-
Western College Publishing, 2004), Bru (Six Sigma for Managers, McGraw-Hill, 2005), and Dobb
(ISO 9001:2000 Quality Registration Step-by-Step, 3d ed., Butterworth-Heinemann, 2004) are rep-
resentative of the many books written on TQM, Six Sigma, and ISO 9001:2000, respectively.

Pham (System Software Reliability, Springer, 2006), Musa (Software Reliability Engineering:
More Reliable Software, Faster Development and Testing, 2d ed., McGraw-Hill, 2004) and Peled
(Software Reliability Methods, Springer, 2001) have written practical guides that describe meth-
ods for measuring and analyzing software reliability.

Vincoli (Basic Guide to System Safety, Wiley, 2006), Dhillon (Engineering Safety, World Scien-
tific Publishing Co., Inc., 2003), Hermann (Software Safety and Reliability, Wiley-IEEE Computer
Society Press, 2000), Storey (Safety-Critical Computer Systems, Addison-Wesley, 1996), and
Leveson [Lev95] are the most comprehensive discussions of software and system safety
published to date. In addition, van der Meulen (Definitions for Hardware and Software Safety

CHAPTER 16 SOFTWARE QUALITY ASSURANCE 447

pre75977_ch16.qxd 11/27/08 6:07 PM Page 447

Engineers, Springer-Verlag, 2000) offers a complete compendium of important concepts and
terms for reliability and safety; Gartner (Testing Safety-Related Software, Springer-Verlag, 1999)
provides specialized guidance for testing safety critical systems; Friedman and Voas (Software
Assessment: Reliability Safety and Testability, Wiley, 1995) provide useful models for assessing
reliability and safety. Ericson (Hazard Analysis Techniques for System Safety, Wiley, 2005)
addresses the increasingly important domain of hazard analysis.

A wide variety of information sources on software quality assurance and related topics is
available on the Internet. An up-to-date list of World Wide Web references relevant to SQA can
be found at the SEPA website www.mhhe.com/engcs/compsci/pressman/professional/
olc/ser.htm.

448 PART THREE QUALITY MANAGEMENT

pre75977_ch16.qxd 11/27/08 6:07 PM Page 448

http://www.mhhe.com/engcs/compsci/pressman/professional/

Astrategy for software testing provides a road map that describes the steps
to be conducted as part of testing, when these steps are planned and then
undertaken, and how much effort, time, and resources will be required.

Therefore, any testing strategy must incorporate test planning, test case design,
test execution, and resultant data collection and evaluation.

A software testing strategy should be flexible enough to promote a customized
testing approach. At the same time, it must be rigid enough to encourage reason-
able planning and management tracking as the project progresses. Shooman
[Sho83] discusses these issues:

In many ways, testing is an individualistic process, and the number of different types

of tests varies as much as the different development approaches. For many years, our

449

C H A P T E R

17SOFTWARE TESTING
STRATEGIES

What is it? Software is tested to
uncover errors that were made inad-
vertently as it was designed and
constructed. But how do you conduct

the tests? Should you develop a formal plan for
your tests? Should you test the entire program as
a whole or run tests only on a small part of it?
Should you rerun tests you’ve already conducted
as you add new components to a large system?
When should you involve the customer? These
and many other questions are answered when
you develop a software testing strategy.

Who does it? A strategy for software testing is
developed by the project manager, software
engineers, and testing specialists.

Why is it important? Testing often accounts for
more project effort than any other software engi-
neering action. If it is conducted haphazardly,
time is wasted, unnecessary effort is expended,
and even worse, errors sneak through undetected.
It would therefore seem reasonable to establish
a systematic strategy for testing software.

What are the steps? Testing begins “in the small”
and progresses “to the large.” By this I mean

Q U I C K
L O O K

that early testing focuses on a single component
or a small group of related components and
applies tests to uncover errors in the data and
processing logic that have been encapsulated
by the component(s). After components are
tested they must be integrated until the complete
system is constructed. At this point, a series of
high-order tests are executed to uncover errors
in meeting customer requirements. As errors are
uncovered, they must be diagnosed and cor-
rected using a process that is called debugging.

What is the work product? A Test Specification
documents the software team’s approach to test-
ing by defining a plan that describes an overall
strategy and a procedure that defines specific
testing steps and the types of tests that will be
conducted.

How do I ensure that I’ve done it right? By
reviewing the Test Specification prior to testing,
you can assess the completeness of test cases
and testing tasks. An effective test plan and pro-
cedure will lead to the orderly construction of
the software and the discovery of errors at each
stage in the construction process.

K E Y
C O N C E P T S

alpha test 469
beta test 469
class testing466
configuration
review 468
debugging 473
deployment
testing472
independent
test group 452

pre75977_ch17.qxd 11/27/08 6:09 PM Page 449

450 PART THREE QUALITY MANAGEMENT

integration
testing459
regression
testing467
system testing . . .470
unit testing 456
validation
testing467
V&V 450

only defense against programming errors was careful design and the native intelligence

of the programmer. We are now in an era in which modern design techniques [and tech-

nical reviews] are helping us to reduce the number of initial errors that are inherent in the

code. Similarly, different test methods are beginning to cluster themselves into several

distinct approaches and philosophies.

These “approaches and philosophies” are what I call strategy—the topic to be pre-

sented in this chapter. In Chapters 18 through 20, the testing methods and tech-

niques that implement the strategy are presented.

17.1 A STRATEGIC APPROACH TO SOFTWARE TESTING

Testing is a set of activities that can be planned in advance and conducted system-

atically. For this reason a template for software testing—a set of steps into which you

can place specific test case design techniques and testing methods—should be

defined for the software process.

A number of software testing strategies have been proposed in the literature.

All provide you with a template for testing and all have the following generic

characteristics:

• To perform effective testing, you should conduct effective technical reviews

(Chapter 15). By doing this, many errors will be eliminated before testing

commences.

• Testing begins at the component level and works “outward” toward the

integration of the entire computer-based system.

• Different testing techniques are appropriate for different software engi-

neering approaches and at different points in time.

• Testing is conducted by the developer of the software and (for large projects)

an independent test group.

• Testing and debugging are different activities, but debugging must be accom-

modated in any testing strategy.

A strategy for software testing must accommodate low-level tests that are neces-

sary to verify that a small source code segment has been correctly implemented

as well as high-level tests that validate major system functions against customer

requirements. A strategy should provide guidance for the practitioner and a set of

milestones for the manager. Because the steps of the test strategy occur at a time

when deadline pressure begins to rise, progress must be measurable and problems

should surface as early as possible.

17.1.1 Verification and Validation

Software testing is one element of a broader topic that is often referred to as verifi-

cation and validation (V&V). Verification refers to the set of tasks that ensure that

WebRef
Useful resources for
software testing can be
found at www.mtsu
.edu/~storm/.

pre75977_ch17.qxd 11/27/08 6:09 PM Page 450

http://www.mtsu

software correctly implements a specific function. Validation refers to a different set

of tasks that ensure that the software that has been built is traceable to customer

requirements. Boehm [Boe81] states this another way:

Verification: “Are we building the product right?”

Validation: “Are we building the right product?”

The definition of V&V encompasses many software quality assurance activities

(Chapter 16).1

Verification and validation includes a wide array of SQA activities: technical

reviews, quality and configuration audits, performance monitoring, simulation, feasi-

bility study, documentation review, database review, algorithm analysis, development

testing, usability testing, qualification testing, acceptance testing, and installation test-

ing. Although testing plays an extremely important role in V&V, many other activities

are also necessary.

Testing does provide the last bastion from which quality can be assessed and,

more pragmatically, errors can be uncovered. But testing should not be viewed as a

safety net. As they say, “You can’t test in quality. If it’s not there before you begin test-

ing, it won’t be there when you’re finished testing.” Quality is incorporated into soft-

ware throughout the process of software engineering. Proper application of methods

and tools, effective technical reviews, and solid management and measurement all

lead to quality that is confirmed during testing.

Miller [Mil77] relates software testing to quality assurance by stating that “the

underlying motivation of program testing is to affirm software quality with methods

that can be economically and effectively applied to both large-scale and small-scale

systems.”

17.1.2 Organizing for Software Testing

For every software project, there is an inherent conflict of interest that occurs as

testing begins. The people who have built the software are now asked to test the soft-

ware. This seems harmless in itself; after all, who knows the program better than its

developers? Unfortunately, these same developers have a vested interest in demon-

strating that the program is error-free, that it works according to customer require-

ments, and that it will be completed on schedule and within budget. Each of these

interests mitigate against thorough testing.

From a psychological point of view, software analysis and design (along with

coding) are constructive tasks. The software engineer analyzes, models, and then

creates a computer program and its documentation. Like any builder, the software

CHAPTER 17 SOFTWARE TESTING STRATEGIES 451

uote:

“Testing is the
unavoidable part
of any responsible
effort to develop a
software system.”

William Howden

Don’t get sloppy and
view testing as a
“safety net” that will
catch all errors that
occurred because of
weak software engi-
neering practices. It
won’t. Stress quality
and error detection
throughout the
software process.

1 It should be noted that there is a strong divergence of opinion about what types of testing consti-
tute “validation.” Some people believe that all testing is verification and that validation is conducted
when requirements are reviewed and approved, and later, by the user when the system is opera-
tional. Other people view unit and integration testing (Sections 17.3.1 and 17.3.2) as verification
and higher-order testing (Sections 17.6 and 17.7) as validation.

uote:

“Optimism is the
occupational
hazard of
programming;
testing is the
treatment.”

Kent Beck

pre75977_ch17.qxd 11/27/08 6:09 PM Page 451

engineer is proud of the edifice that has been built and looks askance at anyone

who attempts to tear it down. When testing commences, there is a subtle, yet def-

inite, attempt to “break” the thing that the software engineer has built. From the

point of view of the builder, testing can be considered to be (psychologically)

destructive. So the builder treads lightly, designing and executing tests that will

demonstrate that the program works, rather than uncovering errors. Unfortunately,

errors will be present. And, if the software engineer doesn’t find them, the cus-

tomer will!

There are often a number of misconceptions that you might infer erroneously

from the preceding discussion: (1) that the developer of software should do no test-

ing at all, (2) that the software should be “tossed over the wall” to strangers who will

test it mercilessly, (3) that testers get involved with the project only when the testing

steps are about to begin. Each of these statements is incorrect.

The software developer is always responsible for testing the individual units

(components) of the program, ensuring that each performs the function or exhibits

the behavior for which it was designed. In many cases, the developer also conducts

integration testing—a testing step that leads to the construction (and test) of the

complete software architecture. Only after the software architecture is complete

does an independent test group become involved.

The role of an independent test group (ITG) is to remove the inherent problems

associated with letting the builder test the thing that has been built. Independent

testing removes the conflict of interest that may otherwise be present. After all, ITG

personnel are paid to find errors.

However, you don’t turn the program over to ITG and walk away. The developer

and the ITG work closely throughout a software project to ensure that thorough tests

will be conducted. While testing is conducted, the developer must be available to

correct errors that are uncovered.

The ITG is part of the software development project team in the sense that it

becomes involved during analysis and design and stays involved (planning and spec-

ifying test procedures) throughout a large project. However, in many cases the ITG

reports to the software quality assurance organization, thereby achieving a degree

of independence that might not be possible if it were a part of the software engi-

neering organization.

17.1.3 Software Testing Strategy—The Big Picture

The software process may be viewed as the spiral illustrated in Figure 17.1. Initially,

system engineering defines the role of software and leads to software requirements

analysis, where the information domain, function, behavior, performance, con-

straints, and validation criteria for software are established. Moving inward along

the spiral, you come to design and finally to coding. To develop computer software,

you spiral inward (counterclockwise) along streamlines that decrease the level of

abstraction on each turn.

452 PART THREE QUALITY MANAGEMENT

An independent test
group does not have
the “conflict of
interest” that builders
of the software might
experience.

uote:

“The first mistake
that people make
is thinking that the
testing team is
responsible for
assuring quality.”

Brian Marick

pre75977_ch17.qxd 11/27/08 6:09 PM Page 452

A strategy for software testing may also be viewed in the context of the spiral

(Figure 17.1). Unit testing begins at the vortex of the spiral and concentrates on each

unit (e.g., component, class, or WebApp content object) of the software as imple-

mented in source code. Testing progresses by moving outward along the spiral to

integration testing, where the focus is on design and the construction of the software

architecture. Taking another turn outward on the spiral, you encounter validation

testing, where requirements established as part of requirements modeling are vali-

dated against the software that has been constructed. Finally, you arrive at system

testing, where the software and other system elements are tested as a whole. To test

computer software, you spiral out in a clockwise direction along streamlines that

broaden the scope of testing with each turn.

Considering the process from a procedural point of view, testing within the con-

text of software engineering is actually a series of four steps that are implemented

sequentially. The steps are shown in Figure 17.2. Initially, tests focus on each

CHAPTER 17 SOFTWARE TESTING STRATEGIES 453

System testing
Validation testing
Integration testing

Unit testing

Code

Design
Requirements

System engineering

FIGURE 17.1

Testing
strategy

Unit
testCode

Design

Requirements

Testing
“direction”

Integration test

High-order
tests

FIGURE 17.2

Software
testing steps

What is the
overall

strategy for
software testing?

?

WebRef
Useful resources for
software testers can
be found at www
.SQAtester.com.

pre75977_ch17.qxd 11/27/08 6:09 PM Page 453

component individually, ensuring that it functions properly as a unit. Hence, the

name unit testing. Unit testing makes heavy use of testing techniques that exercise

specific paths in a component’s control structure to ensure complete coverage and

maximum error detection. Next, components must be assembled or integrated to

form the complete software package. Integration testing addresses the issues associ-

ated with the dual problems of verification and program construction. Test case

design techniques that focus on inputs and outputs are more prevalent during

integration, although techniques that exercise specific program paths may be used

to ensure coverage of major control paths. After the software has been integrated

(constructed), a set of high-order tests is conducted. Validation criteria (estab-

lished during requirements analysis) must be evaluated. Validation testing provides

final assurance that software meets all informational, functional, behavioral, and

performance requirements.

The last high-order testing step falls outside the boundary of software engineer-

ing and into the broader context of computer system engineering. Software, once

validated, must be combined with other system elements (e.g., hardware, people,

databases). System testing verifies that all elements mesh properly and that overall

system function/performance is achieved.

454 PART THREE QUALITY MANAGEMENT

The scene: Doug Miller’s office, as
component-level design continues and

construction of certain components begins.

The players: Doug Miller, software engineering
manager, Vinod, Jamie, Ed, and Shakira—members of
the SafeHome software engineering team.

The conversation:

Doug: It seems to me that we haven’t spent enough time
talking about testing.

Vinod: True, but we’ve all been just a little busy. And
besides, we have been thinking about it . . . in fact, more
than thinking.

Doug (smiling): I know . . . we’re all overloaded, but
we’ve still got to think down the line.

Shakira: I like the idea of designing unit tests before I
begin coding any of my components, so that’s what I’ve
been trying to do. I have a pretty big file of tests to run
once code for my components is complete.

Doug: That’s an Extreme Programming [an agile
software development process, see Chapter 3]
concept, no?

Ed: It is. Even though we’re not using Extreme Programming
per se, we decided that it’d be a good idea to design unit
tests before we build the component—the design gives us
all of the information we need.

Jamie: I’ve been doing the same thing.

Vinod: And I’ve taken on the role of the integrator, so
every time one of the guys passes a component to me,
I’ll integrate it and run a series of regression tests on the
partially integrated program. I’ve been working to
design a set of appropriate tests for each function in the
system.

Doug (to Vinod): How often will you run the tests?

Vinod: Every day . . . until the system is integrated . . .
well, I mean until the software increment we plan to
deliver is integrated.

Doug: You guys are way ahead of me!

Vinod (laughing): Anticipation is everything in the
software biz, Boss.

SAFEHOME

Preparing for Testing

pre75977_ch17.qxd 11/27/08 6:09 PM Page 454

17.1.4 Criteria for Completion of Testing

A classic question arises every time software testing is discussed: “When are we

done testing—how do we know that we’ve tested enough?” Sadly, there is no defin-

itive answer to this question, but there are a few pragmatic responses and early

attempts at empirical guidance.

One response to the question is: “You’re never done testing; the burden simply

shifts from you (the software engineer) to the end user.” Every time the user executes

a computer program, the program is being tested. This sobering fact underlines the

importance of other software quality assurance activities. Another response (some-

what cynical but nonetheless accurate) is: “You’re done testing when you run out of

time or you run out of money.”

Although few practitioners would argue with these responses, you need more rig-

orous criteria for determining when sufficient testing has been conducted. The

cleanroom software engineering approach (Chapter 21) suggests statistical use tech-

niques [Kel00] that execute a series of tests derived from a statistical sample of all

possible program executions by all users from a targeted population. Others (e.g.,

[Sin99]) advocate using statistical modeling and software reliability theory to predict

the completeness of testing.

By collecting metrics during software testing and making use of existing software

reliability models, it is possible to develop meaningful guidelines for answering the

question: “When are we done testing?” There is little debate that further work

remains to be done before quantitative rules for testing can be established, but the

empirical approaches that currently exist are considerably better than raw intuition.

17.2 STRATEGIC ISSUES

Later in this chapter, I present a systematic strategy for software testing. But even the

best strategy will fail if a series of overriding issues are not addressed. Tom Gilb

[Gil95] argues that a software testing strategy will succeed when software testers:

Specify product requirements in a quantifiable manner long before testing com-

mences. Although the overriding objective of testing is to find errors, a good testing

strategy also assesses other quality characteristics such as portability, maintain-

ability, and usability (Chapter 14). These should be specified in a way that is meas-

urable so that testing results are unambiguous.

State testing objectives explicitly. The specific objectives of testing should be

stated in measurable terms. For example, test effectiveness, test coverage, mean-

time-to-failure, the cost to find and fix defects, remaining defect density or fre-

quency of occurrence, and test work-hours should be stated within the test plan.

Understand the users of the software and develop a profile for each user category.

Use cases that describe the interaction scenario for each class of user can reduce

overall testing effort by focusing testing on actual use of the product.

CHAPTER 17 SOFTWARE TESTING STRATEGIES 455

When are
we finished

testing?
?

WebRef
A comprehensive
glossary of testing terms
can be found at www
.testingstandards
.co.uk/living_
glossary.htm.

What
guidelines

lead to a
successful
software testing
strategy?

?

WebRef
An excellent list of
testing resources can
be found at www
.io.com/~wazmo/
qa/.

pre75977_ch17.qxd 11/27/08 6:09 PM Page 455

Develop a testing plan that emphasizes “rapid cycle testing.” Gilb [Gil95] recom-

mends that a software team “learn to test in rapid cycles (2 percent of project

effort) of customer-useful, at least field ‘trialable,’ increments of functionality

and/or quality improvement.” The feedback generated from these rapid cycle tests

can be used to control quality levels and the corresponding test strategies.

Build “robust” software that is designed to test itself. Software should be designed

in a manner that uses antibugging (Section 17.3.1) techniques. That is, software

should be capable of diagnosing certain classes of errors. In addition, the design

should accommodate automated testing and regression testing.

Use effective technical reviews as a filter prior to testing. Technical reviews

(Chapter 15) can be as effective as testing in uncovering errors. For this reason,

reviews can reduce the amount of testing effort that is required to produce high-

quality software.

Conduct technical reviews to assess the test strategy and test cases themselves.

Technical reviews can uncover inconsistencies, omissions, and outright errors in

the testing approach. This saves time and also improves product quality.

Develop a continuous improvement approach for the testing process. The test strat-

egy should be measured. The metrics collected during testing should be used as

part of a statistical process control approach for software testing.

17.3 TEST STRATEGIES FOR CONVENTIONAL SOFTWARE2

There are many strategies that can be used to test software. At one extreme, you can

wait until the system is fully constructed and then conduct tests on the overall sys-

tem in hopes of finding errors. This approach, although appealing, simply does not

work. It will result in buggy software that disappoints all stakeholders. At the other

extreme, you could conduct tests on a daily basis, whenever any part of the system

is constructed. This approach, although less appealing to many, can be very effec-

tive. Unfortunately, some software developers hesitate to use it. What to do?

A testing strategy that is chosen by most software teams falls between the two

extremes. It takes an incremental view of testing, beginning with the testing of indi-

vidual program units, moving to tests designed to facilitate the integration of the

units, and culminating with tests that exercise the constructed system. Each of these

classes of tests is described in the sections that follow.

17.3.1 Unit Testing

Unit testing focuses verification effort on the smallest unit of software design—the

software component or module. Using the component-level design description as a

456 PART THREE QUALITY MANAGEMENT

uote:

“Testing only
to end-user
requirements is
like inspecting a
building based
on the work done
by the interior
designer at the
expense of the
foundations,
girders, and
plumbing.”

Boris Beizer

2 Throughout this book, I use the terms conventional software or traditional software to refer to com-
mon hierarchical or call-and-return software architectures that are frequently encountered in a
variety of application domains. Traditional software architectures are not object-oriented and do
not encompass WebApps.

pre75977_ch17.qxd 11/27/08 6:09 PM Page 456

guide, important control paths are tested to uncover errors within the boundary of

the module. The relative complexity of tests and the errors those tests uncover is lim-

ited by the constrained scope established for unit testing. The unit test focuses on the

internal processing logic and data structures within the boundaries of a component.

This type of testing can be conducted in parallel for multiple components.

Unit-test considerations. Unit tests are illustrated schematically in Figure 17.3.

The module interface is tested to ensure that information properly flows into and out

of the program unit under test. Local data structures are examined to ensure that

data stored temporarily maintains its integrity during all steps in an algorithm’s

execution. All independent paths through the control structure are exercised to ensure

that all statements in a module have been executed at least once. Boundary conditions

are tested to ensure that the module operates properly at boundaries established to

limit or restrict processing. And finally, all error-handling paths are tested.

Data flow across a component interface is tested before any other testing is initi-

ated. If data do not enter and exit properly, all other tests are moot. In addition, local

data structures should be exercised and the local impact on global data should be as-

certained (if possible) during unit testing.

Selective testing of execution paths is an essential task during the unit test. Test

cases should be designed to uncover errors due to erroneous computations, incor-

rect comparisons, or improper control flow.

Boundary testing is one of the most important unit testing tasks. Software often

fails at its boundaries. That is, errors often occur when the nth element of an

n-dimensional array is processed, when the ith repetition of a loop with i passes is

invoked, when the maximum or minimum allowable value is encountered. Test

cases that exercise data structure, control flow, and data values just below, at, and

just above maxima and minima are very likely to uncover errors.

CHAPTER 17 SOFTWARE TESTING STRATEGIES 457

Test
cases

Module Interface
Local data structures
Boundary conditions
Independent paths
Error-handling paths

FIGURE 17.3

Unit test

It’s not a bad idea to
design unit test cases
before you develop
code for a component.
It helps ensure that
you’ll develop code
that will pass the tests.

What errors
are commonly

found during unit
testing?

?

pre75977_ch17.qxd 11/27/08 6:09 PM Page 457

A good design anticipates error conditions and establishes error-handling paths

to reroute or cleanly terminate processing when an error does occur. Yourdon

[You75] calls this approach antibugging. Unfortunately, there is a tendency to incor-

porate error handling into software and then never test it. A true story may serve to

illustrate:

A computer-aided design system was developed under contract. In one transaction pro-

cessing module, a practical joker placed the following error handling message after a

series of conditional tests that invoked various control flow branches: ERROR! THERE IS

NO WAY YOU CAN GET HERE. This “error message” was uncovered by a customer during

user training!

Among the potential errors that should be tested when error handling is evalu-

ated are: (1) error description is unintelligible, (2) error noted does not correspond to

error encountered, (3) error condition causes system intervention prior to error han-

dling, (4) exception-condition processing is incorrect, or (5) error description does

not provide enough information to assist in the location of the cause of the error.

Unit-test procedures. Unit testing is normally considered as an adjunct to the

coding step. The design of unit tests can occur before coding begins or after source

code has been generated. A review of design information provides guidance for

establishing test cases that are likely to uncover errors in each of the categories dis-

cussed earlier. Each test case should be coupled with a set of expected results.

Because a component is not a stand-alone program, driver and/or stub software

must often be developed for each unit test. The unit test environment is illustrated in

Figure 17.4. In most applications a driver is nothing more than a “main program” that

accepts test case data, passes such data to the component (to be tested), and prints

458 PART THREE QUALITY MANAGEMENT

WebRef
Useful information on a
wide variety of articles
and resources for
“agile testing” can be
found at testing
.com/agile/.

Be sure that you
design tests to execute
every error-handling
path. If you don’t, the
path may fail when it
is invoked, exacer-
bating an already dicey
situation.

Test
cases

Interface
Local data structures
Boundary conditions
Independent paths
Error-handling paths

Module
to be
tested

Stub Stub

Driver

RESULTS

FIGURE 17.4

Unit-test
environment

pre75977_ch17.qxd 11/27/08 6:09 PM Page 458

relevant results. Stubs serve to replace modules that are subordinate (invoked by) the

component to be tested. A stub or “dummy subprogram” uses the subordinate mod-

ule’s interface, may do minimal data manipulation, prints verification of entry, and

returns control to the module undergoing testing.

Drivers and stubs represent testing “overhead.” That is, both are software that

must be written (formal design is not commonly applied) but that is not delivered with

the final software product. If drivers and stubs are kept simple, actual overhead is rel-

atively low. Unfortunately, many components cannot be adequately unit tested with

“simple” overhead software. In such cases, complete testing can be postponed until

the integration test step (where drivers or stubs are also used).

Unit testing is simplified when a component with high cohesion is designed.

When only one function is addressed by a component, the number of test cases is

reduced and errors can be more easily predicted and uncovered.

17.3.2 Integration Testing

A neophyte in the software world might ask a seemingly legitimate question once all

modules have been unit tested: “If they all work individually, why do you doubt that

they’ll work when we put them together?” The problem, of course, is “putting them

together”—interfacing. Data can be lost across an interface; one component can

have an inadvertent, adverse effect on another; subfunctions, when combined, may

not produce the desired major function; individually acceptable imprecision may be

magnified to unacceptable levels; global data structures can present problems.

Sadly, the list goes on and on.

Integration testing is a systematic technique for constructing the software archi-

tecture while at the same time conducting tests to uncover errors associated with

interfacing. The objective is to take unit-tested components and build a program

structure that has been dictated by design.

There is often a tendency to attempt nonincremental integration; that is, to con-

struct the program using a “big bang” approach. All components are combined in

advance. The entire program is tested as a whole. And chaos usually results! A set

of errors is encountered. Correction is difficult because isolation of causes is com-

plicated by the vast expanse of the entire program. Once these errors are corrected,

new ones appear and the process continues in a seemingly endless loop.

Incremental integration is the antithesis of the big bang approach. The program

is constructed and tested in small increments, where errors are easier to isolate and

correct; interfaces are more likely to be tested completely; and a systematic test

approach may be applied. In the paragraphs that follow, a number of different incre-

mental integration strategies are discussed.

Top-down integration. Top-down integration testing is an incremental approach

to construction of the software architecture. Modules are integrated by moving

downward through the control hierarchy, beginning with the main control module

CHAPTER 17 SOFTWARE TESTING STRATEGIES 459

There are some situa-
tions in which you will
not have the resources
to do comprehensive
unit testing. Select
critical or complex
modules and unit test
only those.

Taking the “big bang”
approach to integration
is a lazy strategy that
is doomed to failure.
Integrate incremen-
tally, testing as you go.

When you develop a
project schedule, you’ll
have to consider the
manner in which inte-
gration will occur so
that components will
be available when
needed.

pre75977_ch17.qxd 11/27/08 6:09 PM Page 459

(main program). Modules subordinate (and ultimately subordinate) to the main con-

trol module are incorporated into the structure in either a depth-first or breadth-first

manner.

Referring to Figure 17.5, depth-first integration integrates all components on a

major control path of the program structure. Selection of a major path is somewhat

arbitrary and depends on application-specific characteristics. For example, selecting

the left-hand path, components M1, M2 , M5 would be integrated first. Next, M8 or (if

necessary for proper functioning of M2) M6 would be integrated. Then, the central

and right-hand control paths are built. Breadth-first integration incorporates all com-

ponents directly subordinate at each level, moving across the structure horizontally.

From the figure, components M2, M3, and M4 would be integrated first. The next con-

trol level, M5, M6, and so on, follows. The integration process is performed in a series

of five steps:

1. The main control module is used as a test driver and stubs are substituted for

all components directly subordinate to the main control module.

2. Depending on the integration approach selected (i.e., depth or breadth first),

subordinate stubs are replaced one at a time with actual components.

3. Tests are conducted as each component is integrated.

4. On completion of each set of tests, another stub is replaced with the real

component.

5. Regression testing (discussed later in this section) may be conducted to

ensure that new errors have not been introduced.

The process continues from step 2 until the entire program structure is built.

460 PART THREE QUALITY MANAGEMENT

What are the
steps for

top-down
integration?

?

M1

M3M2

M7M6M5

M8

M4

FIGURE 17.5

Top-down
integration

pre75977_ch17.qxd 11/27/08 6:09 PM Page 460

The top-down integration strategy verifies major control or decision points early

in the test process. In a “well-factored” program structure, decision making occurs

at upper levels in the hierarchy and is therefore encountered first. If major control

problems do exist, early recognition is essential. If depth-first integration is selected,

a complete function of the software may be implemented and demonstrated. Early

demonstration of functional capability is a confidence builder for all stakeholders.

Top-down strategy sounds relatively uncomplicated, but in practice, logistical

problems can arise. The most common of these problems occurs when processing

at low levels in the hierarchy is required to adequately test upper levels. Stubs

replace low-level modules at the beginning of top-down testing; therefore, no sig-

nificant data can flow upward in the program structure. As a tester, you are left with

three choices: (1) delay many tests until stubs are replaced with actual modules,

(2) develop stubs that perform limited functions that simulate the actual module, or

(3) integrate the software from the bottom of the hierarchy upward.

The first approach (delay tests until stubs are replaced by actual modules) can

cause you to lose some control over correspondence between specific tests and

incorporation of specific modules. This can lead to difficulty in determining the cause

of errors and tends to violate the highly constrained nature of the top-down

approach. The second approach is workable but can lead to significant overhead, as

stubs become more and more complex. The third approach, called bottom-up inte-

gration is discussed in the paragraphs that follow.

Bottom-up integration. Bottom-up integration testing, as its name implies, begins

construction and testing with atomic modules (i.e., components at the lowest levels

in the program structure). Because components are integrated from the bottom up,

the functionality provided by components subordinate to a given level is always

available and the need for stubs is eliminated. A bottom-up integration strategy may

be implemented with the following steps:

1. Low-level components are combined into clusters (sometimes called builds)

that perform a specific software subfunction.

2. A driver (a control program for testing) is written to coordinate test case input

and output.

3. The cluster is tested.

4. Drivers are removed and clusters are combined moving upward in the

program structure.

Integration follows the pattern illustrated in Figure 17.6. Components are com-

bined to form clusters 1, 2, and 3. Each of the clusters is tested using a driver (shown

as a dashed block). Components in clusters 1 and 2 are subordinate to Ma. Drivers D1

and D2 are removed and the clusters are interfaced directly to Ma. Similarly, driver D3

for cluster 3 is removed prior to integration with module Mb. Both Ma and Mb will

ultimately be integrated with component Mc, and so forth.

CHAPTER 17 SOFTWARE TESTING STRATEGIES 461

What
problems

may be
encountered
when top-down
integration is
chosen?

?

What are the
steps for

bottom-up
integration?

?

Bottom-up integration
eliminates the need for
complex stubs.

pre75977_ch17.qxd 11/27/08 6:09 PM Page 461

As integration moves upward, the need for separate test drivers lessens. In fact,

if the top two levels of program structure are integrated top down, the number of

drivers can be reduced substantially and integration of clusters is greatly simplified.

Regression testing. Each time a new module is added as part of integration test-

ing, the software changes. New data flow paths are established, new I/O may occur,

and new control logic is invoked. These changes may cause problems with functions

that previously worked flawlessly. In the context of an integration test strategy,

regression testing is the reexecution of some subset of tests that have already been

conducted to ensure that changes have not propagated unintended side effects.

In a broader context, successful tests (of any kind) result in the discovery of errors,

and errors must be corrected. Whenever software is corrected, some aspect of the

software configuration (the program, its documentation, or the data that support it)

is changed. Regression testing helps to ensure that changes (due to testing or for

other reasons) do not introduce unintended behavior or additional errors.

Regression testing may be conducted manually, by reexecuting a subset of all test

cases or using automated capture/playback tools. Capture/playback tools enable the

software engineer to capture test cases and results for subsequent playback and

comparison. The regression test suite (the subset of tests to be executed) contains

three different classes of test cases:

• A representative sample of tests that will exercise all software functions.

• Additional tests that focus on software functions that are likely to be affected

by the change.

• Tests that focus on the software components that have been changed.

462 PART THREE QUALITY MANAGEMENT

Mc

Ma

D2 D3D1

Mb

Cluster 1

Cluster 3

Cluster 2

FIGURE 17.6

Bottom-up
integration

Regression testing is
an important strategy
for reducing “side
effects.” Run regres-
sion tests every time
a major change is
made to the software
(including the
integration of new
components).

pre75977_ch17.qxd 11/27/08 6:09 PM Page 462

As integration testing proceeds, the number of regression tests can grow quite

large. Therefore, the regression test suite should be designed to include only those

tests that address one or more classes of errors in each of the major program func-

tions. It is impractical and inefficient to reexecute every test for every program func-

tion once a change has occurred.

Smoke testing. Smoke testing is an integration testing approach that is com-

monly used when product software is developed. It is designed as a pacing mecha-

nism for time-critical projects, allowing the software team to assess the project on

a frequent basis. In essence, the smoke-testing approach encompasses the follow-

ing activities:

1. Software components that have been translated into code are integrated into

a build. A build includes all data files, libraries, reusable modules, and engi-

neered components that are required to implement one or more product

functions.

2. A series of tests is designed to expose errors that will keep the build from

properly performing its function. The intent should be to uncover “show-

stopper” errors that have the highest likelihood of throwing the software

project behind schedule.

3. The build is integrated with other builds, and the entire product (in its current

form) is smoke tested daily. The integration approach may be top down or

bottom up.

The daily frequency of testing the entire product may surprise some readers. How-

ever, frequent tests give both managers and practitioners a realistic assessment of

integration testing progress. McConnell [McC96] describes the smoke test in the

following manner:

The smoke test should exercise the entire system from end to end. It does not have to be

exhaustive, but it should be capable of exposing major problems. The smoke test should

be thorough enough that if the build passes, you can assume that it is stable enough to

be tested more thoroughly.

Smoke testing provides a number of benefits when it is applied on complex, time-

critical software projects:

• Integration risk is minimized. Because smoke tests are conducted daily,

incompatibilities and other show-stopper errors are uncovered early, thereby

reducing the likelihood of serious schedule impact when errors are

uncovered.

• The quality of the end product is improved. Because the approach is construc-

tion (integration) oriented, smoke testing is likely to uncover functional

errors as well as architectural and component-level design errors. If these

errors are corrected early, better product quality will result.

CHAPTER 17 SOFTWARE TESTING STRATEGIES 463

Smoke testing might
be characterized as a
rolling integration
strategy. The software
is rebuilt (with new
components added)
and smoke tested
every day.

uote:

“Treat the daily
build as the
heartbeat of the
project. If there’s
no heartbeat, the
project is dead.”

Jim McCarthy

What
benefits can

be derived from
smoke testing?

?

pre75977_ch17.qxd 11/27/08 6:09 PM Page 463

• Error diagnosis and correction are simplified. Like all integration testing

approaches, errors uncovered during smoke testing are likely to be associ-

ated with “new software increments”—that is, the software that has just been

added to the build(s) is a probable cause of a newly discovered error.

• Progress is easier to assess. With each passing day, more of the software has

been integrated and more has been demonstrated to work. This improves team

morale and gives managers a good indication that progress is being made.

Strategic options. There has been much discussion (e.g., [Bei84]) about the rela-

tive advantages and disadvantages of top-down versus bottom-up integration test-

ing. In general, the advantages of one strategy tend to result in disadvantages for the

other strategy. The major disadvantage of the top-down approach is the need for

stubs and the attendant testing difficulties that can be associated with them. Prob-

lems associated with stubs may be offset by the advantage of testing major control

functions early. The major disadvantage of bottom-up integration is that “the pro-

gram as an entity does not exist until the last module is added” [Mye79]. This draw-

back is tempered by easier test case design and a lack of stubs.

Selection of an integration strategy depends upon software characteristics and,

sometimes, project schedule. In general, a combined approach (sometimes called

sandwich testing) that uses top-down tests for upper levels of the program structure,

coupled with bottom-up tests for subordinate levels may be the best compromise.

As integration testing is conducted, the tester should identify critical modules. A

critical module has one or more of the following characteristics: (1) addresses several

software requirements, (2) has a high level of control (resides relatively high in the

program structure), (3) is complex or error prone, or (4) has definite performance

requirements. Critical modules should be tested as early as is possible. In addition,

regression tests should focus on critical module function.

Integration test work products. An overall plan for integration of the software

and a description of specific tests is documented in a Test Specification. This work prod-

uct incorporates a test plan and a test procedure and becomes part of the software

configuration. Testing is divided into phases and builds that address specific func-

tional and behavioral characteristics of the software. For example, integration testing

for the SafeHome security system might be divided into the following test phases:

• User interaction (command input and output, display representation, error

processing and representation)

• Sensor processing (acquisition of sensor output, determination of sensor

conditions, actions required as a consequence of conditions)

• Communications functions (ability to communicate with central monitoring

station)

• Alarm processing (tests of software actions that occur when an alarm is

encountered)

464 PART THREE QUALITY MANAGEMENT

WebRef
Pointers to commentary
on testing strategies
can be found at
www.qalinks.com.

What is a
“critical

module” and
why should we
identify it?

?

pre75977_ch17.qxd 11/27/08 6:09 PM Page 464

http://www.qalinks.com

Each of these integration test phases delineates a broad functional category

within the software and generally can be related to a specific domain within the soft-

ware architecture. Therefore, program builds (groups of modules) are created to cor-

respond to each phase. The following criteria and corresponding tests are applied for

all test phases:

Interface integrity. Internal and external interfaces are tested as each module

(or cluster) is incorporated into the structure.

Functional validity. Tests designed to uncover functional errors are conducted.

Information content. Tests designed to uncover errors associated with local or

global data structures are conducted.

Performance. Tests designed to verify performance bounds established during

software design are conducted.

A schedule for integration, the development of overhead software, and related

topics are also discussed as part of the test plan. Start and end dates for each phase

are established and “availability windows” for unit-tested modules are defined. A

brief description of overhead software (stubs and drivers) concentrates on charac-

teristics that might require special effort. Finally, test environment and resources are

described. Unusual hardware configurations, exotic simulators, and special test

tools or techniques are a few of many topics that may also be discussed.

The detailed testing procedure that is required to accomplish the test plan is

described next. The order of integration and corresponding tests at each integration

step are described. A listing of all test cases (annotated for subsequent reference)

and expected results are also included.

A history of actual test results, problems, or peculiarities is recorded in a Test

Report that can be appended to the Test Specification, if desired. Information con-

tained in this section can be vital during software maintenance. Appropriate refer-

ences and appendixes are also presented.

Like all other elements of a software configuration, the test specification format

may be tailored to the local needs of a software engineering organization. It is impor-

tant to note, however, that an integration strategy (contained in a test plan) and test-

ing details (described in a test procedure) are essential ingredients and must appear.

17.4 TEST STRATEGIES FOR OBJECT-ORIENTED SOFTWARE3

The objective of testing, stated simply, is to find the greatest possible number of

errors with a manageable amount of effort applied over a realistic time span.

Although this fundamental objective remains unchanged for object-oriented software,

the nature of object-oriented software changes both testing strategy and testing

tactics (Chapter 19).

CHAPTER 17 SOFTWARE TESTING STRATEGIES 465

3 Basic object-oriented concepts are presented in Appendix 2.

What criteria
should be

used to design
integration tests?

?

pre75977_ch17.qxd 11/27/08 6:09 PM Page 465

17.4.1 Unit Testing in the OO Context

When object-oriented software is considered, the concept of the unit changes.

Encapsulation drives the definition of classes and objects. This means that each class

and each instance of a class packages attributes (data) and the operations that

manipulate these data. An encapsulated class is usually the focus of unit testing. How-

ever, operations (methods) within the class are the smallest testable units. Because a

class can contain a number of different operations, and a particular operation may

exist as part of a number of different classes, the tactics applied to unit testing must

change.

You can no longer test a single operation in isolation (the conventional view of

unit testing) but rather as part of a class. To illustrate, consider a class hierarchy in

which an operation X is defined for the superclass and is inherited by a number of

subclasses. Each subclass uses operation X, but it is applied within the context of the

private attributes and operations that have been defined for the subclass. Because

the context in which operation X is used varies in subtle ways, it is necessary to test

operation X in the context of each of the subclasses. This means that testing opera-

tion X in a stand-alone fashion (the conventional unit-testing approach) is usually

ineffective in the object-oriented context.

Class testing for OO software is the equivalent of unit testing for conventional

software. Unlike unit testing of conventional software, which tends to focus on the

algorithmic detail of a module and the data that flow across the module interface,

class testing for OO software is driven by the operations encapsulated by the class

and the state behavior of the class.

17.4.2 Integration Testing in the OO Context

Because object-oriented software does not have an obvious hierarchical control

structure, traditional top-down and bottom-up integration strategies (Section 17.3.2)

have little meaning. In addition, integrating operations one at a time into a class (the

conventional incremental integration approach) is often impossible because of the

“direct and indirect interactions of the components that make up the class” [Ber93].

There are two different strategies for integration testing of OO systems [Bin94b].

The first, thread-based testing, integrates the set of classes required to respond to one

input or event for the system. Each thread is integrated and tested individually.

Regression testing is applied to ensure that no side effects occur. The second inte-

gration approach, use-based testing, begins the construction of the system by testing

those classes (called independent classes) that use very few (if any) server classes.

After the independent classes are tested, the next layer of classes, called dependent

classes, that use the independent classes are tested. This sequence of testing layers

of dependent classes continues until the entire system is constructed.

The use of drivers and stubs also changes when integration testing of OO systems

is conducted. Drivers can be used to test operations at the lowest level and for the

testing of whole groups of classes. A driver can also be used to replace the user inter-

face so that tests of system functionality can be conducted prior to implementation

466 PART THREE QUALITY MANAGEMENT

Class testing for OO
software is analogous to
module testing for
conventional software. It
is not advisable to test
operations in isolation.

An important strategy
for integration testing
of OO software is
thread-based testing.
Threads are sets of
classes that respond to
an input or event. Use-
based tests focus on
classes that do not
collaborate heavily
with other classes.

pre75977_ch17.qxd 11/27/08 6:09 PM Page 466

of the interface. Stubs can be used in situations in which collaboration between

classes is required but one or more of the collaborating classes has not yet been fully

implemented.

Cluster testing is one step in the integration testing of OO software. Here, a cluster

of collaborating classes (determined by examining the CRC and object-relationship

model) is exercised by designing test cases that attempt to uncover errors in the

collaborations.

17.5 TEST STRATEGIES FOR WEBAPPS

The strategy for WebApp testing adopts the basic principles for all software testing

and applies a strategy and tactics that are used for object-oriented systems. The

following steps summarize the approach:

1. The content model for the WebApp is reviewed to uncover errors.

2. The interface model is reviewed to ensure that all use cases can be

accommodated.

3. The design model for the WebApp is reviewed to uncover navigation errors.

4. The user interface is tested to uncover errors in presentation and/or naviga-

tion mechanics.

5. Each functional component is unit tested.

6. Navigation throughout the architecture is tested.

7. The WebApp is implemented in a variety of different environmental configu-

rations and is tested for compatibility with each configuration.

8. Security tests are conducted in an attempt to exploit vulnerabilities in the

WebApp or within its environment.

9. Performance tests are conducted.

10. The WebApp is tested by a controlled and monitored population of end users.

The results of their interaction with the system are evaluated for content and

navigation errors, usability concerns, compatibility concerns, and WebApp

reliability and performance.

Because many WebApps evolve continuously, the testing process is an ongoing

activity, conducted by support staff who use regression tests derived from the tests

developed when the WebApp was first engineered. Methods for WebApp testing are

considered in Chapter 20.

17.6 VALIDATION TESTING

Validation testing begins at the culmination of integration testing, when individual

components have been exercised, the software is completely assembled as a pack-

age, and interfacing errors have been uncovered and corrected. At the validation

or system level, the distinction between conventional software, object-oriented

CHAPTER 17 SOFTWARE TESTING STRATEGIES 467

The overall strategy for
WebApp testing can
be summarized in the
10 steps noted here.

WebRef
Excellent articles on
WebApp testing can be
found at www
.stickyminds.com/
testing.asp.

pre75977_ch17.qxd 11/27/08 6:09 PM Page 467

software, and WebApps disappears. Testing focuses on user-visible actions and

user-recognizable output from the system.

Validation can be defined in many ways, but a simple (albeit harsh) definition is

that validation succeeds when software functions in a manner that can be reason-

ably expected by the customer. At this point a battle-hardened software developer

might protest: “Who or what is the arbiter of reasonable expectations?” If a Software

Requirements Specification has been developed, it describes all user-visible attributes

of the software and contains a Validation Criteria section that forms the basis for a

validation-testing approach.

17.6.1 Validation-Test Criteria

Software validation is achieved through a series of tests that demonstrate conform-

ity with requirements. A test plan outlines the classes of tests to be conducted, and

a test procedure defines specific test cases that are designed to ensure that all func-

tional requirements are satisfied, all behavioral characteristics are achieved, all con-

tent is accurate and properly presented, all performance requirements are attained,

documentation is correct, and usability and other requirements are met (e.g., trans-

portability, compatibility, error recovery, maintainability).

After each validation test case has been conducted, one of two possible condi-

tions exists: (1) The function or performance characteristic conforms to specification

and is accepted or (2) a deviation from specification is uncovered and a deficiency

list is created. Deviations or errors discovered at this stage in a project can rarely be

corrected prior to scheduled delivery. It is often necessary to negotiate with the cus-

tomer to establish a method for resolving deficiencies.

17.6.2 Configuration Review

An important element of the validation process is a configuration review. The intent

of the review is to ensure that all elements of the software configuration have been

properly developed, are cataloged, and have the necessary detail to bolster the sup-

port activities. The configuration review, sometimes called an audit, is discussed in

more detail in Chapter 22.

17.6.3 Alpha and Beta Testing

It is virtually impossible for a software developer to foresee how the customer will

really use a program. Instructions for use may be misinterpreted; strange combina-

tions of data may be regularly used; output that seemed clear to the tester may be

unintelligible to a user in the field.

When custom software is built for one customer, a series of acceptance tests are

conducted to enable the customer to validate all requirements. Conducted by the end

user rather than software engineers, an acceptance test can range from an informal

“test drive” to a planned and systematically executed series of tests. In fact, accept-

ance testing can be conducted over a period of weeks or months, thereby uncover-

ing cumulative errors that might degrade the system over time.

468 PART THREE QUALITY MANAGEMENT

Like all other testing
steps, validation tries
to uncover errors, but
the focus is at the
requirements level—
on things that will be
immediately apparent
to the end user.

uote:

“Given enough
eyeballs, all bugs
are shallow (e.g.,
given a large
enough beta-tester
and co-developer
base, almost every
problem will be
characterized
quickly and the
fix obvious to
someone).”

E. Raymond

pre75977_ch17.qxd 11/27/08 6:09 PM Page 468

If software is developed as a product to be used by many customers, it is imprac-

tical to perform formal acceptance tests with each one. Most software product

builders use a process called alpha and beta testing to uncover errors that only the

end user seems able to find.

The alpha test is conducted at the developer’s site by a representative group of end

users. The software is used in a natural setting with the developer “looking over the

shoulder” of the users and recording errors and usage problems. Alpha tests are con-

ducted in a controlled environment.

The beta test is conducted at one or more end-user sites. Unlike alpha testing, the

developer generally is not present. Therefore, the beta test is a “live” application of

the software in an environment that cannot be controlled by the developer. The cus-

tomer records all problems (real or imagined) that are encountered during beta test-

ing and reports these to the developer at regular intervals. As a result of problems

reported during beta tests, you make modifications and then prepare for release of

the software product to the entire customer base.

A variation on beta testing, called customer acceptance testing, is sometimes per-

formed when custom software is delivered to a customer under contract. The cus-

tomer performs a series of specific tests in an attempt to uncover errors before

accepting the software from the developer. In some cases (e.g., a major corporate or

governmental system) acceptance testing can be very formal and encompass many

days or even weeks of testing.

CHAPTER 17 SOFTWARE TESTING STRATEGIES 469

What is the
difference

between an alpha
test and a beta
test?

?

The scene: Doug Miller’s office, as
component-level design continues and construction of
certain components continues.

The players: Doug Miller, software engineering
manager, Vinod, Jamie, Ed, and Shakira—members of
the SafeHome software engineering team.

The conversation:

Doug: The first increment will be ready for validation in
what . . . about three weeks?

Vinod: That’s about right. Integration is going well.
We’re smoke testing daily, finding some bugs but nothing
we can’t handle. So far, so good.

Doug: Talk to me about validation.

Shakira: Well, we’ll use all of the use cases as the
basis for our test design. I haven’t started yet, but I’ll be
developing tests for all of the use cases that I’ve been
responsible for.

Ed: Same here.

Jamie: Me too, but we’ve got to get our act together for
acceptance test and also for alpha and beta testing, no?

Doug: Yes. In fact I’ve been thinking; we could bring in an
outside contractor to help us with validation. I have the
money in the budget . . . and it’d give us a new point of view.

Vinod: I think we’ve got it under control.

Doug: I’m sure you do, but an ITG gives us an
independent look at the software.

Jamie: We’re tight on time here, Doug. I for one don’t have
the time to babysit anybody you bring in to do the job.

Doug: I know, I know. But if an ITG works from
requirements and use cases, not too much babysitting
will be required.

Vinod: I still think we’ve got it under control.

Doug: I hear you, Vinod, but I going to overrule on this
one. Let’s plan to meet with the ITG rep later this week.
Get ‘em started and see what they come up with.

Vinod: Okay, maybe it’ll lighten the load a bit.

SAFEHOME

Preparing for Validation

pre75977_ch17.qxd 11/27/08 6:09 PM Page 469

17.7 SYSTEM TESTING

At the beginning of this book, I stressed the fact that software is only one element of

a larger computer-based system. Ultimately, software is incorporated with other sys-

tem elements (e.g., hardware, people, information), and a series of system integra-

tion and validation tests are conducted. These tests fall outside the scope of the

software process and are not conducted solely by software engineers. However,

steps taken during software design and testing can greatly improve the probability

of successful software integration in the larger system.

A classic system-testing problem is “finger pointing.” This occurs when an error

is uncovered, and the developers of different system elements blame each other for

the problem. Rather than indulging in such nonsense, you should anticipate poten-

tial interfacing problems and (1) design error-handling paths that test all information

coming from other elements of the system, (2) conduct a series of tests that simulate

bad data or other potential errors at the software interface, (3) record the results of

tests to use as “evidence” if finger pointing does occur, and (4) participate in plan-

ning and design of system tests to ensure that software is adequately tested.

System testing is actually a series of different tests whose primary purpose is to

fully exercise the computer-based system. Although each test has a different pur-

pose, all work to verify that system elements have been properly integrated and per-

form allocated functions. In the sections that follow, I discuss the types of system

tests that are worthwhile for software-based systems.

17.7.1 Recovery Testing

Many computer-based systems must recover from faults and resume processing

with little or no downtime. In some cases, a system must be fault tolerant; that is,

processing faults must not cause overall system function to cease. In other cases, a

system failure must be corrected within a specified period of time or severe eco-

nomic damage will occur.

Recovery testing is a system test that forces the software to fail in a variety of ways

and verifies that recovery is properly performed. If recovery is automatic (performed

by the system itself), reinitialization, checkpointing mechanisms, data recovery, and

restart are evaluated for correctness. If recovery requires human intervention, the

mean-time-to-repair (MTTR) is evaluated to determine whether it is within accept-

able limits.

17.7.2 Security Testing

Any computer-based system that manages sensitive information or causes actions

that can improperly harm (or benefit) individuals is a target for improper or illegal

penetration. Penetration spans a broad range of activities: hackers who attempt to

penetrate systems for sport, disgruntled employees who attempt to penetrate for

revenge, dishonest individuals who attempt to penetrate for illicit personal gain.

470 PART THREE QUALITY MANAGEMENT

uote:

“Like death and
taxes, testing is
both unpleasant
and inevitable.”

Ed Yourdon

pre75977_ch17.qxd 11/27/08 6:09 PM Page 470

Security testing attempts to verify that protection mechanisms built into a system

will, in fact, protect it from improper penetration. To quote Beizer [Bei84]: “The sys-

tem’s security must, of course, be tested for invulnerability from frontal attack—but

must also be tested for invulnerability from flank or rear attack.”

During security testing, the tester plays the role(s) of the individual who desires to

penetrate the system. Anything goes! The tester may attempt to acquire passwords

through external clerical means; may attack the system with custom software

designed to break down any defenses that have been constructed; may overwhelm

the system, thereby denying service to others; may purposely cause system errors,

hoping to penetrate during recovery; may browse through insecure data, hoping to

find the key to system entry.

Given enough time and resources, good security testing will ultimately penetrate

a system. The role of the system designer is to make penetration cost more than the

value of the information that will be obtained.

17.7.3 Stress Testing

Earlier software testing steps resulted in thorough evaluation of normal program

functions and performance. Stress tests are designed to confront programs with

abnormal situations. In essence, the tester who performs stress testing asks: “How

high can we crank this up before it fails?”

Stress testing executes a system in a manner that demands resources in abnor-

mal quantity, frequency, or volume. For example, (1) special tests may be designed

that generate ten interrupts per second, when one or two is the average rate,

(2) input data rates may be increased by an order of magnitude to determine how

input functions will respond, (3) test cases that require maximum memory or other

resources are executed, (4) test cases that may cause thrashing in a virtual oper-

ating system are designed, (5) test cases that may cause excessive hunting for

disk-resident data are created. Essentially, the tester attempts to break the

program.

A variation of stress testing is a technique called sensitivity testing. In some situa-

tions (the most common occur in mathematical algorithms), a very small range of

data contained within the bounds of valid data for a program may cause extreme and

even erroneous processing or profound performance degradation. Sensitivity testing

attempts to uncover data combinations within valid input classes that may cause

instability or improper processing.

17.7.4 Performance Testing

For real-time and embedded systems, software that provides required function but

does not conform to performance requirements is unacceptable. Performance test-

ing is designed to test the run-time performance of software within the context of an

integrated system. Performance testing occurs throughout all steps in the testing

process. Even at the unit level, the performance of an individual module may be

CHAPTER 17 SOFTWARE TESTING STRATEGIES 471

uote:

“If you’re trying to
find true system
bugs and you
haven’t subjected
your software to a
real stress test,
then it’s high time
you started.”

Boris Beizer

pre75977_ch17.qxd 11/27/08 6:09 PM Page 471

assessed as tests are conducted. However, it is not until all system elements are fully

integrated that the true performance of a system can be ascertained.

Performance tests are often coupled with stress testing and usually require both

hardware and software instrumentation. That is, it is often necessary to measure

resource utilization (e.g., processor cycles) in an exacting fashion. External instru-

mentation can monitor execution intervals, log events (e.g., interrupts) as they oc-

cur, and sample machine states on a regular basis. By instrumenting a system, the

tester can uncover situations that lead to degradation and possible system failure.

17.7.5 Deployment Testing

In many cases, software must execute on a variety of platforms and under more

than one operating system environment. Deployment testing, sometimes called

configuration testing, exercises the software in each environment in which it is to

operate. In addition, deployment testing examines all installation procedures and

specialized installation software (e.g., “installers”) that will be used by customers,

and all documentation that will be used to introduce the software to end users.

As an example, consider the Internet-accessible version of SafeHome software

that would allow a customer to monitor the security system from remote locations.

The SafeHome WebApp must be tested using all Web browsers that are likely to be

encountered. A more thorough deployment test might encompass combinations

of Web browsers with various operating systems (e.g., Linux, Mac OS, Windows).

Because security is a major issue, a complete set of security tests would be integrated

with the deployment test.

472 PART THREE QUALITY MANAGEMENT

Test Planning and Management

Objective: These tools assist a software team
in planning the testing strategy that is chosen

and managing the testing process as it is conducted.

Mechanics: Tools in this category address test planning,
test storage, management and control, requirements
traceability, integration, error tracking, and report
generation. Project managers use them to supplement
project scheduling tools. Testers use these tools to plan
testing activities and to control the flow of information as
the testing process proceeds.

Representative Tools:4

QaTraq Test Case Management Tool, developed by
Traq Software (www.testmanagement.com),
“encourages a structured approach to test management.”

QADirector, developed by Compuware Corp.
(www.compuware.com/qacenter), provides a
single point of control for managing all phases of the
testing process.

TestWorks, developed by Software Research, Inc.
(www.soft.com/Products/index.html),
contains a fully integrated suite of testing tools
including tools for test management and reporting.

OpensourceTesting.org
(www.opensourcetesting.org/testmgt.php)
lists a variety of open-source test management and
planning tools.

NI TestStand, developed by National Instruments Corp.
(www.ni.com), allows you to “develop, manage,
and execute test sequences written in any
programming language.”

SOFTWARE TOOLS

4 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.
In most cases, tool names are trademarked by their respective developers.

pre75977_ch17.qxd 11/27/08 6:09 PM Page 472

http://www.testmanagement.com
http://www.compuware.com/qacenter
http://www.soft.com/Products/index.html
http://www.opensourcetesting.org/testmgt.php
http://www.ni.com
http://www.ni.com

17.8 THE ART OF DEBUGGING

Software testing is a process that can be systematically planned and specified. Test-

case design can be conducted, a strategy can be defined, and results can be evalu-

ated against prescribed expectations.

Debugging occurs as a consequence of successful testing. That is, when a test

case uncovers an error, debugging is the process that results in the removal of the

error. Although debugging can and should be an orderly process, it is still very much

an art. As a software engineer, you are often confronted with a “symptomatic” indi-

cation of a software problem as you evaluate the results of a test. That is, the exter-

nal manifestation of the error and its internal cause may have no obvious

relationship to one another. The poorly understood mental process that connects a

symptom to a cause is debugging.

17.8.1 The Debugging Process

Debugging is not testing but often occurs as a consequence of testing.5 Referring to

Figure 17.7, the debugging process begins with the execution of a test case. Results

are assessed and a lack of correspondence between expected and actual perform-

ance is encountered. In many cases, the noncorresponding data are a symptom of

an underlying cause as yet hidden. The debugging process attempts to match symp-

tom with cause, thereby leading to error correction.

The debugging process will usually have one of two outcomes: (1) the cause will

be found and corrected or (2) the cause will not be found. In the latter case, the per-

son performing debugging may suspect a cause, design a test case to help validate

that suspicion, and work toward error correction in an iterative fashion.

Why is debugging so difficult? In all likelihood, human psychology (see Sec-

tion 17.8.2) has more to do with an answer than software technology. However, a

few characteristics of bugs provide some clues:

1. The symptom and the cause may be geographically remote. That is, the

symptom may appear in one part of a program, while the cause may actually

be located at a site that is far removed. Highly coupled components

(Chapter 8) exacerbate this situation.

2. The symptom may disappear (temporarily) when another error is corrected.

3. The symptom may actually be caused by nonerrors (e.g., round-off

inaccuracies).

4. The symptom may be caused by human error that is not easily traced.

CHAPTER 17 SOFTWARE TESTING STRATEGIES 473

uote:

“We found to our
surprise that it
wasn’t as easy to
get programs right
as we had thought.
I can remember
the exact instant
when I realized
that a large part of
my life from then
on was going to be
spent in finding
mistakes in my
own programs.”

Maurice Wilkes,
discovers
debugging, 1949

5 In making the statement, we take the broadest possible view of testing. Not only does the devel-
oper test software prior to release, but the customer/user tests software every time it is used!

Be certain to avoid a
third outcome: The
cause is found, but the
“correction” does not
solve the problem or
introduces still another
error.

Why is
debugging so

difficult?
?

pre75977_ch17.qxd 11/27/08 6:09 PM Page 473

5. The symptom may be a result of timing problems, rather than processing

problems.

6. It may be difficult to accurately reproduce input conditions (e.g., a real-time

application in which input ordering is indeterminate).

7. The symptom may be intermittent. This is particularly common in embedded

systems that couple hardware and software inextricably.

8. The symptom may be due to causes that are distributed across a number of

tasks running on different processors.

During debugging, you’ll encounter errors that range from mildly annoying (e.g.,

an incorrect output format) to catastrophic (e.g., the system fails, causing serious

economic or physical damage). As the consequences of an error increase, the

amount of pressure to find the cause also increases. Often, pressure forces some

software developers to fix one error and at the same time introduce two more.

17.8.2 Psychological Considerations

Unfortunately, there appears to be some evidence that debugging prowess is an innate

human trait. Some people are good at it and others aren’t. Although experimental

evidence on debugging is open to many interpretations, large variances in debugging

474 PART THREE QUALITY MANAGEMENT

Regression
tests

Corrections

Identified
causes

Additional tests

Suspected causes

Results

Debugging

Test
Cases

FIGURE 17.7

The
debugging
process

“Everyone
knows that

debugging is
twice as hard as
writing a pro-
gram in the first
place. So if you
are as clever as
you can be when
you write it, how
will you ever
debug it?”

Brian
Kernighan

?

pre75977_ch17.qxd 11/27/08 6:09 PM Page 474

ability have been reported for programmers with the same education and experience.

Commenting on the human aspects of debugging, Shneiderman [Shn80] states:

Debugging is one of the more frustrating parts of programming. It has elements of prob-

lem solving or brain teasers, coupled with the annoying recognition that you have made

a mistake. Heightened anxiety and the unwillingness to accept the possibility of errors

increases the task difficulty. Fortunately, there is a great sigh of relief and a lessening of

tension when the bug is ultimately . . . corrected.

Although it may be difficult to “learn” debugging, a number of approaches to the

problem can be proposed. I examine them in Section 17.8.3.

CHAPTER 17 SOFTWARE TESTING STRATEGIES 475

Set a time limit, say
two hours, on the
amount of time you
spend trying to debug
a problem on your
own. After that, get
help!

Debugging

The scene: Ed’s cubical as code and
unit testing is conducted.

The players: Ed and Shakira—members of the
SafeHome software engineering team.

The conversation:

Shakira (looking in through the entrance to
the cubical): Hey . . . where were you at lunchtime?

Ed: Right here . . . working.

Shakira: You look miserable . . . what’s the matter?

Ed (sighing audibly): I’ve been working on this . . .
bug since I discovered it at 9:30 this morning and it’s
what, 2:45 . . . I’m clueless.

Shakira: I thought we all agreed to spend no more
than one hour debugging stuff on our own; then we get
help, right?

Ed: Yeah, but . . .

Shakira (walking into the cubical): So what’s the
problem?

Ed: It’s complicated, and besides, I’ve been looking at
this for, what, 5 hours. You’re not going to see it in
5 minutes.

Shakira: Indulge me . . . what’s the problem?
[Ed explains the problem to Shakira, who looks at it for

about 30 seconds without speaking, then . . .]

Shakira (a smile is gathering on her face):
Uh, right there, the variable named setAlarmCondition.
Shouldn’t it be set to “false” before the loop gets started?

[Ed stares at the screen in disbelief, bends forward, and
begins to bang his head gently against the monitor.
Shakira, smiling broadly now, stands and walks out.]

SAFEHOME

17.8.3 Debugging Strategies

Regardless of the approach that is taken, debugging has one overriding objective—

to find and correct the cause of a software error or defect. The objective is realized

by a combination of systematic evaluation, intuition, and luck. Bradley [Bra85]

describes the debugging approach in this way:

Debugging is a straightforward application of the scientific method that has been devel-

oped over 2,500 years. The basis of debugging is to locate the problem’s source [the

cause] by binary partitioning, through working hypotheses that predict new values to be

examined.

Take a simple non-software example: A lamp in my house does not work. If nothing

in the house works, the cause must be in the main circuit breaker or outside; I look around

pre75977_ch17.qxd 11/27/08 6:09 PM Page 475

to see whether the neighborhood is blacked out. I plug the suspect lamp into a working

socket and a working appliance into the suspect circuit. So goes the alternation of

hypothesis and test.

In general, three debugging strategies have been proposed [Mye79]: (1) brute

force, (2) backtracking, and (3) cause elimination. Each of these strategies can

be conducted manually, but modern debugging tools can make the process much

more effective.

Debugging tactics. The brute force category of debugging is probably the most

common and least efficient method for isolating the cause of a software error. You

apply brute force debugging methods when all else fails. Using a “let the computer

find the error” philosophy, memory dumps are taken, run-time traces are invoked,

and the program is loaded with output statements. You hope that somewhere in the

morass of information that is produced you’ll find a clue that can lead to the cause

of an error. Although the mass of information produced may ultimately lead to

success, it more frequently leads to wasted effort and time. Thought must be

expended first!

Backtracking is a fairly common debugging approach that can be used success-

fully in small programs. Beginning at the site where a symptom has been uncovered,

the source code is traced backward (manually) until the cause is found. Unfortu-

nately, as the number of source lines increases, the number of potential backward

paths may become unmanageably large.

The third approach to debugging—cause elimination—is manifested by induction

or deduction and introduces the concept of binary partitioning. Data related to the

error occurrence are organized to isolate potential causes. A “cause hypothesis” is

devised and the aforementioned data are used to prove or disprove the hypothesis.

Alternatively, a list of all possible causes is developed and tests are conducted to

eliminate each. If initial tests indicate that a particular cause hypothesis shows

promise, data are refined in an attempt to isolate the bug.

Automated debugging. Each of these debugging approaches can be supple-

mented with debugging tools that can provide you with semiautomated support as

debugging strategies are attempted. Hailpern and Santhanam [Hai02] summarize

the state of these tools when they note, “. . . many new approaches have been pro-

posed and many commercial debugging environments are available. Integrated

development environments (IDEs) provide a way to capture some of the language-

specific predetermined errors (e.g., missing end-of-statement characters, unde-

fined variables, and so on) without requiring compilation.” A wide variety of

debugging compilers, dynamic debugging aids (“tracers”), automatic test-case

generators, and cross-reference mapping tools are available. However, tools are

not a substitute for careful evaluation based on a complete design model and clear

source code.

476 PART THREE QUALITY MANAGEMENT

uote:

“The first step in
fixing a broken
program is getting
it to fail repeatably
(on the simplest
example possible).”

T. Duff

pre75977_ch17.qxd 11/27/08 6:09 PM Page 476

The people factor. Any discussion of debugging approaches and tools is incom-

plete without mention of a powerful ally—other people! A fresh viewpoint, un-

clouded by hours of frustration, can do wonders.7 A final maxim for debugging might

be: “When all else fails, get help!”

17.8.4 Correcting the Error

Once a bug has been found, it must be corrected. But, as we have already noted, the

correction of a bug can introduce other errors and therefore do more harm than

good. Van Vleck [Van89] suggests three simple questions that you should ask before

making the “correction” that removes the cause of a bug:

1. Is the cause of the bug reproduced in another part of the program? In many situ-

ations, a program defect is caused by an erroneous pattern of logic that may

be reproduced elsewhere. Explicit consideration of the logical pattern may

result in the discovery of other errors.

2. What “next bug” might be introduced by the fix I’m about to make? Before the

correction is made, the source code (or, better, the design) should be evalu-

ated to assess coupling of logic and data structures. If the correction is to be

made in a highly coupled section of the program, special care must be taken

when any change is made.

CHAPTER 17 SOFTWARE TESTING STRATEGIES 477

Debugging

Objective: These tools provide automated
assistance for those who must debug software

problems. The intent is to provide insight that may be
difficult to obtain if approaching the debugging process
manually.

Mechanics: Most debugging tools are programming
language and environment specific.

Representative Tools:6

Borland Gauntlet, distributed by Borland
(www.borland.com), assists in both testing and
debugging.

Coverty Prevent SQS, developed by Coverty
(www.coverty.com), provides debugging
assistance for both C++ and Java.

C++Test, developed by Parasoft (www.parasoft.com),
is a unit-testing tool that supports a full range of tests
on C and C++ code. Debugging features assist in the
diagnosis of errors that are found.

CodeMedic, developed by NewPlanet Software
(www.newplanetsoftware.com/medic/),
provides a graphical interface for the standard UNIX
debugger, gdb, and implements its most important
features. gdb currently supports C/C++, Java,
PalmOS, various embedded systems, assembly
language, FORTRAN, and Modula-2.

GNATS, a freeware application (www.gnu.org/
software/gnats/), is a set of tools for tracking bug
reports.

SOFTWARE TOOLS

6 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.
In most cases, tool names are trademarked by their respective developers.

7 The concept of pair programming (recommended as part of the Extreme Programming model dis-
cussed in Chapter 3) provides a mechanism for “debugging” as the software is designed and coded.

uote:

“The best tester
isn’t the one who
finds the most
bugs … the best
tester is the one
who gets the most
bugs fixed.”

Cem Kaner et al.

pre75977_ch17.qxd 11/27/08 6:09 PM Page 477

http://www.borland.com
http://www.coverty.com
http://www.parasoft.com
http://www.newplanetsoftware.com/medic/
http://www.gnu.org/software/gnats/
http://www.gnu.org/software/gnats/
http://www.borland.com
http://www.coverty.com
http://www.parasoft.com
http://www.newplanetsoftware.com/medic/

3. What could we have done to prevent this bug in the first place? This question is

the first step toward establishing a statistical software quality assurance ap-

proach (Chapter 16). If you correct the process as well as the product, the bug

will be removed from the current program and may be eliminated from all

future programs.

17.9 SUMMARY

Software testing accounts for the largest percentage of technical effort in the soft-

ware process. Regardless of the type of software you build, a strategy for systematic

test planning, execution, and control begins by considering small elements of the

software and moves outward toward the program as a whole.

The objective of software testing is to uncover errors. For conventional software,

this objective is achieved through a series of test steps. Unit and integration tests

concentrate on functional verification of a component and incorporation of compo-

nents into the software architecture. Validation testing demonstrates traceability to

software requirements, and system testing validates software once it has been

incorporated into a larger system. Each test step is accomplished through a series of

systematic test techniques that assist in the design of test cases. With each testing

step, the level of abstraction with which software is considered is broadened.

The strategy for testing object-oriented software begins with tests that exercise

the operations within a class and then moves to thread-based testing for integration.

Threads are sets of classes that respond to an input or event. Use-based tests focus

on classes that do not collaborate heavily with other classes.

WebApps are tested in much the same way as OO systems. However, tests are

designed to exercise content, functionality, the interface, navigation, and aspects of

WebApp performance and security.

Unlike testing (a systematic, planned activity), debugging can be viewed as an

art. Beginning with a symptomatic indication of a problem, the debugging activity

must track down the cause of an error. Of the many resources available during

debugging, the most valuable is the counsel of other members of the software

engineering staff.

PROBLEMS AND POINTS TO PONDER

17.1. Using your own words, describe the difference between verification and validation.
Do both make use of test-case design methods and testing strategies?

17.2. List some problems that might be associated with the creation of an independent test
group. Are an ITG and an SQA group made up of the same people?

17.3. Is it always possible to develop a strategy for testing software that uses the sequence of
testing steps described in Section 17.1.3? What possible complications might arise for embed-
ded systems?

17.4. Why is a highly coupled module difficult to unit test?

478 PART THREE QUALITY MANAGEMENT

pre75977_ch17.qxd 11/27/08 6:09 PM Page 478

17.5. The concept of “antibugging” (Section 17.2.1) is an extremely effective way to provide
built-in debugging assistance when an error is uncovered:

a. Develop a set of guidelines for antibugging.
b. Discuss advantages of using the technique.
c. Discuss disadvantages.

17.6. How can project scheduling affect integration testing?

17.7. Is unit testing possible or even desirable in all circumstances? Provide examples to justify
your answer.

17.8. Who should perform the validation test—the software developer or the software user?
Justify your answer.

17.9. Develop a complete test strategy for the SafeHome system discussed earlier in this book.
Document it in a Test Specification.

17.10. As a class project, develop a Debugging Guide for your installation. The guide should
provide language and system-oriented hints that have been learned through the school of hard
knocks! Begin with an outline of topics that will be reviewed by the class and your instructor.
Publish the guide for others in your local environment.

FURTHER READINGS AND INFORMATION SOURCES

Virtually every book on software testing discusses strategies along with methods for test-case
design. Everett and Raymond (Software Testing, Wiley-IEEE Computer Society Press, 2007), Black
(Pragmatic Software Testing, Wiley, 2007), Spiller and his colleagues (Software Testing Process: Test
Management, Rocky Nook, 2007), Perry (Effective Methods for Software Testing, 3d ed., Wiley, 2005),
Lewis (Software Testing and Continuous Quality Improvement, 2d ed., Auerbach, 2004), Loveland
and his colleagues (Software Testing Techniques, Charles River Media, 2004), Burnstein (Practical
Software Testing, Springer, 2003), Dustin (Effective Software Testing, Addison-Wesley, 2002), Craig
and Kaskiel (Systematic Software Testing, Artech House, 2002), Tamres (Introducing Software Test-
ing, Addison-Wesley, 2002), Whittaker (How to Break Software, Addison-Wesley, 2002), and Kaner
and his colleagues (Lessons Learned in Software Testing, Wiley, 2001) are only a small sampling of
many books that discuss testing principles, concepts, strategies, and methods.

For those readers with interest in agile software development methods, Crispin and House
(Testing Extreme Programming, Addison-Wesley, 2002) and Beck (Test Driven Development: By
Example, Addison-Wesley, 2002) present testing strategies and tactics for Extreme Program-
ming. Kamer and his colleagues (Lessons Learned in Software Testing, Wiley, 2001) present a
collection of over 300 pragmatic “lessons” (guidelines) that every software tester should learn.
Watkins (Testing IT: An Off-the-Shelf Testing Process, Cambridge University Press, 2001) estab-
lishes an effective testing framework for all types of developed and acquired software. Manges
and O’Brien (Agile Testing with Ruby and Rails, Apress, 2008) addresses testing strategies and
techniques for the Ruby programming language and Web framework.

Sykes and McGregor (Practical Guide to Testing Object-Oriented Software, Addison-Wesley,
2001), Bashir and Goel (Testing Object-Oriented Software, Springer-Verlag, 2000), Binder (Testing
Object-Oriented Systems, Addison-Wesley, 1999), Kung and his colleagues (Testing Object-
Oriented Software, IEEE Computer Society Press, 1998), and Marick (The Craft of Software Testing,
Prentice-Hall, 1997) present strategies and methods for testing OO systems.

Guidelines for debugging are contained in books by Grötker and his colleagues (The Devel-
oper’s Guide to Debugging, Springer, 2008), Agans (Debugging, Amacon, 2006), Zeller (Why
Programs Fail: A Guide to Systematic Debugging, Morgan Kaufmann, 2005), Tells and Hsieh (The
Science of Debugging, The Coreolis Group, 2001), and Robbins (Debugging Applications,
Microsoft Press, 2000). Kaspersky (Hacker Debugging Uncovered, A-List Publishing, 2005)
addresses the technology of debugging tools. Younessi (Object-Oriented Defect Management of
Software, Prentice-Hall, 2002) presents techniques for managing defects that are encountered in

CHAPTER 17 SOFTWARE TESTING STRATEGIES 479

pre75977_ch17.qxd 11/27/08 6:09 PM Page 479

object-oriented systems. Beizer [Bei84] presents an interesting “taxonomy of bugs” that can lead
to effective methods for test planning.

Books by Madisetti and Akgul (Debugging Embedded Systems, Springer, 2007), Robbins
(Debugging Microsoft .NET 2.0 Applications, Microsoft Press, 2005), Best (Linux Debugging and
Performance Tuning, Prentice-Hall, 2005), Ford and Teorey (Practical Debugging in C++, Prentice-
Hall, 2002), Brown (Debugging Perl, McGraw-Hill, 2000), and Mitchell (Debugging Java, McGraw-
Hill, 2000) address the special nature of debugging for the environments implied by their titles.

A wide variety of information sources on software testing strategies are available on the
Internet. An up-to-date list of World Wide Web references that are relevant to software testing
strategies can be found at the SEPA website: www.mhhe.com/engcs/compsci/pressman/
professional/olc/ser.htm.

480 PART THREE QUALITY MANAGEMENT

pre75977_ch17.qxd 11/27/08 6:09 PM Page 480

http://www.mhhe.com/engcs/compsci/pressman/

Testing presents an interesting anomaly for software engineers, who by their
nature are constructive people. Testing requires that the developer discard
preconceived notions of the “correctness” of software just developed and

then work hard to design test cases to “break” the software. Beizer [Bei90]
describes this situation effectively when he states:

There’s a myth that if we were really good at programming, there would be no bugs to

catch. If only we could really concentrate, if only everyone used structured program-

ming, top-down design, . . . then there would be no bugs. So goes the myth. There are

bugs, the myth says, because we are bad at what we do; and if we are bad at it, we

should feel guilty about it. Therefore, testing and test case design is an admission of

failure, which instills a goodly dose of guilt. And the tedium of testing is just punish-

ment for our errors. Punishment for what? For being human? Guilt for what? For fail-

ing to achieve inhuman perfection? For not distinguishing between what another

programmer thinks and what he says? For failing to be telepathic? For not solving

human communications problems that have been kicked around . . . for forty centuries?

Should testing instill guilt? Is testing really destructive? The answer to these ques-
tions is “No!”

In this chapter, I discuss techniques for software test-case design for conven-
tional applications. Test-case design focuses on a set of techniques for the cre-
ation of test cases that meet overall testing objectives and the testing strategies
discussed in Chapter 17.

481

C H A P T E R

18TESTING CONVENTIONAL
APPLICATIONS

What is it? Once source code has
been generated, software must be
tested to uncover (and correct) as
many errors as possible before deliv-

ery to your customer. Your goal is to design a
series of test cases that have a high likelihood of
finding errors—but how? That’s where software
testing techniques enter the picture. These tech-
niques provide systematic guidance for design-
ing tests that (1) exercise the internal logic and
interfaces of every software component and (2)
exercise the input and output domains of the pro-
gram to uncover errors in program function,
behavior, and performance.

Q U I C K
L O O K

Who does it? During early stages of testing, a
software engineer performs all tests. However,
as the testing process progresses, testing spe-
cialists may become involved.

Why is it important? Reviews and other SQA
actions can and do uncover errors, but they are
not sufficient. Every time the program is executed,
the customer tests it! Therefore, you have to exe-
cute the program before it gets to the customer
with the specific intent of finding and removing all
errors. In order to find the highest possible num-
ber of errors, tests must be conducted systemati-
cally and test cases must be designed using
disciplined techniques.

K E Y
C O N C E P T S

basis path
testing 485

black-box
testing 495

boundary value
analysis 498

control structure
testing 492

cyclomatic
complexity 488

equivalence
partitioning497

flow graph 485

graph-based testing
methods 495

graph matrices . . .491

model-based
testing 502

orthogonal array
testing 499

patterns 507

specialized
environments 503

white-box
testing 485

pre75977_ch18.qxd 11/27/08 6:12 PM Page 481

482 PART THREE QUALITY MANAGEMENT

18.1 SOFTWARE TESTING FUNDAMENTALS

The goal of testing is to find errors, and a good test is one that has a high probabil-

ity of finding an error. Therefore, you should design and implement a computer-

based system or a product with “testability” in mind. At the same time, the tests

themselves must exhibit a set of characteristics that achieve the goal of finding the

most errors with a minimum of effort.

Testability. James Bach1 provides the following definition for testability: “Software

testability is simply how easily [a computer program] can be tested.” The following

characteristics lead to testable software.

Operability. “The better it works, the more efficiently it can be tested.” If a system

is designed and implemented with quality in mind, relatively few bugs will block

the execution of tests, allowing testing to progress without fits and starts.

Observability. “What you see is what you test.” Inputs provided as part of testing

produce distinct outputs. System states and variables are visible or queriable dur-

ing execution. Incorrect output is easily identified. Internal errors are automatically

detected and reported. Source code is accessible.

Controllability. “The better we can control the software, the more the testing can

be automated and optimized.” All possible outputs can be generated through some

combination of input, and I/O formats are consistent and structured. All code is

executable through some combination of input. Software and hardware states and

uote:

“Every program
does something
right, it just may
not be the thing we
want it to do.”

Author unknown

What are the
character-

istics of
testability?

?

1 The paragraphs that follow are used with permission of James Bach (copyright 1994) and have been
adapted from material that originally appeared in a posting in the newsgroup comp.software-eng.

What are the steps? For conventional applica-
tions, software is tested from two different per-
spectives: (1) internal program logic is exercised
using “white box” test-case design techniques
and (2) software requirements are exercised
using “black box” test-case design techniques.
Use cases assist in the design of tests to uncover
errors at the software validation level. In every
case, the intent is to find the maximum number
of errors with the minimum amount of effort
and time.

What is the work product? A set of test cases
designed to exercise both internal logic,

interfaces, component collaborations, and
external requirements is designed and docu-
mented, expected results are defined, and actual
results are recorded.

How do I ensure that I’ve done it right? When
you begin testing, change your point of view. Try
hard to “break” the software! Design test cases
in a disciplined fashion and review the test cases
you do create for thoroughness. In addition, you
can evaluate test coverage and track error
detection activities.

pre75977_ch18.qxd 11/27/08 6:12 PM Page 482

variables can be controlled directly by the test engineer. Tests can be conveniently

specified, automated, and reproduced.

Decomposability. “By controlling the scope of testing, we can more quickly

isolate problems and perform smarter retesting.” The software system is built from

independent modules that can be tested independently.

Simplicity. “The less there is to test, the more quickly we can test it.” The pro-

gram should exhibit functional simplicity (e.g., the feature set is the minimum nec-

essary to meet requirements); structural simplicity (e.g., architecture is modularized

to limit the propagation of faults), and code simplicity (e.g., a coding standard is

adopted for ease of inspection and maintenance).

Stability. “The fewer the changes, the fewer the disruptions to testing.” Changes

to the software are infrequent, controlled when they do occur, and do not invali-

date existing tests. The software recovers well from failures.

Understandability. “The more information we have, the smarter we will test.” The

architectural design and the dependencies between internal, external, and shared

components are well understood. Technical documentation is instantly accessible,

well organized, specific and detailed, and accurate. Changes to the design are

communicated to testers.

You can use the attributes suggested by Bach to develop a software configuration

(i.e., programs, data, and documents) that is amenable to testing.

Test Characteristics. And what about the tests themselves? Kaner, Falk, and

Nguyen [Kan93] suggest the following attributes of a “good” test:

A good test has a high probability of finding an error. To achieve this goal, the

tester must understand the software and attempt to develop a mental picture of

how the software might fail. Ideally, the classes of failure are probed. For example,

one class of potential failure in a graphical user interface is the failure to recognize

proper mouse position. A set of tests would be designed to exercise the mouse in

an attempt to demonstrate an error in mouse position recognition.

A good test is not redundant. Testing time and resources are limited. There is no

point in conducting a test that has the same purpose as another test. Every test

should have a different purpose (even if it is subtly different).

A good test should be “best of breed” [Kan93]. In a group of tests that have a simi-

lar intent, time and resource limitations may mitigate toward the execution of only

a subset of these tests. In such cases, the test that has the highest likelihood of

uncovering a whole class of errors should be used.

A good test should be neither too simple nor too complex. Although it is sometimes

possible to combine a series of tests into one test case, the possible side effects

associated with this approach may mask errors. In general, each test should be

executed separately.

CHAPTER 18 TESTING CONVENTIONAL APPLICATIONS 483

uote:

“Errors are more
common, more
pervasive, and
more troublesome
in software than
with other
technologies.”

David Parnas

What is a
“good”

test?
?

pre75977_ch18.qxd 11/27/08 6:12 PM Page 483

18.2 INTERNAL AND EXTERNAL VIEWS OF TESTING

Any engineered product (and most other things) can be tested in one of two ways:

(1) Knowing the specified function that a product has been designed to perform, tests

can be conducted that demonstrate each function is fully operational while at the same

time searching for errors in each function. (2) Knowing the internal workings of a prod-

uct, tests can be conducted to ensure that “all gears mesh,” that is, internal operations

are performed according to specifications and all internal components have been ade-

quately exercised. The first test approach takes an external view and is called black-box

testing. The second requires an internal view and is termed white-box testing.2

Black-box testing alludes to tests that are conducted at the software interface.

A black-box test examines some fundamental aspect of a system with little regard

for the internal logical structure of the software. White-box testing of software is pred-

icated on close examination of procedural detail. Logical paths through the software

and collaborations between components are tested by exercising specific sets of

conditions and/or loops.

At first glance it would seem that very thorough white-box testing would lead

to “100 percent correct programs.” All we need do is define all logical paths, develop

test cases to exercise them, and evaluate results, that is, generate test cases to

exercise program logic exhaustively. Unfortunately, exhaustive testing presents

484 PART THREE QUALITY MANAGEMENT

Designing Unique Tests

The scene: Vinod’s cubical.

The players: Vinod and Ed—members of the
SafeHome software engineering team.

The conversation:

Vinod: So these are the test cases you intend to run for
the passwordValidation operation.

Ed: Yeah, they should cover pretty much all possibilities
for the kinds of passwords a user might enter.

Vinod: So let’s see . . . you note that the correct
password will be 8080, right?

Ed: Uh huh.

Vinod: And you specify passwords 1234 and 6789 to
test for error in recognizing invalid passwords?

Ed: Right, and I also test passwords that are close to the
correct password, see . . . 8081 and 8180.

Vinod: Those are okay, but I don’t see much point in
running both the 1234 and 6789 inputs. They’re
redundant . . . test the same thing, don’t they?

Ed: Well, they’re different values.

Vinod: That’s true, but if 1234 doesn’t uncover an
error . . . in other words . . . the passwordValidation
operation notes that it’s an invalid password, it’s not likely
that 6789 will show us anything new.

Ed: I see what you mean.

Vinod: I’m not trying to be picky here . . . it’s just that
we have limited time to do testing, so it’s a good idea to
run tests that have a high likelihood of finding new errors.

Ed: Not a problem . . . I’ll give this a bit more thought.

SAFEHOME

2 The terms functional testing and structural testing are sometimes used in place of black-box and
white-box testing, respectively.

uote:

“There is only one
rule in designing
test cases: cover all
features, but do
not make too
many test cases.”

Tsuneo Yamaura

White-box tests can be
designed only after
component-level design
(or source code)
exists. The logical
details of the program
must be available.

pre75977_ch18.qxd 11/27/08 6:12 PM Page 484

certain logistical problems. For even small programs, the number of possible logical

paths can be very large. White-box testing should not, however, be dismissed as

impractical. A limited number of important logical paths can be selected and

exercised. Important data structures can be probed for validity.

CHAPTER 18 TESTING CONVENTIONAL APPLICATIONS 485

Exhaustive Testing
Consider a 100-line program in the language
C. After some basic data declaration, the

program contains two nested loops that execute from 1 to
20 times each, depending on conditions specified at input.
Inside the interior loop, four if-then-else constructs are
required. There are approximately 1014 possible paths that
may be executed in this program!

To put this number in perspective, we assume that a
magic test processor (“magic” because no such processor

exists) has been developed for exhaustive testing. The
processor can develop a test case, execute it, and evaluate
the results in one millisecond. Working 24 hours a day,
365 days a year, the processor would work for 3170 years
to test the program. This would, undeniably, cause havoc
in most development schedules.

Therefore, it is reasonable to assert that exhaustive
testing is impossible for large software systems.

INFO

18.3 WHITE-BOX TESTING

White-box testing, sometimes called glass-box testing, is a test-case design philoso-

phy that uses the control structure described as part of component-level design to

derive test cases. Using white-box testing methods, you can derive test cases that

(1) guarantee that all independent paths within a module have been exercised at

least once, (2) exercise all logical decisions on their true and false sides, (3) execute

all loops at their boundaries and within their operational bounds, and (4) exercise

internal data structures to ensure their validity.

18.4 BASIS PATH TESTING

Basis path testing is a white-box testing technique first proposed by Tom McCabe

[McC76]. The basis path method enables the test-case designer to derive a logical

complexity measure of a procedural design and use this measure as a guide for defin-

ing a basis set of execution paths. Test cases derived to exercise the basis set are guar-

anteed to execute every statement in the program at least one time during testing.

18.4.1 Flow Graph Notation

Before we consider the basis path method, a simple notation for the representation

of control flow, called a flow graph (or program graph) must be introduced.3 The flow

graph depicts logical control flow using the notation illustrated in Figure 18.1. Each

structured construct (Chapter 10) has a corresponding flow graph symbol.

uote:

“Bugs lurk in
corners and
congregate at
boundaries.”

Boris Beizer

3 In actuality, the basis path method can be conducted without the use of flow graphs. However, they
serve as a useful notation for understanding control flow and illustrating the approach.

pre75977_ch18.qxd 11/27/08 6:12 PM Page 485

To illustrate the use of a flow graph, consider the procedural design representation in

Figure 18.2a. Here, a flowchart is used to depict program control structure. Figure 18.2b

maps the flowchart into a corresponding flow graph (assuming that no compound

conditions are contained in the decision diamonds of the flowchart). Referring to

Figure 18.2b, each circle, called a flow graph node, represents one or more procedural

statements. A sequence of process boxes and a decision diamond can map into a sin-

gle node. The arrows on the flow graph, called edges or links, represent flow of con-

trol and are analogous to flowchart arrows. An edge must terminate at a node, even

if the node does not represent any procedural statements (e.g., see the flow graph

symbol for the if-then-else construct). Areas bounded by edges and nodes are called

regions. When counting regions, we include the area outside the graph as a region.4

486 PART THREE QUALITY MANAGEMENT

If While

The structured constructs in flow graph form:

Where each circle represents one or more
nonbranching PDL or source code statements

Until

Case

Sequence

FIGURE 18.1

Flow graph
notation

1

3

10

(a)

6

9

2

4

587

11 (b)

1

2,3

4,56

9

10

11

87

R1

R3

R2

R4

Region

Node

Edge

FIGURE 18.2 (a) Flowchart and (b) flow graph

4 A more detailed discussion of graphs and their uses is presented in Section 18.6.1.

A flow graph should be
drawn only when the
logical structure of a
component is complex.
The flow graph allows
you to trace program
paths more readily.

pre75977_ch18.qxd 11/27/08 6:12 PM Page 486

When compound conditions are encountered in a procedural design, the genera-

tion of a flow graph becomes slightly more complicated. A compound condition

occurs when one or more Boolean operators (logical OR, AND, NAND, NOR) is pres-

ent in a conditional statement. Referring to Figure 18.3, the program design language

(PDL) segment translates into the flow graph shown. Note that a separate node is

created for each of the conditions a and b in the statement IF a OR b. Each node that

contains a condition is called a predicate node and is characterized by two or more

edges emanating from it.

18.4.2 Independent Program Paths

An independent path is any path through the program that introduces at least one

new set of processing statements or a new condition. When stated in terms of a flow

graph, an independent path must move along at least one edge that has not been

traversed before the path is defined. For example, a set of independent paths for the

flow graph illustrated in Figure 18.2b is

Path 1: 1-11

Path 2: 1-2-3-4-5-10-1-11

Path 3: 1-2-3-6-8-9-10-1-11

Path 4: 1-2-3-6-7-9-10-1-11

Note that each new path introduces a new edge. The path

1-2-3-4-5-10-1-2-3-6-8-9-10-1-11

is not considered to be an independent path because it is simply a combination of

already specified paths and does not traverse any new edges.

Paths 1 through 4 constitute a basis set for the flow graph in Figure 18.2b. That is,

if you can design tests to force execution of these paths (a basis set), every statement

in the program will have been guaranteed to be executed at least one time and every

condition will have been executed on its true and false sides. It should be noted that

CHAPTER 18 TESTING CONVENTIONAL APPLICATIONS 487

Predicate
node

.

.

.
IF a OR b

then procedure x
else procedure y

ENDIF

y

b

a

x

x

FIGURE 18.3

Compound
logic

pre75977_ch18.qxd 11/27/08 6:12 PM Page 487

the basis set is not unique. In fact, a number of different basis sets can be derived for

a given procedural design.

How do you know how many paths to look for? The computation of cyclomatic

complexity provides the answer. Cyclomatic complexity is a software metric that pro-

vides a quantitative measure of the logical complexity of a program. When used in

the context of the basis path testing method, the value computed for cyclomatic com-

plexity defines the number of independent paths in the basis set of a program and

provides you with an upper bound for the number of tests that must be conducted to

ensure that all statements have been executed at least once.

Cyclomatic complexity has a foundation in graph theory and provides you with an

extremely useful software metric. Complexity is computed in one of three ways:

1. The number of regions of the flow graph corresponds to the cyclomatic

complexity.

2. Cyclomatic complexity V(G) for a flow graph G is defined as

V(G) � E � N � 2

where E is the number of flow graph edges and N is the number of flow

graph nodes.

3. Cyclomatic complexity V(G) for a flow graph G is also defined as

V(G) � P � 1

where P is the number of predicate nodes contained in the flow graph G.

Referring once more to the flow graph in Figure 18.2b, the cyclomatic complexity can

be computed using each of the algorithms just noted:

1. The flow graph has four regions.

2. V(G) � 11 edges � 9 nodes � 2 � 4.

3. V(G) � 3 predicate nodes � 1 � 4.

Therefore, the cyclomatic complexity of the flow graph in Figure 18.2b is 4.

More important, the value for V(G) provides you with an upper bound for the num-

ber of independent paths that form the basis set and, by implication, an upper bound

on the number of tests that must be designed and executed to guarantee coverage

of all program statements.

488 PART THREE QUALITY MANAGEMENT

Cyclomatic complexity
is a useful metric for
predicting those
modules that are likely
to be error prone. Use
it for test planning as
well as test-case
design.

How do I
compute

cyclomatic
complexity?

?

Cyclomatic complexity
provides the upper
bound on the number
of test cases that will
be required to
guarantee that every
statement in the
program has been
executed at least one
time.

The scene: Shakira’s cubicle.

The players: Vinod and Shakira—members of the
SafeHome software engineering team who are working
on test planning for the security function.

The conversation:

Shakira: Look . . . I know that we should unit-test all the
components for the security function, but there are a lot of
‘em and if you consider the number of operations that

SAFEHOME

Using Cyclomatic Complexity

pre75977_ch18.qxd 11/27/08 6:12 PM Page 488

18.4.3 Deriving Test Cases

The basis path testing method can be applied to a procedural design or to source

code. In this section, I present basis path testing as a series of steps. The procedure

average, depicted in PDL in Figure 18.4, will be used as an example to illustrate each

step in the test-case design method. Note that average, although an extremely sim-

ple algorithm, contains compound conditions and loops. The following steps can be

applied to derive the basis set:

1. Using the design or code as a foundation, draw a corresponding

flow graph. A flow graph is created using the symbols and construction

rules presented in Section 18.4.1. Referring to the PDL for average in

Figure 18.4, a flow graph is created by numbering those PDL statements that

will be mapped into corresponding flow graph nodes. The corresponding

flow graph is shown in Figure 18.5.

2. Determine the cyclomatic complexity of the resultant flow graph.

The cyclomatic complexity V(G) is determined by applying the algorithms

described in Section 18.4.2. It should be noted that V(G) can be determined

without developing a flow graph by counting all conditional statements in

the PDL (for the procedure average, compound conditions count as two) and

adding 1. Referring to Figure 18.5,

V(G) � 6 regions

V(G) � 17 edges � 13 nodes � 2 � 6

V(G) � 5 predicate nodes � 1 � 6

CHAPTER 18 TESTING CONVENTIONAL APPLICATIONS 489

have to be exercised, I don’t know . . . maybe we should
forget white-box testing, integrate everything, and start
running black-box tests.

Vinod: You figure we don’t have enough time to do
component tests, exercise the operations, and then
integrate?

Shakira: The deadline for the first increment is getting
closer than I’d like . . . yeah, I’m concerned.

Vinod: Why don’t you at least run white-box tests on
the operations that are likely to be the most error prone?

Shakira (exasperated): And exactly how do I know
which are the most error prone?

Vinod: V of G.

Shakira: Huh?

Vinod: Cyclomatic complexity—V of G. Just compute
V(G) for each of the operations within each of the

components and see which have the highest values for
V(G). They’re the ones that are most likely to be error
prone.

Shakira: And how do I compute V of G?

Vinod: It’s really easy. Here’s a book that describes how
to do it.

Shakira (leafing through the pages): Okay, it
doesn’t look hard. I’ll give it a try. The ops with
the highest V(G) will be the candidates for white-box
tests.

Vinod: Just remember that there are no guarantees.
A component with a low V(G) can still be error
prone.

Shakira: Alright. But at least this’ll help me to narrow
down the number of components that have to undergo
white-box testing.

uote:

“The Ariane 5
rocket blew up on
lift-off due solely
to a software
defect (a bug)
involving the
conversion of a 64-
bit floating point
value into a 16-bit
integer. The rocket
and its four
satellites were
uninsured and
worth $500
million. [Path tests
that exercised the
conversion path]
would have found
the bug but were
vetoed for
budgetary
reasons.”

A news report

pre75977_ch18.qxd 11/27/08 6:12 PM Page 489

490 PART THREE QUALITY MANAGEMENT

PROCEDURE average;

INTERFACE RETURNS average, total.input, total.valid;
INTERFACE ACCEPTS value, minimum, maximum;

TYPE value[1:100] IS SCALAR ARRAY;
TYPE average, total.input, total.valid;
 minimum, maximum, sum IS SCALAR;
TYPE i IS INTEGER;

* This procedure computes the average of 100 or fewer
 numbers that lie between bounding values; it also computes the
 sum and the total number valid.

i = 1;
total.input = total.valid = 0;
sum = 0;
DO WHILE value[i] <> –999 AND total.input < 100

ENDDO
IF total.valid > 0

ENDIF
END average

increment total.input by 1;
IF value[i] > = minimum AND value[i] < = maximum

ENDIF
increment i by 1;

THEN average = sum / total.valid;
ELSE average = –999;

THEN increment total.valid by 1;
 sum = s sum + value[i]
ELSE skip

1

3

6
4

5
7

8

9
10

11
12

13

2

FIGURE 18.4

PDL with
nodes
identified

1

2

3

4

5

6

7

8

9

10

1112

13

FIGURE 18.5

Flow graph for
the procedure
average

3. Determine a basis set of linearly independent paths. The value of V(G)

provides the upper bound on the number of linearly independent paths

through the program control structure. In the case of procedure average, we

expect to specify six paths:

Path 1: 1-2-10-11-13

Path 2: 1-2-10-12-13

pre75977_ch18.qxd 11/27/08 6:12 PM Page 490

Path 3: 1-2-3-10-11-13

Path 4: 1-2-3-4-5-8-9-2-. . .

Path 5: 1-2-3-4-5-6-8-9-2-. . .

Path 6: 1-2-3-4-5-6-7-8-9-2-. . .

The ellipsis (. . .) following paths 4, 5, and 6 indicates that any path through

the remainder of the control structure is acceptable. It is often worthwhile to

identify predicate nodes as an aid in the derivation of test cases. In this case,

nodes 2, 3, 5, 6, and 10 are predicate nodes.

4. Prepare test cases that will force execution of each path in the basis

set. Data should be chosen so that conditions at the predicate nodes are

appropriately set as each path is tested. Each test case is executed and com-

pared to expected results. Once all test cases have been completed, the tester

can be sure that all statements in the program have been executed at least

once.

It is important to note that some independent paths (e.g., path 1 in our example)

cannot be tested in stand-alone fashion. That is, the combination of data required to

traverse the path cannot be achieved in the normal flow of the program. In such

cases, these paths are tested as part of another path test.

18.4.4 Graph Matrices

The procedure for deriving the flow graph and even determining a set of basis paths

is amenable to mechanization. A data structure, called a graph matrix, can be quite

useful for developing a software tool that assists in basis path testing.

A graph matrix is a square matrix whose size (i.e., number of rows and columns)

is equal to the number of nodes on the flow graph. Each row and column corre-

sponds to an identified node, and matrix entries correspond to connections (an edge)

between nodes. A simple example of a flow graph and its corresponding graph

matrix [Bei90] is shown in Figure 18.6.

CHAPTER 18 TESTING CONVENTIONAL APPLICATIONS 491

1

3

4

2

5

a

b

c

d
e

f

g

Flow graph

1 3 42 5

1

3

4

2

5

a

eg

c f

d b

Connected to
node

Node

Graph matrix

FIGURE 18.6

Graph matrix

pre75977_ch18.qxd 11/27/08 6:12 PM Page 491

Referring to the figure, each node on the flow graph is identified by numbers,

while each edge is identified by letters. A letter entry is made in the matrix to

correspond to a connection between two nodes. For example, node 3 is connected

to node 4 by edge b.

To this point, the graph matrix is nothing more than a tabular representation of a

flow graph. However, by adding a link weight to each matrix entry, the graph matrix

can become a powerful tool for evaluating program control structure during testing.

The link weight provides additional information about control flow. In its simplest

form, the link weight is 1 (a connection exists) or 0 (a connection does not exist). But

link weights can be assigned other, more interesting properties:

• The probability that a link (edge) will be execute.

• The processing time expended during traversal of a link

• The memory required during traversal of a link

• The resources required during traversal of a link.

Beizer [Bei90] provides a thorough treatment of additional mathematical algo-

rithms that can be applied to graph matrices. Using these techniques, the analysis

required to design test cases can be partially or fully automated.

18.5 CONTROL STRUCTURE TESTING

The basis path testing technique described in Section 18.4 is one of a number of tech-

niques for control structure testing. Although basis path testing is simple and highly

effective, it is not sufficient in itself. In this section, other variations on control struc-

ture testing are discussed. These broaden testing coverage and improve the quality

of white-box testing.

18.5.1 Condition Testing

Condition testing [Tai89] is a test-case design method that exercises the logical con-

ditions contained in a program module. A simple condition is a Boolean variable or

a relational expression, possibly preceded with one NOT (¬) operator. A relational

expression takes the form

E1 <relational-operator> E2

where E1 and E2 are arithmetic expressions and <relational-operator> is one of the

following: �, �, �, � (nonequality), �, or �. A compound condition is composed of

two or more simple conditions, Boolean operators, and parentheses. We assume

that Boolean operators allowed in a compound condition include OR (�), AND (&),

and NOT (¬). A condition without relational expressions is referred to as a Boolean

expression.

If a condition is incorrect, then at least one component of the condition is incor-

rect. Therefore, types of errors in a condition include Boolean operator errors

492 PART THREE QUALITY MANAGEMENT

What is a
graph matrix

and how do I
extend it for use
in testing?

?

uote:

“Paying more
attention to
running tests than
to designing them
is a classic
mistake.”

Brian Marick

Errors are much more
common in the
neighborhood of
logical conditions than
they are in the locus of
sequential processing
statements.

pre75977_ch18.qxd 11/27/08 6:12 PM Page 492

(incorrect/missing/extra Boolean operators), Boolean variable errors, Boolean

parenthesis errors, relational operator errors, and arithmetic expression errors. The

condition testing method focuses on testing each condition in the program to ensure

that it does not contain errors.

18.5.2 Data Flow Testing

The data flow testing method [Fra93] selects test paths of a program according to the

locations of definitions and uses of variables in the program. To illustrate the data

flow testing approach, assume that each statement in a program is assigned a unique

statement number and that each function does not modify its parameters or global

variables. For a statement with S as its statement number,

DEF(S) � {X | statement S contains a definition of X}

USE(S) � {X | statement S contains a use of X}

If statement S is an if or loop statement, its DEF set is empty and its USE set is based

on the condition of statement S. The definition of variable X at statement S is said to

be live at statement S’ if there exists a path from statement S to statement S’ that con-

tains no other definition of X.

A definition-use (DU) chain of variable X is of the form [X, S, S’], where S and S’ are

statement numbers, X is in DEF(S) and USE(S’), and the definition of X in statement

S is live at statement S’.

One simple data flow testing strategy is to require that every DU chain be covered

at least once. We refer to this strategy as the DU testing strategy. It has been shown

that DU testing does not guarantee the coverage of all branches of a program. How-

ever, a branch is not guaranteed to be covered by DU testing only in rare situations

such as if-then-else constructs in which the then part has no definition of any vari-

able and the else part does not exist. In this situation, the else branch of the if state-

ment is not necessarily covered by DU testing.

18.5.3 Loop Testing

Loops are the cornerstone for the vast majority of all algorithms implemented in

software. And yet, we often pay them little heed while conducting software tests.

Loop testing is a white-box testing technique that focuses exclusively on the

validity of loop constructs. Four different classes of loops [Bei90] can be defined: sim-

ple loops, concatenated loops, nested loops, and unstructured loops (Figure 18.7).

Simple loops. The following set of tests can be applied to simple loops, where n

is the maximum number of allowable passes through the loop.

1. Skip the loop entirely.

2. Only one pass through the loop.

3. Two passes through the loop.

CHAPTER 18 TESTING CONVENTIONAL APPLICATIONS 493

It is unrealistic to
assume that data flow
testing will be used
extensively when
testing a large system.
However, it can be
used in a targeted
fashion for areas of
software that are
suspect.

uote:

“Good testers are
masters at noticing
‘something funny’
and acting on it.”

Brian Marick

pre75977_ch18.qxd 11/27/08 6:12 PM Page 493

4. m passes through the loop where m � n.

5. n � 1, n, n � 1 passes through the loop.

Nested loops. If we were to extend the test approach for simple loops to nested

loops, the number of possible tests would grow geometrically as the level of nesting

increases. This would result in an impractical number of tests. Beizer [Bei90] sug-

gests an approach that will help to reduce the number of tests:

1. Start at the innermost loop. Set all other loops to minimum values.

2. Conduct simple loop tests for the innermost loop while holding the outer

loops at their minimum iteration parameter (e.g., loop counter) values. Add

other tests for out-of-range or excluded values.

3. Work outward, conducting tests for the next loop, but keeping all other outer

loops at minimum values and other nested loops to “typical” values.

4. Continue until all loops have been tested.

Concatenated loops. Concatenated loops can be tested using the approach

defined for simple loops, if each of the loops is independent of the other. However,

if two loops are concatenated and the loop counter for loop 1 is used as the initial

value for loop 2, then the loops are not independent. When the loops are not inde-

pendent, the approach applied to nested loops is recommended.

Unstructured loops. Whenever possible, this class of loops should be redesigned

to reflect the use of the structured programming constructs (Chapter 10).

494 PART THREE QUALITY MANAGEMENT

Simple loops
Nested loops

Concatenated
loops

Unstructured
loops

FIGURE 18.7

Classes of
Loops

You can’t test unstruc-
tured loops effectively.
Refactor them.

pre75977_ch18.qxd 11/27/08 6:12 PM Page 494

18.6 BLACK-BOX TESTING

Black-box testing, also called behavioral testing, focuses on the functional require-

ments of the software. That is, black-box testing techniques enable you to derive sets

of input conditions that will fully exercise all functional requirements for a program.

Black-box testing is not an alternative to white-box techniques. Rather, it is a com-

plementary approach that is likely to uncover a different class of errors than white-

box methods.

Black-box testing attempts to find errors in the following categories: (1) incorrect

or missing functions, (2) interface errors, (3) errors in data structures or external

database access, (4) behavior or performance errors, and (5) initialization and

termination errors.

Unlike white-box testing, which is performed early in the testing process, black-

box testing tends to be applied during later stages of testing (see Chapter 17). Because

black-box testing purposely disregards control structure, attention is focused on the

information domain. Tests are designed to answer the following questions:

• How is functional validity tested?

• How are system behavior and performance tested?

• What classes of input will make good test cases?

• Is the system particularly sensitive to certain input values?

• How are the boundaries of a data class isolated?

• What data rates and data volume can the system tolerate?

• What effect will specific combinations of data have on system operation?

By applying black-box techniques, you derive a set of test cases that satisfy the fol-

lowing criteria [Mye79]: (1) test cases that reduce, by a count that is greater than one,

the number of additional test cases that must be designed to achieve reasonable

testing, and (2) test cases that tell you something about the presence or absence of

classes of errors, rather than an error associated only with the specific test at hand.

18.6.1 Graph-Based Testing Methods

The first step in black-box testing is to understand the objects5 that are modeled in

software and the relationships that connect these objects. Once this has been

accomplished, the next step is to define a series of tests that verify “all objects have

the expected relationship to one another” [Bei95]. Stated in another way, software

testing begins by creating a graph of important objects and their relationships and

CHAPTER 18 TESTING CONVENTIONAL APPLICATIONS 495

What
questions do

black-box tests
answer?

?

A graph represents the
relationships between
data objects and
program objects,
enabling you to derive
test cases that search
for errors associated
with these
relationships.

5 In this context, you should consider the term objects in the broadest possible context. It encom-
passes data objects, traditional components (modules), and object-oriented elements of computer
software.

uote:

“To err is human,
to find a bug is
divine.”

Robert Dunn

pre75977_ch18.qxd 11/27/08 6:12 PM Page 495

then devising a series of tests that will cover the graph so that each object and rela-

tionship is exercised and errors are uncovered.

To accomplish these steps, you begin by creating a graph—a collection of nodes

that represent objects, links that represent the relationships between objects, node

weights that describe the properties of a node (e.g., a specific data value or state

behavior), and link weights that describe some characteristic of a link.

The symbolic representation of a graph is shown in Figure 18.8a. Nodes are

represented as circles connected by links that take a number of different forms.

A directed link (represented by an arrow) indicates that a relationship moves in only

one direction. A bidirectional link, also called a symmetric link, implies that the rela-

tionship applies in both directions. Parallel links are used when a number of different

relationships are established between graph nodes.

As a simple example, consider a portion of a graph for a word-processing

application (Figure 18.8b) where

Object #1 � newFile (menu selection)

Object #2 � documentWindow

Object #3 � documentText

Referring to the figure, a menu select on newFile generates a document window.

The node weight of documentWindow provides a list of the window attributes that

are to be expected when the window is generated. The link weight indicates that the

496 PART THREE QUALITY MANAGEMENT

New file
menu
select

Menu select generates Document
window

Document
text

Is represented as
Contains

(b)

Object
#1

Directed link Object
#2

Object
#3

Undirected link

Parallel links

Node weight
(value)

(a)

Allows editing of

(link weight)

(generation time < 1.0 sec)

Attributes:
Start dimension: default setting
 or preferences
Background color: white
Text color: default color
 or preferences

FIGURE 18.8

(a) Graph
notation; (b)
simple
example

pre75977_ch18.qxd 11/27/08 6:12 PM Page 496

window must be generated in less than 1.0 second. An undirected link establishes a

symmetric relationship between the newFile menu selection and documentText,

and parallel links indicate relationships between documentWindow and

documentText. In reality, a far more detailed graph would have to be generated

as a precursor to test-case design. You can then derive test cases by traversing the

graph and covering each of the relationships shown. These test cases are designed

in an attempt to find errors in any of the relationships. Beizer [Bei95] describes a

number of behavioral testing methods that can make use of graphs:

Transaction flow modeling. The nodes represent steps in some transac-

tion (e.g., the steps required to make an airline reservation using an online

service), and the links represent the logical connection between steps (e.g.,

flightInformationInput is followed by validationAvailabilityProcessing).

The data flow diagram (Chapter 7) can be used to assist in creating graphs of

this type.

Finite state modeling. The nodes represent different user-observable states

of the software (e.g., each of the “screens” that appear as an order entry clerk

takes a phone order), and the links represent the transitions that occur to move

from state to state (e.g., orderInformation is verified during inventoryAvail-

abilityLook-up and is followed by customerBillingInformation input). The

state diagram (Chapter 7) can be used to assist in creating graphs of this type.

Data flow modeling. The nodes are data objects, and the links are the

transformations that occur to translate one data object into another. For

example, the node FICA tax withheld (FTW) is computed from gross wages

(GW) using the relationship, FTW � 0.62 � GW.

Timing modeling. The nodes are program objects, and the links are the

sequential connections between those objects. Link weights are used to

specify the required execution times as the program executes.

A detailed discussion of each of these graph-based testing methods is beyond

the scope of this book. If you have further interest, see [Bei95] for a comprehensive

coverage.

18.6.2 Equivalence Partitioning

Equivalence partitioning is a black-box testing method that divides the input domain

of a program into classes of data from which test cases can be derived. An ideal test

case single-handedly uncovers a class of errors (e.g., incorrect processing of all

character data) that might otherwise require many test cases to be executed before

the general error is observed.

Test-case design for equivalence partitioning is based on an evaluation of

equivalence classes for an input condition. Using concepts introduced in the preced-

ing section, if a set of objects can be linked by relationships that are symmetric,

CHAPTER 18 TESTING CONVENTIONAL APPLICATIONS 497

Input classes are
known relatively early
in the software
process. For this
reason, begin thinking
about equivalence
partitioning as the
design is created.

pre75977_ch18.qxd 11/27/08 6:12 PM Page 497

transitive, and reflexive, an equivalence class is present [Bei95]. An equivalence

class represents a set of valid or invalid states for input conditions. Typically, an input

condition is either a specific numeric value, a range of values, a set of related values,

or a Boolean condition. Equivalence classes may be defined according to the

following guidelines:

1. If an input condition specifies a range, one valid and two invalid equivalence

classes are defined.

2. If an input condition requires a specific value, one valid and two invalid

equivalence classes are defined.

3. If an input condition specifies a member of a set, one valid and one invalid

equivalence class are defined.

4. If an input condition is Boolean, one valid and one invalid class are defined.

By applying the guidelines for the derivation of equivalence classes, test cases for

each input domain data item can be developed and executed. Test cases are selected

so that the largest number of attributes of an equivalence class are exercised at once.

18.6.3 Boundary Value Analysis

A greater number of errors occurs at the boundaries of the input domain rather than

in the “center.” It is for this reason that boundary value analysis (BVA) has been de-

veloped as a testing technique. Boundary value analysis leads to a selection of test

cases that exercise bounding values.

Boundary value analysis is a test-case design technique that complements equiv-

alence partitioning. Rather than selecting any element of an equivalence class, BVA

leads to the selection of test cases at the “edges” of the class. Rather than focusing

solely on input conditions, BVA derives test cases from the output domain as well

[Mye79].

Guidelines for BVA are similar in many respects to those provided for equivalence

partitioning:

1. If an input condition specifies a range bounded by values a and b, test cases

should be designed with values a and b and just above and just below a and b.

2. If an input condition specifies a number of values, test cases should be devel-

oped that exercise the minimum and maximum numbers. Values just above

and below minimum and maximum are also tested.

3. Apply guidelines 1 and 2 to output conditions. For example, assume that a tem-

perature versus pressure table is required as output from an engineering analy-

sis program. Test cases should be designed to create an output report that

produces the maximum (and minimum) allowable number of table entries.

4. If internal program data structures have prescribed boundaries (e.g., a table

has a defined limit of 100 entries), be certain to design a test case to exercise

the data structure at its boundary.

498 PART THREE QUALITY MANAGEMENT

How do I
define

equivalence
classes for
testing?

?

uote:

“An effective way
to test code is to
exercise it at its
natural
boundaries.”

Brian Kernighan

BVA extends
equivalence
partitioning by focusing
on data at the “edges”
of an equivalence
class.

pre75977_ch18.qxd 11/27/08 6:12 PM Page 498

Most software engineers intuitively perform BVA to some degree. By applying

these guidelines, boundary testing will be more complete, thereby having a higher

likelihood for error detection.

18.6.4 Orthogonal Array Testing

There are many applications in which the input domain is relatively limited. That is,

the number of input parameters is small and the values that each of the parameters

may take are clearly bounded. When these numbers are very small (e.g., three input

parameters taking on three discrete values each), it is possible to consider every

input permutation and exhaustively test the input domain. However, as the number

of input values grows and the number of discrete values for each data item increases,

exhaustive testing becomes impractical or impossible.

Orthogonal array testing can be applied to problems in which the input domain is

relatively small but too large to accommodate exhaustive testing. The orthogonal

array testing method is particularly useful in finding region faults—an error category

associated with faulty logic within a software component.

To illustrate the difference between orthogonal array testing and more conven-

tional “one input item at a time” approaches, consider a system that has three input

items, X, Y, and Z. Each of these input items has three discrete values associated with

it. There are 33 � 27 possible test cases. Phadke [Pha97] suggests a geometric view

of the possible test cases associated with X, Y, and Z illustrated in Figure 18.9.

Referring to the figure, one input item at a time may be varied in sequence along each

input axis. This results in relatively limited coverage of the input domain (repre-

sented by the left-hand cube in the figure).

When orthogonal array testing occurs, an L9 orthogonal array of test cases is

created. The L9 orthogonal array has a “balancing property” [Pha97]. That is, test

cases (represented by dark dots in the figure) are “dispersed uniformly throughout

the test domain,” as illustrated in the right-hand cube in Figure 18.9. Test coverage

across the input domain is more complete.

CHAPTER 18 TESTING CONVENTIONAL APPLICATIONS 499

YY
X X

ZZ

One input item at a time L9 orthogonal array

FIGURE 18.9

A geometric
view of test
cases
Source: [Pha97]

Orthogonal array
testing enables you to
design test cases that
provide maximum test
coverage with a
reasonable number of
test cases.

pre75977_ch18.qxd 11/27/08 6:12 PM Page 499

To illustrate the use of the L9 orthogonal array, consider the send function for a

fax application. Four parameters, P1, P2, P3, and P4, are passed to the send function.

Each takes on three discrete values. For example, P1 takes on values:

P1 � 1, send it now

P1 � 2, send it one hour later

P1 � 3, send it after midnight

P2, P3, and P4 would also take on values of 1, 2, and 3, signifying other send

functions.

If a “one input item at a time” testing strategy were chosen, the following

sequence of tests (P1, P2, P3, P4) would be specified: (1, 1, 1, 1), (2, 1, 1, 1), (3, 1, 1, 1),

(1, 2, 1, 1), (1, 3, 1, 1), (1, 1, 2, 1), (1, 1, 3, 1), (1, 1, 1, 2), and (1, 1, 1, 3). Phadke [Pha97]

assesses these test cases by stating:

Such test cases are useful only when one is certain that these test parameters do not

interact. They can detect logic faults where a single parameter value makes the software

malfunction. These faults are called single mode faults. This method cannot detect logic

faults that cause malfunction when two or more parameters simultaneously take certain

values; that is, it cannot detect any interactions. Thus its ability to detect faults is limited.

Given the relatively small number of input parameters and discrete values,

exhaustive testing is possible. The number of tests required is 34 � 81, large but man-

ageable. All faults associated with data item permutation would be found, but the

effort required is relatively high.

The orthogonal array testing approach enables you to provide good test coverage

with far fewer test cases than the exhaustive strategy. An L9 orthogonal array for the

fax send function is illustrated in Figure 18.10.

500 PART THREE QUALITY MANAGEMENT

Test
case Test parameters

P1 P2 P3 P4

1

2

3

3

1

2

2

3

1

1

2

3

2

3

1

3

1

2

1

2

3

1

2

3

1

2

3

1

1

1

2

2

2

3

3

3

1

2

3

4

5

6

7

8

9

FIGURE 18.10

An L9 orthog-
onal array

pre75977_ch18.qxd 11/27/08 6:12 PM Page 500

Phadke [Pha97] assesses the result of tests using the L9 orthogonal array in the

following manner:

Detect and isolate all single mode faults. A single mode fault is a consistent prob-

lem with any level of any single parameter. For example, if all test cases of factor P1 � 1

cause an error condition, it is a single mode failure. In this example tests 1, 2 and 3

[Figure 18.10] will show errors. By analyzing the information about which tests show

errors, one can identify which parameter values cause the fault. In this example, by not-

ing that tests 1, 2, and 3 cause an error, one can isolate [logical processing associated

with “send it now” (P1 � 1)] as the source of the error. Such an isolation of fault is

important to fix the fault.

Detect all double mode faults. If there exists a consistent problem when specific

levels of two parameters occur together, it is called a double mode fault. Indeed, a double

mode fault is an indication of pairwise incompatibility or harmful interactions between

two test parameters.

Multimode faults. Orthogonal arrays [of the type shown] can assure the detection of

only single and double mode faults. However, many multimode faults are also detected

by these tests.

You can find a detailed discussion of orthogonal array testing in [Pha89].

CHAPTER 18 TESTING CONVENTIONAL APPLICATIONS 501

Test-Case Design

Objective: To assist the software team in
developing a complete set of test cases for both

black-box and white-box testing.

Mechanics: These tools fall into two broad categories:
static testing tools and dynamic testing tools. Three
different types of static testing tools are used in the
industry: code-based testing tools, specialized testing
languages, and requirements-based testing tools. Code-
based testing tools accept source code as input and
perform a number of analyses that result in the generation
of test cases. Specialized testing languages (e.g., ATLAS)
enable a software engineer to write detailed test
specifications that describe each test case and the logistics
for its execution. Requirements-based testing tools isolate
specific user requirements and suggest test cases (or
classes of tests) that will exercise the requirements.
Dynamic testing tools interact with an executing program,
checking path coverage, testing assertions about the value
of specific variables, and otherwise instrumenting the
execution flow of the program.

Representative Tools:6

McCabeTest, developed by McCabe & Associates
(www.mccabe.com), implements a variety of path
testing techniques derived from an assessment of
cyclomatic complexity and other software metrics.

TestWorks, developed by Software Research, Inc.
(www.soft.com/Products), is a complete set of
automated testing tools that assists in the design of tests
cases for software developed in C/C++ and Java and
provides support for regression testing.

T-VEC Test Generation System, developed by T-VEC
Technologies (www.t-vec.com), is a tool set that
supports unit, integration, and validation testing by
assisting in the design of test cases using information
contained in an OO requirements specification.

e-TEST Suite, developed by Empirix, Inc. (www.empirix
.com), encompasses a complete set of tools for testing
WebApps, including tools that assist test-case design
and test planning.

SOFTWARE TOOLS

6 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.
In most cases, tool names are trademarked by their respective developers.

pre75977_ch18.qxd 11/27/08 6:12 PM Page 501

http://www.mccabe.com
http://www.soft.com/Products
http://www.t-vec.com
http://www.empirix.com
http://www.empirix.com

18.7 MODEL-BASED TESTING

Model-based testing (MBT) is a black-box testing technique that uses information

contained in the requirements model as the basis for the generation of test cases. In

many cases, the model-based testing technique uses UML state diagrams, an ele-

ment of the behavioral model (Chapter 7), as the basis for the design of test cases.7

The MBT technique requires five steps:

1. Analyze an existing behavioral model for the software or create one.

Recall that a behavioral model indicates how software will respond to exter-

nal events or stimuli. To create the model, you should perform the steps

discussed in Chapter 7: (1) evaluate all use cases to fully understand the

sequence of interaction within the system, (2) identify events that drive the

interaction sequence and understand how these events relate to specific

objects, (3) create a sequence for each use case, (4) build a UML state

diagram for the system (e.g., see Figure 7.6), and (5) review the behavioral

model to verify accuracy and consistency.

2. Traverse the behavioral model and specify the inputs that will force

the software to make the transition from state to state. The inputs will

trigger events that will cause the transition to occur.

3. Review the behavioral model and note the expected outputs as the

software makes the transition from state to state. Recall that each

state transition is triggered by an event and that as a consequence of the

transition, some function is invoked and outputs are created. For each set of

inputs (test cases) you specified in step 2, specify the expected outputs as

they are characterized in the behavioral model. “A fundamental assumption

of this testing is that there is some mechanism, a test oracle, that will deter-

mine whether or not the results of a test execution are correct” [DAC03]. In

essence, a test oracle establishes the basis for any determination of the cor-

rectness of the output. In most cases, the oracle is the requirements model,

but it could also be another document or application, data recorded else-

where, or even a human expert.

4. Execute the test cases. Tests can be executed manually or a test script can

be created and executed using a testing tool.

5. Compare actual and expected results and take corrective action as

required.

MBT helps to uncover errors in software behavior, and as a consequence, it is

extremely useful when testing event-driven applications.

502 PART THREE QUALITY MANAGEMENT

uote:

“It’s hard enough
to find an error in
your code when
you’re looking for
it; it’s even harder
when you’ve
assumed your code
is error-free.”

Steve McConnell

7 Model-based testing can also be used when software requirements are represented with decision
tables, grammars, or Markov chains [DAC03].

pre75977_ch18.qxd 11/27/08 6:12 PM Page 502

18.8 TESTING FOR SPECIALIZED ENVIRONMENTS,
ARCHITECTURES, AND APPLICATIONS

Unique guidelines and approaches to testing are sometimes warranted when spe-

cialized environments, architectures, and applications are considered. Although the

testing techniques discussed earlier in this chapter and in Chapters 19 and 20 can

often be adapted to specialized situations, it’s worth considering their unique needs

individually.

18.8.1 Testing GUIs

Graphical user interfaces (GUIs) will present you with interesting testing challenges.

Because reusable components are now a common part of GUI development envi-

ronments, the creation of the user interface has become less time consuming and

more precise (Chapter 11). But, at the same time, the complexity of GUIs has grown,

leading to more difficulty in the design and execution of test cases.

Because many modern GUIs have the same look and feel, a series of standard

tests can be derived. Finite-state modeling graphs may be used to derive a series of

tests that address specific data and program objects that are relevant to the GUI. This

model-based testing technique was discussed in Section 18.7.

Because of the large number of permutations associated with GUI operations, GUI

testing should be approached using automated tools. A wide array of GUI testing

tools has appeared on the market over the past few years.8

18.8.2 Testing of Client-Server Architectures

The distributed nature of client-server environments, the performance issues asso-

ciated with transaction processing, the potential presence of a number of different

hardware platforms, the complexities of network communication, the need to serv-

ice multiple clients from a centralized (or in some cases, distributed) database, and

the coordination requirements imposed on the server all combine to make testing of

client-server architectures and the software that resides within them considerably

more difficult than stand-alone applications. In fact, recent industry studies indicate

a significant increase in testing time and cost when client-server environments are

developed.

In general, the testing of client-server software occurs at three different levels:

(1) Individual client applications are tested in a “disconnected” mode; the operation

of the server and the underlying network are not considered. (2) The client software

and associated server applications are tested in concert, but network operations are

not explicitly exercised. (3) The complete client-server architecture, including net-

work operation and performance, is tested.

CHAPTER 18 TESTING CONVENTIONAL APPLICATIONS 503

8 Hundreds, if not thousands, of GUI testing tool resources can be evaluated on the Web. A good
starting point for open-source tools is www.opensourcetesting.org/functional.php.

uote:

“The topic of
testing is one
area in which a
good deal of
commonality exists
between traditional
system and client/
server systems.”

Kelley Bourne

WebRef
Useful client-sever
testing information and
resources can be found
at www.csst-
technologies.com.

pre75977_ch18.qxd 11/27/08 6:12 PM Page 503

http://www.opensourcetesting.org/functional.php
http://www.csst-technologies.com
http://www.csst-technologies.com
http://www.csst-technologies.com

Although many different types of tests are conducted at each of these levels of

detail, the following testing approaches are commonly encountered for client-server

applications:

• Application function tests. The functionality of client applications is tested

using the methods discussed earlier in this chapter and in Chapters 19 and

20. In essence, the application is tested in stand-alone fashion in an attempt

to uncover errors in its operation.

• Server tests. The coordination and data management functions of the server

are tested. Server performance (overall response time and data throughput)

is also considered.

• Database tests. The accuracy and integrity of data stored by the server is

tested. Transactions posted by client applications are examined to ensure

that data are properly stored, updated, and retrieved. Archiving is also tested.

• Transaction tests. A series of tests are created to ensure that each class

of transactions is processed according to requirements. Tests focus on the

correctness of processing and also on performance issues (e.g., transaction

processing times and transaction volume).

• Network communication tests. These tests verify that communication

among the nodes of the network occurs correctly and that message passing,

transactions, and related network traffic occur without error. Network

security tests may also be conducted as part of these tests.

To accomplish these testing approaches, Musa [Mus93] recommends the devel-

opment of operational profiles derived from client-server usage scenarios.9 An oper-

ational profile indicates how different types of users interoperate with the

client-server system. That is, the profiles provide a “pattern of usage” that can be

applied when tests are designed and executed. For example, for a particular type of

user, what percentage of transactions will be inquiries? updates? orders?

To develop the operational profile, it is necessary to derive a set of scenarios that

are similar to use cases (Chapters 5 and 6). Each scenario addresses who, where,

what, and why. That is, who the user is, where (in the physical client-server architec-

ture) the system interaction occurs, what the transaction is, and why it has occurred.

Scenarios can be derived using requirements elicitation techniques (Chapter 5) or

through less formal discussions with end users. The result, however, should be the

same. Each scenario should provide an indication of the system functions that will be

required to service a particular user, the order in which those functions are required,

the timing and response that is expected, and the frequency with which each func-

tion is used. These data are then combined (for all users) to create the operational

profile. In general, testing effort and the number of test cases to be executed are

504 PART THREE QUALITY MANAGEMENT

What types
of tests are

conducted for
client-server
systems?

?

9 It should be noted that operational profiles can be used in testing for all types of system architec-
tures, not just client-server architecture.

pre75977_ch18.qxd 11/27/08 6:12 PM Page 504

allocated to each usage scenario based on frequency of usage and criticality of the

functions performed.

18.8.3 Testing Documentation and Help Facilities

The term software testing conjures images of large numbers of test cases prepared to

exercise computer programs and the data that they manipulate. Recalling the defi-

nition of software presented in Chapter 1, it is important to note that testing must

also extend to the third element of the software configuration—documentation.

Errors in documentation can be as devastating to the acceptance of the program

as errors in data or source code. Nothing is more frustrating than following a user

guide or an online help facility exactly and getting results or behaviors that do not

coincide with those predicted by the documentation. It is for this reason that that

documentation testing should be a meaningful part of every software test plan.

Documentation testing can be approached in two phases. The first phase, techni-

cal review (Chapter 15), examines the document for editorial clarity. The second

phase, live test, uses the documentation in conjunction with the actual program.

Surprisingly, a live test for documentation can be approached using techniques

that are analogous to many of the black-box testing methods discussed earlier.

Graph-based testing can be used to describe the use of the program; equivalence

partitioning and boundary value analysis can be used to define various classes of

input and associated interactions. MBT can be used to ensure that documented

behavior and actual behavior coincide. Program usage is then tracked through the

documentation.

CHAPTER 18 TESTING CONVENTIONAL APPLICATIONS 505

Documentation Testing
The following questions should be answered
during documentation and/or help facility

testing:

• Does the documentation accurately describe how to
accomplish each mode of use?

• Is the description of each interaction sequence
accurate?

• Are examples accurate?

• Are terminology, menu descriptions, and system
responses consistent with the actual program?

• Is it relatively easy to locate guidance within the
documentation?

• Can troubleshooting be accomplished easily with the
documentation?

• Are the document’s table of contents and index robust,
accurate, and complete?

• Is the design of the document (layout, typefaces,
indentation, graphics) conducive to understanding and
quick assimilation of information?

• Are all software error messages displayed for the user
described in more detail in the document? Are actions
to be taken as a consequence of an error message
clearly delineated?

• If hypertext links are used, are they accurate and
complete?

• If hypertext is used, is the navigation design
appropriate for the information required?

The only viable way to answer these questions is to
have an independent third party (e.g., selected users) test
the documentation in the context of program usage. All
discrepancies are noted and areas of document ambiguity
or weakness are defined for potential rewrite.

INFO

pre75977_ch18.qxd 11/27/08 6:12 PM Page 505

18.8.4 Testing for Real-Time Systems

The time-dependent, asynchronous nature of many real-time applications adds a

new and potentially difficult element to the testing mix—time. Not only does the test-

case designer have to consider conventional test cases but also event handling (i.e.,

interrupt processing), the timing of the data, and the parallelism of the tasks

(processes) that handle the data. In many situations, test data provided when a real-

time system is in one state will result in proper processing, while the same data pro-

vided when the system is in a different state may lead to error.

For example, the real-time software that controls a new photocopier accepts

operator interrupts (i.e., the machine operator hits control keys such as RESET or

DARKEN) with no error when the machine is making copies (in the “copying” state).

These same operator interrupts, if input when the machine is in the “jammed” state,

cause a display of the diagnostic code indicating the location of the jam to be lost

(an error).

In addition, the intimate relationship that exists between real-time software and

its hardware environment can also cause testing problems. Software tests must

consider the impact of hardware faults on software processing. Such faults can be

extremely difficult to simulate realistically.

Comprehensive test-case design methods for real-time systems continue to

evolve. However, an overall four-step strategy can be proposed:

• Task testing. The first step in the testing of real-time software is to test

each task independently. That is, conventional tests are designed for each

task and executed independently during these tests. Task testing uncovers

errors in logic and function but not timing or behavior.

• Behavioral testing. Using system models created with automated tools, it

is possible to simulate the behavior of a real-time system and examine its

behavior as a consequence of external events. These analysis activities can

serve as the basis for the design of test cases that are conducted when the

real-time software has been built. Using a technique that is similar to equiva-

lence partitioning (Section 18.6.2), events (e.g., interrupts, control signals)

are categorized for testing. For example, events for the photocopier might

be user interrupts (e.g., reset counter), mechanical interrupts (e.g., paper

jammed), system interrupts (e.g., toner low), and failure modes (e.g., roller

overheated). Each of these events is tested individually, and the behavior of

the executable system is examined to detect errors that occur as a conse-

quence of processing associated with these events. The behavior of the

system model (developed during the analysis activity) and the executable

software can be compared for conformance. Once each class of events has

been tested, events are presented to the system in random order and with

random frequency. The behavior of the software is examined to detect

behavior errors.

506 PART THREE QUALITY MANAGEMENT

What is an
effective

strategy for
testing a real-time
system?

?

pre75977_ch18.qxd 11/27/08 6:12 PM Page 506

• Intertask testing. Once errors in individual tasks and in system behavior

have been isolated, testing shifts to time-related errors. Asynchronous tasks

that are known to communicate with one another are tested with different

data rates and processing load to determine if intertask synchronization errors

will occur. In addition, tasks that communicate via a message queue or data

store are tested to uncover errors in the sizing of these data storage areas.

• System testing. Software and hardware are integrated, and a full range of

system tests are conducted in an attempt to uncover errors at the software-

hardware interface. Most real-time systems process interrupts. Therefore,

testing the handling of these Boolean events is essential. Using the state

diagram (Chapter 7), the tester develops a list of all possible interrupts and

the processing that occurs as a consequence of the interrupts. Tests are then

designed to assess the following system characteristics:

• Are interrupt priorities properly assigned and properly handled?

• Is processing for each interrupt handled correctly?

• Does the performance (e.g., processing time) of each interrupt-handling

procedure conform to requirements?

• Does a high volume of interrupts arriving at critical times create problems

in function or performance?

In addition, global data areas that are used to transfer information as part of

interrupt processing should be tested to assess the potential for the generation of

side effects.

18.9 PATTERNS FOR SOFTWARE TESTING

The use of patterns as a mechanism for describing solutions to specific design problems

was discussed in Chapter 12. But patterns can also be used to propose solutions to other

software engineering situations—in this case, software testing. Testing patterns describe

common testing problems and solutions that can assist you in dealing with them.

Not only do testing patterns provide you with useful guidance as testing activities

commence, they also provide three additional benefits described by Marick [Mar02]:

1. They [patterns] provide a vocabulary for problem-solvers. “Hey, you know, we should

use a Null Object.”

2. They focus attention on the forces behind a problem. That allows [test case] designers

to better understand when and why a solution applies.

3. They encourage iterative thinking. Each solution creates a new context in which new

problems can be solved.

Although these benefits are “soft,” they should not be overlooked. Much of

software testing, even during the past decade, has been an ad hoc activity. If testing

patterns can help a software team to communicate about testing more effectively;

CHAPTER 18 TESTING CONVENTIONAL APPLICATIONS 507

WebRef
A software testing
patterns catalog can be
found at www.rbsc
.com/pages/
TestPatternList.htm.

Testing patterns can
help a software team
communicate more
effectively about
testing and better
understand the forces
that lead to a specific
testing approach.

pre75977_ch18.qxd 11/27/08 6:12 PM Page 507

to understand the motivating forces that lead to a specific approach to testing, and

to approach the design of tests as an evolutionary activity in which each iteration

results in a more complete suite of test cases, then patterns have accomplished much.

Testing patterns are described in much the same way as design patterns

(Chapter 12). Dozens of testing patterns have been proposed in the literature (e.g.,

[Mar02]). The following three testing patterns (presented in abstract form only)

provide representative examples:

Pattern name: PairTesting

Abstract: A process-oriented pattern, PairTesting describes a technique that is anal-

ogous to pair programming (Chapter 3) in which two testers work together to design and

execute a series of tests that can be applied to unit, integration or validation testing

activities.

Pattern name: SeparateTestInterface

Abstract: There is a need to test every class in an object-oriented system, including

“internal classes” (i.e., classes that do not expose any interface outside of the component

that used them). The SeparateTestInterface pattern describes how to create “a test

interface that can be used to describe specific tests on classes that are visible only inter-

nally to a component” [Lan01].

Pattern name: ScenarioTesting

Abstract: Once unit and integration tests have been conducted, there is a need to

determine whether the software will perform in a manner that satisfies users. The

ScenarioTesting pattern describes a technique for exercising the software from the

user’s point of view. A failure at this level indicates that the software has failed to meet a

user visible requirement [Kan01].

A comprehensive discussion of testing patterns is beyond the scope of this book.

If you have further interest, see [Bin99] and [Mar02] for additional information on

this important topic.

18.10 SUMMARY

The primary objective for test-case design is to derive a set of tests that have the

highest likelihood for uncovering errors in software. To accomplish this objective,

two different categories of test-case design techniques are used: white-box testing

and black-box testing.

White-box tests focus on the program control structure. Test cases are derived to

ensure that all statements in the program have been executed at least once during

testing and that all logical conditions have been exercised. Basis path testing, a

white-box technique, makes use of program graphs (or graph matrices) to derive

the set of linearly independent tests that will ensure statement coverage. Condition

and data flow testing further exercise program logic, and loop testing complements

other white-box techniques by providing a procedure for exercising loops of varying

degrees of complexity.

508 PART THREE QUALITY MANAGEMENT

WebRef
Patterns that describe
testing organization,
efficiency, strategy, and
problem resolution can
be found at: www
.testing.com/
test-patterns/
patterns/.

pre75977_ch18.qxd 11/27/08 6:12 PM Page 508

Hetzel [Het84] describes white-box testing as “testing in the small.” His implica-

tion is that the white-box tests that have been considered in this chapter are typically

applied to small program components (e.g., modules or small groups of modules).

Black-box testing, on the other hand, broadens your focus and might be called

“testing in the large.”

Black-box tests are designed to validate functional requirements without regard

to the internal workings of a program. Black-box testing techniques focus on the

information domain of the software, deriving test cases by partitioning the input and

output domain of a program in a manner that provides thorough test coverage.

Equivalence partitioning divides the input domain into classes of data that are likely

to exercise a specific software function. Boundary value analysis probes the pro-

gram’s ability to handle data at the limits of acceptability. Orthogonal array testing

provides an efficient, systematic method for testing systems with small numbers of

input parameters. Model-based testing uses elements of the requirements model to

test the behavior of an application.

Specialized testing methods encompass a broad array of software capabilities and

application areas. Testing for graphical user interfaces, client-server architectures,

documentation and help facilities, and real-time systems each require specialized

guidelines and techniques.

Experienced software developers often say, “Testing never ends, it just gets trans-

ferred from you [the software engineer] to your customer. Every time your customer

uses the program, a test is being conducted.” By applying test-case design, you can

achieve more complete testing and thereby uncover and correct the highest number

of errors before the “customer’s tests” begin.

PROBLEMS AND POINTS TO PONDER

18.1. Myers [Mye79] uses the following program as a self-assessment for your ability to spec-
ify adequate testing: A program reads three integer values. The three values are interpreted as
representing the lengths of the sides of a triangle. The program prints a message that states
whether the triangle is scalene, isosceles, or equilateral. Develop a set of test cases that you feel
will adequately test this program.

18.2. Design and implement the program (with error handling where appropriate) specified in
Problem 18.1. Derive a flow graph for the program and apply basis path testing to develop test
cases that will guarantee that all statements in the program have been tested. Execute the cases
and show your results.

18.3. Can you think of any additional testing objectives that are not discussed in Section 18.1.1?

18.4. Select a software component that you have designed and implemented recently. Design a
set of test cases that will ensure that all statements have been executed using basis path testing.

18.5. Specify, design, and implement a software tool that will compute the cyclomatic com-
plexity for the programming language of your choice. Use the graph matrix as the operative data
structure in your design.

18.6. Read Beizer [Bei95] or a related Web-based source (e.g., www.laynetworks.com/
Discrete%20Mathematics_1g.htm) and determine how the program you have developed in
Problem 18.5 can be extended to accommodate various link weights. Extend your tool to
process execution probabilities or link processing times.

CHAPTER 18 TESTING CONVENTIONAL APPLICATIONS 509

pre75977_ch18.qxd 11/27/08 6:12 PM Page 509

http://www.laynetworks.com/

18.7. Design an automated tool that will recognize loops and categorize them as indicated in
Section 18.5.3.

18.8. Extend the tool described in Problem 18.7 to generate test cases for each loop category,
once encountered. It will be necessary to perform this function interactively with the tester.

18.9. Give at least three examples in which black-box testing might give the impression that
“everything’s OK,” while white-box tests might uncover an error. Give at least three examples
in which white-box testing might give the impression that “everything’s OK,” while black-box
tests might uncover an error.

18.10. Will exhaustive testing (even if it is possible for very small programs) guarantee that the
program is 100 percent correct?

18.11. Test a user manual (or help facility) for an application that you use frequently. Find at
least one error in the documentation.

FURTHER READINGS AND INFORMATION SOURCES

Virtually all books dedicated to software testing consider both strategy and tactics. Therefore,
further readings noted for Chapter 17 are equally applicable for this chapter. Everett and
Raymond (Software Testing, Wiley-IEEE Computer Society Press, 2007), Black (Pragmatic Soft-
ware Testing, Wiley, 2007), Spiller and his colleagues (Software Testing Process: Test Management,
Rocky Nook, 2007), Perry (Effective Methods for Software Testing, 3d ed., Wiley, 2005), Lewis
(Software Testing and Continuous Quality Improvement, 2d ed., Auerbach, 2004), Loveland and his
colleagues (Software Testing Techniques, Charles River Media, 2004), Burnstein (Practical Soft-
ware Testing, Springer, 2003), Dustin (Effective Software Testing, Addison-Wesley, 2002), Craig
and Kaskiel (Systematic Software Testing, Artech House, 2002), Tamres (Introducing Software
Testing, Addison-Wesley, 2002), and Whittaker (How to Break Software, Addison-Wesley, 2002)
are only a small sampling of many books that discuss testing principles, concepts, strategies,
and methods.

A second edition of Myers [Mye79] classic text has been produced by Myers and his col-
leagues (The Art of Software Testing, 2d ed., Wiley, 2004) and covers test-case design techniques
in considerable detail. Pezze and Young (Software Testing and Analysis, Wiley, 2007), Perry
(Effective Methods for Software Testing, 3d ed., Wiley, 2006), Copeland (A Practitioner’s Guide to
Software Test Design, Artech, 2003), Hutcheson (Software Testing Fundamentals, Wiley, 2003),
Jorgensen (Software Testing: A Craftsman’s Approach, 2d ed., CRC Press, 2002) each provide use-
ful presentations of test-case design methods and techniques. Beizer’s [Bei90] classic text pro-
vides comprehensive coverage of white-box techniques, introducing a level of mathematical
rigor that has often been missing in other treatments of testing. His later book [Bei95] presents
a concise treatment of important methods.

Software testing is a resource-intensive activity. It is for this reason that many organizations
automate parts of the testing process. Books by Li and Wu (Effective Software Test Automation,
Sybex, 2004); Mosely and Posey (Just Enough Software Test Automation, Prentice-Hall, 2002);
Dustin, Rashka, and Poston (Automated Software Testing: Introduction, Management, and Perfor-
mance, Addison-Wesley, 1999); Graham and her colleagues (Software Test Automation, Addison-
Wesley, 1999); and Poston (Automating Specification-Based Software Testing, IEEE Computer
Society, 1996) discuss tools, strategies, and methods for automated testing. Nquyen and his col-
leagues (Global Software Test Automation, Happy About Press, 2006) present an executive
overview of testing automation.

Thomas and his colleagues (Java Testing Patterns, Wiley, 2004) and Binder [Bin99] describe
testing patterns that cover testing of methods, classes/clusters, subsystems, reusable compo-
nents, frameworks, and systems as well as test automation and specialized database testing.

A wide variety of information sources on test-case design methods is available on the Inter-
net. An up-to-date list of World Wide Web references that are relevant to testing techniques can
be found at the SEPA website: www.mhhe.com/engcs/compsci/pressman/professional/
olc/ser.htm.

510 PART THREE QUALITY MANAGEMENT

pre75977_ch18.qxd 11/27/08 6:12 PM Page 510

http://www.mhhe.com/engcs/compsci/pressman/professional/

In Chapter 18, I noted that the objective of testing, stated simply, is to find the
greatest possible number of errors with a manageable amount of effort
applied over a realistic time span. Although this fundamental objective

remains unchanged for object-oriented software, the nature of OO programs
changes both testing strategy and testing tactics.

It could be argued that as reusable class libraries grow in size, greater reuse
will mitigate the need for heavy testing of OO systems. Exactly the opposite is
true. Binder [Bin94b] discusses this when he states:

[E]ach reuse is a new context of usage and retesting is prudent. It seems likely that more,

not less testing will be needed to obtain high reliability in object-oriented systems.

511

C H A P T E R

19TESTING OBJECT-ORIENTED
APPLICATIONS

What is it? The architecture of
object-oriented (OO) software results
in a series of layered subsystems that
encapsulate collaborating classes.

Each of these system elements (subsystems and
classes) performs functions that help to achieve
system requirements. It is necessary to test an
OO system at a variety of different levels in an
effort to uncover errors that may occur as classes
collaborate with one another and subsystems
communicate across architectural layers.

Who does it? Object-oriented testing is performed
by software engineers and testing specialists.

Why is it important? You have to execute the
program before it gets to the customer with the
specific intent of removing all errors, so that
the customer will not experience the frustration
associated with a poor-quality product. In order
to find the highest possible number of errors,
tests must be conducted systematically and test
cases must be designed using disciplined
techniques.

What are the steps? OO testing is strategically
analogous to the testing of conventional systems,
but it is tactically different. Because the OO

Q U I C K
L O O K

analysis and design models are similar in struc-
ture and content to the resultant OO program,
“testing” is initiated with the review of these
models. Once code has been generated, OO
testing begins “in the small” with class testing. A
series of tests are designed that exercise class
operations and examine whether errors exist
as one class collaborates with other classes. As
classes are integrated to form a subsystem,
thread-based, use-based, and cluster testing
along with fault-based approaches are applied
to fully exercise collaborating classes. Finally,
use cases (developed as part of the requirements
model) are used to uncover errors at the soft-
ware validation level.

What is the work product? A set of test cases,
designed to exercise classes, their collabora-
tions, and behaviors is designed and docu-
mented; expected results are defined, and actual
results are recorded.

How do I ensure that I’ve done it right? When
you begin testing, change your point of view. Try
hard to “break” the software! Design test cases
in a disciplined fashion, and review the tests
cases you do create for thoroughness.

K E Y
C O N C E P T S

class testing . . .516
cluster testing . .517
fault-based
testing 519
multiple class
testing 524
partition
testing 524
random
testing 522

pre75977_ch19.qxd 11/27/08 6:13 PM Page 511

512 PART THREE QUALITY MANAGEMENT

To adequately test OO systems, three things must be done: (1) the definition of

testing must be broadened to include error discovery techniques applied to object-

oriented analysis and design models, (2) the strategy for unit and integration testing

must change significantly, and (3) the design of test cases must account for the

unique characteristics of OO software.

19.1 BROADENING THE VIEW OF TESTING

The construction of object-oriented software begins with the creation of require-

ments (analysis) and design models.1 Because of the evolutionary nature of the OO

software engineering paradigm, these models begin as relatively informal represen-

tations of system requirements and evolve into detailed models of classes, class re-

lationships, system design and allocation, and object design (incorporating a model

of object connectivity via messaging). At each stage, the models can be “tested” in

an attempt to uncover errors prior to their propagation to the next iteration.

It can be argued that the review of OO analysis and design models is especially

useful because the same semantic constructs (e.g., classes, attributes, operations,

messages) appear at the analysis, design, and code levels. Therefore, a problem in

the definition of class attributes that is uncovered during analysis will circumvent

side effects that might occur if the problem were not discovered until design or code

(or even the next iteration of analysis).

For example, consider a class in which a number of attributes are defined during

the first iteration of analysis. An extraneous attribute is appended to the class (due

to a misunderstanding of the problem domain). Two operations are then specified to

manipulate the attribute. A review is conducted and a domain expert points out the

problem. By eliminating the extraneous attribute at this stage, the following prob-

lems and unnecessary effort may be avoided during analysis:

1. Special subclasses may have been generated to accommodate the unneces-

sary attribute or exceptions to it. Work involved in the creation of unneces-

sary subclasses has been avoided.

2. A misinterpretation of the class definition may lead to incorrect or extrane-

ous class relationships.

3. The behavior of the system or its classes may be improperly characterized to

accommodate the extraneous attribute.

If the problem is not uncovered during analysis and propagated further, the

following problems could occur (and will have been avoided because of the earlier

review) during design:

1. Improper allocation of the class to subsystem and/or tasks may occur during

system design.

scenario-based
testing 520
thread-based
testing 517
use-based
testing 517

1 Analysis and design modeling techniques are presented in Part 2 of this book. Basic OO concepts
are presented in Appendix 2.

Although the review of
the OO analysis and
design models is an
integral part of
“testing” an OO appli-
cation, recognize that
it is not sufficient in
and of itself. You must
conduct executable
tests as well.

pre75977_ch19.qxd 11/27/08 6:13 PM Page 512

2. Unnecessary design work may be expended to create the procedural design

for the operations that address the extraneous attribute.

3. The messaging model will be incorrect (because messages must be designed

for the operations that are extraneous).

If the problem remains undetected during design and passes into the coding

activity, considerable effort will be expended to generate code that implements an

unnecessary attribute, two unnecessary operations, messages that drive interobject

communication, and many other related issues. In addition, testing of the class will

absorb more time than necessary. Once the problem is finally uncovered, modifica-

tion of the system must be carried out with the ever-present potential for side effects

that are caused by change.

During latter stages of their development, object-oriented analysis (OOA) and

design (OOD) models provide substantial information about the structure and

behavior of the system. For this reason, these models should be subjected to rigor-

ous review prior to the generation of code.

All object-oriented models should be tested (in this context, the term testing

incorporates technical reviews) for correctness, completeness, and consistency

within the context of the model’s syntax, semantics, and pragmatics [Lin94a].

19.2 TESTING OOA AND OOD MODELS

Analysis and design models cannot be tested in the conventional sense, because

they cannot be executed. However, technical reviews (Chapter 15) can be used to

examine their correctness and consistency.

19.2.1 Correctness of OOA and OOD Models

The notation and syntax used to represent analysis and design models will be tied to

the specific analysis and design methods that are chosen for the project. Hence syn-

tactic correctness is judged on proper use of the symbology; each model is reviewed

to ensure that proper modeling conventions have been maintained.

During analysis and design, you can assess semantic correctness based on the

model’s conformance to the real-world problem domain. If the model accurately

reflects the real world (to a level of detail that is appropriate to the stage of devel-

opment at which the model is reviewed), then it is semantically correct. To deter-

mine whether the model does, in fact, reflect real-world requirements, it should be

presented to problem domain experts who will examine the class definitions and

hierarchy for omissions and ambiguity. Class relationships (instance connections)

are evaluated to determine whether they accurately reflect real-world object

connections.2

CHAPTER 19 TESTING OBJECT-ORIENTED APPLICATIONS 513

2 Use cases can be invaluable in tracking analysis and design models against real-world usage
scenarios for the OO system.

uote:

“The tools we use
have a profound
(and devious!)
influence on our
thinking habits,
and, therefore, on
our thinking
abilities.”

Edsger Dijkstra

pre75977_ch19.qxd 11/27/08 6:13 PM Page 513

19.2.2 Consistency of Object-Oriented Models

The consistency of object-oriented models may be judged by “considering the rela-

tionships among entities in the model. An inconsistent analysis or design model has

representations in one part that are not correctly reflected in other portions of the

model” [McG94].

To assess consistency, you should examine each class and its connections to

other classes. The class-responsibility-collaboration (CRC) model or an object-

relationship diagram can be used to facilitate this activity. As you learned in Chap-

ter 6, the CRC model is composed of CRC index cards. Each CRC card lists the class

name, its responsibilities (operations), and its collaborators (other classes to which

it sends messages and on which it depends for the accomplishment of its responsi-

bilities). The collaborations imply a series of relationships (i.e., connections)

between classes of the OO system. The object relationship model provides a graphic

representation of the connections between classes. All of this information can be

obtained from the analysis model (Chapters 6 and 7).

To evaluate the class model the following steps have been recommended [McG94]:

1. Revisit the CRC model and the object-relationship model. Cross-check

to ensure that all collaborations implied by the requirements model are prop-

erly reflected in the both.

2. Inspect the description of each CRC index card to determine if a del-

egated responsibility is part of the collaborator’s definition. For exam-

ple, consider a class defined for a point-of-sale checkout system and called

CreditSale. This class has a CRC index card as illustrated in Figure 19.1.

514 PART THREE QUALITY MANAGEMENT

FIGURE 19.1

An example
CRC index
card used for
review

pre75977_ch19.qxd 11/27/08 6:13 PM Page 514

For this collection of classes and collaborations, ask whether a responsi-

bility (e.g., read credit card) is accomplished if delegated to the named

collaborator (CreditCard). That is, does the class CreditCard have an

operation that enables it to be read? In this case the answer is “yes.”

The object-relationship is traversed to ensure that all such connections

are valid.

3. Invert the connection to ensure that each collaborator that is asked

for service is receiving requests from a reasonable source. For exam-

ple, if the CreditCard class receives a request for purchase amount from the

CreditSale class, there would be a problem. CreditCard does not know

the purchase amount.

4. Using the inverted connections examined in step 3, determine

whether other classes might be required or whether responsibilities

are properly grouped among the classes.

5. Determine whether widely requested responsibilities might be com-

bined into a single responsibility. For example, read credit card and get

authorization occur in every situation. They might be combined into a validate

credit request responsibility that incorporates getting the credit card number

and gaining authorization.

You should apply steps 1 through 5 iteratively to each class and through each evolu-

tion of the requirements model.

Once the design model (Chapters 9 through 11) is created, you should also con-

duct reviews of the system design and the object design. The system design depicts

the overall product architecture, the subsystems that compose the product, the man-

ner in which subsystems are allocated to processors, the allocation of classes to sub-

systems, and the design of the user interface. The object model presents the details

of each class and the messaging activities that are necessary to implement collabo-

rations between classes.

The system design is reviewed by examining the object-behavior model devel-

oped during object-oriented analysis and mapping required system behavior against

the subsystems designed to accomplish this behavior. Concurrency and task alloca-

tion are also reviewed within the context of system behavior. The behavioral states

of the system are evaluated to determine which exist concurrently. Use cases are

used to exercise the user interface design.

The object model should be tested against the object-relationship network to

ensure that all design objects contain the necessary attributes and operations to im-

plement the collaborations defined for each CRC index card. In addition, the detailed

specification of operation details (i.e., the algorithms that implement the operations)

is reviewed.

CHAPTER 19 TESTING OBJECT-ORIENTED APPLICATIONS 515

pre75977_ch19.qxd 11/27/08 6:13 PM Page 515

19.3 OBJECT-ORIENTED TESTING STRATEGIES

As I noted in Chapter 18, the classical software testing strategy begins with “testing

in the small” and works outward toward “testing in the large.” Stated in the jargon

of software testing (Chapter 18), you begin with unit testing, then progress toward

integration testing, and culminate with validation and system testing. In conventional

applications, unit testing focuses on the smallest compilable program unit—the sub-

program (e.g., component, module, subroutine, procedure). Once each of these units

has been testing individually, it is integrated into a program structure while a series

of regression tests are run to uncover errors due to interfacing the modules and side

effects that are caused by the addition of new units. Finally, the system as a whole is

tested to ensure that errors in requirements are uncovered.

19.3.1 Unit Testing in the OO Context

When object-oriented software is considered, the concept of the unit changes.

Encapsulation drives the definition of classes and objects. This means that each class

and each instance of a class (object) packages attributes (data) and the operations

(also known as methods or services) that manipulate these data. Rather than testing

an individual module, the smallest testable unit is the encapsulated class. Because a

class can contain a number of different operations and a particular operation may

exist as part of a number of different classes, the meaning of unit testing changes

dramatically.

We can no longer test a single operation in isolation (the conventional view of unit

testing) but rather, as part of a class. To illustrate, consider a class hierarchy in which

an operation X() is defined for the superclass and is inherited by a number of sub-

classes. Each subclass uses operation X(), but it is applied within the context of the

private attributes and operations that have been defined for each subclass. Because

the context in which operation X() is used varies in subtle ways, it is necessary to test

operation X() in the context of each of the subclasses. This means that testing oper-

ation X() in a vacuum (the traditional unit-testing approach) is ineffective in the

object-oriented context.

Class testing for OO software is the equivalent of unit testing for conventional

software.3 Unlike unit testing of conventional software, which tends to focus on the

algorithmic detail of a module and the data that flows across the module interface,

class testing for OO software is driven by the operations encapsulated by the class

and the state behavior of the class.

19.3.2 Integration Testing in the OO Context

Because object-oriented software does not have a hierarchical control structure,

conventional top-down and bottom-up integration strategies have little meaning.

516 PART THREE QUALITY MANAGEMENT

The smallest testable
“unit” in OO software
is the class. Class
testing is driven by
the operations
encapsulated by the
class and the state
behavior of the class.

3 Test-case design methods for OO classes are discussed in Sections 19.4 through 19.6.

pre75977_ch19.qxd 11/27/08 6:13 PM Page 516

In addition, integrating operations one at a time into a class (the conventional

incremental integration approach) is often impossible because of the “direct and

indirect interactions of the components that make up the class” [Ber93].

There are two different strategies for integration testing of OO systems [Bin94a].

The first, thread-based testing, integrates the set of classes required to respond to one

input or event for the system. Each thread is integrated and tested individually. Re-

gression testing is applied to ensure that no side effects occur. The second integra-

tion approach, use-based testing, begins the construction of the system by testing

those classes (called independent classes) that use very few (if any) of server classes.

After the independent classes are tested, the next layer of classes, called dependent

classes, that use the independent classes are tested. This sequence of testing layers

of dependent classes continues until the entire system is constructed. Unlike con-

ventional integration, the use of driver and stubs (Chapter 18) as replacement oper-

ations is to be avoided, when possible.

Cluster testing [McG94] is one step in the integration testing of OO software. Here,

a cluster of collaborating classes (determined by examining the CRC and object-

relationship model) is exercised by designing test cases that attempt to uncover

errors in the collaborations.

19.3.3 Validation Testing in an OO Context

At the validation or system level, the details of class connections disappear. Like

conventional validation, the validation of OO software focuses on user-visible

actions and user-recognizable outputs from the system. To assist in the derivation of

validation tests, the tester should draw upon use cases (Chapters 5 and 6) that are

part of the requirements model. The use case provides a scenario that has a high like-

lihood of uncovered errors in user-interaction requirements.

Conventional black-box testing methods (Chapter 18) can be used to drive vali-

dation tests. In addition, you may choose to derive test cases from the object-

behavior model and from an event flow diagram created as part of OOA.

19.4 OBJECT-ORIENTED TESTING METHODS

The architecture of object-oriented software results in a series of layered subsystems

that encapsulate collaborating classes. Each of these system elements (subsystems

and classes) performs functions that help to achieve system requirements. It is

necessary to test an OO system at a variety of different levels in an effort to uncover

errors that may occur as classes collaborate with one another and subsystems com-

municate across architectural layers.

Test-case design methods for object-oriented software continue to evolve. How-

ever, an overall approach to OO test-case design has been suggested by Berard [Ber93]:

1. Each test case should be uniquely identified and explicitly associated with the

class to be tested.

CHAPTER 19 TESTING OBJECT-ORIENTED APPLICATIONS 517

Integration testing for
OO software tests a
set of classes that are
required to respond to
a given event.

uote:

“I see testers as the
bodyguards of the
project. We defend
our developer’s
flank from failure,
while they focus on
creating success.”

James Bach

pre75977_ch19.qxd 11/27/08 6:13 PM Page 517

2. The purpose of the test should be stated.

3. A list of testing steps should be developed for each test and should contain:

a. A list of specified states for the class that is to be tested

b. A list of messages and operations that will be exercised as a consequence

of the test

c. A list of exceptions that may occur as the class is tested

d. A list of external conditions (i.e., changes in the environment external to

the software that must exist in order to properly conduct the test)

e. Supplementary information that will aid in understanding or implementing

the test

Unlike conventional test-case design, which is driven by an input-process-output

view of software or the algorithmic detail of individual modules, object-oriented test-

ing focuses on designing appropriate sequences of operations to exercise the states

of a class.

19.4.1 The Test-Case Design Implications of OO Concepts

As a class evolves through the requirements and design models, it becomes a target

for test-case design. Because attributes and operations are encapsulated, testing

operations outside of the class is generally unproductive. Although encapsulation is

an essential design concept for OO, it can create a minor obstacle when testing. As

Binder [Bin94a] notes, “Testing requires reporting on the concrete and abstract state

of an object.” Yet, encapsulation can make this information somewhat difficult to

obtain. Unless built-in operations are provided to report the values for class attrib-

utes, a snapshot of the state of an object may be difficult to acquire.

Inheritance may also present you with additional challenges during test-case

design. I have already noted that each new usage context requires retesting, even

though reuse has been achieved. In addition, multiple inheritance4 complicates test-

ing further by increasing the number of contexts for which testing is required

[Bin94a]. If subclasses instantiated from a superclass are used within the same prob-

lem domain, it is likely that the set of test cases derived for the superclass can be used

when testing the subclass. However, if the subclass is used in an entirely different

context, the superclass test cases will have little applicability and a new set of tests

must be designed.

19.4.2 Applicability of Conventional Test-Case Design Methods

The white-box testing methods described in Chapter 18 can be applied to the opera-

tions defined for a class. Basis path, loop testing, or data flow techniques can help to

ensure that every statement in an operation has been tested. However, the concise

518 PART THREE QUALITY MANAGEMENT

WebRef
An excellent collection
of papers and resources
on OO testing can
be found at
www.rbsc.com.

4 An OO concept that should be used with extreme care.

pre75977_ch19.qxd 11/27/08 6:13 PM Page 518

http://www.rbsc.com

structure of many class operations causes some to argue that the effort applied to

white-box testing might be better redirected to tests at a class level.

Black-box testing methods are as appropriate for OO systems as they are for sys-

tems developed using conventional software engineering methods. As I noted in

Chapter 18, use cases can provide useful input in the design of black-box and state-

based tests.

19.4.3 Fault-Based Testing5

The object of fault-based testing within an OO system is to design tests that have a

high likelihood of uncovering plausible faults. Because the product or system must

conform to customer requirements, preliminary planning required to perform fault-

based testing begins with the analysis model. The tester looks for plausible faults (i.e.,

aspects of the implementation of the system that may result in defects). To determine

whether these faults exist, test cases are designed to exercise the design or code.

Of course, the effectiveness of these techniques depends on how testers perceive

a plausible fault. If real faults in an OO system are perceived to be implausible, then

this approach is really no better than any random testing technique. However, if the

analysis and design models can provide insight into what is likely to go wrong, then

fault-based testing can find significant numbers of errors with relatively low expen-

ditures of effort.

Integration testing looks for plausible faults in operation calls or message connec-

tions. Three types of faults are encountered in this context: unexpected result, wrong

operation/message used, and incorrect invocation. To determine plausible faults as

functions (operations) are invoked, the behavior of the operation must be examined.

Integration testing applies to attributes as well as to operations. The “behaviors”

of an object are defined by the values that its attributes are assigned. Testing should

exercise the attributes to determine whether proper values occur for distinct types of

object behavior.

It is important to note that integration testing attempts to find errors in the client

object, not the server. Stated in conventional terms, the focus of integration testing is

to determine whether errors exist in the calling code, not the called code. The operation

call is used as a clue, a way to find test requirements that exercise the calling code.

19.4.4 Test Cases and the Class Hierarchy

Inheritance does not obviate the need for thorough testing of all derived classes. In

fact, it can actually complicate the testing process. Consider the following situation.

A class Base contains operations inherited() and redefined(). A class Derived rede-

fines redefined() to serve in a local context. There is little doubt that Derived::redefined()

CHAPTER 19 TESTING OBJECT-ORIENTED APPLICATIONS 519

5 Sections 19.4.3 through 19.4.6 have been adapted from an article by Brian Marick posted on the
Internet newsgroup comp.testing. This adaptation is included with the permission of the author.
For further information on these topics, see [Mar94]. It should be noted that the techniques dis-
cussed in Sections 19.4.3 through 19.4.6 are also applicable for conventional software.

The strategy for fault-
based testing is to
hypothesize a set of
plausible faults and
then derive tests to
prove each hypothesis.

What types
of faults are

encountered in
operation calls
and message
connections?

?

pre75977_ch19.qxd 11/27/08 6:13 PM Page 519

has to be tested because it represents a new design and new code. But does

Derived::inherited() have to be retested?

If Derived::inherited() calls redefined() and the behavior of redefined() has changed,

Derived::inherited() may mishandle the new behavior. Therefore, it needs new tests

even though the design and code have not changed. It is important to note, however,

that only a subset of all tests for Derived::inherited() may have to be conducted. If part

of the design and code for inherited() does not depend on redefined() (i.e., that does

not call it nor call any code that indirectly calls it), that code need not be retested in

the derived class.

Base::redefined() and Derived::redefined() are two different operations with different

specifications and implementations. Each would have a set of test requirements de-

rived from the specification and implementation. Those test requirements probe for

plausible faults: integration faults, condition faults, boundary faults, and so forth. But

the operations are likely to be similar. Their sets of test requirements will overlap.

The better the OO design, the greater is the overlap. New tests need to be derived

only for those Derived::redefined() requirements that are not satisfied by the

Base::redefined() tests.

To summarize, the Base::redefined() tests are applied to objects of class Derived.

Test inputs may be appropriate for both base and derived classes, but the expected

results may differ in the derived class.

19.4.5 Scenario-Based Test Design

Fault-based testing misses two main types of errors: (1) incorrect specifications and

(2) interactions among subsystems. When errors associated with an incorrect spec-

ification occur, the product doesn’t do what the customer wants. It might do the

wrong thing or omit important functionality. But in either circumstance, quality

(conformance to requirements) suffers. Errors associated with subsystem interaction

occur when the behavior of one subsystem creates circumstances (e.g., events, data

flow) that cause another subsystem to fail.

Scenario-based testing concentrates on what the user does, not what the product

does. This means capturing the tasks (via use cases) that the user has to perform and

then applying them and their variants as tests.

Scenarios uncover interaction errors. But to accomplish this, test cases must be

more complex and more realistic than fault-based tests. Scenario-based testing

tends to exercise multiple subsystems in a single test (users do not limit themselves

to the use of one subsystem at a time).

As an example, consider the design of scenario-based tests for a text editor by

reviewing the use cases that follow:

Use Case: Fix the Final Draft

Background: It’s not unusual to print the “final” draft, read it, and discover some

annoying errors that weren’t obvious from the on-screen image. This use case describes

the sequence of events that occurs when this happens.

520 PART THREE QUALITY MANAGEMENT

Even though a base
class has been
thoroughly tested, you
will still have to test all
classes derived from it.

Scenario-based testing
will uncover errors that
occur when any actor
interacts with the
software.

pre75977_ch19.qxd 11/27/08 6:13 PM Page 520

1. Print the entire document.

2. Move around in the document, changing certain pages.

3. As each page is changed, it’s printed.

4. Sometimes a series of pages is printed.

This scenario describes two things: a test and specific user needs. The user needs

are obvious: (1) a method for printing single pages and (2) a method for printing a

range of pages. As far as testing goes, there is a need to test editing after printing

(as well as the reverse). Therefore, you work to design tests that will uncover errors

in the editing function that were caused by the printing function; that is, errors that

will indicate that the two software functions are not properly independent.

Use Case: Print a New Copy

Background: Someone asks the user for a fresh copy of the document. It must be

printed.

1. Open the document.

2. Print it.

3. Close the document.

Again, the testing approach is relatively obvious. Except that this document didn’t

appear out of nowhere. It was created in an earlier task. Does that task affect this

one?

In many modern editors, documents remember how they were last printed. By

default, they print the same way next time. After the Fix the Final Draft scenario,

just selecting “Print” in the menu and clicking the Print button in the dialog box will

cause the last corrected page to print again. So, according to the editor, the correct

scenario should look like this:

Use Case: Print a New Copy

1. Open the document.

2. Select “Print” in the menu.

3. Check if you’re printing a page range; if so, click to print the entire document.

4. Click on the Print button.

5. Close the document.

But this scenario indicates a potential specification error. The editor does not

do what the user reasonably expects it to do. Customers will often overlook the

check noted in step 3. They will then be annoyed when they trot off to the printer

and find one page when they wanted 100. Annoyed customers signal specification

bugs.

You might miss this dependency as you design tests, but it is likely that the prob-

lem would surface during testing. You would then have to contend with the proba-

ble response, “That’s the way it’s supposed to work!”

CHAPTER 19 TESTING OBJECT-ORIENTED APPLICATIONS 521

Although scenario-
based testing has
merit, you will get a
higher return on time
invested by reviewing
use cases when they
are developed as part
of the analysis model.

uote:

“If you want and
expect a program
to work, you will
more likely see
a working
program—you
will miss failures.”

Cem Kaner et al.

pre75977_ch19.qxd 11/27/08 6:13 PM Page 521

19.4.6 Testing Surface Structure and Deep Structure

Surface structure refers to the externally observable structure of an OO program. That

is, the structure that is immediately obvious to an end user. Rather than performing

functions, the users of many OO systems may be given objects to manipulate in some

way. But whatever the interface, tests are still based on user tasks. Capturing these

tasks involves understanding, watching, and talking with representative users (and

as many nonrepresentative users as are worth considering).

There will surely be some difference in detail. For example, in a conventional sys-

tem with a command-oriented interface, the user might use the list of all commands

as a testing checklist. If no test scenarios existed to exercise a command, testing has

likely overlooked some user tasks (or the interface has useless commands). In an

object-based interface, the tester might use the list of all objects as a testing checklist.

The best tests are derived when the designer looks at the system in a new or

unconventional way. For example, if the system or product has a command-based

interface, more thorough tests will be derived if the test-case designer pretends that

operations are independent of objects. Ask questions like, “Might the user want to

use this operation—which applies only to the Scanner object—while working with

the printer?” Whatever the interface style, test-case design that exercises the surface

structure should use both objects and operations as clues leading to overlooked

tasks.

Deep structure refers to the internal technical details of an OO program, that is, the

structure that is understood by examining the design and/or code. Deep structure

testing is designed to exercise dependencies, behaviors, and communication mech-

anisms that have been established as part of the design model for OO software.

The requirements and design models are used as the basis for deep structure test-

ing. For example, the UML collaboration diagram or the deployment model depicts

collaborations between objects and subsystems that may not be externally visible.

The test-case design then asks: “Have we captured (as a test) some task that exer-

cises the collaboration noted on the collaboration diagram? If not, why not?”

19.5 TESTING METHODS APPLICABLE AT THE CLASS LEVEL

Testing “in the small” focuses on a single class and the methods that are encapsu-

lated by the class. Random testing and partitioning are methods that can be used to

exercise a class during OO testing.

19.5.1 Random Testing for OO Classes

To provide brief illustrations of these methods, consider a banking application in

which an Account class has the following operations: open(), setup(), deposit(), with-

draw(), balance(), summarize(), creditLimit(), and close() [Kir94]. Each of these opera-

tions may be applied for Account, but certain constraints (e.g., the account must be

opened before other operations can be applied and closed after all operations are

522 PART THREE QUALITY MANAGEMENT

Testing surface
structure is analogous
to black-box testing.
Deep structure testing
is similar to white-box
testing.

uote:

“Be not ashamed
of mistakes and
thus make them
crimes.”

Confucius

The number of possible
permutations for
random testing can
grow quite large.
A strategy similar to
orthogonal array
testing can be used
to improve testing
efficiency.

pre75977_ch19.qxd 11/27/08 6:13 PM Page 522

completed) are implied by the nature of the problem. Even with these constraints,

there are many permutations of the operations. The minimum behavioral life history

of an instance of Account includes the following operations:

open•setup•deposit•withdraw•close

This represents the minimum test sequence for account. However, a wide variety

of other behaviors may occur within this sequence:

open•setup•deposit•[deposit|withdraw|balance|summarize|creditLimit]n•withdraw•close

A variety of different operation sequences can be generated randomly. For example:

Test case r1: open•setup•deposit•deposit•balance•summarize•withdraw•close

Test case r2: open•setup•deposit•withdraw•deposit•balance•creditLimit•withdraw•close

These and other random order tests are conducted to exercise different class

instance life histories.

CHAPTER 19 TESTING OBJECT-ORIENTED APPLICATIONS 523

Class Testing

The scene: Shakira’s cubicle.

The players: Jamie and Shakira—members of the
SafeHome software engineering team who are working
on test-case design for the security function.

The conversation:

Shakira: I’ve developed some tests for the Detector
class [Figure 10.4]—you know, the one that allows access
to all of the Sensor objects for the security function. You
familiar with it?

Jamie (laughing): Sure, it’s the one that allowed you
to add the “doggie angst” sensor.

Shakira: The one and only. Anyway, it has an interface
with four ops: read(), enable(), disable(), and test(). Before
a sensor can be read, it must be enabled. Once it’s enabled,
it can be read and tested. It can be disabled at any time,
except if an alarm condition is being processed. So I defined
a simple test sequence that will exercise its behavioral life
history. [Shows Jamie the following sequence.]

#1: enable•test•read•disable

Jamie: That’ll work, but you’ve got to do more testing
than that!

Shakira: I know, I know, here are some other sequences
I’ve come up with. [Shows Jamie the following sequences.]

#2: enable•test*[read]n•test•disable

#3: [read]n

#4: enable*disable•[test | read]

Jamie: So let me see if I understand the intent of these.
#1 goes through a normal life history, sort of a
conventional usage. #2 repeats the read operation n
times, and that’s a likely scenario. #3 tries to read the
sensor before it’s been enabled . . . that should produce
an error message of some kind, right? #4 enables and
disables the sensor and then tries to read it. Isn’t that the
same as test #2?

Shakira: Actually no. In #4, the sensor has been
enabled. What #4 really tests is whether the disable op
works as it should. A read() or test() after disable() should
generate the error message. If it doesn’t, then we have an
error in the disable op.

Jamie: Cool. Just remember that the four tests have to be
applied for every sensor type since all the ops may be
subtly different depending on the type of sensor.

Shakira: Not to worry. That’s the plan.

SAFEHOME

pre75977_ch19.qxd 11/27/08 6:13 PM Page 523

19.5.2 Partition Testing at the Class Level

Partition testing reduces the number of test cases required to exercise the class in

much the same manner as equivalence partitioning (Chapter 18) for traditional soft-

ware. Input and output are categorized and test cases are designed to exercise each

category. But how are the partitioning categories derived?

State-based partitioning categorizes class operations based on their ability to

change the state of the class. Again considering the Account class, state operations

include deposit() and withdraw(), whereas nonstate operations include balance(),

summarize(), and creditLimit(). Tests are designed in a way that exercises operations

that change state and those that do not change state separately. Therefore,

Test case p1: open•setup•deposit•deposit•withdraw•withdraw•close

Test case p2: open•setup•deposit•summarize•creditLimit•withdraw•close

Test case p1 changes state, while test case p2 exercises operations that do not

change state (other than those in the minimum test sequence).

Attribute-based partitioning categorizes class operations based on the attributes

that they use. For the Account class, the attributes balance and creditLimit can be used

to define partitions. Operations are divided into three partitions: (1) operations that

use creditLimit, (2) operations that modify creditLimit, and (3) operations that do not

use or modify creditLimit. Test sequences are then designed for each partition.

Category-based partitioning categorizes class operations based on the generic func-

tion that each performs. For example, operations in the Account class can be catego-

rized in initialization operations (open, setup), computational operations (deposit,

withdraw), queries (balance, summarize, creditLimit), and termination operations (close).

19.6 INTERCLASS TEST-CASE DESIGN

Test-case design becomes more complicated as integration of the object-oriented

system begins. It is at this stage that testing of collaborations between classes must

begin. To illustrate “interclass test-case generation” [Kir94], we expand the banking

example introduced in Section 19.5 to include the classes and collaborations noted

in Figure 19.2. The direction of the arrows in the figure indicates the direction of mes-

sages, and the labeling indicates the operations that are invoked as a consequence

of the collaborations implied by the messages.

Like the testing of individual classes, class collaboration testing can be accom-

plished by applying random and partitioning methods, as well as scenario-based

testing and behavioral testing.

19.6.1 Multiple Class Testing

Kirani and Tsai [Kir94] suggest the following sequence of steps to generate multiple

class random test cases:

1. For each client class, use the list of class operations to generate a series of ran-

dom test sequences. The operations will send messages to other server classes.

524 PART THREE QUALITY MANAGEMENT

What testing
options are

available at the
class level?

?

uote:

“The boundary that
defines the scope of
unit and integration
testing is different
for object-oriented
development. Tests
can be designed
and exercised at
many points in the
process. Thus
‘design a little, code
a little’ becomes
‘design a little,
code a little, test
a little.’”

Robert Binder

pre75977_ch19.qxd 11/27/08 6:13 PM Page 524

2. For each message that is generated, determine the collaborator class and the

corresponding operation in the server object.

3. For each operation in the server object (that has been invoked by messages

sent from the client object), determine the messages that it transmits.

4. For each of the messages, determine the next level of operations that are

invoked and incorporate these into the test sequence.

To illustrate [Kir94], consider a sequence of operations for the Bank class relative

to an ATM class (Figure 19.2):

verifyAcct•verifyPIN•[[verifyPolicy•withdrawReq]|depositReq|acctInfoREQ]n

A random test case for the Bank class might be

Test case r3 � verifyAcct•verifyPIN•depositReq

In order to consider the collaborators involved in this test, the messages associ-

ated with each of the operations noted in test case r3 are considered. Bank must col-

laborate with ValidationInfo to execute the verifyAcct() and verifyPIN(). Bank must

collaborate with Account to execute depositReq(). Hence, a new test case that exer-

cises these collaborations is

Test case r4 � verifyAcct [Bank:validAcctValidationInfo]•verifyPIN

[Bank: validPinValidationInfo]•depositReq [Bank: depositaccount]

The approach for multiple class partition testing is similar to the approach used

for partition testing of individual classes. A single class is partitioned as discussed in

Section 19.5.2. However, the test sequence is expanded to include those operations

that are invoked via messages to collaborating classes. An alternative approach

partitions tests based on the interfaces to a particular class. Referring to Figure 19.2,

CHAPTER 19 TESTING OBJECT-ORIENTED APPLICATIONS 525

ATM
ATM
User

Interface

cardInserted
password
deposit
withdraw
accntStatus
terminate

verifyStatus
depositStatus
dispenseCash
printAccntStat
readCardInfo
getCashAmnt

Bank

verifyAcct
verifyPIN
verifyPolicy
withdrawReq
depositReq
acctInfo

creditLimit
accntType
balance
withdraw
deposit
close

Account Validation
Info

validPIN
validAcct

Cashier

openAcct
initialDeposit
authorizeCard
deauthorize
closeAcct

FIGURE 19.2

Class collabo-
ration diagram
for banking
application
Source: Adapted from
[Kir94].

pre75977_ch19.qxd 11/27/08 6:13 PM Page 525

the Bank class receives messages from the ATM and Cashier classes. The methods

within Bank can therefore be tested by partitioning them into those that serve ATM

and those that serve Cashier. State-based partitioning (Section 19.5.2) can be used

to refine the partitions further.

19.6.2 Tests Derived from Behavior Models

The use of the state diagram as a model that represents the dynamic behavior of

a class is discussed in Chapter 7. The state diagram for a class can be used to help

derive a sequence of tests that will exercise the dynamic behavior of the class (and

those classes that collaborate with it). Figure 19.3 [Kir94] illustrates a state diagram

for the Account class discussed earlier. Referring to the figure, initial transitions

move through the empty acct and setup acct states. The majority of all behavior for

instances of the class occurs while in the working acct state. A final withdrawal and

account closure cause the account class to make transitions to the nonworking acct

and dead acct states, respectively.

The tests to be designed should achieve coverage of every state. That is, the

operation sequences should cause the Account class to make transition through all

allowable states:

Test case s1: open•setupAccnt•deposit (initial)•withdraw (final)•close

It should be noted that this sequence is identical to the minimum test sequence

discussed in Section 19.5.2. Adding additional test sequences to the minimum

sequence,

Test case s2: open•setupAccnt•deposit(initial)•deposit•balance• credit•withdraw (final)•close

Test case s3: open•setupAccnt•deposit(initial)•deposit•withdraw•accntInfo•withdraw (final)•close

526 PART THREE QUALITY MANAGEMENT

Open
Empty
acct

Set up
acct

Working
acct

Nonworking
acct

Dead
acct

Setup Accnt

Deposit (initial)

Balance
credit

accntInfo

Deposit

Withdraw

Withdrawal (final)

Close

FIGURE 19.3

State diagram
for the
Account class
Source: Adapted from
[Kir94].

pre75977_ch19.qxd 11/27/08 6:13 PM Page 526

Still more test cases could be derived to ensure that all behaviors for the class

have been adequately exercised. In situations in which the class behavior results in

a collaboration with one or more classes, multiple state diagrams are used to track

the behavioral flow of the system.

The state model can be traversed in a “breadth-first” [McG94] manner. In this con-

text, breadth-first implies that a test case exercises a single transition and that when

a new transition is to be tested only previously tested transitions are used.

Consider a CreditCard object that is part of the banking system. The initial state

of CreditCard is undefined (i.e., no credit card number has been provided). Upon

reading the credit card during a sale, the object takes on a defined state; that is, the

attributes card number and expiration date, along with bank-specific identifiers are

defined. The credit card is submitted when it is sent for authorization, and it is

approved when authorization is received. The transition of CreditCard from one

state to another can be tested by deriving test cases that cause the transition to oc-

cur. A breadth-first approach to this type of testing would not exercise submitted be-

fore it exercised undefined and defined. If it did, it would make use of transitions that

had not been previously tested and would therefore violate the breadth-first criterion.

19.7 SUMMARY

The overall objective of object-oriented testing—to find the maximum number of

errors with a minimum amount of effort is identical to the objective of conventional

software testing. But the strategy and tactics for OO testing differ significantly. The

view of testing broadens to include the review of both the requirements and design

model. In addition, the focus of testing moves away from the procedural component

(the module) and toward the class.

Because the OO requirements and design models and the resulting source code

are semantically coupled, testing (in the form of technical reviews) begins during the

modeling activity. For this reason, the review of CRC, object-relationship, and object-

behavior models can be viewed as first-stage testing.

Once code is available, unit testing is applied for each class. The design of tests

for a class uses a variety of methods: fault-based testing, random testing, and parti-

tion testing. Each of these methods exercise the operations encapsulated by the

class. Test sequences are designed to ensure that relevant operations are exercised.

The state of the class, represented by the values of its attributes, is examined to

determine if errors exist.

Integration testing can be accomplished using a thread-based or use-based strat-

egy. Thread-based testing integrates the set of classes that collaborate to respond to

one input or event. Use-based testing constructs the system in layers, beginning with

those classes that do not make use of server classes. Integration test-case design

methods can also make use of random and partition tests. In addition, scenario-

based testing and tests derived from behavioral models can be used to test a class

CHAPTER 19 TESTING OBJECT-ORIENTED APPLICATIONS 527

pre75977_ch19.qxd 11/27/08 6:13 PM Page 527

and its collaborators. A test sequence tracks the flow of operations across class

collaborations.

OO system validation testing is black-box oriented and can be accomplished by

applying the same black-box methods discussed for conventional software. How-

ever, scenario-based testing dominates the validation of OO systems, making the

use case a primary driver for validation testing.

PROBLEMS AND POINTS TO PONDER

19.1. In your own words, describe why the class is the smallest reasonable unit for testing
within an OO system.

19.2. Why do we have to retest subclasses that are instantiated from an existing class, if the
existing class has already been thoroughly tested? Can we use the test-case design for the
existing class?

19.3. Why should “testing” begin with object-oriented analysis and design?

19.4. Derive a set of CRC index cards for SafeHome, and conduct the steps noted in Sec-
tion 19.2.2 to determine if inconsistencies exist.

19.5. What is the difference between thread-based and use-based strategies for integration
testing? How does cluster testing fit in?

19.6. Apply random testing and partitioning to three classes defined in the design for the
SafeHome system. Produce test cases that indicate the operation sequences that will be invoked.

19.7. Apply multiple class testing and tests derived from the behavioral model for the SafeHome
design.

19.8. Derive four additional tests using random testing and partitioning methods as well as
multiple class testing and tests derived from the behavioral model for the banking application
presented in Sections 19.5 and 19.6.

FURTHER READINGS AND INFORMATION SOURCES

Many books on testing noted in the Further Readings sections of Chapters 17 and 18 discuss test-
ing of OO systems to some extent. Schach (Object-Oriented and Classical Software Engineering,
McGraw-Hill, 6th ed., 2004) considers OO testing within the context of broader software
engineering practice. Sykes and McGregor (Practical Guide to Testing Object-Oriented Software,
Addison-Wesley, 2001), Bashir and Goel (Testing Object-Oriented Software, Springer 2000),
Binder (Testing Object-Oriented Systems, Addison-Wesley, 1999), and Kung and his colleagues
(Testing Object-Oriented Software, Wiley-IEEE Computer Society Press, 1998) treat OO testing in
significant detail.

A wide variety of information sources on object-oriented testing methods is available on the
Internet. An up-to-date list of World Wide Web references that are relevant to testing techniques
can be found at the SEPA website: www.mhhe.com/engcs/compsci/pressman/
professional/olc/ser.htm.

528 PART THREE QUALITY MANAGEMENT

pre75977_ch19.qxd 11/27/08 6:13 PM Page 528

http://www.mhhe.com/engcs/compsci/pressman/

There is an urgency that always pervades a WebApp project. Stakeholders—
concerned about competition from other WebApps, coerced by customer
demands, and worried that they’ll miss a market window—press to get the

WebApp online. As a consequence, technical activities that often occur late in the
process, such as WebApp testing, are sometimes given short shrift. This can be a
catastrophic mistake. To avoid it, you and other team members must ensure that
each work product exhibits high quality. Wallace and his colleagues {Wal03] note
this when they state:

Testing shouldn’t wait until the project is finished. Start testing before you write one

line of code. Test constantly and effectively, and you will develop a much more durable

Web site.

Since requirements and design models cannot be tested in the classical sense,
you and your team should conduct technical reviews (Chapter 15) as well as
executable tests. The intent is to uncover and correct errors before the WebApp is
made available to its end users.

529

C H A P T E R

20TESTING WEB
APPLICATIONS

What is it? WebApp testing is a
collection of related activities with
a single goal: to uncover errors in
WebApp content, function, usability,

navigability, performance, capacity, and security.
To accomplish this, a testing strategy that en-
compasses both reviews and executable testing
is applied.

Who does it? Web engineers and other project
stakeholders (managers, customers, end users)
all participate in WebApp testing.

Why is it important? If end users encounter errors
that shake their faith in the WebApp, they will go
elsewhere for the content and function they
need, and the WebApp will fail. For this reason,
you must work to eliminate as many errors as
possible before the WebApp goes online.

What are the steps? The WebApp testing process
begins by focusing on user-visible aspects of the

Q U I C K
L O O K

WebApp and proceeds to tests that exercise
technology and infrastructure. Seven testing
steps are performed: content testing, interface
testing, navigation testing, component testing,
configuration testing, performance testing, and
security testing.

What is the work product? In some instances a
WebApp test plan is produced. In every in-
stance, a suite of test cases is developed for
every testing step and an archive of test results is
maintained for future use.

How do I ensure that I’ve done it right?
Although you can never be sure that you’ve
performed every test that is needed, you can be
certain that testing has uncovered errors (and
that those errors have been corrected). In addi-
tion, if you’ve established a test plan, you can
check to ensure that all planned tests have been
conducted.

K E Y
C O N C E P T S

compatibility
tests 542
component-level
testing 543
configuration
testing 547
content
testing 534
database
testing 535
dimensions of
quality 530
interface
testing 537
load testing . . .551

pre75977_ch20.qxd 11/28/08 10:22 AM Page 529

20.1 TESTING CONCEPTS FOR WEBAPPS

Testing is the process of exercising software with the intent of finding (and ultimately

correcting) errors. This fundamental philosophy, first presented in Chapter 17, does

not change for WebApps. In fact, because Web-based systems and applications

reside on a network and interoperate with many different operating systems,

browsers (residing on a variety of devices), hardware platforms, communications

protocols, and “backroom” applications, the search for errors represents a significant

challenge.

To understand the objectives of testing within a Web engineering context, you

should consider the many dimensions of WebApp quality.1 In the context of this dis-

cussion, I consider quality dimensions that are particularly relevant in any discussion

of WebApp testing. I also consider the nature of the errors that are encountered as a

consequence of testing, and the testing strategy that is applied to uncover these

errors.

20.1.1 Dimensions of Quality

Quality is incorporated into a Web application as a consequence of good design. It is

evaluated by applying a series of technical reviews that assess various elements of

the design model and by applying a testing process that is discussed throughout this

chapter. Both reviews and testing examine one or more of the following quality

dimensions [Mil00a]:

• Content is evaluated at both a syntactic and semantic level. At the syntactic

level, spelling, punctuation, and grammar are assessed for text-based

documents. At a semantic level, correctness (of information presented),

consistency (across the entire content object and related objects), and lack of

ambiguity are all assessed.

• Function is tested to uncover errors that indicate lack of conformance to

customer requirements. Each WebApp function is assessed for correctness,

instability, and general conformance to appropriate implementation

standards (e.g., Java or AJAX language standards).

• Structure is assessed to ensure that it properly delivers WebApp content and

function, that it is extensible, and that it can be supported as new content or

functionality is added.

• Usability is tested to ensure that each category of user is supported by the

interface and can learn and apply all required navigation syntax and semantics.

• Navigability is tested to ensure that all navigation syntax and semantics are

exercised to uncover any navigation errors (e.g., dead links, improper links,

erroneous links).

530 PART THREE QUALITY MANAGEMENT

1 Generic software quality dimensions, equally applicable for WebApps, were discussed in Chapter 14.

How do we
assess

quality within the
context of a
WebApp and its
environment?

?

navigation
testing 545
performance
testing 550
planning 532
security
testing 548
strategy532
stress testing . .552
usability tests . .540

pre75977_ch20.qxd 11/28/08 10:22 AM Page 530

• Performance is tested under a variety of operating conditions, configurations,

and loading to ensure that the system is responsive to user interaction and

handles extreme loading without unacceptable operational degradation.

• Compatibility is tested by executing the WebApp in a variety of different host

configurations on both the client and server sides. The intent is to find errors

that are specific to a unique host configuration.

• Interoperability is tested to ensure that the WebApp properly interfaces with

other applications and/or databases.

• Security is tested by assessing potential vulnerabilities and attempting to

exploit each. Any successful penetration attempt is deemed a security failure.

Strategy and tactics for WebApp testing have been developed to exercise each of

these quality dimensions and are discussed later in this chapter.

20.1.2 Errors within a WebApp Environment

Errors encountered as a consequence of successful WebApp testing have a number

of unique characteristics [Ngu00]:

1. Because many types of WebApp tests uncover problems that are first

evidenced on the client side (i.e., via an interface implemented on a specific

browser or a personal communication device), you often see a symptom of

the error, not the error itself.

2. Because a WebApp is implemented in a number of different configurations

and within different environments, it may be difficult or impossible to repro-

duce an error outside the environment in which the error was originally

encountered.

3. Although some errors are the result of incorrect design or improper HTML

(or other programming language) coding, many errors can be traced to the

WebApp configuration.

4. Because WebApps reside within a client-server architecture, errors can be

difficult to trace across three architectural layers: the client, the server, or the

network itself.

5. Some errors are due to the static operating environment (i.e., the specific con-

figuration in which testing is conducted), while others are attributable to the

dynamic operating environment (i.e., instantaneous resource loading or

time-related errors).

These five error attributes suggest that environment plays an important role in the

diagnosis of all errors uncovered during the WebApp testing. In some situations (e.g.,

content testing), the site of the error is obvious, but in many other types of WebApp

testing (e.g., navigation testing, performance testing, security testing) the underlying

cause of the error may be considerably more difficult to determine.

CHAPTER 20 TESTING WEB APPLICATIONS 531

uote:

“Innovation is a
bittersweet deal for
software testers.
Just when it seems
that we know how
to test a particular
technology, a new
one [WebApps]
comes along and
all bets are off.”

James Bach

What makes
errors

encountered
during WebApp
execution
somewhat
different from
those encountered
for conventional
software?

?

pre75977_ch20.qxd 11/28/08 10:22 AM Page 531

20.1.3 Testing Strategy

The strategy for WebApp testing adopts the basic principles for all software testing

(Chapter 17) and applies a strategy and tactics that have been recommended

for object-oriented systems (Chapter 19). The following steps summarize the

approach:

1. The content model for the WebApp is reviewed to uncover errors.

2. The interface model is reviewed to ensure that all use cases can be accom-

modated.

3. The design model for the WebApp is reviewed to uncover navigation errors.

4. The user interface is tested to uncover errors in presentation and/or naviga-

tion mechanics.

5. Functional components are unit tested.

6. Navigation throughout the architecture is tested.

7. The WebApp is implemented in a variety of different environmental configu-

rations and is tested for compatibility with each configuration.

8. Security tests are conducted in an attempt to exploit vulnerabilities in the

WebApp or within its environment.

9. Performance tests are conducted.

10. The WebApp is tested by a controlled and monitored population of end users;

the results of their interaction with the system are evaluated for content and

navigation errors, usability concerns, compatibility concerns, and WebApp

security, reliability, and performance.

Because many WebApps evolve continuously, the testing process is an ongoing ac-

tivity, conducted by Web support staff who use regression tests derived from the tests

developed when the WebApp was first engineered.

20.1.4 Test Planning

The use of the word planning (in any context) is anathema to some Web developers.

These developers don’t plan; they just start—hoping that a killer WebApp will

emerge. A more disciplined approach recognizes that planning establishes a road

map for all work that follows. It’s worth the effort. In their book on WebApp testing,

Splaine and Jaskiel [Spl01] state:

Except for the simplest of Web sites, it quickly becomes apparent that some sort of test

planning is needed. All too often, the initial number of bugs found from ad hoc testing is

large enough that not all of them are fixed the first time they’re detected. This puts an

additional burden on people who test Web sites and applications. Not only must they

conjure up imaginative new tests, but they must also remember how previous tests were

executed in order to reliably re-test the Web site/application, and ensure that known

bugs have been removed and that no new bugs have been introduced.

532 PART THREE QUALITY MANAGEMENT

The overall strategy for
WebApp testing can
be summarized in the
10 steps noted here.

WebRef
Excellent articles on
WebApp testing can
be found at www
.stickyminds.com/
testing.asp

pre75977_ch20.qxd 11/28/08 10:22 AM Page 532

The questions you should ask are: How do we “conjure up imaginative new tests,”

and what should those tests focus on? The answers to these questions are contained

within a test plan.

A WebApp test plan identifies (1) the task set2 to be applied as testing commences,

(2) the work products to be produced as each testing task is executed, and (3) the

manner in which the results of testing are evaluated, recorded, and reused when

regression testing is conducted. In some cases, the test plan is integrated with the

project plan. In others, the test plan is a separate document.

20.2 THE TESTING PROCESS—AN OVERVIEW

You begin the WebApp testing process with tests that exercise content and interface

functionality that are immediately visible to end users. As testing proceeds, aspects

of the design architecture and navigation are exercised. Finally, the focus shifts to

tests that examine technological capabilities that are not always apparent to end

users—WebApp infrastructure and installation/implementation issues.

Figure 20.1 juxtaposes the WebApp testing process with the design pyramid for

WebApps (Chapter 13). Note that as the testing flow proceeds from left to right and

CHAPTER 20 TESTING WEB APPLICATIONS 533

The test plan identifies
the testing task set, the
work products to be
developed, and the
way in which results
are to be evaluated,
recorded, and reused.

2 Task sets are discussed in Chapter 2. A related term—workflow—is also used to describe a series of
tasks required to accomplish a software engineering activity.

Content
Testing

Interface
Testing

Navigation
Testing

Component
Testing

Configuration
Testing

Performance
Testing Security

Testing

Interface
design

Aesthetic design

Content design

Navigation design

Architecture design

Component design

user

technology

FIGURE 20.1

The testing
process

pre75977_ch20.qxd 11/28/08 10:22 AM Page 533

top to bottom, user-visible elements of the WebApp design (top elements of the

pyramid) are tested first, followed by infrastructure design elements.

20.3 CONTENT TESTING

Errors in WebApp content can be as trivial as minor typographical errors or as sig-

nificant as incorrect information, improper organization, or violation of intellectual

property laws. Content testing attempts to uncover these and many other problems

before the user encounters them.

Content testing combines both reviews and the generation of executable test

cases. Reviews are applied to uncover semantic errors in content (discussed in Sec-

tion 20.3.1). Executable testing is used to uncover content errors that can be traced

to dynamically derived content that is driven by data acquired from one or more

databases.

20.3.1 Content Testing Objectives

Content testing has three important objectives: (1) to uncover syntactic errors (e.g.,

typos, grammar mistakes) in text-based documents, graphical representations, and

other media; (2) to uncover semantic errors (i.e., errors in the accuracy or com-

pleteness of information) in any content object presented as navigation occurs, and

(3) to find errors in the organization or structure of content that is presented to the

end user.

To accomplish the first objective, automated spelling and grammar checkers may

be used. However, many syntactic errors evade detection by such tools and must be

discovered by a human reviewer (tester). In fact, a large website might enlist the

services of a professional copy editor to uncover typographical errors, grammatical

mistakes, errors in content consistency, errors in graphical representations, and

cross-referencing errors.

Semantic testing focuses on the information presented within each content

object. The reviewer (tester) must answer the following questions:

• Is the information factually accurate?

• Is the information concise and to the point?

• Is the layout of the content object easy for the user to understand?

• Can information embedded within a content object be found easily?

• Have proper references been provided for all information derived from other

sources?

• Is the information presented consistent internally and consistent with infor-

mation presented in other content objects?

• Is the content offensive, misleading, or does it open the door to litigation?

• Does the content infringe on existing copyrights or trademarks?

534 PART THREE QUALITY MANAGEMENT

Content testing
objectives are: (1) to
uncover syntactic errors
in content, (2) to
uncover semantic
errors, and (3) to find
structural errors.

Although technical
reviews are not a part
of testing, content
review should be
performed to ensure
that content has quality.

What
questions

should be asked
and answered to
uncover semantic
errors in content?

?

pre75977_ch20.qxd 11/28/08 10:22 AM Page 534

• Does the content contain internal links that supplement existing content? Are

the links correct?

• Does the aesthetic style of the content conflict with the aesthetic style of the

interface?

Obtaining answers to each of these questions for a large WebApp (containing

hundreds of content objects) can be a daunting task. However, failure to uncover

semantic errors will shake the user’s faith in the WebApp and can lead to failure of

the Web-based application.

Content objects exist within an architecture that has a specific style (Chapter 13).

During content testing, the structure and organization of the content architecture is

tested to ensure that required content is presented to the end user in the proper

order and relationships. For example, the SafeHomeAssured.com WebApp presents

a variety of information about sensors that are used as part of security and

surveillance products. Content objects provide descriptive information, technical

specifications, a photographic representation, and related information. Tests of the

SafeHomeAssured.com content architecture strive to uncover errors in the presen-

tation of this information (e.g., a description of Sensor X is presented with a photo

of Sensor Y).

20.3.2 Database Testing

Modern WebApps do much more than present static content objects. In many appli-

cation domains, WebApps interface with sophisticated database management

systems and build dynamic content objects that are created in real time using the

data acquired from a database.

For example, a financial services WebApp can produce complex text-based, tab-

ular, and graphical information about a specific equity (e.g., a stock or mutual fund).

The composite content object that presents this information is created dynamically

after the user has made a request for information about a specific equity. To accom-

plish this, the following steps are required: (1) a large equities database is queried,

(2) relevant data are extracted from the database, (3) the extracted data must be

organized as a content object, and (4) this content object (representing customized

information requested by an end user) is transmitted to the client environment for

display. Errors can and do occur as a consequence of each of these steps. The

objective of database testing is to uncover these errors, but database testing is com-

plicated by a variety of factors:

1. The original client-side request for information is rarely presented in the form

[e.g., structured query language (SQL)] that can be input to a database manage-

ment system (DBMS). Therefore, tests should be designed to uncover errors

made in translating the user’s request into a form that can be processed by

the DBMS.

CHAPTER 20 TESTING WEB APPLICATIONS 535

What issues
complicate

database testing
for WebApps?

?

uote:

“In general, the
software testing
techniques that are
applied to other
applications are
the same as those
applied to Web-based
applications. . . .
The difference . . . is
that the technology
variables in the
Web environment
multiply.”

Hung Nguyen

pre75977_ch20.qxd 11/28/08 10:22 AM Page 535

2. The database may be remote to the server that houses the WebApp. Therefore,

tests that uncover errors in communication between the WebApp and the

remote database must be developed.3

3. Raw data acquired from the database must be transmitted to the WebApp server

and properly formatted for subsequent transmittal to the client. Therefore, tests

that demonstrate the validity of the raw data received by the WebApp server

must be developed, and additional tests that demonstrate the validity of the

transformations applied to the raw data to create valid content objects must

also be created.

4. The dynamic content object(s) must be transmitted to the client in a form that

can be displayed to the end user. Therefore, a series of tests must be designed

to (1) uncover errors in the content object format and (2) test compatibility

with different client environment configurations.

Considering these four factors, test-case design methods should be applied for each

of the “layers of interaction” [Ngu01] noted in Figure 20.2. Testing should ensure that

(1) valid information is passed between the client and server from the interface layer,

(2) the WebApp processes scripts correctly and properly extracts or formats user data,

(3) user data are passed correctly to a server-side data transformation function that

formats appropriate queries (e.g., SQL), (4) queries are passed to a data management

536 PART THREE QUALITY MANAGEMENT

3 These tests can become complex when distributed databases are encountered or when access to a
data warehouse (Chapter 1) is required.

Client layer - user interface

HTML scripts

User data

User data

Raw data

SQL

SQL

Server layer - WebApp

Server layer - data transformation

Server layer - data managment

Database layer - data access

Database

FIGURE 20.2

Layers of inter-
action

pre75977_ch20.qxd 11/28/08 10:22 AM Page 536

layer4 that communicates with database access routines (potentially located on

another machine).

The data transformation, data management, and database access layers shown

in Figure 20.2 are often constructed with reusable components that have been vali-

dated separately and as a package. If this is the case, WebApp testing focuses on the

design of test cases to exercise the interactions between the client layer and the first

two server layers (WebApp and data transformation) shown in the figure.

The user interface layer is tested to ensure that scripts are properly constructed

for each user query and properly transmitted to the server side. The WebApp layer

on the server side is tested to ensure that user data are properly extracted from

scripts and properly transmitted to the data transformation layer on the server side.

The data transformation functions are tested to ensure that the correct SQL is cre-

ated and passed to appropriate data management components.

A detailed discussion of the underlying technology that must be understood to

adequately design these database tests is beyond the scope of this book. If you have

additional interest, see [Sce02], [Ngu01], and [Bro01].

20.4 USER INTERFACE TESTING

Verification and validation of a WebApp user interface occurs at three distinct points.

During requirements analysis, the interface model is reviewed to ensure that it con-

forms to stakeholder requirements and to other elements of the requirements model.

During design the interface design model is reviewed to ensure that generic quality

criteria established for all user interfaces (Chapter 11) have been achieved and that

application-specific interface design issues have been properly addressed. During

testing, the focus shifts to the execution of application-specific aspects of user inter-

action as they are manifested by interface syntax and semantics. In addition, testing

provides a final assessment of usability.

20.4.1 Interface Testing Strategy

Interface testing exercises interaction mechanisms and validates aesthetic aspects of

the user interface. The overall strategy for interface testing is to (1) uncover errors

related to specific interface mechanisms (e.g., errors in the proper execution of a

menu link or the way data are entered in a form) and (2) uncover errors in the way

the interface implements the semantics of navigation, WebApp functionality, or con-

tent display. To accomplish this strategy, a number of tactical steps are initiated:

• Interface features are tested to ensure that design rules, aesthetics, and related

visual content are available for the user without error. Features include type

CHAPTER 20 TESTING WEB APPLICATIONS 537

4 The data management layer typically incorporates an SQL call-level interface (SQL-CLI) such as
Microsoft OLE/ADO or Java Database Connectivity (JDBC).

uote:

“… we are
unlikely to have
confidence in a
Web site that
suffers frequent
downtime, hangs in
the middle of a
transaction, or has
a poor sense of
usability. Testing,
therefore, has a
crucial role in the
overall
development
process.”

Wing Lam

With the exception of
WebApp-oriented
specifics, the interface
strategy noted here
is applicable to all
types of client-server
software.

pre75977_ch20.qxd 11/28/08 10:22 AM Page 537

fonts, the use of color, frames, images, borders, tables, and related interface

features that are generated as WebApp execution proceeds.

• Individual interface mechanisms are tested in a manner that is analogous to unit

testing. For example, tests are designed to exercise all forms, client-side

scripting, dynamic HTML, scripts, streaming content, and application-specific

interface mechanisms (e.g., a shopping cart for an e-commerce application).

In many cases, testing can focus exclusively on one of these mechanisms

(the “unit”) to the exclusion of other interface features and functions.

• Each interface mechanism is tested within the context of a use case or NSU

(Chapter 13) for a specific user category. This testing approach is analogous to

integration testing in that tests are conducted as interface mechanisms are

integrated to allow a use case or NSU to be executed.

• The complete interface is tested against selected use cases and NSUs to uncover

errors in the semantics of the interface. This testing approach is analogous to

validation testing because the purpose is to demonstrate conformance to

specific use-case or NSU semantics. It is at this stage that a series of usability

tests are conducted.

• The interface is tested within a variety of environments (e.g., browsers) to ensure

that it will be compatible. In actuality, this series of tests can also be consid-

ered to be part of configuration testing.

20.4.2 Testing Interface Mechanisms

When a user interacts with a WebApp, the interaction occurs through one or more

interface mechanisms. A brief overview of testing considerations for each interface

mechanism is presented in the paragraphs that follow [Spl01].

Links. Each navigation link is tested to ensure that the proper content object or

function is reached.5 You build a list of all links associated with the interface layout

(e.g., menu bars, index items) and then execute each individually. In addition, links

within each content object must be exercised to uncover bad URLs or links to

improper content objects or functions. Finally, links to external WebApps should be

tested for accuracy and also evaluated to determine the risk that they will become

invalid over time.

Forms. At a macroscopic level, tests are performed to ensure that (1) labels cor-

rectly identify fields within the form and that mandatory fields are identified visually

for the user, (2) the server receives all information contained within the form and

that no data are lost in the transmission between client and server, (3) appropriate

defaults are used when the user does not select from a pull-down menu or set of

buttons, (4) browser functions (e.g., the “back” arrow) do not corrupt data entered in

538 PART THREE QUALITY MANAGEMENT

External link testing
should occur
throughout the life of
the WebApp. Part of a
support strategy should
be regularly scheduled
link tests.

5 These tests can be performed as part of either interface or navigation testing.

pre75977_ch20.qxd 11/28/08 10:22 AM Page 538

a form, and (5) scripts that perform error checking on data entered work properly and

provide meaningful error messages.

At a more targeted level, tests should ensure that (1) form fields have proper width

and data types, (2) the form establishes appropriate safeguards that preclude the user

from entering text strings longer than some predefined maximum, (3) all appropri-

ate options for pull-down menus are specified and ordered in a way that is mean-

ingful to the end user, (4) browser “auto-fill” features do not lead to data input errors,

and (5) tab key (or some other key) initiates proper movement between form fields.

Client-side scripting. Black-box tests are conducted to uncover any errors in

processing as the script is executed. These tests are often coupled with forms test-

ing, because script input is often derived from data provided as part of forms pro-

cessing. A compatibility test should be conducted to ensure that the scripting

language that has been chosen will work properly in the environmental configura-

tions that support the WebApp. In addition to testing the script itself, Splaine and

Jaskiel [Spl01] suggest that “you should ensure that your company’s [WebApp] stan-

dards state the preferred language and version of scripting language to be used for

client-side (and server-side) scripting.”

Dynamic HTML. Each Web page that contains dynamic HTML is executed to

ensure that the dynamic display is correct. In addition, a compatibility test should be

conducted to ensure that the dynamic HTML works properly in the environmental

configurations that support the WebApp.

Pop-up windows. A series of tests ensure that (1) the pop-up is properly sized and

positioned, (2) the pop-up does not cover the original WebApp window, (3) the aes-

thetic design of the pop-up is consistent with the aesthetic design of the interface,

and (4) scroll bars and other control mechanisms appended to the pop-up are prop-

erly located and function as required.

CGI scripts. Black-box tests are conducted with an emphasis on data integrity

(as data are passed to the CGI script) and script processing (once validated data have

been received). In addition, performance testing can be conducted to ensure that the

server-side configuration can accommodate the processing demands of multiple

invocations of CGI scripts [Spl01].

Streaming content. Tests should demonstrate that streaming data are up-to-date,

properly displayed, and can be suspended without error and restarted without difficulty.

Cookies. Both server-side and client-side testing are required. On the server side,

tests should ensure that a cookie is properly constructed (contains correct data) and

properly transmitted to the client side when specific content or functionality is

requested. In addition, the proper persistence of the cookie is tested to ensure that

its expiration date is correct. On the client side, tests determine whether the WebApp

properly attaches existing cookies to a specific request (sent to the server).

CHAPTER 20 TESTING WEB APPLICATIONS 539

Client-side scripting
tests and tests associ-
ated with dynamic
HTML should be
repeated whenever a
new version of a
popular browser is
released.

pre75977_ch20.qxd 11/28/08 10:22 AM Page 539

Application-specific interface mechanisms. Tests conform to a checklist of

functionality and features that are defined by the interface mechanism. For example,

Splaine and Jaskiel [Spl01] suggest the following checklist for shopping cart func-

tionality defined for an e-commerce application:

• Boundary-test (Chapter 18) the minimum and maximum number of items

that can be placed in the shopping cart.

• Test a “check out” request for an empty shopping cart.

• Test proper deletion of an item from the shopping cart.

• Test to determine whether a purchase empties the cart of its contents.

• Test to determine the persistence of shopping cart contents (this should be

specified as part of customer requirements).

• Test to determine whether the WebApp can recall shopping cart contents at

some future date (assuming that no purchase was made).

20.4.3 Testing Interface Semantics

Once each interface mechanism has been “unit” tested, the focus of interface testing

changes to a consideration of interface semantics. Interface semantics testing “eval-

uates how well the design takes care of users, offers clear direction, delivers feed-

back, and maintains consistency of language and approach” [Ngu00].

A thorough review of the interface design model can provide partial answers to

the questions implied by the preceding paragraph. However, each use-case scenario

(for each user category) should be tested once the WebApp has been implemented.

In essence, a use case becomes the input for the design of a testing sequence. The

intent of the testing sequence is to uncover errors that will preclude a user from

achieving the objective associated with the use case.

As each use case is tested, it’s a good idea to maintain a checklist to ensure that

every menu item has been exercised at least one time and that every embedded link

within a content object has been used. In addition, the test series should include

improper menu selection and link usage. The intent is to determine whether the

WebApp provides effective error handling and recovery.

20.4.4 Usability Tests

Usability testing is similar to interface semantics testing (Section 20.4.3) in the sense

that it also evaluates the degree to which users can interact effectively with the WebApp

and the degree to which the WebApp guides users’ actions, provides meaningful feed-

back, and enforces a consistent interaction approach. Rather than focusing intently on

the semantics of some interactive objective, usability reviews and tests are designed to

determine the degree to which the WebApp interface makes the user’s life easy.6

540 PART THREE QUALITY MANAGEMENT

WebRef
A worthwhile guide
to usability testing can
be found at
www.ahref.com/
guides/design/
199806/0615jef
.html.

6 The term user-friendliness has been used in this context. The problem, of course, is that one user’s
perception of a “friendly” interface may be radically different from another’s.

pre75977_ch20.qxd 11/28/08 10:22 AM Page 540

http://www.ahref.com/

You will invariably contribute to the design of usability tests, but the tests them-

selves are conducted by end users. The following sequence of steps is applied

[Spl01]:

1. Define a set of usability testing categories and identify goals for each.

2. Design tests that will enable each goal to be evaluated.

3. Select participants who will conduct the tests.

4. Instrument participants’ interaction with the WebApp while testing is

conducted.

5. Develop a mechanism for assessing the usability of the WebApp.

Usability testing can occur at a variety of different levels of abstraction: (1) the usability

of a specific interface mechanism (e.g., a form) can be assessed, (2) the usability of a com-

plete Web page (encompassing interface mechanisms, data objects, and related func-

tions) can be evaluated, or (3) the usability of the complete WebApp can be considered.

The first step in usability testing is to identify a set of usability categories and

establish testing objectives for each category. The following test categories and

objectives (written in the form of a question) illustrate this approach:7

Interactivity—Are interaction mechanisms (e.g., pull-down menus, buttons,

pointers) easy to understand and use?

Layout—Are navigation mechanisms, content, and functions placed in a manner

that allows the user to find them quickly?

Readability—Is text well written and understandable?8 Are graphic representa-

tions easy to understand?

Aesthetics—Do layout, color, typeface, and related characteristics lead to ease of

use? Do users “feel comfortable” with the look and feel of the WebApp?

Display characteristics—Does the WebApp make optimal use of screen size and

resolution?

Time sensitivity—Can important features, functions, and content be used or

acquired in a timely manner?

Personalization—Does the WebApp tailor itself to the specific needs of different

user categories or individual users?

Accessibility—Is the WebApp accessible to people who have disabilities?

A series of tests is designed within each of these categories. In some cases, the “test”

may be a visual review of a Web page. In other cases interface semantics tests may

be executed again, but in this instance usability concerns are paramount.

CHAPTER 20 TESTING WEB APPLICATIONS 541

What
character-

istics of usability
become the focus
of testing and
what specific
objectives are
addressed?

?

7 For additional information on usability, see Chapter 11.
8 The FOG Readability Index and others may be used to provide a quantitative assessment of read-

ability See http://developer.gnome.org/documents/usability/usability-readability.html
for more details.

pre75977_ch20.qxd 11/28/08 10:22 AM Page 541

http://developer.gnome.org/documents/usability/usability-readability.html

As an example, we consider usability assessment for interaction and interface

mechanisms. Constantine and Lockwood [Con99] suggest that the following list of

interface features should be reviewed and tested for usability: animation, buttons,

color, control, dialogue, fields, forms, frames, graphics, labels, links, menus, mes-

sages, navigation, pages, selectors, text, and tool bars. As each feature is assessed,

it is graded on a qualitative scale by the users who are doing the testing. Figure 20.3

depicts a possible set of assessment “grades” that can be selected by users. These

grades are applied to each feature individually, to a complete Web page, or to the

WebApp as a whole.

20.4.5 Compatibility Tests

Different computers, display devices, operating systems, browsers, and network

connection speeds can have a significant influence on WebApp operation. Each

computing configuration can result in differences in client-side processing speeds,

display resolution, and connection speeds. Operating system vagaries may cause

WebApp processing issues. Different browsers sometimes produce slightly different

results, regardless of the degree of HTML standardization within the WebApp. Re-

quired plug-ins may or may not be readily available for a particular configuration.

In some cases, small compatibility issues present no significant problems, but in

others, serious errors can be encountered. For example, download speeds may be-

come unacceptable, lack of a required plug-in may make content unavailable,

browser differences can change page layout dramatically, font styles may be altered

and become illegible, or forms may be improperly organized. Compatibility testing

strives to uncover these problems before the WebApp goes online.

The first step in compatibility testing is to define a set of “commonly encountered”

client-side computing configurations and their variants. In essence, a tree structure

is created, identifying each computing platform, typical display devices, the operat-

ing systems supported on the platform, the browsers available, likely Internet

542 PART THREE QUALITY MANAGEMENT

Ease of use

Easy to learn

Effective

Simple

Somewhat ambiguous
Confusing

Generally uniform
Predictable

Predictability

Ease of understanding
Awkward

Difficult to learn Informative
Clear

Misleading

Inconsistent
Lacking uniformity

FIGURE 20.3

Qualitative
assessment of
usability

WebApps execute
within a variety of
client-side
environments. The
objective of
compatibility testing to
uncover errors
associated with a
specific environment
(e.g., browser).

pre75977_ch20.qxd 11/28/08 10:22 AM Page 542

connection speeds, and similar information. Next, a series of compatibility validation

tests are derived, often adapted from existing interface tests, navigation tests, per-

formance tests, and security tests. The intent of these tests is to uncover errors or

execution problems that can be traced to configuration differences.

CHAPTER 20 TESTING WEB APPLICATIONS 543

WebApp Testing

The scene: Doug Miller’s office.

The players: Doug Miller (manager of the SafeHome
software engineering group) and Vinod Raman (a
member of the product software engineering team).

The conversation:

Doug: What do you think of the
SafeHomeAssured.com e-commerce WebApp V0.0?

Vinod: The outsourcing vendor’s done a good job.
Sharon [development manager for the vendor] tells me
they’re testing as we speak.

Doug: I’d like you and the rest of the team to do a little
informal testing on the e-commerce site.

Vinod (grimacing): I thought we were going to hire a
third-party testing company to validate the WebApp.
We’re still killing ourselves trying to get the product
software out the door.

Doug: We’re going to hire a testing vendor for
performance and security testing, and our outsourcing
vendor is already testing. Just thought another point of
view would be helpful, and besides, we’d like to keep
costs in line, so . . .

Vinod (sighs): What are you looking for?

Doug: I want to be sure that the interface and all
navigation are solid.

Vinod: I suppose we can start with the use cases for
each of the major interface functions:

Learn about SafeHome.
Specify the SafeHome system you need.
Purchase a SafeHome system.
Get technical support.

Doug: Good. But take the navigation paths all the way
to their conclusion.

Vinod (looking through a notebook of use
cases): Yeah, when you select Specify the
SafeHome system you need, that’ll take you to:

Select SafeHome components.
Get SafeHome component recommendations.

We can exercise the semantics of each path.

Doug: While you’re there, check out the content that
appears at each navigation node.

Vinod: Of course . . . and the functional elements as
well. Who’s testing usability?

Doug: Oh . . . the testing vendor will coordinate
usability testing. We’ve hired a market research firm to
line up 20 typical users for the usability study, but if you
guys uncover any usability issues . . .

Vinod: I know, pass them along.

Doug: Thanks, Vinod.

SAFEHOME

20.5 COMPONENT-LEVEL TESTING

Component-level testing, also called function testing, focuses on a set of tests that

attempt to uncover errors in WebApp functions. Each WebApp function is a software

component (implemented in one of a variety of programming or scripting languages)

and can be tested using black-box (and in some cases, white-box) techniques as

discussed in Chapter 18.

pre75977_ch20.qxd 11/28/08 10:22 AM Page 543

Component-level test cases are often driven by forms-level input. Once forms

data are defined, the user selects a button or other control mechanism to initiate

execution. The following test-case design methods (Chapter 18) are typical:

• Equivalence partitioning—The input domain of the function is divided into

input categories or classes from which test cases are derived. The input form

is assessed to determine what classes of data are relevant for the function.

Test cases for each class of input are derived and executed, while other

classes of input are held constant. For example, an e-commerce application

may implement a function that computes shipping charges. Among a variety

of shipping information provided via a form is the user’s postal code. Test

cases are designed in an attempt to uncover errors in postal code processing

by specifying postal code values that might uncover different classes of errors

(e.g., an incomplete postal code, a correct postal code, a nonexistent postal

code, an erroneous postal code format).

• Boundary value analysis—Forms data are tested at their boundaries. For

example, the shipping calculation function noted previously requests the

maximum number of days required for product delivery. A minimum of

2 days and a maximum of 14 are noted on the form. However, boundary

value tests might input values of 0, 1, 2, 13, 14, and 15 to determine how the

function reacts to data at and outside the boundaries of valid input.9

• Path testing—If the logical complexity of the function is high,10 path testing

(a white-box test-case design method) can be used to ensure that every inde-

pendent path in the program has been exercised.

In addition to these test-case design methods, a technique called forced error testing

[Ngu01] is used to derive test cases that purposely drive the WebApp component into

an error condition. The purpose is to uncover errors that occur during error handling

(e.g., incorrect or nonexistent error messages, WebApp failure as a consequence of

the error, erroneous output driven by erroneous input, side effects that are related to

component processing).

Each component-level test case specifies all input values and the expected output

to be provided by the component. The actual output produced as a consequence of

the test is recorded for future reference during support and maintenance.

In many situations, the correct execution of a WebApp function is tied to proper

interfacing with a database that may be external to the WebApp. Therefore, database

testing becomes an integral part of the component-testing regime.

544 PART THREE QUALITY MANAGEMENT

9 In this case, a better input design might eliminate potential errors. The maximum number of days
could be selected from a pull-down menu, precluding the user from specifying out-of-bounds input.

10 Logical complexity can be determined by computing cyclomatic complexity of the algorithm. See
Chapter 18 for additional details.

pre75977_ch20.qxd 11/28/08 10:22 AM Page 544

20.6 NAVIGATION TESTING

A user travels through a WebApp in much the same way as a visitor walks through

a store or museum. There are many pathways that can be taken, many stops that

can be made, many things to learn and look at, activities to initiate, and decisions

to make. This navigation process is predictable in the sense that every visitor has

a set of objectives when he arrives. At the same time, the navigation process can

be unpredictable because the visitor, influenced by something he sees or learns,

may choose a path or initiate an action that is not typical for the original objec-

tive. The job of navigation testing is (1) to ensure that the mechanisms that allow

the WebApp user to travel through the WebApp are all functional and (2) to vali-

date that each navigation semantic unit (NSU) can be achieved by the appropriate

user category.

20.6.1 Testing Navigation Syntax

The first phase of navigation testing actually begins during interface testing.

Navigation mechanisms are tested to ensure that each performs its intended func-

tion. Splaine and Jaskiel [Spl01] suggest that each of the following navigation mech-

anisms should be tested:

• Navigation links—these mechanisms include internal links within the

WebApp, external links to other WebApps, and anchors within a specific Web

page. Each link should be tested to ensure that proper content or function-

ality is reached when the link is chosen.

• Redirects—these links come into play when a user requests a nonexistent

URL or selects a link whose content has been removed or whose name has

changed. A message is displayed for the user and navigation is redirected to

another page (e.g., the home page). Redirects should be tested by requesting

incorrect internal links or external URLs and assessing how the WebApp

handles these requests.

• Bookmarks—although bookmarks are a browser function, the WebApp

should be tested to ensure that a meaningful page title can be extracted as

the bookmark is created.

• Frames and framesets—each frame contains the content of a specific Web

page, and a frameset contains multiple frames and enables the display of

multiple Web pages at the same time. Because it is possible to nest frames

and framesets within one another, these navigation and display mechanisms

should be tested for correct content, proper layout and sizing, download

performance, and browser compatibility.

• Site maps—a site map provides a complete table of contents for all Web

pages. Each site map entry should be tested to ensure that the links take the

user to the proper content or functionality.

CHAPTER 20 TESTING WEB APPLICATIONS 545

uote:

“We’re not lost.
We’re locationally
challenged.”

John M. Ford

pre75977_ch20.qxd 11/28/08 10:22 AM Page 545

• Internal search engines—complex WebApps often contain hundreds or even

thousands of content objects. An internal search engine allows the user to

perform a keyword search within the WebApp to find needed content. Search

engine testing validates the accuracy and completeness of the search, the

error-handling properties of the search engine, and advanced search features

(e.g., the use of Boolean operators in the search field).

Some of the tests noted can be performed by automated tools (e.g., link checking),

while others are designed and executed manually. The intent throughout is to ensure

that errors in navigation mechanics are found before the WebApp goes online.

20.6.2 Testing Navigation Semantics

In Chapter 13 a navigation semantic unit (NSU) is defined as “a set of information

and related navigation structures that collaborate in the fulfillment of a subset of

related user requirements” [Cac02]. Each NSU is defined by a set of navigation paths

(called “ways of navigating”) that connect navigation nodes (e.g., Web pages, con-

tent objects, or functionality). Taken as a whole, each NSU allows a user to achieve

specific requirements defined by one or more use cases for a user category. Naviga-

tion testing exercises each NSU to ensure that these requirements can be achieved.

You should answer the following questions as each NSU is tested:

• Is the NSU achieved in its entirety without error?

• Is every navigation node (defined for an NSU) reachable within the context of

the navigation paths defined for the NSU?

• If the NSU can be achieved using more than one navigation path, has every

relevant path been tested?

• If guidance is provided by the user interface to assist in navigation, are direc-

tions correct and understandable as navigation proceeds?

• Is there a mechanism (other than the browser “back” arrow) for returning to

the preceding navigation node and to the beginning of the navigation path?

• Do mechanisms for navigation within a large navigation node (i.e., a long

Web page) work properly?

• If a function is to be executed at a node and the user chooses not to provide

input, can the remainder of the NSU be completed?

• If a function is executed at a node and an error in function processing occurs,

can the NSU be completed?

• Is there a way to discontinue the navigation before all nodes have been

reached, but then return to where the navigation was discontinued and

proceed from there?

• Is every node reachable from the site map? Are node names meaningful to

end users?

546 PART THREE QUALITY MANAGEMENT

What
questions

must be asked
and answered as
each NSU is
tested?

?

If NSUs have not been
created as part of
WebApp analysis or
design, you can apply
use cases for the
design of navigation
test cases. The same
set of questions are
asked and answered.

pre75977_ch20.qxd 11/28/08 10:22 AM Page 546

• If a node within an NSU is reached from some external source, is it possible

to process to the next node on the navigation path? Is it possible to return to

the previous node on the navigation path?

• Does the user understand his location within the content architecture as the

NSU is executed?

Navigation testing, like interface and usability testing, should be conducted by as

many different constituencies as possible. You have responsibility for early stages of

navigation testing, but later stages should be conducted by other project stakehold-

ers, an independent testing team, and ultimately, by nontechnical users. The intent

is to exercise WebApp navigation thoroughly.

20.7 CONFIGURATION TESTING

Configuration variability and instability are important factors that make WebApp

testing a challenge. Hardware, operating system(s), browsers, storage capacity, net-

work communication speeds, and a variety of other client-side factors are difficult to

predict for each user. In addition, the configuration for a given user can change [e.g.,

operating system (OS) updates, new ISP and connection speeds] on a regular basis.

The result can be a client-side environment that is prone to errors that are both sub-

tle and significant. One user’s impression of the WebApp and the manner in which

she interacts with it can differ significantly from another user’s experience, if both

users are not working within the same client-side configuration.

The job of configuration testing is not to exercise every possible client-side con-

figuration. Rather, it is to test a set of probable client-side and server-side configu-

rations to ensure that the user experience will be the same on all of them and to

isolate errors that may be specific to a particular configuration.

20.7.1 Server-Side Issues

On the server side, configuration test cases are designed to verify that the projected

server configuration [i.e., WebApp server, database server, operating system(s), fire-

wall software, concurrent applications] can support the WebApp without error. In

essence, the WebApp is installed within the server-side environment and tested to

ensure that it operates without error.

As server-side configuration tests are designed, you should consider each com-

ponent of the server configuration. Among the questions that need to be asked and

answered during server-side configuration testing are:

• Is the WebApp fully compatible with the server OS?

• Are system files, directories, and related system data created correctly when

the WebApp is operational?

• Do system security measures (e.g., firewalls or encryption) allow the WebApp

to execute and service users without interference or performance degradation?

CHAPTER 20 TESTING WEB APPLICATIONS 547

What
questions

must be asked
and answered as
server-side
configuration
testing is
conducted?

?

pre75977_ch20.qxd 11/28/08 10:22 AM Page 547

• Has the WebApp been tested with the distributed server configuration11

(if one exists) that has been chosen?

• Is the WebApp properly integrated with database software? Is the WebApp

sensitive to different versions of database software?

• Do server-side WebApp scripts execute properly?

• Have system administrator errors been examined for their effect on WebApp

operations?

• If proxy servers are used, have differences in their configuration been

addressed with on-site testing?

20.7.2 Client-Side Issues

On the client side, configuration tests focus more heavily on WebApp compatibility

with configurations that contain one or more permutations of the following compo-

nents [Ngu01]:

• Hardware—CPU, memory, storage, and printing devices

• Operating systems—Linux, Macintosh OS, Microsoft Windows, a mobile-based

OS

• Browser software—Firefox, Safari, Internet Explorer, Opera, Chrome, and others

• User interface components—Active X, Java applets, and others

• Plug-ins—QuickTime, RealPlayer, and many others

• Connectivity—cable, DSL, regular modem, T1, WiFi

In addition to these components, other variables include networking software, the

vagaries of the ISP, and applications running concurrently.

To design client-side configuration tests, you must reduce the number of configu-

ration variables to a manageable number.12 To accomplish this, each user category is

assessed to determine the likely configurations to be encountered within the cate-

gory. In addition, industry market share data may be used to predict the most likely

combinations of components. The WebApp is then tested within these environments.

20.8 SECURITY TESTING

WebApp security is a complex subject that must be fully understood before effective

security testing can be accomplished.13 WebApps and the client-side and server-side

environments in which they are housed represent an attractive target for external

hackers, disgruntled employees, dishonest competitors, and anyone else who

548 PART THREE QUALITY MANAGEMENT

11 For example, a separate application server and database server may be used. Communication
between the two machines occurs across a network connection.

12 Running tests on every possible combination of configuration components is far too time consuming.
13 Books by Cross and Fisher [Cro07], Andrews and Whittaker [And06], and Trivedi [Tri03] provide

useful information about the subject.

pre75977_ch20.qxd 11/28/08 10:22 AM Page 548

wishes to steal sensitive information, maliciously modify content, degrade perform-

ance, disable functionality, or embarrass a person, organization, or business.

Security tests are designed to probe vulnerabilities of the client-side environment,

the network communications that occur as data are passed from client to server and

back again, and the server-side environment. Each of these domains can be attacked,

and it is the job of the security tester to uncover weaknesses that can be exploited by

those with the intent to do so.

On the client side, vulnerabilities can often be traced to preexisting bugs in

browsers, e-mail programs, or communication software. Nguyen [Ngu01] describes

a typical security hole:

One of the commonly mentioned bugs is Buffer Overflow, which allows malicious code

to be executed on the client machine. For example, entering a URL into a browser that is

much longer than the buffer size allocated for the URL will cause a memory overwrite

(buffer overflow) error if the browser does not have error detection code to validate the

length of the input URL. A seasoned hacker can cleverly exploit this bug by writing a long

URL with code to be executed that can cause the browser to crash or alter security

settings (from high to low), or, at worst, to corrupt user data.

Another potential vulnerability on the client side is unauthorized access to cook-

ies placed within the browser. Websites created with malicious intent can acquire

information contained within legitimate cookies and use this information in ways

that jeopardize the user’s privacy, or worse, set the stage for identity theft.

Data communicated between the client and server are vulnerable to spoofing.

Spoofing occurs when one end of the communication pathway is subverted by an

entity with malicious intent. For example, a user can be spoofed by a malicious

website that acts as if it is the legitimate WebApp server (identical look and feel). The

intent is to steal passwords, proprietary information, or credit data.

On the server side, vulnerabilities include denial-of-service attacks and malicious

scripts that can be passed along to the client side or used to disable server operations.

In addition, server-side databases can be accessed without authorization (data theft).

To protect against these (and many other) vulnerabilities, one or more of the

following security elements is implemented [Ngu01]:

• Firewall—a filtering mechanism that is a combination of hardware and

software that examines each incoming packet of information to ensure that it

is coming from a legitimate source, blocking any data that are suspect.

• Authentication—a verification mechanism that validates the identity of all

clients and servers, allowing communication to occur only when both sides

are verified.

• Encryption—an encoding mechanism that protects sensitive data by

modifying it in a way that makes it impossible to read by those with

malicious intent. Encryption is strengthened by using digital certificates that

allow the client to verify the destination to which the data are transmitted.

CHAPTER 20 TESTING WEB APPLICATIONS 549

uote:

“The Internet is a
risky place to
conduct business
or store assets.
Hackers, crackers,
snoops, spoofers,
. . . vandals, virus
launchers, and
rogue program
purveyors run
loose.”

Dorothy and
Peter Denning

If the WebApp is
business critical,
maintains sensitive
data, or is a likely
target of hackers, it’s a
good idea to outsource
security testing to a
vendor who specializes
in it.

Security tests should
be designed to
exercise firewalls,
authentication,
encryption, and
authorization.

pre75977_ch20.qxd 11/28/08 10:22 AM Page 549

• Authorization—a filtering mechanism that allows access to the client or

server environment only by those individuals with appropriate authorization

codes (e.g., userID and password).

Security tests should be designed to probe each of these security technologies in an

effort to uncover security holes.

The actual design of security tests requires in-depth knowledge of the inner work-

ings of each security element and a comprehensive understanding of a full range of

networking technologies. In many cases, security testing is outsourced to firms that

specialize in these technologies.

20.9 PERFORMANCE TESTING

Nothing is more frustrating than a WebApp that takes minutes to load content when

competitive sites download similar content in seconds. Nothing is more aggravating

than trying to log on to a WebApp and receiving a “server-busy” message, with the

suggestion that you try again later. Nothing is more disconcerting than a WebApp

that responds instantly in some situations, and then seems to go into an infinite wait

state in other situations. All of these occurrences happen on the Web every day, and

all of them are performance related.

Performance testing is used to uncover performance problems that can result from

lack of server-side resources, inappropriate network bandwidth, inadequate data-

base capabilities, faulty or weak operating system capabilities, poorly designed

WebApp functionality, and other hardware or software issues that can lead to

degraded client-server performance. The intent is twofold: (1) to understand how the

system responds as loading (i.e., number of users, number of transactions, or over-

all data volume) increases and (2) to collect metrics that will lead to design modifi-

cations to improve performance.

20.9.1 Performance Testing Objectives

Performance tests are designed to simulate real-world loading situations. As the

number of simultaneous WebApp users grows, or the number of online transactions

increases, or the amount of data (downloaded or uploaded) increases, performance

testing will help answer the following questions:

• Does the server response time degrade to a point where it is noticeable and

unacceptable?

• At what point (in terms of users, transactions, or data loading) does perform-

ance become unacceptable?

• What system components are responsible for performance degradation?

• What is the average response time for users under a variety of loading

conditions?

550 PART THREE QUALITY MANAGEMENT

Some aspects of
WebApp performance,
at least as it is
perceived by the end
user, are difficult to
test. Network loading,
the vagaries of
network interfacing
hardware, and similar
issues are not easily
tested at the WebApp
level.

pre75977_ch20.qxd 11/28/08 10:22 AM Page 550

• Does performance degradation have an impact on system security?

• Is WebApp reliability or accuracy affected as the load on the system grows?

• What happens when loads that are greater than maximum server capacity

are applied?

• Does performance degradation have an impact on company revenues?

To develop answers to these questions, two different performance tests are

conducted: (1) load testing examines real-world loading at a variety of load levels

and in a variety of combinations, and (2) stress testing forces loading to be in-

creased to the breaking point to determine how much capacity the WebApp envi-

ronment can handle. Each of these testing strategies is considered in the sections

that follow.

20.9.2 Load Testing

The intent of load testing is to determine how the WebApp and its server-side

environment will respond to various loading conditions. As testing proceeds,

permutations to the following variables define a set of test conditions:

N, number of concurrent users

T, number of online transactions per unit of time

D, data load processed by the server per transaction

In every case, these variables are defined within normal operating bounds of the

system. As each test condition is run, one or more of the following measures are

collected: average user response, average time to download a standardized unit of

data, or average time to process a transaction. You should examine these measures

to determine whether a precipitous decrease in performance can be traced to a

specific combination of N, T, and D.

Load testing can also be used to assess recommended connection speeds

for users of the WebApp. Overall throughput, P, is computed in the following

manner:

P � N � T � D

As an example, consider a popular sports news site. At a given moment, 20,000 con-

current users submit a request (a transaction, T) once every 2 minutes on average.

Each transaction requires the WebApp to download a new article that averages 3K

bytes in length. Therefore, throughput can be calculated as:

P � [20,000 � 0.5 � 3Kb]/60 � 500 Kbytes/sec

� 4 megabits per second

The network connection for the server would therefore have to support this data rate

and should be tested to ensure that it does.

CHAPTER 20 TESTING WEB APPLICATIONS 551

If a WebApp uses
multiple servers to
provide significant
capacity, load testing
must be performed in
a multiserver
environment.

pre75977_ch20.qxd 11/28/08 10:22 AM Page 551

20.9.3 Stress Testing

Stress testing is a continuation of load testing, but in this instance the variables, N, T,

and D are forced to meet and then exceed operational limits. The intent of these tests

is to answer each of the following questions:

• Does the system degrade “gently,” or does the server shut down as capacity

is exceeded?

• Does server software generate “server not available” messages? More

generally, are users aware that they cannot reach the server?

• Does the server queue resource requests and empty the queue once capacity

demands diminish?

• Are transactions lost as capacity is exceeded?

• Is data integrity affected as capacity is exceeded?

• What values of N, T, and D force the server environment to fail? How does

failure manifest itself? Are automated notifications sent to technical support

staff at the server site?

• If the system does fail, how long will it take to come back online?

• Are certain WebApp functions (e.g., compute intensive functionality, data

streaming capabilities) discontinued as capacity reaches the 80 or 90 percent

level?

A variation of stress testing is sometimes referred to as spike/bounce testing

[Spl01]. In this testing regime, load is spiked to capacity, then lowered quickly to nor-

mal operating conditions, and then spiked again. By bouncing system loading, you

can determine how well the server can marshal resources to meet very high demand

and then release them when normal conditions reappear (so that they are ready for

the next spike).

552 PART THREE QUALITY MANAGEMENT

The intent of stress
testing is to better
understand how a
system fails as it is
stressed beyond its
operational limits.

Tools Taxonomy for WebApp Testing
In his paper on the testing of e-commerce

systems, Lam [Lam01] presents a useful
taxonomy of automated tools that have direct applicability
for testing in a Web engineering context. We have
appended representative tools in each category.14

Configuration and content management tools
manage version and change control of WebApp content
objects and functional component.

Representative tool(s): Comprehensive list at
www.daveeaton.com/scm/CMTools.html

Database performance tools measure database
performance, such as the time to perform selected
database queries. These tools facilitate database
optimization.

Representative tool(s): BMC Software
(www.bmc.com)

TOOLS

14 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.
In addition, tool names are registered trademarks of the companies noted.

pre75977_ch20.qxd 11/28/08 10:22 AM Page 552

http://www.daveeaton.com/scm/CMTools.html
http://www.bmc.com

CHAPTER 20 TESTING WEB APPLICATIONS 553

Debuggers are typical programming tools that find
and resolve software defects in the code. They are part
of most modern application development environments.

Representative tool(s):
Accelerated Technology
(www.acceleratedtechnology.com)

Apple Debugging Tools
(developer.apple.com/tools/performance/)

IBM VisualAge Environment (www.ibm.com)
Microsoft Debugging Tools (www.microsoft.com)

Defect management systems record defects and
track their status and resolution. Some include
reporting tools to provide management information on
defect spread and defect resolution rates.

Representative tool(s):
EXCEL Quickbigs (www.excelsoftware.com)
ForeSoft BugTrack (www.bugtrack.net)
McCabe TRUETrack (www.mccabe.com)

Network monitoring tools watch the level of network
traffic. They are useful for identifying network
bottlenecks and testing the link between front- and
back-end systems.

Representative tool(s):
Comprehensive list at
www.slac.stanford.edu/xorg/nmtf/nmtf-
tools.html

Regression testing tools store test cases and test
data and can reapply the test cases after successive
software changes.

Representative tool(s):
Compuware QARun
(www.compuware.com/products/qacenter/
qarun)

Rational VisualTest (www.rational.com)
Seque Software (www.seque.com)

Site monitoring tools monitor a site’s performance,
often from a user perspective. Use them to compile
statistics such as end-to-end response time and
throughput and to periodically check a site’s
availability.

Representative tool(s): Keynote Systems
(www.keynote.com)

Stress tools help developers explore system behavior
under high levels of operational usage and find a
system’s breakpoints.

Representative tool(s):
Mercury Interactive (www.merc-int.com)
Open-source testing tools
(www.opensourcetesting.org/performance
.php)

Web Performance Load Tester
(www.webperformanceinc.com)

System resource monitors are part of most OS
server and Web server software; they monitor
resources such as disk space, CPU usage, and
memory.

Representative tool(s):
Successful Hosting.com
(www.successfulhosting.com)

Quest Software Foglight (www.quest.com)
Test data generation tools assist users in

generating test data.
Representative tool(s):
Comprehensive list at
www.softwareqatest.com/qatweb1.html

Test result comparators help compare the results of
one set of testing to that of another set. Use them to
check that code changes have not introduced adverse
changes in system behavior.

Representative tool(s):
Useful list at www.aptest.com/resources.html

Transaction monitors measure the performance of
high-volume transaction processing systems.

Representative tool(s):
QuotiumPro (www.quotium.com)
Software Research eValid
(www.soft.com/eValid/index.html)

Website security tools help detect potential security
problems. You can often set up security probing and
monitoring tools to run on a scheduled basis.

Representative tool(s):
Comprehensive list at
www.timberlinetechnologies.com/products/
www.html

20.10 SUMMARY

The goal of WebApp testing is to exercise each of the many dimensions of WebApp

quality with the intent of finding errors or uncovering issues that may lead to qual-

ity failures. Testing focuses on content, function, structure, usability, navigability,

pre75977_ch20.qxd 11/28/08 10:22 AM Page 553

http://www.acceleratedtechnology.com
http://www.ibm.com
http://www.microsoft.com
http://www.excelsoftware.com
http://www.bugtrack.net
http://www.mccabe.com
http://www.slac.stanford.edu/xorg/nmtf/nmtf-tools.html
http://www.slac.stanford.edu/xorg/nmtf/nmtf-tools.html
http://www.slac.stanford.edu/xorg/nmtf/nmtf-tools.html
http://www.compuware.com/products/qacenter/qarun
http://www.compuware.com/products/qacenter/qarun
http://www.rational.com
http://www.seque.com
http://www.keynote.com
http://www.merc-int.com
http://www.opensourcetesting.org/performance.php
http://www.opensourcetesting.org/performance.php
http://www.webperformanceinc.com
http://www.successfulhosting.com
http://www.quest.com
http://www.softwareqatest.com/qatweb1.html
http://www.aptest.com/resources.html
http://www.quotium.com
http://www.soft.com/eValid/index.html
http://www.timberlinetechnologies.com/products/
http://www.html

performance, compatibility, interoperability, capacity, and security. It incorporates

reviews that occur as the WebApp is designed, and tests that are conducted once the

WebApp has been implemented.

The WebApp testing strategy exercises each quality dimension by initially ex-

amining “units” of content, functionality, or navigation. Once individual units have

been validated, the focus shifts to tests that exercise the WebApp as a whole. To

accomplish this, many tests are derived from the user’s perspective and are driven

by information contained in use cases. A WebApp test plan is developed and iden-

tifies testing steps, work products (e.g., test cases), and mechanisms for the eval-

uation of test results. The testing process encompasses seven different types of

testing.

Content testing (and reviews) focus on various categories of content. The intent

is to uncover both semantic and syntactic errors that affect the accuracy of content

or the manner in which it is presented to the end user. Interface testing exercises the

interaction mechanisms that enable a user to communicate with the WebApp and

validates aesthetic aspects of the interface. The intent is to uncover errors that result

from poorly implemented interaction mechanisms or from omissions, inconsisten-

cies, or ambiguities in interface semantics.

Navigation testing applies use cases, derived as part of the modeling activity, in

the design of test cases that exercise each usage scenario against the navigation de-

sign. Navigation mechanisms are tested to ensure that any errors impeding comple-

tion of a use case are identified and corrected. Component testing exercises content

and functional units within the WebApp.

Configuration testing attempts to uncover errors and/or compatibility problems

that are specific to a particular client or server environment. Tests are then con-

ducted to uncover errors associated with each possible configuration. Security test-

ing incorporates a series of tests designed to exploit vulnerabilities in the WebApp

and its environment. The intent is to find security holes. Performance testing

encompasses a series of tests that are designed to assess WebApp response time and

reliability as demands on server-side resource capacity increase.

PROBLEMS AND POINTS TO PONDER

20.1. Are there any situations in which WebApp testing should be totally disregarded?

20.2. In your own words, discuss the objectives of testing in a WebApp context.

20.3. Compatibility is an important quality dimension. What must be tested to ensure that
compatibility exists for a WebApp?

20.4. Which errors tend to be more serious—client-side errors or server-side errors? Why?

20.5. What elements of the WebApp can be “unit tested”? What types of tests must be
conducted only after the WebApp elements are integrated?

20.6. Is it always necessary to develop a formal written test plan? Explain.

554 PART THREE QUALITY MANAGEMENT

pre75977_ch20.qxd 11/28/08 10:22 AM Page 554

20.7. Is it fair to say that the overall WebApp testing strategy begins with user-visible elements
and moves toward technology elements? Are there exceptions to this strategy?

20.8. Is content testing really testing in a conventional sense? Explain.

20.9. Describe the steps associated with database testing for a WebApp. Is database testing
predominantly a client-side or server-side activity?

20.10. What is the difference between testing that is associated with interface mechanisms
and testing that addresses interface semantics?

20.11. Assume that you are developing an online pharmacy (YourCornerPharmacy.com)
that caters to senior citizens. The pharmacy provides typical functions, but also maintains a
database for each customer so that it can provide drug information and warn of potential drug
interactions. Discuss any special usability tests for this WebApp.

20.12. Assume that you have implemented a drug interaction checking function for
YourCornerPharmacy.com (Problem 20.11). Discuss the types of component-level tests that
would have to be conducted to ensure that this function works properly. [Note: A database
would have to be used to implement this function.]

20.13. What is the difference between testing for navigation syntax and navigation semantics?

20.14. Is it possible to test every configuration that a WebApp is likely to encounter on the
server side? On the client side? If it is not, how do you select a meaningful set of configuration
tests?

20.15. What is the objective of security testing? Who performs this testing activity?

20.16. YourCornerPharmacy.com (Problem 20.11) has become wildly successful, and the
number of users has increased dramatically in the first two months of operation. Draw a graph
that depicts probable response time as a function of number of users for a fixed set of server-
side resources. Label the graph to indicate points of interest on the “response curve.”

20.17. In response to it success YourCornerPharmacy.com (Problem 20.11) has imple-
mented a special server solely to handle prescription refills. On average, 1000 concurrent
users submit a refill request once every two minutes. The WebApp downloads a 500-byte
block of data in response. What is the approximate required throughput for this server in
megabits per second?

20.18. What is the difference between load testing and stress testing?

FURTHER READINGS AND INFORMATION SOURCES

The literature for WebApp testing continues to evolve. Books by Andrews and Whittaker (How
to Break Web Software, Addison-Wesley, 2006), Ash (The Web Testing Companion, Wiley, 2003),
Nguyen and his colleagues (Testing Applications for the Web, 2d ed., Wiley, 2003), Dustin and his
colleagues (Quality Web Systems, Addison-Wesley, 2002), and Splaine and Jaskiel [Spl01] are
among the most complete treatments of the subject published to date. Mosley (Client-Server Soft-
ware Testing on the Desktop and the Web, Prentice Hall, 1999) addresses both client-side and
server-side testing issues.

Useful information on WebApp testing strategies and methods, as well as a worthwhile
discussion of automated testing tools is presented by Stottlemeyer (Automated Web Testing
Toolkit, Wiley, 2001). Graham and her colleagues (Software Test Automation, Addison-Wesley,
1999) present additional material on automated tools.

Microsoft (Performance Testing Guidance for Web Applications, Microsoft Press, 2008) and
Subraya (Integrated Approach to Web Performance Testing, IRM Press, 2006) present detailed
treatments of performance testing for WebApps. Chirillo (Hack Attacks Revealed, 2d ed., Wiley,
2003), Splaine (Testing Web Security, Wiley, 2002), Klevinsky and his colleagues (Hack I.T.:

CHAPTER 20 TESTING WEB APPLICATIONS 555

pre75977_ch20.qxd 11/28/08 10:22 AM Page 555

Security through Penetration Testing, Addison-Wesley, 2002), and Skoudis (Counter Hack, Prentice
Hall, 2001) provide much useful information for those who must design security tests. In addi-
tion, books that address security testing for software in general can provide important guidance
for those who must test WebApps. Representative titles include: Basta and Halton (Computer
Security and Penetration Testing, Thomson Delmar Learning, 2007), Wysopal and his colleagues
(The Art of Software Security Testing, Addison-Wesley, 2006), and Gallagher and his colleagues
(Hunting Security Bugs, Microsoft Press, 2006).

A wide variety of information sources on WebApp testing is available on the Internet. An
up-to-date list of World Wide Web references relevant to WebApp testing can be found at the
SEPA website: www.mhhe.com/engcs/compsci/pressman/professional/olc/ser.htm.

556 PART THREE QUALITY MANAGEMENT

pre75977_ch20.qxd 11/28/08 10:22 AM Page 556

http://www.mhhe.com/engcs/compsci/pressman/professional/olc/ser.htm

Unlike reviews and testing that begin once software models and code have
been developed, formal modeling and verification incorporate specialized
modeling methods that are integrated with prescribed verification

approaches. Without the appropriate modeling approach, verification cannot be
accomplished.

In this chapter I discuss two formal modeling and verification methods—
cleanroom software engineering and formal methods. Both demand a specialized
specification approach and each applies a unique verification method. Both are
quite rigorous and neither is used widely by the software engineering community.
But if you intend to build bulletproof software, these methods can help you
immeasurably. They’re worth learning about.

557

C H A P T E R

21FORMAL MODELING
AND VERIFICATION

What is it? How many times have
you heard someone say, “Do it right
the first time”? If we achieved that
in software, there’d be considerably

less effort expended on unnecessary software
rework. Two advanced software engineering
methods—cleanroom software engineering and
formal methods—help a software team to “do it
right the first time” by providing a mathemati-
cally based approach to program modeling and
the ability to verify that the model is correct.
Cleanroom software engineering emphasizes
mathematical verification of correctness before
program construction commences and certifica-
tion of software reliability as part of the testing
activity. Formal methods use set theory and logic
notation to create a clear statement of facts
(requirements) that can be analyzed to improve
(or even prove) correctness and consistency. The
bottom line for both methods is the creation of soft-
ware with extremely low failure rates.

Who does it? A specially trained software engineer.
Why is it important? Mistakes create rework.

Rework takes time and increases costs. Wouldn’t
it be nice if you could dramatically reduce the
number of mistakes (bugs) introduced as the

Q U I C K
L O O K

software is designed and built? That’s the prem-
ise of formal modeling and verification.

What are the steps? Requirements and design
models are created using specialized notation
that is amenable to mathematical verification.
Cleanroom software engineering uses box struc-
ture representation that encapsulates the system
(or some aspect of the system) at a specific level
of abstraction. Correctness verification is ap-
plied once the box structure design is complete.
Once correctness has been verified for each box
structure, statistical usage testing commences.
Formal methods translate software requirements
into a more formal representation by applying
the notation and heuristics of sets to define the
data invariant, states, and operations for a
system function.

What is the work product? A specialized, for-
mal model of requirements is developed. The
results of correctness proofs and statistical use
tests are recorded.

How do I ensure that I’ve done it right? Formal
proof of correctness is applied to the require-
ments model. Statistical use testing exercises
usage scenarios to ensure that errors in user
functionality are uncovered and corrected.

K E Y
C O N C E P T S

box structure
specification . . .558
certification . . .567
cleanroom
design 563
cleanroom process
model 559
correctness
verification559

pre75977_ch21.qxd 11/27/08 6:18 PM Page 557

Cleanroom software engineering is an approach that emphasizes the need to build

correctness into software as it is being developed. Instead of the classic analysis, de-

sign, code, test, and debug cycle, the cleanroom approach suggests a different point

of view [Lin94b]:

The philosophy behind cleanroom software engineering is to avoid dependence on costly

defect removal processes by writing code increments right the first time and verifying

their correctness before testing. Its process model incorporates the statistical quality

certification of code increments as they accumulate into a system.

In many ways, the cleanroom approach elevates software engineering to another

level by emphasizing the need to prove correctness.

Models developed using formal methods are described using a formal syntax and

semantics that specify system function and behavior. The specification is mathe-

matical in form (e.g., predicate calculus can be used as the basis for a formal speci-

fication language). In his introduction to formal methods, Anthony Hall [Hal90]

makes a comment that applies equally to cleanroom methods:

Formal methods [and cleanroom software engineering] are controversial. Their advo-

cates claim that they can revolutionize [software] development. Their detractors think

they are impossibly difficult. Meanwhile, for most people, formal methods [and clean-

room software engineering] are so unfamiliar that it is difficult to judge the competing

claims.

In this chapter, I explore formal modeling and verification methods and examine

their potential impact on software engineering in the years to come.

21.1 THE CLEANROOM STRATEGY

Cleanroom software engineering makes use of a specialized version of the incre-

mental software model introduced in Chapter 2. A “pipeline of software increments”

[Lin94b] is developed by small independent software teams. As each increment is

certified, it is integrated into the whole. Hence, functionality of the system grows

with time.

The sequence of cleanroom tasks for each increment is illustrated in Figure 21.1.

Within the pipeline for cleanroom increments, the following tasks occur:

Increment planning. A project plan that adopts the incremental strategy is

developed. The functionality of each increment, its projected size, and a

cleanroom development schedule are created. Special care must be taken to

ensure that certified increments will be integrated in a timely manner.

Requirements gathering. Using techniques similar to those introduced in

Chapter 5, a more-detailed description of customer-level requirements (for

each increment) is developed.

Box structure specification. A specification method that makes use of

box structures is used to describe the functional specification. Box structures

558 PART THREE QUALITY MANAGEMENT

design
refinement 563
formal specification
languages 573
functional
specification . . .560
object constraint
language
(OCL) 574

Z specification
language 577

uote:

“The only way for
errors to occur in
a program is by
being put there by
the author. No
other mechanisms
are known. . . .
Right practice aims
at preventing
insertion of errors
and, failing that,
removing them
before testing or
any other running
of the program.”

Harlan Mills

pre75977_ch21.qxd 11/27/08 6:18 PM Page 558

“isolate and separate the creative definition of behavior, data, and proce-

dures at each level of refinement” [Hev93].

Formal design. Using the box structure approach, cleanroom design is a

natural and seamless extension of specification. Although it is possible to

make a clear distinction between the two activities, specifications (called

black boxes) are iteratively refined (within an increment) to become analo-

gous to architectural and component-level designs (called state boxes and

clear boxes, respectively).

Correctness verification. The cleanroom team conducts a series of

rigorous correctness verification activities on the design and then the code.

Verification (Section 21.3.2) begins with the highest-level box structure

(specification) and moves toward design detail and code. The first level of

correctness verification occurs by applying a set of “correctness questions”

[Lin88]. If these do not demonstrate that the specification is correct, more

formal (mathematical) methods for verification are used.

Code generation, inspection, and verification. The box structure speci-

fications, represented in a specialized language, are translated into the

appropriate programming language. Technical reviews (Chapter 15) are then

used to ensure semantic conformance of the code and box structures and

syntactic correctness of the code. Then correctness verification is conducted

for the source code.

CHAPTER 21 FORMAL MODELING AND VERIFICATION 559

BSS
RG

Increment 1

SE

FD CV

TP

CG CI
SUT C

BSS
RG

Increment 2

FD CV

TP

CG CI
SUT C

BSS
RG

Increment 3

SE — system engineering
RG — requirements gathering
BSS — box structure specification
FD — formal design
CV — correctness verification

CG — code generation
CI — code inspection
SUT — statistical use testing
C — certification
TP — test planning

FD CV

TP

CG CI
SUT C

FIGURE 21.1

The cleanroom
process model

WebRef
An excellent source
of information and
resources for
cleanroom software
engineering can be
found at www
.cleansoft.com.

uote:

”Cleanroom
software
engineering
achieves statistical
quality control
over software
development by
strictly separating
the design process
from the testing
process in a
pipeline of
incremental
software
development.”

Harlan Mills

pre75977_ch21.qxd 11/27/08 6:18 PM Page 559

Statistical test planning. The projected usage of the software is analyzed,

and a suite of test cases that exercise a “probability distribution” of usage is

planned and designed (Section 21.4). Referring to Figure 21.1, this cleanroom

activity is conducted in parallel with specification, verification, and code

generation.

Statistical use testing. Recalling that exhaustive testing of computer soft-

ware is impossible (Chapter 18), it is always necessary to design a finite num-

ber of test cases. Statistical use techniques [Poo88] execute a series of tests

derived from a statistical sample (the probability distribution noted earlier)

of all possible program executions by all users from a targeted population

(Section 21.4).

Certification. Once verification, inspection, and usage testing have been

completed (and all errors are corrected), the increment is certified as ready

for integration.

The first four activities in the cleanroom process set the stage for the formal verifi-

cation activities that follow. For this reason, I begin the discussion of the cleanroom

approach with the modeling activities that are essential for formal verification to be

applied.

21.2 FUNCTIONAL SPECIF ICATION

The modeling approach in cleanroom software engineering uses a method called

box structure specification. A “box” encapsulates the system (or some aspect of the

system) at some level of detail. Through a process of elaboration or stepwise refine-

ment, boxes are refined into a hierarchy where each box has referential trans-

parency. That is, “the information content of each box specification is sufficient to

define its refinement, without depending on the implementation of any other box”

[Lin94b]. This enables the analyst to partition a system hierarchically, moving from

essential representation at the top to implementation-specific detail at the bottom.

Three types of boxes are used:

Black box. The black box specifies the behavior of a system or a part of a

system. The system (or part) responds to specific stimuli (events) by applying

a set of transition rules that map the stimulus into a response.

State box. The state box encapsulates state data and services (operations)

in a manner that is analogous to objects. In this specification view, inputs

to the state box (stimuli) and outputs (responses) are represented. The state

box also represents the “stimulus history” of the black box, that is, the data

encapsulated in the state box that must be retained between the transitions

implied.

Clear box. The transition functions that are implied by the state box are

defined in the clear box. Stated simply, a clear box contains the procedural

design for the state box.

560 PART THREE QUALITY MANAGEMENT

Cleanroom emphasizes
tests that exercise the
way software is really
used. Use cases
provide input to the
test planning process.

uote:

“It’s a funny thing
about life: If you
refuse to accept
anything but the
best, you may very
often get it.”

W. Somerset
Maugham

How is
refinement

accomplished as
part of a box
structure
specification?

?

pre75977_ch21.qxd 11/27/08 6:18 PM Page 560

Figure 21.2 illustrates the refinement approach using box structure specification.

A black box (BB1) defines responses for a complete set of stimuli. BB1 can be refined

into a set of black boxes, BB1.1 to BB1.n, each of which addresses a class of behavior.

Refinement continues until a cohesive class of behavior is identified (e.g., BB1.1.1). A

state box (SB1.1.1) is then defined for the black box (BB1.1.1). In this case, SB1.1.1 contains

all data and services required to implement the behavior defined by BB1.1.1. Finally,

SB1.1.1 is refined into clear boxes (CB1.1.1.n) and procedural design details are specified.

As each of these refinement steps occurs, verification of correctness also occurs.

State-box specifications are verified to ensure that each conforms to the behavior

defined by the parent black-box specification. Similarly, clear-box specifications are

verified against the parent state box.

21.2.1 Black-Box Specification

A black-box specification describes an abstraction, stimuli, and response using the

notation shown in Figure 21.3 [Mil88]. The function f is applied to a sequence S* of

inputs (stimuli) S and transforms them into an output (response) R. For simple soft-

ware components, f may be a mathematical function, but in general, f is described

using natural language (or a formal specification language).

CHAPTER 21 FORMAL MODELING AND VERIFICATION 561

BB1

CB1.1.1.1

CB1.1.1.2

CB1.1.1.3

SB1.1.1BB1.1.1

BB1.1.2

BB1.1.3

BB1.1

BB1.2

BB1.n

FIGURE 21.2

Box structure
refinement

Box structure
refinement and
correctness verification
occur simultaneously.

f : S* RS R

FIGURE 21.3

A black-box
specification

pre75977_ch21.qxd 11/27/08 6:18 PM Page 561

Many of the concepts introduced for object-oriented systems are also applicable

for the black box. Data abstractions and the operations that manipulate those ab-

stractions are encapsulated by the black box. Like a class hierarchy, the black-box

specification can exhibit usage hierarchies in which low-level boxes inherit the prop-

erties of those boxes higher in the tree structure.

21.2.2 State-Box Specification

The state box is “a simple generalization of a state machine” [Mil88]. Recalling the

discussion of behavioral modeling and state diagrams in Chapter 7, a state is some

observable mode of system behavior. As processing occurs, a system responds to

events (stimuli) by making a transition from the current state to some new state. As

the transition is made, an action may occur. The state box uses a data abstraction to

determine the transition to the next state and the action (response) that will occur as

a consequence of the transition.

Referring to Figure 21.4 , the state box incorporates a black box g. The stimulus S

that is input to the black box arrives from some external source and a set of internal

system states T. Mills [Mil88] provides a mathematical description of the function f of

the black box contained within the state box:

g : S* � T* → R � T

where g is a subfunction that is tied to a specific state t. When considered collectively,

the state-subfunction pairs (t, g) define the black-box function f.

21.2.3 Clear-Box Specification

The clear-box specification is closely aligned with procedural design and structured

programming. In essence, the subfunction g within the state box is replaced by the

structured programming constructs that implement g.

As an example, consider the clear box shown in Figure 21.5. The black box g, shown

in Figure 21.3, is replaced by a sequence construct that incorporates a conditional.

562 PART THREE QUALITY MANAGEMENT

S RBlack box, g

T

State

FIGURE 21.4

A state-box
specification

pre75977_ch21.qxd 11/27/08 6:18 PM Page 562

These, in turn, can be refined into lower-level clear boxes as stepwise refinement

proceeds.

It is important to note that the procedural specification described in the clear-box

hierarchy can be proved to be correct. This topic is considered in Section 21.3.

21.3 CLEANROOM DESIGN

Cleanroom software engineering makes heavy use of the structured programming

philosophy (Chapter 10). But in this case, structured programming is applied far more

rigorously.

Basic processing functions (described during earlier refinements of the specifica-

tion) are refined using a “stepwise expansion of mathematical functions into

structures of logical connectives [e.g., if-then-else] and subfunctions, where the

expansion [is] carried out until all identified subfunctions could be directly stated in

the programming language used for implementation” [Dye92].

The structured programming approach can be used effectively to refine function,

but what about data design? Here a number of fundamental design concepts

(Chapter 8) come into play. Program data are encapsulated as a set of abstractions

that are serviced by subfunctions. The concepts of data encapsulation, information

hiding, and data typing are used to create the data design.

29.3.1 Design Refinement

Each clear-box specification represents the design of a procedure (subfunction)

required to accomplish a state-box transition. Within the clear box, structured pro-

gramming constructs and stepwise refinement are used to represent procedural de-

tail. For example, a program function f is refined into a sequence of subfunctions g

and h. These in turn are refined into conditional constructs (e.g., if-then-else and do-

while). Further refinement continues until there is enough procedural detail to create

the component in question.

CHAPTER 21 FORMAL MODELING AND VERIFICATION 563

S R

T

State

g11 cg1

g12

g13

FIGURE 21.5

A clear-box
specification

pre75977_ch21.qxd 11/27/08 6:18 PM Page 563

At each level of refinement, the cleanroom team1 performs a formal correctness

verification. To accomplish this, a set of generic correctness conditions are attached

to the structured programming constructs. If a function f is expanded into a sequence

g and h, the correctness condition for all input to f is

• Does g followed by h do f?

When a function p is refined into a conditional of the form, if <c> then q, else r, the

correctness condition for all input to p is

• Whenever condition �c� is true, does q do p; and whenever �c� is false,

does r do p?

When function m is refined as a loop, the correctness conditions for all input to m

are

• Is termination guaranteed?

• Whenever �c� is true, does n followed by m do m; and whenever �c� is

false, does skipping the loop still do m?

Each time a clear box is refined to the next level of detail, these correctness condi-

tions are applied.

21.3.2 Design Verification

You should note that the use of the structured programming constructs constrains the

number of correctness tests that must be conducted. A single condition is checked

for sequences; two conditions are tested for if-then-else, and three conditions are

verified for loops.

To illustrate correctness verification for a procedural design, we use a simple

example first introduced by Linger, Mills, and Witt [Lin79]. The intent is to design and

verify a small program that finds the integer part y of a square root of a given inte-

ger x. The procedural design is represented using the flowchart in Figure 21.6.2

To verify the correctness of this design, entry and exit conditions are added as

shown in Figure 21.6. The entry condition notes that x must be greater than or equal

to 0. The exit condition requires that x remain unchanged and that y satisfy the ex-

pression noted in the figure. To prove the design to be correct, it is necessary to prove

the conditions init, loop, cont, yes, and exit shown in Figure 21.6 are true in all cases.

These are sometimes called subproofs.

1. The condition init demands that [x � 0 and y � 0]. Based on the requirements

of the problem, the entry condition is assumed correct.3 Therefore, the first

part of the init condition, x � 0, is satisfied. Referring to the flowchart, the

564 PART THREE QUALITY MANAGEMENT

What
conditions

are applied to
prove structured
constructs
correct?

?

If you limit yourself to
just the structured
constructs as you
develop a procedural
design, proof of
correctness is straight-
forward. If you violate
the constructs, correct-
ness proofs are difficult
or impossible.

1 Because the entire team is involved in the verification process, it is less likely that an error will be
made in conducting the verification itself.

2 Figure 21.6 has been adapted from [Lin94]. Used with permission.
3 A negative value for the square root has no meaning in this context.

pre75977_ch21.qxd 11/27/08 6:18 PM Page 564

statement immediately preceding the init condition, sets y � 0. Therefore, the

second part of the init condition is also satisfied. Hence, init is true.

2. The loop condition may be encountered in one of two ways: (1) directly from

init (in this case, the loop condition is satisfied directly) or via control flow

that passes through the condition cont. Since the cont condition is identical to

the loop condition, loop is true regardless of the flow path that leads to it.

3. The cont condition is encountered only after the value of y is incremented by 1.

In addition, the control flow path that leads to cont can be invoked only if the

yes condition is also true. Hence, if (y � 1)2 � x, it follows that y2 � x. The

cont condition is satisfied.

4. The yes condition is tested in the conditional logic shown. Hence, the yes

condition must be true when control flow moves along the path shown.

5. The exit condition first demands that x remain unchanged. An examination of

the design indicates that x appears nowhere to the left of an assignment oper-

ator. There are no function calls that use x. Hence, it is unchanged. Since the

conditional test (y � 1)2 � x must fail to reach the exit condition, it follows

that (y � 1)2 � x. In addition, the loop condition must still be true (i.e., y2 � x).

Therefore, (y � 1)2 � x and y2 � x can be combined to satisfy the exit condition.

You must further ensure that the loop terminates. An examination of the loop condition

indicates that, because y is incremented and x � 0, the loop must eventually terminate.

The five steps just noted are a proof of the correctness of the design of the algo-

rithm noted in Figure 21.6. You are now certain that the design will, in fact, compute

the integer part of a square root.

CHAPTER 21 FORMAL MODELING AND VERIFICATION 565

y := y + 1(y + 1)2 ≤ x

y := 0

sqrt

exit: x unchanged and y2 ≤ x ≤ (y + 1)2

yes: (y + 1)2 ≤ x

loop: [y2 ≤ x] cont: [y2 ≤ x]

init: [x ≥ 0, and y = 0]

entry: [x ≥ 0]
FIGURE 21.6

Computing the
integer part of
a square root
Source: [Lin79].

To prove a design correct,
you must first identify all
conditions and then prove
that each takes on the
appropriate Boolean
value. These are called
subproofs.

pre75977_ch21.qxd 11/27/08 6:18 PM Page 565

A more rigorous mathematical approach to design verification is possible. How-

ever, a discussion of this topic is beyond the scope of this book. If you have interest,

refer to [Lin79].

21.4 CLEANROOM TESTING

The strategy and tactics of cleanroom testing are fundamentally different from

conventional testing approaches (Chapters 17 through 20). Conventional methods

derive a set of test cases to uncover design and coding errors. The goal of cleanroom

testing is to validate software requirements by demonstrating that a statistical sam-

ple of use cases (Chapter 5) have been executed successfully.

21.4.1 Statistical Use Testing

The user of a computer program rarely needs to understand the technical details of

the design. The user-visible behavior of the program is driven by inputs and events

that are often produced by the user. But in complex systems, the possible spectrum

of input and events (i.e., the use cases) can be extremely broad. What subset of use

cases will adequately verify the behavior of the program? This is the first question

addressed by statistical use testing.

Statistical use testing “amounts to testing software the way users intend to use it”

[Lin94b]. To accomplish this, cleanroom testing teams (also called certification teams)

must determine a usage probability distribution for the software. The specification

(black box) for each increment of the software is analyzed to define a set of stimuli

(inputs or events) that cause the software to change its behavior. Based on inter-

views with potential users, the creation of usage scenarios, and a general under-

standing of the application domain, a probability of use is assigned to each stimuli.

Test cases are generated for each set of stimuli4 according to the usage probability

distribution. To illustrate, consider the SafeHome system discussed earlier in this book.

Cleanroom software engineering is being used to develop a software increment that

manages user interaction with the security system keypad. Five stimuli have been iden-

tified for this increment. Analysis indicates the percent probability distribution of each

stimulus. To make selection of test cases easier, these probabilities are mapped into

intervals numbered between 1 and 99 [Lin94] and illustrated in the following table:

Program Stimulus Probability Interval

Arm/disarm (AD) 50% 1–49

Zone set (ZS) 15% 50–63

Query (Q) 15% 64–78

Test (T) 15% 79–94

Panic alarm 5% 95–99

566 PART THREE QUALITY MANAGEMENT

uote:

“Quality is not an
act, it is a habit.”

Aristotle

Even if you decide
against the cleanroom
approach, it’s worth
considering statistical
use testing as an
integral part of your
test strategy.

4 Automated tools may be used to accomplish this. For further information, see [Dye92].

pre75977_ch21.qxd 11/27/08 6:18 PM Page 566

To generate a sequence of usage test cases that conform to the usage probability

distribution, random numbers between 1 and 99 are generated. Each random num-

ber corresponds to an interval on the preceding probability distribution. Hence, the

sequence of usage test cases is defined randomly but corresponds to the appropri-

ate probability of stimuli occurrence. For example, assume the following random-

number sequences are generated:

13-94-22-24-45-56

81-19-31-69-45-9

38-21-52-84-86-4

Selecting the appropriate stimuli based on the distribution interval shown in the

table, the following use cases are derived:

AD–T–AD–AD–AD–ZS

T–AD–AD–AD–Q–AD–AD

AD–AD–ZS–T–T–AD

The testing team executes these use cases and verifies software behavior against the

specification for the system. Timing for tests is recorded so that interval times may

be determined. Using interval times, the certification team can compute mean-time-

to-failure. If a long sequence of tests is conducted without failure, the MTTF is low

and software reliability may be assumed high.

21.4.2 Certification

The verification and testing techniques discussed earlier in this chapter lead to soft-

ware components (and entire increments) that can be certified. Within the context of

the cleanroom software engineering approach, certification implies that the reliabil-

ity [measured by mean-time-to-failure (MTTF)] can be specified for each component.

The potential impact of certifiable software components goes far beyond a

single cleanroom project. Reusable software components can be stored along

with their usage scenarios, program stimuli, and probability distributions. Each

component would have a certified reliability under the usage scenario and testing

regime described. This information is invaluable to others who intend to use the

components.

The certification approach involves five steps [Woh94]: (1) usage scenarios must

be created, (2) a usage profile is specified, (3) test cases are generated from the pro-

file, (4) tests are executed and failure data are recorded and analyzed, and (5) relia-

bility is computed and certified. Steps 1 through 4 have been discussed in an earlier

section. Certification for cleanroom software engineering requires the creation of

three models [Poo93]:

Sampling model. Software testing executes m random test cases and is

certified if no failures or a specified numbers of failures occur. The value of m

is derived mathematically to ensure that required reliability is achieved.

CHAPTER 21 FORMAL MODELING AND VERIFICATION 567

How do we
certify a

software
component?

?

pre75977_ch21.qxd 11/27/08 6:18 PM Page 567

Component model. A system composed of n components is to be certi-

fied. The component model enables the analyst to determine the probability

that component i will fail prior to completion.

Certification model. The overall reliability of the system is projected and

certified.

At the completion of statistical use testing, the certification team has the information

required to deliver software that has a certified MTTF computed using each of these

models. If you have further interest, see [Cur86], [Mus87], or [Poo93] for additional

detail.

21.5 FORMAL METHODS CONCEPTS

The Encyclopedia of Software Engineering [Mar01] defines formal methods in the

following manner:

Formal methods used in developing computer systems are mathematically based tech-

niques for describing system properties. Such formal methods provide frameworks within

which people can specify, develop, and verify systems in a systematic, rather than ad hoc

manner.

The desired properties of a formal specification—consistency, completeness, and

lack of ambiguity—are the objectives of all specification methods. However, the

mathematically based specification language used for formal methods results in a

much higher likelihood of achieving these properties. The formal syntax of a speci-

fication language (Section 21.7) enables requirements or design to be interpreted in

only one way, eliminating ambiguity that often occurs when a natural language

(e.g., English) or a graphical notation (e.g., UML) must be interpreted by a reader. The

descriptive facilities of set theory and logic notation enable a clear statement of

requirements. To be consistent, requirements stated in one place in a specification

should not be contradicted in another place. Consistency is achieved5 by mathemat-

ically proving that initial facts can be formally mapped (using inference rules) into

later statements within the specification.

To introduce basic formal methods concepts, let’s consider a few simple exam-

ples to illustrate the use of mathematical specification, without getting bogged down

in too much mathematical detail.

Example 1: A symbol table. A program is used to maintain a symbol table. Such

a table is used frequently in many different types of applications. It consists of a col-

lection of items without any duplication. An example of a typical symbol table is

568 PART THREE QUALITY MANAGEMENT

uote:

“Formal methods
have tremendous
potential for
improving the
clarity and
precision of
requirements
specifications,
and in finding
important and
subtle errors.”

Steve
Easterbrook
et al.

5 In reality, completeness is difficult to ensure, even when formal methods are used. Some aspects
of a system may be left undefined as the specification is being created; other characteristics may be
purposely omitted to allow designers some freedom in choosing an implementation approach; and
finally, it is impossible to consider every operational scenario in a large, complex system. Things
may simply be omitted by mistake.

pre75977_ch21.qxd 11/27/08 6:18 PM Page 568

shown in Figure 21.7. It represents the table used by an operating system to hold the

names of the users of the system. Other examples of tables include the collection of

names of staff in a payroll system, the collection of names of computers in a network

communications system, and the collection of destinations in a system for produc-

ing transportation timetables.

Assume that the table presented in this example consists of no more than MaxIds

names. This statement, which places a constraint on the table, is a component of a

condition known as a data invariant. A data invariant is a condition that is true

throughout the execution of the system that contains a collection of data. The data

invariant that holds for the symbol table just discussed has two components: (1) that

the table will contain no more than MaxIds names and (2) that there will be no du-

plicate names in the table. In the case of the symbol table program, this means that

no matter when the symbol table is examined during execution of the system, it will

always contain no more than MaxIds names and will contain no duplicates.

Another important concept is that of a state. Many formal languages, such as OCL

(Section 21.7.1), use the notion of states as they were discussed in Chapter 7; that is,

a system can be in one of several states, each representing an externally observable

mode of behavior. However, a different definition for the term state is used in the Z

language (Section 21.7.2). In Z (and related languages), the state of a system is rep-

resented by the system’s stored data (hence, Z suggests a much larger number of

states, representing each possible configuration of the data). Using the latter defini-

tion in the example of the symbol table program, the state is the symbol table.

The final concept is that of an operation. This is an action that takes place within a

system and reads or writes data. If the symbol table program is concerned with adding

and removing names from the symbol table, then it will be associated with two oper-

ations: an operation to add() a specified name to the symbol table and an operation

to remove() an existing name from the table.6 If the program provides the facility to

CHAPTER 21 FORMAL MODELING AND VERIFICATION 569

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Wilson

Simpson

Abel

Fernandez

MaxIds = 10

FIGURE 21.7

A symbol table

A data invariant is a
set of conditions that
are true throughout the
execution of the
system that contains
a collection of data.

Another way of looking
at the notion of the
state is to say that
data determines state.
That is, you can
examine data to see
what state the system
is in.

6 It should be noted that adding a name cannot occur in the full state and deleting a name is impos-
sible in the empty state.

pre75977_ch21.qxd 11/27/08 6:18 PM Page 569

check whether a specific name is contained in the table, then there would be an

operation that would return some indication of whether the name is in the table.

Three types of conditions can be associated with operations: invariants, precon-

ditions, and postconditions. An invariant defines what is guaranteed not to change.

For example, the symbol table has an invariant that states that the number of

elements is always less than or equal to MaxIds. A precondition defines the circum-

stances in which a particular operation is valid. For example, the precondition for an

operation that adds a name to a staff identifier symbol table is valid only if the name

that is to be added is not contained in the table and also if there are fewer than

MaxIds staff identifiers in the table. The postcondition of an operation defines what is

guaranteed to be true upon completion of an operation. This is defined by its effect

on the data. For the add() operation, the postcondition would specify mathematically

that the table has been augmented with the new identifier.

Example 2: A block handler. One of the more important parts of a simple oper-

ating system is the subsystem that maintains files created by users. Part of the filing

subsystem is the block handler. Files in the file store are composed of blocks of stor-

age that are held on a file storage device. During the operation of the computer, files

will be created and deleted, requiring the acquisition and release of blocks of storage.

In order to cope with this, the filing subsystem will maintain a reservoir of unused

(free) blocks and keep track of blocks that are currently in use. When blocks are re-

leased from a deleted file, they are normally added to a queue of blocks waiting to be

added to the reservoir of unused blocks. This is shown in Figure 21.8. In this figure, a

number of components are shown: the reservoir of unused blocks, the blocks that

currently make up the files administered by the operating system, and those blocks

that are waiting to be added to the reservoir. The waiting blocks are held in a queue,

with each element of the queue containing a set of blocks from a deleted file.

570 PART THREE QUALITY MANAGEMENT

1 3 4 6 9

File #1

5 8 11

File #2

7

File #3
Block queue containing blocks from deleted files

Unused blocks

2

Queued for entry into unused blocks

2 5 7 8 10
11 12

Used blocks

Blocks are released
to queue when files
are deleted

FIGURE 21.8

A block
handler

pre75977_ch21.qxd 11/27/08 6:18 PM Page 570

For this subsystem the state is the collection of free blocks, the collection of used

blocks, and the queue of returned blocks. The data invariant, expressed in natural

language, is

• No block will be marked as both unused and used.

• All the sets of blocks held in the queue will be subsets of the collection of

currently used blocks.

• No elements of the queue will contain the same block numbers.

• The collection of used blocks and blocks that are unused will be the total

collection of blocks that make up files.

• The collection of unused blocks will have no duplicate block numbers.

• The collection of used blocks will have no duplicate block numbers.

Some of the operations associated with this data are: add() a collection of blocks to

the end of the queue, remove() a collection of used blocks from the front of the queue

and place them in the collection of unused blocks, and check() whether the queue of

blocks is empty.

The precondition of add() is that the blocks to be added must be in the collection

of used blocks. The postcondition is that the collection of blocks is now found at the

end of the queue. The precondition of remove() is that the queue must have at least

one item in it. The postcondition is that the blocks must be added to the collection

of unused blocks. The check() operation has no precondition. This means that the op-

eration is always defined, regardless of what value the state is. The postcondition de-

livers the value true if the queue is empty and false otherwise.

In the examples noted in this section, I introduce the key concepts of formal spec-

ification but without emphasizing the mathematics that are required to make the

specification formal. In Section 21.6, I consider how mathematical notation can be

used to formally specify some element of a system.

21.6 APPLYING MATHEMATICAL NOTATION7FOR
FORMAL SPECIF ICATION

To illustrate the use of mathematical notation in the formal specification of a soft-

ware component, we revisit the block handler example presented in Section 21.5. To

review, an important component of a computer’s operating system maintains files

that have been created by users. The block handler maintains a reservoir of unused

blocks and will also keep track of blocks that are currently in use. When blocks are

released from a deleted file, they are normally added to a queue of blocks waiting to

CHAPTER 21 FORMAL MODELING AND VERIFICATION 571

Brain storming tech-
niques can work well
when you must
develop a data
invariant for a reason-
ably complex function.
Have members of the
software team write
bounds, restrictions,
and limitations for the
function and then
combine and edit.

7 I have written this section making the assumption that you are familiar with the mathematical no-
tation associated with sets and sequences and the logical notation used in predicate calculus. If you
need a review, a brief overview is presented as a supplementary resource at the 7th edition web-
site. For more detailed information, see [Jec06] or [Pot04].

pre75977_ch21.qxd 11/27/08 6:18 PM Page 571

be added to the reservoir of unused blocks. This has been depicted schematically in

Figure 21.8.

A set named BLOCKS will consist of every block number. AllBlocks is a set of

blocks that lie between 1 and MaxBlocks. The state will be modeled by two sets and

a sequence. The two sets are used and free. Both contain blocks—the used set con-

tains the blocks that are currently used in files, and the free set contains blocks that

are available for new files. The sequence will contain sets of blocks that are ready to

be released from files that have been deleted. The state can be described as

used, free: � BLOCKS

BlockQueue: seq � BLOCKS

This is very much like the declaration of program variables. It states that used and

free will be sets of blocks and that BlockQueue will be a sequence, each element of

which will be a set of blocks. The data invariant can be written as

used � free � ∅ �
used � free � AllBlocks �
	 i: dom BlockQueue • BlockQueue i � used �
	 i, j: dom BlockQueue • i
 j � BlockQueue i � BlockQueue j � ∅

The mathematical components of the data invariant match four of the bulleted,

natural-language components described earlier. The first line of the data invariant

states that there will be no common blocks in the used collection and free collections

of blocks. The second line states that the collection of used blocks and free blocks

will always be equal to the whole collection of blocks in the system. The third line

indicates the ith element in the block queue will always be a subset of the used

blocks. The final line states that, for any two elements of the block queue that are

not the same, there will be no common blocks in these two elements. The final two

natural language components of the data invariant are implemented by virtue of the

fact that used and free are sets and therefore will not contain duplicates.

The first operation to be defined is one that removes an element from the head of

the block queue. The precondition is that there must be at least one item in the queue:

#BlockQueue � 0,

The postcondition is that the head of the queue must be removed and placed in the

collection of free blocks and the queue adjusted to show the removal:

used′ � used \ head BlockQueue �
free′ � free � head BlockQueue �
BlockQueue′ � tail BlockQueue

A convention used in many formal methods is that the value of a variable after an op-

eration is primed. Hence, the first component of the preceding expression states that

the new used blocks (used’) will be equal to the old used blocks minus the blocks that

have been removed. The second component states that the new free blocks (free’)

572 PART THREE QUALITY MANAGEMENT

WebRef
Extensive information
of formal methods
can be found at
www.afm.sbu
.ac.uk.

How can I
represent

states and data
invariants using a
set and logic
operators?

?

pre75977_ch21.qxd 11/27/08 6:18 PM Page 572

http://www.afm.sbu

will be the old free blocks with the head of the block queue added to it. The third com-

ponent states that the new block queue will be equal to the tail of the old value of the

block queue, that is, all elements in the queue apart from the first one. A second

operation adds a collection of blocks, Ablocks, to the block queue. The precondition

is that Ablocks is currently a set of used blocks:

Ablocks � used

The postcondition is that the set of blocks is added to the end of the block queue and

the set of used and free blocks remains unchanged:

BlockQueue′ � BlockQueue � �Ablocks � �
used′ � used �
free′ � free

There is no question that the mathematical specification of the block queue is

considerably more rigorous than a natural language narrative or a graphical model.

The additional rigor requires effort, but the benefits gained from improved consis-

tency and completeness can be justified for some application domains.

21.7 FORMAL SPECIF ICATION LANGUAGES

A formal specification language is usually composed of three primary components:

(1) a syntax that defines the specific notation with which the specification is repre-

sented, (2) semantics to help define a ”universe of objects” [Win90] that will be used

to describe the system, and (3) a set of relations that define the rules that indicate

which objects properly satisfy the specification.

The syntactic domain of a formal specification language is often based on a syn-

tax that is derived from standard set theory notation and predicate calculus. The

semantic domain of a specification language indicates how the language represents

system requirements.

It is possible to use different semantic abstractions to describe the same system in

different ways. We did this in a less formal fashion in Chapters 6 and 7. Information,

function, and behavior were each represented. Different modeling notation can be

used to represent the same system. The semantics of each representation provides

complementary views of the system. To illustrate this approach when formal meth-

ods are used, assume that a formal specification language is used to describe the set

of events that cause a particular state to occur in a system. Another formal relation

depicts all functions that occur within a given state. The intersection of these two re-

lations provides an indication of the events that will cause specific functions to occur.

A variety of formal specification languages are in use today. OCL [OMG03b], Z

[ISO02], LARCH [Gut93], and VDM [Jon91] are representative formal specification

languages that exhibit the characteristics noted previously. In this chapter, I present

a brief discussion of OCL and Z.

CHAPTER 21 FORMAL MODELING AND VERIFICATION 573

How do I
represent

pre- and
postconditions?

?

pre75977_ch21.qxd 11/27/08 6:18 PM Page 573

574 PART THREE QUALITY MANAGEMENT

8 This section has been contributed by Professor Timothy Lethbridge of The University of Ottawa and
is presented here with permission.

TABLE 21.1 SUMMARY OF KEY OCL NOTATION

x.y Obtain the property y of object x. A property can be an
attribute, the set of objects at the end of an association, the
result of evaluating an operation, or other things depending on
the type of UML diagram. If x is a Set, then y is applied to
every element of x; the results are collected into a new Set.

c��f() Apply the built-in OCL operation f to Collection c itself (as
opposed to each of the objects in c). Examples of built-in
operations are listed below.

and, or, �, �� Logical and, logical or, equals, not-equals.

p implies q True if either q is true or p is false.

Sample of Operations on Collections (including Sets and Sequences)

C��size() The number of elements in Collection c.

C��isEmpty() True if c has no elements, false otherwise.

c1��includesAll(c2) True if every element of c2 is found in c1.

c1��excludesAll(c2) True if no element of c2 is found in c1.

C��forAll(elem | boolexpr) True if boolexpr is true when applied to every element of c. As
an element is being evaluated, it is bound to the variable elem,
which can be used in boolexpr. This implements universal
quantification, discussed earlier.

C��forAll(elem1, elem2 | boolexpr) Same as above, except that boolexpr is evaluated for every
possible pair of elements taken from c, including cases where
the pair consists of the same element.

C��isUnique(elem | expr) True if expr evaluates to a different value when applied to
every element of c.

Sample of Operations Specific to Sets

s1��intersection(s2) The set of those elements found s1 and also in s2.

s1��union(s2) The set of those elements found in either s1 or s2.

s1��excluding(x) The set s1 with object x omitted.

Sample Operation Specific to Sequences

Seq��first() The object that is the first element in the sequence seq.

21.7.1 Object Constraint Language (OCL)8

Object Constraint Language (OCL) is a formal notation developed so that users of UML

can add more precision to their specifications. All of the power of logic and discrete

mathematics is available in the language. However, the designers of OCL decided

that only ASCII characters (rather than conventional mathematical notation) should

pre75977_ch21.qxd 11/27/08 6:18 PM Page 574

be used in OCL statements. This makes the language more friendly to people who

are less mathematically inclined, and more easily processed by computer. But it also

makes OCL a little wordy in places.

To use OCL, you start with one or more UML diagrams—most commonly class, state,

or activity diagrams (Appendix 1). OCL expressions are added and state facts about

elements of the diagrams. These expressions are called constraints; any implementa-

tion derived from the model must ensure each of the constraints always remains true.

Like an object-oriented programming language, an OCL expression involves

operators operating on objects. However, the result of a complete expression must

always be a Boolean, that is, true or false. The objects can be instances of the OCL

Collection class, of which Set and Sequence are two subclasses.

The object self is the element of the UML diagram in the context of which the OCL

expression is being evaluated. Other objects can be obtained by navigating using the

. (dot) symbol from the self object. For example:

• If self is class C, with attribute a, then self.a evaluates to the object stored in a.

• If C has a one-to-many association called assoc to another class D, then

self.assoc evaluates to a Set whose elements are of type D.

• Finally (and a little more subtly), if D has attribute b, then the expression

self.assoc.b evaluates to the set of all the b’s belonging to all D’s.

OCL provides built-in operations implementing set and logic operators, constructive

specification, and related mathematics. A small sample of these is presented in

Table 21.1.

To illustrate the use of OCL in specification, we reexamine the block handler

example, introduced in Section 21.5. The first step is to develop a UML model

(Figure 21.9). This class diagram specifies many relationships among the objects

involved. However, OCL expressions are added to allow implementers of the system

to know more precisely what must remain true as the system runs.

CHAPTER 21 FORMAL MODELING AND VERIFICATION 575

11

Block BlockSet

BlockHandler

*

*
**

*

1

1

1

blockQueue
{orderd}free

allBlocks

{subset}
{subset}

used

elements

addBlock()
removeBlock()

number

FIGURE 21.9

Class diagram
for a block
handler

pre75977_ch21.qxd 11/27/08 6:18 PM Page 575

The OCL expressions that supplement the class diagram correspond to the six

parts of the invariant discussed in Section 21.5. In the example that follows, the in-

variant is repeated in English and then the corresponding OCL expression is written.

It is considered good practice to provide natural language text along with the formal

logic; doing so helps you to understand the logic, and also helps reviewers to un-

cover mistakes, e.g., situations where English and the logic do not correspond.

1. No block will be marked as both unused and used.

context BlockHandler inv:

(self.used��intersection(self.free)) ��isEmpty()

Note that each expression starts with the key word context. This indicates

the element of the UML diagram that the expression constrains. Alternatively,

you could place the constraint directly on the UML diagram, surrounded by

braces {}. The keyword self here refers to the instance of BlockHandler; in the

following, as is permissible in OCL, we will omit the self.

2. All the sets of blocks held in the queue will be subsets of the collection of

currently used blocks.

context BlockHandler inv:

blockQueue��forAll(aBlockSet | used��includesAll(aBlockSet))

3. No elements of the queue will contain the same block numbers.

context BlockHandler inv:

blockQueue��forAll(blockSet1, blockSet2 |

blockSet1 �� blockSet2 implies

blockSet1.elements.number��excludesAll(blockSet2elements.number))

The expression before implies is needed to ensure we ignore pairs where both

elements are the same block.

4. The collection of used blocks and blocks that are unused will be the total collec-

tion of blocks that make up files.

context BlockHandler inv:

allBlocks � used��union(free)

5. The collection of unused blocks will have no duplicate block numbers.

context BlockHandler inv:

free��isUnique(aBlock | aBlock.number)

6. The collection of used blocks will have no duplicate block numbers.

context BlockHandler inv:

used��isUnique(aBlock | aBlock.number)

OCL can also be used to specify preconditions and postconditions of operations. For

example, the following describes operations that remove and add sets of blocks to

576 PART THREE QUALITY MANAGEMENT

pre75977_ch21.qxd 11/27/08 6:18 PM Page 576

the queue. Note that the notation x@pre indicates the object x as it existed prior to the

operation; this is opposite to mathematical notation discussed earlier, where it is the x

after the operation that is specially designated (as x’).

context BlockHandler::removeBlocks()

pre: blockQueue��size() �0

post: used � used@pre-blockQueue@pre��first() and

free = free@pre��union(blockQueue@pre��first()) and

blockQueue � blockQueue@pre��excluding(blockQueue@pre��first)

context BlockHandler::addBlocks(aBlockSet :BlockSet)

pre: used��includesAll(aBlockSet.elements)

post: (blockQueue.elements � blockQueue.elements@pre

�� append (aBlockSet.elements) and

used � used@pre and

free � free@pre

OCL is a modeling language, but it has all of the attributes of a formal language. OCL

allows the expression of various constraints, pre- and postconditions, guards, and

other characteristics that relate to the objects represented in various UML models.

21.7.2 The Z Specification Language

Z (properly pronounced as “zed”) is a specification language that is widely used

within the formal methods community. The Z language applies typed sets, relations,

and functions within the context of first-order predicate logic to build schemas—a

means for structuring the formal specification.

Z specifications are organized as a set of schemas—a language structure that in-

troduces variables and specifies the relationship between these variables. A schema

is essentially the formal specification analog of the programming language compo-

nent. Schemas are used to structure a formal specification in the same way that com-

ponents are used to structure a system.

A schema describes the stored data that a system accesses and alters. In the con-

text of Z, this is called the “state.” This usage of the term state in Z is slightly differ-

ent from the use of the word in the rest of this book.9 In addition, the schema

identifies the operations that are applied to change state and the relationships that

occur within the system. The generic structure of a schema takes the form:

——— schemaName——————————————

declarations

———————————————————————

invariant

————————————————————————

CHAPTER 21 FORMAL MODELING AND VERIFICATION 577

WebRef
Detailed information
about the Z language
can be found at
www.users.cs
.york.ac.uk/
~susan/abs/
z.htm.

9 Recall that in other chapters state has been used to identify an externally observable mode of be-
havior for a system.

pre75977_ch21.qxd 11/27/08 6:18 PM Page 577

http://www.users.cs

where declarations identify the variables that comprise the system state and the

invariant imposes constraints on the manner in which the state can evolve. A sum-

mary of Z language notation is presented in Table 21.2.

578 PART THREE QUALITY MANAGEMENT

TABLE 21.2 SUMMARY OF Z NOTATION

Z notation is based on typed set theory and first-order logic. Z provides a construct, called a schema, to
describe a specification’s state space and operations. A schema groups variable declarations with a list
of predicates that constrain the possible value of a variable. In Z, the schema X is defined by the form

———X–––––––––––—————————————
declarations

——————————————————————
predicates

——————————————————————

Global functions and constants are defined by the form

declarations
——————————————————————

predicates

The declaration gives the type of the function or constant, while the predicate gives it value. Only an
abbreviated set of Z symbols is presented in this table.

Sets:
S : � X S is declared as a set of Xs.
X � S x is a member of S.
x � S x is not a member of S.
S � T S is a subset of T: Every member of S is also in T.
S � T The union of S and T: It contains every member of S or T or both.
S � T The intersection of S and T: It contains every member of both S and T.
S \ T The difference of S and T: It contains every member of S except those also in T.
� Empty set: It contains no members.
{x} Singleton set: It contains just x.
� The set of natural numbers 0, 1, 2,
S : � X S is declared as a finite set of Xs.
max (S) The maximum of the nonempty set of numbers S.

Functions:

f:X >→ Y f is declared as a partial injection from X to Y.
dom f The domain of f: the set of values x for which f(x) is defined.
ran f The range of f: the set of values taken by f(x) as x varies over the domain of f.
f � {x ı→ y} A function that agrees with f except that x is mapped to y.
{x} �– f A function like f, except that x is removed from its domain.

Logic:

P � Q P and Q: It is true if both P and Q are true.
P ⇒ Q P implies Q: It is true if either Q is true or P is false.

 S’ �
 S No components of schema S change in an operation.

pre75977_ch21.qxd 11/27/08 6:18 PM Page 578

The following example of a schema describes the state of the block handler and

the data invariant:

——— BlockHandler —————————————————————————

used, free : � BLOCKS

BlockQueue : seq � BLOCKS

used � free � � �
used � free � AllBlocks �
	i: dom BlockQueue • BlockQueue i � used �
	i, j: dom BlockQueue • i
 j �� BlockQueue i � BlockQueue j � �

————————————————————————————————

As we have noted, the schema consists of two parts. The part above the central line

represents the variables of the state, while the part below the central line describes

the data invariant. Whenever the schema specifies operations that change the state,

it is preceded by the � symbol. The following example of a schema describes the

operation that removes an element from the block queue:

——— RemoveBlocks ———————————————

� BlockHandler

———————————————————————————

#BlockQueue � 0,

used′ � used \ head BlockQueue �
free′ � free � head BlockQueue �
BlockQueue′ � tail BlockQueue

———————————————————————————

The inclusion of � BlockHandler results in all variables that make up the state being

available for the RemoveBlocks schema and ensures that the data invariant will hold

before and after the operation has been executed.

The second operation, which adds a collection of blocks to the end of the queue,

is represented as

———AddBlocks——————————————————

� BlockHandler

Ablocks? : BLOCKS

———————————————————————————

Ablocks? � used

BlockQueue′ � BlockQueue � �Ablocks?� �
used′ � used �
free′ � free

———————————————————————————

By convention in Z, an input variable that is read, but does not form part of the state,

is terminated by a question mark. Thus, Ablocks?, which acts as an input parameter,

is terminated by a question mark.

CHAPTER 21 FORMAL MODELING AND VERIFICATION 579

pre75977_ch21.qxd 11/27/08 6:18 PM Page 579

21.8 SUMMARY

Cleanroom software engineering is a formal approach to software development that

can lead to software that has remarkably high quality. It uses box structure specifi-

cation for analysis and design modeling and emphasizes correctness verification,

rather than testing, as the primary mechanism for finding and removing errors.

Statistical use testing is applied to develop the failure rate information necessary to

certify the reliability of delivered software.

The cleanroom approach begins with analysis and design models that use a box

structure representation. A “box” encapsulates the system (or some aspect of the

system) at a specific level of abstraction. Black boxes are used to represent the

externally observable behavior of a system. State boxes encapsulate state data and

operations. A clear box is used to model the procedural design that is implied by the

data and operations of a state box.

Correctness verification is applied once the box structure design is complete. The

procedural design for a software component is partitioned into a series of subfunc-

tions. To prove the correctness of the subfunctions, exit conditions are defined for

each subfunction and a set of subproofs is applied. If each exit condition is satisfied,

the design must be correct.

Once correctness verification is complete, statistical use testing commences.

Unlike conventional testing, cleanroom software engineering does not emphasize

unit or integration testing. Rather, the software is tested by defining a set of usage

scenarios, determining the probability of use for each scenario, and then defining

random tests that conform to the probabilities. The error records that result are

580 PART THREE QUALITY MANAGEMENT

Formal Methods

Objective: The objective of formal methods
tools is to assist a software team in specification

and correctness verification.

Mechanics: Tools mechanics vary. In general, tools assist
in specification and automating correctness proving,
usually by defined a specialized language for theorem
proving. Many tools are not commercialized and have
been developed for research purposes.

Representative Tools:10

ACL2, developed at the University of Texas
(www.cs.utexas.edu/users/moore/acl2/), is

SOFTWARE TOOLS

“both a programming language in which you can
model computer systems and a tool to help you prove
properties of those models.”

EVES, developed by ORA Canada
(www.ora.on.ca/eves.html), implements the
Verdi language for formal specification and an
automated proof generator.

An extensive list of over 90 formal methods tools can be
found at http://vl.fmnet.info/.

10 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.
In most cases, tool names are trademarked by their respective developers.

pre75977_ch21.qxd 11/27/08 6:18 PM Page 580

http://www.cs.utexas.edu/users/moore/acl2/
http://www.ora.on.ca/eves.html
http://vl.fmnet.info/

combined with sampling, component, and certification models to enable mathe-

matical computation of projected reliability for the software component.

Formal methods use the descriptive facilities of set theory and logic notation to en-

able a software engineer to create a clear statement of facts (requirements). The un-

derlying concepts that govern formal methods are: (1) the data invariant, a condition

true throughout the execution of the system that contains a collection of data; (2) the

state, a representation of a system’s externally observable mode of behavior, or (in Z

and related languages) the stored data that a system accesses and alters; and (3) the

operation, an action that takes place in a system and reads or writes data to a state.

An operation is associated with two conditions: a precondition and a postcondition.

Will cleanroom software engineering or formal methods ever be widely used? The

answer is “probably not.” They are more difficult to learn than conventional software

engineering methods and represent significant “culture shock” for some software

practitioners. But the next time you hear someone lament, “Why can’t we get this

software right the first time?” you’ll know that there are techniques that can help you

to do exactly that.

PROBLEMS AND POINTS TO PONDER

21.1. If you had to pick one aspect of cleanroom software engineering that makes it radically
different from conventional or object-oriented software engineering approaches, what would it
be?

21.2. How do an incremental process model and certification work together to produce high-
quality software?

21.3. Using box structure specification, develop “first-pass” analysis and design models for the
SafeHome system.

21.4. A bubble-sort algorithm is defined in the following manner:

procedure bubblesort;
var i, t, integer;
begin
repeat until t�a[1]

t:�a[1];
for j:� 2 to n do

if a[j-1] � a[j] then begin
t:�a[j-1];
a[j-1]:�a[j];
a[j]:�t;
end

endrep
end

Partition the design into subfunctions, and define a set of conditions that would enable you to
prove that this algorithm is correct.

21.5. Document a correctness verification proof for the bubble sort discussed in Problem 21.4.

21.6. Select a program that you use regularly (e.g., an e-mail handler, a word processor, a
spreadsheet program). Create a set of usage scenarios for the program. Define the probability of

CHAPTER 21 FORMAL MODELING AND VERIFICATION 581

pre75977_ch21.qxd 11/27/08 6:18 PM Page 581

use for each scenario, and then develop a program stimuli and probability distribution table
similar to the one shown in Section 21.4.1.

21.7. For the program stimuli and probability distribution table developed in Problem 21.6, use
a random-number generator to develop a set of test cases for use in statistical use testing.

21.8. In your own words, describe the intent of certification in the cleanroom software engi-
neering context.

21.9. You have been assigned to a team that is developing software for a fax modem. Your job
is to develop the “phone book” portion of the application. The phone book function enables up
to MaxNames people to be stored along with associated company names, fax numbers, and
other related information. Using natural language, define

a. The data invariant.
b. The state.
c. The operations that are likely.

21.10. You have been assigned to a software team that is developing software, called Memo-
ryDoubler, that provides greater apparent memory for a PC than physical memory. This is
accomplished by identifying, collecting, and reassigning blocks of memory that have been
assigned to an existing application but are not being used. The unused blocks are reassigned to
applications that require additional memory. Making appropriate assumptions and using natural
language, define

a. The data invariant.
b. The state.
c. The operations that are likely.

21.11. Using the OCL or Z notation presented in Table 21.1 or 21.2, select some part of the
SafeHome security system described earlier in this book and attempt to specify it with OCL or Z.

21.12. Using one or more of the information sources noted in the references to this chapter or
Further Readings and Information Sources, develop a half-hour presentation on the basic syntax
and semantics of a formal specification language other than OCL or Z.

FURTHER READINGS AND INFORMATION SOURCES

Relatively few books on advanced specification and verification techniques have been pub-
lished in recent years. However, some new additions to the literature are worth considering. A
book edited by Gabbar (Modern Formal Methods and Applications, Springer, 2006) presents both
fundamentals, new developments, and advanced applications. Jackson (Software Abstractions,
The MIT Press, 2006) presents all of the basics and an approach that he calls “lightweight for-
mal methods.” Monin and Hinchey (Understanding Formal Methods, Springer, 2003) provide an
excellent introduction to the subject. Butler and other editors (Integrated Formal Methods,
Springer, 2002) present a variety of papers on formal methods topics.

In addition to books referenced in this chapter, Prowell and his colleagues (Cleanroom
Software Engineering: Technology and Process, Addison-Wesley, 1999) provide an in-depth
treatment of all important aspects of the cleanroom approach. Useful discussions of clean-
room topics have been edited by Poore and Trammell (Cleanroom Software Engineering:
A Reader, Blackwell Publishing, 1996). Becker and Whittaker (Cleanroom Software Engineering
Practices, Idea Group Publishing, 1996) present an excellent overview for those who are unfa-
miliar with cleanroom practices.

The Cleanroom Pamphlet (Software Technology Support Center, Hill AF Base, April 1995)
contains reprints of a number of important articles. The Data and Analysis Center for Software
(DACS) (www.dacs.dtic.mil) provides many useful papers, guidebooks, and other information
sources on cleanroom software engineering.

Design verification via proof of correctness lies at the heart of the cleanroom approach.
Books by Cupillari (The Nuts and Bolts of Proofs, 3d ed., Academic Press, 2005), Solow (How to

582 PART THREE QUALITY MANAGEMENT

pre75977_ch21.qxd 11/27/08 6:18 PM Page 582

http://www.dacs.dtic.mil

Read and Do Proofs, 4th ed., Wiley, 2004), Eccles (An Introduction to Mathematical Reasoning,
Cambridge University Press, 1998), provide excellent introductions into the mathematical
basics. Stavely (Toward Zero-Defect Software, Addison-Wesley, 1998), Baber (Error-Free Software,
Wiley, 1991), and Schulmeyer (Zero Defect Software, McGraw-Hill, 1990) discuss proof of cor-
rectness in considerable detail.

In the formal methods domain, books by Casey (A Programming Approach to Formal Methods,
McGraw-Hill, 2000), Hinchey and Bowan (Industrial Strength Formal Methods, Springer-Verlag,
1999), Hussmann (Formal Foundations for Software Engineering Methods, Springer-Verlag, 1997),
and Sheppard (An Introduction to Formal Specification with Z and VDM, McGraw-Hill, 1995) provide
useful guidance. In addition, language-specific books such as Warmer and Kleppe (Object Con-
straint Language, Addison-Wesley, 1998), Jacky (The Way of Z: Practical Programming with Formal
Methods, Cambridge University Press, 1997), Harry (Formal Methods Fact File: VDM and Z, Wiley,
1997), and Cooper and Barden (Z in Practice, Prentice-Hall, 1995) provide useful introductions to
formal methods as well as a variety of modeling languages.

A wide variety of information sources on cleanroom software engineering and formal meth-
ods is available on the Internet. An up-to-date list of World Wide Web references relevant to
formal modeling and verification can be found at the SEPA website: www.mhhe.com/engcs/
compsci/pressman/professional/olc/ser.htm.

CHAPTER 21 FORMAL MODELING AND VERIFICATION 583

pre75977_ch21.qxd 11/27/08 6:18 PM Page 583

http://www.mhhe.com/engcs/

Change is inevitable when computer software is built. And change in-
creases the level of confusion when you and other members of a software
team are working on a project. Confusion arises when changes are not

analyzed before they are made, recorded before they are implemented, reported
to those with a need to know, or controlled in a manner that will improve quality
and reduce error. Babich [Bab86] discusses this when he states:

The art of coordinating software development to minimize . . . confusion is called

configuration management. Configuration management is the art of identifying,

organizing, and controlling modifications to the software being built by a program-

ming team. The goal is to maximize productivity by minimizing mistakes.

Software configuration management (SCM) is an umbrella activity that is
applied throughout the software process. Because change can occur at any time,

584

C H A P T E R

22 SOFTWARE CONFIGURATION
MANAGEMENT

K E Y
C O N C E P T S

baselines 587
change control . .596
configuration
audit 599
configuration
object 589
content
management . . .603
identification . . .594
repository 590
SCM process . . .593

What is it? When you build com-
puter software, change happens.
And because it happens, you need to
manage it effectively. Software con-

figuration management (SCM), also called
change management, is a set of activities de-
signed to manage change by identifying the
work products that are likely to change, estab-
lishing relationships among them, defining
mechanisms for managing different versions of
these work products, controlling the changes
imposed, and auditing and reporting on the
changes made.

Who does it? Everyone involved in the software
process is involved with change management to
some extent, but specialized support positions are
sometimes created to manage the SCM process.

Why is it important? If you don’t control
change, it controls you. And that’s never good.
It’s very easy for a stream of uncontrolled
changes to turn a well-run software project into
chaos. As a consequence, software quality suf-
fers and delivery is delayed. For that reason,

Q U I C K
L O O K

change management is an essential part of
quality management.

What are the steps? Because many work prod-
ucts are produced when software is built, each
must be uniquely identified. Once this is accom-
plished, mechanisms for version and change
control can be established. To ensure that qual-
ity is maintained as changes are made, the
process is audited; and to ensure that those with
a need to know are informed about changes,
reporting is conducted.

What is the work product? A Software Configu-
ration Management Plan defines the project
strategy for change management. In addition,
when formal SCM is invoked, the change control
process produces software change requests,
reports, and engineering change orders.

How do I ensure that I’ve done it right? When
every work product can be accounted for,
traced, and controlled; when every change can
be tracked and analyzed; when everyone
who needs to know about a change has been
informed—you’ve done it right.

pre75977_ch22.qxd 11/27/08 6:20 PM Page 584

SCM activities are developed to (1) identify change, (2) control change, (3) ensure

that change is being properly implemented, and (4) report changes to others who

may have an interest.

It is important to make a clear distinction between software support and software

configuration management. Support is a set of software engineering activities that

occur after software has been delivered to the customer and put into operation.

Software configuration management is a set of tracking and control activities that

are initiated when a software engineering project begins and terminates only when

the software is taken out of operation.

A primary goal of software engineering is to improve the ease with which changes

can be accommodated and reduce the amount of effort expended when changes

must be made. In this chapter, I discuss the specific activities that enable you to man-

age change.

22.1 SOFTWARE CONFIGURATION MANAGEMENT

The output of the software process is information that may be divided into three

broad categories: (1) computer programs (both source level and executable forms),

(2) work products that describe the computer programs (targeted at various stake-

holders), and (3) data or content (contained within the program or external to it). The

items that comprise all information produced as part of the software process are

collectively called a software configuration.

As software engineering work progresses, a hierarchy of software configuration

items (SCIs)—a named element of information that can be as small as a single UML

diagram or as large as the complete design document—is created. If each SCI simply

led to other SCIs, little confusion would result. Unfortunately, another variable en-

ters the process—change. Change may occur at any time, for any reason. In fact, the

First Law of System Engineering [Ber80] states: “No matter where you are in the sys-

tem life cycle, the system will change, and the desire to change it will persist

throughout the life cycle.”

What is the origin of these changes? The answer to this question is as varied as

the changes themselves. However, there are four fundamental sources of change:

• New business or market conditions dictate changes in product requirements

or business rules.

• New stakeholder needs demand modification of data produced by informa-

tion systems, functionality delivered by products, or services delivered by a

computer-based system.

• Reorganization or business growth/downsizing causes changes in project

priorities or software engineering team structure.

• Budgetary or scheduling constraints cause a redefinition of the system or

product.

CHAPTER 22 SOFTWARE CONFIGURATION MANAGEMENT 585

software
configuration items
(SCIs) 589
status
reporting 600
version
control 595
WebApp
configuration
objects 603
WebApps 601

uote:

“There is nothing
permanent except
change.”

Heraclitus,
500 B.C.

What is the
origin of

changes that are
requested for
software?

?

pre75977_ch22.qxd 11/27/08 6:20 PM Page 585

Software configuration management is a set of activities that have been devel-

oped to manage change throughout the life cycle of computer software. SCM can be

viewed as a software quality assurance activity that is applied throughout the soft-

ware process. In the sections that follow, I describe major SCM tasks and important

concepts that can help you to manage change.

22.1.1 An SCM Scenario1

A typical CM operational scenario involves a project manager who is in charge of a

software group, a configuration manager who is in charge of the CM procedures and

policies, the software engineers who are responsible for developing and maintain-

ing the software product, and the customer who uses the product. In the scenario,

assume that the product is a small one involving about 15,000 lines of code being de-

veloped by a team of six people. (Note that other scenarios of smaller or larger teams

are possible, but, in essence, there are generic issues that each of these projects face

concerning CM.)

At the operational level, the scenario involves various roles and tasks. For the

project manager, the goal is to ensure that the product is developed within a certain

time frame. Hence, the manager monitors the progress of development and recog-

nizes and reacts to problems. This is done by generating and analyzing reports about

the status of the software system and by performing reviews on the system.

The goals of the configuration manager are to ensure that procedures and poli-

cies for creating, changing, and testing of code are followed, as well as to make

information about the project accessible. To implement techniques for maintaining

control over code changes, this manager introduces mechanisms for making official

requests for changes, for evaluating them (via a Change Control Board that is

responsible for approving changes to the software system), and for authorizing

changes. The manager creates and disseminates task lists for the engineers and

basically creates the project context. Also, the manager collects statistics about com-

ponents in the software system, such as information determining which components

in the system are problematic.

For the software engineers, the goal is to work effectively. This means engineers

do not unnecessarily interfere with each other in the creation and testing of code and

in the production of supporting work products. But, at the same time, they try to com-

municate and coordinate efficiently. Specifically, engineers use tools that help build

a consistent software product. They communicate and coordinate by notifying one

another about tasks required and tasks completed. Changes are propagated across

each other’s work by merging files. Mechanisms exist to ensure that, for components

that undergo simultaneous changes, there is some way of resolving conflicts and

586 PART THREE QUALITY MANAGEMENT

1 This section is extracted from [Dar01]. Special permission to reproduce “Spectrum of Functionality
in CM System” by Susan Dart [Dar01], © 2001 by Carnegie Mellon University is granted by the Soft-
ware Engineering Institute.

What are the
goals of and

the activities
performed by
each of the
constituencies
involved in change
management?

?

There must be a
mechanism to ensure
that simultaneous
changes to the same
component are
properly tracked,
managed, and
executed.

pre75977_ch22.qxd 11/27/08 6:20 PM Page 586

merging changes. A history is kept of the evolution of all components of the system

along with a log with reasons for changes and a record of what actually changed.

The engineers have their own workspace for creating, changing, testing, and inte-

grating code. At a certain point, the code is made into a baseline from which further

development continues and from which variants for other target machines are made.

The customer uses the product. Since the product is under CM control, the cus-

tomer follows formal procedures for requesting changes and for indicating bugs in

the product.

Ideally, a CM system used in this scenario should support all these roles and tasks;

that is, the roles determine the functionality required of a CM system. The project

manager sees CM as an auditing mechanism; the configuration manager sees it as a

controlling, tracking, and policy making mechanism; the software engineer sees it

as a changing, building, and access control mechanism; and the customer sees it as

a quality assurance mechanism.

22.1.2 Elements of a Configuration Management System

In her comprehensive white paper on software configuration management, Susan

Dart [Dar01] identifies four important elements that should exist when a configura-

tion management system is developed:

• Component elements—a set of tools coupled within a file management system

(e.g., a database) that enables access to and management of each software

configuration item.

• Process elements—a collection of actions and tasks that define an effective

approach to change management (and related activities) for all

constituencies involved in the management, engineering, and use of

computer software.

• Construction elements—a set of tools that automate the construction of

software by ensuring that the proper set of validated components (i.e., the

correct version) have been assembled.

• Human elements—a set of tools and process features (encompassing other

CM elements) used by the software team to implement effective SCM.

These elements (to be discussed in more detail in later sections) are not mutually

exclusive. For example, component elements work in conjunction with construction

elements as the software process evolves. Process elements guide many human

activities that are related to SCM and might therefore be considered human elements

as well.

22.1.3 Baselines

Change is a fact of life in software development. Customers want to modify require-

ments. Developers want to modify the technical approach. Managers want to mod-

ify the project strategy. Why all this modification? The answer is really quite simple.

CHAPTER 22 SOFTWARE CONFIGURATION MANAGEMENT 587

pre75977_ch22.qxd 11/27/08 6:20 PM Page 587

As time passes, all constituencies know more (about what they need, which ap-

proach would be best, and how to get it done and still make money). This additional

knowledge is the driving force behind most changes and leads to a statement of fact

that is difficult for many software engineering practitioners to accept: Most changes

are justified!

A baseline is a software configuration management concept that helps you to con-

trol change without seriously impeding justifiable change. The IEEE (IEEE Std. No.

610.12-1990) defines a baseline as:

A specification or product that has been formally reviewed and agreed upon, that there-

after serves as the basis for further development, and that can be changed only through

formal change control procedures.

Before a software configuration item becomes a baseline, changes may be made

quickly and informally. However, once a baseline is established, changes can be

made, but a specific, formal procedure must be applied to evaluate and verify each

change.

In the context of software engineering, a baseline is a milestone in the development

of software. A baseline is marked by the delivery of one or more software configuration

items that have been approved as a consequence of a technical review (Chapter 15).

For example, the elements of a design model have been documented and reviewed.

Errors are found and corrected. Once all parts of the model have been reviewed,

corrected, and then approved, the design model becomes a baseline. Further changes

to the program architecture (documented in the design model) can be made only after

each has been evaluated and approved. Although baselines can be defined at any level

of detail, the most common software baselines are shown in Figure 22.1.

588 PART THREE QUALITY MANAGEMENT

SCIs

SCIs

Modified

Software
engineering

tasks

Technical
reviewsSCIs

Approved

SCIs

Extracted
SCM

controls

SCIs

Stored

Project database

System Specification
Software Requirements
Design Specification
Source Code
Test Plans/Procedures/Data
Operational System

BASELINES:

FIGURE 22.1

Baselined SCIs
and the
project
database

Most software changes
are justified, so there’s
no point in
complaining about
them. Rather, be
certain that you have
mechanisms in place
to handle them.

pre75977_ch22.qxd 11/27/08 6:20 PM Page 588

The progression of events that lead to a baseline is also illustrated in Fig-

ure 22.1. Software engineering tasks produce one or more SCIs. After SCIs are re-

viewed and approved, they are placed in a project database (also called a project

library or software repository and discussed in Section 22.2). When a member of a

software engineering team wants to make a modification to a baselined SCI, it is

copied from the project database into the engineer’s private workspace. However,

this extracted SCI can be modified only if SCM controls (discussed later in this

chapter) are followed. The arrows in Figure 22.1 illustrate the modification path

for a baselined SCI.

22.1.4 Software Configuration Items

I have already defined a software configuration item as information that is created

as part of the software engineering process. In the extreme, a SCI could be consid-

ered to be a single section of a large specification or one test case in a large suite of

tests. More realistically, an SCI is all or part of a work product (e.g., a document, an

entire suite of test cases, or a named program component).

In addition to the SCIs that are derived from software work products, many soft-

ware engineering organizations also place software tools under configuration con-

trol. That is, specific versions of editors, compilers, browsers, and other automated

tools are “frozen” as part of the software configuration. Because these tools were

used to produce documentation, source code, and data, they must be available when

changes to the software configuration are to be made. Although problems are rare,

it is possible that a new version of a tool (e.g., a compiler) might produce different

results than the original version. For this reason, tools, like the software that they

help to produce, can be baselined as part of a comprehensive configuration man-

agement process.

In reality, SCIs are organized to form configuration objects that may be cata-

loged in the project database with a single name. A configuration object has a

name, attributes, and is “connected” to other objects by relationships. Referring to

Figure 22.2, the configuration objects, DesignSpecification, DataModel,

ComponentN, SourceCode, and TestSpecification are each defined sepa-

rately. However, each of the objects is related to the others as shown by the

arrows. A curved arrow indicates a compositional relation. That is, DataModel

and ComponentN are part of the object DesignSpecification. A double-headed

straight arrow indicates an interrelationship. If a change were made to the

SourceCode object, the interrelationships enable you to determine what other

objects (and SCIs) might be affected.2

CHAPTER 22 SOFTWARE CONFIGURATION MANAGEMENT 589

Be sure that the
project database is
maintained in a
centralized, controlled
location.

2 These relationships are defined within the database. The structure of the database (repository) is
discussed in greater detail in Section 22.2.

pre75977_ch22.qxd 11/27/08 6:20 PM Page 589

22.2 THE SCM REPOSITORY

In the early days of software engineering, software configuration items were main-

tained as paper documents (or punched computer cards!), placed in file folders or

three-ring binders, and stored in metal cabinets. This approach was problematic for

many reasons: (1) finding a configuration item when it was needed was often diffi-

cult, (2) determining which items were changed, when and by whom was often chal-

lenging, (3) constructing a new version of an existing program was time consuming

and error prone, and (4) describing detailed or complex relationships between con-

figuration items was virtually impossible.

Today, SCIs are maintained in a project database or repository. Webster’s Dictio-

nary defines the word repository as “any thing or person thought of as a center of

accumulation or storage.” During the early history of software engineering, the

repository was indeed a person—the programmer who had to remember the loca-

tion of all information relevant to a software project, who had to recall information

that was never written down and reconstruct information that had been lost. Sadly,

using a person as “the center for accumulation and storage” (although it conforms

to Webster’s definition) does not work very well. Today, the repository is a “thing”—

a database that acts as the center for both accumulation and storage of software en-

gineering information. The role of the person (the software engineer) is to interact

with the repository using tools that are integrated with it.

22.2.1 The Role of the Repository

The SCM repository is the set of mechanisms and data structures that allow a

software team to manage change in an effective manner. It provides the obvious

590 PART THREE QUALITY MANAGEMENT

DesignSpecification

data design
architectural design
module design
interface design

ComponentN

interface description
algorithm description
PDL

DataModel

TestSpecification

test plan
test procedure
test cases

SourceCode

FIGURE 22.2

Configuration
objects

pre75977_ch22.qxd 11/27/08 6:20 PM Page 590

functions of a modern database management system by ensuring data integrity,

sharing, and integration. In addition, the SCM repository provides a hub for the inte-

gration of software tools, is central to the flow of the software process, and can en-

force uniform structure and format for software engineering work products.

To achieve these capabilities, the repository is defined in terms of a meta-model.

The meta-model determines how information is stored in the repository, how data

can be accessed by tools and viewed by software engineers, how well data security

and integrity can be maintained, and how easily the existing model can be extended

to accommodate new needs.

22.2.2 General Features and Content

The features and content of the repository are best understood by looking at it from two

perspectives: what is to be stored in the repository and what specific services are pro-

vided by the repository. A detailed breakdown of types of representations, documents,

and other work products that are stored in the repository is presented in Figure 22.3.

A robust repository provides two different classes of services: (1) the same types

of services that might be expected from any sophisticated database management

system and (2) services that are specific to the software engineering environment.

A repository that serves a software engineering team should also (1) integrate with

or directly support process management functions, (2) support specific rules that

govern the SCM function and the data maintained within the repository, (3) provide

an interface to other software engineering tools, and (4) accommodate storage of

sophisticated data objects (e.g., text, graphics, video, audio).

CHAPTER 22 SOFTWARE CONFIGURATION MANAGEMENT 591

Business rules
Business functions
Organization structure
Information architecture

Project estimates
Project schedule
SCM requirements
 Change requests
 Change reports
SQA requirements
Project reports/audit reports
Project metrics

Use cases
Analysis model
 Scenario-based diagrams
 Flow-oriented diagrams
 Class-based diagrams
 Behavioral diagrams
Design model
 Architectural diagrams
 Interface diagrams
 Component-level diagrams
Technical metrics

Source code
Object code
System build instructions

Test cases
Test scripts
Test results
Quality metrics

Project plan
SCM/SQA plan
System spec
Requirements spec
Design document
Test plan and procedure
Support documents
User manual

Project
management

content

Documents

Model
content

Construction
content

V & V
content

Business
content

FIGURE 22.3

Content of the
repository

WebRef
An example of a
commercially available
repository can be
obtained at
www.oracle.com/
technology/
products/
repository/index
.html.

pre75977_ch22.qxd 11/27/08 6:20 PM Page 591

http://www.oracle.com/

22.2.3 SCM Features

To support SCM, the repository must have a tool set that provides support for the fol-

lowing features:

Versioning. As a project progresses, many versions (Section 22.3.2) of individual

work products will be created. The repository must be able to save all of these ver-

sions to enable effective management of product releases and to permit developers

to go back to previous versions during testing and debugging.

The repository must be able to control a wide variety of object types, including

text, graphics, bit maps, complex documents, and unique objects like screen and re-

port definitions, object files, test data, and results. A mature repository tracks ver-

sions of objects with arbitrary levels of granularity; for example, a single data

definition or a cluster of modules can be tracked.

Dependency tracking and change management. The repository manages a wide

variety of relationships among the data elements stored in it. These include

relationships between enterprise entities and processes, among the parts of an appli-

cation design, between design components and the enterprise information architec-

ture, between design elements and deliverables, and so on. Some of these relationships

are merely associations, and some are dependencies or mandatory relationships.

The ability to keep track of all of these relationships is crucial to the integrity of

the information stored in the repository and to the generation of deliverables based

on it, and it is one of the most important contributions of the repository concept to

the improvement of the software process. For example, if a UML class diagram is

modified, the repository can detect whether related classes, interface descriptions,

and code components also require modification and can bring affected SCIs to the

developer’s attention.

Requirements tracing. This special function depends on link management and

provides the ability to track all the design and construction components and deliv-

erables that result from a specific requirements specification (forward tracing). In

addition, it provides the ability to identify which requirement generated any given

work product (backward tracing).

Configuration management. A configuration management facility keeps track

of a series of configurations representing specific project milestones or production

releases.

Audit trails. An audit trail establishes additional information about when, why,

and by whom changes are made. Information about the source of changes can be

entered as attributes of specific objects in the repository. A repository trigger mech-

anism is helpful for prompting the developer or the tool that is being used to initiate

entry of audit information (such as the reason for a change) whenever a design ele-

ment is modified.

592 PART THREE QUALITY MANAGEMENT

The repository must be
capable of maintaining
SCIs related to many
different versions of
the software. More
important, it must
provide the
mechanisms for
assembling these SCIs
into a version-specific
configuration.

pre75977_ch22.qxd 11/27/08 6:20 PM Page 592

22.3 THE SCM PROCESS

The software configuration management process defines a series of tasks that have

four primary objectives: (1) to identify all items that collectively define the software

configuration, (2) to manage changes to one or more of these items, (3) to facilitate

the construction of different versions of an application, and (4) to ensure that soft-

ware quality is maintained as the configuration evolves over time.

A process that achieves these objectives need not be bureaucratic or ponderous,

but it must be characterized in a manner that enables a software team to develop an-

swers to a set of complex questions:

• How does a software team identify the discrete elements of a software

configuration?

• How does an organization manage the many existing versions of a program

(and its documentation) in a manner that will enable change to be accommo-

dated efficiently?

• How does an organization control changes before and after software is

released to a customer?

• Who has responsibility for approving and ranking requested changes?

• How can we ensure that changes have been made properly?

• What mechanism is used to apprise others of changes that are made?

These questions lead to the definition of five SCM tasks—identification, version con-

trol, change control, configuration auditing, and reporting—illustrated in Figure 22.4.

Referring to the figure, SCM tasks can viewed as concentric layers. SCIs flow

outward through these layers throughout their useful life, ultimately becoming part

CHAPTER 22 SOFTWARE CONFIGURATION MANAGEMENT 593

uote:

“Any change, even
a change for the
better, is
accompanied by
drawbacks and
discomforts.”

Arnold Bennett

What
questions

should the SCM
process be
designed to
answer?

?

Software
Vm.n

Reporting

Version control

Change control

Identification

Configuration auditing

SCIs

FIGURE 22.4

Layers of the
SCM process

pre75977_ch22.qxd 11/27/08 6:20 PM Page 593

of the software configuration of one or more versions of an application or system.

As an SCI moves through a layer, the actions implied by each SCM task may or may

not be applicable. For example, when a new SCI is created, it must be identified.

However, if no changes are requested for the SCI, the change control layer does not

apply. The SCI is assigned to a specific version of the software (version control mech-

anisms come into play). A record of the SCI (its name, creation date, version desig-

nation, etc.) is maintained for configuration auditing purposes and reported to those

with a need to know. In the sections that follow, we examine each of these SCM

process layers in more detail.

22.3.1 Identification of Objects in the Software Configuration

To control and manage software configuration items, each should be separately

named and then organized using an object-oriented approach. Two types of objects

can be identified [Cho89]: basic objects and aggregate objects.3 A basic object is a unit

of information that you create during analysis, design, code, or test. For example, a

basic object might be a section of a requirements specification, part of a design

model, source code for a component, or a suite of test cases that are used to exer-

cise the code. An aggregate object is a collection of basic objects and other aggregate

objects. For example, a DesignSpecification is an aggregate object. Conceptually,

it can be viewed as a named (identified) list of pointers that specify aggregate objects

such as ArchitecturalModel and DataModel, and basic objects such as Compo-

nentN and UMLClassDiagramN.

Each object has a set of distinct features that identify it uniquely: a name, a

description, a list of resources, and a “realization.” The object name is a character

string that identifies the object unambiguously. The object description is a list of data

items that identify the SCI type (e.g., model element, program, data) represented by

the object, a project identifier, and change and/or version information. Resources

are “entities that are provided, processed, referenced or otherwise required by the

object” [Cho89]. For example, data types, specific functions, or even variable names

may be considered to be object resources. The realization is a pointer to the “unit of

text” for a basic object and null for an aggregate object.

Configuration object identification can also consider the relationships that exist

between named objects. For example, using the simple notation

Class diagram �part-of� requirements model;

Requirements model �part-of� requirements specification;

you can create a hierarchy of SCIs.

594 PART THREE QUALITY MANAGEMENT

The interrelationships
established for
configuration objects
allow you to assess the
impact of change.

3 The concept of an aggregate object [Gus89] has been proposed as a mechanism for representing a
complete version of a software configuration.

pre75977_ch22.qxd 11/27/08 6:20 PM Page 594

In many cases, objects are interrelated across branches of the object hierarchy.

These cross-structural relationships can be represented in the following manner:

DataModel �interrelated� DataFlowModel

DataModel �interrelated� TestCaseClassM

In the first case, the interrelationship is between a composite object, while the sec-

ond relationship is between an aggregate object (DataModel) and a basic object

(TestCaseClassM).

The identification scheme for software objects must recognize that objects evolve

throughout the software process. Before an object is baselined, it may change many

times, and even after a baseline has been established, changes may be quite frequent.

22.3.2 Version Control

Version control combines procedures and tools to manage different versions of con-

figuration objects that are created during the software process. A version control sys-

tem implements or is directly integrated with four major capabilities: (1) a project

database (repository) that stores all relevant configuration objects, (2) a version man-

agement capability that stores all versions of a configuration object (or enables any

version to be constructed using differences from past versions), (3) a make facility

that enables you to collect all relevant configuration objects and construct a specific

version of the software. In addition, version control and change control systems of-

ten implement an issues tracking (also called bug tracking) capability that enables the

team to record and track the status of all outstanding issues associated with each

configuration object.

A number of version control systems establish a change set—a collection of all

changes (to some baseline configuration) that are required to create a specific ver-

sion of the software. Dart [Dar91] notes that a change set “captures all changes to all

files in the configuration along with the reason for changes and details of who made

the changes and when.”

A number of named change sets can be identified for an application or system. This

enables you to construct a version of the software by specifying the change sets (by

name) that must be applied to the baseline configuration. To accomplish this, a system

modeling approach is applied. The system model contains: (1) a template that includes

a component hierarchy and a “build order” for the components that describes how the

system must be constructed, (2) construction rules, and (3) verification rules.4

A number of different automated approaches to version control have been pro-

posed over the last few decades. The primary difference in approaches is the sophis-

tication of the attributes that are used to construct specific versions and variants of a

system and the mechanics of the process for construction.

CHAPTER 22 SOFTWARE CONFIGURATION MANAGEMENT 595

Even if the project
database provides the
ability to establish
these relationships,
they are time consum-
ing to establish and
difficult to keep up-to-
date. Although very
useful for impact
analysis, they are not
essential for overall
change management.

4 It is also possible to query the system model to assess how a change in one component will impact
other components.

pre75977_ch22.qxd 11/27/08 6:21 PM Page 595

22.3.3 Change Control

The reality of change control in a modern software engineering context has been

summed up beautifully by James Bach [Bac98]:

Change control is vital. But the forces that make it necessary also make it annoying. We

worry about change because a tiny perturbation in the code can create a big failure in the

product. But it can also fix a big failure or enable wonderful new capabilities. We worry

about change because a single rogue developer could sink the project; yet brilliant ideas

originate in the minds of those rogues, and a burdensome change control process could

effectively discourage them from doing creative work.

Bach recognizes that we face a balancing act. Too much change control and we

create problems. Too little, and we create other problems.

For a large software project, uncontrolled change rapidly leads to chaos. For such

projects, change control combines human procedures and automated tools to pro-

vide a mechanism for the control of change. The change control process is illustrated

schematically in Figure 22.5. A change request is submitted and evaluated to assess

technical merit, potential side effects, overall impact on other configuration objects

and system functions, and the projected cost of the change. The results of the eval-

uation are presented as a change report, which is used by a change control authority

(CCA)—a person or group that makes a final decision on the status and priority of the

change. An engineering change order (ECO) is generated for each approved change.

The ECO describes the change to be made, the constraints that must be respected,

and the criteria for review and audit.

The object(s) to be changed can be placed in a directory that is controlled solely

by the software engineer making the change. A version control system (see the CVS

sidebar) updates the original file once the change has been made. As an alternative,

596 PART THREE QUALITY MANAGEMENT

The Concurrent Versions System (CVS)
The use of tools to achieve version control is
essential for effective change management. The

Concurrent Versions System (CVS) is a widely used tool for
version control. Originally designed for source code, but
useful for any text-based file, the CVS system (1) establishes
a simple repository, (2) maintains all versions of a file in a
single named file by storing only the differences between
progressive versions of the original file, and (3) protects
against simultaneous changes to a file by establishing
different directories for each developer, thus insulating one
from another. CVS merges changes when each developer
completes her work.

It is important to note that CVS is not a “build” system;
that is, it does not construct a specific version of the

software. Other tools (e.g., Makefile) must be integrated
with CVS to accomplish this. CVS does not implement a
change control process (e.g., change requests, change
reports, bug tracking).

Even with these limitations, CVS “is a dominant open-
source network-transparent version control system [that] is
useful for everyone from individual developers to large,
distributed teams” [CVS07]. Its client-server architecture
allows users to access files via Internet connections, and its
open-source philosophy makes it available on most
popular platforms.

CVS is available at no cost for Windows, Mac OS,
LINUX, and UNIX environments. See [CVS07] for further
details.

SOFTWARE TOOLS

uote:

“The art of
progress is to
preserve order
amid change and
to preserve change
amid order.”

Alfred North
Whitehead

It should be noted that
a number of change
requests may be
combined to result in a
single ECO and that
ECOs typically result in
changes to multiple
configuration objects.

pre75977_ch22.qxd 11/27/08 6:21 PM Page 596

the object(s) to be changed can be “checked out” of the project database (repository),

the change is made, and appropriate SQA activities are applied. The object(s) is

(are) then “checked in” to the database and appropriate version control mechanisms

(Section 22.3.2) are used to create the next version of the software.

These version control mechanisms, integrated within the change control process,

implement two important elements of change management—access control and

synchronization control. Access control governs which software engineers have the

authority to access and modify a particular configuration object. Synchronization

control helps to ensure that parallel changes, performed by two different people,

don’t overwrite one another.

CHAPTER 22 SOFTWARE CONFIGURATION MANAGEMENT 597

Need for change is recognized

Change request from user

Developer evaluates

Change report is generated

Change control authority decides

Request is queued for action, ECO generated

Assign individuals to configuration objects

“Check out” configuration objects (items)

Make the change

Review (audit) the change

“Check in” the configuration items that have been changed

Establish a baseline for testing

Perform quality assurance and testing activities

“Promote” changes for inclusion in next release (revision)

Rebuild appropriate version of software

Review (audit) the change to all configuration items

Include changes in new version

Distribute the new version

Change request is denied

User is informed

FIGURE 22.5

The change
control process

pre75977_ch22.qxd 11/27/08 6:21 PM Page 597

You may feel uncomfortable with the level of bureaucracy implied by the change

control process description shown in Figure 22.5. This feeling is not uncommon.

Without proper safeguards, change control can retard progress and create unneces-

sary red tape. Most software developers who have change control mechanisms (un-

fortunately, many have none) have created a number of layers of control to help

avoid the problems alluded to here.

Prior to an SCI becoming a baseline, only informal change control need be applied.

The developer of the configuration object (SCI) in question may make whatever

changes are justified by project and technical requirements (as long as changes do

not affect broader system requirements that lie outside the developer’s scope of

work). Once the object has undergone technical review and has been approved, a

baseline can be created.5 Once an SCI becomes a baseline, project level change

control is implemented. Now, to make a change, the developer must gain approval

from the project manager (if the change is “local”) or from the CCA if the change

affects other SCIs. In some cases, formal generation of change requests, change

reports, and ECOs is dispensed with. However, assessment of each change is con-

ducted and all changes are tracked and reviewed.

When the software product is released to customers, formal change control is

instituted. The formal change control procedure has been outlined in Figure 22.5.

The change control authority plays an active role in the second and third layers of

control. Depending on the size and character of a software project, the CCA may be

composed of one person—the project manager—or a number of people (e.g., repre-

sentatives from software, hardware, database engineering, support, marketing). The

role of the CCA is to take a global view, that is, to assess the impact of change be-

yond the SCI in question. How will the change affect hardware? How will the change

affect performance? How will the change modify customers’ perception of the prod-

uct? How will the change affect product quality and reliability? These and many other

questions are addressed by the CCA.

598 PART THREE QUALITY MANAGEMENT

Opt for a bit more
change control than
you think you’ll need.
It’s likely that too
much will be the right
amount.

5 A baseline can be created for other reasons as well. For example, when “daily builds” are created,
all components checked in by a given time become the baseline for the next day’s work.

uote:

“Change is
inevitable, except
for vending
machines.”

Bumper sticker

SCM Issues

The scene: Doug Miller’s office as
the SafeHome software project begins.

The players: Doug Miller (manager of the SafeHome
software engineering team) and Vinod Raman, Jamie
Lazar, and other members of the product software
engineering team.

The conversation:

Doug: I know it’s early, but we’ve got to talk about
change management.

Vinod (laughing): Hardly. Marketing called this
morning with a few “second thoughts.” Nothing major,
but it’s just the beginning.

SAFEHOME

pre75977_ch22.qxd 11/27/08 6:21 PM Page 598

CHAPTER 22 SOFTWARE CONFIGURATION MANAGEMENT 599

Jamie: We’ve been pretty informal about change
management on past projects.

Doug: I know, but this is bigger and more visible, and
as I recall . . .

Vinod (nodding): We got killed by uncontrolled
changes on the home lighting control project . . . remember
the delays that . . .

Doug (frowning): A nightmare that I’d prefer not to
relive.

Jamie: So what do we do?

Doug: As I see it, three things. First we have to
develop—or borrow—a change control process.

Jamie: You mean how people request changes?

Vinod: Yeah, but also how we evaluate the change,
decide when to do it (if that’s what we decide), and how
we keep records of what’s affected by the change.

Doug: Second, we’ve got to get a really good SCM tool
for change and version control.

Jamie: We can build a database for all of our work
products.

Vinod: They’re called SCIs in this context, and most
good tools provide some support for that.

Doug: That’s a good start, now we have to . . .

Jamie: Uh, Doug, you said there were three things . . .

Doug (smiling): Third—we’ve all got to commit to
follow the change management process and use the
tools—no matter what, okay?

22.3.4 Configuration Audit

Identification, version control, and change control help you to maintain order in

what would otherwise be a chaotic and fluid situation. However, even the most suc-

cessful control mechanisms track a change only until an ECO is generated. How can

a software team ensure that the change has been properly implemented? The an-

swer is twofold: (1) technical reviews and (2) the software configuration audit.

The technical review (Chapter 15) focuses on the technical correctness of the con-

figuration object that has been modified. The reviewers assess the SCI to determine

consistency with other SCIs, omissions, or potential side effects. A technical review

should be conducted for all but the most trivial changes.

A software configuration audit complements the technical review by assessing a

configuration object for characteristics that are generally not considered during re-

view. The audit asks and answers the following questions:

1. Has the change specified in the ECO been made? Have any additional modifi-

cations been incorporated?

2. Has a technical review been conducted to assess technical correctness?

3. Has the software process been followed and have software engineering

standards been properly applied?

4. Has the change been “highlighted” in the SCI? Have the change date and

change author been specified? Do the attributes of the configuration object

reflect the change?

5. Have SCM procedures for noting the change, recording it, and reporting it

been followed?

6. Have all related SCIs been properly updated?

What are the
primary

questions that we
ask during a
configuration
audit?

?

pre75977_ch22.qxd 11/27/08 6:21 PM Page 599

In some cases, the audit questions are asked as part of a technical review. How-

ever, when SCM is a formal activity, the configuration audit is conducted sepa-

rately by the quality assurance group. Such formal configuration audits also

ensure that the correct SCIs (by version) have been incorporated into a specific

build and that all documentation is up-to-date and consistent with the version that

has been built.

22.3.5 Status Reporting

Configuration status reporting (sometimes called status accounting) is an SCM task

that answers the following questions: (1) What happened? (2) Who did it? (3) When

did it happen? (4) What else will be affected?

The flow of information for configuration status reporting (CSR) is illustrated

in Figure 22.5. Each time an SCI is assigned new or updated identification, a CSR

entry is made. Each time a change is approved by the CCA (i.e., an ECO is issued),

a CSR entry is made. Each time a configuration audit is conducted, the results are

reported as part of the CSR task. Output from CSR may be placed in an online data-

base or website, so that software developers or support staff can access change in-

formation by keyword category. In addition, a CSR report is generated on a regular

basis and is intended to keep management and practitioners appraised of important

changes.

600 PART THREE QUALITY MANAGEMENT

Develop a “need to
know” list for every
configuration object
and keep it up-to-date.
When a change is
made, be sure that
everyone on the list is
notified.

SCM Support

Objective: SCM tools provide support to one
or more of the process activities discussed in

Section 22.3.

Mechanics: Most modern SCM tools work in conjunction
with a repository (a database system) and provide
mechanisms for identification, version and change control,
auditing, and reporting.

Representative Tools:6

CCC/Harvest, distributed by Computer Associates
(www.cai.com), is a multiplatform SCM system.

ClearCase, developed by Rational, provides a family of
SCM functions (www-306.ibm.com/software/
awdtools/clearcase/index.html).

Serena ChangeMan ZMF, distributed by Serena
(www.serena.com/US/products/zmf/index
.aspx), provides a full set of SCM tools that are

applicable for both conventional software and
WebApps.

SourceForge, distributed by VA Software
(sourceforge.net), provides version management,
build capabilities, issue/bug tracking, and many other
management features.

SurroundSCM, developed by Seapine Software, provides
complete change management capabilities
(www.seapine.com).

Vesta, distributed by Compac, is a public domain SCM
system that can support both small (�10 KLOC) and
large (10,000 KLOC) projects
(www.vestasys.org).

A comprehensive list of commercial SCM tools and
environments can be found at
www.cmtoday.com/yp/commercial.html.

SOFTWARE TOOLS

6 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.
In most cases, tool names are trademarked by their respective developers.

pre75977_ch22.qxd 12/3/08 2:00 PM Page 600

http://www.cai.com
http://www.serena.com/US/products/zmf/index.aspx
http://www.serena.com/US/products/zmf/index.aspx
http://www.seapine.com
http://www.vestasys.org
http://www.cmtoday.com/yp/commercial.html
http://www.vestasys.org

22.4 CONFIGURATION MANAGEMENT FOR WEBAPPS

Earlier in this book, I discussed the special nature of Web applications and the spe-

cialized methods (called Web engineering methods7) that are required to build them.

Among the many characteristics that differentiate WebApps from traditional soft-

ware is the ubiquitous nature of change.

WebApp developers often use an iterative, incremental process model that

applies many principles derived from agile software development (Chapter 3). Using

this approach, an engineering team often develops a WebApp increment in a very

short time period using a customer-driven approach. Subsequent increments add

additional content and functionality, and each is likely to implement changes that

lead to enhanced content, better usability, improved aesthetics, better navigation,

enhanced performance, and stronger security. Therefore, in the agile world of

WebApps, change is viewed somewhat differently.

If you’re a member of a WebApp team, you must embrace change. And yet, a typ-

ical agile team eschews all things that appear to be process-heavy, bureaucratic, and

formal. Software configuration management is often viewed (albeit incorrectly) to

have these characteristics. This seeming contradiction is remedied not by rejecting

SCM principles, practices, and tools, but rather, by molding them to meet the special

needs of WebApp projects.

22.4.1 Dominant Issues

As WebApps become increasing important to business survival and growth, the need

for configuration management grows. Why? Because without effective controls,

improper changes to a WebApp (recall that immediacy and continuous evolution are

the dominant attributes of many WebApps) can lead to: unauthorized posting of new

product information, erroneous or poorly tested functionality that frustrates visitors

to a website, security holes that jeopardize internal company systems, and other eco-

nomically unpleasant or even disastrous consequences.

The general strategies for software configuration management (SCM) described

in this chapter are applicable, but tactics and tools must be adapted to conform to

the unique nature of WebApps. Four issues [Dar99] should be considered when

developing tactics for WebApp configuration management.

Content. A typical WebApp contains a vast array of content—text, graphics,

applets, scripts, audio/video files, forms, active page elements, tables, streaming

data, and many others. The challenge is to organize this sea of content into a rational

set of configuration objects (Section 22.1.4) and then establish appropriate configu-

ration control mechanisms for these objects. One approach is to model the WebApp

content using conventional data modeling techniques (Chapter 6), attaching a set of

CHAPTER 22 SOFTWARE CONFIGURATION MANAGEMENT 601

7 See [Pre08] for a comprehensive discussion of Web engineering methods.

What impact
does

uncontrolled
change have on a
WebApp?

?

pre75977_ch22.qxd 11/27/08 6:21 PM Page 601

specialized properties to each object. The static/dynamic nature of each object and

its projected longevity (e.g., temporary, fixed existence, or permanent object) are

examples of properties that are required to establish an effective SCM approach. For

example, if a content item is changed hourly, it has temporary longevity. The control

mechanisms for this item would be different (less formal) than those applied for a

forms component that is a permanent object.

People. Because a significant percentage of WebApp development continues to

be conducted in an ad hoc manner, any person involved in the WebApp can (and

often does) create content. Many content creators have no software engineering

background and are completely unaware of the need for configuration manage-

ment. As a consequence, the application grows and changes in an uncontrolled

fashion.

Scalability. The techniques and controls applied to a small WebApp do not scale

upward well. It is not uncommon for a simple WebApp to grow significantly as

interconnections with existing information systems, databases, data warehouses,

and portal gateways are implemented. As size and complexity grow, small changes

can have far-reaching and unintended effects that can be problematic. Therefore, the

rigor of configuration control mechanisms should be directly proportional to appli-

cation scale.

Politics. Who “owns” a WebApp? This question is argued in companies large and

small, and its answer has a significant impact on the management and control

activities. In some instances Web developers are housed outside the IT organization,

creating potential communication difficulties. Dart [Dar99] suggests the following

questions to help understand the politics associated with Web engineering:

• Who assumes responsibility for the accuracy of the information on the

website?

• Who ensures that quality control processes have been followed before infor-

mation is published to the site?

• Who is responsible for making changes?

• Who assumes the cost of change?

The answers to these questions help determine the people within an organization

who must adopt a configuration management process for WebApps.

Configuration management for WebApps continues to evolve (e.g., [Ngu06]). A

conventional SCM process may be too cumbersome, but a new generation of content

management tools that are specifically designed for Web engineering has emerged

over the past few years. These tools establish a process that acquires existing infor-

mation (from a broad array of WebApp objects), manages changes to the objects,

structures it in a way that enables it to be presented to an end user, and then pro-

vides it to the client-side environment for display.

602 PART THREE QUALITY MANAGEMENT

How do I
determine

who has
responsibility for
WebApp CM?

?

pre75977_ch22.qxd 11/27/08 6:21 PM Page 602

22.4.2 WebApp Configuration Objects

WebApps encompass a broad range of configuration objects—content objects (e.g.,

text, graphics, images, video, audio), functional components (e.g., scripts, applets),

and interface objects (e.g., COM or CORBA). WebApp objects can be identified (as-

signed file names) in any manner that is appropriate for the organization. However,

the following conventions are recommended to ensure that cross-platform compat-

ibility is maintained: filenames should be limited to 32 characters in length, mixed-

case or all-caps names should be avoided, and the use of underscores in file names

should be avoided. In addition, URL references (links) within a configuration object

should always use relative paths (e.g., ../products/alarmsensors.html).

All WebApp content has format and structure. Internal file formats are dictated by

the computing environment in which the content is stored. However, rendering for-

mat (often called display format) is defined by the aesthetic style and design rules

established for the WebApp. Content structure defines a content architecture; that is,

it defines the way in which content objects are assembled to present meaningful

information to an end user. Boiko [Boi04] defines structure as “maps that you lay

over a set of content chunks [objects] to organize them and make them accessible

to the people who need them.”

22.4.3 Content Management

Content management is related to configuration management in the sense that a con-

tent management system (CMS) establishes a process (supported by appropriate

tools) that acquires existing content (from a broad array of WebApp configuration

objects), structures it in a way that enables it to be presented to an end user, and then

provides it to the client-side environment for display.

The most common use of a content management system occurs when a dynamic

WebApp is built. Dynamic WebApps create Web pages “on-the-fly.” That is, the user

typically queries the WebApp requesting specific information. The WebApp queries

a database, formats the information accordingly, and presents it to the user. For

example, a music company provides a library of CDs for sale. When a user requests a

CD or its e-music equivalent, a database is queried and a variety of information about

the artist, the CD (e.g., its cover image or graphics), the musical content, and sample

audio are all downloaded and configured into a standard content template. The re-

sultant Web page is built on the server side and passed to the client-side browser for

examination by the end user. A generic representation of this is shown in Figure 22.6.

In the most general sense, a CMS “configures” content for the end user by invok-

ing three integrated subsystems: a collection subsystem, a management subsystem,

and a publishing subsystem [Boi04].

The collection subsystem. Content is derived from data and information that

must be created or acquired by a content developer. The collection subsystem

encompasses all actions required to create and/or acquire content, and the technical

CHAPTER 22 SOFTWARE CONFIGURATION MANAGEMENT 603

uote:

“Content
management is an
antidote to today’s
information
frenzy.”

Bob Boiko

pre75977_ch22.qxd 11/27/08 6:21 PM Page 603

functions that are necessary to (1) convert content into a form that can be repre-

sented by a mark-up language (e.g., HTML, XML), and (2) organize content into

packets that can be displayed effectively on the client side.

Content creation and acquisition (often called authoring) commonly occurs in par-

allel with other WebApp development activities and is often conducted by nontech-

nical content developers. This activity combines elements of creativity and research

and is supported by tools that enable the content author to characterize content in a

manner that can be standardized for use within the WebApp.

Once content exists, it must be converted to conform to the requirements of

a CMS. This implies stripping raw content of any unnecessary information (e.g.,

redundant graphical representations), formatting the content to conform to the

requirements of the CMS, and mapping the results into an information structure that

will enable it to be managed and published.

The management subsystem. Once content exists, it must be stored in a reposi-

tory, cataloged for subsequent acquisition and use, and labeled to define (1) current sta-

tus (e.g., is the content object complete or in development?), (2) the appropriate version

of the content object, and (3) related content objects. Therefore, the management sub-

system implements a repository that encompasses the following elements:

• Content database—the information structure that has been established to

store all content objects

• Database capabilities—functions that enable the CMS to search for

specific content objects (or categories of objects), store and retrieve

604 PART THREE QUALITY MANAGEMENT

Database

Templates

Server-side

HTML code
+ scripts

Client-side browser

Configuration objects

Content
management

system

FIGURE 22.6

Content
management
system

The collection
subsystem
encompasses all
actions required to
create, acquire, and/or
convert content into a
form that can be
presented on the
client side.

The management
subsystem implements
a repository for all
content. Configuration
management is
performed within this
subsystem.

pre75977_ch22.qxd 11/27/08 6:21 PM Page 604

objects, and manage the file structure that has been established for the

content

• Configuration management functions—the functional elements and associated

workflow that support content object identification, version control, change

management, change auditing, and reporting

In addition to these elements, the management subsystem implements an adminis-

tration function that encompasses the metadata and rules that control the overall

structure of the content and the manner in which it is supported.

The publishing subsystem. Content must be extracted from the repository, con-

verted to a form that is amenable to publication, and formatted so that it can be

transmitted to client-side browsers. The publishing subsystem accomplishes these

tasks using a series of templates. Each template is a function that builds a publica-

tion using one of three different components [Boi04]:

• Static elements—text, graphics, media, and scripts that require no further

processing are transmitted directly to the client side.

• Publication services—function calls to specific retrieval and formatting

services that personalize content (using predefined rules), perform data

conversion, and build appropriate navigation links.

• External services—access to external corporate information infrastructure

such as enterprise data or “back-room” applications.

A content management system that encompasses each of these subsystems is

applicable for major WebApp projects. However, the basic philosophy and function-

ality associated with a CMS are applicable to all dynamic WebApps.

CHAPTER 22 SOFTWARE CONFIGURATION MANAGEMENT 605

The publishing
subsystem extracts
content from the
repository and delivers
it to client-side
browsers.

Content Management

Objective: To assist software engineers and
content developers in managing content that is

incorporated into WebApps.

Mechanics: Tools in this category enable Web engineers
and content providers to update WebApp content in a
controlled manner. Most establish a simple file management
system that assigns page-by-page update and editing
permissions for various types of WebApp content. Some
maintain a versioning system so that a previous version of
content can be archived for historical purposes.

Representative Tools:8

Vignette Content Management, developed by Vignette
(www.vignette.com/us/Products), is a suite of
enterprise content management tools.

ektron-CMS300, developed by ektron
(www.ektron.com), is a suite of tools that provide
content management capabilities as well as Web
development tools.

OmniUpdate, developed by WebsiteASP, Inc.
(www.omniupdate.com), is a tool that allows

SOFTWARE TOOLS

8 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.
In most cases, tool names are trademarked by their respective developers.

pre75977_ch22.qxd 11/27/08 6:21 PM Page 605

http://www.vignette.com/us/Products
http://www.ektron.com
http://www.omniupdate.com
http://www.vignette.com/us/Products

22.4.4 Change Management

The workflow associated with change control for conventional software (Sec-

tion 22.3.3) is generally too ponderous for WebApp development. It is unlikely that

the change request, change report, and engineering change order sequence can be

achieved in an agile manner that is acceptable for most WebApp development

projects. How then do we manage a continuous stream of changes requested for

WebApp content and functionality?

To implement effective change management within the “code and go” philosophy

that continues to dominate WebApp development, the conventional change control

process must be modified. Each change should be categorized into one of four

classes:

Class 1— a content or function change that corrects an error or enhances local

content or functionality

Class 2—a content or function change that has an impact on other content

objects or functional components

Class 3—a content or function change that has a broad impact across a WebApp

(e.g., major extension of functionality, significant enhancement or reduction in

content, major required changes in navigation)

Class 4—a major design change (e.g., a change in interface design or naviga-

tion approach) that will be immediately noticeable to one or more categories

of user

Once the requested change has been categorized, it can be processed according to

the algorithm shown in Figure 22.7.

Referring to the figure, class 1 and 2 changes are treated informally and are han-

dled in an agile manner. For a class 1 change, you would evaluate the impact of the

change, but no external review or documentation is required. As the change is made,

standard check-in and check-out procedures are enforced by configuration reposi-

tory tools. For class 2 changes, you should review the impact of the change on

related objects (or ask other developers responsible for those objects to do so). If the

606 PART THREE QUALITY MANAGEMENT

authorized content providers to develop controlled
updates to specified WebApp content.

Additional information on SCM and content management
tools for Web engineering can be found at one or more
of the following websites: Web Developer’s Virtual

Encyclopedia (www.wdlv.com), WebDeveloper
(www.webdeveloper.com), Developer Shed
(www.devshed.com), webknowhow.net
(www.webknowhow.net), or WebReference
(www.webreference.com).

pre75977_ch22.qxd 11/27/08 6:21 PM Page 606

http://www.wdlv.com
http://www.webdeveloper.com
http://www.devshed.com
http://www.webknowhow.net
http://www.webreference.com
http://www.devshed.com

change can be made without requiring significant changes to other objects, modifi-

cation occurs without additional review or documentation. If substantive changes

are required, further evaluation and planning are necessary.

Class 3 and 4 changes are also treated in an agile manner, but some descriptive

documentation and more formal review procedures are required. A change

description—describing the change and providing a brief assessment of the impact

of the change—is developed for class 3 changes. The description is distributed to all

members of the team who review it to better assess its impact. A change descrip-

tion is also developed for class 4 changes, but in this case, the review is conducted

by all stakeholders.

CHAPTER 22 SOFTWARE CONFIGURATION MANAGEMENT 607

Classify the
requested change

Acquire related objects and
assess impact of change

Develop brief written
description of change

Transmit to all team
members for review

Check out object(s)
to be changed

Develop brief written
description of change

Make changes
design, construct, test

Check in object(s)
that were changed

Publish to WebApp

Transmit to all stake-
holders for reviewChanges

required
in related
objects

Further
evaluation
is required

Further
evaluation
is requiredOK to make OK to make

Class 1 change Class 4 change

Class 3 changeClass 2 change

FIGURE 22.7

Managing
changes for
WebApps

pre75977_ch22.qxd 11/27/08 6:21 PM Page 607

22.4.5 Version Control

As a WebApp evolves through a series of increments, a number of different versions

may exist at the same time. One version (the current operational WebApp) is avail-

able via the Internet for end users; another version (the next WebApp increment)

may be in the final stages of testing prior to deployment; a third version is in devel-

opment and represents a major update in content, interface aesthetics, and func-

tionality. Configuration objects must be clearly defined so that each can be

associated with the appropriate version. In addition, control mechanisms must be

established. Dreilinger [Dre99] discusses the importance of version (and change)

control when he writes:

In an uncontrolled site where multiple authors have access to edit and contribute, the

potential for conflict and problems arises—more so when these authors work from dif-

ferent offices at different times of day and night. You may spend the day improving the

file index.html for a customer. After you’ve made your changes, another developer who

works at home after hours, or in another office, may spend the night uploading their own

newly revised version of the file index.html, completely overwriting your work with no

way to get it back!

It’s likely that you’ve experienced a similar situation. To avoid it, a version control

process is required.

1. A central repository for the WebApp project should be established. The reposi-

tory will hold current versions of all WebApp configuration objects (content,

functional components, and others).

2. Each Web engineer creates his or her own working folder. The folder contains

those objects that are being created or changed at any given time.

608 PART THREE QUALITY MANAGEMENT

9 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.
In most cases, tool names are trademarked by their respective developers.

Change Management

Objective: To assist Web engineers and
content developers in managing changes as

they are made to WebApp configuration objects.

Mechanics: Tools in this category were originally
developed for conventional software, but can be adapted
for use by Web engineers and content developers to make
controlled changes to WebApps. They support automated
check-in and check-out, version control and rollback,
reporting, and other SCM functions.

Representative Tools:9

ChangeMan WCM, developed by Serena (www.serena
.com), is one of a suite of change management tools
that provide complete SCM capabilities.

ClearCase, developed by Rational (www-306.ibm
.com/software/rational/sw-atoz/
indexC.html), is a suite of tools that provide full
configuration management capabilities for WebApps.

Source Integrity, developed by mks (www.mks.com),
is a SCM tool that can be integrated with selected
development environments.

SOFTWARE TOOLS

pre75977_ch22.qxd 11/27/08 6:21 PM Page 608

http://www.serena.com
http://www.serena.com
http://www.mks.com

3. The clocks on all developer workstations should be synchronized. This is done

to avoid overwriting conflicts when two developers make updates that are

very close to one another in time.

4. As new configuration objects are developed or existing objects are changed, they

are imported into the central repository. The version control tool (see discus-

sion of CVS in the sidebar) will manage all check-in and check-out functions

from the working folders of each WebApp developer. The tool will also pro-

vide automatic e-mail updates to all interested parties when changes to the

repository are made.

5. As objects are imported or exported from the repository, an automatic, time-

stamped log message is made. This provides useful information for auditing

and can become part of an effective reporting scheme.

The version control tool maintains different versions of the WebApp and can revert

to an older version if required.

22.4.6 Auditing and Reporting

In the interest of agility, the auditing and reporting functions are deemphasized in

Web engineering work.10 However, they are not eliminated altogether. All objects

that are checked into or out of the repository are recorded in a log that can be

reviewed at any point in time. A complete log report can be created so that all mem-

bers of the WebApp team have a chronology of changes over a defined period of

time. In addition, an automated e-mail notification (addressed to those developers

and stakeholders who have interest) can be sent every time an object is checked in

or out of the repository.

CHAPTER 22 SOFTWARE CONFIGURATION MANAGEMENT 609

10 This is beginning to change. There is an increasing emphasis on SCM as one element of WebApp
security [Sar06]. By providing a mechanism for tracking and reporting every change made to every
WebApp object, a change management tool can provide valuable protection against malicious
changes.

SCM Standards
The following list of SCM standards (extracted
in part from www.12207.com) is reasonably

comprehensive:

IEEE Standards standards.ieee.org/
catalog/olis/

IEEE 828 Software Configuration Management
Plans

IEEE 1042 Software Configuration Management

ISO Standards www.iso.ch/iso/en/
ISOOnline.frontpage

ISO 10007-1995 Quality Management, Guidance
for CM

ISO/IEC 12207 Information Technology-Software
Life Cycle Processes

ISO/IEC TR 15271 Guide for ISO/IEC 12207

INFO

pre75977_ch22.qxd 11/27/08 6:21 PM Page 609

http://www.12207.com
http://www.iso.ch/iso/en/

22.5 SUMMARY

Software configuration management is an umbrella activity that is applied through-

out the software process. SCM identifies, controls, audits, and reports modifications

that invariably occur while software is being developed and after it has been released

to a customer. All work products created as part of software engineering become

part of a software configuration. The configuration is organized in a manner that

enables orderly control of change.

The software configuration is composed of a set of interrelated objects, also called

software configuration items, that are produced as a result of some software engi-

neering activity. In addition to documents, programs, and data, the development

environment that is used to create software can also be placed under configuration

control. All SCIs are stored within a repository that implements a set of mechanisms

and data structures to ensure data integrity, provide integration support for other

software tools, support information sharing among all members of the software

team, and implement functions in support of version and change control.

Once a configuration object has been developed and reviewed, it becomes a

baseline. Changes to a baselined object result in the creation of a new version of that

610 PART THREE QUALITY MANAGEMENT

ISO/IEC TR 15846 Software Engineering-Software Life
Cycle Process-Configuration
Management for Software Order

EIA Standards www.eia.org/
EIA 649 National Consensus Standard for

Configuration Management
EIA CMB4-1A Configuration Management

Definitions for Digital Computer
Programs

EIA CMB4-2 Configuration Identification for
Digital Computer Programs

EIA CMB4-3 Computer Software Libraries
EIA CMB4-4 Configuration Change Control for

Digital Computer Programs
EIA CMB6-1C Configuration and Data

Management References Order
EIA CMB6-3 Configuration Identification

EIA CMB6-4 Configuration Control
EIA CMB6-5 Textbook for Configuration Status

Accounting
EIA CMB7-1 Electronic Interchange of

Configuration Management Data
U.S. Military Information of MIL standards:

Standards www-library.itsi.disa.mil

DoD MIL STD-973 Configuration Management
MIL-HDBK-61 Configuration Management

Guidance
Other Standards
DO-178B Guidelines for the Development

of Aviation Software
ESA PSS-05-09 Guide to Software Configuration

Management
AECL CE-1001-STD Standard for Software Engineering

rev.1 of Safety Critical Software
DOE SCM checklist: http://cio.doe.gov/ITReform/

sqse/download/cmcklst.doc
BS-6488 British Std., Configuration

Management of Computer-Based
Systems

Best Practice—UK Office of Government Commerce:
www.ogc.gov.uk

CMII Institute of CM Best Practices:
www.icmhq.com

A Configuration Management Resource Guide provides
complementary information for those interested in CM
processes and practice. It is available at www.quality
.org/config/cm-guide.html.

pre75977_ch22.qxd 11/27/08 6:21 PM Page 610

http://www.eia.org/
http://cio.doe.gov/ITReform/
http://www.ogc.gov.uk
http://www.icmhq.com
http://www.quality

object. The evolution of a program can be tracked by examining the revision history

of all configuration objects. Version control is the set of procedures and tools for

managing the use of these objects.

Change control is a procedural activity that ensures quality and consistency as

changes are made to a configuration object. The change control process begins with

a change request, leads to a decision to make or reject the request for change, and

culminates with a controlled update of the SCI that is to be changed.

The configuration audit is an SQA activity that helps to ensure that quality is

maintained as changes are made. Status reporting provides information about each

change to those with a need to know.

Configuration management for WebApps is similar in most respects to SCM for

conventional software. However, each of the core SCM tasks should be streamlined

to make it as lean as possible, and special provisions for content management must

be implemented.

PROBLEMS AND POINTS TO PONDER

22.1. Why is the First Law of System Engineering true? Provide specific examples for each of
the four fundamental reasons for change.

22.2. What are the four elements that exist when an effective SCM system is implemented?
Discuss each briefly.

22.3. Discuss the reasons for baselines in your own words.

22.4. Assume that you’re the manager of a small project. What baselines would you define for
the project and how would you control them?

22.5. Design a project database (repository) system that would enable a software engineer
to store, cross reference, trace, update, and change all important software configuration items.
How would the database handle different versions of the same program? Would source code be
handled differently than documentation? How will two developers be precluded from making
different changes to the same SCI at the same time?

22.6. Research an existing SCM tool and describe how it implements control for versions,
variants, and configuration objects in general.

22.7. The relations <part-of> and <interrelated> represent simple relationships between con-
figuration objects. Describe five additional relationships that might be useful in the context of
an SCM repository.

22.8. Research an existing SCM tool and describe how it implements the mechanics of version
control. Alternatively, read two or three papers on SCM and describe the different data struc-
tures and referencing mechanisms that are used for version control.

22.9. Develop a checklist for use during configuration audits.

22.10. What is the difference between an SCM audit and a technical review? Can their func-
tion be folded into one review? What are the pros and cons?

22.11. Briefly describe the differences between SCM for conventional software and SCM for
WebApps.

22.12. What is content management? Use the Web to research the features of a content
management tool and provide a brief summary.

CHAPTER 22 SOFTWARE CONFIGURATION MANAGEMENT 611

pre75977_ch22.qxd 11/27/08 6:21 PM Page 611

FURTHER READINGS AND INFORMATION SOURCES

Among the more recent SCM offerings are Leon (Software Configuration Management Handbook,
2d ed., Artech House Publishers, 2005), Maraia (The Build Master: Microsoft’s Software Configu-
ration Management Best Practices, Addison-Wesley, 2005), Keyes (Software Configuration Man-
agement, Auerbach, 2004), and Hass (Configuration Management Principles and Practice,
Addison-Wesley, 2002). Each of these books presents the entire SCM process in substantial
detail. Maraia (Software Configuration Management Implementation Roadmap, Wiley, 2004) pres-
ents a unique how-to guide for those who must implement SCM within an organization. Lyon
(Practical CM, Raven Publishing, 2003, available at www.configuration.org) has written a
comprehensive guide for the CM professional that includes pragmatic guidelines for imple-
menting every aspect of a configuration management system (updated yearly). White and
Clemm (Software Configuration Management Strategies and Rational ClearCase, Addison-Wesley,
2000) present SCM within the context of one of the more popular SCM tools.

Berczuk and Appleton (Software Configuration Management Patterns, Addison-Wesley, 2002)
present a variety of useful patterns that assist in understanding SCM and implementing effec-
tive SCM systems. Brown et al. (Anti-Patterns and Patterns in Software Configuration Management,
Wiley, 1999) discuss the things not to do (anti-patterns) when implementing an SCM process and
then consider their remedies. Bays (Software Release Methodology, Prentice Hall, 1999) focuses
on the mechanics of “successful product release,” an important complement to effective SCM.

As WebApps have become more dynamic, content management has become an essential
topic for Web engineers. Books by White (The Content Management Handbook, Curtin University
Books, 2005), Jenkins and his colleagues (Enterprise Content Management Methods, Open Text
Corporation, 2005), Boiko [Boi04], Mauthe and Thomas (Professional Content Management Sys-
tems, Wiley, 2004), Addey and his colleagues (Content Management Systems, Glasshaus, 2003),
Rockley (Managing Enterprise Content, New Riders Press, 2002), Hackos (Content Management
for Dynamic Web Delivery, Wiley, 2002), and Nakano (Web Content Management, Addison-Wesley,
2001) present worthwhile treatments of the subject.

In addition to generic discussions of the topic, Lim and his colleagues (Enhancing Microsoft
Content Management Server with ASP.NET 2.0, Packt Publishing, 2006), Ferguson (Creating
Content Management Systems in Java, Charles River Media, 2006), IBM Redbooks (IBM Workplace
Web Content Management for Portal 5.1 and IBM Workplace Web Content Management 2.5,
Vivante, 2006), Fritz and his colleagues (Typo3: Enterprise Content Management, Packt Publish-
ing, 2005), and Forta (Reality ColdFusion: Intranets and Content Management, Pearson Education,
2002) present content management within the context of specific tools and languages.

A wide variety of information sources on software configuration management and content
management is available on the Internet. An up-to-date list of World Wide Web references
relevant to software configuration management can be found at the SEPA website:
www.mhhe.com/engcs/compsci/pressman/professional/olc/ser.htm.

612 PART THREE QUALITY MANAGEMENT

pre75977_ch22.qxd 11/27/08 6:21 PM Page 612

http://www.configuration.org
http://www.mhhe.com/engcs/compsci/pressman/professional/olc/ser.htm

Akey element of any engineering process is measurement. You can use
measures to better understand the attributes of the models that you cre-
ate and to assess the quality of the engineered products or systems that

you build. But unlike other engineering disciplines, software engineering is not
grounded in the basic quantitative laws of physics. Direct measures, such as
voltage, mass, velocity, or temperature, are uncommon in the software world.
Because software measures and metrics are often indirect, they are open to
debate. Fenton [Fen91] addresses this issue when he states:

Measurement is the process by which numbers or symbols are assigned to the attrib-

utes of entities in the real world in such a way as to define them according to clearly

defined rules. . . . In the physical sciences, medicine, economics, and more recently the

social sciences, we are now able to measure attributes that were previously thought to

613

C H A P T E R

23PRODUCT
METRICS

What is it? By its nature, engineer-
ing is a quantitative discipline. Prod-
uct metrics help software engineers
gain insight into the design and con-

struction of the software they build by focusing
on specific, measurable attributes of software
engineering work products.

Who does it? Software engineers use product met-
rics to help them build higher-quality software.

Why is it important? There will always be a qual-
itative element to the creation of computer soft-
ware. The problem is that qualitative assessment
may not be enough. You need objective criteria
to help guide the design of data, architecture,
interfaces, and components. When testing, you
need quantitative guidance that will help in the
selection of test cases and their targets. Product
metrics provide a basis from which analysis, de-
sign, coding, and testing can be conducted more
objectively and assessed more quantitatively.

What are the steps? The first step in the meas-
urement process is to derive the software
measures and metrics that are appropriate for

Q U I C K
L O O K

the representation of software that is being
considered. Next, data required to derive the
formulated metrics are collected. Once com-
puted, appropriate metrics are analyzed
based on preestablished guidelines and past
data. The results of the analysis are interpreted
to gain insight into the quality of the software,
and the results of the interpretation lead to
modification of requirements and design
models, source code, or test cases. In some
instances, it may also lead to modification of
the software process itself.

What is the work product? Product metrics that
are computed from data collected from the
requirements and design models, source code,
and test cases.

How do I ensure that I’ve done it right? You
should establish the objectives of measurement
before data collection begins, defining each
product metric in an unambiguous manner.
Define only a few metrics and then use them to
gain insight into the quality of a software engi-
neering work product.

K E Y
C O N C E P T S

function
point (FP)620
Goal/Question/
Metric (GQM) . .617
indicator615
measure614
measurement . .614
measurement
principles 616
metrics,

attributes of . .618

pre75977_ch23.qxd 11/27/08 6:22 PM Page 613

be unmeasurable. . . . Of course, such measurements are not as refined as many meas-

urements in the physical sciences . . . , but they exist [and important decisions are made

based on them]. We feel that the obligation to attempt to “measure the unmeasurable” in

order to improve our understanding of particular entities is as powerful in software engi-

neering as in any discipline.

But some members of the software community continue to argue that software is

“unmeasurable” or that attempts at measurement should be postponed until we bet-

ter understand software and the attributes that should be used to describe it. This is

a mistake.

Although product metrics for computer software are imperfect, they can provide

you with a systematic way to assess quality based on a set of clearly defined rules.

They also provide you with on-the-spot, rather than after-the-fact, insight. This

enables you to discover and correct potential problems before they become cata-

strophic defects.

In this chapter, I present measures that can be used to assess the quality of the

product as it is being engineered. These measures of internal product attributes pro-

vide you with a real-time indication of the efficacy of the requirements, design, and

code models; the effectiveness of test cases; and the overall quality of the software

to be built.

23.1 A FRAMEWORK FOR PRODUCT METRICS

As I noted in the introduction, measurement assigns numbers or symbols to attributes

of entities in the real word. To accomplish this, a measurement model encompassing a

consistent set of rules is required. Although the theory of measurement (e.g., [Kyb84])

and its application to computer software (e.g., [Zus97]) are topics that are beyond the

scope of this book, it is worthwhile to establish a fundamental framework and a set of

basic principles that guide the definition of product metrics for software.

23.1.1 Measures, Metrics, and Indicators

Although the terms measure, measurement, and metrics are often used interchangeably,

it is important to note the subtle differences between them. Because measure can be

used either as a noun or a verb, definitions of the term can become confusing. Within

the software engineering context, a measure provides a quantitative indication of the

extent, amount, dimension, capacity, or size of some attribute of a product or process.

Measurement is the act of determining a measure. The IEEE Standard Glossary of Soft-

ware Engineering Terminology [IEE93b] defines metric as “a quantitative measure of the

degree to which a system, component, or process possesses a given attribute.”

When a single data point has been collected (e.g., the number of errors uncovered

within a single software component), a measure has been established. Measurement

occurs as the result of the collection of one or more data points (e.g., a number of

component reviews and unit tests are investigated to collect measures of the number

614 PART THREE QUALITY MANAGEMENT

metrics (continued)
architectural
design 624
class-oriented . .628
OO design . . .627
requirements
model 619
source code . .638
testing 639
user interface
design 635
WebApp
design 636

uote:

“A science is as
mature as its
measurement
tools.”

Louis Pasteur

What’s the
difference

between a
measure and
a metric?

?

pre75977_ch23.qxd 11/27/08 6:22 PM Page 614

of errors for each). A software metric relates the individual measures in some way

(e.g., the average number of errors found per review or the average number of errors

found per unit test).

A software engineer collects measures and develops metrics so that indicators

will be obtained. An indicator is a metric or combination of metrics that provides

insight into the software process, a software project, or the product itself. An indica-

tor provides insight that enables the project manager or software engineers to adjust

the process, the project, or the product to make things better.

23.1.2 The Challenge of Product Metrics

Over the past four decades, many researchers have attempted to develop a single

metric that provides a comprehensive measure of software complexity. Fenton

[Fen94] characterizes this research as a search for “the impossible holy grail.”

Although dozens of complexity measures have been proposed [Zus90], each takes a

somewhat different view of what complexity is and what attributes of a system lead

to complexity. By analogy, consider a metric for evaluating an attractive car. Some

observers might emphasize body design; others might consider mechanical charac-

teristics; still others might tout cost, or performance, or the use of alternative fuels,

or the ability to recycle when the car is junked. Since any one of these characteris-

tics may be at odds with others, it is difficult to derive a single value for “attractive-

ness.” The same problem occurs with computer software.

Yet there is a need to measure and control software complexity. And if a single

value of this quality metric is difficult to derive, it should be possible to develop

measures of different internal program attributes (e.g., effective modularity, func-

tional independence, and other attributes discussed in Chapter 8). These measures

and the metrics derived from them can be used as independent indicators of the

quality of requirements and design models. But here again, problems arise. Fenton

[Fen94] notes this when he states: “The danger of attempting to find measures

which characterize so many different attributes is that inevitably the measures

have to satisfy conflicting aims. This is counter to the representational theory of

measurement.” Although Fenton’s statement is correct, many people argue that

product measurement conducted during the early stages of the software process

provides software engineers with a consistent and objective mechanism for

assessing quality.

It is fair to ask, however, just how valid product metrics are. That is, how closely

aligned are product metrics to the long-term reliability and quality of a computer-

based system? Fenton [Fen91] addresses this question in the following way:

In spite of the intuitive connections between the internal structure of software products

[product metrics] and its external product and process attributes, there have actually

been very few scientific attempts to establish specific relationships. There are a number

of reasons why this is so; the most commonly cited is the impracticality of conducting rel-

evant experiments.

CHAPTER 23 PRODUCT METRICS 615

An indicator is a metric
or metrics that provide
insight into the
process, the product,
or the project.

WebRef

Voluminous
information on
product metrics has
been compiled by
Horst Zuse at
irb.cs.tu-berlin
.de/~zuse/.

uote:

“Just as
temperature
measurement
began with an
index finger . . .
and grew to
sophisticated
scales, tools and
techniques, so too
is software
measurement
maturing.”

Shari Pfleeger

pre75977_ch23.qxd 11/27/08 6:22 PM Page 615

Each of the “challenges” noted here is a cause for caution, but it is no reason to

dismiss product metrics.1 Measurement is essential if quality is to be achieved.

23.1.3 Measurement Principles

Before I introduce a series of product metrics that (1) assist in the evaluation of the

analysis and design models, (2) provide an indication of the complexity of procedural

designs and source code, and (3) facilitate the design of more effective testing, it is

important for you to understand basic measurement principles. Roche [Roc94] sug-

gests a measurement process that can be characterized by five activities:

• Formulation. The derivation of software measures and metrics appropriate for

the representation of the software that is being considered.

• Collection. The mechanism used to accumulate data required to derive the

formulated metrics.

• Analysis. The computation of metrics and the application of mathematical

tools.

• Interpretation. The evaluation of metrics resulting in insight into the quality of

the representation.

• Feedback. Recommendations derived from the interpretation of product

metrics transmitted to the software team.

Software metrics will be useful only if they are characterized effectively and vali-

dated so that their worth is proven. The following principles [Let03b] are represen-

tative of many that can be proposed for metrics characterization and validation:

• A metric should have desirable mathematical properties. That is, the metric’s

value should be in a meaningful range (e.g., 0 to 1, where 0 truly means

absence, 1 indicates the maximum value, and 0.5 represents the “halfway

point”). Also, a metric that purports to be on a rational scale should not be

composed of components that are only measured on an ordinal scale.

• When a metric represents a software characteristic that increases when positive

traits occur or decreases when undesirable traits are encountered, the value of

the metric should increase or decrease in the same manner.

• Each metric should be validated empirically in a wide variety of contexts before

being published or used to make decisions. A metric should measure the factor

of interest, independently of other factors. It should “scale up” to large

systems and work in a variety of programming languages and system

domains.

616 PART THREE QUALITY MANAGEMENT

1 Although criticism of specific metrics is common in the literature, many critiques focus on esoteric
issues and miss the primary objective of metrics in the real world: to help the software engineer
establish a systematic and objective way to gain insight into his or her work and to improve prod-
uct quality as a result.

What are the
steps of an

effective
measurement
process?

?

In reality, many
product metrics in use
today do not conform
to these principles as
well as they should.
But that doesn’t mean
that they have no
value—just be careful
when you use them,
understanding that
they are intended to
provide insight, not
hard scientific
verification.

pre75977_ch23.qxd 11/27/08 6:22 PM Page 616

Although formulation, characterization, and validation are critical, collection and

analysis are the activities that drive the measurement process. Roche [Roc94] sug-

gests the following principles for these activities: (1) whenever possible, data collec-

tion and analysis should be automated; (2) valid statistical techniques should be

applied to establish relationships between internal product attributes and external

quality characteristics (e.g., whether the level of architectural complexity correlates

with the number of defects reported in production use); and (3) interpretative guide-

lines and recommendations should be established for each metric.

23.1.4 Goal-Oriented Software Measurement

The Goal/Question/Metric (GQM) paradigm has been developed by Basili and Weiss

[Bas84] as a technique for identifying meaningful metrics for any part of the software

process. GQM emphasizes the need to (1) establish an explicit measurement goal

that is specific to the process activity or product characteristic that is to be assessed,

(2) define a set of questions that must be answered in order to achieve the goal, and

(3) identify well-formulated metrics that help to answer these questions.

A goal definition template [Bas94] can be used to define each measurement goal.

The template takes the form:

Analyze {the name of activity or attribute to be measured} for the purpose of {the over-

all objective of the analysis2} with respect to {the aspect of the activity or attribute that

is considered} from the viewpoint of {the people who have an interest in the measure-

ment} in the context of {the environment in which the measurement takes place}.

As an example, consider a goal definition template for SafeHome:

Analyze the SafeHome software architecture for the purpose of evaluating architec-

tural components with respect to the ability to make SafeHome more extensible from

the viewpoint of the software engineers performing the work in the context of prod-

uct enhancement over the next three years.

With a measurement goal explicitly defined, a set of questions is developed. Answers

to these questions help the software team (or other stakeholders) to determine

whether the measurement goal has been achieved. Among the questions that might

be asked are:

Q1: Are architectural components characterized in a manner that compart-

mentalizes function and related data?

Q2: Is the complexity of each component within bounds that will facilitate

modification and extension?

Each of these questions should be answered quantitatively, using one or more meas-

ures and metrics. For example, a metric that provides an indication of the cohesion

CHAPTER 23 PRODUCT METRICS 617

WebRef
A useful discussion of
GQM can be found at
www.thedacs.com
/GoldPractices/
practices/gqma
.html.

2 van Solingen and Berghout [Sol99] suggest that the objective is almost always “understanding,
controlling or improving” the process activity or product attribute.

pre75977_ch23.qxd 11/27/08 6:22 PM Page 617

http://www.thedacs.com

(Chapter 8) of an architectural component might be useful in answering Q1. Metrics

discussed later in this chapter might provide insight for Q2. In every case, the metrics

that are chosen (or derived) should conform to the measurement principles dis-

cussed in Section 23.1.3 and the measurement attributes discussed in Section 23.1.5.

23.1.5 The Attributes of Effective Software Metrics

Hundreds of metrics have been proposed for computer software, but not all provide

practical support to the software engineer. Some demand measurement that is too

complex, others are so esoteric that few real-world professionals have any hope

of understanding them, and others violate the basic intuitive notions of what high-

quality software really is.

Ejiogu [Eji91] defines a set of attributes that should be encompassed by effective

software metrics. The derived metric and the measures that lead to it should be:

• Simple and computable. It should be relatively easy to learn how to derive the

metric, and its computation should not demand inordinate effort or time.

• Empirically and intuitively persuasive. The metric should satisfy the engineer’s

intuitive notions about the product attribute under consideration (e.g., a

metric that measures module cohesion should increase in value as the level

of cohesion increases).

• Consistent and objective. The metric should always yield results that are

unambiguous. An independent third party should be able to derive the same

metric value using the same information about the software.

• Consistent in its use of units and dimensions. The mathematical computation

of the metric should use measures that do not lead to bizarre combinations

of units. For example, multiplying people on the project teams by program-

ming language variables in the program results in a suspicious mix of units

that are not intuitively persuasive.

• Programming language independent. Metrics should be based on the require-

ments model, the design model, or the structure of the program itself. They

should not be dependent on the vagaries of programming language syntax or

semantics.

• An effective mechanism for high-quality feedback. That is, the metric should

provide you with information that can lead to a higher-quality end product.

Although most software metrics satisfy these attributes, some commonly used met-

rics may fail to satisfy one or two of them. An example is the function point (discussed

in Section 23.2.1)—a measure of the “functionality” delivered by the software. It can

be argued3 that the consistent and objective attribute fails because an independent

third party may not be able to derive the same function point value as a colleague

618 PART THREE QUALITY MANAGEMENT

How should
we assess

the quality of a
proposed
software metric?

?

Experience indicates
that a product metric
will be used only if it is
intuitive and easy to
compute. If dozens of
“counts” have to be
made, and complex
computations are
required, it is unlikely
that the metric will be
widely adopted.

3 An equally vigorous counterargument can be made. Such is the nature of software metrics.

pre75977_ch23.qxd 11/27/08 6:22 PM Page 618

using the same information about the software. Should we therefore reject the FP

measure? The answer is “Of course not!” FP provides useful insight and therefore pro-

vides distinct value, even if it fails to satisfy one attribute perfectly.

CHAPTER 23 PRODUCT METRICS 619

Debating Product Metrics

The scene: Vinod’s cubicle.

The players: Vinod, Jamie, and Ed—members of the
SafeHome software engineering team who are continuing
work of component-level design and test-case design.

The conversation:

Vinod: Doug [Doug Miller, software engineering
manager] told me that we should all use product metrics,
but he was kind of vague. He also said that he wouldn’t
push the matter . . . that using them was up to us.

Jamie: That’s good, ’cause there’s no way I have time to
start measuring stuff. We’re fighting to maintain the
schedule as it is.

Ed: I agree with Jamie. We’re up against it, here . . . no
time.

Vinod: Yeah, I know, but there’s probably some merit to
using them.

Jamie: I’m not arguing that, Vinod, it’s a time thing . . .
and I for one don’t have any to spare.

Vinod: But what if measuring saves you time?

Ed: Wrong, it takes time and like Jamie said . . .

Vinod: No, wait . . . what it saves us is time?

Jamie: How?

Vinod: Rework . . . that’s how. If a measure we use helps
us to avoid one major or even moderate problem, and
that saves us from having to rework a part of the system,
we save time. No?

Ed: It’s possible, I suppose, but can you guarantee that
some product metric will help us find a problem?

Vinod: Can you guarantee that it won’t?

Jamie: So what are you proposing?”

Vinod: I think we should select a few design metrics,
probably class-oriented, and use them as part of our
review process for every component we develop.

Ed: I’m not real familiar with class-oriented metrics.

Vinod: I’ll spend some time checking them out and make
a recommendation . . . okay with you guys?

[Ed and Jamie nod without much enthusiasm.]

SAFEHOME

23.2 METRICS FOR THE REQUIREMENTS MODEL

Technical work in software engineering begins with the creation of the requirements

model. It is at this stage that requirements are derived and a foundation for design is

established. Therefore, product metrics that provide insight into the quality of the

analysis model are desirable.

Although relatively few analysis and specification metrics have appeared in the

literature, it is possible to adapt metrics that are often used for project estimation and

apply them in this context. These metrics examine the requirements model with the

intent of predicting the “size” of the resultant system. Size is sometimes (but not

always) an indicator of design complexity and is almost always an indicator of

increased coding, integration, and testing effort.

pre75977_ch23.qxd 11/27/08 6:22 PM Page 619

23.2.1 Function-Based Metrics

The function point (FP) metric can be used effectively as a means for measuring the

functionality delivered by a system.4 Using historical data, the FP metric can then be

used to (1) estimate the cost or effort required to design, code, and test the software;

(2) predict the number of errors that will be encountered during testing; and (3) fore-

cast the number of components and/or the number of projected source lines in the

implemented system.

Function points are derived using an empirical relationship based on countable

(direct) measures of software’s information domain and qualitative assessments of

software complexity. Information domain values are defined in the following manner:5

Number of external inputs (EIs). Each external input originates from a

user or is transmitted from another application and provides distinct

application-oriented data or control information. Inputs are often used to

update internal logical files (ILFs). Inputs should be distinguished from

inquiries, which are counted separately.

Number of external outputs (EOs). Each external output is derived data

within the application that provides information to the user. In this context

external output refers to reports, screens, error messages, etc. Individual data

items within a report are not counted separately.

Number of external inquiries (EQs). An external inquiry is defined as

an online input that results in the generation of some immediate software

response in the form of an online output (often retrieved from an ILF).

Number of internal logical files (ILFs). Each internal logical file is a logi-

cal grouping of data that resides within the application’s boundary and is

maintained via external inputs.

Number of external interface files (EIFs). Each external interface file is a

logical grouping of data that resides external to the application but provides

information that may be of use to the application.

Once these data have been collected, the table in Figure 23.1 is completed and a com-

plexity value is associated with each count. Organizations that use function point

methods develop criteria for determining whether a particular entry is simple, average,

or complex. Nonetheless, the determination of complexity is somewhat subjective.

To compute function points (FP), the following relationship is used:

FP � count total � [0.65 � 0.01 � � (Fi)] (23.1)

where count total is the sum of all FP entries obtained from Figure 23.1.

620 PART THREE QUALITY MANAGEMENT

WebRef
Much useful
information about
function points can
be obtained at
www.ifpug.org
and www
.functionpoints.com.

4 Hundreds of books, papers, and articles have been written on FP metrics. A worthwhile bibliography
can be found at [IFP05].

5 In actuality, the definition of information domain values and the manner in which they are counted
are a bit more complex. The interested reader should see [IFP01] for more details.

pre75977_ch23.qxd 12/1/08 3:25 PM Page 620

http://www.ifpug.org

The Fi (i � 1 to 14) are value adjustment factors (VAF) based on responses to the

following questions [Lon02]:

1. Does the system require reliable backup and recovery?

2. Are specialized data communications required to transfer information to or

from the application?

3. Are there distributed processing functions?

4. Is performance critical?

5. Will the system run in an existing, heavily utilized operational environment?

6. Does the system require online data entry?

7. Does the online data entry require the input transaction to be built over mul-

tiple screens or operations?

8. Are the ILFs updated online?

9. Are the inputs, outputs, files, or inquiries complex?

10. Is the internal processing complex?

11. Is the code designed to be reusable?

12. Are conversion and installation included in the design?

13. Is the system designed for multiple installations in different organizations?

14. Is the application designed to facilitate change and ease of use by the user?

Each of these questions is answered using a scale that ranges from 0 (not important

or applicable) to 5 (absolutely essential). The constant values in Equation (23.1) and

the weighting factors that are applied to information domain counts are determined

empirically.

To illustrate the use of the FP metric in this context, we consider a simple analy-

sis model representation, illustrated in Figure 23.2. Referring to the figure, a data

flow diagram (Chapter 7) for a function within the SafeHome software is represented.

CHAPTER 23 PRODUCT METRICS 621

External Inputs (EIs) �

External Outputs (EOs) �

External Inquiries (EQs) �

External Interface Files (EIFs) �

Count total

Internal Logical Files (ILFs) �

3

4

3

5

7

=

=

=

=

=

4

5

4

7

10

6

7

6

10

15

Information
Domain Value

Weighting factor
Count Simple Average Complex

FIGURE 23.1

Computing
function points

Value adjustment
factors are used to
provide an indication
of problem complexity.

WebRef
An online FP calculator
can be found at
irb.cs.uni-
magdeburg.de/
sw-eng/us/
java/fp/.

pre75977_ch23.qxd 12/1/08 3:25 PM Page 621

The function manages user interaction, accepting a user password to activate or

deactivate the system, and allows inquiries on the status of security zones and var-

ious security sensors. The function displays a series of prompting messages and

sends appropriate control signals to various components of the security system.

The data flow diagram is evaluated to determine a set of key information domain

measures required for computation of the function point metric. Three external

inputs—password, panic button, and activate/deactivate—are shown in the fig-

ure along with two external inquiries—zone inquiry and sensor inquiry. One ILF

(system configuration file) is shown. Two external outputs (messages and

sensor status) and four EIFs (test sensor, zone setting, activate/deactivate,

and alarm alert) are also present. These data, along with the appropriate complex-

ity, are shown in Figure 23.3.

The count total shown in Figure 23.3 must be adjusted using Equation (23.1). For

the purposes of this example, we assume that �(Fi) is 46 (a moderately complex

product). Therefore,

FP � 50 � [0.65 � (0.01 � 46)] � 56

Based on the projected FP value derived from the requirements model, the project

team can estimate the overall implemented size of the SafeHome user interaction

622 PART THREE QUALITY MANAGEMENT

User

SafeHome
user

interaction
function

Messages

System configuration data

Password, sensors . . .

Sensor status

Sensors

Monitoring
& response
subsystem

Alarm
alert

Activate/deactivate

Zone setting

Test sensor

User Sensor inquiry
Panic button
Activate/deactivate

Zone inquiry
Password

FIGURE 23.2

A data flow
model for
SafeHome
software

External Inputs (EIs) �

External Outputs (EOs) �

External Inquiries (EQs) �

External Interface Files (EIFs) �

Count total

Internal Logical Files (ILFs) �

3

4

3

5

7

=

=

=

=

=

4

5

4

7

10

6

7

6

10

15

Information
Domain Value

Weighting factor
Count Simple Average Complex

9

8

6

20

50

7

3

2

2

4

1

FIGURE 23.3

Computing
function points

pre75977_ch23.qxd 11/27/08 6:22 PM Page 622

function. Assume that past data indicates that one FP translates into 60 lines of code

(an object-oriented language is to be used) and that 12 FPs are produced for each

person-month of effort. These historical data provide the project manager with

important planning information that is based on the requirements model rather than

preliminary estimates. Assume further that past projects have found an average of

three errors per function point during requirements and design reviews and four

errors per function point during unit and integration testing. These data can ulti-

mately help you assess the completeness of your review and testing activities.

Uemura and his colleagues [Uem99] suggest that function points can also be com-

puted from UML class and sequence diagrams. If you have further interest, see

[Uem99] for details.

23.2.2 Metrics for Specification Quality

Davis and his colleagues [Dav93] propose a list of characteristics that can be used to

assess the quality of the requirements model and the corresponding requirements

specification: specificity (lack of ambiguity), completeness, correctness, understandabil-

ity, verifiability, internal and external consistency, achievability, concision, traceability,

modifiability, precision, and reusability. In addition, the authors note that high-quality

specifications are electronically stored; executable or at least interpretable; annotated

by relative importance; and stable, versioned, organized, cross-referenced, and spec-

ified at the right level of detail.

Although many of these characteristics appear to be qualitative in nature, Davis

et al. [Dav93] suggest that each can be represented using one or more metrics. For

example, we assume that there are nr requirements in a specification, such that

nr � nf � nnf

where nf is the number of functional requirements and nnf is the number of non-

functional (e.g., performance) requirements.

To determine the specificity (lack of ambiguity) of requirements, Davis et al. sug-

gest a metric that is based on the consistency of the reviewers’ interpretation of each

requirement:

Q1 �

where nui is the number of requirements for which all reviewers had identical

interpretations. The closer the value of Q to 1, the lower is the ambiguity of the

specification.

The completeness of functional requirements can be determined by computing the

ratio

Q2 �

where nu is the number of unique functional requirements, ni is the number of inputs

(stimuli) defined or implied by the specification, and ns is the number of states

nu
ni � ns

nui
nr

CHAPTER 23 PRODUCT METRICS 623

uote:

“Rather than just
musing on what
’new metric’ might
apply . . . we
should also be
asking ourselves
the more basic
question, ’What
will we do with
metrics?”

Michael Mah
and
Larry Putnam

By measuring
characteristics of the
specification, it is
possible to gain
quantitative insight
into specificity and
completeness.

pre75977_ch23.qxd 11/27/08 6:22 PM Page 623

specified. The Q2 ratio measures the percentage of necessary functions that have

been specified for a system. However, it does not address nonfunctional require-

ments. To incorporate these into an overall metric for completeness, you must con-

sider the degree to which requirements have been validated:

Q3 �

where nc is the number of requirements that have been validated as correct and nnv

is the number of requirements that have not yet been validated.

23.3 METRICS FOR THE DESIGN MODEL

It is inconceivable that the design of a new aircraft, a new computer chip, or a new

office building would be conducted without defining design measures, determining

metrics for various aspects of design quality, and using them as indicators to guide

the manner in which the design evolves. And yet, the design of complex software-

based systems often proceeds with virtually no measurement. The irony of this is that

design metrics for software are available, but the vast majority of software engineers

continue to be unaware of their existence.

Design metrics for computer software, like all other software metrics, are not per-

fect. Debate continues over their efficacy and the manner in which they should be

applied. Many experts argue that further experimentation is required before design

measures can be used. And yet, design without measurement is an unacceptable

alternative.

In the sections that follow, I examine some of the more common design metrics

for computer software. Each can provide you with improved insight, and all can help

the design to evolve to a higher level of quality.

23.3.1 Architectural Design Metrics

Architectural design metrics focus on characteristics of the program architecture

(Chapter 9) with an emphasis on the architectural structure and the effectiveness of

modules or components within the architecture. These metrics are “black box” in the

sense that they do not require any knowledge of the inner workings of a particular

software component.

Card and Glass [Car90] define three software design complexity measures: struc-

tural complexity, data complexity, and system complexity.

For hierarchical architectures (e.g., call-and-return architectures), structural

complexity of a module i is defined in the following manner:

S(i) � f 2
out(i)

where fout(i) is the fan-out6 of module i.

nc
nc + nnv

624 PART THREE QUALITY MANAGEMENT

uote:

“Measure what is
measurable, and
what is not
measurable, make
measurable.”

Galileo

Metrics can provide
insight into structural
data and system
complexity associated
with architectural
design.

6 Fan-out is defined as the number of modules immediately subordinate to module i; that is, the
number of modules that are directly invoked by module i.

pre75977_ch23.qxd 11/27/08 6:22 PM Page 624

Data complexity provides an indication of the complexity in the internal interface

for a module i and is defined as

D(i) �

where v(i) is the number of input and output variables that are passed to and from

module i.

Finally, system complexity is defined as the sum of structural and data complexity,

specified as

C(i) � S(i) � D(i)

As each of these complexity values increases, the overall architectural complexity of

the system also increases. This leads to a greater likelihood that integration and

testing effort will also increase.

Fenton [Fen91] suggests a number of simple morphology (i.e., shape) metrics that

enable different program architectures to be compared using a set of straightforward

dimensions. Referring to the call-and-return architecture in Figure 23.4, the follow-

ing metrics can be defined:

Size � n + a

where n is the number of nodes and a is the number of arcs. For the architecture

shown in Figure 23.4,

Size � 17 � 18 � 35

Depth � longest path from the root (top) node to a leaf node. For the architec-

ture shown in Figure 23.4, depth � 4.

Width � maximum number of nodes at any one level of the architecture. For

the architecture shown in Figure 23.4, width � 6.

The arc-to-node ratio, r � a�n, measures the connectivity density of the architecture

and may provide a simple indication of the coupling of the architecture. For the

architecture shown in Figure 23.4, r � 18�17 � 1.06.

v(i)
fout(i) � 1

CHAPTER 23 PRODUCT METRICS 625

j

e

n qp

k l

r

i

d

mh

b

gf

c

a

Width

Depth

Node

Arc

FIGURE 23.4

Morphology
metrics

pre75977_ch23.qxd 11/27/08 6:22 PM Page 625

The U.S. Air Force Systems Command [USA87] has developed a number of soft-

ware quality indicators that are based on measurable design characteristics of a

computer program. Using concepts similar to those proposed in IEEE Std. 982.1-1988

[IEE94], the Air Force uses information obtained from data and architectural design

to derive a design structure quality index (DSQI) that ranges from 0 to 1. The follow-

ing values must be ascertained to compute the DSQI [Cha89]:

S1 � total number of modules defined in the program architecture

S2 � number of modules whose correct function depends on the source of data

input or that produce data to be used elsewhere (in general, control mod-

ules, among others, would not be counted as part of S2)

S3 � number of modules whose correct function depends on prior processing

S4 � number of database items (includes data objects and all attributes that

define objects)

S5 � total number of unique database items

S6 � number of database segments (different records or individual objects)

S7 � number of modules with a single entry and exit (exception processing is

not considered to be a multiple exit)

Once values S1 through S7 are determined for a computer program, the following

intermediate values can be computed:

Program structure: D1, where D1 is defined as follows: If the architectural design

was developed using a distinct method (e.g., data flow-oriented design or object-

oriented design), then D1 � 1, otherwise D1 � 0.

Module independence: D2 � 1 �

Modules not dependent on prior processing: D3 � 1 �

Database size: D4 � 1 �

Database compartmentalization: D5 � 1 �

Module entrance/exit characteristic: D6 � 1 �

With these intermediate values determined, the DSQI is computed in the following

manner:

DSQI � � wiDi

where i � 1 to 6, wi is the relative weighting of the importance of each of the inter-

mediate values, and � wi � 1 (if all Di are weighted equally, then wi � 0.167).

The value of DSQI for past designs can be determined and compared to a design

that is currently under development. If the DSQI is significantly lower than average,

S7
S1

S6
S4

S5
S4

S3
S1

S2
S1

626 PART THREE QUALITY MANAGEMENT

uote:

“Measurement can
be seen as a
detour. This detour
is necessary
because humans
mostly are not able
to make clear and
objective decisions
[without
quantitative
support].”

Horst Zuse

pre75977_ch23.qxd 11/27/08 6:22 PM Page 626

further design work and review are indicated. Similarly, if major changes are to be

made to an existing design, the effect of those changes on DSQI can be calculated.

23.3.2 Metrics for Object-Oriented Design

There is much about object-oriented design that is subjective—an experienced

designer “knows” how to characterize an OO system so that it will effectively imple-

ment customer requirements. But, as an OO design model grows in size and com-

plexity, a more objective view of the characteristics of the design can benefit both the

experienced designer (who gains additional insight) and the novice (who obtains an

indication of quality that would otherwise be unavailable).

In a detailed treatment of software metrics for OO systems, Whitmire [Whi97]

describes nine distinct and measurable characteristics of an OO design:

Size. Size is defined in terms of four views: population, volume, length, and

functionality. Population is measured by taking a static count of OO entities

such as classes or operations. Volume measures are identical to population

measures but are collected dynamically—at a given instant of time. Length is

a measure of a chain of interconnected design elements (e.g., the depth of an

inheritance tree is a measure of length). Functionality metrics provide an indi-

rect indication of the value delivered to the customer by an OO application.

Complexity. Like size, there are many differing views of software complex-

ity [Zus97]. Whitmire views complexity in terms of structural characteristics

by examining how classes of an OO design are interrelated to one another.

Coupling. The physical connections between elements of the OO design

(e.g., the number of collaborations between classes or the number of mes-

sages passed between objects) represent coupling within an OO system.

Sufficiency. Whitmire defines sufficiency as “the degree to which an abstrac-

tion possesses the features required of it, or the degree to which a design

component possesses features in its abstraction, from the point of view of

the current application.” Stated another way, we ask: “What properties does

this abstraction (class) need to possess to be useful to me?” [Whi97]. In

essence, a design component (e.g., a class) is sufficient if it fully reflects all

properties of the application domain object that it is modeling—that is, that

the abstraction (class) possesses the features required of it.

Completeness. The only difference between completeness and sufficiency

is “the feature set against which we compare the abstraction or design com-

ponent” [Whi97]. Sufficiency compares the abstraction from the point of view

of the current application. Completeness considers multiple points of view,

asking the question: “What properties are required to fully represent the

problem domain object?” Because the criterion for completeness considers

different points of view, it has an indirect implication about the degree to

which the abstraction or design component can be reused.

CHAPTER 23 PRODUCT METRICS 627

What
character-

istics can be
measured when
we assess an OO
design?

?

uote:

“Many of the
decisions for which
I had to rely on
folklore and myth
can now be made
using quantitative
data.”

Scott Whitmire

pre75977_ch23.qxd 11/27/08 6:22 PM Page 627

Cohesion. Like its counterpart in conventional software, an OO component

should be designed in a manner that has all operations working together to

achieve a single, well-defined purpose. The cohesiveness of a class is deter-

mined by examining the degree to which “the set of properties it possesses is

part of the problem or design domain” [Whi97].

Primitiveness. A characteristic that is similar to simplicity, primitiveness

(applied to both operations and classes) is the degree to which an operation

is atomic—that is, the operation cannot be constructed out of a sequence of

other operations contained within a class. A class that exhibits a high degree

of primitiveness encapsulates only primitive operations.

Similarity. The degree to which two or more classes are similar in terms

of their structure, function, behavior, or purpose is indicated by this measure.

Volatility. As I have noted many times throughout this book, design changes

can occur when requirements are modified or when modifications occur in

other parts of an application, resulting in mandatory adaptation of the design

component in question. Volatility of an OO design component measures the

likelihood that a change will occur.

In reality, product metrics for OO systems can be applied not only to the design

model, but also the requirements model. In the sections that follow, I discuss met-

rics that provide an indication of quality at the OO class level and the operation

level. In addition, metrics applicable for project management and testing are also

explored.

23.3.3 Class-Oriented Metrics—The CK Metrics Suite

The class is the fundamental unit of an OO system. Therefore, measures and metrics

for an individual class, the class hierarchy, and class collaborations will be invalu-

able when you are required to assess OO design quality. A class encapsulates data

and the function that manipulate the data. It is often the “parent” for subclasses

(sometimes called children) that inherit its attributes and operations. It often collab-

orates with other classes. Each of these characteristics can be used as the basis for

measurement.7

Chidamber and Kemerer have proposed one of the most widely referenced sets of

OO software metrics [Chi94]. Often referred to as the CK metrics suite, the authors

have proposed six class-based design metrics for OO systems.8

Weighted methods per class (WMC). Assume that n methods of complexity c1,

c2, . . . , cn are defined for a class C. The specific complexity metric that is chosen

628 PART THREE QUALITY MANAGEMENT

7 It should be noted that the validity of some of the metrics discussed in this chapter is currently
debated in the technical literature. Those who champion measurement theory demand a degree of
formalism that some OO metrics do not provide. However, it is reasonable to state that the metrics
noted provide useful insight for the software engineer.

8 Chidamber, Darcy, and Kemerer use the term methods rather than operations. Their usage of the
term is reflected in this section.

pre75977_ch23.qxd 11/27/08 6:22 PM Page 628

(e.g., cyclomatic complexity) should be normalized so that nominal complexity for a

method takes on a value of 1.0.

WMC � �ci

for i � 1 to n. The number of methods and their complexity are reasonable indicators

of the amount of effort required to implement and test a class. In addition, the larger

the number of methods, the more complex is the inheritance tree (all subclasses

inherit the methods of their parents). Finally, as the number of methods grows for a

given class, it is likely to become more and more application specific, thereby limiting

potential reuse. For all of these reasons, WMC should be kept as low as is reasonable.

Although it would seem relatively straightforward to develop a count for the num-

ber of methods in a class, the problem is actually more complex than it seems. A con-

sistent counting approach [Chu95] should be developed.

Depth of the inheritance tree (DIT). This metric is “the maximum length from

the node to the root of the tree” [Chi94]. Referring to Figure 23.5, the value of DIT for

the class hierarchy shown is 4. As DIT grows, it is likely that lower-level classes will

inherit many methods. This leads to potential difficulties when attempting to predict

the behavior of a class. A deep class hierarchy (DIT is large) also leads to greater

design complexity. On the positive side, large DIT values imply that many methods

may be reused.

Number of children (NOC). The subclasses that are immediately subordinate to

a class in the class hierarchy are termed its children. Referring to Figure 23.5, class

C2 has three children—subclasses C21, C22, and C23. As the number of children

grows, reuse increases, but also, as NOC increases, the abstraction represented by

the parent class can be diluted if some of the children are not appropriate members

of the parent class. As NOC increases, the amount of testing (required to exercise

each child in its operational context) will also increase.

CHAPTER 23 PRODUCT METRICS 629

C

C1

C11

C211

C21 C22 C23

C2

FIGURE 23.5

A class
hierarchy

pre75977_ch23.qxd 11/27/08 6:22 PM Page 629

Coupling between object classes (CBO). The CRC model (Chapter 6) may be

used to determine the value for CBO. In essence, CBO is the number of collabora-

tions listed for a class on its CRC index card.9 As CBO increases, it is likely that the

reusability of a class will decrease. High values of CBO also complicate modifications

and the testing that ensues when modifications are made. In general, the CBO val-

ues for each class should be kept as low as is reasonable. This is consistent with the

general guideline to reduce coupling in conventional software.

Response for a class (RFC). The response set of a class is “a set of methods that

can potentially be executed in response to a message received by an object of that

class” [Chi94]. RFC is the number of methods in the response set. As RFC increases,

the effort required for testing also increases because the test sequence (Chapter 19)

grows. It also follows that, as RFC increases, the overall design complexity of the

class increases.

Lack of cohesion in methods (LCOM). Each method within a class C accesses

one or more attributes (also called instance variables). LCOM is the number of meth-

ods that access one or more of the same attributes.10 If no methods access the same

attributes, then LCOM � 0. To illustrate the case where LCOM � 0, consider a class

with six methods. Four of the methods have one or more attributes in common (i.e.,

they access common attributes). Therefore, LCOM � 4. If LCOM is high, methods may

be coupled to one another via attributes. This increases the complexity of the class

design. Although there are cases in which a high value for LCOM is justifiable, it is

desirable to keep cohesion high; that is, keep LCOM low.11

630 PART THREE QUALITY MANAGEMENT

The concepts of
coupling and cohesion
apply to both conven-
tional and OO
software. Keep class
coupling low and class
and operation cohesion
high.

9 If CRC index cards are developed manually, completeness and consistency must be assessed before
CBO can be determined reliably.

10 The formal definition is a bit more complex. See [Chi94] for details.
11 The LCOM metric provides useful insight in some situations, but it can be misleading in others. For

example, keeping coupling encapsulated within a class increases the cohesion of the system as a
whole. Therefore in at least one important sense, higher LCOM actually suggests that a class may
have higher cohesion, not lower.

Applying CK Metrics

The scene: Vinod’s cubicle.

The players: Vinod, Jamie, Shakira, and Ed—
members of the SafeHome software engineering team
who are continuing to work on component-level design
and test-case design.

The conversation:

Vinod: Did you guys get a chance to read the
description of the CK metrics suite I sent you on
Wednesday and make those measurements?

Shakira: Wasn’t too complicated. I went back to my
UML class and sequence diagrams, like you suggested,
and got rough counts for DIT, RFC, and LCOM. I couldn’t
find the CRC model, so I didn’t count CBO.

Jamie (smiling): You couldn’t find the CRC model
because I had it.

Shakira: That’s what I love about this team, superb
communication.

SAFEHOME

pre75977_ch23.qxd 11/27/08 6:22 PM Page 630

23.3.4 Class-Oriented Metrics—The MOOD Metrics Suite

Harrison, Counsell, and Nithi [Har98b] propose a set of metrics for object-oriented

design that provide quantitative indicators for OO design characteristics. A sampling

of MOOD metrics follows.

Method inheritance factor (MIF). The degree to which the class architecture of

an OO system makes use of inheritance for both methods (operations) and attributes

is defined as

MIF �

where the summation occurs over i � 1 to TC. TC is defined as the total number of

classes in the architecture, Ci is a class within the architecture, and

Ma(Ci) � Md(Ci) + Mi(Ci)

where

Ma(Ci) � number of methods that can be invoked in association with Ci

Md(Ci) � number of methods declared in the class Ci

Mi(Ci) � number of methods inherited (and not overridden) in Ci

The value of MIF [the attribute inheritance factor (AIF) is defined in an analogous

manner] provides an indication of the impact of inheritance on the OO software.

Coupling factor (CF). Earlier in this chapter I noted that coupling is an indication

of the connections between elements of the OO design. The MOOD metrics suite

defines coupling in the following way:

CF � ∑i ∑j is_client

where the summations occur over i � 1 to Tc and j � 1 to Tc. The function

(Ci, Cj)
Tc

2 � Tc

�Mi (Ci)
�Ma (Ci)

CHAPTER 23 PRODUCT METRICS 631

Vinod: I did my counts . . . did you guys develop
numbers for the CK metrics?

[Jamie and Ed nod in the affirmative.]

Jamie: Since I had the CRC cards, I took a look at CBO
and it looked pretty uniform across most of the classes.
There was one exception, which I noted.

Ed: There are a few classes where RFC is pretty high,
compared with the averages . . . maybe we should take a
look at simplifying them.

Jamie: Maybe yes, maybe no. I’m still concerned about
time, and I don’t want to fix stuff that isn’t really broken.

Vinod: I agree with that. Maybe we should look for
classes that have bad numbers in at least two or more

of the CK metrics. Kind of two strikes and you’re
modified.

Shakira (looking over Ed’s list of classes with
high RFC): Look, see this class, it’s got a high LCOM as
well as a high RFC. Two strikes?

Vinod: Yeah I think so . . . it’ll be difficult to implement
because of complexity and difficult to test for the same
reason. Probably worth designing two separate classes to
achieve the same behavior.

Jamie: You think modifying it’ll save us time?

Vinod: Over the long haul, yes.

uote:

“Analyzing OO
software in order
to evaluate its
quality is becoming
increasingly
important as the
[OO] paradigm
continues to
increase in
popularity.”

Rachel
Harrison et al.

pre75977_ch23.qxd 11/27/08 6:22 PM Page 631

is_client � 1, if and only if a relationship exists between the client class Cc and

the server class Cs, and Cc � Cs

� 0, otherwise

Although many factors affect software complexity, understandability, and maintain-

ability, it is reasonable to conclude that as the value for CF increases, the complex-

ity of the OO software will also increase and understandability, maintainability, and

the potential for reuse may suffer as a result.

Harrison and her colleagues [Har98b] present a detailed analysis of MIF and CF

along with other metrics and examine their validity for use in the assessment of

design quality.

23.3.5 OO Metrics Proposed by Lorenz and Kidd

In their book on OO metrics, Lorenz and Kidd [Lor94] divide class-based metrics

into four broad categories that each have a bearing on component-level design:

size, inheritance, internals, and externals. Size-oriented metrics for an OO design

class focus on counts of attributes and operations for an individual class and aver-

age values for the OO system as a whole. Inheritance-based metrics focus on the

manner in which operations are reused through the class hierarchy. Metrics for

class internals look at cohesion (Section 23.3.3) and code-oriented issues, and

external metrics examine coupling and reuse. One example of the metrics proposed

by Lorenz and Kidd is:

Class size (CS). The overall size of a class can be determined using the following

measures:

• The total number of operations (both inherited and private instance opera-

tions) that are encapsulated within the class

• The number of attributes (both inherited and private instance attributes) that

are encapsulated by the class

The WMC metric proposed by Chidamber and Kemerer (Section 23.3.3) is also a

weighted measure of class size. As I noted earlier, large values for CS indicate that a

class may have too much responsibility. This will reduce the reusability of the class

and complicate implementation and testing. In general, inherited or public opera-

tions and attributes should be weighted more heavily in determining class size

[Lor94]. Private operations and attributes enable specialization and are more local-

ized in the design. Averages for the number of class attributes and operations may

also be computed. The lower the average values for size, the more likely that classes

within the system can be reused widely.

23.3.6 Component-Level Design Metrics

Component-level design metrics for conventional software components focus on

internal characteristics of a software component and include measures of the

632 PART THREE QUALITY MANAGEMENT

During review of the
analysis model, CRC
index cards will provide
a reasonable indication
of expected values for
CS. If you encounter a
class with a large
number of responsibili-
ties, consider
partitioning it.

pre75977_ch23.qxd 11/27/08 6:22 PM Page 632

“three Cs”—module cohesion, coupling, and complexity. These measures can help

you judge the quality of a component-level design.

Component-level design metrics may be applied once a procedural design has

been developed and are “glass box” in the sense that they require knowledge of the

inner workings of the module under consideration. Alternatively, they may be

delayed until source code is available.

Cohesion metrics. Bieman and Ott [Bie94] define a collection of metrics that

provide an indication of the cohesiveness (Chapter 8) of a module. The metrics are

defined in terms of five concepts and measures:

Data slice. Stated simply, a data slice is a backward walk through a module that

looks for data values that affect the module location at which the walk began. It

should be noted that both program slices (which focus on statements and con-

ditions) and data slices can be defined.

Data tokens. The variables defined for a module can be defined as data tokens

for the module.

Glue tokens. This set of data tokens lies on one or more data slice.

Superglue tokens. These data tokens are common to every data slice in a module.

Stickiness. The relative stickiness of a glue token is directly proportional to the

number of data slices that it binds.

Bieman and Ott develop metrics for strong functional cohesion (SFC), weak functional

cohesion (WFC), and adhesiveness (the relative degree to which glue tokens bind data

slices together). A detailed discussion of the Bieman and Ott metrics is best left to

the authors [Bie94].

Coupling metrics. Module coupling provides an indication of the “connected-

ness” of a module to other modules, global data, and the outside environment. In

Chapter 9, coupling was discussed in qualitative terms.

Dhama [Dha95] has proposed a metric for module coupling that encompasses

data and control flow coupling, global coupling, and environmental coupling. The

measures required to compute module coupling are defined in terms of each of the

three coupling types noted previously.

For data and control flow coupling,

di � number of input data parameters

ci � number of input control parameters

do � number of output data parameters

co � number of output control parameters

For global coupling,

gd � number of global variables used as data

gc � number of global variables used as control

CHAPTER 23 PRODUCT METRICS 633

It is possible to
compute measures
of the functional
independence—
coupling and
cohesion—of a
component and to use
these to assess the
quality of a design.

pre75977_ch23.qxd 11/27/08 6:22 PM Page 633

For environmental coupling,

w � number of modules called (fan-out)

r � number of modules calling the module under consideration (fan-in)

Using these measures, a module coupling indicator mc is defined in the following

way:

mc �

where k is a proportionality constant and

M � di � (a � ci) � do � (b � co) � gd � (c � gc) � w � r

Values for k, a , b, and c must be derived empirically.

As the value for mc increases, the overall module coupling decreases. In order to

have the coupling metric move upward as the degree of coupling increases, a revised

coupling metric may be defined as

C � 1 � mc

where the degree of coupling increases as the value of M increases.

Complexity metrics. A variety of software metrics can be computed to deter-

mine the complexity of program control flow. Many of these are based on the flow

graph. A graph (Chapter 18) is a representation composed of nodes and links (also

called edges). When the links (edges) are directed, the flow graph is a directed

graph.

McCabe and Watson [McC94] identify a number of important uses for complexity

metrics:

Complexity metrics can be used to predict critical information about reliability and main-

tainability of software systems from automatic analysis of source code [or procedural

design information]. Complexity metrics also provide feedback during the software proj-

ect to help control the [design activity]. During testing and maintenance, they provide de-

tailed information about software modules to help pinpoint areas of potential instability.

The most widely used (and debated) complexity metric for computer software is

cyclomatic complexity, originally developed by Thomas McCabe [McC76] and dis-

cussed in detail in Chapter 18.

Zuse ([Zus90], [Zus97]) presents an encyclopedic discussion of no fewer than 18

different categories of software complexity metrics. The author presents the basic

definitions for metrics in each category (e.g., there are a number of variations on the

cyclomatic complexity metric) and then analyzes and critiques each. Zuse’s work is

the most comprehensive published to date.

23.3.7 Operation-Oriented Metrics

Because the class is the dominant unit in OO systems, fewer metrics have been

proposed for operations that reside within a class. Churcher and Shepperd [Chu95]

k
M

634 PART THREE QUALITY MANAGEMENT

Cyclomatic complexity
is only one of a large
number of complexity
metrics.

pre75977_ch23.qxd 11/27/08 6:22 PM Page 634

discuss this when they state: “Results of recent studies indicate that methods tend to

be small, both in terms of number of statements and in logical complexity [Wil93],

suggesting that connectivity structure of a system may be more important than the

content of individual modules.” However, some insights can be gained by examin-

ing average characteristics for methods (operations). Three simple metrics, proposed

by Lorenz and Kidd [Lor94], are appropriate:

Average operation size (OSavg). Size can be determined by counting the

number of lines of code or the number of messages sent by the operation. As

the number of messages sent by a single operation increases, it is likely that

responsibilities have not been well allocated within a class.

Operation complexity (OC). The complexity of an operation can be com-

puted using any of the complexity metrics proposed for conventional software

[Zus90]. Because operations should be limited to a specific responsibility, the

designer should strive to keep OC as low as possible.

Average number of parameters per operation (NPavg). The larger the

number of operation parameters, the more complex the collaboration

between objects. In general, NPavg should be kept as low as possible.

23.3.8 User Interface Design Metrics

Although there is significant literature on the design of human/computer interfaces

(Chapter 11), relatively little information has been published on metrics that would

provide insight into the quality and usability of the interface.

Sears [Sea93] suggests that layout appropriateness (LA) is a worthwhile design

metric for human/computer interfaces. A typical GUI uses layout entities—graphic

icons, text, menus, windows, and the like—to assist the user in completing tasks. To

accomplish a given task using a GUI, the user must move from one layout entity to

the next. The absolute and relative position of each layout entity, the frequency with

which it is used, and the “cost” of the transition from one layout entity to the next all

contribute to the appropriateness of the interface.

A study of Web page metrics [Ivo01] indicates that simple characteristics of the

elements of the layout can also have a significant impact on the perceived quality of

the GUI design. The number of words, links, graphics, colors, and fonts (among other

characteristics) contained within a Web page affect the perceived complexity and

quality of that page.

It is important to note that the selection of a GUI design can be guided with met-

rics such as LA, but the final arbiter should be user input based on GUI prototypes.

Nielsen and Levy [Nie94] report that “one has a reasonably large chance of suc-

cess if one chooses between interface [designs] based solely on users’ opinions.

Users’ average task performance and their subjective satisfaction with a GUI are

highly correlated.”

CHAPTER 23 PRODUCT METRICS 635

uote:

“You can learn at
least one principle
of user interface
design by loading a
dishwasher. If you
crowd a lot in
there, nothing gets
very clean.”

Author unknown

pre75977_ch23.qxd 11/27/08 6:22 PM Page 635

23.4 DESIGN METRICS FOR WEBAPPS

A useful set of measures and metrics for WebApps provides quantitative answers to

the following questions:

• Does the user interface promote usability?

• Are the aesthetics of the WebApp appropriate for the application domain and

pleasing to the user?

• Is the content designed in a manner that imparts the most information with

the least effort?

• Is navigation efficient and straightforward?

• Has the WebApp architecture been designed to accommodate the special

goals and objectives of WebApp users, the structure of content and function-

ality, and the flow of navigation required to use the system effectively?

• Are components designed in a manner that reduces procedural complexity

and enhances correctness, reliability, and performance?

Today, each of these questions can be addressed only qualitatively because a vali-

dated suite of metrics that would provide quantitative answers does not yet exist.

In the paragraphs that follow, I present a representative sampling of WebApp

design metrics that have been proposed in the literature. It is important to note that

many of these metrics have not as yet been validated and should be used judiciously.

Interface metrics. For WebApps, the following interface measures can be

considered:

Suggested Metric Description

Layout appropriateness See Section 23.3.8.

Layout complexity Number of distinct regions12 defined for an interface

Layout region complexity Average number of distinct links per region

Recognition complexity Average number of distinct items the user must look at before making a
navigation or data input decision

Recognition time Average time (in seconds) that it takes a user to select the appropriate
action for a given task

Typing effort Average number of key strokes required for a specific function

Mouse pick effort Average number of mouse picks per function

Selection complexity Average number of links that can be selected per page

Content acquisition time Average number of words of text per Web page

Memory load Average number of distinct data items that the user must remember to
achieve a specific objective

636 PART THREE QUALITY MANAGEMENT

Many of these metrics
are applicable to all
user interfaces and
should be considered
in conjunction with
those presented in
Section 23.3.8.

12 A distinct region is an area within the layout display that accomplishes some specific set of related
functions (e.g., a menu bar, a static graphical display, a content area, an animated display).

pre75977_ch23.qxd 11/27/08 6:22 PM Page 636

Aesthetic (graphic design) metrics. By its nature, aesthetic design relies on

qualitative judgment and is not generally amenable to measurement and metrics.

However, Ivory and her colleagues [Ivo01] propose a set of measures that may be

useful in assessing the impact of aesthetic design:

Suggested Metric Description

Word count Total number of words that appear on a page

Body text percentage Percentage of words that are body versus display text (i.e., headers)

Emphasized body text % Portion of body text that is emphasized (e.g., bold, capitalized)

Text positioning count Changes in text position from flush left

Text cluster count Text areas highlighted with color, bordered regions, rules, or lists

Link count Total links on a page

Page size Total bytes for the page as well as elements, graphics, and style sheets

Graphic percentage Percentage of page bytes that are for graphics

Graphics count Total graphics on a page (not including graphics specified in scripts,
applets, and objects)

Color count Total colors employed

Font count Total fonts employed (i.e., face � size � bold � italic)

Content metrics. Metrics in this category focus on content complexity and on

clusters of content objects that are organized into pages [Men01].

Suggested Metric Description

Page wait Average time required for a page to download at different connection
speeds

Page complexity Average number of different types of media used on page, not
including text

Graphic complexity Average number of graphics media per page

Audio complexity Average number of audio media per page

Video complexity Average number of video media per page

Animation complexity Average number of animations per page

Scanned image complexity Average number of scanned images per page

Navigation metrics. Metrics in this category address the complexity of the navi-

gational flow [Men01]. In general, they are applicable only for static Web applica-

tions, which don’t include dynamically generated links and pages.

Suggested Metric Description

Page-linking complexity Number of links per page

Connectivity Total number of internal links, not including dynamically generated links

Connectivity density Connectivity divided by page count

CHAPTER 23 PRODUCT METRICS 637

pre75977_ch23.qxd 11/27/08 6:22 PM Page 637

Using a subset of the metrics suggested, it may be possible to derive empirical rela-

tions that allow a WebApp development team to assess technical quality and predict

effort based on projected estimates of complexity. Further work remains to be

accomplished in this area.

638 PART THREE QUALITY MANAGEMENT

Technical Metrics for WebApps

Objective: To assist Web engineers in
developing meaningful WebApp metrics that

provide insight into the overall quality of an application.

Mechanics: Tool mechanics vary.

Representative Tools:13 Netmechanic Tools,
developed by Netmechanic (www.netmechanic.com),
is a collection of tools that help to improve website
performance, focusing on implementation-specific issues.
NIST Web Metrics Testbed, developed by The
National Institute of Standards and Technology
(zing.ncsl.nist.gov/WebTools/) encompasses the
following collection of useful tools that are available for
download:

Web Static Analyzer Tool (WebSAT)—checks Web page
HTML against typical usability guidelines.

Web Category Analysis Tool (WebCAT)—lets the usability
engineer construct and conduct a Web category analysis.

Web Variable Instrumenter Program (WebVIP)—
instruments a website to capture a log of user interaction.

Framework for Logging Usability Data (FLUD)—
implements a file formatter and parser for representation
of user interaction logs.

VisVIP Tool—produces a 3D visualization of user
navigation paths through a website.

TreeDec—adds navigation aids to the pages of a website.

SOFTWARE TOOLS

13 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.
14 It should be noted that Halstead’s “laws” have generated substantial controversy, and many believe

that the underlying theory has flaws. However, experimental verification for selected programming
languages has been performed (e.g., [Fel89]).

23.5 METRICS FOR SOURCE CODE

Halstead’s theory of “software science” [Hal77] proposed the first analytical “laws”

for computer software.14 Halstead assigned quantitative laws to the development of

computer software, using a set of primitive measures that may be derived after code

is generated or estimated once design is complete. The measures are:

n1 � number of distinct operators that appear in a program

n2 � number of distinct operands that appear in a program

N1 � total number of operator occurrences

N2 � total number of operand occurrences

Halstead uses these primitive measures to develop expressions for the overall pro-

gram length, potential minimum volume for an algorithm, the actual volume (num-

ber of bits required to specify a program), the program level (a measure of software

complexity), the language level (a constant for a given language), and other features

such as development effort, development time, and even the projected number of

faults in the software.

uote:

“The human brain
follows a more rigid
set of rules [for
developing
algorithms] than it
has been aware of.”

Maurice
Halstead

pre75977_ch23.qxd 11/27/08 6:22 PM Page 638

http://www.netmechanic.com
http://www.netmechanic.com

Halstead shows that length N can be estimated

N � n1 log2 n1 � n2 log2 n2

and program volume may be defined

V � N log2 (n1 � n2)

It should be noted that V will vary with programming language and represents the

volume of information (in bits) required to specify a program.

Theoretically, a minimum volume must exist for a particular algorithm. Halstead

defines a volume ratio L as the ratio of volume of the most compact form of a pro-

gram to the volume of the actual program. In actuality, L must always be less than 1.

In terms of primitive measures, the volume ratio may be expressed as

L � �

Halstead’s work is amenable to experimental verification and a large body of research

has been conducted to investigate software science. A discussion of this work is be-

yond the scope of this book. For further information, see [Zus90], [Fen91], and [Zus97].

23.6 METRICS FOR TESTING

Although much has been written on software metrics for testing (e.g., [Het93]), the

majority of metrics proposed focus on the process of testing, not the technical char-

acteristics of the tests themselves. In general, testers must rely on analysis, design,

and code metrics to guide them in the design and execution of test cases.

Architectural design metrics provide information on the ease or difficulty associ-

ated with integration testing (Section 23.3) and the need for specialized testing

software (e.g., stubs and drivers). Cyclomatic complexity (a component-level design

metric) lies at the core of basis path testing, a test-case design method presented in

Chapter 18. In addition, cyclomatic complexity can be used to target modules as can-

didates for extensive unit testing. Modules with high cyclomatic complexity are more

likely to be error prone than modules whose cyclomatic complexity is lower. For this

reason, you should expend above average effort to uncover errors in such modules

before they are integrated in a system.

23.6.1 Halstead Metrics Applied to Testing

Testing effort can be estimated using metrics derived from Halstead measures (Sec-

tion 23.5). Using the definitions for program volume V and program level PL,

Halstead effort e can be computed as

PL � (23.2a)

e � (23.2b)V
PL

1
(n1�2) � (N2/n2)

n2
N2

2
n1

CHAPTER 23 PRODUCT METRICS 639

Testing metrics fall into
two broad categories:
(1) metrics that
attempt to predict the
likely number of tests
required at various
testing levels, and
(2) metrics that focus
on test coverage for a
given component.

Operators include all
flow of control
constructs, condi-
tionals, and math
operations. Operands
encompass all program
variables and
constants.

pre75977_ch23.qxd 11/27/08 6:22 PM Page 639

The percentage of overall testing effort to be allocated to a module k can be esti-

mated using the following relationship:

Percentage of testing effort (k) � (23.3)

where e(k) is computed for module k using Equations (23.2) and the summation in

the denominator of Equation (23.3) is the sum of Halstead effort across all modules

of the system.

23.6.2 Metrics for Object-Oriented Testing

The OO design metrics noted in Section 23.3 provide an indication of design quality.

They also provide a general indication of the amount of testing effort required to ex-

ercise an OO system. Binder [Bin94b] suggests a broad array of design metrics that

have a direct influence on the “testability” of an OO system. The metrics consider

aspects of encapsulation and inheritance.

Lack of cohesion in methods (LCOM).15 The higher the value of LCOM, the

more states must be tested to ensure that methods do not generate side effects.

Percent public and protected (PAP). Public attributes are inherited from

other classes and therefore are visible to those classes. Protected attributes

are accessible to methods in subclasses. This metric indicates the percentage

of class attributes that are public or protected. High values for PAP increase

the likelihood of side effects among classes because public and protected

attributes lead to high potential for coupling.16 Tests must be designed to

ensure that such side effects are uncovered.

Public access to data members (PAD). This metric indicates the number

of classes (or methods) that can access another class’s attributes, a violation of

encapsulation. High values for PAD lead to the potential for side effects among

classes. Tests must be designed to ensure that such side effects are uncovered.

Number of root classes (NOR). This metric is a count of the distinct class

hierarchies that are described in the design model. Test suites for each root

class and the corresponding class hierarchy must be developed. As NOR

increases, testing effort also increases.

Fan-in (FIN). When used in the OO context, fan-in in the inheritance hierar-

chy is an indication of multiple inheritance. FIN � 1 indicates that a class

inherits its attributes and operations from more than one root class. FIN � 1

should be avoided when possible.

Number of children (NOC) and depth of the inheritance tree (DIT).17

As I mentioned in Chapter 19, superclass methods will have to be retested for

each subclass.

e(k)
�e(i)

640 PART THREE QUALITY MANAGEMENT

15 See Section 23.3.3 for a description of LCOM.
16 Some people promote designs with none of the attributes being public or private, that is, PAP � 0.

This implies that all attributes must be accessed in other classes via methods.
17 See Section 23.3.3 for a description of NOC and DIT.

OO testing can be
quite complex. Metrics
can assist you in
targeting testing
resources at threads,
scenarios, and
packages of classes
that are “suspect”
based on measured
characteristics. Use
them.

pre75977_ch23.qxd 11/27/08 6:22 PM Page 640

23.7 METRICS FOR MAINTENANCE

All of the software metrics introduced in this chapter can be used for the develop-

ment of new software and the maintenance of existing software. However, metrics

designed explicitly for maintenance activities have been proposed.

IEEE Std. 982.1-1988 [IEE93] suggests a software maturity index (SMI) that provides

an indication of the stability of a software product (based on changes that occur for

each release of the product). The following information is determined:

MT � number of modules in the current release

Fc � number of modules in the current release that have been changed

Fa � number of modules in the current release that have been added

Fd � number of modules from the preceding release that were deleted in the

current release

The software maturity index is computed in the following manner:

SMI �

As SMI approaches 1.0, the product begins to stabilize. SMI may also be used as

a metric for planning software maintenance activities. The mean time to produce a

release of a software product can be correlated with SMI, and empirical models for

maintenance effort can be developed.

MT – (Fa � Fc � Fd)
MT

CHAPTER 23 PRODUCT METRICS 641

Product Metrics

Objective: To assist software engineers in
developing meaningful metrics that assess the

work products produced during analysis and design
modeling, source code generation, and testing.

Mechanics: Tools in this category span a broad array of
metrics and are implemented either as a stand-alone
application or (more commonly) as functionality that exists
within tools for analysis and design, coding, or testing. In
most cases, the metrics tool analyzes a representation of
the software (e.g., a UML model or source code) and
develops one or more metrics as a result.

Representative Tools:18 Krakatau Metrics, developed
by Power Software (www.powersoftware.com/
products), computes complexity, Halstead, and related
metrics for C/C++ and Java.

Metrics4C—developed by +1 Software Engineering
(www.plus-one.com/Metrics4C_fact_sheet
.html), computes a variety of architectural, design, and
code-oriented metrics as well as project-oriented metrics.

Rational Rose, distributed by IBM
(www-304.ibm.com/jct03001c/software/
awdtools/developer/rose/), is a comprehensive
tool set for UML modeling that incorporates a number
of metrics analysis features.

RSM, developed by M-Squared Technologies
(msquaredtechnologies.com/m2rsm/index
.html), computes a wide variety of code-oriented
metrics for C, C++, and Java.

Understand, developed by Scientific Toolworks, Inc.
(www.scitools.com), calculates code-oriented
metrics for a variety of programming languages.

SOFTWARE TOOLS

18 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.
In most cases, tool names are trademarked by their respective developers.

pre75977_ch23.qxd 11/27/08 6:22 PM Page 641

http://www.powersoftware.com/products
http://www.powersoftware.com/products
http://www.plus-one.com/Metrics4C_fact_sheet.html
http://www.plus-one.com/Metrics4C_fact_sheet.html
http://www.scitools.com
http://www.powersoftware.com/products
http://www.powersoftware.com/products

23.8 SUMMARY

Software metrics provide a quantitative way to assess the quality of internal product

attributes, thereby enabling you to assess quality before the product is built. Metrics

provide the insight necessary to create effective requirements and design models,

solid code, and thorough tests.

To be useful in a real-world context, a software metric must be simple and com-

putable, persuasive, consistent, and objective. It should be programming language

independent and provide you with effective feedback.

Metrics for the requirements model focus on function, data, and behavior—the

three components of the model. Metrics for design consider architecture, compo-

nent-level design, and interface design issues. Architectural design metrics consider

the structural aspects of the design model. Component-level design metrics provide

an indication of module quality by establishing indirect measures for cohesion, cou-

pling, and complexity. User interface design metrics provide an indication of the ease

with which a GUI can be used. WebApp metrics consider aspects of the user inter-

face as well as WebApp aesthetics, content, and navigation.

Metrics for OO systems focus on measurement that can be applied to the class

and the design characteristics—localization, encapsulation, information hiding,

inheritance, and object abstraction techniques—that make the class unique. The CK

metrics suite defines six class-oriented software metrics that focus on the class and

the class hierarchy. The metrics suite also develops metrics to assess the collabora-

tions between classes and the cohesion of methods that reside within a class. At a

class-oriented level, the CK metrics suite can be augmented with metrics proposed

by Lorenz and Kidd and the MOOD metrics suite.

Halstead provides an intriguing set of metrics at the source code level. Using the

number of operators and operands present in the code, software science provides a

variety of metrics that can be used to assess program quality.

Few product metrics have been proposed for direct use in software testing and main-

tenance. However, many other product metrics can be used to guide the testing process

and as a mechanism for assessing the maintainability of a computer program. A wide

variety of OO metrics have been proposed to assess the testability of an OO system.

PROBLEMS AND POINTS TO PONDER

23.1. Measurement theory is an advanced topic that has a strong bearing on software metrics.
Using [Zus97], [Fen91], [Zus90], or Web-based sources, write a brief paper that outlines the main
tenets of measurement theory. Individual project: Develop a presentation on the subject and
present it to your class.

23.2. Why is it that a single, all-encompassing metric cannot be developed for program com-
plexity or program quality? Try to come up with a measure or metric from everyday life that
violates the attributes of effective software metrics defined in Section 23.1.5.

23.3. A system has 12 external inputs, 24 external outputs, fields 30 different external queries,
manages 4 internal logical files, and interfaces with 6 different legacy systems (6 EIFs). All of

642 PART THREE QUALITY MANAGEMENT

pre75977_ch23.qxd 11/27/08 6:22 PM Page 642

these data are of average complexity and the overall system is relatively simple. Compute FP for
the system.

23.4. Software for System X has 24 individual functional requirements and 14 nonfunctional
requirements. What is the specificity of the requirements? The completeness?

23.5. A major information system has 1140 modules. There are 96 modules that perform con-
trol and coordination functions and 490 modules whose function depends on prior processing.
The system processes approximately 220 data objects that each have an average of three
attributes. There are 140 unique database items and 90 different database segments. Finally,
600 modules have single entry and exit points. Compute the DSQI for this system.

23.6. A class X has 12 operations. Cyclomatic complexity has been computed for all operations
in the OO system, and the average value of module complexity is 4. For class X, the complexity
for operations 1 to 12 is 5, 4, 3, 3, 6, 8, 2, 2, 5, 5, 4, 4, respectively. Compute the weighted meth-
ods per class.

23.7. Develop a software tool that will compute cyclomatic complexity for a programming
language module. You may choose the language.

23.8. Develop a small software tool that will perform a Halstead analysis on programming
language source code of your choosing.

23.9. A legacy system has 940 modules. The latest release required that 90 of these modules
be changed. In addition, 40 new modules were added and 12 old modules were removed.
Compute the software maturity index for the system.

FURTHER READINGS AND INFORMATION SOURCES

There is a surprisingly large number of books that are dedicated to software metrics, although
the majority focus on process and project metrics to the exclusion of product metrics. Lanza and
her colleagues (Object-Oriented Metrics in Practice, Springer, 2006) discuss OO metrics and their
use for assessing the quality of a design. Genero (Metrics for Software Conceptual Models, Imper-
ial College Press, 2005) and Ejiogu (Software Metrics, BookSurge Publishing, 2005) present a wide
variety of technical metrics for use cases, UML models, and other modeling representations.
Hutcheson (Software Testing Fundamentals: Methods and Metrics, Wiley, 2003) presents a set of
metrics for testing. Kan (Metrics and Models in Software Quality Engineering, Addison-Wesley,
2d ed., 2002), Fenton and Pfleeger (Software Metrics: A Rigorous and Practical Approach, Brooks-
Cole Publishing, 1998), and Zuse [Zus97] have written thorough treatments of product metrics.

Books by Card and Glass [Car90], Zuse [Zus90], Fenton [Fen91], Ejiogu [Eji91], Moeller and
Paulish (Software Metrics, Chapman and Hall, 1993), and Hetzel [Het93] all address product met-
rics in some detail. Oman and Pfleeger (Applying Software Metrics, IEEE Computer Society Press,
1997) have edited an anthology of important papers on software metrics.

Methods for establishing a metrics program and the underlying principles for software meas-
urement are considered by Ebert and his colleagues (Best Practices in Software Measurement,
Springer, 2004). Shepperd (Foundations of Software Measurement, Prentice-Hall, 1996) also ad-
dresses measurement theory in some detail. Current research is presented in the Proceedings of
the Symposium on Software Metrics (IEEE, published annually).

A comprehensive summary of dozens of useful software metrics is presented in [IEE93]. In
general, a discussion of each metric has been distilled to the essential “primitives” (measures)
required to compute the metric and the appropriate relationships to effect the computation. An
appendix provides discussion and many references.

Whitmire [Whi97] presents a comprehensive and mathematically sophisticated treatment of
OO metrics. Lorenz and Kidd [Lor94] and Hendersen-Sellers (Object-Oriented Metrics: Measures
of Complexity, Prentice-Hall, 1996) provide treatments that are dedicated to OO metrics.

A wide variety of information sources on software metrics is available on the Internet. An up-to-
date list of World Wide Web references that are relevant to software metrics can be found at the
SEPA website: www.mhhe.com/engcs/compsci/pressman/professional/olc/ser.htm.

CHAPTER 23 PRODUCT METRICS 643

pre75977_ch23.qxd 11/27/08 6:22 PM Page 643

http://www.mhhe.com/engcs/compsci/pressman/professional/olc/ser.htm

pre75977_ch23.qxd 11/27/08 6:22 PM Page 644

MANAGING SOFTWARE

PROJECTS

645

P A R T

Four

In this part of Software Engineering: A Practitioner's Approach
you’ll learn the management techniques required to plan,
organize, monitor, and control software projects. These ques-

tions are addressed in the chapters that follow:

• How must people, process, and problem be managed during
a software project?

• How can software metrics be used to manage a software
project and the software process?

• How does a software team generate reliable estimates of
effort, cost, and project duration?

• What techniques can be used to assess the risks that can have
an impact on project success?

• How does a software project manager select a set of software
engineering work tasks?

• How is a project schedule created?

• Why are maintenance and reengineering so important for
both software engineering managers and practitioners?

Once these questions are answered, you’ll be better prepared to
manage software projects in a way that will lead to timely delivery
of a high-quality product.

pre75977_ch24.qxd 11/27/08 6:23 PM Page 645

In the preface to his book on software project management, Meiler Page-Jones
[Pag85] makes a statement that can be echoed by many software engineering
consultants:

I’ve visited dozens of commercial shops, both good and bad, and I’ve observed scores

of data processing managers, again, both good and bad. Too often, I’ve watched in

horror as these managers futilely struggled through nightmarish projects, squirmed

under impossible deadlines, or delivered systems that outraged their users and went

on to devour huge chunks of maintenance time.

What Page-Jones describes are symptoms that result from an array of manage-
ment and technical problems. However, if a post mortem were to be conducted

646

C H A P T E R

24 PROJECT MANAGEMENT
CONCEPTS

K E Y
C O N C E P T S

agile teams . . .654

coordination and
communication . .655

critical
practices 662

people 649

problem
decomposition . .656

product 656

What is it? Although many of
us (in our darker moments) take
Dilbert’s view of “management,” it
remains a very necessary activity

when computer-based systems and products are
built. Project management involves the planning,
monitoring, and control of the people, process,
and events that occur as software evolves from
a preliminary concept to full operational
deployment.

Who does it? Everyone “manages” to some extent,
but the scope of management activities varies
among people involved in a software project. A
software engineer manages her day-to-day
activities, planning, monitoring, and controlling
technical tasks. Project managers plan, monitor,
and control the work of a team of software engi-
neers. Senior managers coordinate the interface
between the business and software professionals.

Why is it important? Building computer software
is a complex undertaking, particularly if it in-
volves many people working over a relatively
long time. That’s why software projects need to
be managed.

What are the steps? Understand the four P’s—
people, product, process, and project. People

Q U I C K
L O O K

must be organized to perform software work ef-
fectively. Communication with the customer and
other stakeholders must occur so that product
scope and requirements are understood. A
process that is appropriate for the people and
the product should be selected. The project must
be planned by estimating effort and calendar
time to accomplish work tasks: defining work
products, establishing quality checkpoints, and
identifying mechanisms to monitor and control
work defined by the plan.

What is the work product? A project plan is pro-
duced as management activities commence. The
plan defines the process and tasks to be con-
ducted, the people who will do the work, and the
mechanisms for assessing risks, controlling
change, and evaluating quality.

How do I ensure that I’ve done it right? You’re
never completely sure that the project plan is
right until you’ve delivered a high-quality prod-
uct on time and within budget. However, a proj-
ect manager does it right when he encourages
software people to work together as an effective
team, focusing their attention on customer needs
and product quality.

pre75977_ch24.qxd 11/27/08 6:23 PM Page 646

for every project, it is very likely that a consistent theme would be encountered: proj-

ect management was weak.

In this chapter and Chapters 25 through 29, I’ll present the key concepts that

lead to effective software project management. This chapter considers basic soft-

ware project management concepts and principles. Chapter 25 presents process

and project metrics, the basis for effective management decision making. The

techniques that are used to estimate cost are discussed in Chapter 26. Chapter 27

will help you to define a realistic project schedule. The management activities

that lead to effective risk monitoring, mitigation, and management are presented

in Chapter 28. Finally, Chapter 29 considers maintenance and reengineering and

discusses the management issues that you’ll encounter when you must deal with

legacy systems.

24.1 THE MANAGEMENT SPECTRUM

Effective software project management focuses on the four P’s: people, product,

process, and project. The order is not arbitrary. The manager who forgets that soft-

ware engineering work is an intensely human endeavor will never have success in

project management. A manager who fails to encourage comprehensive stake-

holder communication early in the evolution of a product risks building an elegant

solution for the wrong problem. The manager who pays little attention to the

process runs the risk of inserting competent technical methods and tools into a

vacuum. The manager who embarks without a solid project plan jeopardizes the

success of the project.

24.1.1 The People

The cultivation of motivated, highly skilled software people has been discussed since

the 1960s. In fact, the “people factor” is so important that the Software Engineering

Institute has developed a People Capability Maturity Model (People-CMM), in recogni-

tion of the fact that “every organization needs to continually improve its ability to

attract, develop, motivate, organize, and retain the workforce needed to accomplish

its strategic business objectives” [Cur01].

The people capability maturity model defines the following key practice areas

for software people: staffing, communication and coordination, work environment,

performance management, training, compensation, competency analysis and

development, career development, workgroup development, team/culture develop-

ment, and others. Organizations that achieve high levels of People-CMM maturity

have a higher likelihood of implementing effective software project management

practices.

The People-CMM is a companion to the Software Capability Maturity Model–

Integration (Chapter 30) that guides organizations in the creation of a mature

CHAPTER 24 PROJECT MANAGEMENT CONCEPTS 647

project 660

software
scope 656

software
team 651

stakeholders . .649

team leaders . .650

W5HH
principle 661

pre75977_ch24.qxd 11/27/08 6:23 PM Page 647

software process. Issues associated with people management and structure for soft-

ware projects are considered later in this chapter.

24.1.2 The Product

Before a project can be planned, product objectives and scope should be established,

alternative solutions should be considered, and technical and management con-

straints should be identified. Without this information, it is impossible to define rea-

sonable (and accurate) estimates of the cost, an effective assessment of risk, a

realistic breakdown of project tasks, or a manageable project schedule that provides

a meaningful indication of progress.

As a software developer, you and other stakeholders must meet to define product

objectives and scope. In many cases, this activity begins as part of the system engi-

neering or business process engineering and continues as the first step in software

requirements engineering (Chapter 5). Objectives identify the overall goals for the

product (from the stakeholders’ points of view) without considering how these goals

will be achieved. Scope identifies the primary data, functions, and behaviors that

characterize the product, and more important, attempts to bound these characteris-

tics in a quantitative manner.

Once the product objectives and scope are understood, alternative solutions are

considered. Although very little detail is discussed, the alternatives enable managers

and practitioners to select a “best” approach, given the constraints imposed by de-

livery deadlines, budgetary restrictions, personnel availability, technical interfaces,

and myriad other factors.

24.1.3 The Process

A software process (Chapters 2 and 3) provides the framework from which a com-

prehensive plan for software development can be established. A small number of

framework activities are applicable to all software projects, regardless of their size

or complexity. A number of different task sets—tasks, milestones, work products,

and quality assurance points—enable the framework activities to be adapted to

the characteristics of the software project and the requirements of the project

team. Finally, umbrella activities—such as software quality assurance, software

configuration management, and measurement—overlay the process model. Um-

brella activities are independent of any one framework activity and occur

throughout the process.

24.1.4 The Project

We conduct planned and controlled software projects for one primary reason—it is

the only known way to manage complexity. And yet, software teams still struggle.

In a study of 250 large software projects between 1998 and 2004, Capers Jones

[Jon04] found that “about 25 were deemed successful in that they achieved their

schedule, cost, and quality objectives. About 50 had delays or overruns below

648 PART FOUR MANAGING SOFTWARE PROJECTS

Those who adhere to
the agile process
philosophy (Chapter 3)
argue that their
process is leaner than
others. That may be
true, but they still have
a process, and agile
software engineering
still requires discipline.

pre75977_ch24.qxd 11/27/08 6:23 PM Page 648

35 percent, while about 175 experienced major delays and overruns, or were ter-

minated without completion.” Although the success rate for present-day software

projects may have improved somewhat, our project failure rate remains much

higher than it should be.1

To avoid project failure, a software project manager and the software engineers

who build the product must avoid a set of common warning signs, understand the

critical success factors that lead to good project management, and develop a com-

monsense approach for planning, monitoring, and controlling the project. Each of

these issues is discussed in Section 24.5 and in the chapters that follow.

24.2 PEOPLE

In a study published by the IEEE [Cur88], the engineering vice presidents of three

major technology companies were asked what was the most important contributor

to a successful software project. They answered in the following way:

VP 1: I guess if you had to pick one thing out that is most important in our

environment, I’d say it’s not the tools that we use, it’s the people.

VP 2: The most important ingredient that was successful on this project was

having smart people . . . very little else matters in my opinion. . . . The most

important thing you do for a project is selecting the staff. . . . The success of

the software development organization is very, very much associated with the

ability to recruit good people.

VP 3: The only rule I have in management is to ensure I have good people—real

good people—and that I grow good people—and that I provide an environment

in which good people can produce.

Indeed, this is a compelling testimonial on the importance of people in the software

engineering process. And yet, all of us, from senior engineering vice presidents to the

lowliest practitioner, often take people for granted. Managers argue (as the preced-

ing group had) that people are primary, but their actions sometimes belie their words.

In this section I examine the stakeholders who participate in the software process and

the manner in which they are organized to perform effective software engineering.

24.2.1 The Stakeholders

The software process (and every software project) is populated by stakeholders who

can be categorized into one of five constituencies:

1. Senior managers who define the business issues that often have a significant

influence on the project.

CHAPTER 24 PROJECT MANAGEMENT CONCEPTS 649

1 Given these statistics, it’s reasonable to ask how the impact of computers continues to grow expo-
nentially. Part of the answer, I think, is that a substantial number of these “failed” projects are ill
conceived in the first place. Customers lose interest quickly (because what they’ve requested
wasn’t really as important as they first thought), and the projects are cancelled.

pre75977_ch24.qxd 11/27/08 6:23 PM Page 649

2. Project (technical) managers who must plan, motivate, organize, and control

the practitioners who do software work.

3. Practitioners who deliver the technical skills that are necessary to engineer a

product or application.

4. Customers who specify the requirements for the software to be engineered

and other stakeholders who have a peripheral interest in the outcome.

5. End users who interact with the software once it is released for production use.

Every software project is populated by people who fall within this taxonomy.2 To be

effective, the project team must be organized in a way that maximizes each person’s

skills and abilities. And that’s the job of the team leader.

24.2.2 Team Leaders

Project management is a people-intensive activity, and for this reason, competent

practitioners often make poor team leaders. They simply don’t have the right mix of

people skills. And yet, as Edgemon states: “Unfortunately and all too frequently it

seems, individuals just fall into a project manager role and become accidental proj-

ect managers” [Edg95].

In an excellent book of technical leadership, Jerry Weinberg [Wei86] suggests an

MOI model of leadership:

Motivation. The ability to encourage (by “push or pull”) technical people to

produce to their best ability.

Organization. The ability to mold existing processes (or invent new ones)

that will enable the initial concept to be translated into a final product.

Ideas or innovation. The ability to encourage people to create and feel

creative even when they must work within bounds established for a particu-

lar software product or application.

Weinberg suggests that successful project leaders apply a problem-solving manage-

ment style. That is, a software project manager should concentrate on understand-

ing the problem to be solved, managing the flow of ideas, and at the same time,

letting everyone on the team know (by words and, far more important, by actions)

that quality counts and that it will not be compromised.

Another view [Edg95] of the characteristics that define an effective project man-

ager emphasizes four key traits:

Problem solving. An effective software project manager can diagnose the

technical and organizational issues that are most relevant, systematically

structure a solution or properly motivate other practitioners to develop the

solution, apply lessons learned from past projects to new situations, and

650 PART FOUR MANAGING SOFTWARE PROJECTS

2 When WebApps are developed, other nontechnical people may be involved in content creation.

What do we
look for

when choosing
someone to lead a
software project?

?

uote:

“In simplest terms,
a leader is one who
knows where he
wants to go, and
gets up, and goes.”

John Erskine

pre75977_ch24.qxd 11/27/08 6:23 PM Page 650

remain flexible enough to change direction if initial attempts at problem

solution are fruitless.

Managerial identity. A good project manager must take charge of the

project. She must have the confidence to assume control when necessary

and the assurance to allow good technical people to follow their instincts.

Achievement. A competent manager must reward initiative and accom-

plishment to optimize the productivity of a project team. She must demon-

strate through her own actions that controlled risk taking will not be

punished.

Influence and team building. An effective project manager must be able

to “read” people; she must be able to understand verbal and nonverbal sig-

nals and react to the needs of the people sending these signals. The manager

must remain under control in high-stress situations.

24.2.3 The Software Team

There are almost as many human organizational structures for software develop-

ment as there are organizations that develop software. For better or worse, organi-

zational structure cannot be easily modified. Concern with the practical and political

consequences of organizational change are not within the software project man-

ager’s scope of responsibility. However, the organization of the people directly in-

volved in a new software project is within the project manager’s purview.

The “best” team structure depends on the management style of your organization,

the number of people who will populate the team and their skill levels, and the over-

all problem difficulty. Mantei [Man81] describes seven project factors that should be

considered when planning the structure of software engineering teams:

• Difficulty of the problem to be solved

• “Size” of the resultant program(s) in lines of code or function points

• Time that the team will stay together (team lifetime)

• Degree to which the problem can be modularized

• Required quality and reliability of the system to be built

• Rigidity of the delivery date

• Degree of sociability (communication) required for the project

Constantine [Con93] suggests four “organizational paradigms” for software

engineering teams:

1. A closed paradigm structures a team along a traditional hierarchy of authority.

Such teams can work well when producing software that is quite similar to

past efforts, but they will be less likely to be innovative when working within

the closed paradigm.

CHAPTER 24 PROJECT MANAGEMENT CONCEPTS 651

uote:

“Not every group
is a team, and not
every team is
effective.”

Glenn Parker

What factors
should be

considered when
the structure of a
software team is
chosen?

?

What
options do

we have when
defining the
structure of a
software team?

?

pre75977_ch24.qxd 11/27/08 6:23 PM Page 651

2. A random paradigm structures a team loosely and depends on individual ini-

tiative of the team members. When innovation or technological breakthrough

is required, teams following the random paradigm will excel. But such teams

may struggle when “orderly performance” is required.

3. An open paradigm attempts to structure a team in a manner that achieves

some of the controls associated with the closed paradigm but also much

of the innovation that occurs when using the random paradigm. Work is

performed collaboratively, with heavy communication and consensus-based

decision making the trademarks of open paradigm teams. Open paradigm

team structures are well suited to the solution of complex problems but may

not perform as efficiently as other teams.

4. A synchronous paradigm relies on the natural compartmentalization of a

problem and organizes team members to work on pieces of the problem with

little active communication among themselves.

As an historical footnote, one of the earliest software team organizations was a

closed paradigm structure originally called the chief programmer team. This struc-

ture was first proposed by Harlan Mills and described by Baker [Bak72]. The nu-

cleus of the team was composed of a senior engineer (the chief programmer), who

plans, coordinates, and reviews all technical activities of the team; technical staff

(normally two to five people), who conduct analysis and development activities;

and a backup engineer, who supports the senior engineer in his or her activities and

can replace the senior engineer with minimum loss in project continuity. The chief

programmer may be served by one or more specialists (e.g., telecommunications

expert, database designer), support staff (e.g., technical writers, clerical personnel),

and a software librarian.

As a counterpoint to the chief programmer team structure, Constantine’s random

paradigm [Con93] suggests a software team with creative independence whose

approach to work might best be termed innovative anarchy. Although the free-spirited

approach to software work has appeal, channeling creative energy into a high-

performance team must be a central goal of a software engineering organization.

To achieve a high-performance team:

• Team members must have trust in one another.

• The distribution of skills must be appropriate to the problem.

• Mavericks may have to be excluded from the team, if team cohesiveness is to

be maintained.

Regardless of team organization, the objective for every project manager is to

help create a team that exhibits cohesiveness. In their book, Peopleware, DeMarco

and Lister [DeM98] discuss this issue:

We tend to use the word team fairly loosely in the business world, calling any group of

people assigned to work together a “team.” But many of these groups just don’t seem like

652 PART FOUR MANAGING SOFTWARE PROJECTS

uote:

“If you want to be
incrementally
better: Be
competitive. If you
want to be
exponentially
better: Be
cooperative.”

Author unknown

pre75977_ch24.qxd 11/27/08 6:23 PM Page 652

teams. They don’t have a common definition of success or any identifiable team spirit.

What is missing is a phenomenon that we call jell.

A jelled team is a group of people so strongly knit that the whole is greater than the

sum of the parts. . . .

Once a team begins to jell, the probability of success goes way up. The team can

become unstoppable, a juggernaut for success. . . . They don’t need to be managed in the

traditional way, and they certainly don’t need to be motivated. They’ve got momentum.

DeMarco and Lister contend that members of jelled teams are significantly more pro-

ductive and more motivated than average. They share a common goal, a common

culture, and in many cases, a “sense of eliteness” that makes them unique.

But not all teams jell. In fact, many teams suffer from what Jackman [Jac98] calls

“team toxicity.” She defines five factors that “foster a potentially toxic team environ-

ment”: (1) a frenzied work atmosphere, (2) high frustration that causes friction

among team members, (3) a “fragmented or poorly coordinated” software process,

(4) an unclear definition of roles on the software team, and (5) “continuous and re-

peated exposure to failure.”

To avoid a frenzied work environment, the project manager should be certain that

the team has access to all information required to do the job and that major goals and

objectives, once defined, should not be modified unless absolutely necessary. A soft-

ware team can avoid frustration if it is given as much responsibility for decision mak-

ing as possible. An inappropriate process (e.g., unnecessary or burdensome work

tasks or poorly chosen work products) can be avoided by understanding the product

to be built, the people doing the work, and by allowing the team to select the process

model. The team itself should establish its own mechanisms for accountability (tech-

nical reviews3 are an excellent way to accomplish this) and define a series of correc-

tive approaches when a member of the team fails to perform. And finally, the key to

avoiding an atmosphere of failure is to establish team-based techniques for feedback

and problem solving.

In addition to the five toxins described by Jackman, a software team often strug-

gles with the differing human traits of its members. Some team members are extro-

verts; others are introverts. Some people gather information intuitively, distilling

broad concepts from disparate facts. Others process information linearly, collecting

and organizing minute details from the data provided. Some team members are

comfortable making decisions only when a logical, orderly argument is presented.

Others are intuitive, willing to make a decision based on “feel.” Some practitioners

want a detailed schedule populated by organized tasks that enable them to achieve

closure for some element of a project. Others prefer a more spontaneous environ-

ment in which open issues are okay. Some work hard to get things done long before

a milestone date, thereby avoiding stress as the date approaches, while others are

CHAPTER 24 PROJECT MANAGEMENT CONCEPTS 653

What is a
“jelled“

team?
?

Why is it
that teams

fail to jell?
?

uote:

“Do or do not.
There is no try.”

Yoda from Star
Wars

3 Technical reviews are discussed in detail in Chapter 15.

pre75977_ch24.qxd 11/27/08 6:23 PM Page 653

energized by the rush to make a last-minute deadline. A detailed discussion of the

psychology of these traits and the ways in which a skilled team leader can help peo-

ple with opposing traits to work together is beyond the scope of this book.4 However,

it is important to note that recognition of human differences is the first step toward

creating teams that jell.

24.2.4 Agile Teams

Over the past decade, agile software development (Chapter 3) has been suggested

as an antidote to many of the problems that have plagued software project work. To

review, the agile philosophy encourages customer satisfaction and early incremen-

tal delivery of software, small highly motivated project teams, informal methods,

minimal software engineering work products, and overall development simplicity.

The small, highly motivated project team, also called an agile team, adopts many

of the characteristics of successful software project teams discussed in the preced-

ing section and avoids many of the toxins that create problems. However, the agile

philosophy stresses individual (team member) competency coupled with group col-

laboration as critical success factors for the team. Cockburn and Highsmith [Coc01a]

note this when they write:

If the people on the project are good enough, they can use almost any process and

accomplish their assignment. If they are not good enough, no process will repair their

inadequacy—“people trump process” is one way to say this. However, lack of user and

executive support can kill a project—“politics trump people.” Inadequate support can

keep even good people from accomplishing the job.

To make effective use of the competencies of each team member and to foster

effective collaboration through a software project, agile teams are self-organizing.

A self-organizing team does not necessarily maintain a single team structure but

instead uses elements of Constantine’s random, open, and synchronous paradigms

discussed in Section 24.2.3.

Many agile process models (e.g., Scrum) give the agile team significant autonomy

to make the project management and technical decisions required to get the job

done. Planning is kept to a minimum, and the team is allowed to select its own

approach (e.g., process, methods, tools), constrained only by business requirements

and organizational standards. As the project proceeds, the team self-organizes to

focus individual competency in a way that is most beneficial to the project at a given

point in time. To accomplish this, an agile team might conduct daily team meetings

to coordinate and synchronize the work that must be accomplished for that day.

Based on information obtained during these meetings, the team adapts its approach

in a way that accomplishes an increment of work. As each day passes, continual self-

organizationandcollaborationmovetheteamtowardacompletedsoftware increment.

654 PART FOUR MANAGING SOFTWARE PROJECTS

4 An excellent introduction to these issues as they relate to software project teams can be found in
[Fer98].

An agile team is a self-
organizing team that
has autonomy to plan
and make technical
decisions.

pre75977_ch24.qxd 11/27/08 6:23 PM Page 654

24.2.5 Coordination and Communication Issues

There are many reasons that software projects get into trouble. The scale of many

development efforts is large, leading to complexity, confusion, and significant diffi-

culties in coordinating team members. Uncertainty is common, resulting in a con-

tinuing stream of changes that ratchets the project team. Interoperability has

become a key characteristic of many systems. New software must communicate with

existing software and conform to predefined constraints imposed by the system or

product.

These characteristics of modern software—scale, uncertainty, and interoperability—

are facts of life. To deal with them effectively, you must establish effective methods

for coordinating the people who do the work. To accomplish this, mechanisms for

formal and informal communication among team members and between multiple

teams must be established. Formal communication is accomplished through “writ-

ing, structured meetings, and other relatively non-interactive and impersonal com-

munication channels” [Kra95]. Informal communication is more personal. Members

of a software team share ideas on an ad hoc basis, ask for help as problems arise,

and interact with one another on a daily basis.

CHAPTER 24 PROJECT MANAGEMENT CONCEPTS 655

uote:

“Collective
ownership is
nothing more than
an instantiation of
the idea that
products should be
attributable to the
[agile] team, not
individuals who
make up the
team.”

Jim Highsmith

Team Structure

The scene: Doug Miller’s office prior
to the initiation of the SafeHome software project.

The players: Doug Miller (manager of the SafeHome
software engineering team) and Vinod Raman, Jamie
Lazar, and other members of the product software
engineering team.

The conversation:

Doug: Have you guys had a chance to look over the
preliminary info on SafeHome that marketing has
prepared?

Vinod (nodding and looking at his
teammates): Yes. But we have a bunch of questions.

Doug: Let’s hold on that for a moment. I’d like to talk
about how we’re going to structure the team, who’s
responsible for what . . .

Jamie: I’m really into the agile philosophy, Doug. I think
we should be a self-organizing team.

Vinod: I agree. Given the tight time line and some of
the uncertainty, and that fact that we’re all really
competent [laughs], that seems like the right way to go.

Doug: That’s okay with me, but you guys know the drill.

Jamie (smiling and talking as if she was
reciting something): “We make tactical decisions,
about who does what and when, but it’s our responsibility
to get product out the door on time.

Vinod: And with quality.

Doug: Exactly. But remember there are constraints.
Marketing defines the software increments to be
produced—in consultation with us, of course.

Jamie: And?

Doug: And, we’re going to use UML as our modeling
approach.

Vinod: But keep extraneous documentation to an
absolute minimum.

Doug: Who is the liaison with me?

Jamie: We decided that Vinod will be the tech lead—
he’s got the most experience, so Vinod is your liaison, but
feel free to talk to any of us.

Doug (laughing): Don’t worry, I will.

SAFEHOME

pre75977_ch24.qxd 11/27/08 6:23 PM Page 655

24.3 THE PRODUCT

A software project manager is confronted with a dilemma at the very beginning of a

software project. Quantitative estimates and an organized plan are required, but

solid information is unavailable. A detailed analysis of software requirements would

provide necessary information for estimates, but analysis often takes weeks or even

months to complete. Worse, requirements may be fluid, changing regularly as the

project proceeds. Yet, a plan is needed “now!”

Like it or not, you must examine the product and the problem it is intended to

solve at the very beginning of the project. At a minimum, the scope of the product

must be established and bounded.

24.3.1 Software Scope

The first software project management activity is the determination of software

scope. Scope is defined by answering the following questions:

Context. How does the software to be built fit into a larger system, product, or

business context, and what constraints are imposed as a result of the context?

Information objectives. What customer-visible data objects are produced

as output from the software? What data objects are required for input?

Function and performance. What function does the software perform to

transform input data into output? Are any special performance characteris-

tics to be addressed?

Software project scope must be unambiguous and understandable at the manage-

ment and technical levels. A statement of software scope must be bounded. That is,

quantitative data (e.g., number of simultaneous users, target environment, maxi-

mum allowable response time) are stated explicitly, constraints and/or limitations

(e.g., product cost restricts memory size) are noted, and mitigating factors (e.g.,

desired algorithms are well understood and available in Java) are described.

24.3.2 Problem Decomposition

Problem decomposition, sometimes called partitioning or problem elaboration, is an

activity that sits at the core of software requirements analysis (Chapters 6 and 7).

During the scoping activity no attempt is made to fully decompose the problem.

Rather, decomposition is applied in two major areas: (1) the functionality and

content (information) that must be delivered and (2) the process that will be used to

deliver it.

Human beings tend to apply a divide-and-conquer strategy when they are con-

fronted with a complex problem. Stated simply, a complex problem is partitioned

into smaller problems that are more manageable. This is the strategy that applies as

project planning begins. Software functions, described in the statement of scope, are

evaluated and refined to provide more detail prior to the beginning of estimation

(Chapter 26). Because both cost and schedule estimates are functionally oriented,

656 PART FOUR MANAGING SOFTWARE PROJECTS

If you can’t bound a
characteristic of the
software you intend to
build, list the charac-
teristic as a project risk
(Chapter 25).

In order to develop a
reasonable project
plan, you must
decompose the
problem. This can be
accomplished using a
list of functions or with
use cases.

pre75977_ch24.qxd 11/27/08 6:23 PM Page 656

some degree of decomposition is often useful. Similarly, major content or data

objects are decomposed into their constituent parts, providing a reasonable under-

standing of the information to be produced by the software.

As an example, consider a project that will build a new word-processing product.

Among the unique features of the product are continuous voice as well as virtual

keyboard input via a multitouch screen, extremely sophisticated “automatic copy

edit” features, page layout capability, automatic indexing and table of contents, and

others. The project manager must first establish a statement of scope that bounds

these features (as well as other more mundane functions such as editing, file man-

agement, and document production). For example, will continuous voice input re-

quire that the product be “trained” by the user? Specifically, what capabilities will the

copy edit feature provide? Just how sophisticated will the page layout capability be

and will it encompass the capabilities implied by a multitouch screen?

As the statement of scope evolves, a first level of partitioning naturally occurs.

The project team learns that the marketing department has talked with potential cus-

tomers and found that the following functions should be part of automatic copy ed-

iting: (1) spell checking, (2) sentence grammar checking, (3) reference checking for

large documents (e.g., Is a reference to a bibliography entry found in the list of en-

tries in the bibliography?), (4) the implementation of a style sheet feature that im-

posed consistency across a document, and (5) section and chapter reference

validation for large documents. Each of these features represents a subfunction to be

implemented in software. Each can be further refined if the decomposition will make

planning easier.

24.4 THE PROCESS

The framework activities (Chapter 2) that characterize the software process are

applicable to all software projects. The problem is to select the process model that is

appropriate for the software to be engineered by your project team.

Your team must decide which process model is most appropriate for (1) the cus-

tomers who have requested the product and the people who will do the work, (2) the

characteristics of the product itself, and (3) the project environment in which the

software team works. When a process model has been selected, the team then

defines a preliminary project plan based on the set of process framework activities.

Once the preliminary plan is established, process decomposition begins. That is, a

complete plan, reflecting the work tasks required to populate the framework activi-

ties must be created. We explore these activities briefly in the sections that follow

and present a more detailed view in Chapter 26.

24.4.1 Melding the Product and the Process

Project planning begins with the melding of the product and the process. Each func-

tion to be engineered by your team must pass through the set of framework activi-

ties that have been defined for your software organization.

CHAPTER 24 PROJECT MANAGEMENT CONCEPTS 657

pre75977_ch24.qxd 11/27/08 6:23 PM Page 657

Assume that the organization has adopted the generic framework activities—

communication, planning, modeling, construction, and deployment—

discussed in Chapter 2. The team members who work on a product function will

apply each of the framework activities to it. In essence, a matrix similar to the one

shown in Figure 24.1 is created. Each major product function (the figure notes func-

tions for the word-processing software discussed earlier) is listed in the left-hand

column. Framework activities are listed in the top row. Software engineering work

tasks (for each framework activity) would be entered in the following row.5 The job

of the project manager (and other team members) is to estimate resource require-

ments for each matrix cell, start and end dates for the tasks associated with each cell,

and work products to be produced as a consequence of each task. These activities

are considered in Chapter 26.

24.4.2 Process Decomposition

A software team should have a significant degree of flexibility in choosing the soft-

ware process model that is best for the project and the software engineering tasks

that populate the process model once it is chosen. A relatively small project that is

similar to past efforts might be best accomplished using the linear sequential

approach. If the deadline is so tight that full functionality cannot reasonably be de-

livered, an incremental strategy might be best. Similarly, projects with other charac-

teristics (e.g., uncertain requirements, breakthrough technology, difficult customers,

significant reuse potential) will lead to the selection of other process models.6

658 PART FOUR MANAGING SOFTWARE PROJECTS

5 It should be noted that work tasks must be adapted to the specific needs of the project based on a
number of adaptation criteria.

6 Recall that project characteristics also have a strong bearing on the structure of the software team

(Section 24.2.3).

COMMON PROCESS
FRAMEWORK ACTIVITIES

Software Engineering Tasks

Product Functions

 Text input
 Editing and formatting
 Automatic copy edit
 Page layout capability
 Automatic indexing and TOC
 File management
 Document production

co
m

m
un

ica
tio

n
pl

an
ni

ng

m
od

eli
ng

co
ns

tru
cti

on
de

pl
oy

m
en

t

FIGURE 24.1

Melding the
problem and
the process

The process framework
establishes a skeleton
for project planning.
It is adapted by
allocating a task set
that is appropriate to
the project.

pre75977_ch24.qxd 11/27/08 6:23 PM Page 658

Once the process model has been chosen, the process framework is adapted to

it. In every case, the generic process framework discussed earlier can be used. It

will work for linear models, for iterative and incremental models, for evolutionary

models, and even for concurrent or component assembly models. The process

framework is invariant and serves as the basis for all work performed by a soft-

ware organization.

But actual work tasks do vary. Process decomposition commences when the proj-

ect manager asks, “How do we accomplish this framework activity?” For example, a

small, relatively simple project might require the following work tasks for the com-

munication activity:

1. Develop list of clarification issues.

2. Meet with stakeholders to address clarification issues.

3. Jointly develop a statement of scope.

4. Review the statement of scope with all concerned.

5. Modify the statement of scope as required.

These events might occur over a period of less than 48 hours. They represent a

process decomposition that is appropriate for the small, relatively simple project.

Now, consider a more complex project, which has a broader scope and more sig-

nificant business impact. Such a project might require the following work tasks for

the communication:

1. Review the customer request.

2. Plan and schedule a formal, facilitated meeting with all stakeholders.

3. Conduct research to specify the proposed solution and existing approaches.

4. Prepare a “working document” and an agenda for the formal meeting.

5. Conduct the meeting.

6. Jointly develop mini-specs that reflect data, functional, and behavioral

features of the software. Alternatively, develop use cases that describe the

software from the user’s point of view.

7. Review each mini-spec or use case for correctness, consistency, and lack of

ambiguity.

8. Assemble the mini-specs into a scoping document.

9. Review the scoping document or collection of use cases with all

concerned.

10. Modify the scoping document or use cases as required.

Both projects perform the framework activity that we call communication, but the

first project team performs half as many software engineering work tasks as the

second.

CHAPTER 24 PROJECT MANAGEMENT CONCEPTS 659

pre75977_ch24.qxd 11/27/08 6:23 PM Page 659

24.5 THE PROJECT

In order to manage a successful software project, you have to understand what can

go wrong so that problems can be avoided. In an excellent paper on software proj-

ects, John Reel [Ree99] defines 10 signs that indicate that an information systems

project is in jeopardy:

1. Software people don’t understand their customer’s needs.

2. The product scope is poorly defined.

3. Changes are managed poorly.

4. The chosen technology changes.

5. Business needs change [or are ill defined].

6. Deadlines are unrealistic.

7. Users are resistant.

8. Sponsorship is lost [or was never properly obtained].

9. The project team lacks people with appropriate skills.

10. Managers [and practitioners] avoid best practices and lessons learned.

Jaded industry professionals often refer to the 90–90 rule when discussing partic-

ularly difficult software projects: The first 90 percent of a system absorbs 90 percent

of the allotted effort and time. The last 10 percent takes another 90 percent of the

allotted effort and time [Zah94]. The seeds that lead to the 90–90 rule are contained

in the signs noted in the preceding list.

But enough negativity! How does a manager act to avoid the problems just noted?

Reel [Ree99] suggests a five-part commonsense approach to software projects:

1. Start on the right foot. This is accomplished by working hard (very hard) to

understand the problem that is to be solved and then setting realistic

objectives and expectations for everyone who will be involved in the project.

It is reinforced by building the right team (Section 24.2.3) and giving the team

the autonomy, authority, and technology needed to do the job.

2. Maintain momentum. Many projects get off to a good start and then slowly

disintegrate. To maintain momentum, the project manager must provide

incentives to keep turnover of personnel to an absolute minimum, the team

should emphasize quality in every task it performs, and senior management

should do everything possible to stay out of the team’s way.7

660 PART FOUR MANAGING SOFTWARE PROJECTS

What are the
signs that a

software project
is in jeopardy?

?

uote:

“We don’t have
time to stop for
gas, we’re already
late.”

M. Cleron

7 The implication of this statement is that bureaucracy is reduced to a minimum, extraneous
meetings are eliminated, and dogmatic adherence to process and project rules is deemphasized.
The team should be self-organizing and autonomous.

pre75977_ch24.qxd 11/27/08 6:23 PM Page 660

3. Track progress. For a software project, progress is tracked as work products

(e.g., models, source code, sets of test cases) are produced and approved

(using technical reviews) as part of a quality assurance activity. In addition,

software process and project measures (Chapter 25) can be collected and

used to assess progress against averages developed for the software devel-

opment organization.

4. Make smart decisions. In essence, the decisions of the project manager and

the software team should be to “keep it simple.” Whenever possible, decide

to use commercial off-the-shelf software or existing software components or

patterns, decide to avoid custom interfaces when standard approaches are

available, decide to identify and then avoid obvious risks, and decide to

allocate more time than you think is needed to complex or risky tasks

(you’ll need every minute).

5. Conduct a postmortem analysis. Establish a consistent mechanism for extract-

ing lessons learned for each project. Evaluate the planned and actual sched-

ules, collect and analyze software project metrics, get feedback from team

members and customers, and record findings in written form.

24.6 THE W5HH PRINCIPLE

In an excellent paper on software process and projects, Barry Boehm [Boe96]

states: “you need an organizing principle that scales down to provide simple [proj-

ect] plans for simple projects.” Boehm suggests an approach that addresses proj-

ect objectives, milestones and schedules, responsibilities, management and

technical approaches, and required resources. He calls it the W5HH Principle, after

a series of questions that lead to a definition of key project characteristics and the

resultant project plan:

Why is the system being developed? All stakeholders should assess the validity of

business reasons for the software work. Does the business purpose justify the

expenditure of people, time, and money?

What will be done? The task set required for the project is defined.

When will it be done? The team establishes a project schedule by identifying

when project tasks are to be conducted and when milestones are to be

reached.

Who is responsible for a function? The role and responsibility of each member of

the software team is defined.

Where are they located organizationally? Not all roles and responsibilities reside

within software practitioners. The customer, users, and other stakeholders also

have responsibilities.

CHAPTER 24 PROJECT MANAGEMENT CONCEPTS 661

How do
we define

key project
characteristics?

?

uote:

“A project is like a
road trip. Some
projects are simple
and routine, like
driving to the store
in broad daylight.
But most projects
worth doing are
more like driving
a truck off-road,
in the mountains,
at night.”

Cem Kaner,
James Bach, and
Bret Pettichord

pre75977_ch24.qxd 11/27/08 6:23 PM Page 661

How will the job be done technically and managerially? Once product scope is

established, a management and technical strategy for the project must be

defined.

How much of each resource is needed? The answer to this question is derived by

developing estimates (Chapter 26) based on answers to earlier questions.

Boehm’s W5HH Principle is applicable regardless of the size or complexity of a

software project. The questions noted provide you and your team with an excellent

planning outline.

24.7 CRITICAL PRACTICES

The Airlie Council8 has developed a list of “critical software practices for

performance-based management.” These practices are “consistently used by, and

considered critical by, highly successful software projects and organizations whose

’bottom line’ performance is consistently much better than industry averages” [Air99].

Critical practices9 include: metric-based project management (Chapter 25), empir-

ical cost and schedule estimation (Chapters 26 and 27), earned value tracking (Chap-

ter 27), defect tracking against quality targets (Chapters 14 though 16), and people

aware management (Section 24.2). Each of these critical practices is addressed

throughout Parts 3 and 4 of this book.

662 PART FOUR MANAGING SOFTWARE PROJECTS

8 The Airlie Council was comprised of a team of software engineering experts chartered by the U.S.
Department of Defense to help develop guidelines for best practices in software project manage-
ment and software engineering. For more on best practices, see www.swqual.com/newsletter/
vol1/no3/vol1no3.html.

9 Only those critical practices associated with “project integrity” are noted here.
10 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.

In most cases, tool names are trademarked by their respective developers.

Software Tools for Project Managers
The “tools” listed here are generic and apply to
a broad range of activities performed by

project managers. Specific project management tools
(e.g., scheduling tools, estimating tools, risk analysis tools)
are considered in later chapters.

Representative Tools:10

The Software Program Manager’s Network
(www.spmn.com) has developed a simple tool
called Project Control Panel, which provides project
managers with an direct indication of project status.

The tool has “gauges” much like a dashboard and is
implemented with Microsoft Excel. It is available for
download at www.spmn.com/products_
software.html.

Ganthead.com (www.gantthead.com/) has
developed a set of useful checklists for project
managers.

Ittoolkit.com (www.ittoolkit.com) provides
“a collection of planning guides, process templates
and smart worksheets” available on CD-ROM.

SOFTWARE TOOLS

pre75977_ch24.qxd 11/27/08 6:23 PM Page 662

http://www.spmn.com
http://www.spmn.com/products_
http://www.gantthead.com/
http://www.ittoolkit.com
http://www.swqual.com/newsletter/

24.8 SUMMARY

Software project management is an umbrella activity within software engineering. It

begins before any technical activity is initiated and continues throughout the mod-

eling, construction, and deployment of computer software.

Four P’s have a substantial influence on software project management—people,

product, process, and project. People must be organized into effective teams, mo-

tivated to do high-quality software work, and coordinated to achieve effective

communication. Product requirements must be communicated from customer to

developer, partitioned (decomposed) into their constituent parts, and positioned

for work by the software team. The process must be adapted to the people and the

product. A common process framework is selected, an appropriate software engi-

neering paradigm is applied, and a set of work tasks is chosen to get the job done.

Finally, the project must be organized in a manner that enables the software team

to succeed.

The pivotal element in all software projects is people. Software engineers can be

organized in a number of different team structures that range from traditional

control hierarchies to “open paradigm” teams. A variety of coordination and com-

munication techniques can be applied to support the work of the team. In general,

technical reviews and informal person-to-person communication have the most

value for practitioners.

The project management activity encompasses measurement and metrics, esti-

mation and scheduling, risk analysis, tracking, and control. Each of these topics is

considered in the chapters that follow.

PROBLEMS AND POINTS TO PONDER

24.1. Based on information contained in this chapter and your own experience, develop “ten
commandments” for empowering software engineers. That is, make a list of 10 guidelines that
will lead to software people who work to their full potential.

24.2. The Software Engineering Institute’s People Capability Maturity Model (People-CMM)
takes an organized look at “key practice areas” that cultivate good software people. Your
instructor will assign you one KPA for analysis and summary.

24.3. Describe three real-life situations in which the customer and the end user are the same.
Describe three situations in which they are different.

24.4. The decisions made by senior management can have a significant impact on the effec-
tiveness of a software engineering team. Provide five examples to illustrate that this is true.

24.5. Review a copy of Weinberg’s book [Wei86], and write a two- or three-page summary of
the issues that should be considered in applying the MOI model.

24.6. You have been appointed a project manager within an information systems organization.
Your job is to build an application that is quite similar to others your team has built, although
this one is larger and more complex. Requirements have been thoroughly documented by the
customer. What team structure would you choose and why? What software process model(s)
would you choose and why?

CHAPTER 24 PROJECT MANAGEMENT CONCEPTS 663

pre75977_ch24.qxd 11/27/08 6:23 PM Page 663

24.7. You have been appointed a project manager for a small software products company. Your
job is to build a breakthrough product that combines virtual reality hardware with state-of-the-
art software. Because competition for the home entertainment market is intense, there is sig-
nificant pressure to get the job done. What team structure would you choose and why? What
software process model(s) would you choose and why?

24.8. You have been appointed a project manager for a major software products company.
Your job is to manage the development of the next-generation version of its widely used word-
processing software. Because competition is intense, tight deadlines have been established and
announced. What team structure would you choose and why? What software process model(s)
would you choose and why?

24.9. You have been appointed a software project manager for a company that services the ge-
netic engineering world. Your job is to manage the development of a new software product that
will accelerate the pace of gene typing. The work is R&D oriented, but the goal is to produce a
product within the next year. What team structure would you choose and why? What software
process model(s) would you choose and why?

24.10. You have been asked to develop a small application that analyzes each course offered
by a university and reports the average grade obtained in the course (for a given term). Write a
statement of scope that bounds this problem.

24.11. Do a first-level functional decomposition of the page layout function discussed briefly
in Section 24.3.2.

FURTHER READINGS AND INFORMATION SOURCES

The Project Management Institute (Guide to the Project Management Body of Knowledge, PMI,
2001) covers all important aspects of project management. Bechtold (Essentials of Software Pro-
ject Management, 2d ed., Management Concepts, 2007), Wysocki (Effective Software Project Man-
agement, Wiley, 2006), Stellman and Greene (Applied Software Project Management, O’Reilly,
2005), and Berkun (The Art of Project Management, O’Reilly, 2005) teach basic skills and provide
detailed guidance for all software project management tasks. McConnell (Professional Software
Development, Addison-Wesley, 2004) offers pragmatic advice for achieving “shorter schedules,
higher quality products, and more successful projects.” Henry (Software Project Management,
Addison-Wesley, 2003) offers real-world advice that is useful for all project managers.

Tom DeMarco and his colleagues (Adrenaline Junkies and Template Zombies, Dorset House,
2008) have written an insightful treatment of the human patterns that are encountered in every
software project. An excellent four-volume series written by Weinberg (Quality Software Manage-
ment, Dorset House, 1992, 1993, 1994, 1996) introduces basic systems thinking and management
concepts, explains how to use measurements effectively, and addresses “congruent action,” the
ability to establish “fit” between the manager’s needs, the needs of technical staff, and the needs
of the business. It will provide both new and experienced managers with useful information.
Futrell and his colleagues (Quality Software Project Management, Prentice-Hall, 2002) present a vo-
luminous treatment of project management. Brown and his colleagues (Antipatterns in Project
Management, Wiley, 2000) discuss what not to do during the management of a software project.

Brooks (The Mythical Man-Month, Anniversary Edition, Addison-Wesley, 1995) has updated his
classic book to provide new insight into software project and management issues. McConnell
(Software Project Survival Guide, Microsoft Press, 1997) presents excellent pragmatic guidance for
those who must manage software projects. Purba and Shah (How to Manage a Successful Software
Project, 2d ed., Wiley, 2000) present a number of case studies that indicate why some projects suc-
ceed and others fail. Bennatan (On Time Within Budget, 3d ed., Wiley, 2000) presents useful tips
and guidelines for software project managers. Weigers (Practical Project Initiation, Microsoft Press,
2007) provides practical guidelines for getting a software project off the ground successfully.

It can be argued that the most important aspect of software project management is people
management. Cockburn (Agile Software Development, Addison-Wesley, 2002) presents one of

664 PART FOUR MANAGING SOFTWARE PROJECTS

pre75977_ch24.qxd 11/27/08 6:23 PM Page 664

the best discussions of software people written to date. DeMarco and Lister [DeM98] have writ-
ten the definitive book on software people and software projects. In addition, the following
books on this subject have been published in recent years and are worth examining:

Cantor, M., Software Leadership: A Guide to Successful Software Development, Addison-
Wesley, 2001.

Carmel, E., Global Software Teams: Collaborating Across Borders and Time Zones, Prentice Hall,
1999.

Constantine, L., Peopleware Papers: Notes on the Human Side of Software, Prentice Hall, 2001.

Garton, C., and K. Wegryn, Managing Without Walls, McPress, 2006.

Humphrey, W. S., Managing Technical People: Innovation, Teamwork, and the Software Process,
Addison-Wesley, 1997.

Humphrey, W. S., TSP-Coaching Development Teams, Addison-Wesley, 2006.

Jones, P. H., Handbook of Team Design: A Practitioner’s Guide to Team Systems Development,
McGraw-Hill, 1997.

Karolak, D. S., Global Software Development: Managing Virtual Teams and Environments, IEEE
Computer Society, 1998.

Peters, L., Getting Results from Software Development Teams, Microsoft Press, 2008.

Whitehead, R., Leading a Software Development Team, Addison-Wesley, 2001.

Even though they do not relate specifically to the software world and sometimes suffer from
oversimplification and broad generalization, best-selling “management” books by Kanter
(Confidence, Three Rivers Press, 2006), Covy (The 8th Habit, Free Press, 2004), Bossidy (Execution:
The Discipline of Getting Things Done, Crown Publishing, 2002), Drucker (Management Challenges
for the 21st Century, Harper Business, 1999), Buckingham and Coffman (First, Break All the Rules:
What the World’s Greatest Managers Do Differently, Simon and Schuster, 1999), and Christensen
(The Innovator’s Dilemma, Harvard Business School Press, 1997) emphasize “new rules” defined
by a rapidly changing economy. Older titles such as Who Moved My Cheese?, The One-Minute
Manager, and In Search of Excellence continue to provide valuable insights that can help you to
manage people and projects more effectively.

A wide variety of information sources on the software project management are available on
the Internet. An up-to-date list of World Wide Web references relevant to software project man-
agement can be found at the SEPA website: www.mhhe.com/engcs/compsci/pressman/
professional/olc/ser.htm.

CHAPTER 24 PROJECT MANAGEMENT CONCEPTS 665

pre75977_ch24.qxd 11/27/08 6:23 PM Page 665

http://www.mhhe.com/engcs/compsci/pressman/

Measurement enables us to gain insight into the process and the project
by providing a mechanism for objective evaluation. Lord Kelvin once
said:

When you can measure what you are speaking about and express it in numbers, you

know something about it; but when you cannot measure, when you cannot express it

in numbers, your knowledge is of a meager and unsatisfactory kind: it may be the

beginning of knowledge, but you have scarcely, in your thoughts, advanced to the

stage of a science.

The software engineering community has taken Lord Kelvin’s words to heart. But
not without frustration and more than a little controversy!

Measurement can be applied to the software process with the intent of
improving it on a continuous basis. Measurement can be used throughout a soft-
ware project to assist in estimation, quality control, productivity assessment, and
project control. Finally, measurement can be used by software engineers to help
assess the quality of work products and to assist in tactical decision making as a
project proceeds (Chapter 23).

666

C H A P T E R

25 PROCESS AND
PROJECT METRICS

K E Y
C O N C E P T S

defect removal
efficiency
(DRE)681
function point . .673
measurement . .671
metrics, 667

arguments
for683
baseline 683
establishing
a program . . .686
function-
oriented 673
LOC-based . . .675
object-
oriented 675

What is it? Software process and
project metrics are quantitative mea-
sures that enable you to gain insight
into the efficacy of the software

process and the projects that are conducted using
the process as a framework. Basic quality and
productivity data are collected. These data are
then analyzed, compared against past averages,
and assessed to determine whether quality and
productivity improvements have occurred. Met-
rics are also used to pinpoint problem areas so
that remedies can be developed and the software
process can be improved.

Who does it? Software metrics are analyzed and
assessed by software managers. Measures are
often collected by software engineers.

Why is it important? If you don’t measure, judg-
ment can be based only on subjective evaluation.

Q U I C K
L O O K

With measurement, trends (either good or bad)
can be spotted, better estimates can be made, and
true improvement can be accomplished over time.

What are the steps? Begin by defining a limited
set of process, project, and product measures
that are easy to collect. These measures are
often normalized using either size- or function-
oriented metrics. The result is analyzed and
compared to past averages for similar projects
performed within the organization. Trends are
assessed and conclusions are generated.

What is the work product? A set of software
metrics that provide insight into the process and
understanding of the project.

How do I ensure that I’ve done it right? By
applying a consistent, yet simple measurement
scheme that is never to be used to assess,
reward, or punish individual performance.

pre75977_ch25.qxd 11/27/08 6:24 PM Page 666

Within the context of the software process and the projects that are conducted

using the process, a software team is concerned primarily with productivity and

quality metrics—measures of software development “output” as a function of effort

and time applied and measures of the “fitness for use” of the work products that are

produced. For planning and estimating purposes, your interest is historical. What

was software development productivity on past projects? What was the quality of the

software that was produced? How can past productivity and quality data be extrap-

olated to the present? How can it help you plan and estimate more accurately?

In their guidebook on software measurement, Park, Goethert, and Florac [Par96b]

note the reasons that we measure: (1) to characterize in an effort to gain an under-

standing “of processes, products, resources, and environments, and to establish

baselines for comparisons with future assessments”; (2) to evaluate “to determine

status with respect to plans”; (3) to predict by “gaining understandings of relation-

ships among processes and products and building models of these relationships”;

and (4) to improve by “identify[ing] roadblocks, root causes, inefficiencies, and other

opportunities for improving product quality and process performance.”

Measurement is a management tool. If conducted properly, it provides a project

manager with insight. And as a result, it assists the project manager and the software

team in making decisions that will lead to a successful project.

25.1 METRICS IN THE PROCESS AND PROJECT DOMAINS

Process metrics are collected across all projects and over long periods of time. Their

intent is to provide a set of process indicators that lead to long-term software process

improvement. Project metrics enable a software project manager to (1) assess the sta-

tus of an ongoing project, (2) track potential risks, (3) uncover problem areas before

they go “critical,” (4) adjust work flow or tasks, and (5) evaluate the project team’s

ability to control quality of software work products.

Measures that are collected by a project team and converted into metrics for use

during a project can also be transmitted to those with responsibility for software

process improvement (Chapter 30). For this reason, many of the same metrics are

used in both the process and project domains.

25.1.1 Process Metrics and Software Process Improvement

The only rational way to improve any process is to measure specific attributes of the

process, develop a set of meaningful metrics based on these attributes, and then use the

metrics to provide indicators that will lead to a strategy for improvement (Chapter 30).

But before I discuss software metrics and their impact on software process improve-

ment, it is important to note that process is only one of a number of “controllable factors

in improving software quality and organizational performance” [Pau94].

Referring to Figure 25.1, process sits at the center of a triangle connecting three

factors that have a profound influence on software quality and organizational

CHAPTER 25 PROCESS AND PROJECT METRICS 667

process 667
productivity . . .675
project 670
public and
private668
size-oriented . . .672
software
quality 679
use-case–
oriented 676
WebApp677

Process metrics have
long-term impact.
Their intent is to
improve the process
itself. Project metrics
often contribute to the
development of
process metrics.

pre75977_ch25.qxd 11/27/08 6:24 PM Page 667

668 PART FOUR MANAGING SOFTWARE PROJECTS

performance. The skill and motivation of people has been shown [Boe81] to be the

single most influential factor in quality and performance. The complexity of the

product can have a substantial impact on quality and team performance. The tech-

nology (i.e., the software engineering methods and tools) that populates the process

also has an impact.

In addition, the process triangle exists within a circle of environmental conditions

that include the development environment (e.g., integrated software tools), business

conditions (e.g., deadlines, business rules), and customer characteristics (e.g., ease

of communication and collaboration).

You can only measure the efficacy of a software process indirectly. That is, you

derive a set of metrics based on the outcomes that can be derived from the process.

Outcomes include measures of errors uncovered before release of the software,

defects delivered to and reported by end users, work products delivered (productivity),

human effort expended, calendar time expended, schedule conformance, and other

measures. You can also derive process metrics by measuring the characteristics of

specific software engineering tasks. For example, you might measure the effort and

time spent performing the umbrella activities and the generic software engineering

activities described in Chapter 2.

Grady [Gra92] argues that there are “private and public” uses for different types of

process data. Because it is natural that individual software engineers might be

sensitive to the use of metrics collected on an individual basis, these data should

be private to the individual and serve as an indicator for the individual only. Exam-

ples of private metrics include defect rates (by individual), defect rates (by compo-

nent), and errors found during development.

Process

Product

TechnologyPeople
Development
environment

Customer
characteristics

Business
conditions

FIGURE 25.1

Determinants
for software
quality and
organizational
effectiveness.
Source: Adapted from
[Pau94].

The skill and
motivation of the
software people doing
the work are the most
important factors that
influence software
quality.

uote:

“Software metrics
let you know when
to laugh and when
to cry.”

Tom Gilb

pre75977_ch25.qxd 11/27/08 6:24 PM Page 668

The “private process data” philosophy conforms well with the Personal Software

Process approach (Chapter 2) proposed by Humphrey [Hum97]. Humphrey recog-

nizes that software process improvement can and should begin at the individual

level. Private process data can serve as an important driver as you work to improve

your software engineering approach.

Some process metrics are private to the software project team but public to all

team members. Examples include defects reported for major software functions (that

have been developed by a number of practitioners), errors found during technical

reviews, and lines of code or function points per component or function.1 The team

reviews these data to uncover indicators that can improve team performance.

Public metrics generally assimilate information that originally was private to indi-

viduals and teams. Project-level defect rates (absolutely not attributed to an individual),

effort, calendar times, and related data are collected and evaluated in an attempt to

uncover indicators that can improve organizational process performance.

Software process metrics can provide significant benefit as an organization works

to improve its overall level of process maturity. However, like all metrics, these can

be misused, creating more problems than they solve. Grady [Gra92] suggests a “soft-

ware metrics etiquette” that is appropriate for both managers and practitioners as

they institute a process metrics program:

• Use common sense and organizational sensitivity when interpreting metrics

data.

• Provide regular feedback to the individuals and teams who collect measures

and metrics.

• Don’t use metrics to appraise individuals.

• Work with practitioners and teams to set clear goals and metrics that will be

used to achieve them.

• Never use metrics to threaten individuals or teams.

• Metrics data that indicate a problem area should not be considered

“negative.” These data are merely an indicator for process improvement.

• Don’t obsess on a single metric to the exclusion of other important metrics.

As an organization becomes more comfortable with the collection and use of

process metrics, the derivation of simple indicators gives way to a more rigorous

approach called statistical software process improvement (SSPI). In essence, SSPI uses

software failure analysis to collect information about all errors and defects2 encoun-

tered as an application, system, or product is developed and used.

CHAPTER 25 PROCESS AND PROJECT METRICS 669

What is the
difference

between private
and public uses
for software
metrics?

?

What
guidelines

should be applied
when we collect
software metrics?

?

1 Lines of code and function point metrics are discussed in Sections 25.2.1 and 25.2.2.

2 In this book, an error is defined as some flaw in a software engineering work product that is
uncovered before the software is delivered to the end user. A defect is a flaw that is uncovered after
delivery to the end user. It should be noted that others do not make this distinction.

pre75977_ch25.qxd 11/27/08 6:24 PM Page 669

25.1.2 Project Metrics

Unlike software process metrics that are used for strategic purposes, software proj-

ect measures are tactical. That is, project metrics and the indicators derived from

them are used by a project manager and a software team to adapt project workflow

and technical activities.

The first application of project metrics on most software projects occurs during

estimation. Metrics collected from past projects are used as a basis from which effort

and time estimates are made for current software work. As a project proceeds, mea-

sures of effort and calendar time expended are compared to original estimates (and the

project schedule). The project manager uses these data to monitor and control progress.

As technical work commences, other project metrics begin to have significance.

Production rates represented in terms of models created, review hours, function

points, and delivered source lines are measured. In addition, errors uncovered

during each software engineering task are tracked. As the software evolves from

requirements into design, technical metrics (Chapter 23) are collected to assess

design quality and to provide indicators that will influence the approach taken to

code generation and testing.

The intent of project metrics is twofold. First, these metrics are used to minimize

the development schedule by making the adjustments necessary to avoid delays and

mitigate potential problems and risks. Second, project metrics are used to assess pro-

duct quality on an ongoing basis and, when necessary, modify the technical approach

to improve quality.

As quality improves, defects are minimized, and as the defect count goes down,

the amount of rework required during the project is also reduced. This leads to a

reduction in overall project cost.

670 PART FOUR MANAGING SOFTWARE PROJECTS

How should
we use

metrics during the
project itself?

?

The scene: Doug Miller’s office as the
SafeHome software project is about

to begin.

The players: Doug Miller (manager of the SafeHome
software engineering team) and Vinod Raman and Jamie
Lazar, members of the product software engineering team.

The conversation:

Doug: Before we start work on this project, I’d like you
guys to define and collect a set of simple metrics. To start,
you’ll have to define your goals.

Vinod (frowning): We’ve never done that before,
and . . .

Jamie (interrupting): And based on the time line
management has been talking about, we’ll never have the
time. What good are metrics anyway?

Doug (raising his hand to stop the onslaught):
Slow down and take a breath, guys. The fact that we’ve
never done it before is all the more reason to start now,
and the metrics work I’m talking about shouldn’t take
much time at all . . . in fact, it just might save us time.

Vinod: How?

Doug: Look, we’re going to be doing a lot more
in-house software engineering as our products get more
intelligent, become Web enabled, all that . . . and we
need to understand the process we use to build
software . . . and improve it so we can build software
better. The only way to do that is to measure.

Jamie: But we’re under time pressure, Doug. I’m not in
favor of more paper pushing . . . we need the time to do
our work, not collect data.

SAFEHOME

Establishing a Metrics Approach

pre75977_ch25.qxd 11/27/08 6:25 PM Page 670

25.2 SOFTWARE MEASUREMENT

In Chapter 23, I noted that measurements in the physical world can be categorized

in two ways: direct measures (e.g., the length of a bolt) and indirect measures (e.g.,

the “quality” of bolts produced, measured by counting rejects). Software metrics can

be categorized similarly.

Direct measures of the software process include cost and effort applied. Direct

measures of the product include lines of code (LOC) produced, execution speed,

memory size, and defects reported over some set period of time. Indirect measures

of the product include functionality, quality, complexity, efficiency, reliability, main-

tainability, and many other “–abilities” that are discussed in Chapter 14.

The cost and effort required to build software, the number of lines of code pro-

duced, and other direct measures are relatively easy to collect, as long as specific

conventions for measurement are established in advance. However, the quality and

functionality of software or its efficiency or maintainability are more difficult to as-

sess and can be measured only indirectly.

I have partitioned the software metrics domain into process, project, and product

metrics and noted that product metrics that are private to an individual are often

combined to develop project metrics that are public to a software team. Project met-

rics are then consolidated to create process metrics that are public to the software

organization as a whole. But how does an organization combine metrics that come

from different individuals or projects?

To illustrate, consider a simple example. Individuals on two different project

teams record and categorize all errors that they find during the software process. In-

dividual measures are then combined to develop team measures. Team A found 342

errors during the software process prior to release. Team B found 184 errors. All

other things being equal, which team is more effective in uncovering errors through-

out the process? Because you do not know the size or complexity of the projects,

you cannot answer this question. However, if the measures are normalized, it is

CHAPTER 25 PROCESS AND PROJECT METRICS 671

Doug (calmly): Jamie, an engineer’s work involves
collecting data, evaluating it, and using the results to
improve the product and the process. Am I wrong?

Jamie: No, but . . .

Doug: What if we hold the number of measures we collect
to no more than five or six and focus on quality?

Vinod: No one can argue against high quality . . .

Jamie: True . . . but, I don’t know. I still think this isn’t
necessary.

Doug: I’m going to ask you to humor me on this one.
How much do you guys know about software metrics?

Jamie (looking at Vinod): Not much.

Doug: Here are some Web refs . . . spend a few hours
getting up to speed.

Jamie (smiling): I thought you said this wouldn’t take
any time.

Doug: Time you spend learning is never wasted . . . go
do it and then we’ll establish some goals, ask a few
questions, and define the metrics we need to collect.

uote:

“Not everything
that can be
counted counts,
and not everything
that counts can be
counted.”

Albert Einstein

Because many factors
affect software work,
don’t use metrics to
compare individuals or
teams.

pre75977_ch25.qxd 11/27/08 6:25 PM Page 671

possible to create software metrics that enable comparison to broader organiza-

tional averages.

25.2.1 Size-Oriented Metrics

Size-oriented software metrics are derived by normalizing quality and/or productiv-

ity measures by considering the size of the software that has been produced. If a soft-

ware organization maintains simple records, a table of size-oriented measures, such

as the one shown in Figure 25.2, can be created. The table lists each software devel-

opment project that has been completed over the past few years and corresponding

measures for that project. Referring to the table entry (Figure 25.2) for project alpha:

12,100 lines of code were developed with 24 person-months of effort at a cost of

$168,000. It should be noted that the effort and cost recorded in the table represent

all software engineering activities (analysis, design, code, and test), not just coding.

Further information for project alpha indicates that 365 pages of documentation

were developed, 134 errors were recorded before the software was released, and 29

defects were encountered after release to the customer within the first year of oper-

ation. Three people worked on the development of software for project alpha.

In order to develop metrics that can be assimilated with similar metrics from other

projects, you can choose lines of code as a normalization value. From the rudimen-

tary data contained in the table, a set of simple size-oriented metrics can be devel-

oped for each project:

• Errors per KLOC (thousand lines of code)

• Defects per KLOC

• $ per KLOC

• Pages of documentation per KLOC

672 PART FOUR MANAGING SOFTWARE PROJECTS

FIGURE 25.2

Size-oriented
metrics

Project LOC Effort $(000) Pp. doc. Errors Defects People

alpha
beta
gamma

•
•
•

12,100
27,200
20,200

•
•
•

24
62
43

•
•
•

168
440
314

•
•
•

365
1224
1050

•
•

 •

134
321
256

•
•

 •

29
86
64

3
5
6

pre75977_ch25.qxd 11/27/08 6:25 PM Page 672

In addition, other interesting metrics can be computed:

• Errors per person-month

• KLOC per person-month

• $ per page of documentation

Size-oriented metrics are not universally accepted as the best way to measure the

software process. Most of the controversy swirls around the use of lines of code as a

key measure. Proponents of the LOC measure claim that LOC is an “artifact” of all soft-

ware development projects that can be easily counted, that many existing software

estimation models use LOC or KLOC as a key input, and that a large body of literature

and data predicated on LOC already exists. On the other hand, opponents argue that

LOC measures are programming language dependent, that when productivity is con-

sidered, they penalize well-designed but shorter programs; that they cannot easily

accommodate nonprocedural languages; and that their use in estimation requires a

level of detail that may be difficult to achieve (i.e., the planner must estimate the LOC

to be produced long before analysis and design have been completed).

25.2.2 Function-Oriented Metrics

Function-oriented software metrics use a measure of the functionality delivered by

the application as a normalization value. The most widely used function-oriented

metric is the function point (FP). Computation of the function point is based on char-

acteristics of the software’s information domain and complexity. The mechanics of

FP computation have been discussed in Chapter 23.3

The function point, like the LOC measure, is controversial. Proponents claim that

FP is programming language independent, making it ideal for applications using con-

ventional and nonprocedural languages, and that it is based on data that are more

likely to be known early in the evolution of a project, making FP more attractive as an

estimation approach. Opponents claim that the method requires some “sleight of

hand” in that computation is based on subjective rather than objective data, that

counts of the information domain (and other dimensions) can be difficult to collect

after the fact, and that FP has no direct physical meaning—it’s just a number.

25.2.3 Reconciling LOC and FP Metrics

The relationship between lines of code and function points depends upon the pro-

gramming language that is used to implement the software and the quality of the

design. A number of studies have attempted to relate FP and LOC measures. The fol-

lowing table4 [QSM02] provides rough estimates of the average number of lines of

code required to build one function point in various programming languages:

CHAPTER 25 PROCESS AND PROJECT METRICS 673

Size-oriented metrics
are widely used,
but debate about
their validity and
applicability continues.

3 See Section 23.2.1 for a detailed discussion of FP computation.

4 Used with permission of Quantitative Software Management (www.qsm.com), copyright 2002.

pre75977_ch25.qxd 11/27/08 6:25 PM Page 673

http://www.qsm.com

LOC per Function Point

Programming
Language Average Median Low High

Access 35 38 15 47
Ada 154 — 104 205
APS 86 83 20 184
ASP 69 62 — 32 127
Assembler 337 315 91 694
C 162 109 33 704
C++ 66 53 29 178
Clipper 38 39 27 70
COBOL 77 77 14 400
Cool:Gen/IEF 38 31 10 180
Culprit 51 — — —
DBase IV 52 — — —
Easytrieve+ 33 34 25 41
Excel47 46 — 31 63
Focus 43 42 32 56
FORTRAN — — — —
FoxPro 32 35 25 35
Ideal 66 52 34 203
IEF/Cool:Gen 38 31 10 180
Informix 42 31 24 57
Java 63 53 77 —
JavaScript 58 63 42 75
JCL 91 123 26 150
JSP 59 — — —
Lotus Notes 21 22 15 25
Mantis 71 27 22 250
Mapper 118 81 16 245
Natural 60 52 22 141
Oracle 30 35 4 217
PeopleSoft 33 32 30 40
Perl 60 — — —
PL/1 78 67 22 263
Powerbuilder 32 31 11 105
REXX 67 — — —
RPG II/III 61 49 24 155
SAS 40 41 33 49
Smalltalk 26 19 10 55
SQL 40 37 7 110
VBScript36 34 27 50 —
Visual Basic 47 42 16 158

674 PART FOUR MANAGING SOFTWARE PROJECTS

pre75977_ch25.qxd 11/27/08 6:25 PM Page 674

A review of these data indicates that one LOC of C++ provides approximately

2.4 times the “functionality” (on average) as one LOC of C. Furthermore, one LOC of

Smalltalk provides at least four times the functionality of an LOC for a conventional

programming language such as Ada, COBOL, or C. Using the information contained

in the table, it is possible to “backfire” [Jon98] existing software to estimate the num-

ber of function points, once the total number of programming language statements

are known.

LOC and FP measures are often used to derive productivity metrics. This invari-

ably leads to a debate about the use of such data. Should the LOC/person-month (or

FP/person-month) of one group be compared to similar data from another? Should

managers appraise the performance of individuals by using these metrics? The an-

swer to these questions is an emphatic “No!” The reason for this response is that

many factors influence productivity, making for “apples and oranges” comparisons

that can be easily misinterpreted.

Function points and LOC-based metrics have been found to be relatively accurate

predictors of software development effort and cost. However, in order to use LOC

and FP for estimation (Chapter 26), an historical baseline of information must be

established.

Within the context of process and project metrics, you should be concerned

primarily with productivity and quality—measures of software development “output”

as a function of effort and time applied and measures of the “fitness for use” of the

work products that are produced. For process improvement and project planning

purposes, your interest is historical. What was software development productivity on

past projects? What was the quality of the software that was produced? How can past

productivity and quality data be extrapolated to the present? How can it help us

improve the process and plan new projects more accurately?

25.2.4 Object-Oriented Metrics

Conventional software project metrics (LOC or FP) can be used to estimate object-

oriented software projects. However, these metrics do not provide enough granular-

ity for the schedule and effort adjustments that are required as you iterate through

an evolutionary or incremental process. Lorenz and Kidd [Lor94] suggest the fol-

lowing set of metrics for OO projects:

Number of scenario scripts. A scenario script (analogous to use cases discussed

throughout Part 2 of this book) is a detailed sequence of steps that describe the

interaction between the user and the application. Each script is organized into

triplets of the form

{initiator, action, participant}

where initiator is the object that requests some service (that initiates a message),

action is the result of the request, and participant is the server object that satisfies

the request. The number of scenario scripts is directly correlated to the size of the

CHAPTER 25 PROCESS AND PROJECT METRICS 675

pre75977_ch25.qxd 11/27/08 6:25 PM Page 675

application and to the number of test cases that must be developed to exercise the

system once it is constructed.

Number of key classes. Key classes are the “highly independent components”

[Lor94] that are defined early in object-oriented analysis (Chapter 6).5 Because key

classes are central to the problem domain, the number of such classes is an indica-

tion of the amount of effort required to develop the software and also an indication

of the potential amount of reuse to be applied during system development.

Number of support classes. Support classes are required to implement the sys-

tem but are not immediately related to the problem domain. Examples might be user

interface (GUI) classes, database access and manipulation classes, and computation

classes. In addition, support classes can be developed for each of the key classes.

Support classes are defined iteratively throughout an evolutionary process. The

number of support classes is an indication of the amount of effort required to develop

the software and also an indication of the potential amount of reuse to be applied

during system development.

Average number of support classes per key class. In general, key classes are

known early in the project. Support classes are defined throughout. If the average

number of support classes per key class were known for a given problem domain,

estimating (based on total number of classes) would be greatly simplified. Lorenz

and Kidd suggest that applications with a GUI have between two and three times the

number of support classes as key classes. Non-GUI applications have between one

and two times the number of support classes as key classes.

Number of subsystems. A subsystem is an aggregation of classes that support a

function that is visible to the end user of a system. Once subsystems are identified,

it is easier to lay out a reasonable schedule in which work on subsystems is parti-

tioned among project staff.

To be used effectively in an object-oriented software engineering environment,

metrics similar to those noted above should be collected along with project meas-

ures such as effort expended, errors and defects uncovered, and models or docu-

mentation pages produced. As the database grows (after a number of projects have

been completed), relationships between the object-oriented measures and project

measures will provide metrics that can aid in project estimation.

25.2.5 Use-Case–Oriented Metrics

Use cases6 are used widely as a method for describing customer-level or business

domain requirements that imply software features and functions. It would seem

reasonable to use the use case as a normalization measure similar to LOC or FP.

676 PART FOUR MANAGING SOFTWARE PROJECTS

It is not uncommon for
multiple-scenario
scripts to mention the
same functionality
or data objects.
Therefore, be careful
when using script
counts. Many scripts
can sometimes be
reduced to a single
class or set of code.

Classes can vary in
size and complexity.
Therefore, it’s worth
considering classifying
class counts by size
and complexity.

5 We referred to key classes as analysis classes in Part 2 of this book.

6 Use cases are introduced in Chapters 5 and 6.

pre75977_ch25.qxd 11/27/08 6:25 PM Page 676

Like FP, the use case is defined early in the software process, allowing it to be used

for estimation before significant modeling and construction activities are initiated.

Use cases describe (indirectly, at least) user-visible functions and features that are

basic requirements for a system. The use case is independent of programming

language. In addition, the number of use cases is directly proportional to the size of

the application in LOC and to the number of test cases that will have to be designed

to fully exercise the application.

Because use cases can be created at vastly different levels of abstraction, there

is no standard “size” for a use case. Without a standard measure of what a use case

is, its application as a normalization measure (e.g., effort expended per use case) is

suspect.

Researchers have suggested use-case points (UCPs) as a mechanism for estimat-

ing project effort and other characteristics. The UCP is a function of the number of

actors and transactions implied by the use-case models and is analogous to the FP

in some ways. If you have further interest, see [Cle06].

25.2.6 WebApp Project Metrics

The objective of all WebApp projects is to deliver a combination of content and

functionality to the end user. Measures and metrics used for traditional software

engineering projects are difficult to translate directly to WebApps. Yet, it is possi-

ble to develop a database that allows access to internal productivity and quality

measures derived over a number of projects. Among the measures that can be

collected are:

Number of static Web pages. Web pages with static content (i.e., the end

user has no control over the content displayed on the page) are the most

common of all WebApp features. These pages represent low relative com-

plexity and generally require less effort to construct than dynamic pages. This

measure provides an indication of the overall size of the application and the

effort required to develop it.

Number of dynamic Web pages. Web pages with dynamic content (i.e.,

end-user actions or other external factors result in customized content dis-

played on the page) are essential in all e-commerce applications, search

engines, financial applications, and many other WebApp categories. These

pages represent higher relative complexity and require more effort to con-

struct than static pages. This measure provides an indication of the overall

size of the application and the effort required to develop it.

Number of internal page links. Internal page links are pointers that pro-

vide a hyperlink to some other Web page within the WebApp. This measure

provides an indication of the degree of architectural coupling within the

WebApp. As the number of page links increases, the effort expended on

navigational design and construction also increases.

CHAPTER 25 PROCESS AND PROJECT METRICS 677

pre75977_ch25.qxd 11/27/08 6:25 PM Page 677

Number of persistent data objects. One or more persistent data objects

(e.g., a database or data file) may be accessed by a WebApp. As the number

of persistent data objects grows, the complexity of the WebApp also grows

and the effort to implement it increases proportionally.

Number of external systems interfaced. WebApps must often interface

with “backroom” business applications. As the requirement for interfacing

grows, system complexity and development effort also increase.

Number of static content objects. Static content objects encompass static

text-based, graphical, video, animation, and audio information that are

incorporated within the WebApp. Multiple content objects may appear on a

single Web page.

Number of dynamic content objects. Dynamic content objects are gener-

ated based on end-user actions and encompass internally generated text-

based, graphical, video, animation, and audio information that are

incorporated within the WebApp. Multiple content objects may appear on a

single Web page.

Number of executable functions. An executable function (e.g., a script

or applet) provides some computational service to the end user. As the

number of executable functions increases, modeling and construction effort

also increase.

Each of the preceding measures can be determined at a relatively early stage. For ex-

ample, you can define a metric that reflects the degree of end-user customization

that is required for the WebApp and correlate it to the effort expended on the project

and/or the errors uncovered as reviews and testing are conducted. To accomplish

this, you define

Nsp � number of Static Web pages

Ndp � number of Dynamic Web pages

Then,

Customization index, C �

The value of C ranges from 0 to 1. As C grows larger, the level of WebApp cus-

tomization becomes a significant technical issue.

Similar WebApp metrics can be computed and correlated with project measures

such as effort expended, errors and defects uncovered, and models or documenta-

tion pages produced. As the database grows (after a number of projects have been

completed), relationships between the WebApp measures and project measures will

provide indicators that can aid in project estimation.

Ndp

Ndp � Nsp

678 PART FOUR MANAGING SOFTWARE PROJECTS

pre75977_ch25.qxd 11/27/08 6:25 PM Page 678

25.3 METRICS FOR SOFTWARE QUALITY

The overriding goal of software engineering is to produce a high-quality system,

application, or product within a time frame that satisfies a market need. To achieve

this goal, you must apply effective methods coupled with modern tools within the con-

text of a mature software process. In addition, a good software engineer (and good

software engineering managers) must measure if high quality is to be realized.

The quality of a system, application, or product is only as good as the require-

ments that describe the problem, the design that models the solution, the code that

leads to an executable program, and the tests that exercise the software to uncover

errors. You can use measurement to assess the quality of the requirements and de-

sign models, the source code, and the test cases that have been created as the soft-

ware is engineered. To accomplish this real-time assessment, you apply product

metrics (Chapter 23) to evaluate the quality of software engineering work products

in objective, rather than subjective ways.

A project manager must also evaluate quality as the project progresses. Private

metrics collected by individual software engineers are combined to provide project-

level results. Although many quality measures can be collected, the primary thrust at

the project level is to measure errors and defects. Metrics derived from these meas-

ures provide an indication of the effectiveness of individual and group software qual-

ity assurance and control activities.

CHAPTER 25 PROCESS AND PROJECT METRICS 679

Project and Process Metrics

Objective: To assist in the definition,
collection, evaluation, and reporting of

software measures and metrics.

Mechanics: Each tool varies in its application, but all
provide mechanisms for collecting and evaluating data
that lead to the computation of software metrics.

Representative Tools: 7

Function Point WORKBENCH, developed by Charismatek
(www.charismatek.com.au), offers a wide array
of FP-oriented metrics.

MetricCenter, developed by Distributive Software
(www.distributive.com), supports automating
data collection, analysis, chart formatting, report
generation, and other measurement tasks.

PSM Insight, developed by Practical Software and Systems
Measurement (www.psmsc.com), assists in the
creation and subsequent analysis of a project
measurement database.

SLIM tool set, developed by QSM (www.qsm.com),
provides a comprehensive set of metrics and estimation
tools.

SPR tool set, developed by Software Productivity Research
(www.spr.com), offers a comprehensive collection
of FP-oriented tools.

TychoMetrics, developed by Predicate Logic, Inc.
(www.predicate.com), is a tool suite for manage-
ment metrics collection and reporting.

SOFTWARE TOOLS

7 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.
In most cases, tool names are trademarked by their respective developers.

Software is a complex
entity. Therefore, errors
are to be expected as
work products are
developed. Process
metrics are intended to
improve the software
process so that errors
are uncovered in the
most effective manner.

pre75977_ch25.qxd 11/27/08 6:25 PM Page 679

http://www.charismatek.com.au
http://www.distributive.com
http://www.psmsc.com
http://www.qsm.com
http://www.spr.com
http://www.predicate.com

Metrics such as work product errors per function point, errors uncovered per

review hour, and errors uncovered per testing hour provide insight into the efficacy

of each of the activities implied by the metric. Error data can also be used to com-

pute the defect removal efficiency (DRE) for each process framework activity. DRE is

discussed in Section 25.3.3.

25.3.1 Measuring Quality

Although there are many measures of software quality,8 correctness, maintainabil-

ity, integrity, and usability provide useful indicators for the project team. Gilb [Gil88]

suggests definitions and measures for each.

Correctness. A program must operate correctly or it provides little value to

its users. Correctness is the degree to which the software performs its re-

quired function. The most common measure for correctness is defects per

KLOC, where a defect is defined as a verified lack of conformance to require-

ments. When considering the overall quality of a software product, defects

are those problems reported by a user of the program after the program has

been released for general use. For quality assessment purposes, defects are

counted over a standard period of time, typically one year.

Maintainability. Software maintenance and support accounts for more ef-

fort than any other software engineering activity. Maintainability is the ease

with which a program can be corrected if an error is encountered, adapted

if its environment changes, or enhanced if the customer desires a change in

requirements. There is no way to measure maintainability directly; there-

fore, you must use indirect measures. A simple time-oriented metric is

mean-time-to-change (MTTC), the time it takes to analyze the change

request, design an appropriate modification, implement the change, test it,

and distribute the change to all users. On average, programs that are main-

tainable will have a lower MTTC (for equivalent types of changes) than

programs that are not maintainable.

Integrity. Software integrity has become increasingly important in the age

of cyber terrorists and hackers. This attribute measures a system’s ability

to withstand attacks (both accidental and intentional) to its security.

Attacks can be made on all three components of software: programs, data,

and documention.

To measure integrity, two additional attributes must be defined: threat and

security. Threat is the probability (which can be estimated or derived from

empirical evidence) that an attack of a specific type will occur within a given

time. Security is the probability (which can be estimated or derived from

680 PART FOUR MANAGING SOFTWARE PROJECTS

8 A detailed discussion of the factors that influence software quality and the metrics that can be used
to assess software quality has been presented in Chapter 23.

WebRef
An excellent source
of information on
software quality and
related topics
(including metrics) can
be found at www
.qualityworld.com.

pre75977_ch25.qxd 11/27/08 6:25 PM Page 680

empirical evidence) that the attack of a specific type will be repelled. The

integrity of a system can then be defined as:

Integrity � � [1 � (threat � (1 � security))]

For example, if threat (the probability that an attack will occur) is 0.25 and

security (the likelihood of repelling an attack) is 0.95, the integrity of the sys-

tem is 0.99 (very high). If, on the other hand, the threat probability is 0.50 and

the likelihood of repelling an attack is only 0.25, the integrity of the system is

0.63 (unacceptably low).

Usability. If a program is not easy to use, it is often doomed to failure, even if

the functions that it performs are valuable. Usability is an attempt to quantify

ease of use and can be measured in terms of the characteristics presented in

Chapter 11.

The four factors just described are only a sampling of those that have been proposed

as measures for software quality. Chapter 23 considers this topic in additional detail.

25.3.2 Defect Removal Efficiency

A quality metric that provides benefit at both the project and process level is defect

removal efficiency (DRE). In essence, DRE is a measure of the filtering ability of qual-

ity assurance and control actions as they are applied throughout all process frame-

work activities.

When considered for a project as a whole, DRE is defined in the following manner:

DRE �

where E is the number of errors found before delivery of the software to the end user

and D is the number of defects found after delivery.

The ideal value for DRE is 1. That is, no defects are found in the software. Realisti-

cally, D will be greater than 0, but the value of DRE can still approach 1 as E increases

for a given value of D. In fact, as E increases, it is likely that the final value of D will

decrease (errors are filtered out before they become defects). If used as a metric that

provides an indicator of the filtering ability of quality control and assurance activities,

DRE encourages a software project team to institute techniques for finding as many

errors as possible before delivery.

DRE can also be used within the project to assess a team’s ability to find errors

before they are passed to the next framework activity or software engineering action.

For example, requirements analysis produces a requirements model that can be

reviewed to find and correct errors. Those errors that are not found during the review

of the requirements model are passed on to design (where they may or may not be

found). When used in this context, we redefine DRE as

DREi �
Ei

Ei � Ei�1

E
E � D

CHAPTER 25 PROCESS AND PROJECT METRICS 681

If DRE is low as you
move through analysis
and design, spend
some time improving
the way you conduct
technical reviews.

pre75977_ch25.qxd 11/27/08 6:25 PM Page 681

where Ei is the number of errors found during software engineering action i and Ei+ 1

is the number of errors found during software engineering action i + 1 that are trace-

able to errors that were not discovered in software engineering action i.

A quality objective for a software team (or an individual software engineer) is to

achieve DREi that approaches 1. That is, errors should be filtered out before they are

passed on to the next activity or action.

682 PART FOUR MANAGING SOFTWARE PROJECTS

The scene: Doug Miller’s office two
days after initial meeting on software metrics.

The players: Doug Miller (manager of the SafeHome
software engineering team) and Vinod Raman and Jamie
Lazar, members of the product software engineering team.

The conversation:

Doug: You both had a chance to learn a little about
process and project metrics?

Vinod and Jamie: [Both nod.]

Doug: It’s always a good idea to establish goals when
you adopt any metrics. What are yours?

Vinod: Our metrics should focus on quality. In fact, our
overall goal is to keep the number of errors we pass on
from one software engineering activity to the next to an
absolute minimum.

Doug: And be very sure you keep the number of defects
released with the product to as close to zero as possible.

Vinod (nodding): Of course.

Jamie: I like DRE as a metric, and I think we can use it
for the entire project, but also as we move from one

framework activity to the next. It’ll encourage us to find
errors at each step.

Vinod: I’d also like to collect the number of hours we
spend on reviews.

Jamie: And the overall effort we spend on each
software engineering task.

Doug: You can compute a review-to-development
ratio . . . might be interesting.

Jamie: I’d like to track some use-case data as well. Like
the amount of effort required to develop a use case, the
amount of effort required to build software to implement
a use case, and . . .

Doug (smiling): I thought we were going to keep this
simple.

Vinod: We should, but once you get into this metrics
stuff, there’s a lot of interesting things to look at.

Doug: I agree, but let’s walk before we run and stick to
our goal. Limit data to be collected to five or six items,
and we’re ready to go.

SAFEHOME

Establishing a Metrics Approach

25.4 INTEGRATING METRICS WITHIN THE SOFTWARE PROCESS

The majority of software developers still do not measure, and sadly, most have little

desire to begin. As I noted earlier in this chapter, the problem is cultural. Attempting

to collect measures where none have been collected in the past often precipitates

resistance. “Why do we need to do this?” asks a harried project manager. “I don’t see

the point,” complains an overworked practitioner.

In this section, I consider some arguments for software metrics and present an

approach for instituting a metrics collection program within a software engineering

organization. But before I begin, some words of wisdom (now more than two

decades old) are suggested by Grady and Caswell [Gra87]:

pre75977_ch25.qxd 11/27/08 6:25 PM Page 682

Some of the things we describe here will sound quite easy. Realistically, though, estab-

lishing a successful company-wide software metrics program is hard work. When we say

that you must wait at least three years before broad organizational trends are available,

you get some idea of the scope of such an effort.

The caveat suggested by the authors is well worth heeding, but the benefits of meas-

urement are so compelling that the hard work is worth it.

25.4.1 Arguments for Software Metrics

Why is it so important to measure the process of software engineering and the prod-

uct (software) that it produces? The answer is relatively obvious. If you do not mea-

sure, there no real way of determining whether you are improving. And if you are not

improving, you are lost.

By requesting and evaluating productivity and quality measures, a software team

(and its management) can establish meaningful goals for improvement of the soft-

ware process. Early in this book, I noted that software is a strategic business issue

for many companies. If the process through which it is developed can be improved, a

direct impact on the bottom line can result. But to establish goals for improvement,

the current status of software development must be understood. Hence, measurement

is used to establish a process baseline from which improvements can be assessed.

The day-to-day rigors of software project work leave little time for strategic think-

ing. Software project managers are concerned with more mundane (but equally impor-

tant) issues: developing meaningful project estimates, producing higher-quality

systems, getting product out the door on time. By using measurement to establish a

project baseline, each of these issues becomes more manageable. I have already

noted that the baseline serves as a basis for estimation. Additionally, the collection of

quality metrics enables an organization to “tune” its software process to remove the

“vital few” causes of defects that have the greatest impact on software development.9

25.4.2 Establishing a Baseline

By establishing a metrics baseline, benefits can be obtained at the process, project,

and product (technical) levels. Yet the information that is collected need not be fun-

damentally different. The same metrics can serve many masters. The metrics base-

line consists of data collected from past software development projects and can be

as simple as the table presented in Figure 25.2 or as complex as a comprehensive

database containing dozens of project measures and the metrics derived from them.

To be an effective aid in process improvement and/or cost and effort estimation,

baseline data must have the following attributes: (1) data must be reasonably

accurate—“guestimates” about past projects are to be avoided, (2) data should be

collected for as many projects as possible, (3) measures must be consistent (for ex-

ample, a line of code must be interpreted consistently across all projects for which

CHAPTER 25 PROCESS AND PROJECT METRICS 683

uote:

“We manage
things by the
numbers in many
aspects of our lives
. . . These numbers
give us insight and
help steer our
actions.”

Michael Mah
and
Larry Putnam

9 These ideas have been formalized into an approach called statistical software quality assurance.

What is a
metrics

baseline and what
benefit does it
provide to a
software
engineer?

?

pre75977_ch25.qxd 11/27/08 6:25 PM Page 683

data are collected), (4) applications should be similar to work that is to be

estimated—it makes little sense to use a baseline for batch information systems

work to estimate a real-time, embedded application.

25.4.3 Metrics Collection, Computation, and Evaluation

The process for establishing a metrics baseline is illustrated in Figure 25.3. Ideally,

data needed to establish a baseline have been collected in an ongoing manner.

Sadly, this is rarely the case. Therefore, data collection requires an historical inves-

tigation of past projects to reconstruct required data. Once measures have been col-

lected (unquestionably the most difficult step), metrics computation is possible.

Depending on the breadth of measures collected, metrics can span a broad range

of application-oriented metrics (e.g., LOC, FP, object-oriented, WebApp) as well as

other quality- and project-oriented metrics. Finally, metrics must be evaluated and

applied during estimation, technical work, project control, and process improve-

ment. Metrics evaluation focuses on the underlying reasons for the results obtained

and produces a set of indicators that guide the project or process.

25.5 METRICS FOR SMALL ORGANIZATIONS

The vast majority of software development organizations have fewer than 20 soft-

ware people. It is unreasonable, and in most cases unrealistic, to expect that such

organizations will develop comprehensive software metrics programs. However, it

is reasonable to suggest that software organizations of all sizes measure and then

use the resultant metrics to help improve their local software process and the qual-

ity and timeliness of the products they produce.

A commonsense approach to the implementation of any software process-related

activity is: keep it simple, customize to meet local needs, and be sure it adds value.

684 PART FOUR MANAGING SOFTWARE PROJECTS

Software
engineering

process

Software
project

Software
product

Data
collection

Metrics
computation

Metrics
evaluation

Measures

Metrics

Indicators

FIGURE 25.3

Software
metrics collec-
tion process

If you’re just starting to
collect metrics data,
remember to keep it
simple. If you bury
yourself with data, your
metrics effort will fail.

Baseline metrics data
should be collected
from a large
representative
sampling of past
software projects.

pre75977_ch25.qxd 11/27/08 6:25 PM Page 684

In the paragraphs that follow, I examine how these guidelines relate to metrics for

small shops.10

“Keep it simple” is a guideline that works reasonably well in many activities. But how

should you derive a “simple” set of software metrics that still provides value, and how

can you be sure that these simple metrics will meet the specific needs of your software

organization? You can begin by focusing not on measurement but rather on results.

The software group is polled to define a single objective that requires improvement. For

example, “reduce the time to evaluate and implement change requests.” A small

organization might select the following set of easily collected measures:

• Time (hours or days) elapsed from the time a request is made until evaluation

is complete, tqueue.

• Effort (person-hours) to perform the evaluation, Weval.

• Time (hours or days) elapsed from completion of evaluation to assignment of

change order to personnel, teval.

• Effort (person-hours) required to make the change, Wchange.

• Time required (hours or days) to make the change, tchange.

• Errors uncovered during work to make change, Echange.

• Defects uncovered after change is released to the customer base, Dchange.

Once these measures have been collected for a number of change requests, it is

possible to compute the total elapsed time from change request to implementation

of the change and the percentage of elapsed time absorbed by initial queuing, eval-

uation and change assignment, and change implementation. Similarly, the percent-

age of effort required for evaluation and implementation can be determined. These

metrics can be assessed in the context of quality data, Echange and Dchange. The per-

centages provide insight into where the change request process slows down and

may lead to process improvement steps to reduce tqueue, Weval, teval, Wchange, and/or

Echange. In addition, the defect removal efficiency can be computed as

DRE �

DRE can be compared to elapsed time and total effort to determine the impact of

quality assurance activities on the time and effort required to make a change.

For small groups, the cost of collecting measures and computing metrics ranges

from 3 to 8 percent of project budget during the learning phase and then drops to

less than 1 percent of project budget after software engineers and project managers

have become familiar with the metrics program [Gra99]. These costs can show a

Echange

Echange � Dchange

CHAPTER 25 PROCESS AND PROJECT METRICS 685

10 This discussion is equally relevant to software teams that have adopted an agile software develop-
ment process (Chapter 3).

How should
we derive a

set of “simple”
software metrics.

?

pre75977_ch25.qxd 11/27/08 6:25 PM Page 685

substantial return on investment if the insights derived from metrics data lead to

meaningful process improvement for the software organization.

25.6 ESTABLISHING A SOFTWARE METRICS PROGRAM

The Software Engineering Institute has developed a comprehensive guidebook

[Par96b] for establishing a “goal-driven” software metrics program. The guidebook

suggests the following steps:

1. Identify your business goals.

2. Identify what you want to know or learn.

3. Identify your subgoals.

4. Identify the entities and attributes related to your subgoals.

5. Formalize your measurement goals.

6. Identify quantifiable questions and the related indicators that you will use to

help you achieve your measurement goals.

7. Identify the data elements that you will collect to construct the indicators that

help answer your questions.

8. Define the measures to be used, and make these definitions operational.

9. Identify the actions that you will take to implement the measures.

10. Prepare a plan for implementing the measures.

A detailed discussion of these steps is best left to the SEI’s guidebook. However, a

brief overview of key points is worthwhile.

Because software supports business functions, differentiates computer-based

systems or products, or acts as a product in itself, goals defined for the business can

almost always be traced downward to specific goals at the software engineering

level. For example, consider the SafeHome product. Working as a team, software

engineering and business managers develop a list of prioritized business goals:

1. Improve our customers’ satisfaction with our products.

2. Make our products easier to use.

3. Reduce the time it takes us to get a new product to market.

4. Make support for our products easier.

5. Improve our overall profitability.

The software organization examines each business goal and asks: “What activi-

ties do we manage, execute, or support and what do we want to improve within

these activities?” To answer these questions the SEI recommends the creation of an

“entity-question list” in which all things (entities) within the software process that

are managed or influenced by the software organization are noted. Examples of

686 PART FOUR MANAGING SOFTWARE PROJECTS

WebRef
A Guidebook for Goal
Driven Software
Measurement can be
downloaded from
www.sei.cmu.edu.

The software metrics
you choose should be
driven by the business
and technical goals
you wish to
accomplish.

pre75977_ch25.qxd 11/27/08 6:25 PM Page 686

http://www.sei.cmu.edu

entities include development resources, work products, source code, test cases,

change requests, software engineering tasks, and schedules. For each entity listed,

software people develop a set of questions that assess quantitative characteristics

of the entity (e.g., size, cost, time to develop). The questions derived as a conse-

quence of the creation of an entity-question list lead to the derivation of a set of sub-

goals that relate directly to the entities created and the activities performed as part

of the software process.

Consider the fourth goal: “Make support for our products easier.” The following

list of questions might be derived for this goal [Par96b]:

• Do customer change requests contain the information we require to

adequately evaluate the change and then implement it in a timely manner?

• How large is the change request backlog?

• Is our response time for fixing bugs acceptable based on customer need?

• Is our change control process (Chapter 22) followed?

• Are high-priority changes implemented in a timely manner?

Based on these questions, the software organization can derive the following sub-

goal: Improve the performance of the change management process. The software

process entities and attributes that are relevant to the subgoal are identified, and the

measurement goals associated with them are delineated.

The SEI [Par96b] provides detailed guidance for steps 6 through 10 of its goal-driven

measurement approach. In essence, you refine measurement goals into questions that

are further refined into entities and attributes that are then refined into metrics.

CHAPTER 25 PROCESS AND PROJECT METRICS 687

Establishing a Metrics Program
The Software Productivity Center
(www.spc.ca) suggests an eight-step

approach for establishing a metrics program within a
software organization that can be used as an alternative
to the SEI approach described in Section 25.6. Their
approach is summarized in this sidebar.

1. Understand the existing software process.
Framework activities (Chapter 2) are identified.
Input information for each activity is described.
Tasks associated with each activity are defined.
Quality assurance functions are noted.
Work products that are produced are listed.

2. Define the goals to be achieved by establishing a
metrics program

Examples: improve accuracy of estimation,
improve product quality.

3. Identify metrics required to achieve goals.
Questions to be answered are defined; for
example, How many errors found in one
framework activity can be traced to the
preceding framework activity?

Create measures and metrics that will help answer
these questions.

4. Identify the measures and metrics to be collected and
computed.

5. Establish a measurement collection process by
answering these questions:

What is the source of the measurements?
Can tools be used to collect the data?
Who is responsible for collecting the data?
When are data collected and recorded?
How are data stored?

INFO

pre75977_ch25.qxd 11/27/08 6:25 PM Page 687

http://www.spc.ca

25.7 SUMMARY

Measurement enables managers and practitioners to improve the software process;

assist in the planning, tracking, and control of software projects; and assess the qual-

ity of the product (software) that is produced. Measures of specific attributes of the

process, project, and product are used to compute software metrics. These metrics

can be analyzed to provide indicators that guide management and technical actions.

Process metrics enable an organization to take a strategic view by providing

insight into the effectiveness of a software process. Project metrics are tactical. They

enable a project manager to adapt project workflow and technical approach in a

real-time manner.

Both size- and function-oriented metrics are used throughout the industry. Size-

oriented metrics use the line of code as a normalizing factor for other measures such

as person-months or defects. The function point is derived from measures of the in-

formation domain and a subjective assessment of problem complexity. In addition,

object-oriented metrics and Web application metrics can be used.

Software quality metrics, like productivity metrics, focus on the process, the proj-

ect, and the product. By developing and analyzing a metrics baseline for quality, an

organization can correct those areas of the software process that are the cause of

software defects.

Measurement results in cultural change. Data collection, metrics computation,

and metrics analysis are the three steps that must be implemented to begin a met-

rics program. In general, a goal-driven approach helps an organization focus on the

right metrics for its business. By creating a metrics baseline—a database containing

process and product measurements—software engineers and their managers can

gain better insight into the work that they do and the product that they produce.

PROBLEMS AND POINTS TO PONDER

25.1. Describe the difference between process and project metrics in your own words.

25.2. Why should some software metrics be kept “private”? Provide examples of three metrics
that should be private. Provide examples of three metrics that should be public.

688 PART FOUR MANAGING SOFTWARE PROJECTS

What validation mechanisms are used to ensure
that the data are correct?

6. Acquire appropriate tools to assist in collection and
assessment.

7. Establish a metrics database.
The relative sophistication of the database is
established.

Use of related tools (e.g., an SCM repository,
Chapter 26) is explored.

Existing database products are evaluated.

8. Define appropriate feedback mechanisms.
Who requires ongoing metrics information?
How is the information to be delivered?
What is the format of the information?

A considerably more detailed description of these eight steps
can be downloaded from www.spc.ca/resources/
metrics/.

pre75977_ch25.qxd 11/27/08 6:25 PM Page 688

http://www.spc.ca/resources/

25.3. What is an indirect measure, and why are such measures common in software metrics
work?

25.4. Grady suggests an etiquette for software metrics. Can you add three more rules to those
noted in Section 25.1.1?

25.5. Team A found 342 errors during the software engineering process prior to release. Team B
found 184 errors. What additional measures would have to be made for projects A and B to
determine which of the teams eliminated errors more efficiently? What metrics would you pro-
pose to help in making the determination? What historical data might be useful?

25.6. Present an argument against lines of code as a measure for software productivity. Will
your case hold up when dozens or hundreds of projects are considered?

25.7. Compute the function point value for a project with the following information domain
characteristics:

Number of user inputs: 32
Number of user outputs: 60
Number of user inquiries: 24
Number of files: 8
Number of external interfaces: 2

Assume that all complexity adjustment values are average. Use the algorithm noted in Chapter 23.

25.8. Using the table presented in Section 25.2.3, make an argument against the use of as-
sembler language based on the functionality delivered per statement of code. Again referring to
the table, discuss why C++ would present a better alternative than C.

25.9. The software used to control a photocopier requires 32,000 lines of C and 4,200 lines of
Smalltalk. Estimate the number of function points for the software inside the copier.

25.10. A Web engineering team has built an e-commerce WebApp that contains 145 individ-
ual pages. Of these pages, 65 are dynamic; that is, they are internally generated based on end-
user input. What is the customization index for this application?

25.11. A WebApp and its support environment have not been fully fortified against attack. Web
engineers estimate that the likelihood of repelling an attack is only 30 percent. The system does
not contain sensitive or controversial information, so the threat probability is 25 percent. What
is the integrity of the WebApp?

25.12. At the conclusion of a project, it has been determined that 30 errors were found dur-
ing the modeling activity and 12 errors were found during the construction activity that were
traceable to errors that were not discovered in the modeling activity. What is the DRE for the
modeling activity?

25.13. A software team delivers a software increment to end users. The users uncover eight
defects during the first month of use. Prior to delivery, the software team found 242 errors dur-
ing formal technical reviews and all testing tasks. What is the overall DRE for the project after
one month’s usage?

FURTHER READINGS AND INFORMATION SOURCES

Software process improvement (SPI) has received a significant amount of attention over the past
two decades. Since measurement and software metrics are key to successfully improving the
software process, many books on SPI also discuss metrics. Rico (ROI of Software Process
Improvement, J. Ross Publishing, 2004) provides an in-depth discussion of SPI and the metrics
that can help an organization achieve it. Ebert and his colleagues (Best Practices in Software Mea-
surement, Springer, 2004) address the use of measurement within the context of ISO and CMMI
standards. Kan (Metrics and Models in Software Quality Engineering, 2d ed., Addison-Wesley,
2002) presents a collection of relevant metrics.

CHAPTER 25 PROCESS AND PROJECT METRICS 689

pre75977_ch25.qxd 11/27/08 6:25 PM Page 689

Ebert and Dumke (Software Measurement, Springer, 2007) provide a useful treatment of
measurement and metrics as they should be applied for IT projects. McGarry and his colleagues
(Practical Software Measurement, Addison-Wesley, 2001) present in-depth advice for assessing
the software process. A worthwhile collection of papers has been edited by Haug and his col-
leagues (Software Process Improvement: Metrics, Measurement, and Process Modeling, Springer-
Verlag, 2001). Florac and Carlton (Measuring the Software Process, Addison-Wesley, 1999) and
Fenton and Pfleeger (Software Metrics: A Rigorous and Practical Approach, Revised, Brooks/Cole
Publishers, 1998) discuss how software metrics can be used to provide the indicators necessary
to improve the software process.

Laird and Brennan (Software Measurement and Estimation, Wiley-IEEE Computer Society
Press, 2006) and Goodman (Software Metrics: Best Practices for Successful IT Management,
Rothstein Associates, Inc., 2004) discuss the use of software metrics for project management
and estimation. Putnam and Myers (Five Core Metrics, Dorset House, 2003) draw on a database
of more the 6000 software projects to demonstrate how five core metrics—time, effort, size, re-
liability, and process productivity—can be used to control software projects. Maxwell (Applied
Statistics for Software Managers, Prentice-Hall, 2003) presents techniques for analyzing software
project data. Munson (Software Engineering Measurement, Auerbach, 2003) discusses a broad ar-
ray of software engineering measurement issues. Jones (Software Assessments, Benchmarks and
Best Practices, Addison-Wesley, 2000) describes both quantitative measurement and qualitative
factors that help an organization assess its software process and practices.

Function point measurement has become a widely used technique in many areas of software
engineering work. Parthasarathy (Practical Software Estimation: Function Point Methods for
Insourced and Outsourced Projects, Addison-Wesley, 2007) provide a comprehensive guide.
Garmus and Herron (Function Point Analysis: Measurement Practices for Successful Software
Projects, Addison-Wesley, 2000) discuss process metrics with an emphasis on function point
analysis.

Relatively little has been published on metrics for Web engineering work, However, Kaushik
(Web Analytics: An Hour a Day, Sybex, 2007), Stern (Web Metrics: Proven Methods for Measuring
Web Site Success, Wiley, 2002), Inan and Kean (Measuring the Success of Your Website, Longman,
2002), and Nobles and Grady (Web Site Analysis and Reporting, Premier Press, 2001) address Web
metrics from a business and marketing perspective.

The latest research in the metrics area is summarized by the IEEE (Symposium on Software
Metrics, published yearly). A wide variety of information sources on the process and project
metrics is available on the Internet. An up-to-date list of World Wide Web references relevant to
process and project metrics can be found at the SEPA website: www.mhhe.com/engcs/
compsci/pressman/professional/olc/ser.htm.

690 PART FOUR MANAGING SOFTWARE PROJECTS

pre75977_ch25.qxd 11/27/08 6:25 PM Page 690

http://www.mhhe.com/engcs/

Software project management begins with a set of activities that are collec-
tively called project planning. Before the project can begin, the software
team should estimate the work to be done, the resources that will be

required, and the time that will elapse from start to finish. Once these activities
are accomplished, the software team should establish a project schedule that de-
fines software engineering tasks and milestones, identifies who is responsible for
conducting each task, and specifies the intertask dependencies that may have a
strong bearing on progress.

In an excellent guide to “software project survival,” Steve McConnell [McC98]
presents a real-world view of project planning:

Many technical workers would rather do technical work than spend time planning.

Many technical managers do not have sufficient training in technical management to

691

C H A P T E R

26ESTIMATION FOR
SOFTWARE PROJECTS

What is it? A real need for software
has been established; stakeholders
are onboard, software engineers are
ready to start, and the project is

about to begin. But how do you proceed? Soft-
ware project planning encompasses five major
activities—estimation, scheduling, risk analysis,
quality management planning, and change
management planning. In the context of this
chapter, we consider only estimation—your
attempt to determine how much money, effort,
resources, and time it will take to build a specific
software-based system or product.

Who does it? Software project managers—using
information solicited from project stakeholders
and software metrics data collected from past
projects.

Why is it important? Would you build a house
without knowing how much you were about to
spend, the tasks that you need to perform, and
the time line for the work to be conducted? Of
course not, and since most computer-based
systems and products cost considerably more
to build than a large house, it would seem

Q U I C K
L O O K

reasonable to develop an estimate before you
start creating the software.

What are the steps? Estimation begins with a
description of the scope of the problem. The
problem is then decomposed into a set of smaller
problems, and each of these is estimated using
historical data and experience as guides. Prob-
lem complexity and risk are considered before a
final estimate is made.

What is the work product? A simple table delin-
eating the tasks to be performed, the functions to
be implemented, and the cost, effort, and time
involved for each is generated.

How do I ensure that I’ve done it right? That’s
hard, because you won’t really know until the
project has been completed. However, if you
have experience and follow a systematic
approach, generate estimates using solid histor-
ical data, create estimation data points using at
least two different methods, establish a realistic
schedule, and continually adapt it as the project
moves forward, you can feel confident that
you’ve given it your best shot.

K E Y
C O N C E P T S

estimation 692
agile 713
empirical
models 708
FP-based 702
object-oriented
projects 712
problem-
based699
process-
based703
reconciling . . .707

pre75977_ch26.qxd 11/27/08 6:26 PM Page 691

692 PART FOUR MANAGING SOFTWARE PROJECTS

feel confident that their planning will improve a project’s outcome. Since neither party

wants to do planning, it often doesn’t get done.

But failure to plan is one of the most critical mistakes a project can make . . . effective

planning is needed to resolve problems upstream [early in the project] at low cost, rather

than downstream [late in the project] at high cost. The average project spends 80 percent

of its time on rework—fixing mistakes that were made earlier in the project.

McConnell argues that every team can find the time to plan (and to adapt the plan

throughout the project) simply by taking a small percentage of the time that would

have been spent on rework that occurs because planning was not conducted.

26.1 OBSERVATIONS ON ESTIMATION

Planning requires you to make an initial commitment, even though it’s likely that this

“commitment” will be proven wrong. Whenever estimates are made, you look into

the future and accept some degree of uncertainty as a matter of course. To quote

Frederick Brooks [Bro95]:

. . . our techniques of estimating are poorly developed. More seriously, they reflect an

unvoiced assumption that is quite untrue, i.e., that all will go well. . . . because we are

uncertain of our estimates, software managers often lack the courteous stubbornness to

make people wait for a good product.

Although estimating is as much art as it is science, this important action need not be

conducted in a haphazard manner. Useful techniques for time and effort estimation

do exist. Process and project metrics can provide historical perspective and power-

ful input for the generation of quantitative estimates. Past experience (of all people

involved) can aid immeasurably as estimates are developed and reviewed. Because

estimation lays a foundation for all other project planning actions, and project plan-

ning provides the road map for successful software engineering, we would be ill

advised to embark without it.

Estimation of resources, cost, and schedule for a software engineering effort

requires experience, access to good historical information (metrics), and the courage

to commit to quantitative predictions when qualitative information is all that exists.

Estimation carries inherent risk,1 and this risk leads to uncertainty.

Project complexity has a strong effect on the uncertainty inherent in planning.

Complexity, however, is a relative measure that is affected by familiarity with past

effort. The first-time developer of a sophisticated e-commerce application might con-

sider it to be exceedingly complex. However, a Web engineering team developing its

tenth e-commerce WebApp would consider such work run-of-the-mill. A number of

quantitative software complexity measures have been proposed [Zus97]. Such mea-

sures are applied at the design or code level and are therefore difficult to use during

uote:

“Good estimating
approaches and
solid historical data
offer the best hope
that reality will win
out over impossible
demands.”

Caper Jones

1 Systematic techniques for risk analysis are presented in Chapter 28.

use cases 705
WebApps 714

feasibility694
project
planning 693
software
equation711
software
scope 694

pre75977_ch26.qxd 11/27/08 6:26 PM Page 692

software planning (before a design and code exist). However, other, more subjective

assessments of complexity (e.g., function point complexity adjustment factors

described in Chapter 23) can be established early in the planning process.

Project size is another important factor that can affect the accuracy and efficacy of

estimates. As size increases, the interdependency among various elements of the

software grows rapidly.2 Problem decomposition, an important approach to estimat-

ing, becomes more difficult because the refinement of problem elements may still be

formidable. To paraphrase Murphy’s law: “What can go wrong will go wrong”—and

if there are more things that can fail, more things will fail.

The degree of structural uncertainty also has an effect on estimation risk. In this

context, structure refers to the degree to which requirements have been solidified,

the ease with which functions can be compartmentalized, and the hierarchical

nature of the information that must be processed.

The availability of historical information has a strong influence on estimation risk.

By looking back, you can emulate things that worked and improve areas where

problems arose. When comprehensive software metrics (Chapter 25) are available

for past projects, estimates can be made with greater assurance, schedules can

be established to avoid past difficulties, and overall risk is reduced.

Estimation risk is measured by the degree of uncertainty in the quantitative

estimates established for resources, cost, and schedule. If project scope is poorly

understood or project requirements are subject to change, uncertainty and estimation

risk become dangerously high. As a planner, you and the customer should recognize

that variability in software requirements means instability in cost and schedule.

However, you should not become obsessive about estimation. Modern software

engineering approaches (e.g., evolutionary process models) take an iterative view

of development. In such approaches, it is possible—although not always politically

acceptable—to revisit the estimate (as more information is known) and revise it

when the customer makes changes to requirements.

26.2 THE PROJECT PLANNING PROCESS

The objective of software project planning is to provide a framework that enables the

manager to make reasonable estimates of resources, cost, and schedule. In addition,

estimates should attempt to define best-case and worst-case scenarios so that proj-

ect outcomes can be bounded. Although there is an inherent degree of uncertainty,

the software team embarks on a plan that has been established as a consequence

of these tasks. Therefore, the plan must be adapted and updated as the project pro-

ceeds. In the following sections, each of the actions associated with software project

planning is discussed.

CHAPTER 26 ESTIMATION FOR SOFTWARE PROJECTS 693

uote:

“It is the mark of
an instructed mind
to rest satisfied
with the degree of
precision that the
nature of the sub-
ject admits, and not
to seek exactness
when only an
approximation
of the truth is
possible.”

Aristotle

Project complexity,
project size, and the
degree of structural
uncertainty all affect
the reliability of
estimates.

2 Size often increases due to “scope creep” that occurs when problem requirements change. In-
creases in project size can have a geometric impact on project cost and schedule (Michael Mah,
personal communication).

The more you know,
the better you
estimate. Therefore,
update your estimates
as the project
progresses.

pre75977_ch26.qxd 11/27/08 6:26 PM Page 693

694 PART FOUR MANAGING SOFTWARE PROJECTS

Task Set for Project Planning
1. Establish project scope.
2. Determine feasibility.

3. Analyze risks (Chapter 28).
4. Define required resources.

a. Determine required human resources.
b. Define reusable software resources.
c. Identify environmental resources.

5. Estimate cost and effort.
a. Decompose the problem.

b. Develop two or more estimates using size, function
points, process tasks, or use cases.

c. Reconcile the estimates.
6. Develop a project schedule (Chapter 27).

a. Establish a meaningful task set.
b. Define a task network.
c. Use scheduling tools to develop a time-line chart.
d. Define schedule tracking mechanisms.

TASK SET

26.3 SOFTWARE SCOPE AND FEASIB IL ITY

Software scope describes the functions and features that are to be delivered to end

users; the data that are input and output; the “content” that is presented to users as

a consequence of using the software; and the performance, constraints, interfaces,

and reliability that bound the system. Scope is defined using one of two techniques:

1. A narrative description of software scope is developed after communication

with all stakeholders.

2. A set of use cases3 is developed by end users.

Functions described in the statement of scope (or within the use cases) are evaluated

and in some cases refined to provide more detail prior to the beginning of estimation.

Because both cost and schedule estimates are functionally oriented, some degree of

decomposition is often useful. Performance considerations encompass processing

and response time requirements. Constraints identify limits placed on the software by

external hardware, available memory, or other existing systems.

Once scope has been identified (with the concurrence of the customer), it is rea-

sonable to ask: “Can we build software to meet this scope? Is the project feasible?”

All too often, software engineers rush past these questions (or are pushed past

them by impatient managers or other stakeholders), only to become mired in a

project that is doomed from the onset. Putnam and Myers [Put97a] address this

issue when they write:

[N]ot everything imaginable is feasible, not even in software, evanescent as it may appear

to outsiders. On the contrary, software feasibility has four solid dimensions: Technology—

Is a project technically feasible? Is it within the state of the art? Can defects be reduced to

a level matching the application’s needs? Finance—Is it financially feasible? Can devel-

opment be completed at a cost the software organization, its client, or the market can

3 Use cases have been discussed in detail throughout Part 2 of this book. A use case is a scenario-
based description of the user’s interaction with the software from the user’s point of view.

Project feasibility is
important, but a
consideration of
business need is even
more important. It
does no good to build
a high-tech system or
product that no one
wants.

pre75977_ch26.qxd 11/27/08 6:26 PM Page 694

afford? Time—Will the project’s time-to-market beat the competition? Resources—Does

the organization have the resources needed to succeed?

Putnam and Myers correctly suggest that scoping is not enough. Once scope is un-

derstood, you must work to determine if it can be done within the dimensions just

noted. This is a crucial, although often overlooked, part of the estimation process.

26.4 RESOURCES

The second planning task is estimation of the resources required to accomplish the

software development effort. Figure 26.1 depicts the three major categories of soft-

ware engineering resources—people, reusable software components, and the devel-

opment environment (hardware and software tools). Each resource is specified with

four characteristics: description of the resource, a statement of availability, time

when the resource will be required, and duration of time that the resource will be

applied. The last two characteristics can be viewed as a time window. Availability of

the resource for a specified window must be established at the earliest practical time.

26.4.1 Human Resources

The planner begins by evaluating software scope and selecting the skills required to

complete development. Both organizational position (e.g., manager, senior software

engineer) and specialty (e.g., telecommunications, database, client-server) are

CHAPTER 26 ESTIMATION FOR SOFTWARE PROJECTS 695

Project

People Environment

Reusable
software

Number

Skills

Location Network
resources

Hardware

Software
tools

COTS
components

New
components

Full-experience
components

Part-experience
components

FIGURE 26.1

Project
resources

pre75977_ch26.qxd 11/27/08 6:26 PM Page 695

specified. For relatively small projects (a few person-months), a single individual may

perform all software engineering tasks, consulting with specialists as required. For

larger projects, the software team may be geographically dispersed across a number

of different locations. Hence, the location of each human resource is specified.

The number of people required for a software project can be determined only after

an estimate of development effort (e.g., person-months) is made. Techniques for

estimating effort are discussed later in this chapter.

26.4.2 Reusable Software Resources

Component-based software engineering (CBSE)4 emphasizes reusability—that is, the

creation and reuse of software building blocks. Such building blocks, often called

components, must be cataloged for easy reference, standardized for easy application,

and validated for easy integration. Bennatan [Ben00] suggests four software

resource categories that should be considered as planning proceeds:

Off-the-shelf components. Existing software that can be acquired from a third

party or from a past project. COTS (commercial off-the-shelf) components are pur-

chased from a third party, are ready for use on the current project, and have been

fully validated.

Full-experience components. Existing specifications, designs, code, or test data

developed for past projects that are similar to the software to be built for the

current project. Members of the current software team have had full experience

in the application area represented by these components. Therefore, modifications

required for full-experience components will be relatively low risk.

Partial-experience components. Existing specifications, designs, code, or test data

developed for past projects that are related to the software to be built for the cur-

rent project but will require substantial modification. Members of the current soft-

ware team have only limited experience in the application area represented by

these components. Therefore, modifications required for partial-experience com-

ponents have a fair degree of risk.

New components. Software components must be built by the software team

specifically for the needs of the current project.

Ironically, reusable software components are often neglected during planning, only

to become a paramount concern later in the software process. It is better to specify

software resource requirements early. In this way technical evaluation of the alter-

natives can be conducted and timely acquisition can occur.

26.4.3 Environmental Resources

The environment that supports a software project, often called the software engi-

neering environment (SEE), incorporates hardware and software. Hardware provides

696 PART FOUR MANAGING SOFTWARE PROJECTS

4 CBSE is considered in Chapter 10.

Never forget that inte-
grating a variety of
reusable components
can be a significant
challenge. Worse, the
integration problem
resurfaces as various
components are
upgraded.

pre75977_ch26.qxd 11/27/08 6:26 PM Page 696

a platform that supports the tools (software) required to produce the work products

that are an outcome of good software engineering practice.5 Because most software

organizations have multiple constituencies that require access to the SEE, you must

prescribe the time window required for hardware and software and verify that these

resources will be available.

When a computer-based system (incorporating specialized hardware and soft-

ware) is to be engineered, the software team may require access to hardware

elements being developed by other engineering teams. For example, software for a

robotic device used within a manufacturing cell may require a specific robot (e.g., a

robotic welder) as part of the validation test step; a software project for advanced

page layout may need a high-speed digital printing system at some point during

development. Each hardware element must be specified as part of planning.

26.5 SOFTWARE PROJECT ESTIMATION

Software cost and effort estimation will never be an exact science. Too many

variables—human, technical, environmental, political—can affect the ultimate cost

of software and effort applied to develop it. However, software project estimation

can be transformed from a black art to a series of systematic steps that provide esti-

mates with acceptable risk. To achieve reliable cost and effort estimates, a number

of options arise:

1. Delay estimation until late in the project (obviously, we can achieve 100 per-

cent accurate estimates after the project is complete!).

2. Base estimates on similar projects that have already been completed.

3. Use relatively simple decomposition techniques to generate project cost and

effort estimates.

4. Use one or more empirical models for software cost and effort estimation.

Unfortunately, the first option, however attractive, is not practical. Cost estimates

must be provided up-front. However, you should recognize that the longer you wait,

the more you know, and the more you know, the less likely you are to make serious

errors in your estimates.

The second option can work reasonably well, if the current project is quite similar

to past efforts and other project influences (e.g., the customer, business conditions,

the software engineering environment, deadlines) are roughly equivalent. Unfortu-

nately, past experience has not always been a good indicator of future results.

The remaining options are viable approaches to software project estimation.

Ideally, the techniques noted for each option should be applied in tandem; each used

as a cross-check for the other. Decomposition techniques take a divide-and-conquer

CHAPTER 26 ESTIMATION FOR SOFTWARE PROJECTS 697

5 Other hardware—the target environment—is the computer on which the software will execute when
it has been released to the end user.

uote:

“In an age of
outsourcing and
increased
competition, the
ability to estimate
more accurately . . .
has emerged as a
critical success
factor for many IT
groups.”

Rob Thomsett

pre75977_ch26.qxd 11/27/08 6:26 PM Page 697

approach to software project estimation. By decomposing a project into major func-

tions and related software engineering activities, cost and effort estimation can be

performed in a stepwise fashion. Empirical estimation models can be used to com-

plement decomposition techniques and offer a potentially valuable estimation

approach in their own right. A model is based on experience (historical data) and

takes the form

d � f (vi)

where d is one of a number of estimated values (e.g., effort, cost, project duration)

and vi are selected independent parameters (e.g., estimated LOC or FP).

Automated estimation tools implement one or more decomposition techniques or

empirical models and provide an attractive option for estimating. In such systems,

the characteristics of the development organization (e.g., experience, environment)

and the software to be developed are described. Cost and effort estimates are derived

from these data.

Each of the viable software cost estimation options is only as good as the histor-

ical data used to seed the estimate. If no historical data exist, costing rests on a very

shaky foundation. In Chapter 25, we examined the characteristics of some of the

software metrics that provide the basis for historical estimation data.

26.6 DECOMPOSIT ION TECHNIQUES

Software project estimation is a form of problem solving, and in most cases, the

problem to be solved (i.e., developing a cost and effort estimate for a software

project) is too complex to be considered in one piece. For this reason, you should

decompose the problem, recharacterizing it as a set of smaller (and hopefully, more

manageable) problems.

In Chapter 24, the decomposition approach was discussed from two different points

of view: decomposition of the problem and decomposition of the process. Estimation

uses one or both forms of partitioning. But before an estimate can be made, you must

understand the scope of the software to be built and generate an estimate of its “size.”

26.6.1 Software Sizing

The accuracy of a software project estimate is predicated on a number of things:

(1) the degree to which you have properly estimated the size of the product to be built;

(2) the ability to translate the size estimate into human effort, calendar time, and dol-

lars (a function of the availability of reliable software metrics from past projects);

(3) the degree to which the project plan reflects the abilities of the software team; and

(4) the stability of product requirements and the environment that supports the soft-

ware engineering effort.

In this section, I consider the software sizing problem. Because a project estimate

is only as good as the estimate of the size of the work to be accomplished, sizing

698 PART FOUR MANAGING SOFTWARE PROJECTS

uote:

“It is very difficult
to make a
vigorous, plausible
and job-risking
defense of an
estimate that is
derived by no
quantitative
method, supported
by little data, and
certified chiefly by
the hunches of the
managers.”

Fred Brooks

The “size” of software
to be built can be
estimated using a direct
measure, LOC, or an
indirect measure, FP.

pre75977_ch26.qxd 11/27/08 6:26 PM Page 698

represents your first major challenge as a planner. In the context of project planning,

size refers to a quantifiable outcome of the software project. If a direct approach is

taken, size can be measured in lines of code (LOC). If an indirect approach is chosen,

size is represented as function points (FP).

Putnam and Myers [Put92] suggest four different approaches to the sizing problem:

• “Fuzzy logic” sizing. This approach uses the approximate reasoning tech-

niques that are the cornerstone of fuzzy logic. To apply this approach, the

planner must identify the type of application, establish its magnitude on a

qualitative scale, and then refine the magnitude within the original range.

• Function point sizing. The planner develops estimates of the information

domain characteristics discussed in Chapter 23.

• Standard component sizing. Software is composed of a number of different

“standard components” that are generic to a particular application area. For

example, the standard components for an information system are subsys-

tems, modules, screens, reports, interactive programs, batch programs, files,

LOC, and object-level instructions. The project planner estimates the number

of occurrences of each standard component and then uses historical project

data to estimate the delivered size per standard component.

• Change sizing. This approach is used when a project encompasses the use of

existing software that must be modified in some way as part of a project. The

planner estimates the number and type (e.g., reuse, adding code, changing

code, deleting code) of modifications that must be accomplished.

Putnam and Myers suggest that the results of each of these sizing approaches be

combined statistically to create a three-point or expected-value estimate. This is

accomplished by developing optimistic (low), most likely, and pessimistic (high) val-

ues for size and combining them using Equation (26.1), described in Section 26.6.2.

26.6.2 Problem-Based Estimation

In Chapter 25, lines of code and function points were described as measures from

which productivity metrics can be computed. LOC and FP data are used in two ways

during software project estimation: (1) as estimation variables to “size” each element

of the software and (2) as baseline metrics collected from past projects and used in

conjunction with estimation variables to develop cost and effort projections.

LOC and FP estimation are distinct estimation techniques. Yet both have a num-

ber of characteristics in common. You begin with a bounded statement of software

scope and from this statement attempt to decompose the statement of scope into

problem functions that can each be estimated individually. LOC or FP (the estima-

tion variable) is then estimated for each function. Alternatively, you may choose

another component for sizing, such as classes or objects, changes, or business

processes affected.

CHAPTER 26 ESTIMATION FOR SOFTWARE PROJECTS 699

How do we
size the

software that
we’re planning
to build?

?

What do
LOC- and

FP-based
estimation have
in common?

?

pre75977_ch26.qxd 11/27/08 6:26 PM Page 699

Baseline productivity metrics (e.g., LOC/pm or FP/pm6) are then applied to the

appropriate estimation variable, and cost or effort for the function is derived. Func-

tion estimates are combined to produce an overall estimate for the entire project.

It is important to note, however, that there is often substantial scatter in produc-

tivity metrics for an organization, making the use of a single-baseline productivity

metric suspect. In general, LOC/pm or FP/pm averages should be computed by proj-

ect domain. That is, projects should be grouped by team size, application area, com-

plexity, and other relevant parameters. Local domain averages should then be

computed. When a new project is estimated, it should first be allocated to a domain,

and then the appropriate domain average for past productivity should be used in

generating the estimate.

The LOC and FP estimation techniques differ in the level of detail required for de-

composition and the target of the partitioning. When LOC is used as the estimation

variable, decomposition is absolutely essential and is often taken to considerable

levels of detail. The greater the degree of partitioning, the more likely reasonably ac-

curate estimates of LOC can be developed.

For FP estimates, decomposition works differently. Rather than focusing on func-

tion, each of the information domain characteristics—inputs, outputs, data files, in-

quiries, and external interfaces—as well as the 14 complexity adjustment values

discussed in Chapter 23 are estimated. The resultant estimates can then be used to

derive an FP value that can be tied to past data and used to generate an estimate.

Regardless of the estimation variable that is used, you should begin by estimat-

ing a range of values for each function or information domain value. Using histor-

ical data or (when all else fails) intuition, estimate an optimistic, most likely, and

pessimistic size value for each function or count for each information domain

value. An implicit indication of the degree of uncertainty is provided when a range

of values is specified.

A three-point or expected value can then be computed. The expected value for the

estimation variable (size) S can be computed as a weighted average of the optimistic

(sopt), most likely (sm), and pessimistic (spess) estimates. For example,

S � (26.1)

gives heaviest credence to the “most likely” estimate and follows a beta probability

distribution. We assume that there is a very small probability the actual size result

will fall outside the optimistic or pessimistic values.

Once the expected value for the estimation variable has been determined, histor-

ical LOC or FP productivity data are applied. Are the estimates correct? The only

reasonable answer to this question is: “You can’t be sure.” Any estimation technique,

no matter how sophisticated, must be cross-checked with another approach. Even

then, common sense and experience must prevail.

sopt � 4sm � spess

6

700 PART FOUR MANAGING SOFTWARE PROJECTS

6 The acronym pm means person-month of effort.

When collecting
productivity metrics for
projects, be sure to
establish a taxonomy
of project types. This
will enable you to
compute domain-
specific averages,
making estimation
more accurate.

How do we
compute the

“expected value“
for software
size?

?

pre75977_ch26.qxd 11/27/08 6:26 PM Page 700

26.6.3 An Example of LOC-Based Estimation

As an example of LOC and FP problem-based estimation techniques, I consider a

software package to be developed for a computer-aided design application for

mechanical components. The software is to execute on an engineering workstation

and must interface with various computer graphics peripherals including a mouse,

digitizer, high-resolution color display, and laser printer. A preliminary statement of

software scope can be developed:

The mechanical CAD software will accept two- and three-dimensional geometric data

from an engineer. The engineer will interact and control the CAD system through a user

interface that will exhibit characteristics of good human/machine interface design. All

geometric data and other supporting information will be maintained in a CAD database.

Design analysis modules will be developed to produce the required output, which will

be displayed on a variety of graphics devices. The software will be designed to control

and interact with peripheral devices that include a mouse, digitizer, laser printer, and

plotter.

This statement of scope is preliminary—it is not bounded. Every sentence would

have to be expanded to provide concrete detail and quantitative bounding. For

example, before estimation can begin, the planner must determine what “character-

istics of good human/machine interface design” means or what the size and

sophistication of the “CAD database” are to be.

For our purposes, assume that further refinement has occurred and that the major

software functions listed in Figure 26.2 are identified. Following the decomposition

technique for LOC, an estimation table (Figure 26.2) is developed. A range of LOC

estimates is developed for each function. For example, the range of LOC estimates

for the 3D geometric analysis function is optimistic, 4600 LOC; most likely, 6900 LOC;

and pessimistic, 8600 LOC. Applying Equation 26.1, the expected value for the 3D

geometric analysis function is 6800 LOC. Other estimates are derived in a similar

CHAPTER 26 ESTIMATION FOR SOFTWARE PROJECTS 701

Many modern applica-
tions reside on a
network or are part of
a client-server architec-
ture. Therefore, be
sure that your
estimates include the
effort required to
develop “infrastruc-
ture” software.

Function

User interface and control facilities (UICF)
Two-dimensional geometric analysis (2DGA)
Three-dimensional geometric analysis (3DGA)
Database management (DBM)
Computer graphics display facilities (CGDF)
Peripheral control function (PCF)
Design analysis modules (DAM)

Estimated lines of code

Estimated LOC

2,300
5,300
6,800
3,350
4,950
2,100
8,400

33,200

FIGURE 26.2

Estimation
table for the
LOC methods

pre75977_ch26.qxd 11/27/08 6:26 PM Page 701

fashion. By summing vertically in the estimated LOC column, an estimate of 33,200

lines of code is established for the CAD system.

A review of historical data indicates that the organizational average productivity

for systems of this type is 620 LOC/pm. Based on a burdened labor rate of $8000 per

month, the cost per line of code is approximately $13. Based on the LOC estimate

and the historical productivity data, the total estimated project cost is $431,000 and

the estimated effort is 54 person-months.7

702 PART FOUR MANAGING SOFTWARE PROJECTS

7 Estimates are rounded to the nearest $1000 and person-month. Further precision is unnecessary
and unrealistic, given the limitations of estimation accuracy.

Estimating

The scene: Doug Miller’s office as
project planning begins.

The players: Doug Miller (manager of the SafeHome
software engineering team) and Vinod Raman, Jamie
Lazar, and other members of the product software
engineering team.

The conversation:

Doug: We need to develop an effort estimate for the
project and then we’ve got to define a micro schedule for
the first increment and a macro schedule for the
remaining increments.

Vinod (nodding): Okay, but we haven’t defined any
increments yet.

Doug: True, but that’s why we need to estimate.

Jamie (frowning): You want to know how long it’s
going to take us?

Doug: Here’s what I need. First, we need to functionally
decompose the SafeHome software … at a high level …
then we’ve got to estimate the number of lines of code
that each function will take . . . then . . .

Jamie: Whoa! How are we supposed to do that?

Vinod: I’ve done it on past projects. You begin with use
cases, determine the functionality required to implement
each, guesstimate the LOC count for each piece of the
function. The best approach is to have everyone do it
independently and then compare results.

Doug: Or you can do a functional decomposition for the
entire project.

Jamie: But that’ll take forever and we’ve got to get
started.

Vinod: No . . . it can be done in a few hours . . . this
morning, in fact.

Doug: I agree . . . we can’t expect exactitude, just a
ballpark idea of what the size of SafeHome will be.

Jamie: I think we should just estimate effort . . . that’s
all.

Doug: We’ll do that too. Then use both estimates as a
cross-check.

Vinod: Let’s go do it . . .

SAFEHOME

26.6.4 An Example of FP-Based Estimation

Decomposition for FP-based estimation focuses on information domain values

rather than software functions. Referring to the table presented in Figure 26.3, you

would estimate inputs, outputs, inquiries, files, and external interfaces for the CAD

software. An FP value is computed using the technique discussed in Chapter 23. For

the purposes of this estimate, the complexity weighting factor is assumed to be

average. Figure 26.3 presents the results of this estimate.

Do not succumb to the
temptation to use this
result as your project
estimate. You should
derive another result
using a different
approach.

pre75977_ch26.qxd 11/27/08 6:26 PM Page 702

Each of the complexity weighting factors is estimated, and the value adjustment

factor is computed as described in Chapter 23:

Factor Value

Backup and recovery 4
Data communications 2
Distributed processing 0
Performance critical 4
Existing operating environment 3
Online data entry 4
Input transaction over multiple screens 5
Master files updated online 3
Information domain values complex 5
Internal processing complex 5
Code designed for reuse 4
Conversion/installation in design 3
Multiple installations 5
Application designed for change 5
Value adjustment factor 1.17

Finally, the estimated number of FP is derived:

FPestimated � count total � [0.65 � 0.01 � �(Fi)] � 375

The organizational average productivity for systems of this type is 6.5 FP/pm. Based

on a burdened labor rate of $8000 per month, the cost per FP is approximately $1230.

Based on the FP estimate and the historical productivity data, the total estimated

project cost is $461,000 and the estimated effort is 58 person-months.

26.6.5 Process-Based Estimation

The most common technique for estimating a project is to base the estimate on the

process that will be used. That is, the process is decomposed into a relatively small

set of tasks and the effort required to accomplish each task is estimated.

CHAPTER 26 ESTIMATION FOR SOFTWARE PROJECTS 703

Information domain value

Number of external inputs

Number of external outputs

Number of external inquiries

Number of internal logical files

Number of external interface files

Count total

FP
count

97

78

88

42

15

320

Opt.

20

12

16

4

2

Likely

24

15

22

4

2

Pess.

30

22

28

5

3

Est.
count

24

16

22

4

2

Weight

4

5

5

10

7

FIGURE 26.3

Estimating
information
domain values

pre75977_ch26.qxd 11/27/08 6:26 PM Page 703

Like the problem-based techniques, process-based estimation begins with a

delineation of software functions obtained from the project scope. A series of frame-

work activities must be performed for each function. Functions and related frame-

work activities8 may be represented as part of a table similar to the one presented in

Figure 26.4.

Once problem functions and process activities are melded, you estimate the effort

(e.g., person-months) that will be required to accomplish each software process

activity for each software function. These data constitute the central matrix of the

table in Figure 26.4. Average labor rates (i.e., cost/unit effort) are then applied to the

effort estimated for each process activity. It is very likely the labor rate will vary for

each task. Senior staff are heavily involved in early framework activities and are gen-

erally more expensive than junior staff involved in construction and release.

Costs and effort for each function and framework activity are computed as the last

step. If process-based estimation is performed independently of LOC or FP estima-

tion, we now have two or three estimates for cost and effort that may be compared

and reconciled. If both sets of estimates show reasonable agreement, there is good

reason to believe that the estimates are reliable. If, on the other hand, the results

of these decomposition techniques show little agreement, further investigation and

analysis must be conducted.

26.6.6 An Example of Process-Based Estimation

To illustrate the use of process-based estimation, consider the CAD software intro-

duced in Section 26.6.3. The system configuration and all software functions remain

unchanged and are indicated by project scope.

704 PART FOUR MANAGING SOFTWARE PROJECTS

8 The framework activities chosen for this project differ somewhat from the generic activities dis-
cussed in Chapter 2. They are: customer communication (CC), planning, risk analysis, engineering,
and construction/release.

Activity

Task

Function

UICF
2DGA
3DGA

DBM
PCF

CGDF

DAM

Totals

% effort

CC Planning Risk
analysis Engineering Construction

release TotalsCE

Analysis Design Code Test

0.25 0.25 0.25 3.50 20.50 4.50 16.50 46.00

1% 1% 1% 8% 45% 10% 36%

CC = customer communication CE = customer evaluation

0.50
0.75
0.50
0.50
0.50
0.25

2.50
4.00
4.00
3.00
3.00
2.00

0.40
0.60
1.00
1.00
0.75
0.50

5.00
2.00
3.00
1.50
1.50
1.50

8.40
7.35
8.50
6.00
5.75
4.25

0.50 2.00 0.50 2.00 5.00

n/a
n/a
n/a
n/a
n/a
n/a
n/a

FIGURE 26.4

Process-based
estimation
table

If time permits, use
finer granularity when
specifying tasks in
Figure 26.4. For
example, break
analysis into its major
tasks and estimate
each separately.

pre75977_ch26.qxd 11/27/08 6:26 PM Page 704

Referring to the completed process-based table shown in Figure 26.4, estimates

of effort (in person-months) for each software engineering activity are provided for

each CAD software function (abbreviated for brevity). The engineering and con-

struction release activities are subdivided into the major software engineering tasks

shown. Gross estimates of effort are provided for customer communication, plan-

ning, and risk analysis. These are noted in the total row at the bottom of the table.

Horizontal and vertical totals provide an indication of estimated effort required for

analysis, design, code, and test. It should be noted that 53 percent of all effort is ex-

pended on front-end engineering tasks (requirements analysis and design), indicat-

ing the relative importance of this work.

Based on an average burdened labor rate of $8000 per month, the total estimated

project cost is $368,000 and the estimated effort is 46 person-months. If desired,

labor rates could be associated with each framework activity or software engineer-

ing task and computed separately.

26.6.7 Estimation with Use Cases

As I have noted throughout Part 2 of this book, use cases provide a software team

with insight into software scope and requirements. However, developing an estima-

tion approach with use cases is problematic for the following reasons [Smi99]:

• Use cases are described using many different formats and styles—there is no

standard form.

• Use cases represent an external view (the user’s view) of the software and

can therefore be written at many different levels of abstraction.

• Use cases do not address the complexity of the functions and features that

are described.

• Use cases can describe complex behavior (e.g., interactions) that involve

many functions and features.

Unlike an LOC or a function point, one person’s “use case” may require months of

effort while another person’s use case may be implemented in a day or two.

Although a number of investigators have considered use cases as an estimation

input, no proven estimation method has emerged to date.9 Smith [Smi99] suggests

that use cases can be used for estimation, but only if they are considered within the

context of the “structural hierarchy” that they are used to describe.

Smith argues that any level of this structural hierarchy can be described by no

more than 10 use cases. Each of these use cases would encompass no more than 30

distinct scenarios. Obviously, use cases that describe a large system are written at a

much higher level of abstraction (and represent considerably more development

effort) than use cases that are written to describe a single subsystem. Therefore,

CHAPTER 26 ESTIMATION FOR SOFTWARE PROJECTS 705

uote:

“It’s best to
understand the
background of an
estimate before
you use it.”

Barry Boehm
and Richard
Fairley

Why is it
difficult to

develop an
estimation
technique using
use cases?

?

9 Recent work in the derivation of use-case points [Cle06] may ultimately lead to a workable
estimation approach using use cases.

pre75977_ch26.qxd 11/27/08 6:26 PM Page 705

before use cases can be used for estimation, the level within the structural hierarchy

is established, the average length (in pages) of each use case is determined, the type

of software (e.g., real-time, business, engineering/scientific, WebApp, embedded) is

defined, and a rough architecture for the system is considered. Once these charac-

teristics are established, empirical data may be used to establish the estimated num-

ber of LOC or FP per use case (for each level of the hierarchy). Historical data are then

used to compute the effort required to develop the system.

To illustrate how this computation might be made, consider the following

relationship:10

LOC estimate � N � LOCavg � [(Sa/Sh – 1) � (Pa/Ph � 1)] � LOCadjust (26.2)

where

N � actual number of use cases

LOCavg � historical average LOC per use case for this type of subsystem

LOCadjust � represents an adjustment based on n percent of LOCavg where n

is defined locally and represents the difference between this

project and “average” projects

Sa � actual scenarios per use case

Sh � average scenarios per use case for this type of subsystem

Pa � actual pages per use case

Ph � average pages per use case for this type of subsystem

Expression (26.2) could be used to develop a rough estimate of the number of LOC

based on the actual number of use cases adjusted by the number of scenarios and

the page length of the use cases. The adjustment represents up to n percent of the

historical average LOC per use case.

26.6.8 An Example of Use-Case–Based Estimation

The CAD software introduced in Section 26.6.3 is composed of three subsystem

groups: user interface subsystem (includes UICF), engineering subsystem group

(includes the 2DGA, 3DGA, and DAM subsystems), and infrastructure subsystem

group (includes CGDF and PCF subsystems). Six use cases describe the user interface

subsystem. Each use case is described by no more than 10 scenarios and has an

average length of six pages. The engineering subsystem group is described by 10 use

cases (these are considered to be at a higher level of the structural hierarchy). Each

of these use cases has no more than 20 scenarios associated with it and has an

average length of eight pages. Finally, the infrastructure subsystem group is described

by five use cases with an average of only six scenarios and an average length of

five pages.

706 PART FOUR MANAGING SOFTWARE PROJECTS

10 It is important to note that Expression (26.2) is used for illustrative purposes only. Like all estima-
tion models, it must be validated locally before it can be used with confidence.

pre75977_ch26.qxd 11/27/08 6:26 PM Page 706

Using the relationship noted in Expression (26.2) with n � 30 percent, the table

shown in Figure 26.5 is developed. Considering the first row of the table, historical

data indicate that UI software requires an average of 800 LOC per use case when the

use case has no more than 12 scenarios and is described in less than five pages.

These data conform reasonably well for the CAD system. Hence the LOC estimate for

the user interface subsystem is computed using expression (26.2). Using the same

approach, estimates are made for both the engineering and infrastructure subsystem

groups. Figure 26.5 summarizes the estimates and indicates that the overall size of

the CAD is estimated at 42,500 LOC.

Using 620 LOC/pm as the average productivity for systems of this type and

a burdened labor rate of $8000 per month, the cost per line of code is approxi-

mately $13. Based on the use-case estimate and the historical productivity data, the

total estimated project cost is $552,000 and the estimated effort is 68 person-

months.

26.6.9 Reconciling Estimates

The estimation techniques discussed in the preceding sections result in multiple

estimates that must be reconciled to produce a single estimate of effort, project

duration, or cost. To illustrate this reconciliation procedure, I again consider the CAD

software introduced in Section 26.6.3.

The total estimated effort for the CAD software ranges from a low of 46 person-

months (derived using a process-based estimation approach) to a high of 68 person-

months (derived with use-case estimation). The average estimate (using all four

approaches) is 56 person-months. The variation from the average estimate is approxi-

mately 18 percent on the low side and 21 percent on the high side.

What happens when agreement between estimates is poor? The answer to this

question requires a reevaluation of information used to make the estimates. Widely

divergent estimates can often be traced to one of two causes: (1) the scope of the

project is not adequately understood or has been misinterpreted by the planner, or

(2) productivity data used for problem-based estimation techniques is inappropriate

for the application, obsolete (in that it no longer accurately reflects the software

engineering organization), or has been misapplied. You should determine the cause

of divergence and then reconcile the estimates.

CHAPTER 26 ESTIMATION FOR SOFTWARE PROJECTS 707

User interface subsystem
Engineering subsystem group
Infrastructure subsystem group

Total LOC estimate

use cases
6
10
5

scenarios
10
20
6

scenarios
12
16
10

pages
6
8
5

pages
5
8
6

LOC
560
3100
1650

LOC estimate
3,366

31,233
7,970

42,568

FIGURE 26.5

Use-case
estimation

uote:

“Complicated
methods might not
yield a more
accurate estimate,
particularly when
developers can
incorporate their
own intuition into
the estimate.”

Philip Johnson
et al.

pre75977_ch26.qxd 11/27/08 6:26 PM Page 707

26.7 EMPIRICAL ESTIMATION MODELS

An estimation model for computer software uses empirically derived formulas to

predict effort as a function of LOC or FP.11 Values for LOC or FP are estimated using

the approach described in Sections 26.6.3 and 26.6.4. But instead of using the tables

described in those sections, the resultant values for LOC or FP are plugged into the

estimation model.

The empirical data that support most estimation models are derived from a lim-

ited sample of projects. For this reason, no estimation model is appropriate for all

classes of software and in all development environments. Therefore, you should use

the results obtained from such models judiciously.

An estimation model should be calibrated to reflect local conditions. The model

should be tested by applying data collected from completed projects, plugging the

data into the model, and then comparing actual to predicted results. If agreement is

poor, the model must be tuned and retested before it can be used.

708 PART FOUR MANAGING SOFTWARE PROJECTS

Automated Estimation Techniques for Software Projects
INFO

Automated estimation tools allow the planner
to estimate cost and effort and to perform

what-if analyses for important project variables
such as delivery date or staffing. Although many
automated estimation tools exist (see sidebar later in this
chapter), all exhibit the same general characteristics and
all perform the following six generic functions [Jon96]:

1. Sizing of project deliverables. The “size” of one or
more software work products is estimated. Work
products include the external representation of
software (e.g., screen, reports), the software itself
(e.g., KLOC), functionality delivered (e.g., function
points), and descriptive information (e.g., documents).

2. Selecting project activities. The appropriate process
framework is selected, and the software engineering
task set is specified.

3. Predicting staffing levels. The number of people who
will be available to do the work is specified. Because
the relationship between people available and work
(predicted effort) is highly nonlinear, this is an
important input.

4. Predicting software effort. Estimation tools use one
or more models (Section 26.7) that relate the size of
the project deliverables to the effort required to
produce them.

5. Predicting software cost. Given the results of step 4,
costs can be computed by allocating labor rates to
the project activities noted in step 2.

6. Predicting software schedules. When effort, staffing
level, and project activities are known, a draft
schedule can be produced by allocating labor across
software engineering activities based on
recommended models for effort distribution
discussed later in this chapter.

When different estimation tools are applied to the same
project data, a relatively large variation in estimated
results can be encountered. More important, predicted
values sometimes are significantly different than actual
values. This reinforces the notion that the output of
estimation tools should be used as one “data point” from
which estimates are derived—not as the only source for
an estimate.

11 An empirical model using use cases as the independent variable is suggested in Section 26.6.6.
However, relatively few have appeared in the literature to date.

An estimation model
reflects the population
of projects from which
it has been derived.
Therefore, the model is
domain sensitive.

pre75977_ch26.qxd 11/27/08 6:26 PM Page 708

26.7.1 The Structure of Estimation Models

A typical estimation model is derived using regression analysis on data collected from

past software projects. The overall structure of such models takes the form [Mat94]

E � A � B � (ev)C (26.3)

where A, B, and C are empirically derived constants, E is effort in person-months, and

ev is the estimation variable (either LOC or FP). In addition to the relationship noted

in Equation (26.3), the majority of estimation models have some form of project ad-

justment component that enables E to be adjusted by other project characteristics

(e.g., problem complexity, staff experience, development environment). Among the

many LOC-oriented estimation models proposed in the literature are

E � 5.2 � (KLOC)0.91 Walston-Felix model

E � 5.5 � 0.73 � (KLOC)1.16 Bailey-Basili model

E � 3.2 � (KLOC)1.05 Boehm simple model

E � 5.288 � (KLOC)1.047 Doty model for KLOC � 9

FP-oriented models have also been proposed. These include

E � �91.4 � 0.355 FP Albrecht and Gaffney model

E � �37 � 0.96 FP Kemerer model

E � �12.88 � 0.405 FP Small project regression model

A quick examination of these models indicates that each will yield a different result

for the same values of LOC or FP. The implication is clear. Estimation models must

be calibrated for local needs!

26.7.2 The COCOMO II Model

In his classic book on “software engineering economics,” Barry Boehm [Boe81]

introduced a hierarchy of software estimation models bearing the name COCOMO, for

COnstructive COst MOdel. The original COCOMO model became one of the most widely

used and discussed software cost estimation models in the industry. It has evolved into

a more comprehensive estimation model, called COCOMO II [Boe00]. Like its predeces-

sor, COCOMO II is actually a hierarchy of estimation models that address the following

areas:

• Application composition model. Used during the early stages of software engi-

neering, when prototyping of user interfaces, consideration of software and

system interaction, assessment of performance, and evaluation of technology

maturity are paramount.

• Early design stage model. Used once requirements have been stabilized and

basic software architecture has been established.

• Post-architecture-stage model. Used during the construction of the software.

Like all estimation models for software, the COCOMO II models require sizing

information. Three different sizing options are available as part of the model

hierarchy: object points, function points, and lines of source code.

CHAPTER 26 ESTIMATION FOR SOFTWARE PROJECTS 709

None of these models
should be used without
careful calibration to
your environment.

WebRef
Detailed information on
COCOMO II, including
downloadable software,
can be obtained at
sunset.usc.edu/
research/
COCOMOII/
cocomo_main.html.

pre75977_ch26.qxd 11/27/08 6:26 PM Page 709

The COCOMO II application composition model uses object points and is illus-

trated in the following paragraphs. It should be noted that other, more sophisticated

estimation models (using FP and KLOC) are also available as part of COCOMO II.

Like function points, the object point is an indirect software measure that is com-

puted using counts of the number of (1) screens (at the user interface), (2) reports,

and (3) components likely to be required to build the application. Each object in-

stance (e.g., a screen or report) is classified into one of three complexity levels (i.e.,

simple, medium, or difficult) using criteria suggested by Boehm [Boe96]. In essence,

complexity is a function of the number and source of the client and server data tables

that are required to generate the screen or report and the number of views or sec-

tions presented as part of the screen or report.

Once complexity is determined, the number of screens, reports, and components

are weighted according to the table illustrated in Figure 26.6. The object point count

is then determined by multiplying the original number of object instances by the

weighting factor in the figure and summing to obtain a total object point count.

When component-based development or general software reuse is to be applied,

the percent of reuse (%reuse) is estimated and the object point count is adjusted:

NOP � (object points) � [(100 � %reuse)/100]

where NOP is defined as new object points.

To derive an estimate of effort based on the computed NOP value, a “productivity

rate” must be derived. Figure 26.7 presents the productivity rate

PROD �

for different levels of developer experience and development environment maturity.

Once the productivity rate has been determined, an estimate of project effort is

computed using

Estimated effort �

In more advanced COCOMO II models,12 a variety of scale factors, cost drivers,

and adjustment procedures are required. A complete discussion of these is beyond

NOP
PROD

NOP
person-month

710 PART FOUR MANAGING SOFTWARE PROJECTS

Object type

Screen

Report

3GL component

Complexity weight

Simple Medium Difficult

1 2 3

2 5 8

10

FIGURE 26.6

Complexity
weighting for
object types.
Source: [Boe96].

What is an
object point??

12 As noted earlier, these models use FP and KLOC counts for the size variable.

pre75977_ch26.qxd 11/27/08 6:26 PM Page 710

the scope of this book. If you have further interest, see [Boe00] or visit the COCOMO II

website.

26.7.3 The Software Equation

The software equation [Put92] is a dynamic multivariable model that assumes a spe-

cific distribution of effort over the life of a software development project. The model

has been derived from productivity data collected for over 4000 contemporary soft-

ware projects. Based on these data, we derive an estimation model of the form

E � � (26.4)

where

E � effort in person-months or person-years

t � project duration in months or years

B � “special skills factor”13

P � “productivity parameter” that reflects: overall process maturity and man-

agement practices, the extent to which good software engineering practices

are used, the level of programming languages used, the state of the soft-

ware environment, the skills and experience of the software team, and the

complexity of the application

Typical values might be P � 2000 for development of real-time embedded software,

P � 10,000 for telecommunication and systems software, and P � 28,000 for business

systems applications. The productivity parameter can be derived for local conditions

using historical data collected from past development efforts.

You should note that the software equation has two independent parameters:

(1) an estimate of size (in LOC) and (2) an indication of project duration in calendar

months or years.

1
t4

LOC � B0.333

P3

CHAPTER 26 ESTIMATION FOR SOFTWARE PROJECTS 711

Developer's experience/capability

Environment maturity/capability

PROD

Very
low

Very
low

4

Low

Low

7

Nominal

Nominal

13

High

High

25

Very
high

Very
high

50

FIGURE 26.7 Productivity rate for object points.
Source: [Boe96].

13 B increases slowly as “the need for integration, testing, quality assurance, documentation, and
management skills grows” [Put92]. For small programs (KLOC � 5 to 15), B � 0.16. For programs
greater than 70 KLOC, B � 0.39.

WebRef
Information on
software cost
estimation tools that
have evolved from
the software equation
can be found at
www.qsm.com.

pre75977_ch26.qxd 11/27/08 6:26 PM Page 711

http://www.qsm.com

To simplify the estimation process and use a more common form for their

estimation model, Putnam and Myers [Put92] suggest a set of equations derived from

the software equation. Minimum development time is defined as

tmin � 8.14 in months for tmin � 6 months (26.5a)

E � 180 Bt3 in person-months for E � 20 person-months (26.5b)

Note that t in Equation (26.5b) is represented in years.

Using Equation (26.5) with P � 12,000 (the recommended value for scientific

software) for the CAD software discussed earlier in this chapter,

tmin � 8.14 � � 12.6 calendar months

E � 180 � 0.28 � (1.05)3 � 58 person-months

The results of the software equation correspond favorably with the estimates devel-

oped in Section 26.6. Like the COCOMO model noted in Section 26.7.2, the software

equation continues to evolve. Further discussion of an extended version of this

estimation approach can be found in [Put97b].

26.8 ESTIMATION FOR OBJECT-ORIENTED PROJECTS

It is worthwhile to supplement conventional software cost estimation methods with a

technique that has been designed explicitly for OO software. Lorenz and Kidd [Lor94]

suggest the following approach:

1. Develop estimates using effort decomposition, FP analysis, and any other

method that is applicable for conventional applications.

2. Using the requirements model (Chapter 6), develop use cases and determine

a count. Recognize that the number of use cases may change as the project

progresses.

3. From the requirements model, determine the number of key classes (called

analysis classes in Chapter 6).

4. Categorize the type of interface for the application and develop a multiplier

for support classes:

Interface Type Multiplier

No GUI 2.0

Text-based user interface 2.25

GUI 2.5

Complex GUI 3.0

Multiply the number of key classes (step 3) by the multiplier to obtain an

estimate for the number of support classes.

33,200
12,0000.43

LOC
p0.43

712 PART FOUR MANAGING SOFTWARE PROJECTS

pre75977_ch26.qxd 11/27/08 6:26 PM Page 712

5. Multiply the total number of classes (key + support) by the average number of

work units per class. Lorenz and Kidd suggest 15 to 20 person-days per class.

6. Cross-check the class-based estimate by multiplying the average number of

work units per use case.

26.9 SPECIALIZED ESTIMATION TECHNIQUES

The estimation techniques discussed in Sections 26.6 through 26.8 can be used for

any software project. However, when a software team encounters an extremely short

project duration (weeks rather than months) that is likely to have a continuing stream

of changes, project planning in general and estimation in particular should be abbre-

viated.14 In the sections that follow, I examine two specialized estimation techniques.

26.9.1 Estimation for Agile Development

Because the requirements for an agile project (Chapter 3) are defined by a set of user

scenarios (e.g., “stories” in Extreme Programming), it is possible to develop an esti-

mation approach that is informal, reasonably disciplined, and meaningful within the

context of project planning for each software increment. Estimation for agile proj-

ects uses a decomposition approach that encompasses the following steps:

1. Each user scenario (the equivalent of a mini use case created at the very

start of a project by end users or other stakeholders) is considered separately

for estimation purposes.

2. The scenario is decomposed into the set of software engineering tasks that

will be required to develop it.

3a. The effort required for each task is estimated separately. Note: Estimation can

be based on historical data, an empirical model, or “experience.”

3b. Alternatively, the “volume” of the scenario can be estimated in LOC, FP, or

some other volume-oriented measure (e.g., use-case count).

4a. Estimates for each task are summed to create an estimate for the scenario.

4b. Alternatively, the volume estimate for the scenario is translated into effort

using historical data.

5. The effort estimates for all scenarios that are to be implemented for a given

software increment are summed to develop the effort estimate for the

increment.

Because the project duration required for the development of a software increment

is quite short (typically three to six weeks), this estimation approach serves two

purposes:(1) to be certain that the number of scenarios to be included in the incre-

ment conforms to the available resources, and (2) to establish a basis for allocating

effort as the increment is developed.

CHAPTER 26 ESTIMATION FOR SOFTWARE PROJECTS 713

How are
estimates

developed when
an agile process is
applied?

?

14 “Abbreviated” does not mean eliminated. Even short-duration projects must be planned, and esti-
mation is the foundation of solid planning.

In the context of
estimation for agile
projects, “volume” is
an estimate of the
overall size of a user
scenario in LOC or FP.

pre75977_ch26.qxd 11/27/08 6:26 PM Page 713

26.9.2 Estimation for WebApp Projects

WebApp projects often adopt the agile process model. A modified function point

measure, coupled with the steps outlined in Section 26.9.1, can be used to develop

an estimate for the WebApp. Roetzheim [Roe00] suggests the following approach

when adapting function points for WebApp estimation:

• Inputs are each input screen or form (for example, CGI or Java), each maintenance

screen, and if you use a tab notebook metaphor anywhere, each tab.

• Outputs are each static Web page, each dynamic Web page script (for example, ASP,

ISAPI, or other DHTML script), and each report (whether Web based or administrative

in nature).

• Tables are each logical table in the database plus, if you are using XML to store data in

a file, each XML object (or collection of XML attributes).

• Interfaces retain their definition as logical files (for example, unique record formats) into

our out-of-the-system boundaries.

• Queries are each externally published or use a message-oriented interface. A typical

example is DCOM or COM external references.

Function points (interpreted in the manner noted) are a reasonable indicator of

volume for a WebApp.

Mendes and her colleagues [Men01] suggest that the volume of a WebApp is best

determined by collecting measures (called “predictor variables”) associated with the

application (e.g., page count, media count, function count), its Web page characteris-

tics (e.g., page complexity, linking complexity, graphic complexity), media characteris-

tics (e.g., media duration), and functional characteristics (e.g., code length, reused code

length). These measures can be used to develop empirical estimation models for total

project effort, page authoring effort, media authoring effort, and scripting effort. How-

ever, further work remains to be done before such models can be used with confidence.

714 PART FOUR MANAGING SOFTWARE PROJECTS

Effort and Cost Estimation

Objective: The objective of effort and cost
estimation tools is to provide a project team

with estimates of effort required, project duration, and cost
in a manner that addresses the specific characteristics of
the project at hand and the environment in which the
project is to be built.

Mechanics: In general, cost estimation tools make use of
an historical database derived from local projects and
data collected across the industry, and an empirical model

(e.g., COCOMO II) that is used to derive effort, duration,
and cost estimates. Characteristics of the project and the
development environment are input and the tool provides
a range of estimation outputs.

Representative Tools:15

Costar, developed by Softstar Systems
(www.softstarsystems.com), uses the COCOMO
II model to develop software estimates.

SOFTWARE TOOLS

15 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.
In most cases, tool names are trademarked by their respective developers.

pre75977_ch26.qxd 11/27/08 6:26 PM Page 714

http://www.softstarsystems.com
http://www.softstarsystems.com

26.10 THE MAKE/BUY DECIS ION

In many software application areas, it is often more cost effective to acquire rather than

develop computer software. Software engineering managers are faced with a make/

buy decision that can be further complicated by a number of acquisition options:

(1) software may be purchased (or licensed) off-the-shelf, (2) “full-experience” or

“partial-experience” software components (see Section 26.4.2) may be acquired and

then modified and integrated to meet specific needs, or (3) software may be custom

built by an outside contractor to meet the purchaser’s specifications.

The steps involved in the acquisition of software are defined by the criticality of the

software to be purchased and the end cost. In some cases (e.g., low-cost PC software),

it is less expensive to purchase and experiment than to conduct a lengthy evaluation

of potential software packages. In the final analysis, the make/buy decision is made

based on the following conditions: (1) Will the delivery date of the software product be

sooner than that for internally developed software? (2) Will the cost of acquisition plus

the cost of customization be less than the cost of developing the software internally?

(3) Will the cost of outside support (e.g., a maintenance contract) be less than the cost

of internal support? These conditions apply for each of the acquisition options.

26.10.1 Creating a Decision Tree

The steps just described can be augmented using statistical techniques such as de-

cision tree analysis.16 For example, Figure 26.8 depicts a decision tree for a software-

based system X. In this case, the software engineering organization can (1) build

system X from scratch, (2) reuse existing partial-experience components to construct

the system, (3) buy an available software product and modify it to meet local needs,

or (4) contract the software development to an outside vendor.

CHAPTER 26 ESTIMATION FOR SOFTWARE PROJECTS 715

Cost Xpert, developed by Cost Xpert Group, Inc.
(www.costxpert.com), integrates multiple
estimation models and an historical project database.

Estimate Professional, developed by the Software
Productivity Centre, Inc. (www.spc.com), is based
on COCOMO II and the SLIM Model.

Knowledge Plan, developed by Software Productivity
Research (www.spr.com), uses function point input as
the primary driver for a complete estimation package.

Price S, developed by Price Systems
(www.pricesystems.com), is one of the oldest

and most widely used estimating tools for large-scale
software development projects.

SEER/SEM, developed by Galorath, Inc.
(www.galorath.com), provides comprehensive
estimation capability, sensitivity analysis, risk
assessment, and other features.

SLIM-Estimate, developed by QSM (www.qsm.com),
draws on comprehensive “industry knowledge bases”
to provide a “sanity check” for estimates derived using
local data.

Is there a
systematic

way to sort
through the
options associated
with the make/
buy decision?

?

16 A worthwhile introduction to decision tree analysis can be found at http://en.wikipedia.org/
wiki/Decision_tree.

pre75977_ch26.qxd 11/27/08 6:26 PM Page 715

http://www.costxpert.com
http://www.spc.com
http://www.spr.com
http://www.pricesystems.com
http://www.qsm.com
http://www.galorath.com
http://en.wikipedia.org/

If the system is to be built from scratch, there is a 70 percent probability that the

job will be difficult. Using the estimation techniques discussed earlier in this chapter,

the project planner estimates that a difficult development effort will cost $450,000.

A “simple” development effort is estimated to cost $380,000. The expected value for

cost, computed along any branch of the decision tree, is

Expected cost � � (path probability)i � (estimated path cost)i

where i is the decision tree path. For the build path,

Expected costbuild � 0.30 ($380K) � 0.70 ($450K) � $429K

Following other paths of the decision tree, the projected costs for reuse, purchase,

and contract, under a variety of circumstances, are also shown. The expected costs

for these paths are

Expected costreuse � 0.40 ($275K) � 0.60 [0.20 ($310K) � 0.80 ($490K)] � $382K

Expected costbuy � 0.70 ($210K) � 0.30 ($400K) � $267K

Expected costcontract � 0.60 ($350K) � 0.40 ($500K) � $410K

Based on the probability and projected costs that have been noted in Figure 26.8, the

lowest expected cost is the “buy” option.

It is important to note, however, that many criteria—not just cost— must be consid-

ered during the decision-making process. Availability, experience of the developer/

vendor/contractor, conformance to requirements, local “politics,” and the likelihood

of change are but a few of the criteria that may affect the ultimate decision to build,

reuse, buy, or contract.

716 PART FOUR MANAGING SOFTWARE PROJECTS

$380,000

$450,000

Simple (0.30)

$275,000

$310,000

$490,000

$210,000

$400,000

Minor changes
(0.70)

Major changes (0.30)

$350,000

$500,000

Without changes
(0.60)

With changes (0.40)

Complex (0.80)

Simple (0.20)
Major

changes
(0.60)

Minor changes
(0.40)

Difficult (0.70)
Build

Reuse

Buy

Contract

System X

FIGURE 26.8

A decision tree
to support the
make/buy
decision

pre75977_ch26.qxd 11/27/08 6:26 PM Page 716

26.10.2 Outsourcing

Sooner or later, every company that develops computer software asks a fundamental

question: “Is there a way that we can get the software and systems we need at a lower

price?” The answer to this question is not a simple one, and the emotional discussions

that occur in response to the question always lead to a single word: outsourcing.

In concept, outsourcing is extremely simple. Software engineering activities are

contracted to a third party who does the work at lower cost and, hopefully, higher

quality. Software work conducted within a company is reduced to a contract man-

agement activity.17

The decision to outsource can be either strategic or tactical. At the strategic level,

business managers consider whether a significant portion of all software work can be

contracted to others. At the tactical level, a project manager determines whether part

or all of a project can be best accomplished by subcontracting the software work.

Regardless of the breadth of focus, the outsourcing decision is often a financial

one. A detailed discussion of the financial analysis for outsourcing is beyond the

scope of this book and is best left to others (e.g., [Min95]). However, a brief review

of the pros and cons of the decision is worthwhile.

On the positive side, cost savings can usually be achieved by reducing the num-

ber of software people and the facilities (e.g., computers, infrastructure) that support

them. On the negative side, a company loses some control over the software that it

needs. Since software is a technology that differentiates its systems, services, and

products, a company runs the risk of putting the fate of its competitiveness into the

hands of a third party.

The trend toward outsourcing will undoubtedly continue. The only way to blunt the

trend is to recognize that software work is extremely competitive at all levels. The only

way to survive is to become as competitive as the outsourcing vendors themselves.

CHAPTER 26 ESTIMATION FOR SOFTWARE PROJECTS 717

uote:

“As a rule
outsourcing requires
even more skillful
management
than in-house
development.”

Steve McConnell

17 Outsourcing can be viewed more generally as any activity that leads to the acquisition of software
or software components from a source outside the software engineering organization.

Outsourcing

The scene: Meeting room at CPI
Corporation early in the project.

The players: Mal Golden, senior manager, product
development; Lee Warren, engineering manager; Joe
Camalleri, executive VP, business development; and Doug
Miller, project manager, software engineering.

The conversation:

Joe: We’re considering outsourcing the SafeHome
software engineering portion of the product.

Doug (shocked): When did this happen?

Lee: We got a quote from an offshore developer. It
comes in at 30 percent below what your group seems to
believe it will cost. Here. [Hands the quote to Doug who
reads it.]

Mal: As you know, Doug, we’re trying to keep costs
down and 30 percent is 30 percent. Besides, these people
come highly recommended.

SAFEHOME

pre75977_ch26.qxd 11/27/08 6:26 PM Page 717

26.11 SUMMARY

A software project planner must estimate three things before a project begins: how

long it will take, how much effort will be required, and how many people will be in-

volved. In addition, the planner must predict the resources (hardware and software)

that will be required and the risk involved.

The statement of scope helps the planner to develop estimates using one or more

techniques that fall into two broad categories: decomposition and empirical model-

ing. Decomposition techniques require a delineation of major software functions,

followed by estimates of either (1) the number of LOC, (2) selected values within the

information domain, (3) the number of use cases, (4) the number of person-months

required to implement each function, or (5) the number of person-months required

for each software engineering activity. Empirical techniques use empirically derived

expressions for effort and time to predict these project quantities. Automated tools

can be used to implement a specific empirical model.

Accurate project estimates generally use at least two of the three techniques just

noted. By comparing and reconciling estimates developed using different tech-

niques, the planner is more likely to derive an accurate estimate. Software project

estimation can never be an exact science, but a combination of good historical data

and systematic techniques can improve estimation accuracy.

718 PART FOUR MANAGING SOFTWARE PROJECTS

Doug (taking a breath and trying to remain
calm): You guys caught me by surprise here, but before
you make a final decision a few comments?

Joe (nodding): Sure, go ahead.

Doug: We haven’t worked with this outsourcing
company before, right?

Mal: Right, but . . .

Doug: And they note that any changes to spec will be
billed at an additional rate, right?

Joe (frowning): True, but we expect that things will be
reasonably stable.

Doug: A bad assumption, Joe.

Joe: Well, . . .

Doug: It’s likely that we’ll release new versions of this
product over the next few years. And it’s reasonable to
assume that software will provide many of the new
features, right?
[All nod.]

Doug: Have we ever coordinated an international
project before?

Lee (looking concerned): No, but I’m told . . .

Doug (trying to suppress his anger): So what
you’re telling me is: (1) we’re about to work with an
unknown vendor, (2) the costs to do this are not as low as
they seem, (3) we’re de facto committing to work with
them over many product releases, no matter what they do
on the first one, and (4) we’re going to learn on-the-job
relative to an international project.
[All remain silent.]

Doug: Guys . . . I think this is a mistake, and I’d like you
to take a day to reconsider. We’ll have far more control if
we do the work in-house. We have the expertise, and I
can guarantee that it won’t cost us much more . . . the risk
will be lower, and I know you’re all risk averse, as I am.

Joe (frowning): You’ve made a few good points, but
you have a vested interest in keeping this project in-
house.

Doug: That’s true, but it doesn’t change the facts.

Joe (with a sigh): Okay, let’s table this for a day or
two, give it some more thought, and meet again for a
final decision. Doug, can I speak with you privately?

Doug: Sure . . . I really do want to be sure we do the
right thing.

pre75977_ch26.qxd 11/27/08 6:26 PM Page 718

PROBLEMS AND POINTS TO PONDER

26.1. Assume that you are the project manager for a company that builds software for house-
hold robots. You have been contracted to build the software for a robot that mows the lawn for
a homeowner. Write a statement of scope that describes the software. Be sure your statement
of scope is bounded. If you’re unfamiliar with robots, do a bit of research before you begin writ-
ing. Also, state your assumptions about the hardware that will be required. Alternate: Replace
the lawn mowing robot with another problem that is of interest to you.

26.2. Software project complexity is discussed briefly in Section 26.1. Develop a list of software
characteristics (e.g., concurrent operation, graphical output) that affect the complexity of a
project. Prioritize the list.

26.3. Performance is an important consideration during planning. Discuss how performance
can be interpreted differently depending upon the software application area.

26.4. Do a functional decomposition of the robot software you described in Problem 26.1.
Estimate the size of each function in LOC. Assuming that your organization produces 450 LOC/
pm with a burdened labor rate of $7000 per person-month, estimate the effort and cost required
to build the software using the LOC-based estimation technique described in this chapter.

26.5. Use the COCOMO II model to estimate the effort required to build software for a sim-
ple ATM that produces 12 screens, 10 reports, and will require approximately 80 software
components. Assume average complexity and average developer/environment maturity. Use
the application composition model with object points.

26.6. Use the software equation to estimate the lawn mowing robot software. Assume that
Equation (26.4) is applicable and that P = 8000.

26.7. Compare the effort estimates derived in Problems 26.4 and 26.6. What is the standard
deviation, and how does it affect your degree of certainty about the estimate?

26.8. Using the results obtained in Problem 26.7, determine whether it’s reasonable to expect
that the software can be built within the next six months and how many people would have to
be used to get the job done.

26.9. Develop a spreadsheet model that implements one or more of the estimation techniques
described in this chapter. Alternatively, acquire one or more online models for estimation from
Web-based sources.

26.10. For a project team: Develop a software tool that implements each of the estimation
techniques developed in this chapter.

26.11. It seems odd that cost and schedule estimates are developed during software project
planning—before detailed software requirements analysis or design has been conducted. Why
do you think this is done? Are there circumstances when it should not be done?

26.12. Recompute the expected values noted for the decision tree in Figure 26.8 assuming that
every branch has a 50–50 probability. Would this change your final decision?

FURTHER READINGS AND INFORMATION SOURCES

Most software project management books contain discussions of project estimation. The Project
Management Institute (PMBOK Guide, PMI, 2001), Wysoki and his colleagues (Effective Project
Management, Wiley, 2000), Lewis (Project Planning Scheduling and Control, 3d ed., McGraw-Hill,
2000), Bennatan (On Time, Within Budget: Software Project Management Practices and Techniques,
3d ed., Wiley, 2000), and Phillips [Phi98] provide useful estimation guidelines.

McConnell (Software Estimation: Demystifying the Black Art, Microsoft Press, 2006) has writ-
ten a pragmatic guide that provides worthwhile guidance for anyone who must estimate the cost
of software. Parthasarathy (Practical Software Estimation, Addison-Wesley, 2007) emphasizes

CHAPTER 26 ESTIMATION FOR SOFTWARE PROJECTS 719

pre75977_ch26.qxd 11/27/08 6:26 PM Page 719

function points as an estimation metric. Laird and Brennan (Software Measurement and Estima-
tion: A Practical Approach, Wiley-IEEE Computer Society Press, 2006) addresses measurement
and its use in software estimation. Pfleeger (Software Cost Estimation and Sizing Methods, Issues,
and Guidelines, RAND Corporation, 2005) has developed an abbreviated guidebook that ad-
dresses many estimation fundamentals. Jones (Estimating Software Costs, 2d ed., McGraw-Hill,
2007) has written one of the most comprehensive treatments of models and data that are
applicable to software estimating in every application domain. Coombs (IT Project Estimation,
Cambridge University Press, 2002 and Roetzheim and Beasley (Software Project Cost and
Schedule Estimating: Best Practices, Prentice-Hall, 1997) present many useful models and suggest
step-by-step guidelines for generating the best possible estimates.

A wide variety of information sources on software estimation is available on the Internet.
An up-to-date list of World Wide Web references relevant to software estimating can be found
at the SEPA website: www.mhhe.com/engcs/compsci/pressman/professional/olc/
ser.htm.

720 PART FOUR MANAGING SOFTWARE PROJECTS

pre75977_ch26.qxd 11/27/08 6:26 PM Page 720

http://www.mhhe.com/engcs/compsci/pressman/professional/olc/

In the late 1960s, a bright-eyed young engineer was chosen to “write” a com-
puter program for an automated manufacturing application. The reason for
his selection was simple. He was the only person in his technical group who

had attended a computer programming seminar. He knew the ins and outs of
assembly language and FORTRAN but nothing about software engineering and
even less about project scheduling and tracking.

His boss gave him the appropriate manuals and a verbal description of what
had to be done. He was informed that the project must be completed in two
months.

He read the manuals, considered his approach, and began writing code. After
two weeks, the boss called him into his office and asked how things were going.

“Really great,” said the young engineer with youthful enthusiasm. “This was
much simpler than I thought. I’m probably close to 75 percent finished.”

721

C H A P T E R

27PROJECT
SCHEDULING

What is it? You’ve selected an
appropriate process model, you’ve
identified the software engineering
tasks that have to be performed, you

estimated the amount of work and the number
of people, you know the deadline, you’ve even
considered the risks. Now it’s time to connect the
dots. That is, you have to create a network of
software engineering tasks that will enable you
to get the job done on time. Once the network
is created, you have to assign responsibility for
each task, make sure it gets done, and adapt
the network as risks become reality. In a nut-
shell, that’s software project scheduling and
tracking.

Who does it? At the project level, software proj-
ect managers using information solicited from
software engineers. At an individual level, soft-
ware engineers themselves.

Why is it important? In order to build a complex
system, many software engineering tasks occur
in parallel, and the result of work performed
during one task may have a profound effect on

Q U I C K
L O O K

work to be conducted in another task. These
interdependencies are very difficult to under-
stand without a schedule. It’s also virtually
impossible to assess progress on a moderate or
large software project without a detailed
schedule.

What are the steps? The software engineering
tasks dictated by the software process model
are refined for the functionality to be built. Effort
and duration are allocated to each task and a
task network (also called an “activity network”)
is created in a manner that enables the software
team to meet the delivery deadline established.

What is the work product? The project schedule
and related information are produced.

How do I ensure that I’ve done it right? Proper
scheduling requires that: (1) all tasks appear in
the network, (2) effort and timing are intelli-
gently allocated to each task, (3) interdepen-
dencies between tasks are properly indicated,
(4) resources are allocated for the work to be
done, and (5) closely spaced milestones are
provided so that progress can be tracked.

K E Y
C O N C E P T S

critical path . . .724

earned value . .739

effort
distribution . . .727

people and
effort725

scheduling
principles for
WebApps 736

task network . .731

time-boxing . . .735

pre75977_ch27.qxd 11/27/08 6:27 PM Page 721

722 PART FOUR MANAGING SOFTWARE PROJECTS

The boss smiled and encouraged the young engineer to keep up the good work.

They planned to meet again in a week’s time.

A week later the boss called the engineer into his office and asked, “Where are we?”

“Everything’s going well,” said the youngster, “but I’ve run into a few small snags.

I’ll get them ironed out and be back on track soon.”

“How does the deadline look?” the boss asked.

“No problem,” said the engineer. “I’m close to 90 percent complete.”

If you’ve been working in the software world for more than a few years, you can

finish the story. It’ll come as no surprise that the young engineer1 stayed 90 percent

complete for the entire project duration and finished (with the help of others) only

one month late.

This story has been repeated tens of thousands of times by software developers

during the past five decades. The big question is why?

27.1 BASIC CONCEPTS

Although there are many reasons why software is delivered late, most can be traced

to one or more of the following root causes:

• An unrealistic deadline established by someone outside the software team

and forced on managers and practitioners.

• Changing customer requirements that are not reflected in schedule changes.

• An honest underestimate of the amount of effort and/or the number of

resources that will be required to do the job.

• Predictable and/or unpredictable risks that were not considered when the

project commenced.

• Technical difficulties that could not have been foreseen in advance.

• Human difficulties that could not have been foreseen in advance.

• Miscommunication among project staff that results in delays.

• A failure by project management to recognize that the project is falling

behind schedule and a lack of action to correct the problem.

Aggressive (read “unrealistic”) deadlines are a fact of life in the software business.

Sometimes such deadlines are demanded for reasons that are legitimate, from the

point of view of the person who sets the deadline. But common sense says that

legitimacy must also be perceived by the people doing the work.

Napoleon once said: “Any commander-in-chief who undertakes to carry out a

plan which he considers defective is at fault; he must put forth his reasons, insist on

the plan being changed, and finally tender his resignation rather than be the instru-

ment of his army’s downfall.” These are strong words that many software project

managers should ponder.

1 In case you were wondering, this story is autobiographical.

time-line
charts 732

tracking 734

work
breakdown732

uote:

“Excessive or
irrational schedules
are probably the
single most
destructive
influence in all
of software.”

Capers Jones

pre75977_ch27.qxd 11/27/08 6:27 PM Page 722

The estimation activities discussed in Chapter 26 and the scheduling techniques

described in this chapter are often implemented under the constraint of a defined

deadline. If best estimates indicate that the deadline is unrealistic, a competent proj-

ect manager should “protect his or her team from undue [schedule] pressure . . .

[and] reflect the pressure back to its originators” [Pag85].

To illustrate, assume that your software team has been asked to build a real-time

controller for a medical diagnostic instrument that is to be introduced to the market

in nine months. After careful estimation and risk analysis (Chapter 28), you come to

the conclusion that the software, as requested, will require 14 calendar months to

create with available staff. How should you proceed?

It is unrealistic to march into the customer’s office (in this case the likely customer

is marketing/sales) and demand that the delivery date be changed. External market

pressures have dictated the date, and the product must be released. It is equally fool-

hardy to refuse to undertake the work (from a career standpoint). So, what to do?

I recommend the following steps in this situation:

1. Perform a detailed estimate using historical data from past projects. Deter-

mine the estimated effort and duration for the project.

2. Using an incremental process model (Chapter 2), develop a software engi-

neering strategy that will deliver critical functionality by the imposed dead-

line, but delay other functionality until later. Document the plan.

3. Meet with the customer and (using the detailed estimate), explain why the

imposed deadline is unrealistic. Be certain to note that all estimates are

based on performance on past projects. Also be certain to indicate the

percent improvement that would be required to achieve the deadline as it

currently exists.2 The following comment is appropriate:

I think we may have a problem with the delivery date for the XYZ controller software.

I’ve given each of you an abbreviated breakdown of development rates for past soft-

ware projects and an estimate that we’ve done a number of different ways. You’ll note

that I’ve assumed a 20 percent improvement in past development rates, but we still

get a delivery date that’s 14 calendar months rather than 9 months away.

4. Offer the incremental development strategy as an alternative:

We have a few options, and I’d like you to make a decision based on them. First, we

can increase the budget and bring on additional resources so that we’ll have a shot at

getting this job done in nine months. But understand that this will increase the risk of

poor quality due to the tight time line.3 Second, we can remove a number of the soft-

ware functions and capabilities that you’re requesting. This will make the preliminary

CHAPTER 27 PROJECT SCHEDULING 723

2 If the required improvement is 10 to 25 percent, it may actually be possible to get the job done. But,
more likely, the required improvement in team performance will be greater than 50 percent. This
is an unrealistic expectation.

3 You might also add that increasing the number of people does not reduce calendar time
proportionally.

uote:

“I love deadlines. I
like the whooshing
sound they make
as they fly by.”

Douglas Adams

What should
you do when

management
demands a
deadline that is
impossible?

?

pre75977_ch27.qxd 11/27/08 6:27 PM Page 723

version of the product somewhat less functional, but we can announce all function-

ality and then deliver over the 14-month period. Third, we can dispense with reality

and wish the project complete in nine months. We’ll wind up with nothing that can be

delivered to a customer. The third option, I hope you’ll agree, is unacceptable. Past

history and our best estimates say that it is unrealistic and a recipe for disaster.

There will be some grumbling, but if a solid estimate based on good historical data

is presented, it’s likely that negotiated versions of option 1 or 2 will be chosen. The

unrealistic deadline evaporates.

27.2 PROJECT SCHEDULING

Fred Brooks was once asked how software projects fall behind schedule. His

response was as simple as it was profound: “One day at a time.”

The reality of a technical project (whether it involves building a hydroelectric plant

or developing an operating system) is that hundreds of small tasks must occur to

accomplish a larger goal. Some of these tasks lie outside the mainstream and may

be completed without worry about impact on project completion date. Other tasks

lie on the “critical path.” If these “critical” tasks fall behind schedule, the completion

date of the entire project is put into jeopardy.

As a project manager, your objective is to define all project tasks, build a network

that depicts their interdependencies, identify the tasks that are critical within the

network, and then track their progress to ensure that delay is recognized “one day

at a time.” To accomplish this, you must have a schedule that has been defined at a

degree of resolution that allows progress to be monitored and the project to be

controlled.

Software project scheduling is an action that distributes estimated effort across the

planned project duration by allocating the effort to specific software engineering

tasks. It is important to note, however, that the schedule evolves over time. During

early stages of project planning, a macroscopic schedule is developed. This type of

schedule identifies all major process framework activities and the product functions

to which they are applied. As the project gets under way, each entry on the macro-

scopic schedule is refined into a detailed schedule. Here, specific software actions

and tasks (required to accomplish an activity) are identified and scheduled.

Scheduling for software engineering projects can be viewed from two rather dif-

ferent perspectives. In the first, an end date for release of a computer-based system

has already (and irrevocably) been established. The software organization is con-

strained to distribute effort within the prescribed time frame. The second view of

software scheduling assumes that rough chronological bounds have been discussed

but that the end date is set by the software engineering organization. Effort is

distributed to make best use of resources, and an end date is defined after careful

analysis of the software. Unfortunately, the first situation is encountered far more

frequently than the second.

724 PART FOUR MANAGING SOFTWARE PROJECTS

The tasks required to
achieve a project
manager’s objective
should not be
performed manually.
There are many
excellent scheduling
tools. Use them.

uote:

“Overly optimistic
scheduling doesn’t
result in shorter
actual schedules, it
results in longer
ones.”

Steve McConnell

pre75977_ch27.qxd 11/27/08 6:27 PM Page 724

27.2.1 Basic Principles

Like all other areas of software engineering, a number of basic principles guide

software project scheduling:

Compartmentalization. The project must be compartmentalized into a number of

manageable activities and tasks. To accomplish compartmentalization, both the

product and the process are refined.

Interdependency. The interdependency of each compartmentalized activity or

task must be determined. Some tasks must occur in sequence, while others can

occur in parallel. Some activities cannot commence until the work product pro-

duced by another is available. Other activities can occur independently.

Time allocation. Each task to be scheduled must be allocated some number of

work units (e.g., person-days of effort). In addition, each task must be assigned a

start date and a completion date that are a function of the interdependencies and

whether work will be conducted on a full-time or part-time basis.

Effort validation. Every project has a defined number of people on the software

team. As time allocation occurs, you must ensure that no more than the allocated

number of people has been scheduled at any given time. For example, consider a

project that has three assigned software engineers (e.g., three person-days are

available per day of assigned effort4). On a given day, seven concurrent tasks must

be accomplished. Each task requires 0.50 person-days of effort. More effort has

been allocated than there are people to do the work.

Defined responsibilities. Every task that is scheduled should be assigned to a

specific team member.

Defined outcomes. Every task that is scheduled should have a defined outcome.

For software projects, the outcome is normally a work product (e.g., the design of

a component) or a part of a work product. Work products are often combined in

deliverables.

Defined milestones. Every task or group of tasks should be associated with a

project milestone. A milestone is accomplished when one or more work products

has been reviewed for quality (Chapter 15) and has been approved.

Each of these principles is applied as the project schedule evolves.

27.2.2 The Relationship Between People and Effort

In a small software development project a single person can analyze requirements,

perform design, generate code, and conduct tests. As the size of a project increases,

more people must become involved. (We can rarely afford the luxury of approaching

a 10 person-year effort with one person working for 10 years!)

CHAPTER 27 PROJECT SCHEDULING 725

4 In reality, less than three person-days of effort are available because of unrelated meetings, sick-
ness, vacation, and a variety of other reasons. For our purposes, however, we assume 100 percent
availability.

When you develop
a schedule,
compartmentalize the
work, note task
interdependencies,
allocate effort and
time to each task, and
define responsibilities,
outcomes, and
milestones.

pre75977_ch27.qxd 11/27/08 6:27 PM Page 725

There is a common myth that is still believed by many managers who are

responsible for software development projects: “If we fall behind schedule, we can

always add more programmers and catch up later in the project.” Unfortunately,

adding people late in a project often has a disruptive effect on the project, causing

schedules to slip even further. The people who are added must learn the system, and

the people who teach them are the same people who were doing the work. While

teaching, no work is done, and the project falls further behind.

In addition to the time it takes to learn the system, more people increase the num-

ber of communication paths and the complexity of communication throughout a

project. Although communication is absolutely essential to successful software

development, every new communication path requires additional effort and there-

fore additional time.

Over the years, empirical data and theoretical analysis have demonstrated that

project schedules are elastic. That is, it is possible to compress a desired project com-

pletion date (by adding additional resources) to some extent. It is also possible to

extend a completion date (by reducing the number of resources).

The Putnam-Norden-Rayleigh (PNR) Curve5 provides an indication of the relation-

ship between effort applied and delivery time for a software project. A version of

the curve, representing project effort as a function of delivery time, is shown in

Figure 27.1. The curve indicates a minimum value to that indicates the least cost for

delivery (i.e., the delivery time that will result in the least effort expended). As we

move left of to (i.e., as we try to accelerate delivery), the curve rises nonlinearly.

As an example, we assume that a project team has estimated a level of effort Ed

will be required to achieve a nominal delivery time td that is optimal in terms of

726 PART FOUR MANAGING SOFTWARE PROJECTS

If you must add people
to a late project, be
sure that you’ve
assigned them work
that is highly compart-
mentalized.

5 Original research can be found in [Nor70] and [Put78].

If delivery can be
delayed, the PNR curve
indicates that project
costs can be reduced
substantially.

Effort
cost

Ed

Ea = m (td4/ta4)

Eo

td to Development time
Tmin = 0.75Td

Impossible
region

Ea = effort in person-months
td = nominal delivery time for schedule
to = optimal development time (in terms of cost)
ta = actual delivery time desired

FIGURE 27.1

The relation-
ship between
effort and
delivery time

pre75977_ch27.qxd 11/27/08 6:27 PM Page 726

schedule and available resources. Although it is possible to accelerate delivery, the

curve rises very sharply to the left of td. In fact, the PNR curve indicates that the proj-

ect delivery time cannot be compressed much beyond 0.75td. If we attempt further

compression, the project moves into “the impossible region” and risk of failure be-

comes very high. The PNR curve also indicates that the lowest cost delivery option,

to � 2td. The implication here is that delaying project delivery can reduce costs

significantly. Of course, this must be weighed against the business cost associated

with the delay.

The software equation [Put92] introduced in Chapter 26 is derived from the PNR

curve and demonstrates the highly nonlinear relationship between chronological

time to complete a project and human effort applied to the project. The number of

delivered lines of code (source statements), L, is related to effort and development

time by the equation:

L � P � E1/3t4/3

where E is development effort in person-months, P is a productivity parameter that

reflects a variety of factors that lead to high-quality software engineering work

(typical values for P range between 2000 and 12,000), and t is the project duration in

calendar months.

Rearranging this software equation, we can arrive at an expression for develop-

ment effort E:

E � (27.1)

where E is the effort expended (in person-years) over the entire life cycle for software

development and maintenance and t is the development time in years. The equation

for development effort can be related to development cost by the inclusion of a

burdened labor rate factor ($/person-year).

This leads to some interesting results. Consider a complex, real-time software

project estimated at 33,000 LOC, 12 person-years of effort. If eight people are assigned

to the project team, the project can be completed in approximately 1.3 years. If, how-

ever, we extend the end date to 1.75 years, the highly nonlinear nature of the model

described in Equation (27.1) yields:

E � ~ 3.8 person-years

This implies that, by extending the end date by six months, we can reduce the

number of people from eight to four! The validity of such results is open to debate,

but the implication is clear: benefit can be gained by using fewer people over a some-

what longer time span to accomplish the same objective.

27.2.3 Effort Distribution

Each of the software project estimation techniques discussed in Chapter 26 leads

to estimates of work units (e.g., person-months) required to complete software

L3

P3t4

L3

P3t4

CHAPTER 27 PROJECT SCHEDULING 727

As the project deadline
becomes tighter and
tighter, you reach a
point at which the
work cannot be
completed on
schedule, regardless of
the number of people
doing the work. Face
reality and define a
new delivery date.

pre75977_ch27.qxd 11/27/08 6:27 PM Page 727

development. A recommended distribution of effort across the software process is

often referred to as the 40–20–40 rule. Forty percent of all effort is allocated to front-

end analysis and design. A similar percentage is applied to back-end testing. You can

correctly infer that coding (20 percent of effort) is deemphasized.

This effort distribution should be used as a guideline only.6 The characteristics of

each project dictate the distribution of effort. Work expended on project planning

rarely accounts for more than 2 to 3 percent of effort, unless the plan commits an

organization to large expenditures with high risk. Customer communication and

requirements analysis may comprise 10 to 25 percent of project effort. Effort ex-

pended on analysis or prototyping should increase in direct proportion with project

size and complexity. A range of 20 to 25 percent of effort is normally applied to soft-

ware design. Time expended for design review and subsequent iteration must also

be considered.

Because of the effort applied to software design, code should follow with rela-

tively little difficulty. A range of 15 to 20 percent of overall effort can be achieved.

Testing and subsequent debugging can account for 30 to 40 percent of software

development effort. The criticality of the software often dictates the amount of test-

ing that is required. If software is human rated (i.e., software failure can result in loss

of life), even higher percentages are typical.

27.3 DEFINING A TASK SET FOR THE SOFTWARE PROJECT

Regardless of the process model that is chosen, the work that a software team per-

forms is achieved through a set of tasks that enable you to define, develop, and ulti-

mately support computer software. No single task set is appropriate for all projects.

The set of tasks that would be appropriate for a large, complex system would likely

be perceived as overkill for a small, relatively simple software product. Therefore, an

effective software process should define a collection of task sets, each designed to

meet the needs of different types of projects.

As I noted in Chapter 2, a task set is a collection of software engineering work

tasks, milestones, work products, and quality assurance filters that must be accom-

plished to complete a particular project. The task set must provide enough discipline

to achieve high software quality. But, at the same time, it must not burden the proj-

ect team with unnecessary work.

In order to develop a project schedule, a task set must be distributed on the proj-

ect time line. The task set will vary depending upon the project type and the degree

of rigor with which the software team decides to do its work. Although it is difficult

728 PART FOUR MANAGING SOFTWARE PROJECTS

6 Today, the 40-20-40 rule is under attack. Some believe that more than 40 percent of overall effort
should be expended during analysis and design. On the other hand, some proponents of agile
development (Chapter 3) argue that less time should be expended “up front” and that a team should
move quickly to construction.

How should
effort be

distributed across
the software
process
workflow?

?

pre75977_ch27.qxd 11/27/08 6:27 PM Page 728

to develop a comprehensive taxonomy of software project types, most software

organizations encounter the following projects:

1. Concept development projects that are initiated to explore some new business

concept or application of some new technology.

2. New application development projects that are undertaken as a consequence

of a specific customer request.

3. Application enhancement projects that occur when existing software under-

goes major modifications to function, performance, or interfaces that are

observable by the end user.

4. Application maintenance projects that correct, adapt, or extend existing soft-

ware in ways that may not be immediately obvious to the end user.

5. Reengineering projects that are undertaken with the intent of rebuilding an

existing (legacy) system in whole or in part.

Even within a single project type, many factors influence the task set to be chosen.

These include [Pre05]: size of the project, number of potential users, mission criti-

cality, application longevity, stability of requirements, ease of customer/developer

communication, maturity of applicable technology, performance constraints, em-

bedded and nonembedded characteristics, project staff, and reengineering factors.

When taken in combination, these factors provide an indication of the degree of rigor

with which the software process should be applied.

27.3.1 A Task Set Example

Concept development projects are initiated when the potential for some new tech-

nology must be explored. There is no certainty that the technology will be applica-

ble, but a customer (e.g., marketing) believes that potential benefit exists. Concept

development projects are approached by applying the following actions:

1.1 Concept scoping determines the overall scope of the project.

1.2 Preliminary concept planning establishes the organization’s ability to

undertake the work implied by the project scope.

1.3 Technology risk assessment evaluates the risk associated with the

technology to be implemented as part of the project scope.

1.4 Proof of concept demonstrates the viability of a new technology in the

software context.

1.5 Concept implementation implements the concept representation in a

manner that can be reviewed by a customer and is used for “marketing”

purposes when a concept must be sold to other customers or management.

1.6 Customer reaction to the concept solicits feedback on a new technology

concept and targets specific customer applications.

CHAPTER 27 PROJECT SCHEDULING 729

WebRef
An adaptable process
model (APM) has been
developed to assist in
defining task sets for
various software
projects. A complete
description of the APM
can be found at www
.rspa.com/apm.

pre75977_ch27.qxd 11/27/08 6:27 PM Page 729

A quick scan of these actions should yield few surprises. In fact, the software

engineering flow for concept development projects (and for all other types of proj-

ects as well) is little more than common sense.

27.3.2 Refinement of Software Engineering Actions

The software engineering actions described in the preceding section may be used to

define a macroscopic schedule for a project. However, the macroscopic schedule

must be refined to create a detailed project schedule. Refinement begins by taking

each action and decomposing it into a set of tasks (with related work products and

milestones).

As an example of task decomposition, consider Action 1.1, Concept Scoping.

Task refinement can be accomplished using an outline format, but in this book,

a process design language approach is used to illustrate the flow of the concept

scoping action:

Task definition: Action 1.1 Concept Scoping

1.1.1 Identify need, benefits and potential customers;

1.1.2 Define desired output/control and input events that drive the application;

Begin Task 1.1.2

1.1.2.1 TR: Review written description of need7

1.1.2.2 Derive a list of customer visible outputs/inputs

1.1.2.3 TR: Review outputs/inputs with customer and revise as required; endtask

Task 1.1.2

1.1.3 Define the functionality/behavior for each major function;

Begin Task 1.1.3

1.1.3.1 TR: Review output and input data objects derived in task 1.1.2;

1.1.3.2 Derive a model of functions/behaviors;

1.1.3.3 TR: Review functions/behaviors with customer and revise as required;

endtask Task 1.1.3

1.1.4 Isolate those elements of the technology to be implemented in software;

1.1.5 Research availability of existing software;

1.1.6 Define technical feasibility;

1.1.7 Make quick estimate of size;

1.1.8 Create a scope definition;

endtask definition: Action 1.1

The tasks and subtasks noted in the process design language refinement form the

basis for a detailed schedule for the concept scoping action.

730 PART FOUR MANAGING SOFTWARE PROJECTS

7 TR indicates that a technical review (Chapter 15) is to be conducted.

pre75977_ch27.qxd 11/27/08 6:27 PM Page 730

27.4 DEFINING A TASK NETWORK

Individual tasks and subtasks have interdependencies based on their sequence. In

addition, when more than one person is involved in a software engineering project,

it is likely that development activities and tasks will be performed in parallel. When

this occurs, concurrent tasks must be coordinated so that they will be complete when

later tasks require their work product(s).

A task network, also called an activity network, is a graphic representation of the

task flow for a project. It is sometimes used as the mechanism through which task

sequence and dependencies are input to an automated project scheduling tool. In its

simplest form (used when creating a macroscopic schedule), the task network

depicts major software engineering actions. Figure 27.2 shows a schematic task

network for a concept development project.

The concurrent nature of software engineering actions leads to a number of

important scheduling requirements. Because parallel tasks occur asynchronously,

you should determine intertask dependencies to ensure continuous progress toward

completion. In addition, you should be aware of those tasks that lie on the critical

path. That is, tasks that must be completed on schedule if the project as a whole is

to be completed on schedule. These issues are discussed in more detail later in this

chapter.

It is important to note that the task network shown in Figure 27.2 is macroscopic.

In a detailed task network (a precursor to a detailed schedule), each action shown in

the figure would be expanded. For example, Task 1.1 would be expanded to show all

tasks detailed in the refinement of Actions 1.1 shown in Section 27.3.2.

CHAPTER 27 PROJECT SCHEDULING 731

I.1
Concept
scoping

I.2
Concept
planning

I.3b
Tech. risk

assessment

I.4
Proof of
concept

I.5b
Concept

implement

Integrate
a, b, c

I.6
Customer
reaction

I.3a
Tech. risk

assessment

I.5a
Concept

implement

I.3c
Tech. risk

assessment

I.5c
Concept

implement

Three I.5 tasks are
applied in parallel to
3 different concept
functions

FIGURE 27.2 A task network for concept development

The task network is a
useful mechanism for
depicting intertask
dependencies and
determining the
critical path.

pre75977_ch27.qxd 11/27/08 6:27 PM Page 731

27.5 SCHEDULING

Scheduling of a software project does not differ greatly from scheduling of any mul-

titask engineering effort. Therefore, generalized project scheduling tools and tech-

niques can be applied with little modification for software projects.

Program evaluation and review technique (PERT) and the critical path method (CPM)

are two project scheduling methods that can be applied to software development. Both

techniques are driven by information already developed in earlier project planning

activities: estimates of effort, a decomposition of the product function, the selection of

the appropriate process model and task set, and decomposition of the tasks that are

selected.

Interdependencies among tasks may be defined using a task network. Tasks,

sometimes called the project work breakdown structure (WBS), are defined for the

product as a whole or for individual functions.

Both PERT and CPM provide quantitative tools that allow you to (1) determine the

critical path—the chain of tasks that determines the duration of the project, (2) establish

“most likely” time estimates for individual tasks by applying statistical models, and

(3) calculate “boundary times” that define a time “window” for a particular task.

27.5.1 Time-Line Charts

When creating a software project schedule, you begin with a set of tasks (the work

breakdown structure). If automated tools are used, the work breakdown is input as

732 PART FOUR MANAGING SOFTWARE PROJECTS

uote:

“All we have to
decide is what to
do with the time
that is given to us.”

Gandalf in The
Lord of the
Rings:
Fellowship of
the Rings

Project Scheduling

Objective: The objective of project
scheduling tools is to enable a project manager

to define work tasks; establish their dependencies; assign
human resources to tasks; and develop a variety of
graphs, charts, and tables that aid in tracking and control
of the software project.

Mechanics: In general, project scheduling tools require
the specification of a work breakdown structure of tasks
or the generation of a task network. Once the task
breakdown (an outline) or network is defined, start and
end dates, human resources, hard deadlines, and other
data are attached to each. The tool then generates a
variety of time-line charts and other tables that enable a
manager to assess the task flow of a project. These data
can be updated continually as the project is under way.

Representative Tools:8

AMS Realtime, developed by Advanced Management
Systems (www.amsusa.com), provides scheduling
capabilities for projects of all sizes and types.

Microsoft Project, developed by Microsoft
(www.microsoft.com), is the most widely used
PC-based project scheduling tool.

4C, developed by 4C Systems (www.4csys.com),
supports all aspects of project planning including
scheduling.

A comprehensive list of project management software
vendors and products can be found at www.infogoal
.com/pmc/pmcswr.htm.

SOFTWARE TOOLS

8 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.
In most cases, tool names are trademarked by their respective developers.

pre75977_ch27.qxd 11/27/08 6:27 PM Page 732

http://www.amsusa.com
http://www.microsoft.com
http://www.4csys.com
http://www.infogoal

a task network or task outline. Effort, duration, and start date are then input for each

task. In addition, tasks may be assigned to specific individuals.

As a consequence of this input, a time-line chart, also called a Gantt chart, is

generated. A time-line chart can be developed for the entire project. Alternatively,

separate charts can be developed for each project function or for each individual

working on the project.

Figure 27.3 illustrates the format of a time-line chart. It depicts a part of a software

project schedule that emphasizes the concept scoping task for a word-processing

(WP) software product. All project tasks (for concept scoping) are listed in the left-

hand column. The horizontal bars indicate the duration of each task. When multiple

bars occur at the same time on the calendar, task concurrency is implied. The dia-

monds indicate milestones.

Once the information necessary for the generation of a time-line chart has been

input, the majority of software project scheduling tools produce project tables—a tab-

ular listing of all project tasks, their planned and actual start and end dates, and a

variety of related information (Figure 27.4). Used in conjunction with the time-line

chart, project tables enable you to track progress.

CHAPTER 27 PROJECT SCHEDULING 733

A time-line chart
enables you to
determine what tasks
will be conducted at a
given point in time.

Identify needs and benefits
Meet with customers
Identify needs and project constraints
Establish product statement
Milestone: Product statement defined
Define desired output/control/input (OCI)
Scope keyboard functions
Scope voice input functions
Scope modes of interaction
Scope document diagnosis
Scope other WP functions
Document OCI
FTR: Review OCI with customer
Revise OCI as required
Milestone: OCI defined
Define the function/behavior
Define keyboard functions
Define voice input functions
Describe modes of interaction
Describe spell/grammar check
Describe other WP functions
FTR: Review OCI definition with customer
Revise as required
Milestone: OCI definition complete
Isolation software elements
Milestone: Software elements defined
Research availability of existing software
Research text editing components
Research voice input components
Research file management components
Research spell/grammar check components
Milestone: Reusable components identified
Define technical feasibility
Evaluate voice input
Evaluate grammar checking
Milestone: Technical feasibility assessed
Make quick estimate of size
Create a scope definition
Review scope document with customer
Revise document as required
Milestone: Scope document complete

I.1.1

I.1.2

I.1.3

I.1.4

I.1.5

I.1.6

I.1.7
I.1.8

Work tasks Week 1 Week 2 Week 3 Week 4 Week 5

FIGURE 27.3 An example time-line chart

pre75977_ch27.qxd 11/27/08 6:27 PM Page 733

27.5.2 Tracking the Schedule

If it has been properly developed, the project schedule becomes a road map that

defines the tasks and milestones to be tracked and controlled as the project

proceeds. Tracking can be accomplished in a number of different ways:

• Conducting periodic project status meetings in which each team member

reports progress and problems

• Evaluating the results of all reviews conducted throughout the software

engineering process

• Determining whether formal project milestones (the diamonds shown in

Figure 27.3) have been accomplished by the scheduled date

• Comparing the actual start date to the planned start date for each project

task listed in the resource table (Figure 27.4)

• Meeting informally with practitioners to obtain their subjective assessment of

progress to date and problems on the horizon

• Using earned value analysis (Section 27.6) to assess progress quantitatively

In reality, all of these tracking techniques are used by experienced project

managers.

Control is employed by a software project manager to administer project

resources, cope with problems, and direct project staff. If things are going well (i.e.,

the project is on schedule and within budget, reviews indicate that real progress is

being made and milestones are being reached), control is light. But when problems

734 PART FOUR MANAGING SOFTWARE PROJECTS

Planned
start

Actual
start

Planned
complete

Actual
complete

Assigned
person

Effort
allocated Notes

wk1, d1
wk1, d2
wk1, d3
wk1, d3

wk1, d4
wk1, d3
wk2, d1
wk2, d1
wk1, d4
wk2, d1
wk2, d3
wk2, d4
wk2, d5

wk1, d1
wk1, d2
wk1, d3
wk1, d3

wk1, d4
wk1, d3

wk1, d4

wk1, d2
wk1, d2
wk1, d3
wk1, d3

wk2, d2
wk2, d2
wk2, d3
wk2, d2
wk2, d3
wk2, d3
wk2, d3
wk2, d4
wk2, d5

wk1, d2
wk1, d2
wk1, d3
wk1, d3

BLS
JPP
BLS/JPP

BLS
JPP
MLL
BLS
JPP
MLL
all
all

2 p-d
1 p-d
1 p-d

1.5 p-d
2 p-d
1 p-d
1.5 p-d
2 p-d
3 p-d
3 p-d
3 p-d

Scoping will
require more
effort/time

Work tasks

Identify needs and benefits
Meet with customers
Identify needs and project constraints
Establish product statement
Milestone: Product statement defined
Define desired output/control/input (OCI)
Scope keyboard functions
Scope voice input functions
Scope modes of interaction
Scope document diagnostics
Scope other WP functions
Document OCI
FTR: Review OCI with customer
Revise OCI as required
Milestone: OCI defined
Define the function/behavior

I.1.1

I.1.2

I.1.3

FIGURE 27.4 An example project table

uote:

“The basic rule of
software status
reporting can be
summarized in
a single phrase:
‘No surprises’.”

Capers Jones

The best indication
of progress is the
completion and
successful review of
a defined software
work product.

pre75977_ch27.qxd 11/27/08 6:27 PM Page 734

occur, you must exercise control to reconcile them as quickly as possible. After a

problem has been diagnosed, additional resources may be focused on the problem

area: staff may be redeployed or the project schedule can be redefined.

When faced with severe deadline pressure, experienced project managers some-

times use a project scheduling and control technique called time-boxing [Jal04]. The

time-boxing strategy recognizes that the complete product may not be deliverable by

the predefined deadline. Therefore, an incremental software paradigm (Chapter 2) is

chosen, and a schedule is derived for each incremental delivery.

The tasks associated with each increment are then time-boxed. This means that

the schedule for each task is adjusted by working backward from the delivery date

for the increment. A “box” is put around each task. When a task hits the boundary of

its time box (plus or minus 10 percent), work stops and the next task begins.

The initial reaction to the time-boxing approach is often negative: “If the work

isn’t finished, how can we proceed?” The answer lies in the way work is accom-

plished. By the time the time-box boundary is encountered, it is likely that 90 percent

of the task has been completed.9 The remaining 10 percent, although important, can

(1) be delayed until the next increment or (2) be completed later if required. Rather

than becoming “stuck” on a task, the project proceeds toward the delivery date.

27.5.3 Tracking Progress for an OO Project

Although an iterative model is the best framework for an OO project, task parallelism

makes project tracking difficult. You may have difficulty establishing meaningful

milestones for an OO project because a number of different things are happening

at once. In general, the following major milestones can be considered “completed”

when the criteria noted have been met.

Technical milestone: OO analysis completed

• All classes and the class hierarchy have been defined and reviewed.

• Class attributes and operations associated with a class have been defined

and reviewed.

• Class relationships (Chapter 6) have been established and reviewed.

• A behavioral model (Chapter 7) has been created and reviewed.

• Reusable classes have been noted.

Technical milestone: OO design completed

• The set of subsystems has been defined and reviewed.

• Classes are allocated to subsystems and reviewed.

• Task allocation has been established and reviewed.

CHAPTER 27 PROJECT SCHEDULING 735

9 A cynic might recall the saying: “The first 90 percent of the system takes 90 percent of the time; the
remaining 10 percent of the system takes 90 percent of the time.”

When the defined
completion date of a
time-boxed task is
reached, work ceases
for that task and the
next task begins.

pre75977_ch27.qxd 11/27/08 6:27 PM Page 735

• Responsibilities and collaborations have been identified.

• Attributes and operations have been designed and reviewed.

• The communication model has been created and reviewed.

Technical milestone: OO programming completed

• Each new class has been implemented in code from the design model.

• Extracted classes (from a reuse library) have been implemented.

• Prototype or increment has been built.

Technical milestone: OO testing

• The correctness and completeness of OO analysis and design models has

been reviewed.

• A class-responsibility-collaboration network (Chapter 6) has been developed

and reviewed.

• Test cases are designed, and class-level tests (Chapter 19) have been

conducted for each class.

• Test cases are designed, and cluster testing (Chapter 19) is completed and the

classes are integrated.

• System-level tests have been completed.

Recalling that the OO process model is iterative, each of these milestones may be

revisited as different increments are delivered to the customer.

27.5.4 Scheduling for WebApp Projects

WebApp project scheduling distributes estimated effort across the planned time line

(duration) for building each WebApp increment. This is accomplished by allocating

the effort to specific tasks. It is important to note, however, that the overall WebApp

schedule evolves over time. During the first iteration, a macroscopic schedule is

developed. This type of schedule identifies all WebApp increments and projects the

dates on which each will be deployed. As the development of an increment gets

under way, the entry for the increment on the macroscopic schedule is refined into

a detailed schedule. Here, specific development tasks (required to accomplish an

activity) are identified and scheduled.

As an example of macroscopic scheduling, consider the SafeHomeAssured.com
WebApp. Recalling earlier discussions of SafeHomeAssured.com, seven increments

can be identified for the Web-based component of the project:

Increment 1: Basic company and product information

Increment 2: Detailed product information and downloads

Increment 3: Product quotes and processing product orders

Increment 4: Space layout and security system design

736 PART FOUR MANAGING SOFTWARE PROJECTS

Debugging and testing
occur in concert with
one another. The
status of debugging is
often assessed by
considering the type
and number of “open”
errors (bugs).

pre75977_ch27.qxd 11/27/08 6:28 PM Page 736

Increment 5: Information and ordering of monitoring services

Increment 6: Online control of monitoring equipment

Increment 7: Accessing account information

The team consults and negotiates with stakeholders and develops a preliminary

deployment schedule for all seven increments. A time-line chart for this schedule is

illustrated in Figure 27.5.

It is important to note that the deployment dates (represented by diamonds on the

time-line chart) are preliminary and may change as more detailed scheduling of the

increments occurs. However, this macroscopic schedule provides management with

an indication of when content and functionality will be available and when the entire

project will be completed. As a preliminary estimate, the team will work to deploy all

increments with a 12-week time line. It’s also worth noting that some of the incre-

ments will be developed in parallel (e.g., increments 3, 4, 6 and 7). This assumes that

the team will have sufficient people to do this parallel work.

Once the macroscopic schedule has been developed, the team is ready to sched-

ule work tasks for a specific increment. To accomplish this, you can use a generic

process framework that is applicable for all WebApp increments. A task list is created

by using the generic tasks derived as part of the framework as a starting point and

then adapting these by considering the content and functions to be derived for a

specific WebApp increment.

Each framework action (and its related tasks) can be adapted in one of four ways:

(1) a task is applied as is, (2) a task is eliminated because it is not necessary for the

CHAPTER 27 PROJECT SCHEDULING 737

#1.
Basic company and product information

Weeks

Increments 1 2 3 4 5 6 7 8 9 10 11 12 13

#2.
Detailed product information and downloads

#3.
Product quotes and processing product orders

#4.
Space layout and security system design

#5.
Information and ordering of monitoring services

#6.
On line control of monitoring equipment

#7.
Accessing account information

FIGURE 27.5 Time line for macroscopic project schedule

pre75977_ch27.qxd 11/27/08 6:28 PM Page 737

increment, (3) a new (custom) task is added, and (4) a task is refined (elaborated) into

a number of named subtasks that each becomes part of the schedule.

To illustrate, consider a generic design modeling action for WebApps that can be

accomplished by applying some or all of the following tasks:

• Design the aesthetic for the WebApp.

• Design the interface.

• Design the navigation scheme.

• Design the WebApp architecture.

• Design the content and the structure that supports it.

• Design functional components.

• Design appropriate security and privacy mechanisms.

• Review the design.

As an example, consider the generic task Design the Interface as it is applied to the

fourth increment of SafeHomeAssured.com. Recall that the fourth increment

implements the content and function for describing the living or business space to

be secured by the SafeHome security system. Referring to Figure 27.5, the fourth

increment commences at the beginning of the fifth week and terminates at the end

of the ninth week.

There is little question that the Design the Interface task must be conducted. The

team recognizes that the interface design is pivotal to the success of the increment

and decides to refine (elaborate) the task. The following subtasks are derived for the

Design the Interface task for the fourth increment:

• Develop a sketch of the page layout for the space design page.

• Review layout with stakeholders.

• Design space layout navigation mechanisms.

• Design “drawing board” layout.10

• Develop procedural details for the graphical wall layout function.

• Develop procedural details for the wall length computation and display

function.

• Develop procedural details for the graphical window layout function.

• Develop procedural details for the graphical door layout function.

• Design mechanisms for selecting security system components (sensors,

cameras, microphones, etc.).

738 PART FOUR MANAGING SOFTWARE PROJECTS

10 At this stage, the team envisions creating the space by literally drawing the walls, windows, and
doors using graphical functions. Wall lines will “snap” onto grip points. Dimensions of the wall will
be displayed automatically. Windows and doors will be positioned graphically. The end user can
also select specific sensors, cameras, etc., and position them once the space has been defined.

pre75977_ch27.qxd 11/27/08 6:28 PM Page 738

• Develop procedural details for the graphical layout of security system

components.

• Conduct pair walkthroughs as required.

These tasks become part of the increment schedule for the fourth WebApp incre-

ment and are allocated over the increment development schedule. They can be input

to scheduling software and used for tracking and control.

CHAPTER 27 PROJECT SCHEDULING 739

Tracking the Schedule

The scene: Doug Miller’s office prior
to the initiation of the SafeHome software project.

The players: Doug Miller (manager of the SafeHome
software engineering team) and Vinod Raman, Jamie
Lazar, and other members of the product software
engineering team.

The conversation:

Doug (glancing at a PowerPoint slide): The
schedule for the first SafeHome increment seems
reasonable, but we’re going to have trouble tracking
progress.

Vinod (a concerned look on his face): Why? We
have tasks scheduled on a daily basis, plenty of work
products, and we’ve been sure that we’re not
overallocating resources.

Doug: All good, but how do we know when the
requirements model for the first increment is complete?

Jamie: Things are iterative, so that’s difficult.

Doug: I understand that, but . . . well, for instance, take
“analysis classes defined.” You indicated that as a
milestone.

Vinod: We have.

Doug: Who makes that determination?

Jamie (aggravated): They’re done when they’re
done.

Doug: That’s not good enough, Jamie. We have to
schedule TRs [technical reviews, Chapter 15], and you
haven’t done that. The successful completion of a review
on the analysis model, for instance, is a reasonable
milestone. Understand?

Jamie (frowning): Okay, back to the drawing board.

Doug: It shouldn’t take more than an hour to make the
corrections . . . everyone else can get started now.

SAFEHOME

27.6 EARNED VALUE ANALYSIS

In Section 27.5, I discussed a number of qualitative approaches to project tracking.

Each provides the project manager with an indication of progress, but an assessment

of the information provided is somewhat subjective. It is reasonable to ask whether

there is a quantitative technique for assessing progress as the software team pro-

gresses through the work tasks allocated to the project schedule. In fact, a technique

for performing quantitative analysis of progress does exist. It is called earned value

analysis (EVA). Humphrey [Hum95] discusses earned value in the following manner:

The earned value system provides a common value scale for every [software project]

task, regardless of the type of work being performed. The total hours to do the whole

project are estimated, and every task is given an earned value based on its estimated

percentage of the total.

Earned value provides
a quantitative
indication of progress.

pre75977_ch27.qxd 11/27/08 6:28 PM Page 739

Stated even more simply, earned value is a measure of progress. It enables you to

assess the “percent of completeness” of a project using quantitative analysis rather

than rely on a gut feeling. In fact, Fleming and Koppleman [Fle98] argue that earned

value analysis “provides accurate and reliable readings of performance from as early

as 15 percent into the project.” To determine the earned value, the following steps

are performed:

1. The budgeted cost of work scheduled (BCWS) is determined for each work task

represented in the schedule. During estimation, the work (in person-hours or

person-days) of each software engineering task is planned. Hence, BCWSi is

the effort planned for work task i. To determine progress at a given point

along the project schedule, the value of BCWS is the sum of the BCWSi values

for all work tasks that should have been completed by that point in time on

the project schedule.

2. The BCWS values for all work tasks are summed to derive the budget at

completion (BAC). Hence,

BAC � � (BCWSk) for all tasks k

3. Next, the value for budgeted cost of work performed (BCWP) is computed. The

value for BCWP is the sum of the BCWS values for all work tasks that have

actually been completed by a point in time on the project schedule.

Wilkens [Wil99] notes that “the distinction between the BCWS and the BCWP is

that the former represents the budget of the activities that were planned to be com-

pleted and the latter represents the budget of the activities that actually were

completed.” Given values for BCWS, BAC, and BCWP, important progress indicators

can be computed:

Schedule performance index, SPI �

Schedule variance, SV � BCWP � BCWS

SPI is an indication of the efficiency with which the project is utilizing scheduled

resources. An SPI value close to 1.0 indicates efficient execution of the project

schedule. SV is simply an absolute indication of variance from the planned schedule.

Percent scheduled for completion �

provides an indication of the percentage of work that should have been completed

by time t.

Percent complete �

provides a quantitative indication of the percent of completeness of the project at a

given point in time t.

It is also possible to compute the actual cost of work performed (ACWP). The

value for ACWP is the sum of the effort actually expended on work tasks that have

BCWP
BAC

BCWS
BAC

BCWP
BCWS

740 PART FOUR MANAGING SOFTWARE PROJECTS

How do I
compute

earned value and
use it to assess
progress?

?

WebRef
A wide array of earned
value analysis
resources can be found
at www.acq
.osd.mil/pm/.

pre75977_ch27.qxd 11/27/08 6:28 PM Page 740

http://www.acq

been completed by a point in time on the project schedule. It is then possible to

compute

Cost performance index, CPI �

Cost variance, CV � BCWP � ACWP

A CPI value close to 1.0 provides a strong indication that the project is within its

defined budget. CV is an absolute indication of cost savings (against planned costs)

or shortfall at a particular stage of a project.

Like over-the-horizon radar, earned value analysis illuminates scheduling diffi-

culties before they might otherwise be apparent. This enables you to take corrective

action before a project crisis develops.

27.7 SUMMARY

Scheduling is the culmination of a planning activity that is a primary component of

software project management. When combined with estimation methods and risk

analysis, scheduling establishes a road map for the project manager.

Scheduling begins with process decomposition. The characteristics of the project

are used to adapt an appropriate task set for the work to be done. A task network

depicts each engineering task, its dependency on other tasks, and its projected

duration. The task network is used to compute the critical path, a time-line chart, and

a variety of project information. Using the schedule as a guide, you can track and

control each step in the software process.

PROBLEMS AND POINTS TO PONDER

27.1. “Unreasonable” deadlines are a fact of life in the software business. How should you
proceed if you’re faced with one?

27.2. What is the difference between a macroscopic schedule and a detailed schedule? Is it
possible to manage a project if only a macroscopic schedule is developed? Why?

27.3. Is there ever a case where a software project milestone is not tied to a review? If so,
provide one or more examples.

27.4. “Communication overhead” can occur when multiple people work on a software project.
The time spent communicating with others reduces individual productively (LOC/month), and
the result can be less productivity for the team. Illustrate (quantitatively) how engineers who are
well versed in good software engineering practices and use technical reviews can increase the
production rate of a team (when compared to the sum of individual production rates). Hint: You
can assume that reviews reduce rework and that rework can account for 20 to 40 percent of a
person’s time.

27.5. Although adding people to a late software project can make it later, there are circum-
stances in which this is not true. Describe them.

27.6. The relationship between people and time is highly nonlinear. Using Putnam’s software
equation (described in Section 27.2.2), develop a table that relates number of people to project

BCWP
ACWP

CHAPTER 27 PROJECT SCHEDULING 741

pre75977_ch27.qxd 11/27/08 6:28 PM Page 741

duration for a software project requiring 50,000 LOC and 15 person-years of effort (the produc-
tivity parameter is 5000 and B � 0.37). Assume that the software must be delivered in 24 months
plus or minus 12 months.

27.7. Assume that you have been contracted by a university to develop an online course reg-
istration system (OLCRS). First, act as the customer (if you’re a student, that should be easy!)
and specify the characteristics of a good system. (Alternatively, your instructor will provide
you with a set of preliminary requirements for the system.) Using the estimation methods dis-
cussed in Chapter 26, develop an effort and duration estimate for OLCRS. Suggest how you
would:

a. Define parallel work activities during the OLCRS project.

b. Distribute effort throughout the project.

c. Establish milestones for the project.

27.8. Select an appropriate task set for the OLCRS project.

27.9. Define a task network for OLCRS described in Problem 27.7, or alternatively, for another
software project that interests you. Be sure to show tasks and milestones and to attach effort
and duration estimates to each task. If possible, use an automated scheduling tool to perform
this work.

27.10. If an automated scheduling tool is available, determine the critical path for the network
defined in Problem 27.9.

27.11. Using a scheduling tool (if available) or paper and pencil (if necessary), develop a time-
line chart for the OLCRS project.

27.12. Assume you are a software project manager and that you’ve been asked to compute
earned value statistics for a small software project. The project has 56 planned work tasks that
are estimated to require 582 person-days to complete. At the time that you’ve been asked to do
the earned value analysis, 12 tasks have been completed. However the project schedule indi-
cates that 15 tasks should have been completed. The following scheduling data (in person-days)
are available:

Task Planned Effort Actual Effort
1 12.0 12.5
2 15.0 11.0
3 13.0 17.0
4 8.0 9.5
5 9.5 9.0
6 18.0 19.0
7 10.0 10.0
8 4.0 4.5
9 12.0 10.0
10 6.0 6.5
11 5.0 4.0
12 14.0 14.5
13 16.0 —
14 6.0 —
15 8.0 —

Compute the SPI, schedule variance, percent scheduled for completion, percent complete, CPI,
and cost variance for the project.

742 PART FOUR MANAGING SOFTWARE PROJECTS

pre75977_ch27.qxd 11/27/08 6:28 PM Page 742

FURTHER READINGS AND INFORMATION SOURCES

Virtually every book written on software project management contains a discussion of sched-
uling. Wysoki (Effective Project Management, Wiley, 2006), Lewis (Project Planning Scheduling and
Control, 4th ed., McGraw-Hill, 2006), Luckey and Phillips (Software Project Management for
Dummies, For Dummies, 2006), Kerzner (Project Management: A Systems Approach to Planning,
Scheduling, and Controlling, 9th ed., Wiley, 2005), Hughes (Software Project Management,
McGraw-Hill, 2005), The Project Management Institute (PMBOK Guide, 3d ed., PMI, 2004), Lewin
(Better Software Project Management, Wiley, 2001), and Bennatan (On Time, Within Budget: Soft-
ware Project Management Practices and Techniques, 3d ed., Wiley, 2000) contain worthwhile dis-
cussions of the subject. Although application specific, Harris (Planning and Scheduling Using
Microsoft Office Project 2007, Eastwood Harris Pty Ltd., 2007) provides a useful discussion of how
scheduling tools can be used to successfully track and control a software project.

Fleming and Koppelman (Earned Value Project Management, 3d ed., Project Management
Institute Publications, 2006), Budd (A Practical Guide to Earned Value Project Management,
Management Concepts, 2005), and Webb and Wake (Using Earned Value: A Project Manager’s
Guide, Ashgate Publishing, 2003) discuss the use of earned value techniques for project
planning, tracking, and control in considerable detail.

A wide variety of information sources on software project scheduling is available on the
Internet. An up-to-date list of World Wide Web references relevant to software project schedul-
ing can be found at the SEPA website: www.mhhe.com/engcs/compsci/pressman/
professional/olc/ser.htm.

CHAPTER 27 PROJECT SCHEDULING 743

pre75977_ch27.qxd 11/27/08 6:28 PM Page 743

http://www.mhhe.com/engcs/compsci/pressman/

In his book on risk analysis and management, Robert Charette [Cha89]
presents a conceptual definition of risk:

First, risk concerns future happenings. Today and yesterday are beyond active

concern, as we are already reaping what was previously sowed by our past actions.

The question is, can we, therefore, by changing our actions today, create an oppor-

tunity for a different and hopefully better situation for ourselves tomorrow. This

means, second, that risk involves change, such as in changes of mind, opinion,

actions, or places. . . . [Third,] risk involves choice, and the uncertainty that choice

itself entails. Thus paradoxically, risk, like death and taxes, is one of the few

certainties of life.

When you consider risk in the context of software engineering, Charette’s

three conceptual underpinnings are always in evidence. The future is your

744

RISK
MANAGEMENT

K E Y
C O N C E P T S

assessment . . .748
identification . .747
projection749
refinement 754
risk categories .746
risk exposure . .753
risk item
checklist748
risk table 750
RMMM 757
safety and
hazards 757
strategies 745

proactive 745
reactive 745

What is it? Risk analysis and
management are actions that help
a software team to understand and
manage uncertainty. Many problems

can plague a software project. A risk is a poten-
tial problem—it might happen, it might not. But,
regardless of the outcome, it’s a really good idea
to identify it, assess its probability of occurrence,
estimate its impact, and establish a contingency
plan should the problem actually occur.

Who does it? Everyone involved in the software
process—managers, software engineers, and
other stakeholders—participate in risk analysis
and management.

Why is it important? Think about the Boy Scout
motto: “Be prepared.” Software is a difficult un-
dertaking. Lots of things can go wrong, and
frankly, many often do. It’s for this reason that
being prepared—understanding the risks and
taking proactive measures to avoid or manage
them—is a key element of good software project
management.

Q U I C K
L O O K

What are the steps? Recognizing what can go
wrong is the first step, called “risk identifica-
tion.” Next, each risk is analyzed to determine
the likelihood that it will occur and the damage
that it will do if it does occur. Once this informa-
tion is established, risks are ranked, by proba-
bility and impact. Finally, a plan is developed to
manage those risks that have high probability
and high impact.

What is the work product? A risk mitigation,
monitoring, and management (RMMM) plan or
a set of risk information sheets is produced.

How do I ensure that I’ve done it right? The
risks that are analyzed and managed should
be derived from thorough study of the people,
the product, the process, and the project. The
RMMM should be revisited as the project pro-
ceeds to ensure that risks are kept up to date.
Contingency plans for risk management should
be realistic.

C H A P T E R

28

pre75977_ch28.qxd 11/27/08 6:29 PM Page 744

concern—what risks might cause the software project to go awry? Change is your

concern—how will changes in customer requirements, development technologies,

target environments, and all other entities connected to the project affect timeliness

and overall success? Last, you must grapple with choices—what methods and tools

should you use, how many people should be involved, how much emphasis on qual-

ity is “enough”?

Peter Drucker [Dru75] once said, “While it is futile to try to eliminate risk, and

questionable to try to minimize it, it is essential that the risks taken be the right risks.”

Before you can identify the “right risks” to be taken during a software project, it is im-

portant to identify all risks that are obvious to both managers and practitioners.

28.1 REACTIVE VERSUS PROACTIVE RISK STRATEGIES

Reactive risk strategies have been laughingly called the “Indiana Jones school of risk

management” [Tho92]. In the movies that carried his name, Indiana Jones, when

faced with overwhelming difficulty, would invariably say, “Don’t worry, I’ll think of

something!” Never worrying about problems until they happened, Indy would react

in some heroic way.

Sadly, the average software project manager is not Indiana Jones and the mem-

bers of the software project team are not his trusty sidekicks. Yet, the majority of

software teams rely solely on reactive risk strategies. At best, a reactive strategy

monitors the project for likely risks. Resources are set aside to deal with them,

should they become actual problems. More commonly, the software team does

nothing about risks until something goes wrong. Then, the team flies into action in

an attempt to correct the problem rapidly. This is often called a fire-fighting mode.

When this fails, “crisis management” [Cha92] takes over and the project is in real

jeopardy.

A considerably more intelligent strategy for risk management is to be proactive.

A proactive strategy begins long before technical work is initiated. Potential risks are

identified, their probability and impact are assessed, and they are ranked by impor-

tance. Then, the software team establishes a plan for managing risk. The primary

objective is to avoid risk, but because not all risks can be avoided, the team works

to develop a contingency plan that will enable it to respond in a controlled and

effective manner. Throughout the remainder of this chapter, I discuss a proactive

strategy for risk management.

28.2 SOFTWARE RISKS

Although there has been considerable debate about the proper definition for soft-

ware risk, there is general agreement that risk always involves two character-

istics: uncertainty—the risk may or may not happen; that is, there are no 100 percent

CHAPTER 28 RISK MANAGEMENT 745

uote:

“If you don't
actively attack the
risks, they will
actively attack
you.”

Tom Gilb

pre75977_ch28.qxd 11/27/08 6:29 PM Page 745

probable risks1—and loss—if the risk becomes a reality, unwanted consequences or

losses will occur [Hig95]. When risks are analyzed, it is important to quantify the

level of uncertainty and the degree of loss associated with each risk. To accomplish

this, different categories of risks are considered.

Project risks threaten the project plan. That is, if project risks become real, it is

likely that the project schedule will slip and that costs will increase. Project risks

identify potential budgetary, schedule, personnel (staffing and organization), re-

source, stakeholder, and requirements problems and their impact on a software proj-

ect. In Chapter 26, project complexity, size, and the degree of structural uncertainty

were also defined as project (and estimation) risk factors.

Technical risks threaten the quality and timeliness of the software to be produced.

If a technical risk becomes a reality, implementation may become difficult or impos-

sible. Technical risks identify potential design, implementation, interface, verifica-

tion, and maintenance problems. In addition, specification ambiguity, technical

uncertainty, technical obsolescence, and “leading-edge” technology are also risk

factors. Technical risks occur because the problem is harder to solve than you

thought it would be.

Business risks threaten the viability of the software to be built and often jeopard-

ize the project or the product. Candidates for the top five business risks are (1) build-

ing an excellent product or system that no one really wants (market risk), (2) building

a product that no longer fits into the overall business strategy for the company

(strategic risk), (3) building a product that the sales force doesn’t understand how to

sell (sales risk), (4) losing the support of senior management due to a change in focus

or a change in people (management risk), and (5) losing budgetary or personnel

commitment (budget risks).

It is extremely important to note that simple risk categorization won’t always

work. Some risks are simply unpredictable in advance.

Another general categorization of risks has been proposed by Charette

[Cha89]. Known risks are those that can be uncovered after careful evaluation of

the project plan, the business and technical environment in which the project is

being developed, and other reliable information sources (e.g., unrealistic delivery

date, lack of documented requirements or software scope, poor development

environment). Predictable risks are extrapolated from past project experience

(e.g., staff turnover, poor communication with the customer, dilution of staff effort

as ongoing maintenance requests are serviced). Unpredictable risks are the joker

in the deck. They can and do occur, but they are extremely difficult to identify in

advance.

746 PART FOUR MANAGING SOFTWARE PROJECTS

What types
of risks are

you likely to
encounter as
software is
built?

?

1 A risk that is 100 percent probable is a constraint on the software project.

uote:

“Projects with no
real risks are
losers. They are
almost always
devoid of benefit;
that's why they
weren't done
years ago.”

Tom DeMarco
and Tim Lister

pre75977_ch28.qxd 11/27/08 6:29 PM Page 746

28.3 RISK IDENTIF ICATION

Risk identification is a systematic attempt to specify threats to the project plan (esti-

mates, schedule, resource loading, etc.). By identifying known and predictable risks,

the project manager takes a first step toward avoiding them when possible and con-

trolling them when necessary.

There are two distinct types of risks for each of the categories that have been pre-

sented in Section 28.2: generic risks and product-specific risks. Generic risks are a

potential threat to every software project. Product-specific risks can be identified only

by those with a clear understanding of the technology, the people, and the environ-

ment that is specific to the software that is to be built. To identify product-specific

risks, the project plan and the software statement of scope are examined, and an

answer to the following question is developed: “What special characteristics of this

product may threaten our project plan?”

One method for identifying risks is to create a risk item checklist. The checklist

can be used for risk identification and focuses on some subset of known and pre-

dictable risks in the following generic subcategories:

• Product size—risks associated with the overall size of the software to be built

or modified.

• Business impact—risks associated with constraints imposed by management

or the marketplace.

CHAPTER 28 RISK MANAGEMENT 747

Seven Principles of Risk Management
The Software Engineering Institute (SEI)

(www.sei.cmu.edu) identifies seven
principles that “provide a framework to accomplish
effective risk management.” They are:

Maintain a global perspective—view software risks
within the context of a system in which it is a
component and the business problem that it is
intended to solve

Take a forward-looking view—think about the risks
that may arise in the future (e.g., due to changes in the
software); establish contingency plans so that future
events are manageable.

Encourage open communication—if someone states
a potential risk, don’t discount it. If a risk is proposed
in an informal manner, consider it. Encourage
all stakeholders and users to suggest risks at any time.

Integrate—a consideration of risk must be integrated
into the software process.

Emphasize a continuous process—the team
must be vigilant throughout the software process,
modifying identified risks as more information is
known and adding new ones as better insight is
achieved.

Develop a shared product vision—if all
stakeholders share the same vision of the software, it is
likely that better risk identification and assessment will
occur.

Encourage teamwork—the talents, skills, and
knowledge of all stakeholders should be pooled
when risk management activities are conducted.

INFO

Although generic risks
are important to
consider, it's the
product-specific risks
that cause the most
headaches. Be certain
to spend the time to
identify as many
product-specific risks
as possible.

pre75977_ch28.qxd 11/27/08 6:29 PM Page 747

http://www.sei.cmu.edu

• Stakeholder characteristics—risks associated with the sophistication of the

stakeholders and the developer’s ability to communicate with stakeholders in

a timely manner.

• Process definition—risks associated with the degree to which the software

process has been defined and is followed by the development organization.

• Development environment—risks associated with the availability and quality

of the tools to be used to build the product.

• Technology to be built—risks associated with the complexity of the system to

be built and the “newness” of the technology that is packaged by the system.

• Staff size and experience—risks associated with the overall technical and

project experience of the software engineers who will do the work.

The risk item checklist can be organized in different ways. Questions relevant to

each of the topics can be answered for each software project. The answers to these

questions allow you to estimate the impact of risk. A different risk item checklist for-

mat simply lists characteristics that are relevant to each generic subcategory. Finally,

a set of “risk components and drivers” [AFC88] are listed along with their probability

of occurrence. Drivers for performance, support, cost, and schedule are discussed in

answer to later questions.

A number of comprehensive checklists for software project risk are available

on the Web (e.g., [Baa07], [NAS07], [Wor04]). You can use these checklists to gain

insight into generic risks for software projects.

28.3.1 Assessing Overall Project Risk

The following questions have been derived from risk data obtained by surveying

experienced software project managers in different parts of the world [Kei98]. The

questions are ordered by their relative importance to the success of a project.

1. Have top software and customer managers formally committed to support

the project?

2. Are end users enthusiastically committed to the project and the system/

product to be built?

3. Are requirements fully understood by the software engineering team and its

customers?

4. Have customers been involved fully in the definition of requirements?

5. Do end users have realistic expectations?

6. Is the project scope stable?

7. Does the software engineering team have the right mix of skills?

8. Are project requirements stable?

9. Does the project team have experience with the technology to be implemented?

748 PART FOUR MANAGING SOFTWARE PROJECTS

Is the
software

project we're
working on at
serious risk?

?

pre75977_ch28.qxd 11/27/08 6:29 PM Page 748

10. Is the number of people on the project team adequate to do the job?

11. Do all customer/user constituencies agree on the importance of the project

and on the requirements for the system/product to be built?

If any one of these questions is answered negatively, mitigation, monitoring, and man-

agement steps should be instituted without fail. The degree to which the project is at

risk is directly proportional to the number of negative responses to these questions.

28.3.2 Risk Components and Drivers

The U.S. Air Force [AFC88] has published a pamphlet that contains excellent guide-

lines for software risk identification and abatement. The Air Force approach requires

that the project manager identify the risk drivers that affect software risk components—

performance, cost, support, and schedule. In the context of this discussion, the risk

components are defined in the following manner:

• Performance risk—the degree of uncertainty that the product will meet its

requirements and be fit for its intended use.

• Cost risk—the degree of uncertainty that the project budget will be

maintained.

• Support risk—the degree of uncertainty that the resultant software will be

easy to correct, adapt, and enhance.

• Schedule risk—the degree of uncertainty that the project schedule will be

maintained and that the product will be delivered on time.

The impact of each risk driver on the risk component is divided into one of four

impact categories—negligible, marginal, critical, or catastrophic. Referring to Fig-

ure 28.1 [Boe89], a characterization of the potential consequences of errors (rows

labeled 1) or a failure to achieve a desired outcome (rows labeled 2) are described.

The impact category is chosen based on the characterization that best fits the

description in the table.

28.4 RISK PROJECTION

Risk projection, also called risk estimation, attempts to rate each risk in two ways—

(1) the likelihood or probability that the risk is real and (2) the consequences of the

problems associated with the risk, should it occur. You work along with other man-

agers and technical staff to perform four risk projection steps:

1. Establish a scale that reflects the perceived likelihood of a risk.

2. Delineate the consequences of the risk.

3. Estimate the impact of the risk on the project and the product.

4. Assess the overall accuracy of the risk projection so that there will be no

misunderstandings.

CHAPTER 28 RISK MANAGEMENT 749

uote:

“Risk management
is project
management for
adults.”

Tim Lister

WebRef
Risk radar is a
database and tools that
help managers identify,
rank, and communicate
project risks. It can be
found at
www.spmn.com

pre75977_ch28.qxd 11/27/08 6:29 PM Page 749

http://www.spmn.com

The intent of these steps is to consider risks in a manner that leads to prioritization.

No software team has the resources to address every possible risk with the same

degree of rigor. By prioritizing risks, you can allocate resources where they will have

the most impact.

28.4.1 Developing a Risk Table

A risk table provides you with a simple technique for risk projection.2 A sample risk

table is illustrated in Figure 28.2.

You begin by listing all risks (no matter how remote) in the first column of the

table. This can be accomplished with the help of the risk item checklists referenced

in Section 28.3. Each risk is categorized in the second column (e.g., PS implies a

750 PART FOUR MANAGING SOFTWARE PROJECTS

Components

Category

Catastrophic

Critical

Marginal

Negligible

Performance Support Cost Schedule

Failure to meet the requirement
would result in mission failure

Significant
degradation to
nonachievement
of technical
performance

Nonresponsive or
unsupportable
software

Significant financial
shortages, budget
overrun likely

Unachievable
IOC

Failure results in increased costs
and schedule delays with expected
values in excess of $500K

1

2

Failure to meet the requirement would
degrade system performance to a point
where mission success is questionable

Some reduction
in technical
performance

Minor delays in
software
modifications

Some shortage of
financial resources,
possible overruns

Possible
slippage
in IOC

Failure results in operational delays
and/or increased costs with expected
value of $100K to $500K

1

2

Failure to meet the requirement would
result in degradation of secondary
mission

Minimal to small
reduction in
technical
performance

Responsive
software
support

Sufficient financial
resources

Realistic,
achievable
schedule

Costs, impacts, and/or recoverable
schedule slips with expected value
of $1K to $100K

1

2

Failure to meet the requirement would
create inconvenience or nonoperational
impact

No reduction in
technical
performance

Easily supportable
software

Possible budget
underrun

Early
achievable
IOC

Error results in minor cost and/or
schedule impact with expected value
of less than $1K

1

2

Note: (1) The potential consequence of undetected software errors or faults.
 (2) The potential consequence if the desired outcome is not achieved.

FIGURE 28.1

Impact
assessment.
Source: [Boe89].

2 The risk table can be implemented as a spreadsheet model. This enables easy manipulation and
sorting of the entries.

Think hard about the
software you're about
to build and ask
yourself, “what can go
wrong?” Create your
own list and ask other
members of the team
to do the same.

pre75977_ch28.qxd 11/27/08 6:29 PM Page 750

project size risk, BU implies a business risk). The probability of occurrence of each

risk is entered in the next column of the table. The probability value for each risk can

be estimated by team members individually. One way to accomplish this is to poll

individual team members in round-robin fashion until their collective assessment of

risk probability begins to converge.

Next, the impact of each risk is assessed. Each risk component is assessed using

the characterization presented in Figure 28.1, and an impact category is determined.

The categories for each of the four risk components—performance, support, cost,

and schedule—are averaged3 to determine an overall impact value.

Once the first four columns of the risk table have been completed, the table is

sorted by probability and by impact. High-probability, high-impact risks percolate to

the top of the table, and low-probability risks drop to the bottom. This accomplishes

first-order risk prioritization.

You can study the resultant sorted table and define a cutoff line. The cutoff line

(drawn horizontally at some point in the table) implies that only risks that lie above

the line will be given further attention. Risks that fall below the line are reevaluated

to accomplish second-order prioritization. Referring to Figure 28.3, risk impact and

CHAPTER 28 RISK MANAGEMENT 751

Risks

Size estimate may be significantly low
Larger number of users than planned
Less reuse than planned
End-users resist system
Delivery deadline will be tightened
Funding will be lost
Customer will change requirements
Technology will not meet expectations
Lack of training on tools
Staff inexperienced
Staff turnover will be high

PS
PS
PS
BU
BU
CU
PS
TE
DE
ST
ST

60%
30%
70%
40%
50%
40%
80%
30%
80%
30%
60%

2
3
2
3
2
1
2
1
3
2
2

Probability

Impact values:
1—catastrophic
2—critical
3—marginal
4—negligible

Impact RMMMCategory

∑
∑
∑

FIGURE 28.2

Sample risk
table prior to
sorting

3 A weighted average can be used if one risk component has more significance for a project.

A risk table is sorted by
probability and impact
to rank risks.

pre75977_ch28.qxd 11/27/08 6:29 PM Page 751

probability have a distinct influence on management concern. A risk factor that has

a high impact but a very low probability of occurrence should not absorb a signifi-

cant amount of management time. However, high-impact risks with moderate to

high probability and low-impact risks with high probability should be carried forward

into the risk analysis steps that follow.

All risks that lie above the cutoff line should be managed. The column labeled

RMMM contains a pointer into a risk mitigation, monitoring, and management plan or,

alternatively, a collection of risk information sheets developed for all risks that lie

above the cutoff. The RMMM plan and risk information sheets are discussed in

Sections 28.5 and 28.6.

Risk probability can be determined by making individual estimates and then

developing a single consensus value. Although that approach is workable, more

sophisticated techniques for determining risk probability have been developed

[AFC88]. Risk drivers can be assessed on a qualitative probability scale that has the

following values: impossible, improbable, probable, and frequent. Mathematical

probability can then be associated with each qualitative value (e.g., a probability of

0.7 to 0.99 implies a highly probable risk).

28.4.2 Assessing Risk Impact

Three factors affect the consequences that are likely if a risk does occur: its nature,

its scope, and its timing. The nature of the risk indicates the problems that are likely

if it occurs. For example, a poorly defined external interface to customer hardware

752 PART FOUR MANAGING SOFTWARE PROJECTS

1.0

0

Very low

Very high

Impact

Management
concern

HighDisregard
risk factor

Probability
of occurrence

FIGURE 28.3

Risk and
management
concern

uote:

“[Today,] no one
has the luxury of
getting to know a
task so well that it
holds no surprises,
and surprises mean
risk.”

Stephen Grey

pre75977_ch28.qxd 11/27/08 6:29 PM Page 752

(a technical risk) will preclude early design and testing and will likely lead to sys-

tem integration problems late in a project. The scope of a risk combines the sever-

ity (just how serious is it?) with its overall distribution (how much of the project will

be affected or how many stakeholders are harmed?). Finally, the timing of a risk con-

siders when and for how long the impact will be felt. In most cases, you want the

“bad news” to occur as soon as possible, but in some cases, the longer the delay,

the better.

Returning once more to the risk analysis approach proposed by the U.S. Air Force

[AFC88], you can apply the following steps to determine the overall consequences of

a risk: (1) determine the average probability of occurrence value for each risk com-

ponent; (2) using Figure 28.1, determine the impact for each component based on

the criteria shown, and (3) complete the risk table and analyze the results as de-

scribed in the preceding sections.

The overall risk exposure RE is determined using the following relationship

[Hal98]:

RE � P � C

where P is the probability of occurrence for a risk, and C is the cost to the project

should the risk occur.

For example, assume that the software team defines a project risk in the follow-

ing manner:

Risk identification. Only 70 percent of the software components scheduled

for reuse will, in fact, be integrated into the application. The remaining

functionality will have to be custom developed.

Risk probability. 80 percent (likely).

Risk impact. Sixty reusable software components were planned. If only

70 percent can be used, 18 components would have to be developed

from scratch (in addition to other custom software that has been

scheduled for development). Since the average component is 100 LOC

and local data indicate that the software engineering cost for each LOC

is $14.00, the overall cost (impact) to develop the components would be

18 � 100 � 14 � $25,200.

Risk exposure. RE � 0.80 � 25,200 � $20,200.

Risk exposure can be computed for each risk in the risk table, once an estimate of

the cost of the risk is made. The total risk exposure for all risks (above the cutoff in

the risk table) can provide a means for adjusting the final cost estimate for a project.

It can also be used to predict the probable increase in staff resources required at

various points during the project schedule.

The risk projection and analysis techniques described in Sections 28.4.1 and

28.4.2 are applied iteratively as the software project proceeds. The project team

CHAPTER 28 RISK MANAGEMENT 753

How do we
assess the

consequences
of a risk?

?

Compare RE for all
risks to the cost
estimate for the
project. If RE is greater
than 50 percent of the
project cost, the
viability of the project
must be evaluated.

pre75977_ch28.qxd 11/27/08 6:30 PM Page 753

28.5 RISK REFINEMENT

During early stages of project planning, a risk may be stated quite generally. As time

passes and more is learned about the project and the risk, it may be possible to refine

the risk into a set of more detailed risks, each somewhat easier to mitigate, monitor,

and manage.

One way to do this is to represent the risk in condition-transition-consequence

(CTC) format [Glu94]. That is, the risk is stated in the following form:

Given that <condition> then there is concern that (possibly) <consequence>.

754 PART FOUR MANAGING SOFTWARE PROJECTS

Risk Analysis

The scene: Doug Miller’s office prior
to the initiation of the SafeHome software project.

The players: Doug Miller (manager of the SafeHome
software engineering team) and Vinod Raman, Jamie
Lazar, and other members of the product software
engineering team.

The conversation:

Doug: I’d like to spend some time brainstorming risks for
the SafeHome project.

Jamie: As in what can go wrong?

Doug: Yep. Here are a few categories where things can
go wrong. [He shows everyone the categories noted in
the introduction to Section 28.3.]

Vinod: Umm . . . do you want us to just call them out,
or . . .

Doug: No here’s what I thought we’d do. Everyone
make a list of risks . . . right now . . .”

[Ten minutes pass, everyone is writing.]

Doug: Okay, stop.

Jamie: But I’m not done!

Doug: That’s okay. We’ll revisit the list again. Now, for
each item on your list, assign a percent likelihood that the

risk will occur. Then, assign an impact to the project on a
scale of 1 (minor) to 5 (catastrophic).

Vinod: So if I think that the risk is a coin flip, I specify a
50 percent likelihood, and if I think it’ll have a moderate
project impact, I specify a 3, right?

Doug: Exactly.

[Five minutes pass, everyone is writing.]

Doug: Okay, stop. Now we’ll make a group list on the
white board. I’ll do the writing; we’ll call out one entry
from your list in round-robin format.

[Fifteen minutes pass; the list is created.]

Jamie (pointing at the board and laughing):
Vinod, that risk (pointing toward an entry on the board)
is ridiculous. There’s a higher likelihood that we’ll all get
hit by lightning. We should remove it.

Doug: No, let’s leave it for now. We consider all risks,
no matter how weird. Later we’ll winnow the list.

Jamie: But we already have over 40 risks . . . how on
earth can we manage them all?

Doug: We can’t. That’s why we’ll define a cut-off after
we sort these guys. I’ll do that off-line and we’ll meet
again tomorrow. For now, get back to work . . . and
in your spare time, think about any risks that we’ve
missed.

SAFEHOME

What's a
good way to

describe a risk?
?

should revisit the risk table at regular intervals, reevaluating each risk to determine

when new circumstances cause its probability and impact to change. As a conse-

quence of this activity, it may be necessary to add new risks to the table, remove

some risks that are no longer relevant, and change the relative positions of still

others.

pre75977_ch28.qxd 11/27/08 6:30 PM Page 754

Using the CTC format for the reuse risk noted in Section 28.4.2, you could write:

Given that all reusable software components must conform to specific design standards

and that some do not conform, then there is concern that (possibly) only 70 percent of the

planned reusable modules may actually be integrated into the as-built system, resulting

in the need to custom engineer the remaining 30 percent of components.

This general condition can be refined in the following manner:

Subcondition 1. Certain reusable components were developed by a third party with no

knowledge of internal design standards.

Subcondition 2. The design standard for component interfaces has not been solidified

and may not conform to certain existing reusable components.

Subcondition 3. Certain reusable components have been implemented in a language

that is not supported on the target environment.

The consequences associated with these refined subconditions remain the same

(i.e., 30 percent of software components must be custom engineered), but the

refinement helps to isolate the underlying risks and might lead to easier analysis and

response.

28.6 RISK MITIGATION, MONITORING, AND MANAGEMENT

All of the risk analysis activities presented to this point have a single goal—to assist

the project team in developing a strategy for dealing with risk. An effective strategy

must consider three issues: risk avoidance, risk monitoring, and risk management

and contingency planning.

If a software team adopts a proactive approach to risk, avoidance is always the

best strategy. This is achieved by developing a plan for risk mitigation. For example,

assume that high staff turnover is noted as a project risk r1. Based on past history and

management intuition, the likelihood l1 of high turnover is estimated to be 0.70

(70 percent, rather high) and the impact x1 is projected as critical. That is, high

turnover will have a critical impact on project cost and schedule.

To mitigate this risk, you would develop a strategy for reducing turnover. Among

the possible steps to be taken are:

• Meet with current staff to determine causes for turnover (e.g., poor working

conditions, low pay, competitive job market).

• Mitigate those causes that are under your control before the project starts.

• Once the project commences, assume turnover will occur and develop tech-

niques to ensure continuity when people leave.

• Organize project teams so that information about each development activity

is widely dispersed.

CHAPTER 28 RISK MANAGEMENT 755

What can
we do to

mitigate a risk?
?

uote:

“If I take so many
precautions, it is
because I leave
nothing to chance.”

Napolean

pre75977_ch28.qxd 11/27/08 6:30 PM Page 755

• Define work product standards and establish mechanisms to be sure that all

models and documents are developed in a timely manner.

• Conduct peer reviews of all work (so that more than one person is “up to

speed”).

• Assign a backup staff member for every critical technologist.

As the project proceeds, risk-monitoring activities commence. The project man-

ager monitors factors that may provide an indication of whether the risk is becom-

ing more or less likely. In the case of high staff turnover, the general attitude of team

members based on project pressures, the degree to which the team has jelled, inter-

personal relationships among team members, potential problems with compensa-

tion and benefits, and the availability of jobs within the company and outside it are

all monitored.

In addition to monitoring these factors, a project manager should monitor the

effectiveness of risk mitigation steps. For example, a risk mitigation step noted here

called for the definition of work product standards and mechanisms to be sure that

work products are developed in a timely manner. This is one mechanism for ensur-

ing continuity, should a critical individual leave the project. The project manager

should monitor work products carefully to ensure that each can stand on its own and

that each imparts information that would be necessary if a newcomer were forced

to join the software team somewhere in the middle of the project.

Risk management and contingency planning assumes that mitigation efforts have

failed and that the risk has become a reality. Continuing the example, the project is

well under way and a number of people announce that they will be leaving. If the

mitigation strategy has been followed, backup is available, information is docu-

mented, and knowledge has been dispersed across the team. In addition, you can

temporarily refocus resources (and readjust the project schedule) to those functions

that are fully staffed, enabling newcomers who must be added to the team to “get

up to speed.” Those individuals who are leaving are asked to stop all work and spend

their last weeks in “knowledge transfer mode.” This might include video-based

knowledge capture, the development of “commentary documents or Wikis,” and/or

meeting with other team members who will remain on the project.

It is important to note that risk mitigation, monitoring, and management (RMMM)

steps incur additional project cost. For example, spending the time to back up every

critical technologist costs money. Part of risk management, therefore, is to evaluate

when the benefits accrued by the RMMM steps are outweighed by the costs associ-

ated with implementing them. In essence, you perform a classic cost-benefit analy-

sis. If risk aversion steps for high turnover will increase both project cost and

duration by an estimated 15 percent, but the predominant cost factor is “backup,”

management may decide not to implement this step. On the other hand, if the risk

aversion steps are projected to increase costs by 5 percent and duration by only

3 percent, management will likely put all into place.

756 PART FOUR MANAGING SOFTWARE PROJECTS

If RE for a specific risk
is less than the cost of
risk mitigation, don't
try to mitigate the risk
but continue to
monitor it.

pre75977_ch28.qxd 11/27/08 6:30 PM Page 756

For a large project, 30 or 40 risks may be identified. If between three and seven

risk management steps are identified for each, risk management may become a proj-

ect in itself! For this reason, you should adapt the Pareto 80–20 rule to software risk.

Experience indicates that 80 percent of the overall project risk (i.e., 80 percent of the

potential for project failure) can be accounted for by only 20 percent of the identified

risks. The work performed during earlier risk analysis steps will help you to deter-

mine which of the risks reside in that 20 percent (e.g., risks that lead to the highest

risk exposure). For this reason, some of the risks identified, assessed, and projected

may not make it into the RMMM plan—they don’t fall into the critical 20 percent (the

risks with highest project priority).

Risk is not limited to the software project itself. Risks can occur after the software

has been successfully developed and delivered to the customer. These risks are typ-

ically associated with the consequences of software failure in the field.

Software safety and hazard analysis (e.g., [Dun02], [Her00], [Lev95]) are software

quality assurance activities (Chapter 16) that focus on the identification and assess-

ment of potential hazards that may affect software negatively and cause an entire

system to fail. If hazards can be identified early in the software engineering process,

software design features can be specified that will either eliminate or control poten-

tial hazards.

28.7 THE RMMM PLAN

A risk management strategy can be included in the software project plan, or the risk

management steps can be organized into a separate risk mitigation, monitoring, and

management plan (RMMM). The RMMM plan documents all work performed as part

of risk analysis and is used by the project manager as part of the overall project

plan.

Some software teams do not develop a formal RMMM document. Rather, each

risk is documented individually using a risk information sheet (RIS) [Wil97]. In most

cases, the RIS is maintained using a database system so that creation and informa-

tion entry, priority ordering, searches, and other analysis may be accomplished eas-

ily. The format of the RIS is illustrated in Figure 28.4.

Once RMMM has been documented and the project has begun, risk mitigation and

monitoring steps commence. As I have already discussed, risk mitigation is a prob-

lem avoidance activity. Risk monitoring is a project tracking activity with three pri-

mary objectives: (1) to assess whether predicted risks do, in fact, occur; (2) to ensure

that risk aversion steps defined for the risk are being properly applied; and (3) to col-

lect information that can be used for future risk analysis. In many cases, the prob-

lems that occur during a project can be traced to more than one risk. Another job of

risk monitoring is to attempt to allocate origin [what risk(s) caused which problems

throughout the project].

CHAPTER 28 RISK MANAGEMENT 757

pre75977_ch28.qxd 11/27/08 6:30 PM Page 757

758 PART FOUR MANAGING SOFTWARE PROJECTS

Risk Management
Objective: The objective of risk management
tools is to assist a project team in defining risks,

assessing their impact and probability, and tracking risks
throughout a software project.

Mechanics: In general, risk management tools assist in
generic risk identification by providing a list of typical
project and business risks, provide checklists or other
“interview” techniques that assist in identifying project
specific risks, assign probability and impact to each risk,
support risk mitigation strategies, and generate many
different risk-related reports.

Representative Tools:4

@risk, developed by Palisade Corporation (www
.palisade.com), is a generic risk analysis tool that
uses Monte Carlo simulation to drive its analytical engine.

Riskman, distributed by ABS Consulting
(www.absconsulting.com/riskmansoftware/
index.html), is a risk evaluation expert system that
identifies project-related risks.

Risk Radar, developed by SPMN (www.spmn.com),
assists project managers in identifying and managing
project risks.

SOFTWARE TOOLS

4 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.
In most cases, tool names are trademarked by their respective developers.

Risk information sheet

Date: 5/9/09 Prob: 80% Impact: highRisk ID: P02-4-32

Description:
Only 70 percent of the software components scheduled for reuse will, in fact, be
integrated into the application. The remaining functionality will have to be custom
developed.

Refinement/context:
Subcondition 1: Certain reusable components were developed by a third party
with no knowledge of internal design standards.
Subcondition 2: The design standard for component interfaces has not been
solidified and may not conform to certain existing reusable components.
Subcondition 3: Certain reusable components have been implemented in a
language that is not supported on the target environment.

Mitigation/monitoring:
1. Contact third party to determine conformance with design standards.
2. Press for interface standards completion; consider component structure when
deciding on interface protocol.
3. Check to determine number of components in subcondition 3 category; check
to determine if language support can be acquired.

Management/contingency plan/trigger:
RE computed to be $20,200. Allocate this amount within project contingency cost.
Develop revised schedule assuming that 18 additional components will have to be
custom built; allocate staff accordingly.
Trigger: Mitigation steps unproductive as of 7/1/09.

Current status:
5/12/09: Mitigation steps initiated.

Originator: D. Gagne Assigned: B. Laster

FIGURE 28.4

Risk informa-
tion sheet.
Source: [Wil97].

pre75977_ch28.qxd 11/27/08 6:30 PM Page 758

http://www.absconsulting.com/riskmansoftware/index.html
http://www.absconsulting.com/riskmansoftware/index.html
http://www.spmn.com

28.8 SUMMARY

Whenever a lot is riding on a software project, common sense dictates risk analysis.

And yet, most software project managers do it informally and superficially, if they do it

at all. The time spent identifying, analyzing, and managing risk pays itself back in

many ways—less upheaval during the project, a greater ability to track and control a

project, and the confidence that comes with planning for problems before they occur.

Risk analysis can absorb a significant amount of project planning effort. Identifi-

cation, projection, assessment, management, and monitoring all take time. But the

effort is worth it. To quote Sun Tzu, a Chinese general who lived 2500 years ago, “If

you know the enemy and know yourself, you need not fear the result of a hundred

battles.” For the software project manager, the enemy is risk.

PROBLEMS AND POINTS TO PONDER

28.1. Provide five examples from other fields that illustrate the problems associated with a
reactive risk strategy.

28.2. Describe the difference between “known risks” and “predictable risks.”

28.3. Add three additional questions or topics to each of the risk item checklists presented at
the SEPA website.

28.4. You’ve been asked to build software to support a low-cost video editing system. The sys-
tem accepts digital video as input, stores the video on disk, and then allows the user to do a wide
range of edits to the digitized video. The result can then be output to DVD or other media. Do a
small amount of research on systems of this type and then make a list of technology risks that
you would face as you begin a project of this type.

28.5. You’re the project manager for a major software company. You’ve been asked to lead a
team that’s developing “next generation” word-processing software. Create a risk table for the
project.

28.6. Describe the difference between risk components and risk drivers.

28.7. Develop a risk mitigation strategy and specific risk mitigation activities for three of the
risks noted in Figure 28.2.

28.8. Develop a risk monitoring strategy and specific risk monitoring activities for three of the
risks noted in Figure 28.2. Be sure to identify the factors that you’ll be monitoring to determine
whether the risk is becoming more or less likely.

28.9. Develop a risk management strategy and specific risk management activities for three of
the risks noted in Figure 28.2.

CHAPTER 28 RISK MANAGEMENT 759

Risk+, developed by Deltek (www.deltek.com),
integrates with Microsoft Project to quantify cost and
schedule uncertainty.

X:PRIMER, developed by GrafP Technologies
(www.grafp.com) is a generic Web-based tool that

predicts what can go wrong on a project and identifies
root causes for potential failures and effective
countermeasures.

pre75977_ch28.qxd 11/27/08 6:30 PM Page 759

http://www.deltek.com
http://www.grafp.com
http://www.deltek.com

28.10. Attempt to refine three of the risks noted in Figure 28.2, and then create risk informa-
tion sheets for each.

28.11. Represent three of the risks noted in Figure 28.2 using a CTC format.

28.12. Recompute the risk exposure discussed in Section 28.4.2 when cost/LOC is $16 and the
probability is 60 percent.

28.13. Can you think of a situation in which a high-probability, high-impact risk would not be
considered as part of your RMMM plan?

28.14. Describe five software application areas in which software safety and hazard analysis
would be a major concern.

FURTHER READINGS AND INFORMATION SOURCES

The software risk management literature has expanded significantly over the past few decades.
Vun (Modeling Risk, Wiley, 2006) presents a detailed mathematical treatment of risk analysis that
can be applied to software projects. Crohy and his colleagues (The Essentials of Risk Manage-
ment, McGraw-Hill, 2006), Mulcahy (Risk Management, Tricks of the Trade for Project Managers,
RMC Publications, Inc., 2003), Kendrick (Identifying and Managing Project Risk, American
Management Association, 2003), and Marrison (The Fundamentals of Risk Measurement,
McGraw-Hill, 2002) present useful methods and tools that every project manager can use.

DeMarco and Lister (Dancing with Bears, Dorset House, 2003) have written an entertaining
and insightful book that guides software managers and practitioners through risk management.
Moynihan (Coping with IT/IS Risk Management, Springer-Verlag, 2002) presents pragmatic ad-
vice from project managers who deal with risk on a continuing basis. Royer (Project Risk Man-
agement, Management Concepts, 2002) and Smith and Merritt (Proactive Risk Management,
Productivity Press, 2002) suggest a proactive process for risk management. Karolak (Software
Engineering Risk Management, Wiley, 2002) has written a guidebook that introduces an easy-to-
use risk analysis model with worthwhile checklists and questionnaires supported by a software
package.

Capers Jones (Assessment and Control of Software Risks, Prentice Hall, 1994) presents a de-
tailed discussion of software risks that includes data collected from hundreds of software proj-
ects. Jones defines 60 risk factors that can affect the outcome of software projects. Boehm
[Boe89] suggests excellent questionnaire and checklist formats that can prove invaluable in
identifying risk. Charette [Cha89] presents a detailed treatment of the mechanics of risk analy-
sis, calling on probability theory and statistical techniques to analyze risks. In a companion vol-
ume, Charette (Application Strategies for Risk Analysis, McGraw-Hill, 1990) discusses risk in the
context of both system and software engineering and suggests pragmatic strategies for risk
management. Gilb (Principles of Software Engineering Management, Addison-Wesley, 1988) pres-
ents a set of “principles” (which are often amusing and sometimes profound) that can serve as
a worthwhile guide for risk management.

Ewusi-Mensah (Software Development Failures: Anatomy of Abandoned Projects, MIT Press,
2003) and Yourdon (Death March, Prentice Hall, 1997) discuss what happens when risks over-
whelm a software project team. Bernstein (Against the Gods, Wiley, 1998) presents an enter-
taining history of risk that goes back to ancient times.

The Software Engineering Institute has published many detailed reports and guidebooks on
risk analysis and management. The Air Force Systems Command pamphlet AFSCP 800-45
[AFC88] describes risk identification and reduction techniques. Every issue of the ACM Software
Engineering Notes has a section entitled “Risks to the Public” (editor, P. G. Neumann). If you want
the latest and best software horror stories, this is the place to go.

A wide variety of information sources on software risk management is available on the
Internet. An up-to-date list of World Wide Web references relevant to risk management can be
found at the SEPA website: www.mhhe.com/engcs/compsci/pressman/professional/
olc/ser.htm.

760 PART FOUR MANAGING SOFTWARE PROJECTS

pre75977_ch28.qxd 11/27/08 6:30 PM Page 760

http://www.mhhe.com/engcs/compsci/pressman/professional/

Regardless of its application domain, its size, or its complexity, computer
software will evolve over time. Change drives this process. For computer
software, change occurs when errors are corrected, when the software is

adapted to a new environment, when the customer requests new features or
functions, and when the application is reengineered to provide benefit in a mod-
ern context. Over the past 30 years, Manny Lehman [e.g., Leh97a] and his
colleagues have performed detailed analyses of industry-grade software and

761

C H A P T E R

29MAINTENANCE AND
REENGINEERING

What is it? Consider any technol-
ogy product that has served you well.
You use it regularly, but it’s getting
old. It breaks too often, takes longer

to repair than you’d like, and no longer repre-
sents the newest technology. What to do? For a
time, you try to fix it, patch it, even extend its
functionality. That’s called maintenance. But
maintenance becomes increasingly difficult as
the years pass. There comes a time when you’ll
need to rebuild it. You’ll create a product with
added functionality, better performance and
reliability, and improved maintainability. That’s
what we call reengineering.

Who does it? At an organizational level, mainte-
nance is performed by support staff that are
part of the software engineering organization.
Reengineering is performed by business special-
ists (often consulting companies), and at the soft-
ware level, reengineering is performed by
software engineers.

Why is it important? We live in a rapidly chang-
ing world. The demands on business functions
and the information technology that supports
them are changing at a pace that puts enormous
competitive pressure on every commercial
organization. That’s why software must be main-
tained continually, and at the appropriate time,
reengineered to keep pace.

Q U I C K
L O O K

What are the steps? Maintenance corrects
defects, adapts the software to meet a changing
environment, and enhances functionality to meet
the evolving needs of customers. At a strategic
level, business process reengineering (BPR)
defines business goals, identifies and evaluates
existing business processes, and creates revised
business processes that better meet current
goals. Software reengineering encompasses
inventory analysis, document restructuring,
reverse engineering, program and data restruc-
turing, and forward engineering. The intent of
these activities is to create versions of existing
programs that exhibit higher quality and better
maintainability.

What is the work product? A variety of mainte-
nance and reengineering work products (e.g.,
use cases, analysis and design models, test pro-
cedures) are produced. The final output is
upgraded software.

How do I ensure that I’ve done it right? Use the
same SQA practices that are applied in every
software engineering process—technical re-
views assess the analysis and design models;
specialized reviews consider business applica-
bility and compatibility; and testing is applied to
uncover errors in content, functionality, and
interoperability.

K E Y
C O N C E P T S

business process
reengineering
(BPR)765
document
restructuring . .770

pre75977_ch29.qxd 11/27/08 6:32 PM Page 761

systems in an effort to develop a unified theory for software evolution. The details of

this work are beyond the scope of this book, but the underlying laws that have been

derived are worthy of note [Leh97b]:

The Law of Continuing Change (1974): Software that has been implemented in a real-

world computing context and will therefore evolve over time (called E-type systems) must

be continually adapted else they become progressively less satisfactory.

The Law of Increasing Complexity (1974): As an E-type system evolves its

complexity increases unless work is done to maintain or reduce it.

The Law of Self Regulation (1974): The E-type system evolution process is self-

regulating with distribution of product and process measures close to normal.

The Law of Conservation of Organizational Stability (1980): The average

effective global activity rate in an evolving E-type system is invariant over product lifetime.

The Law of Conservation of Familiarity (1980): As an E-type system evolves

all associated with it, developers, sales personnel, users, for example, must maintain

mastery of its content and behavior to achieve satisfactory evolution. Excessive growth

diminishes that mastery. Hence the average incremental growth remains invariant as the

system evolves.

The Law of Continuing Growth (1980): The functional content of E-type systems

must be continually increased to maintain user satisfaction over their lifetime.

The Law of Declining Quality (1996): The quality of E-type systems will appear to

be declining unless they are rigorously maintained and adapted to operational environ-

ment changes.

The Feedback System Law (1996): E-type evolution processes constitute multi-

level, multi-loop, multi-agent feedback systems and must be treated as such to achieve

significant improvement over any reasonable base.

The laws that Lehman and his colleagues have defined are an inherent part of a soft-

ware engineer’s reality. In this chapter, I’ll discuss the challenge of software mainte-

nance and the reengineering activities that are required to extend the effective life of

legacy systems.

29.1 SOFTWARE MAINTENANCE

It begins almost immediately. Software is released to end users, and within days, bug

reports filter back to the software engineering organization. Within weeks, one class

of users indicates that the software must be changed so that it can accommodate the

special needs of their environment. And within months, another corporate group

who wanted nothing to do with the software when it was released now recognizes

that it may provide them with unexpected benefit. They’ll need a few enhancements

to make it work in their world.

The challenge of software maintenance has begun. You’re faced with a growing

queue of bug fixes, adaptation requests, and outright enhancements that must be

762 PART FOUR MANAGING SOFTWARE PROJECTS

forward
engineering . . .778
inventory
analysis 770
maintainability . .763
restructuring . .776

code776
data777

reverse
engineering . . .772

data773
processing . . .774
user interface . .775

software
maintenance . . .762
software
reengineering . .768
supportability . .764

How do
legacy

systems evolve as
time passes?

?

pre75977_ch29.qxd 11/27/08 6:32 PM Page 762

planned, scheduled, and ultimately accomplished. Before long, the queue has grown

long and the work it implies threatens to overwhelm the available resources. As time

passes, your organization finds that it’s spending more money and time maintaining

existing programs than it is engineering new applications. In fact, it’s not unusual for

a software organization to expend as much as 60 to 70 percent of all resources on

software maintenance.

You may ask why so much maintenance is required and why so much effort is

expended. Osborne and Chikofsky [Osb90] provide a partial answer:

Much of the software we depend on today is on average 10 to 15 years old. Even when

these programs were created using the best design and coding techniques known at the

time [and most were not], they were created when program size and storage space were

principle concerns. They were then migrated to new platforms, adjusted for changes in

machine and operating system technology and enhanced to meet new user needs—all

without enough regard to overall architecture. The result is the poorly designed struc-

tures, poor coding, poor logic, and poor documentation of the software systems we are

now called on to keep running . . .

Another reason for the software maintenance problem is the mobility of software

people. It is likely that the software team (or person) that did the original work is no

longer around. Worse, other generations of software people have modified the

system and moved on. And today, there may be no one left who has any direct

knowledge of the legacy system.

As I noted in Chapter 22, the ubiquitous nature of change underlies all software

work. Change is inevitable when computer-based systems are built; therefore, you

must develop mechanisms for evaluating, controlling, and making modifications.

Throughout this book, I’ve emphasized the importance of understanding the

problem (analysis) and developing a well-structured solution (design). In fact, Part 2

of the book is dedicated to the mechanics of these software engineering actions, and

Part 3 focuses on the techniques required to be sure you’ve done them correctly. Both

analysis and design lead to an important software characteristic that we call main-

tainability. In essence, maintainability is a qualitative indication1 of the ease with

which existing software can be corrected, adapted, or enhanced. Much of what soft-

ware engineering is about is building systems that exhibit high maintainability.

But what is maintainability? Maintainable software exhibits effective modularity

(Chapter 8). It makes use of design patterns (Chapter 12) that allow ease of under-

standing. It has been constructed using well-defined coding standards and conven-

tions, leading to source code that is self-documenting and understandable. It has

undergone a variety of quality assurance techniques (Part 3 of this book) that have

uncovered potential maintenance problems before the software is released. It has

been created by software engineers who recognize that they may not be around

CHAPTER 29 MAINTENANCE AND REENGINEERING 763

uote:

“Program
maintainability
and program
understandability
are parallel
concepts: the more
difficult a program
is to understand,
the more difficult it
is to maintain.

Gerald Berns

1 There are some quantitative measures that provide an indirect indication of maintainability (e.g.,
[Sch99], [SEI02]).

pre75977_ch29.qxd 11/27/08 6:32 PM Page 763

when changes must be made. Therefore, the design and implementation of the soft-

ware must “assist” the person who is making the change.

29.2 SOFTWARE SUPPORTABIL ITY

In order to effectively support industry-grade software, your organization (or its

designee) must be capable of making the corrections, adaptations, and enhance-

ments that are part of the maintenance activity. But in addition, the organization

must provide other important support activities that include ongoing operational

support, end-user support, and reengineering activities over the complete life cycle

of the software. A reasonable definition of software supportability is

. . . the capability of supporting a software system over its whole product life. This implies

satisfying any necessary needs or requirements, but also the provision of equipment,

support infrastructure, additional software, facilities, manpower, or any other resource

required to maintain the software operational and capable of satisfying its function [SSO08].

In essence, supportability is one of many quality factors that should be considered

during the analysis and design actions that are part of the software process. It should

be addressed as part of the requirements model (or specification) and considered as

the design evolves and construction commences.

For example, the need to “antibug” software at the component and code level has

been discussed earlier in the book. The software should contain facilities to assist

support personnel when a defect is encountered in the operational environment (and

make no mistake, defects will be encountered). In addition, support personnel should

have access to a database that contains records of all defects that have already been

encountered—their characteristics, cause, and cure. This will enable support per-

sonnel to examine “similar” defects and may provide a means for more rapid diag-

nosis and correction.

Although defects encountered in an application are a critical support issue, sup-

portability also demands that resources be provided to support day-to-day end-user

issues. The job of end-user support personnel is to answer user queries about the

installation, operation, and use of the application.

29.3 REENGINEERING

In a seminal article written for the Harvard Business Review, Michael Hammer

[Ham90] laid the foundation for a revolution in management thinking about business

processes and computing:

It is time to stop paving the cow paths. Instead of embedding outdated processes in

silicon and software, we should obliterate them and start over. We should “reengineer”

our businesses: use the power of modern information technology to radically redesign

our business processes in order to achieve dramatic improvements in their performance.

764 PART FOUR MANAGING SOFTWARE PROJECTS

WebRef
A wide array of
downloadable
documents on software
supportability can be
found at
www.software-
supportability.org/
Downloads.html.

pre75977_ch29.qxd 11/27/08 6:32 PM Page 764

http://www.software-supportability.org/
http://www.software-supportability.org/
http://www.software-supportability.org/

Every company operates according to a great many unarticulated rules. . . . Reengi-

neering strives to break away from the old rules about how we organize and conduct our

business.

Like all revolutions, Hammer’s call to arms resulted in both positive and negative

changes. During the 1990s, some companies made a legitimate effort to reengineer,

and the results led to improved competitiveness. Others relied solely on downsizing

and outsourcing (instead of reengineering) to improve their bottom line. “Mean”

organizations with little potential for future growth often resulted [DeM95a].

By the end of the first decade of the twenty-first century, the hype associated

with reengineering waned, but the process itself continues in companies large and

small. The nexus between business reengineering and software engineering lies in

a “system view.”

Software is often the realization of the business rules that Hammer discusses.

Today, major companies have tens of thousands of computer programs that support

the “old business rules.” As managers work to modify the rules to achieve greater

effectiveness and competitiveness, software must keep pace. In some cases, this

means the creation of major new computer-based systems.2 But in many others, it

means the modification or rebuilding of existing applications.

In the sections that follow, I examine reengineering in a top-down manner, begin-

ning with a brief overview of business process reengineering and proceeding to a more

detailed discussion of the technical activities that occur when software is reengineered.

29.4 BUSINESS PROCESS REENGINEERING

Business process reengineering (BPR) extends far beyond the scope of information

technologies and software engineering. Among the many definitions (most some-

what abstract) that have been suggested for BPR is one published in Fortune

Magazine [Ste93]: “the search for, and the implementation of, radical change in busi-

ness process to achieve breakthrough results.” But how is the search conducted, and

how is the implementation achieved? More important, how can we ensure that the

“radical change” suggested will in fact lead to “breakthrough results” instead of

organizational chaos?

29.4.1 Business Processes

A business process is “a set of logically related tasks performed to achieve a defined

business outcome” [Dav90]. Within the business process, people, equipment, mate-

rial resources, and business procedures are combined to produce a specified result.

Examples of business processes include designing a new product, purchasing serv-

ices and supplies, hiring a new employee, and paying suppliers. Each demands a set

of tasks, and each draws on diverse resources within the business.

CHAPTER 29 MAINTENANCE AND REENGINEERING 765

uote:

“To face tomorrow
with the thought of
using the methods
of yesterday is to
envision life at a
standstill.”

James Bell

2 The explosion of Web-based applications and systems is indicative of this trend.

BPR often results in
new software function-
ality, whereas software
reengineering works to
replace existing soft-
ware functionality with
better, more maintain-
able software.

pre75977_ch29.qxd 11/27/08 6:32 PM Page 765

Every business process has a defined customer—a person or group that receives

the outcome (e.g., an idea, a report, a design, a service, a product). In addition, busi-

ness processes cross organizational boundaries. They require that different organi-

zational groups participate in the “logically related tasks” that define the process.

Every system is actually a hierarchy of subsystems. A business is no exception.

The overall business is segmented in the following manner:

The businessã business systemsã business processesã business

subprocesses

Each business system (also called business function) is composed of one or more

business processes, and each business process is defined by a set of subprocesses.

BPR can be applied at any level of the hierarchy, but as the scope of BPR broadens

(i.e., as we move upward in the hierarchy), the risks associated with BPR grow

dramatically. For this reason, most BPR efforts focus on individual processes or

subprocesses.

29.4.2 A BPR Model

Like most engineering activities, business process reengineering is iterative. Busi-

ness goals and the processes that achieve them must be adapted to a changing busi-

ness environment. For this reason, there is no start and end to BPR—it is an

evolutionary process. A model for business process reengineering is depicted in

Figure 29.1. The model defines six activities:

Business definition. Business goals are identified within the context of four

key drivers: cost reduction, time reduction, quality improvement, and personnel

766 PART FOUR MANAGING SOFTWARE PROJECTS

As a software
engineer, your work
occurs at the bottom
of this hierarchy. Be
sure, however, that
someone has given
serious thought to the
levels above. If this
hasn’t been done, your
work is at risk.

Business
definition

Refinement &
instantiation

Prototyping

Process
specification
and design

Process
identification

Process
evaluation

FIGURE 29.1

A BPR model

pre75977_ch29.qxd 11/27/08 6:32 PM Page 766

development and empowerment. Goals may be defined at the business level

or for a specific component of the business.

Process identification. Processes that are critical to achieving the goals

defined in the business definition are identified. They may then be ranked by

importance, by need for change, or in any other way that is appropriate for

the reengineering activity.

Process evaluation. The existing process is thoroughly analyzed and

measured. Process tasks are identified; the costs and time consumed by

process tasks are noted; and quality/performance problems are isolated.

Process specification and design. Based on information obtained during

the first three BPR activities, use cases (Chapters 5 and 6) are prepared for each

process that is to be redesigned. Within the context of BPR, use cases identify a

scenario that delivers some outcome to a customer. With the use case as the

specification of the process, a new set of tasks are designed for the process.

Prototyping. A redesigned business process must be prototyped before it

is fully integrated into the business. This activity “tests” the process so that

refinements can be made.

Refinement and instantiation. Based on feedback from the prototype, the

business process is refined and then instantiated within a business system.

These BPR activities are sometimes used in conjunction with workflow analysis

tools. The intent of these tools is to build a model of existing workflow in an effort to

better analyze existing processes.

CHAPTER 29 MAINTENANCE AND REENGINEERING 767

uote:

“As soon as we are
shown something
old in a new thing,
we are pacified.”

F. W. Nietzsche

Business Process Reengineering (BPR)

Objective: The objective of BPR tools is to
support the analysis and assessment of existing

business processes and the specification and design of
new ones.

Mechanics: Tools mechanics vary. In general, BPR tools
allow a business analyst to model existing business
processes in an effort to assess workflow inefficiencies
or functional problems. Once existing problems are
identified, tools allow the analysis to prototype and/or
simulate revised business processes.

Representative Tools:3

Extend, developed by ImagineThat, Inc.
(www.imaginethatinc.com), is a simulation tool
for modeling existing processes and exploring new
ones. Extend provides comprehensive what-if
capability that enables a business analysis to explore
different process scenarios.

e-Work, developed by Metastorm
(www.metastorm.com), provides business
process management support for both manual and
automated processes.

SOFTWARE TOOLS

3 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.
In most cases, tool names are trademarked by their respective developers.

pre75977_ch29.qxd 11/27/08 6:32 PM Page 767

http://www.imaginethatinc.com
http://www.metastorm.com
http://www.metastorm.com

29.5 SOFTWARE REENGINEERING

The scenario is all too common: An application has served the business needs of a

company for 10 or 15 years. During that time it has been corrected, adapted, and en-

hanced many times. People approached this work with the best intentions, but good

software engineering practices were always shunted to the side (due to the press of

other matters). Now the application is unstable. It still works, but every time a change

is attempted, unexpected and serious side effects occur. Yet the application must

continue to evolve. What to do?

Unmaintainable software is not a new problem. In fact, the broadening emphasis

on software reengineering has been spawned by software maintenance problems

that have been building for more than four decades.

29.5.1 A Software Reengineering Process Model

Reengineering takes time, it costs significant amounts of money, and it absorbs re-

sources that might be otherwise occupied on immediate concerns. For all of these

reasons, reengineering is not accomplished in a few months or even a few years.

Reengineering of information systems is an activity that will absorb information

technology resources for many years. That’s why every organization needs a prag-

matic strategy for software reengineering.

A workable strategy is encompassed in a reengineering process model. I’ll discuss

the model later in this section, but first, some basic principles.

Reengineering is a rebuilding activity. To better understand it, consider an analo-

gous activity: the rebuilding of a house. Consider the following situation. You’ve pur-

chased a house in another state. You’ve never actually seen the property, but you

acquired it at an amazingly low price, with the warning that it might have to be com-

pletely rebuilt. How would you proceed?

• Before you can start rebuilding, it would seem reasonable to inspect the

house. To determine whether it is in need of rebuilding, you (or a profes-

sional inspector) would create a list of criteria so that your inspection would

be systematic.

768 PART FOUR MANAGING SOFTWARE PROJECTS

IceTools, developed by Blue Ice (www.blueice.com), is
a collection of BPR templates for Microsoft Office and
Microsoft Project.

SpeeDev, developed by SpeeDev Inc.
(www.speedev.com), is one of many tools that
enable an organization to model process workflow
(in this case, IT workflow).

Workflow tool suite, developed by MetaSoftware
(www.metasoftware.com), incorporates a suite of
tools for workflow modeling, simulation, and scheduling.
A useful list of BPR tool links can be found at

www.opfro.org/index.html?Components/
Producers/Tools/BusinessProcessReengineering
Tools.html~Contents.

WebRef
An excellent source
of information on
software reengineering
can be found at
reengineer.org.

pre75977_ch29.qxd 11/27/08 6:32 PM Page 768

http://www.blueice.com
http://www.speedev.com
http://www.metasoftware.com
http://www.opfro.org/index.html?Components/

• Before you tear down and rebuild the entire house, be sure that the structure

is weak. If the house is structurally sound, it may be possible to “remodel”

without rebuilding (at much lower cost and in much less time).

• Before you start rebuilding be sure you understand how the original was

built. Take a peek behind the walls. Understand the wiring, the plumbing,

and the structural internals. Even if you trash them all, the insight you’ll gain

will serve you well when you start construction.

• If you begin to rebuild, use only the most modern, long-lasting materials.

This may cost a bit more now, but it will help you to avoid expensive and

time-consuming maintenance later.

• If you decide to rebuild, be disciplined about it. Use practices that will result

in high quality—today and in the future.

Although these principles focus on the rebuilding of a house, they apply equally well

to the reengineering of computer-based systems and applications.

To implement these principles, you can use a software reengineering process

model that defines six activities, shown in Figure 29.2. In some cases, these activi-

ties occur in a linear sequence, but this is not always the case. For example, it may

be that reverse engineering (understanding the internal workings of a program) may

have to occur before document restructuring can commence.

CHAPTER 29 MAINTENANCE AND REENGINEERING 769

Forward
engineering

Document
restructuring

Reverse
engineering

Inventory
analysis

Data
restructuring

Code
restructuring

FIGURE 29.2

A software
reengineering
process model

pre75977_ch29.qxd 11/27/08 6:32 PM Page 769

29.5.2 Software Reengineering Activities

The reengineering paradigm shown in Figure 29.2 is a cyclical model. This means

that each of the activities presented as a part of the paradigm may be revisited.

For any particular cycle, the process can terminate after any one of these

activities.

Inventory analysis. Every software organization should have an inventory of all

applications. The inventory can be nothing more than a spreadsheet model contain-

ing information that provides a detailed description (e.g., size, age, business critical-

ity) of every active application. By sorting this information according to business

criticality, longevity, current maintainability and supportability, and other locally

important criteria, candidates for reengineering appear. Resources can then be

allocated to candidate applications for reengineering work.

It is important to note that the inventory should be revisited on a regular cycle.

The status of applications (e.g., business criticality) can change as a function of time,

and as a result, priorities for reengineering will shift.

Document restructuring. Weak documentation is the trademark of many legacy

systems. But what can you do about it? What are your options?

1. Creating documentation is far too time consuming. If the system works, you

may choose to live with what you have. In some cases, this is the correct

approach. It is not possible to re-create documentation for hundreds of com-

puter programs. If a program is relatively static, is coming to the end of its

useful life, and is unlikely to undergo significant change, let it be!

2. Documentation must be updated, but your organization has limited resources.

You’ll use a “document when touched” approach. It may not be necessary to

fully redocument an application. Rather, those portions of the system that are

currently undergoing change are fully documented. Over time, a collection of

useful and relevant documentation will evolve.

3. The system is business critical and must be fully redocumented. Even in this

case, an intelligent approach is to pare documentation to an essential

minimum.

Each of these options is viable. Your software organization must choose the one that

is most appropriate for each case.

Reverse engineering. The term reverse engineering has its origins in the hardware

world. A company disassembles a competitive hardware product in an effort to

understand its competitor’s design and manufacturing “secrets.” These secrets could

be easily understood if the competitor’s design and manufacturing specifications

were obtained. But these documents are proprietary and unavailable to the company

doing the reverse engineering. In essence, successful reverse engineering derives

770 PART FOUR MANAGING SOFTWARE PROJECTS

If time and resources
are in short supply,
you might consider
applying the Pareto
principle to the
software that is to be
reengineered. Apply
the reengineering
process to the
20 percent of the
software that accounts
for 80 percent of the
problems.

Create only as much
documentation as you
need to understand the
software, not one page
more.

pre75977_ch29.qxd 11/27/08 6:32 PM Page 770

one or more design and manufacturing specifications for a product by examining

actual specimens of the product.

Reverse engineering for software is quite similar. In most cases, however, the pro-

gram to be reverse engineered is not a competitor’s. Rather, it is the company’s own

work (often done many years earlier). The “secrets” to be understood are obscure

because no specification was ever developed. Therefore, reverse engineering for

software is the process of analyzing a program in an effort to create a representation

of the program at a higher level of abstraction than source code. Reverse engineer-

ing is a process of design recovery. Reverse engineering tools extract data, architec-

tural, and procedural design information from an existing program.

Code restructuring. The most common type of reengineering (actually, the use of

the term reengineering is questionable in this case) is code restructuring.4 Some

legacy systems have a relatively solid program architecture, but individual modules

were coded in a way that makes them difficult to understand, test, and maintain. In

such cases, the code within the suspect modules can be restructured.

To accomplish this activity, the source code is analyzed using a restructuring

tool. Violations of structured programming constructs are noted and code is then

restructured (this can be done automatically) or even rewritten in a more modern

programming language. The resultant restructured code is reviewed and tested to

ensure that no anomalies have been introduced. Internal code documentation is

updated.

Data restructuring. A program with weak data architecture will be difficult to

adapt and enhance. In fact, for many applications, information architecture has more

to do with the long-term viability of a program than the source code itself.

Unlike code restructuring, which occurs at a relatively low level of abstraction,

data restructuring is a full-scale reengineering activity. In most cases, data restruc-

turing begins with a reverse engineering activity. Current data architecture is dis-

sected, and necessary data models are defined (Chapters 6 and 9). Data objects and

attributes are identified, and existing data structures are reviewed for quality.

When data structure is weak (e.g., flat files are currently implemented, when a

relational approach would greatly simplify processing), the data are reengineered.

Because data architecture has a strong influence on program architecture and the

algorithms that populate it, changes to the data will invariably result in either archi-

tectural or code-level changes.

Forward engineering. In an ideal world, applications would be rebuilt using an

automated “reengineering engine.” The old program would be fed into the engine,

analyzed, restructured, and then regenerated in a form that exhibited the best

CHAPTER 29 MAINTENANCE AND REENGINEERING 771

WebRef
An array of resources
for the reengineering
community can be
obtained at
www.comp.lancs
.ac.uk/projects/
RenaissanceWeb/.

4 Code restructuring has some of the elements of “refactoring,” a redesign concept introduced in
Chapter 8 and discussed elsewhere in this book.

pre75977_ch29.qxd 11/27/08 6:32 PM Page 771

http://www.comp.lancs

aspects of software quality. In the short term, it is unlikely that such an “engine” will

appear, but vendors have introduced tools that provide a limited subset of these

capabilities that addresses specific application domains (e.g., applications that are

implemented using a specific database system). More important, these reengineer-

ing tools are becoming increasingly more sophisticated.

Forward engineering not only recovers design information from existing software

but uses this information to alter or reconstitute the existing system in an effort to

improve its overall quality. In most cases, reengineered software reimplements the

function of the existing system and also adds new functions and/or improves over-

all performance.

29.6 REVERSE ENGINEERING

Reverse engineering conjures an image of the “magic slot.” You feed a haphazardly

designed, undocumented source file into the slot and out the other end comes

a complete design description (and full documentation) for the computer program.

Unfortunately, the magic slot doesn’t exist. Reverse engineering can extract design

information from source code, but the abstraction level, the completeness of the doc-

umentation, the degree to which tools and a human analyst work together, and the

directionality of the process are highly variable.

The abstraction level of a reverse engineering process and the tools used to effect

it refers to the sophistication of the design information that can be extracted from

source code. Ideally, the abstraction level should be as high as possible. That is, the

reverse engineering process should be capable of deriving procedural design repre-

sentations (a low-level abstraction), program and data structure information

(a somewhat higher level of abstraction), object models, data and/or control flow

models (a relatively high level of abstraction), and entity relationship models (a high

level of abstraction). As the abstraction level increases, you are provided with infor-

mation that will allow easier understanding of the program.

The completeness of a reverse engineering process refers to the level of detail that

is provided at an abstraction level. In most cases, the completeness decreases as the

abstraction level increases. For example, given a source code listing, it is relatively

easy to develop a complete procedural design representation. Simple architectural

design representations may also be derived, but it is far more difficult to develop a

complete set of UML diagrams or models.

Completeness improves in direct proportion to the amount of analysis performed

by the person doing reverse engineering. Interactivity refers to the degree to which

the human is “integrated” with automated tools to create an effective reverse engi-

neering process. In most cases, as the abstraction level increases, interactivity must

increase or completeness will suffer.

If the directionality of the reverse engineering process is one-way, all informa-

tion extracted from the source code is provided to the software engineer who can

772 PART FOUR MANAGING SOFTWARE PROJECTS

pre75977_ch29.qxd 11/27/08 6:32 PM Page 772

then use it during any maintenance activity. If directionality is two-way, the infor-

mation is fed to a reengineering tool that attempts to restructure or regenerate the

old program.

The reverse engineering process is represented in Figure 29.3. Before reverse

engineering activities can commence, unstructured (“dirty”) source code is restruc-

tured (Section 29.5.1) so that it contains only the structured programming con-

structs.5 This makes the source code easier to read and provides the basis for all the

subsequent reverse engineering activities.

The core of reverse engineering is an activity called extract abstractions. You must

evaluate the old program and from the (often undocumented) source code, develop

a meaningful specification of the processing that is performed, the user interface that

is applied, and the program data structures or database that is used.

29.6.1 Reverse Engineering to Understand Data

Reverse engineering of data occurs at different levels of abstraction and is often the

first reengineering task. At the program level, internal program data structures

must often be reverse engineered as part of an overall reengineering effort. At the

system level, global data structures (e.g., files, databases) are often reengineered

to accommodate new database management paradigms (e.g., the move from flat

file to relational or object-oriented database systems). Reverse engineering of the

CHAPTER 29 MAINTENANCE AND REENGINEERING 773

WebRef
Useful resources for
“design recovery and
program understanding”
can be found at
wwwsel.iit.nrc.ca/
projects/dr/
dr.html.

Refine &
simplify

Final specification

Extract
abstractions

Initial specification

Restructure
code

Clean source code

Dirty source code

Database

Interface

Processing

FIGURE 29.3

The reverse
engineering
process

5 Code can be restructured using a restructuring engine—a tool that restructures source code.

In some cases, the first
reengineering activity
attempts to construct a
UML class diagram.

pre75977_ch29.qxd 11/27/08 6:32 PM Page 773

current global data structures sets the stage for the introduction of a new sys-

temwide database.

Internal data structures. Reverse engineering techniques for internal program

data focus on the definition of classes of objects. This is accomplished by examining

the program code with the intent of grouping related program variables. In many

cases, the data organization within the code identifies abstract data types. For

example, record structures, files, lists, and other data structures often provide an

initial indicator of classes.

Database structure. Regardless of its logical organization and physical structure,

a database allows the definition of data objects and supports some method for

establishing relationships among the objects. Therefore, reengineering one database

schema into another requires an understanding of existing objects and their

relationships.

The following steps [Pre94] may be used to define the existing data model as a

precursor to reengineering a new database model: (1) build an initial object model,

(2) determine candidate keys (the attributes are examined to determine whether

they are used to point to another record or table; those that serve as pointers

become candidate keys), (3) refine the tentative classes, (4) define generalizations,

and (5) discover associations using techniques that are analogous to the CRC

approach. Once information defined in the preceding steps is known, a series of

transformations [Pre94] can be applied to map the old database structure into a

new database structure.

29.6.2 Reverse Engineering to Understand Processing

Reverse engineering to understand processing begins with an attempt to understand

and then extract procedural abstractions represented by the source code. To under-

stand procedural abstractions, the code is analyzed at varying levels of abstraction:

system, program, component, pattern, and statement.

The overall functionality of the entire application system must be understood be-

fore more detailed reverse engineering work occurs. This establishes a context for

further analysis and provides insight into interoperability issues among applications

within the system. Each of the programs that make up the application system repre-

sents a functional abstraction at a high level of detail. A block diagram, representing

the interaction between these functional abstractions, is created. Each component

performs some subfunction and represents a defined procedural abstraction. A pro-

cessing narrative for each component is developed. In some situations, system,

program, and component specifications already exist. When this is the case, the

specifications are reviewed for conformance to existing code.6

774 PART FOUR MANAGING SOFTWARE PROJECTS

The approach to
reverse engineering for
data for conventional
software follows an
analogous path:
(1) build a data
model, (2) identify
attributes of data
objects, and (3) define
relationships.

uote:

“There exists a
passion for
comprehension,
just as there exists
a passion for
music. That passion
is rather common
in children, but
gets lost in most
people later on.”

Albert Einstein

6 Often, specifications written early in the life history of a program are never updated. As changes
are made, the code no longer conforms to the specification.

pre75977_ch29.qxd 11/27/08 6:32 PM Page 774

Things become more complex when the code inside a component is considered.

You should look for sections of code that represent generic procedural patterns. In

almost every component, a section of code prepares data for processing (within the

module), a different section of code does the processing, and another section of

code prepares the results of processing for export from the component. Within

each of these sections, you can encounter smaller patterns; for example, data val-

idation and bounds checking often occur within the section of code that prepares

data for processing.

For large systems, reverse engineering is generally accomplished using a

semiautomated approach. Automated tools can be used to help you understand

the semantics of existing code. The output of this process is then passed to

restructuring and forward engineering tools to complete the reengineering

process.

29.6.3 Reverse Engineering User Interfaces

Sophisticated GUIs have become de rigueur for computer-based products and sys-

tems of every type. Therefore, the redevelopment of user interfaces has become one

of the most common types of reengineering activity. But before a user interface can

be rebuilt, reverse engineering should occur.

To fully understand an existing user interface, the structure and behavior of the

interface must be specified. Merlo and his colleagues [Mer93] suggest three basic

questions that must be answered as reverse engineering of the UI commences:

• What are the basic actions (e.g., keystrokes and mouse clicks) that the

interface must process?

• What is a compact description of the behavioral response of the system to

these actions?

• What is meant by a “replacement,” or more precisely, what concept of equiv-

alence of interfaces is relevant here?

Behavioral modeling notation (Chapter 7) can provide a means for developing

answers to the first two questions. Much of the information necessary to create a

behavioral model can be obtained by observing the external manifestation of the

existing interface. But additional information necessary to create the behavioral

model must be extracted from the code.

It is important to note that a replacement GUI may not mirror the old interface

exactly (in fact, it may be radically different). It is often worthwhile to develop a

new interaction metaphor. For example, an old UI requests that a user provide

a scale factor (ranging from 1 to 10) to shrink or magnify a graphical image. A

reengineered GUI might use a slide-bar and mouse to accomplish the same

function.

CHAPTER 29 MAINTENANCE AND REENGINEERING 775

How do I
understand

the workings of
an existing user
interface?

?

pre75977_ch29.qxd 11/27/08 6:32 PM Page 775

29.7 RESTRUCTURING

Software restructuring modifies source code and/or data in an effort to make it

amenable to future changes. In general, restructuring does not modify the overall

program architecture. It tends to focus on the design details of individual modules

and on local data structures defined within modules. If the restructuring effort

extends beyond module boundaries and encompasses the software architecture,

restructuring becomes forward engineering (Section 29.7).

Restructuring occurs when the basic architecture of an application is solid,

even though technical internals need work. It is initiated when major parts of the

software are serviceable and only a subset of all modules and data need extensive

modification.8

29.7.1 Code Restructuring

Code restructuring is performed to yield a design that produces the same function

but with higher quality than the original program. In general, code restructuring tech-

niques (e.g., Warnier’s logical simplification techniques [War74]) model program

logic using Boolean algebra and then apply a series of transformation rules that yield

restructured logic. The objective is to take “spaghetti-bowl” code and derive a proce-

dural design that conforms to the structured programming philosophy (Chapter 10).

Other restructuring techniques have also been proposed for use with reengineer-

ing tools. A resource exchange diagram maps each program module and the

resources (data types, procedures and variables) that are exchanged between it and

776 PART FOUR MANAGING SOFTWARE PROJECTS

7 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.
In most cases, tool names are trademarked by their respective developers.

8 It is sometimes difficult to make a distinction between extensive restructuring and redevelopment.
Both are reengineering.

Reverse Engineering
Objective: To help software engineers
understand the internal design structure of

complex programs.

Mechanics: In most cases, reverse engineering tools
accept source code as input and produce a variety of
structural, procedural, data, and behavioral design
representations.

Representative Tools:7

Imagix 4D, developed by Imagix (www.imagix.com),
“helps software developers understand complex or

legacy C and C++ software” by reverse engineering
and documenting source code.

Understand, developed by Scientific Toolworks, Inc.
(www.scitools.com), parses Ada, Fortran, C, C++,
and Java “to reverse engineer, automatically
document, calculate code metrics, and help you
understand, navigate and maintain source code.”

A comprehensive listing of reverse engineering tools can
be found at http://scgwiki.iam.unibe.ch:8080/
SCG/370.

SOFTWARE TOOLS

Although code restruc-
turing can alleviate
immediate problems
associated with
debugging or small
changes, it is not
reengineering. Real
benefit is achieved
only when data and
architecture are
restructured.

pre75977_ch29.qxd 11/27/08 6:32 PM Page 776

http://www.imagix.com
http://www.scitools.com
http://scgwiki.iam.unibe.ch:8080/

other modules. By creating representations of resource flow, the program architec-

ture can be restructured to achieve minimum coupling among modules.

29.7.2 Data Restructuring

Before data restructuring can begin, a reverse engineering activity called analysis of

source code should be conducted. All programming language statements that con-

tain data definitions, file descriptions, I/O, and interface descriptions are evaluated.

The intent is to extract data items and objects, to get information on data flow, and

to understand the existing data structures that have been implemented. This activity

is sometimes called data analysis.

Once data analysis has been completed, data redesign commences. In its simplest

form, a data record standardization step clarifies data definitions to achieve consis-

tency among data item names or physical record formats within an existing data

structure or file format. Another form of redesign, called data name rationalization,

ensures that all data naming conventions conform to local standards and that aliases

are eliminated as data flow through the system.

When restructuring moves beyond standardization and rationalization, physical

modifications to existing data structures are made to make the data design more

effective. This may mean a translation from one file format to another, or in some

cases, translation from one type of database to another.

CHAPTER 29 MAINTENANCE AND REENGINEERING 777

Software Restructuring

Objective: The objective of restructuring tools
is to transform older unstructured computer

software into modern programming languages and design
structures.

Mechanics: In general, source code is input and
transformed into a better structured program. In some
cases, the transformation occurs within the same
programming language. In other cases, an older
programming language is transformed into a more
modern language.

Representative Tools:9

DMS Software Reengineering Toolkit, developed by
Semantic Design (www.semdesigns.com),
provides a variety of restructuring capabilities for
COBOL, C/C++, Java, Fortran 90, and VHDL.

Clone Doctor, developed by Semantic Designs, Inc.
(www.semdesigns.com), analyzes and transforms
programs written in C, C++, Java, or COBOL or any
other text-based computer language.

plusFORT, developed by Polyhedron
(www.polyhedron.com) is a suite of FORTRAN
tools that contains capabilities for restructuring poorly
designed FORTRAN programs into the modern
FORTRAN or C standard.

Pointers to a variety of reengineering and reverse
engineering tools can be found at www.csse
.monash.edu/~ipeake/reeng/free-swre-tools
.html and www.cs.ualberta.ca/~kenw/toolsdir/
all.html.

SOFTWARE TOOLS

9 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.
In most cases, tool names are trademarked by their respective developers.

pre75977_ch29.qxd 11/27/08 6:32 PM Page 777

http://www.semdesigns.com
http://www.semdesigns.com
http://www.polyhedron.com
http://www.csse
http://www.cs.ualberta.ca/~kenw/toolsdir/

29.8 FORWARD ENGINEERING

A program with control flow that is the graphic equivalent of a bowl of spaghetti,

with “modules” that are 2000 statements long, with few meaningful comment lines

in 290,000 source statements and no other documentation must be modified to

accommodate changing user requirements. You have the following options:

1. You can struggle through modification after modification, fighting the ad hoc

design and tangled source code to implement the necessary changes.

2. You can attempt to understand the broader inner workings of the program in

an effort to make modifications more effectively.

3. You can redesign, recode, and test those portions of the software that require

modification, applying a software engineering approach to all revised

segments.

4. You can completely redesign, recode, and test the program, using reengi-

neering tools to assist you in understanding the current design.

There is no single “correct” option. Circumstances may dictate the first option even

if the others are more desirable.

Rather than waiting until a maintenance request is received, the development or

support organization uses the results of inventory analysis to select a program that

(1) will remain in use for a preselected number of years, (2) is currently being used

successfully, and (3) is likely to undergo major modification or enhancement in the

near future. Then, option 2, 3, or 4 is applied.

At first glance, the suggestion that you redevelop a large program when a work-

ing version already exists may seem quite extravagant. Before passing judgment,

consider the following points:

1. The cost to maintain one line of source code may be 20 to 40 times the cost

of initial development of that line.

2. Redesign of the software architecture (program and/or data structure), using

modern design concepts, can greatly facilitate future maintenance.

3. Because a prototype of the software already exists, development productivity

should be much higher than average.

4. The user now has experience with the software. Therefore, new require-

ments and the direction of change can be ascertained with greater ease.

5. Automated tools for reengineering will facilitate some parts of the job.

6. A complete software configuration (documents, programs, and data) will

exist upon completion of preventive maintenance.

A large in-house software developer (e.g., a business systems software develop-

ment group for a large consumer products company) may have 500 to 2000 production

778 PART FOUR MANAGING SOFTWARE PROJECTS

What
options exist

when we’re faced
with a poorly
designed and
implemented
program?

?

Reengineering is a lot
like getting your teeth
cleaned. You can think
of a thousand reasons
to delay it, and you’ll
get away with procras-
tinating for quite a
while. But eventually,
your delaying tactics
will come back to
cause pain.

pre75977_ch29.qxd 11/27/08 6:32 PM Page 778

programs within its domain of responsibility. These programs can be ranked by

importance and then reviewed as candidates for forward engineering.

The forward engineering process applies software engineering principles, con-

cepts, and methods to re-create an existing application. In most cases, forward

engineering does not simply create a modern equivalent of an older program.

Rather, new user and technology requirements are integrated into the reengi-

neering effort. The redeveloped program extends the capabilities of the older

application.

29.8.1 Forward Engineering for Client-Server Architectures

Over the past few decades, many mainframe applications have been reengineered

to accommodate client-server architectures (including WebApps). In essence, cen-

tralized computing resources (including software) are distributed among many client

platforms. Although a variety of different distributed environments can be designed,

the typical mainframe application that is reengineered into a client-server architec-

ture has the following features:

• Application functionality migrates to each client computer.

• New GUI interfaces are implemented at the client sites.

• Database functions are allocated to the server.

• Specialized functionality (e.g., compute-intensive analysis) may remain at the

server site.

• New communications, security, archiving, and control requirements must be

established at both the client and server sites.

It is important to note that the migration from mainframe to client-server computing

requires both business and software reengineering. In addition, an “enterprise network

infrastructure” [Jay94] should be established.

Reengineering for client-server applications begins with a thorough analysis of

the business environment that encompasses the existing mainframe. Three layers of

abstraction can be identified. The database sits at the foundation of a client-server

architecture and manages transactions and queries from server applications. Yet

these transactions and queries must be controlled within the context of a set of busi-

ness rules (defined by an existing or reengineered business process). Client applica-

tions provide targeted functionality to the user community.

The functions of the existing database management system and the data archi-

tecture of the existing database must be reverse engineered as a precursor to the re-

design of the database foundation layer. In some cases a new data model (Chapter 6)

is created. In every case, the client-server database is reengineered to ensure that

transactions are executed in a consistent manner, that all updates are performed

only by authorized users, that core business rules are enforced (e.g., before a vendor

record is deleted, the server ensures that no related accounts payable, contracts, or

CHAPTER 29 MAINTENANCE AND REENGINEERING 779

In some cases,
migration to a client-
server architecture
should be approached
not as reengineering,
but as a new develop-
ment effort. Reengi-
neering enters the
picture only when
specific functionality
from the old system is
to be integrated into
the new architecture.

pre75977_ch29.qxd 11/27/08 6:32 PM Page 779

communications exist for that vendor), that queries can be accommodated

efficiently, and that full archiving capability has been established.

The business rules layer represents software resident at both the client and the

server. This software performs control and coordination tasks to ensure that trans-

actions and queries between the client application and the database conform to the

established business process.

The client applications layer implements business functions that are required by

specific groups of end users. In many instances, a mainframe application is segmented

into a number of smaller, reengineered desktop applications. Communication among

the desktop applications (when necessary) is controlled by the business rules layer.

A comprehensive discussion of client-server software design and reengineering

is best left to books dedicated to the subject. If you have further interest, see [Van02],

[Cou00], or [Orf99].

29.8.2 Forward Engineering for Object-Oriented Architectures

Object-oriented software engineering has become the development paradigm of

choice for many software organizations. But what about existing applications that

were developed using conventional methods? In some cases, the answer is to leave

such applications “as is.” In others, older applications must be reengineered so that

they can be easily integrated into large, object-oriented systems.

Reengineering conventional software into an object-oriented implementation

uses many of the same techniques discussed in Part 2 of this book. First, the existing

software is reverse engineered so that appropriate data, functional, and behavioral

models can be created. If the reengineered system extends the functionality or

behavior of the original application, use cases (Chapters 5 and 6) are created. The

data models created during reverse engineering are then used in conjunction with

CRC modeling (Chapter 6) to establish the basis for the definition of classes. Class

hierarchies, object-relationship models, object-behavior models, and subsystems

are defined, and object-oriented design commences.

As object-oriented forward engineering progresses from analysis to design, a CBSE

process model (Chapter 10) can be invoked. If the existing application resides within a

domain that is already populated by many object-oriented applications, it is likely that

a robust component library exists and can be used during forward engineering.

For those classes that must be engineered from scratch, it may be possible to

reuse algorithms and data structures from the existing conventional application.

However, these must be redesigned to conform to the object-oriented architecture.

29.9 THE ECONOMICS OF REENGINEERING

In a perfect world, every unmaintainable program would be retired immediately, to

be replaced by high-quality, reengineered applications developed using modern soft-

ware engineering practices. But we live in a world of limited resources. Reengineer-

ing drains resources that can be used for other business purposes. Therefore, before

780 PART FOUR MANAGING SOFTWARE PROJECTS

pre75977_ch29.qxd 11/27/08 6:32 PM Page 780

an organization attempts to reengineer an existing application, it should perform a

cost-benefit analysis.

A cost-benefit analysis model for reengineering has been proposed by Sneed

[Sne95]. Nine parameters are defined:

P1 � current annual maintenance cost for an application

P2 � current annual operations cost for an application

P3 � current annual business value of an application

P4 � predicted annual maintenance cost after reengineering

P5 � predicted annual operations cost after reengineering

P6 � predicted annual business value after reengineering

P7 � estimated reengineering costs

P8 � estimated reengineering calendar time

P9 � reengineering risk factor (P9 � 1.0 is nominal)

L � expected life of the system

The cost associated with continuing maintenance of a candidate application (i.e.,

reengineering is not performed) can be defined as

Cmaint � [P3 � (P1 � P2)] � L (29.1)

The costs associated with reengineering are defined using the following relationship:

Creeng � P6 � (P4 � P5) � (L � P8) � (P7 � P9) (29.2)

Using the costs presented in Equations (29.1) and (29.2), the overall benefit of reengi-

neering can be computed as

Cost benefit � Creeng � Cmaint (29.3)

The cost-benefit analysis presented in these equations can be performed for all high-

priority applications identified during inventory analysis (Section 29.4.2). Those

applications that show the highest cost-benefit can be targeted for reengineering,

while work on others can be postponed until resources are available.

29.10 SUMMARY

Software maintenance and support are ongoing activities that occur throughout the

life cycle of an application. During these activities, defects are corrected, applications

are adapted to a changing operational or business environment, enhancements are

implemented at the request of stakeholders, and users are supported as they inte-

grate an application into their personal or business workflow.

Reengineering occurs at two different levels of abstraction. At the business level,

reengineering focuses on the business process with the intent of making changes to

improve competitiveness in some area of the business. At the software level, reengi-

neering examines information systems and applications with the intent of restruc-

turing or reconstructing them so that they exhibit higher quality.

CHAPTER 29 MAINTENANCE AND REENGINEERING 781

uote:

“You can pay a
little now, or you
can pay a lot more
later.”

Sign in an auto
dealership
suggesting a
tune-up.

pre75977_ch29.qxd 11/27/08 6:32 PM Page 781

Business process reengineering defines business goals; identifies and evalu-

ates existing business processes (in the context of defined goals); specifies and

designs revised processes; and prototypes, refines, and instantiates them within a

business. BPR has a focus that extends beyond software. The result of BPR is often

the definition of ways in which information technologies can better support the

business.

Software reengineering encompasses a series of activities that include inventory

analysis, document restructuring, reverse engineering, program and data restruc-

turing, and forward engineering. The intent of these activities is to create versions of

existing programs that exhibit higher quality and better maintainability—programs

that will be viable well into the twenty-first century.

The cost-benefit of reengineering can be determined quantitatively. The cost of the

status quo, that is, the cost associated with ongoing support and maintenance of an

existing application, is compared to the projected costs of reengineering and the re-

sultant reduction in maintenance and support costs. In almost every case in which a

program has a long life and currently exhibits poor maintainability or supportability,

reengineering represents a cost-effective business strategy.

PROBLEMS AND POINTS TO PONDER

29.1. Consider any job that you’ve held in the last five years. Describe the business process in
which you played a part. Use the BPR model described in Section 29.4.2 to recommend changes
to the process in an effort to make it more efficient.

29.2. Do some research on the efficacy of business process reengineering. Present pro and con
arguments for this approach.

29.3. Your instructor will select one of the programs that everyone in the class has developed
during this course. Exchange your program randomly with someone else in the class. Do not
explain or walk through the program. Now, implement an enhancement (specified by your
instructor) in the program you have received.

a. Perform all software engineering tasks including a brief walkthrough (but not with the
author of the program).

b. Keep careful track of all errors encountered during testing.
c. Discuss your experiences in class.

29.4. Explore the inventory analysis checklist presented at the SEPA website and attempt to
develop a quantitative software rating system that could be applied to existing programs in an
effort to pick candidate programs for reengineering. Your system should extend beyond the
economic analysis presented in Section 29.9.

29.5. Suggest alternatives to paper and ink or conventional electronic documentation that
could serve as the basis for document restructuring. (Hint: Think of new descriptive technolo-
gies that could be used to communicate the intent of the software.)

29.6. Some people believe that artificial intelligence technology will increase the abstraction
level of the reverse engineering process. Do some research on this subject (i.e., the use of AI for
reverse engineering), and write a brief paper that takes a stand on this point.

29.7. Why is completeness difficult to achieve as abstraction level increases?

29.8. Why must interactivity increase if completeness is to increase?

782 PART FOUR MANAGING SOFTWARE PROJECTS

pre75977_ch29.qxd 11/27/08 6:32 PM Page 782

29.9. Using information obtained via the Web, present characteristics of three reverse engi-
neering tools to your class.

29.10. There is a subtle difference between restructuring and forward engineering. What is it?

29.11. Research the literature and/or Internet sources to find one or more papers that discuss
case studies of mainframe to client-server reengineering. Present a summary.

29.12. How would you determine P4 through P7 in the cost-benefit model presented in
Section 29.9?

FURTHER READINGS AND INFORMATION SOURCES

It is ironic that software maintenance and support represent the most costly activities in the life
of an application, and yet, fewer books have been written about maintenance and support than
any other major software engineering topics. Among recent additions to the literature are books
by Jarzabek (Effective Software Maintenance and Evolution, Auerbach, 2007), Grubb and Takang
(Software Maintenance: Concepts and Practice, World Scientific Publishing Co., 2d ed., 2003), and
Pigoski (Practical Software Maintenance, Wiley, 1996). These books cover basic maintenance and
support practices and present useful management guidance. Maintenance techniques that focus
on client-server environments are discussed by Schneberger (Client/Server Software Mainte-
nance, McGraw-Hill, 1997). Current research in “software evolution” is presented in an anthol-
ogy edited by Mens and Demeyer (Software Evolution, Springer, 2008).

Like many hot topics in the business community, the hype surrounding business process
reengineering has given way to a more pragmatic view of the subject. Hammer and Champy
(Reengineering the Corporation, HarperBusiness, revised edition, 2003) precipitated early inter-
est with their best-selling book. Other books by Smith and Fingar [Business Process Management
(BPM): The Third Wave, Meghan-Kiffer Press, 2003], Jacka and Keller (Business Process Mapping:
Improving Customer Satisfaction, Wiley, 2001), Sharp and McDermott (Workflow Modeling, Artech
House, 2001), Andersen (Business Process Improvement Toolbox, American Society for Quality,
1999), and Harrington et al. (Business Process Improvement Workbook, McGraw-Hill, 1997) pres-
ent case studies and detailed guidelines for BPR.

Fong (Information Systems Reengineering and Integration, Springer, 2006) describes database
conversion techniques, reverse engineering, and forward engineering as they are applied for
major information systems. Demeyer and his colleagues (Object Oriented Reengineering Patterns,
Morgan Kaufmann, 2002) provides a patterns-based view of how to refactor and/or reengineer
OO systems. Secord and his colleagues (Modernizing Legacy Systems, Addison-Wesley, 2003),
Ulrich (Legacy Systems: Transformation Strategies, Prentice Hall, 2002), Valenti (Successful Soft-
ware Reengineering, IRM Press, 2002), and Rada (Reengineering Software: How to Reuse Pro-
gramming to Build New, State-of-the-Art Software, Fitzroy Dearborn Publishers, 1999) focus on
strategies and practices for reengineering at a technical level. Miller (Reengineering Legacy Soft-
ware Systems, Digital Press, 1998) “provides a framework for keeping application systems syn-
chronized with business strategies and technology changes.”

Cameron (Reengineering Business for Success in the Internet Age, Computer Technology
Research, 2000) and Umar [Application (Re)Engineering: Building Web-Based Applications and
Dealing with Legacies, Prentice Hall, 1997] provide worthwhile guidance for organizations that
want to transform legacy systems into a Web-based environment. Cook (Building Enterprise
Information Architectures: Reengineering Information Systems, Prentice Hall, 1996) discusses the
bridge between BPR and information technology. Aiken (Data Reverse Engineering, McGraw-Hill,
1996) discusses how to reclaim, reorganize, and reuse organizational data. Arnold (Software
Reengineering, IEEE Computer Society Press, 1993) has put together an excellent anthology of
early papers that focus on software reengineering technologies.

A wide variety of information sources on software reengineering is available on the Internet.
An up-to-date list of World Wide Web references relevant to software maintenance and reengi-
neering can be found at the SEPA website: www.mhhe.com/engcs/compsci/pressman/
professional/olc/ser.htm.

CHAPTER 29 MAINTENANCE AND REENGINEERING 783

pre75977_ch29.qxd 11/27/08 6:32 PM Page 783

http://www.mhhe.com/engcs/compsci/pressman/

pre75977_ch29.qxd 11/27/08 6:32 PM Page 784

ADVANCED

TOPICS

785

P A R T

Five

In this part of Software Engineering: A Practitioner’s Approach, we
consider a number of advanced topics that will extend your
understanding of software engineering. The following ques-

tions are addressed in the chapters that follow:

• What is software process improvement and how can it be
used to improve the state of software engineering practice?

• What emerging trends can be expected to have a significant
influence on software engineering practice in the next
decade?

• What is the road ahead for software engineers?

Once these questions are answered, you'll understand topics
that may have a profound impact on software engineering in the
years to come.

pre75977_ch30.qxd 11/27/08 6:33 PM Page 785

Long before the phrase “software process improvement” was widely used,
I worked with major corporations in an attempt to improve the state of
their software engineering practices. As a consequence of my experiences,

I wrote a book entitled Making Software Engineering Happen [Pre88]. In the pref-
ace of that book I made the following comment:

For the past ten years I have had the opportunity to help a number of large companies

implement software engineering practices. The job is difficult and rarely goes as

smoothly as one might like—but when it succeeds, the results are profound. Software

projects are more likely to be completed on time. Communication between all con-

stituencies involved in software development is improved. The level of confusion and

chaos that is often prevalent for large software projects is reduced substantially. The

number of errors encountered by the customer drops substantially. The credibility of the

software organization increases. And management has one less problem to worry about.

But all is not sweetness and light. Many companies attempt to implement software

engineering practice and give up in frustration. Others do it half-way and never see

the benefits noted above. Still others do it in a heavy-handed fashion that results in

open rebellion among technical staff and managers and subsequent loss of morale.

786

C H A P T E R

30 SOFTWARE PROCESS
IMPROVEMENT

K E Y
C O N C E P T S

assessment . . .791
CMMI 797
critical success
factors 796
education and
training 793
evaluation 795
installation/
migration 794
justification . . .793
maturity
models 789
people CMM . . .801
return on
investment 804
risk
management . .795

What is it? Software process im-
provement encompasses a set of
activities that will lead to a better soft-
ware process and, as a conse-

quence, higher-quality software delivered in a
more timely manner.

Who does it? The people who champion SPI come
from three groups: technical managers, software
engineers, and individuals who have quality
assurance responsibility.

Why is it important? Some software organiza-
tions have little more than an ad hoc software
process. As they work to improve their software
engineering practices, they must address weak-
nesses in their existing process and try to
improve their approach to software work.

What are the steps? The approach to SPI is itera-
tive and continuous, but it can be viewed in five

Q U I C K
L O O K

steps: (1) assessment of the current software
process, (2) education and training of practition-
ers and managers, (3) selection and justification
of process elements, software engineering meth-
ods, and tools, (4) implementation of the SPI
plan, and (5) evaluation and tuning based on the
results of the plan.

What is the work product? Although there are
many intermediate SPI work products, the end
result is an improved software process that leads
to higher-quality software.

How do I ensure that I’ve done it right? The
software your organization produces will be
delivered with fewer defects, rework at each
stage of the software process will be reduced, and
on-time delivery will become much more likely.

pre75977_ch30.qxd 11/27/08 6:33 PM Page 786

CHAPTER 30 SOFTWARE PROCESS IMPROVEMENT 787

Although those words were written more than 20 years ago, they remain equally

true today.

As we move into the second decade of the twenty-first century, most major soft-

ware engineering organizations have attempted to “make software engineering

happen.” Some have implemented individual practices that have helped to improve

the quality of the product they build and the timeliness of their delivery. Others have

established a “mature” software process that guides their technical and project man-

agement activities. But others continue to struggle. Their practices are hit-and-miss,

and their process is ad hoc. Occasionally, their work is spectacular, but in the main,

each project is an adventure, and no one knows whether it will end badly or well.

So, which of these two cohorts needs software process improvement? The

answer (which may surprise you) is both. Those that have succeeded in making soft-

ware engineering happen cannot become complacent. They must work continually

to improve their approach to software engineering. And those that struggle must

begin their journey down the road toward improvement.

30.1 WHAT IS SPI?

The term software process improvement (SPI) implies many things. First, it implies that

elements of an effective software process can be defined in an effective manner;

second, that an existing organizational approach to software development can be

assessed against those elements; and third, that a meaningful strategy for improve-

ment can be defined. The SPI strategy transforms the existing approach to software

development into something that is more focused, more repeatable, and more reli-

able (in terms of the quality of the product produced and the timeliness of delivery).

Because SPI is not free, it must deliver a return on investment. The effort and time

that is required to implement an SPI strategy must pay for itself in some measura-

ble way. To do this, the results of improved process and practice must lead to a

reduction in software “problems” that cost time and money. It must reduce the num-

ber of defects that are delivered to end users, reduce the amount of rework due to

quality problems, reduce the costs associated with software maintenance and

support (Chapter 29), and reduce the indirect costs that occur when software is

delivered late.

30.1.1 Approaches to SPI

Although an organization can choose a relatively informal approach to SPI, the vast

majority choose one of a number of SPI frameworks. An SPI framework defines (1) a

set of characteristics that must be present if an effective software process is to be

achieved, (2) a method for assessing whether those characteristics are present, (3) a

mechanism for summarizing the results of any assessment, and (4) a strategy for

assisting a software organization in implementing those process characteristics that

have been found to be weak or missing.

selection 793
software process
improvement
(SPI) 787

applicability . .790
frameworks . .787
process 791

SPI implies a defined
software process, an
organizational
approach, and a
strategy for
improvement.

uote:

“Much of the
software crisis is
self-inflicted, as
when a CIO says,
‘I’d rather have it
wrong than have
it late. We can
always fix it
later.’”

Mark Paulk

pre75977_ch30.qxd 11/27/08 6:33 PM Page 787

An SPI framework assesses the “maturity” of an organization’s software process

and provides a qualitative indication of a maturity level. In fact, the term “maturity

model” (Section 30.1.2) is often applied. In essence, the SPI framework encompasses

a maturity model that in turn incorporates a set of process quality indicators that pro-

vide an overall measure of the process quality that will lead to product quality.

Figure 30.1 provides an overview of a typical SPI framework. The key elements of

the framework and their relationship to one another are shown.

You should note that there is no universal SPI framework. In fact, the SPI frame-

work that is chosen by an organization reflects the constituency that is championing

the SPI effort. Conradi [Con96] defines six different SPI support constituencies:

Quality certifiers. Process improvement efforts championed by this group

focus on the following relationship:

Quality(Process) ⇒ Quality(Product)

Their approach is to emphasize assessment methods and to examine a well-

defined set of characteristics that allow them to determine whether the

process exhibits quality. They are most likely to adopt a process framework

such as the CMM, SPICE, TickIT, or Bootstrap.1

Formalists. This group wants to understand (and when possible, optimize)

process workflow. To accomplish this, they use process modeling languages

788 PART FIVE ADVANCED TOPICS

Software
process

Assessment

Is a foundation for

Leads to Leads to

Is
examined

by
Identifies capabilities,
strengths, and weaknesses of

Identifies maturity of

Identifies changes to

Suggests improvement
approach for

Capability
determination

Improvement
strategy

FIGURE 30.1

Elements of an
SPI framework.
Source: Adapted from
[Rou02].

What groups
champion an

SPI effort?
?

1 Each of these SPI frameworks is discussed later in this chapter.

pre75977_ch30.qxd 11/27/08 6:33 PM Page 788

(PMLs) to create a model of the existing process and then design extensions

or modifications that will make the process more effective.

Tool advocates. This group insists on a tool-assisted approach to SPI that

models workflow and other process characteristics in a manner that can be

analyzed for improvement.

Practitioners. This constituency uses a pragmatic approach, “emphasizing

mainstream project-, quality- and product management, applying project-

level planning and metrics, but with little formal process modeling or enact-

ment support” [Con96].

Reformers. The goal of this group is organizational change that might

lead to a better software process. They tend to focus more on human issues

(Section 30.5) and emphasize measures of human capability and structure.

Ideologists. This group focuses on the suitability of a particular process model

for a specific application domain or organizational structure. Rather than typi-

cal software process models (e.g., iterative models), ideologists would have a

greater interest in a process that would, say, support reuse or reengineering.

As an SPI framework is applied, the sponsoring constituency (regardless of its over-

all focus) must establish mechanisms to: (1) support technology transition, (2) deter-

mine the degree to which an organization is ready to absorb process changes that

are proposed, and (3) measure the degree to which changes have been adopted.

30.1.2 Maturity Models

A maturity model is applied within the context of an SPI framework. The intent of the

maturity model is to provide an overall indication of the “process maturity” exhibited

by a software organization. That is, an indication of the quality of the software

process, the degree to which practitioner’s understand and apply the process, and

the general state of software engineering practice. This is accomplished using some

type of ordinal scale.

For example, the Software Engineering Institute’s Capability Maturity Model

(Section 30.4) suggests five levels of maturity [Sch96]:

Level 5, Optimized—The organization has quantitative feedback systems in place to

identify process weaknesses and strengthen them pro-actively. Project teams analyze

defects to determine their causes; software processes are evaluated and updated to pre-

vent known types of defects from recurring.

Level 4, Managed—Detailed software process and product quality metrics establish

the quantitative evaluation foundation. Meaningful variations in process performance

can be distinguished from random noise, and trends in process and product qualities can

be predicted.

Level 3, Defined—Processes for management and engineering are documented,

standardized, and integrated into a standard software process for the organization.

CHAPTER 30 SOFTWARE PROCESS IMPROVEMENT 789

A maturity model
defines levels of
software process
competence and
implementation.

“What are
the different

constituencies that
support SPI?”

?

pre75977_ch30.qxd 11/27/08 6:33 PM Page 789

All projects use an approved, tailored version of the organization’s standard software

process for developing software.

Level 2, Repeatable—Basic project management processes are established to track

cost, schedule, and functionality. Planning and managing new products is based on

experience with similar projects.

Level 1, Initial—Few processes are defined, and success depends more on individ-

ual heroic efforts than on following a process and using a synergistic team effort.

The CMM maturity scale goes no further, but experience indicates that many organ-

izations exhibit levels of “process immaturity” [Sch96] that undermine any rational

attempt at improving software engineering practices. Schorsch [Sch06] suggests

four levels of immaturity that are often encountered in the real world of software

development organizations:

Level 0, Negligent—Failure to allow successful development process to succeed. All prob-

lems are perceived to be technical problems. Managerial and quality assurance activities

are deemed to be overhead and superfluous to the task of software development process.

Reliance on silver pellets.

Level –1, Obstructive—Counterproductive processes are imposed. Processes are rigidly

defined and adherence to the form is stressed. Ritualistic ceremonies abound. Collective

management precludes assigning responsibility. Status quo über alles.

Level –2, Contemptuous—Disregard for good software engineering institutionalized.

Complete schism between software development activities and software process

improvement activities. Complete lack of a training program.

Level –3, Undermining—Total neglect of own charter, conscious discrediting of peer

organization’s software process improvement efforts. Rewarding failure and poor

performance.

Schorsch’s immaturity levels are toxic for any software organization. If you

encounter any one of them, attempts at SPI are doomed to failure.

The overriding question is whether maturity scales, such as the one proposed as part

of the CMM, provide any real benefit. I think that they do. A maturity scale provides an

easily understood snapshot of process quality that can be used by practitioners and

managers as a benchmark from which improvement strategies can be planned.

30.1.3 Is SPI for Everyone?

For many years, SPI was viewed as a “corporate” activity—a euphemism for some-

thing that only large companies perform. But today, a significant percentage of

all software development is being performed by companies that employ fewer than

100 people. Can a small company initiate SPI activities and do it successfully?

There are substantial cultural differences between large software development

organizations and small ones. It should come as no surprise that small organizations

are more informal, apply fewer standard practices, and tend to be self-organizing.

They also tend to pride themselves on the “creativity” of individual members of the

790 PART FIVE ADVANCED TOPICS

If a specific process
model or SPI approach
feels like overkill for
your organization, it
probably is.

“How do you
recognize an

organization that
will resist SPI
efforts?”

?

pre75977_ch30.qxd 11/27/08 6:33 PM Page 790

software organization, and initially view an SPI framework as overly bureaucratic

and ponderous. Yet, process improvement is as important for a small organization

as it is for a large one.

Within small organizations the implementation of an SPI framework requires

resources that may be in short supply. Managers must allocate people and money to

make software engineering happen. Therefore, regardless of the size of the software

organization, it’s reasonable to consider the business motivation for SPI.

SPI will be approved and implemented only after its proponents demonstrate

financial leverage [Bir98]. Financial leverage is demonstrated by examining tech-

nical benefits (e.g., fewer defects delivered to the field, reduced rework, lower

maintenance costs, or more rapid time-to-market) and translating them into

dollars. In essence, you must show a realistic return on investment (Section 30.7)

for SPI costs.

30.2 THE SPI PROCESS

The hard part of SPI isn’t the definition of characteristics that define a high-quality

software process or the creation of a process maturity model. Those things are rela-

tively easy. Rather, the hard part is establishing a consensus for initiating SPI and

defining an ongoing strategy for implementing it across a software organization.

The Software Engineering Institute has developed IDEAL—“an organizational

improvement model that serves as a roadmap for initiating, planning, and imple-

menting improvement actions” [SEI08]. IDEAL is representative of many process

models for SPI, defining five distinct activities—initiating, diagnosing, establishing,

acting, and learning—that guide an organization through SPI activities.

In this book, I present a somewhat different road map for SPI, based on the

process model for SPI originally proposed in [Pre88]. It applies a commonsense phi-

losophy that requires an organization to (1) look in the mirror, (2) then get smarter

so it can make intelligent choices, (3) select the process model (and related technol-

ogy elements) that best meets its needs, (4) instantiate the model into its operating

environment and its culture, and (5) evaluate what has been done. These five activ-

ities (discussed in the subsections2 that follow) are applied in an iterative (cyclical)

manner in an effort to foster continuous process improvement.

30.2.1 Assessment and Gap Analysis

Any attempt to improve your current software process without first assessing the

efficacy of current framework activities and associated software engineering prac-

tices would be like starting on a long journey to a new location with no idea where

you are starting from. You’d depart with great flourish, wander around trying to get

your bearings, expend lots of energy and endure large doses of frustration, and likely,

CHAPTER 30 SOFTWARE PROCESS IMPROVEMENT 791

2 Some of the content in these sections has been adapted from [Pre88] with permission.

pre75977_ch30.qxd 11/27/08 6:33 PM Page 791

decide you really didn’t want to travel anyway. Stated simply, before you begin any

journey, it’s a good idea to know precisely where you are.

The first road-map activity, called assessment, allows you to get your bearings.

The intent of assessment is to uncover both strengths and weaknesses in the way

your organization applies the existing software process and the software engineer-

ing practices that populate the process.

Assessment examines a wide range of actions and tasks that will lead to a high-

quality process. For example, regardless of the process model that is chosen, the soft-

ware organization must establish generic mechanisms such as: defined approaches

for customer communication; established methods for representing user require-

ments; defining a project management framework that includes scoping, estimation,

scheduling, and project tracking; risk analysis methods; change management proce-

dures; quality assurance and control activities including reviews; and many others.

Each is considered within the context of the framework and umbrella activities

(Chapter 2) that have been established and is assessed to determine whether each of

the following questions has been addressed:

• Is the objective of the action clearly defined?

• Are work products required as input and produced as output identified and

described?

• Are the work tasks to be performed clearly described?

• Are the people who must perform the action identified by role?

• Have entry and exit criteria been established?

• Have metrics for the action been established?

• Are tools available to support the action?

• Is there an explicit training program that addresses the action?

• Is the action performed uniformly for all projects?

Although the questions noted imply a yes or no answer, the role of assessment is

to look behind the answer to determine whether the action in question is being

performed in a manner that would conform to best practice.

As the process assessment is conducted, you (or those who have been hired to

perform the assessment) should also focus on the following attributes:

Consistency. Are important activities, actions, and tasks applied consistently

across all software projects and by all software teams?

Sophistication. Are management and technical actions performed with a level

of sophistication that implies a thorough understanding of best practice?

Acceptance. Is the software process and software engineering practice widely

accepted by management and technical staff?

Commitment. Has management committed the resources required to achieve

consistency, sophistication, and acceptance?

792 PART FIVE ADVANCED TOPICS

Be sure to understand
your strengths as well
as your weaknesses. If
you’re smart, you’ll
build on the strengths.

“What
generic

attributes do you
look for during
assessment?”

?

pre75977_ch30.qxd 11/27/08 6:33 PM Page 792

The difference between local application and best practice represents a “gap” that

offers opportunities for improvement. The degree to which consistency, sophistica-

tion, acceptance, and commitment are achieved indicates the amount of cultural

change that will be required to achieve meaningful improvement.

30.2.2 Education and Training

Although few software people question the benefit of an agile, organized software

process or solid software engineering practices, many practitioners and managers

do not know enough about either subject.3 As a consequence, inaccurate percep-

tions of process and practice lead to inappropriate decisions when an SPI framework

is introduced. It follows that a key element of any SPI strategy is education and train-

ing for practitioners, technical managers and more senior managers who have direct

contact with the software organization. Three types of education and training should

be conducted:

Generic concepts and methods. Directed toward both managers and

practitioners, this category stresses both process and practice. The intent is

to provide professionals with the intellectual tools they need to apply the

software process effectively and to make rational decisions about improve-

ments to the process.

Specific technology and tools. Directed primarily toward practitioners,

this category stresses technologies and tools that have been adopted for local

use. For example, if UML has been chosen for analysis and design modeling, a

training curriculum for software engineering using UML would be established.

Business communication and quality-related topics. Directed toward

all stakeholders, this category focuses on “soft” topics that help enable better

communication among stakeholders and foster a greater quality focus.

In a modern context, education and training can be delivered in a variety of dif-

ferent ways. Everything from podcasts, to Internet-based training (e.g., [QAI08]), to

DVDs, to classroom courses can be offered as part of an SPI strategy.

30.2.3 Selection and Justification

Once the initial assessment activity4 has been completed and education has begun, a

software organization should begin to make choices. These choices occur during a

selection and justification activity in which process characteristics and specific software

engineering methods and tools are chosen to populate the software process.

First, you should choose the process model (Chapters 2 and 3) that best fits your

organization, its stakeholders, and the software that you build. You should decide

CHAPTER 30 SOFTWARE PROCESS IMPROVEMENT 793

Try to provide “just-in-
time” training targeted
to the real needs of a
software team.

3 If you’ve spent time reading this book, you won’t be one of them!

4 In actuality, assessment is an ongoing activity. It is conducted periodically in an effort to determine

whether the SPI strategy has achieved its immediate goals and to set the stage for future improvement.

As you make your
choices, be sure to
consider the culture of
your organization and
the level of acceptance
that each choice will
likely elicit.

pre75977_ch30.qxd 11/27/08 6:33 PM Page 793

which of the set of framework activities will be applied, the major work products that

will be produced, and the quality assurance checkpoints that will enable your team

to assess progress. If the SPI assessment activity indicates specific weaknesses

(e.g., no formal SQA functions), you should focus attention on process characteris-

tics that will address these weaknesses directly.

Next, develop a work breakdown for each framework activity (e.g., modeling),

defining the task set that would be applied for a typical project. You should also con-

sider the software engineering methods that can be applied to achieve these tasks.

As choices are made, education and training should be coordinated to ensure that

understanding is reinforced.

Ideally, everyone works together to select various process and technology

elements and moves smoothly toward the installation or migration activity (Sec-

tion 30.2.4). In reality, selection can be a rocky road. It is often difficult to achieve

consensus among different constituencies. If the criteria for selection are established

by committee, people may argue endlessly about whether the criteria are appropri-

ate and whether a choice truly meets the criteria that have been established.

It is true that a bad choice can do more harm than good, but “paralysis by analysis”

means that little if any progress occurs and process problems remain. As long as the

process characteristic or technology element has a good chance at meeting an

organization’s needs, it’s sometimes better to pull the trigger and make a choice,

rather than waiting for the optimal solution.

Once a choice is made, time and money must be expended to instantiate it

within an organization, and these resource expenditures should be justified. A

discussion of cost justification and return on investment for SPI is presented in

Section 30.7.

30.2.4 Installation/Migration

Installation is the first point at which a software organization feels the effects of

changes implemented as a consequence of the SPI road map. In some cases, an

entirely new process is recommended for an organization. Framework activities,

software engineering actions, and individual work tasks must be defined and

installed as part of a new software engineering culture. Such changes represent a

substantial organizational and technological transition and must be managed

very carefully.

In other cases, changes associated with SPI are relatively minor, representing

small, but meaningful modifications to an existing process model. Such changes are

often referred to as process migration. Today, many software organizations have a

“process” in place. The problem is that it doesn’t work in an effective manner. There-

fore, an incremental migration from one process (that doesn’t work as well as

desired) to another process is a more effective strategy.

Installation and migration are actually software process redesign (SPR) activities.

Scacchi [Sca00] states that “SPR is concerned with identification, application, and

794 PART FIVE ADVANCED TOPICS

pre75977_ch30.qxd 11/27/08 6:33 PM Page 794

refinement of new ways to dramatically improve and transform software processes.”

When a formal approach to SPR is initiated, three different process models are

considered: (1) the existing (“as is”) process, (2) a transitional (“here to there”)

process, and (3) the target (“to be”) process. If the target process is significantly dif-

ferent from the existing process, the only rational approach to installation is an in-

cremental strategy in which the transitional process is implemented in steps. The

transitional process provides a series of way-points that enable the software organi-

zation’s culture to adapt to small changes over a period of time.

30.2.5 Evaluation

Although it is listed as the last activity in the SPI road map, evaluation occurs

throughout SPI. The evaluation activity assesses the degree to which changes have

been instantiated and adopted, the degree to which such changes result in better

software quality or other tangible process benefits, and the overall status of the

process and the organizational culture as SPI activities proceed.

Both qualitative factors and quantitative metrics are considered during the eval-

uation activity. From a qualitative point of view, past management and practitioner

attitudes about the software process can be compared to attitudes polled after in-

stallation of process changes. Quantitative metrics (Chapter 25) are collected from

projects that have used the transitional or “to be” process and compared with sim-

ilar metrics that were collected for projects that were conducted under the “as is”

process.

30.2.6 Risk Management for SPI

SPI is a risky undertaking. In fact, more than half of all SPI efforts end in failure. The

reasons for failure vary greatly and are organizationally specific. Among the most

common risks are: a lack of management support, cultural resistance by technical

staff, a poorly planned SPI strategy, an overly formal approach to SPI, selection of an

inappropriate process, a lack of buy-in by key stakeholders, an inadequate budget, a

lack of staff training, organizational instability, and a myriad of other factors. The

role of those chartered with the responsibility for SPI is to analyze likely risks and

develop an internal strategy for mitigating them.

A software organization should manage risk at three key points in the SPI process

[Sta97b]: prior to the initiation of the SPI road map, during the execution of SPI

activities (assessment, education, selection, installation), and during the evaluation

activity that follows the instantiation of some process characteristic. In general, the

following categories [Sta97b] can be identified for SPI risk factors: budget and cost,

content and deliverables, culture, maintenance of SPI deliverables, mission and

goals, organizational management, organizational stability, process stakeholders,

schedule for SPI development, SPI development environment, SPI development

process, SPI project management, and SPI staff.

CHAPTER 30 SOFTWARE PROCESS IMPROVEMENT 795

SPI often fails because
risks were not properly
considered and no
contingency planning
occurred.

pre75977_ch30.qxd 11/27/08 6:33 PM Page 795

Within each category, a number of generic risk factors can be identified. For

example, the organizational culture has a strong bearing on risk. The following

generic risk factors5 can be defined for the culture category [Sta97b]:

• Attitude toward change, based on prior efforts to change

• Experience with quality programs, level of success

• Action orientation for solving problems versus political struggles

• Use of facts to manage the organization and business

• Patience with change; ability to spend time socializing

• Tools orientation—expectation that tools can solve the problems

• Level of “planfulness”—ability of organization to plan

• Ability of organization members to participate with various levels of

organization openly at meetings

• Ability of organization members to manage meetings effectively

• Level of experience in organization with defined processes

Using the risk factors and generic attributes as a guide, risk exposure is computed in

the following manner:

Exposure � (risk probability) � (estimated loss)

A risk table (Chapter 28) can be developed to isolate those risks that warrant further

management attention.

30.2.7 Critical Success Factors

In Section 30.2.6, I noted that SPI is a risky endeavor and that the failure rate for com-

panies that try to improve their process is distressingly high. Organizational risks,

people risks, and project management risks present challenges for those who lead

any SPI effort. Although risk management is important, it’s equally important to

recognize those critical factors that lead to success.

After examining 56 software organizations and their SPI efforts, Stelzer and Mellis

[Ste99] identify a set of critical success factors (CSFs) that must be present if SPI is to

succeed. The top five CSFs are presented in this section.

Management commitment and support. Like most activities that precipi-

tate organizational and cultural change, SPI will succeed only if management

is actively involved. Senior business managers should recognize the impor-

tance of software to their company and be active sponsors of the SPI effort.

Technical managers should be heavily involved in the development of the local

SPI strategy. As the authors of the study note: “Software process improvement

is not feasible without investing time, money, and effort” [Ste99]. Management

commitment and support are essential to sustain that investment.

796 PART FIVE ADVANCED TOPICS

5 Risk factors for each of the risk categories noted in this section can be found in [Sta97b].

What critical
success

factors are crucial
for successful
SPI?

?

pre75977_ch30.qxd 11/27/08 6:33 PM Page 796

Staff involvement. SPI cannot be imposed top down, nor can it be imposed

from the outside. If SPI efforts are to succeed, improvement must be

organic—sponsored by technical managers and senior technologists, and

adopted by local practitioners.

Process integration and understanding. The software process does not

exist in an organizational vacuum. It must be characterized in a manner that

is integrated with other business processes and requirements. To accomplish

this, those responsible for the SPI effort must have an intimate knowledge

and understanding of other business processes. In addition, they must under-

stand the “as is” software process and appreciate how much transitional

change is tolerable within the local culture.

A customized SPI strategy. There is no cookie-cutter SPI strategy. As I

noted earlier in this chapter, the SPI road map must be adapted to the local

environment—team culture, product mix, and local strengths and weak-

nesses must all be considered.

Solid management of the SPI project. SPI is a project like any other. It

involves coordination, scheduling, parallel tasks, deliverables, adaptation

(when risks become realities), politics, budget control, and much more.

Without active and effective management, an SPI project is doomed to

failure.

30.3 THE CMMI

The original CMM was developed and upgraded by the Software Engineering Insti-

tute throughout the 1990s as a complete SPI framework. Today, it has evolved into

the Capability Maturity Model Integration (CMMI) [CMM07], a comprehensive process

meta-model that is predicated on a set of system and software engineering capabil-

ities that should be present as organizations reach different levels of process capa-

bility and maturity.

The CMMI represents a process meta-model in two different ways: (1) as a

“continuous” model and (2) as a “staged” model. The continuous CMMI meta-

model describes a process in two dimensions as illustrated in Figure 30.2. Each

process area (e.g., project planning or requirements management) is formally

assessed against specific goals and practices and is rated according to the follow-

ing capability levels:

Level 0: Incomplete—the process area (e.g., requirements management) is

either not performed or does not achieve all goals and objectives defined by

the CMMI for level 1 capability for the process area.

Level 1: Performed—all of the specific goals of the process area (as defined

by the CMMI) have been satisfied. Work tasks required to produce defined

work products are being conducted.

CHAPTER 30 SOFTWARE PROCESS IMPROVEMENT 797

WebRef
Complete information
on the CMMI can be
obtained at
www.sei.cmu
.edu/cmmi/.

pre75977_ch30.qxd 11/27/08 6:33 PM Page 797

http://www.sei.cmu

Level 2: Managed—all capability level 1 criteria have been satisfied. In addi-

tion, all work associated with the process area conforms to an organizationally

defined policy; all people doing the work have access to adequate resources

to get the job done; stakeholders are actively involved in the process area as

required; all work tasks and work products are “monitored, controlled, and

reviewed; and are evaluated for adherence to the process description” [CMM07].

Level 3: Defined—all capability level 2 criteria have been achieved. In addi-

tion, the process is “tailored from the organization’s set of standard

processes according to the organization’s tailoring guidelines, and con-

tributes work products, measures, and other process-improvement informa-

tion to the organizational process assets” [CMM07].

Level 4: Quantitatively managed—all capability level 3 criteria have been

achieved. In addition, the process area is controlled and improved using

measurement and quantitative assessment. “Quantitative objectives for qual-

ity and process performance are established and used as criteria in managing

the process” [CMM07].

Level 5: Optimized—all capability level 4 criteria have been achieved. In

addition, the process area is adapted and optimized using quantitative

(statistical) means to meet changing customer needs and to continually

improve the efficacy of the process area under consideration.

The CMMI defines each process area in terms of “specific goals” and the “specific

practices” required to achieve these goals. Specific goals establish the characteristics

that must exist if the activities implied by a process area are to be effective. Specific

practices refine a goal into a set of process-related activities.

798 PART FIVE ADVANCED TOPICS

0

1

2

3

4

5

C
a
p
a
b
ili

ty
 le

ve
l

Process area
REQMPP CMMA PPQA others

PP Project planning
REQM Requirements management
MA Measurement and analysis
CM Configuration management
PPQA Process and product QA

FIGURE 30.2

CMMI process
area capa-
bility profile.
Source: [Phi02].

Every organization
should strive to
achieve the intent of
the CMMI. However,
implementing every
aspect of the model
may be overkill in your
situation.

pre75977_ch30.qxd 11/27/08 6:33 PM Page 798

For example, project planning is one of eight process areas defined by the CMMI

for “project management” category.6 The specific goals (SG) and the associated spe-

cific practices (SP) defined for project planning are [CMM07]:

SG 1 Establish Estimates

SP 1.1-1 Estimate the Scope of the Project

SP 1.2-1 Establish Estimates of Work Product and Task Attributes

SP 1.3-1 Define Project Life Cycle

SP 1.4-1 Determine Estimates of Effort and Cost

SG 2 Develop a Project Plan

SP 2.1-1 Establish the Budget and Schedule

SP 2.2-1 Identify Project Risks

SP 2.3-1 Plan for Data Management

SP 2.4-1 Plan for Project Resources

SP 2.5-1 Plan for Needed Knowledge and Skills

SP 2.6-1 Plan Stakeholder Involvement

SP 2.7-1 Establish the Project Plan

SG 3 Obtain Commitment to the Plan

SP 3.1-1 Review Plans That Affect the Project

SP 3.2-1 Reconcile Work and Resource Levels

SP 3.3-1 Obtain Plan Commitment

In addition to specific goals and practices, the CMMI also defines a set of five

generic goals and related practices for each process area. Each of the five generic

goals corresponds to one of the five capability levels. Hence, to achieve a particular

capability level, the generic goal for that level and the generic practices that corre-

spond to that goal must be achieved. To illustrate, the generic goals (GG) and prac-

tices (GP) for the project planning process area are [CMM07]:

GG 1 Achieve Specific Goals

GP 1.1 Perform Base Practices

GG 2 Institutionalize a Managed Process

GP 2.1 Establish an Organizational Policy

GP 2.2 Plan the Process

GP 2.3 Provide Resources

GP 2.4 Assign Responsibility

GP 2.5 Train People

CHAPTER 30 SOFTWARE PROCESS IMPROVEMENT 799

WebRef
Complete information
as well as a
downloadable version
of the CMMI can be
obtained at
www.sei.cmu
.edu/cmmi/.

6 Other process areas defined for “project management” include: project monitoring and control,
supplier agreement management, integrated project management for IPPD, risk management,
integrated teaming, integrated supplier management, and quantitative project management.

pre75977_ch30.qxd 11/27/08 6:33 PM Page 799

http://www.sei.cmu

GP 2.6 Manage Configurations

GP 2.7 Identify and Involve Relevant Stakeholders

GP 2.8 Monitor and Control the Process

GP 2.9 Objectively Evaluate Adherence

GP 2.10 Review Status with Higher-Level Management

GG 3 Institutionalize a Defined Process

GP 3.1 Establish a Defined Process

GP 3.2 Collect Improvement Information

GG 4 Institutionalize a Quantitatively Managed Process

GP 4.1 Establish Quantitative Objectives for the Process

GP 4.2 Stabilize Subprocess Performance

GG 5 Institutionalize an Optimizing Process

GP 5.1 Ensure Continuous Process Improvement

GP 5.2 Correct Root Causes of Problems

The staged CMMI model defines the same process areas, goals, and practices as

the continuous model. The primary difference is that the staged model defines five

maturity levels, rather than five capability levels. To achieve a maturity level, the spe-

cific goals and practices associated with a set of process areas must be achieved. The

relationship between maturity levels and process areas is shown in Figure 30.3.

800 PART FIVE ADVANCED TOPICS

The CMMI—Should We or Shouldn’t We?
The CMMI is a process meta-model. It defines

(in 700+ pages) the process characteristics
that should exist if an organization wants to establish a
software process that is complete. The question that has
been debated for well over a decade is: “Is the CMMI
overkill?” Like most things in life (and in software), the
answer is not a simple “yes” or “no.”

The spirit of the CMMI should always be adopted.
At the risk of oversimplification, it argues that software
development must be taken seriously—it must be planned
thoroughly, it must be controlled uniformly, it must be
tracked accurately, and it must be conducted professionally.
It must focus on the needs of project stakeholders, the skills
of the software engineers, and the quality of the end
product. No one would argue with these ideas.

The detailed requirements of the CMMI should be
seriously considered if an organization builds large
complex systems that involve dozens or hundreds of

people over many months or years. It may be that
the CMMI is “just right” in such situations, if the
organizational culture is amenable to standard process
models and management is committed to making it a
success. However, in other situations, the CMMI may
simply be too much for an organization to successfully
assimilate. Does this mean that the CMMI is “bad” or
“overly bureaucratic” or “old fashioned?” No . . . it
does not. It simply means that what is right for one
organizational culture may not be right for another.

The CMMI is a significant achievement in software
engineering. It provides a comprehensive discussion of the
activities and actions that should be present when an
organization builds computer software. Even if a software
organization chooses not to adopt its details, every
software team should embrace its spirit and gain insight
from its discussion of software engineering process and
practice.

INFO

pre75977_ch30.qxd 11/27/08 6:33 PM Page 800

30.4 THE PEOPLE CMM

A software process, no matter how well conceived, will not succeed without tal-

ented, motivated software people. The People Capability Maturity Model “is a roadmap

for implementing workforce practices that continuously improve the capability of an

organization’s workforce” [Cur02]. Developed in the mid-1990s and refined over the

intervening years, the goal of the People CMM is to encourage continuous improve-

ment of generic workforce knowledge (called “core competencies”), specific soft-

ware engineering and project management skills (called “workforce competencies”),

and process-related abilities.

Like the CMM, CMMI, and related SPI frameworks, the People CMM defines a

set of five organizational maturity levels that provide an indication of the relative

sophistication of workforce practices and processes. These maturity levels

[CMM08] are tied to the existence (within an organization) of a set of key process

areas (KPAs). An overview of organizational levels and related KPAs is shown in

Figure 30.4.

CHAPTER 30 SOFTWARE PROCESS IMPROVEMENT 801

Organizational innovation and deployment
Causal analysis and resolution

Continuous
process

improvement

Quantitative
management

Process
standardization

Basic
project

management

Organizational process performance
Quantitative project management

Requirements development
Technical solution
Product integration
Verification
Validation
Organizational process focus
Organizational process definition
Organizational training
Integrated project management
Integrated supplier management
Risk management
Decision analysis and resolution
Organizational environment for integration
Integrated teaming

Requirements management
Project planning
Project monitoring and control
Supplier agreement management
Measurement and analysis
Process and product quality assurance
Configuration management

Optimizing

Quantitatively
managed

Defined

Managed

Performed

Process AreasLevel Focus
FIGURE 30.3

Process areas
required to
achieve a
maturity level.
Source: [Phi02].

The People CMM
suggests practices that
improve the workforce
competence and
culture.

pre75977_ch30.qxd 11/27/08 6:33 PM Page 801

The People CMM complements any SPI framework by encouraging an organiza-

tion to nurture and improve its most important asset—its people. As important, it

establishes a workforce atmosphere that enables a software organization to “attract,

develop, and retain outstanding talent” [CMM08].

30.5 OTHER SPI FRAMEWORKS

Although the SEI’s CMM and CMMI are the most widely applied SPI frameworks, a

number of alternatives7 have been proposed and are in use. Among the most widely

used of these alternatives are:

• SPICE—an international initiative to support ISO’s process assessment and

life cycle process standards [SPI99]

• ISO/IEC 15504 for (Software) Process Assessment [ISO08]

802 PART FIVE ADVANCED TOPICS

Continuous workforce innovation
Organizational performance alignment
Continuous capability improvement

Continuous
improvement

Identifies and
develops

knowledge, skills,
and abilities

Repeatable, basic
people

management
practices

Mentoring
Organizational capability management
Quantitative performance management
Competency-based assets
Empowered workgroups
Competency integration

Participatory culture
Workgroup development
Competency-based practices
Career development
Competency development
Workforce planning
Competency analysis

Compensation
Training and development
Performance management
Work environment
Communication and co-ordination
Staffing

Optimized

Quantifies and
manages

knowledge, skills,
and abilities

Predictable

Defined

Managed

Initial Inconsistent
practices

Process AreasLevel Focus

FIGURE 30.4

Process areas
for the People
CMM

7 It’s reasonable to argue that some of these frameworks are not so much “alternatives” as they are
complementary approaches to SPI. A comprehensive table of many more SPI frameworks can be
found at www.geocities.com/lbu_measure/spi/spi.htm#p2.

pre75977_ch30.qxd 11/27/08 6:33 PM Page 802

http://www.geocities.com/lbu_measure/spi/spi.htm#p2

• Bootstrap—an SPI framework for small and medium-sized organizations

that conforms to SPICE [Boo06]

• PSP and TSP—individual and team-specific SPI frameworks ([Hum97],

[Hum00]) that focus on process in-the-small, a more rigorous approach to

software development coupled with measurement

• TickIT—an auditing method [Tic05] that assesses an organization’s compli-

ance to ISO Standard 9001:2000

A brief overview of each of these SPI frameworks is presented in the paragraphs that

follow. If you have further interest, a wide array of print and Web-based resources is

available for each.

SPICE. The SPICE (Software Process Improvement and Capability dEtermination)

model provides an SPI assessment framework that is compliant with ISO 15504:2003

and ISO 12207. The SPICE document suite [SDS08] presents a complete SPI frame-

work including a model for process management, guidelines for conducting an

assessment and rating the process under consideration, construction, selection, and

use of assessment instruments and tools, and training for assessors.

Bootstrap. The Bootstrap SPI framework “has been developed to ensure confor-

mance with the emerging ISO standard for software process assessment and im-

provement (SPICE) and to align the methodology with ISO 12207” [Boo06]. The

objective of Bootstrap is to evaluate a software process using a set of software engi-

neering best practices as a basis for assessment. Like the CMMI, Bootstrap provides

a process maturity level using the results of questionnaires that gather information

about the “as is” software process and software projects. SPI guidelines are based on

maturity level and organizational goals.

PSP and TSP. Although SPI is generally characterized as an organizational

activity, there is no reason why process improvement cannot be conducted at an

individual or team level. Both PSP and TSP (Chapter 2) emphasize the need to con-

tinuously collect data about the work that is being performed and to use that data

to develop strategies for improvement. Watts Humphrey [Hum97], the developer of

both methods, comments:

The PSP [and TSP] will show you how to plan and track your work and how to consis-

tently produce high quality software. Using PSP [and TSP] will give you the data that show

the effectiveness of your work and identify your strengths and weaknesses. . . . To have

a successful and rewarding career, you need to know your skills and abilities, strive to

improve them, and capitalize on your unique talents in the work you do.

TickIT. The Ticket auditing method ensures compliance with ISO 9001:2000 for

Software—a generic standard that applies to any organization that wants to improve

the overall quality of the products, systems, or services that it provides. Therefore,

the standard is directly applicable to software organizations and companies.

CHAPTER 30 SOFTWARE PROCESS IMPROVEMENT 803

In addition
to the CMM,

are there other
SPI frameworks
that we might
consider?

?

uote:

“Software
organizations have
exhibited
significant
shortcomings in
their ability to
capitalize on the
experiences gained
from completed
projects.”

NASA

pre75977_ch30.qxd 11/27/08 6:33 PM Page 803

The underlying strategy suggested by ISO 9001:2000 is described in the following

manner [ISO01]:

ISO 9001:2000 stresses the importance for an organization to identify, implement, man-

age and continually improve the effectiveness of the processes that are necessary for

the quality management system, and to manage the interactions of these processes in

order to achieve the organization’s objectives. . . . Process effectiveness and efficiency

can be assessed through internal or external review processes and be evaluated on a

maturity scale.

ISO 9001:2000 has adopted a “plan-do-check-act” cycle that is applied to the quality

management elements of a software project. Within a software context, “plan”

establishes the process objectives, activities, and tasks necessary to achieve high-

quality software and resultant customer satisfaction. “Do” implements the software

process (including both framework and umbrella activities). “Check” monitors and

measures the process to ensure that all requirements established for quality man-

agement have been achieved. “Act” initiates software process improvement activi-

ties that continually work to improve the process. TickIt can be used throughout the

“plan-do-check-act” cycle to ensure that SPI progress is being made. TickIT auditors

assess the application of the cycle as a precursor to ISO 9001:2000 certification. For

a detailed discussion of ISO 9001:2000 and TickIT you should examine [Ant06],

[Tri05], or [Sch03].

30.6 SPI RETURN ON INVESTMENT

SPI is hard work and requires substantial investment of dollars and people.

Managers who approve the budget and resources for SPI will invariably ask the

question: “How do I know that we’ll achieve a reasonable return for the money

we’re spending?”

At a qualitative level, proponents of SPI argue that an improved software process

will lead to improved software quality. They contend that improved process will

result in the implementation of better quality filters (resulting in fewer propagated

defects), better control of change (resulting in less project chaos), and less technical

rework (resulting in lower cost and better time-to-market). But can these qualitative

benefits be translated into quantitative results? The classic return on investment

(ROI) equation is:

ROI � � � � 100%

where

benefits include the cost savings associated with higher product quality (fewer

defects), less rework, reduced effort associated with changes, and the income that

accrues from shorter time-to-market.

�(benefits) � �(costs)
�(costs)

804 PART FIVE ADVANCED TOPICS

WebRef
An excellent summary
of ISO 9001: 2000
can be found at
http://praxiom
.com/iso-9001
.htm.

pre75977_ch30.qxd 11/27/08 6:33 PM Page 804

http://praxiom

costs include both direct SPI costs (e.g., training, measurement) and indirect

costs associated with greater emphasis on quality control and change management

activities and more rigorous application of software engineering methods (e.g., the

creation of a design model).

In the real world, these quantitative benefits and costs are sometimes difficult to

measure with accuracy, and all are open to interpretation. But that doesn’t mean that

a software organization should conduct an SPI program without careful analysis of

the costs and benefits that accrue. A comprehensive treatment of ROI for SPI can be

found in a unique book by David Rico [Ric04].

30.7 SPI TRENDS

Over the past two decades, many companies have attempted to improve their soft-

ware engineering practices by applying an SPI framework to effect organizational

change and technology transition. As I noted earlier in this chapter, over half fail in

this endeavor. Regardless of success or failure, all spend significant amounts of

money. David Rico [Ric04] reports that a typical application of an SPI framework such

as the SEI CMM can cost between $25,000 and $70,000 per person and take years to

complete! It should come as no surprise that the future of SPI should emphasize a

less costly and time-consuming approach.

To be effective in the twenty-first century world of software development, future

SPI frameworks must become significantly more agile. Rather than an organizational

focus (which can take years to complete successfully), contemporary SPI efforts

should focus on the project level, working to improve a team process in weeks, not

months or years. To achieve meaningful results (even at the project level) in a short

time frame, complex framework models may give way to simpler models. Rather

than dozens of key practices and hundreds of supplementary practices, an agile SPI

framework should emphasize only a few pivotal practices (e.g., analogous to the

framework activities discussed throughout this book).

Any attempt at SPI demands a knowledgeable workforce, but education and train-

ing expenses can be expensive and should be minimized (and streamlined). Rather

than classroom courses (expensive and time consuming), future SPI efforts should

rely on Web-based training that is targeted at pivotal practices. Rather than far-

reaching attempts to change organizational culture (with all of the political perils

that ensue), cultural change should occur as it does in the real world, one small

group at a time until a tipping point is reached.

The SPI work of the past two decades has significant merit. The frameworks and

models that have been developed represent substantial intellectual assets for the

software engineering community. But like all things, these assets guide future

attempts at SPI not by becoming a recurring dogma, but by serving as the basis for

better, simpler, and more agile SPI models.

CHAPTER 30 SOFTWARE PROCESS IMPROVEMENT 805

pre75977_ch30.qxd 11/27/08 6:33 PM Page 805

30.8 SUMMARY

A software process improvement framework defines the characteristics that must be

present if an effective software process is to be achieved, an assessment method that

helps determine whether those characteristics are present, and a strategy for assist-

ing a software organization in implementing those process characteristics that have

been found to be weak or missing. Regardless of the constituency that sponsors SPI,

the goal is to improve process quality and, as a consequence, improve software qual-

ity and timeliness.

A process maturity model provides an overall indication of the “process maturity”

exhibited by a software organization. It provides a qualitative feel for the relative

effectiveness of the software process that is currently being used.

The SPI road map begins with assessment—a series of evaluation activities that un-

cover both strengths and weaknesses in the way your organization applies the existing

software process and the software engineering practices that populate the process. As

a consequence of assessment, a software organization can develop an overall SPI plan.

One of the key elements of any SPI plan is education and training, an activity that

focuses on improving the knowledge level of managers and practitioners. Once staff

becomes well versed in current software technologies, selection and justification com-

mence. These tasks lead to choices about the architecture of the software process, the

methods that populate it, and the tools that support it. Installation and evaluation are

SPI activities that instantiate process changes and assess their efficacy and impact.

To successfully improve its software process, an organization must exhibit the fol-

lowing characteristics: management commitment and support for SPI, staff involve-

ment throughout the SPI process, process integration into the overall organizational

culture, an SPI strategy that has been customized for local needs, and solid man-

agement of the SPI project.

A number of SPI frameworks are in use today. The SEI’s CMM and CMMI are

widely used. The People CMM has been customized to assess the quality of the

organizational culture and the people who populate it. SPICE, Bootstrap, PSP, TSP,

and TickIT are additional frameworks that can lead to effective SPI.

SPI is hard work that requires substantial investment of dollars and people. To en-

sure that a reasonable return on investment is achieved, an organization must meas-

ure the costs associated with SPI and the benefits that can be directly attributed to it.

PROBLEMS AND POINTS TO PONDER

30.1. Why is it that software organizations often struggle when they embark on an effort to
improve local software process?

30.2. Describe the concept of “process maturity” in your own words.

30.3. Do some research (check the SEI website) and determine the process maturity distribu-
tion for software organizations in the United States and worldwide.

806 PART FIVE ADVANCED TOPICS

pre75977_ch30.qxd 11/27/08 6:33 PM Page 806

30.4. You work for a very small software organization—only 11 people are involved in devel-
oping software. Is SPI for you? Explain your answer.

30.5. Assessment is analogous to an annual physical exam. Using a physical exam as a
metaphor, describe the SPI assessment activity.

30.6. What is the difference between an “as is” process, a “here to there” process, and a “to be”
process?

30.7. How is risk management applied within the context of SPI?

30.8. Select one of the critical success factors noted in Section 30.2.7. Do some research and
write a brief paper on how it can be achieved.

30.9. Do some research and explain how the CMMI differs from its predecessor, the CMM.

30.10. Select one of the SPI frameworks discussed in Section 30.5, and write a brief paper
describing it in more detail.

FURTHER READINGS AND INFORMATION SOURCES

One of the most readily accessible and comprehensive resources for information on SPI has
been developed by the Software Engineering Institute and is available at www.sei.cmu.edu.
The SEI website contains hundreds of papers, studies, and detailed SPI framework descriptions.

Over the past few years, a number of worthwhile books have been added to a broad litera-
ture developed during the past two decades. Land (Jumpstart CMM/CMMI Software Process
Improvements, Wiley-IEEE Computer Society, 2007) melds the requirements defined as part of
the SEI CMM and CMMI with IEEE software engineering standards with an emphasis on the in-
tersection of process and practice. Mutafelija and Stromberg (Systematic Process Improvement
Using ISO 9001:2000 and CMMI, Artech House Publishers, 2007) discuss both the ISO 9001:2000
and CMMI SPI frameworks and the “synergy” between them. Conradi and his colleagues
(Software Process Improvement: Results and Experience from the Field, Springer, 2006) presents
the results of a series of case studies and experiments related to SPI. Van Loon (Process Assess-
ment and Improvement: A Practical Guide for Managers, Quality Professionals and Assessors,
Springer, 2006) discusses SPI within the context of ISO/IEC 15504. Watts Humphrey (PSP,
Addison-Wesley, 2005, and TSP, Addison-Wesley, 2005) addresses his Personal Team Process
SPI framework and his Team Software Process SPI framework in two separate books. Fantina
(Practical Software Process Improvement, Artech House Publishers, 2004) provides pragmatic
how-to guidance with an emphasis on CMMI/CMM.

A wide variety of information sources on software process improvement is available on the
Internet. An up-to-date list of World Wide Web references relevant to SPI can be found at the
SEPA website: www.mhhe.com/engcs/compsci/pressman/professional/olc/ser.htm.

CHAPTER 30 SOFTWARE PROCESS IMPROVEMENT 807

pre75977_ch30.qxd 11/27/08 6:33 PM Page 807

http://www.sei.cmu.edu
http://www.mhhe.com/engcs/compsci/pressman/professional/olc/ser.htm

Throughout the relatively brief history of software engineering, practitioners
and researchers have developed an array of process models, technical
methods, and automated tools in an effort to foster fundamental change in

the way we build computer software. Even though past experience indicates
otherwise, there is a tacit desire to find the “silver bullet”—the magic process or
transcendent technology that will allow us to build large, complex, software-
based systems easily, without confusion, without mistakes, without delay—
without the many problems that continue to plague software work.

But history indicates that our quest for the silver bullet appears doomed
to failure. New technologies are introduced regularly, hyped as a “solution” to
many of the problems software engineers face, and incorporated into projects
large and small. Industry pundits stress the importance of these “new” software
technologies, the cognoscenti of the software community adopt them with
enthusiasm, and ultimately, they do play a role in the software engineering
world. But they tend not to meet their promise, and as a consequence, the quest
continues.

808

C H A P T E R

31 EMERGING TRENDS
IN SOFTWARE ENGINEERING

K E Y
C O N C E P T S

building blocks . .817
collaborative
development . .822
complexity 814
emergent
requirements . .816
hype cycle 811
innovation
life cycle810
model-driven
development . .825
open-world
software 815
open source . . .818
postmodern
design 825

What is it? No one can predict the
future with absolute certainty. But it is
possible to assess trends in the soft-
ware engineering area and from

those trends to suggest possible directions for the
technology. That’s what I attempt to do in this
chapter.

Who does it? Anyone who is willing to spend the
time to stay abreast of software engineering
issues can try to predict the future direction of the
technology.

Why is it important? Why did ancient kings hire
soothsayers? Why do major multinational cor-
porations hire consulting firms and think tanks to
prepare forecasts? Why does a substantial per-
centage of the public read horoscopes? We
want to know what’s coming so we can ready
ourselves.

Q U I C K
L O O K

What are the steps? There is no formula for pre-
dicting the road ahead. We attempt to do this by
collecting data, organizing it to provide useful
information, examining subtle associations to
extract knowledge, and from this knowledge
suggest probable trends that predict how things
will be at some future time.

What is the work product? A view of the near-
term future that may or may not be correct.

How do I ensure that I’ve done it right?
Predicting the road ahead is an art, not a
science. In fact, it’s quite rare when a serious
prediction about the future is absolutely right or
unequivocally wrong (with the exception, thank-
fully, of predictions of the end of the world). We
look for trends and try to extrapolate them. We
can assess the correctness of the extrapolation
only as time passes.

pre75977_ch31.qxd 11/27/08 6:34 PM Page 808

Mili and Cowan [Mil00b] comment on the challenges we face when trying to

isolate meaningful technology trends:

What Factors Determine the Success of a Trend? What characterizes successful

technological trends: Their technical merit? Their ability to open new markets? Their abil-

ity to alter the economics of existing markets?

What Lifecycle Does a Trend Follow? Whereas the traditional view is that trends

evolve along a well defined, predictable lifecycle that proceeds from a research idea to a

finished product through a transfer process, we find that many current trends have either

short circuited this cycle or followed another one.

How Early Can a Successful Trend Be Identified? If we know how to identify suc-

cess factors, and/or we understand the lifecycle of a trend, then we seek to identify early

signs of success of a trend. Rhetorically, we seek the ability to recognize the next trend

ahead of everybody else.

What Aspects of Evolution Are Controllable? Can corporations use their market

clout to impose trends? Can the government use its resources to impose trends? What

role do standards play in defining trends? The careful analysis of Ada vs. Java, for exam-

ple, should be enlightening in this regard.

There are no easy answers to these questions, and there can be no debate that past

attempts at identifying meaningful technologies are mediocre at best.

In past editions of this book (over the past 30 years), I have discussed emerg-

ing technologies and their projected impact on software engineering. Some have

been widely adopted, but others never reached their potential. My conclusion:

technologies come and go; the real trends you and I should explore are softer. By

this I mean that progress in software engineering will be guided by business,

organizational, market, and cultural trends. Those trends lead to technology

innovation.

In this chapter, we’ll look at a few software engineering technology trends, but my

primary emphasis will be on some of the business, organizational, market, and

cultural trends that may have an important influence on software engineering tech-

nology over the next 10 or 20 years.

31.1 TECHNOLOGY EVOLUTION

In a fascinating book that provides a compelling look at how computing (and other

related) technologies will evolve, Ray Kurzweil [Kur05] argues that technological

evolution is similar to biological evolution, but occurs at a rate that is orders of mag-

nitude faster. Evolution (whether biological or technological) occurs as a result of

positive feedback—“the more capable methods resulting from one stage of evolu-

tionary progress are used to create the next stage” [Kur06].

The big questions for the twenty-first century are: (1) How rapidly does a tech-

nology evolve? (2) How significant are the effects of positive feedback. (3) How pro-

found will the resultant changes be?

CHAPTER 31 EMERGING TRENDS IN SOFTWARE ENGINEERING 809

requirements
engineering . . .824
soft trends 812
technology
directions 819
technology
evolution 809
test-driven
development . .826
tools 827

What are
the “big

questions” when
we consider
technology
evolution?

?

pre75977_ch31.qxd 11/27/08 6:34 PM Page 809

When a successful new technology is introduced, the initial concept moves

through a reasonably predictable “innovation life cycle” [Gai95] illustrated in

Figure 31.1. In the breakthrough phase, a problem is recognized and repeated

attempts at a viable solution are attempted. At some point, a solution shows

promise. The initial breakthrough work is reproduced in the replicator phase and

gains wider usage. Empiricism leads to the creation of empirical rules that govern the

use of the technology, and repeated success leads to a broader theory of usage that

is followed by the creation of automated tools during the automation phase. Finally,

the technology matures and is used widely.

You should note that many research and technology trends never reach maturity.

In fact, the vast majority of “promising” technologies in the software engineering

domain receive widespread interest for a few years and then fall into niche usage by

a dedicated band of adherents. This is not to say that these technologies lack merit,

but rather to emphasize that the journey through the innovation life cycle is long

and hard.

Kurzweil [Kur05] agrees that computing technologies evolve through an “S-curve”

that exhibits relatively slow growth during the technology’s formative years, rapid

acceleration during its growth period, and then a leveling-off period as the technol-

ogy reaches its limits. But computing and other related technologies have exhibited

explosive (exponential) growth during the central stages shown in Figure 31.1 and

will continue to do so. In addition, as one S-curve ends, another replaces it with even

more explosive growth during its growth period.1 Today, we are at the knee of the

S-curve for modern computing technologies—at the transition between early growth

and the explosive growth that is to follow. The implication is that over the next 20 to

40 years, we will see dramatic (even mind-boggling) changes in computing capability.

The coming decades will result in order-of-magnitude changes in computing speed,

size, capacity, and energy consumption (to name only a few characteristics).

810 PART FIVE ADVANCED TOPICS

100

P
er

ce
n
t

a
d
o
p
ti
o
n

Breakthrough Replicator Empiricism Theory Automation Maturity

FIGURE 31.1

A technology
innovation life
cycle

Computing technology
is evolving at an
exponential rate, and
its growth may soon
become explosive.

1 For example, the limits of integrated circuits may be reached within the next decade, but that tech-
nology may be replaced by molecular computing technologies and another accelerated S-curve.

uote:

“Predictions are
very difficult to
make, especially
when they deal
with the future.”

Mark Twain

pre75977_ch31.qxd 11/27/08 6:35 PM Page 810

Kurzweil [Kur05] suggests that within 20 years, technology evolution will accel-

erate at an increasingly rapid pace, ultimately leading to an era of nonbiological

intelligence that will merge with and extend human intelligence in ways that are fas-

cinating to contemplate.

And all of this, no matter how it evolves, will require software and systems that

make our current efforts look infantile by comparison. By the year 2040, a combina-

tion of extreme computation, nanotechnology, massively high bandwidth ubiquitous

networks, and robotics will lead us into a different world.2 Software, possibly in

forms we cannot yet comprehend, will continue to reside at the core of this new

world. Software engineering will not go away.

31.2 OBSERVING SOFTWARE ENGINEERING TRENDS

Section 31.1 briefly considered the fascinating possibilities that may accrue from

long-term trends in computing and related technologies. But what of the near term?

Barry Boehm [Boe08] suggests that “software engineers [will] face the often for-

midable challenges of dealing with rapid change, uncertainty and emergence, de-

pendability, diversity, and interdependence, but they also have opportunities to make

significant contributions that will make a difference for the better.” But what are the

trends that will enable you to face these challenges in the years ahead?

In the introduction to this chapter, I noted that “soft trends” have a significant

impact on the overall direction of software engineering. But other (“harder”) research-

and technology-oriented trends remain important. Research trends “are driven by

general perceptions of the state of the art and the state of the practice, by researcher

perceptions of practitioner needs, by national funding programs that rally around

specific strategic goals, and by sheer technical interest” [Mil00a]. Technology trends

occur when research trends are extrapolated to meet industry needs and are shaped

by market-driven demand.

In Section 31.1, I discussed the S-curve model for technology evolution. The

S-curve is appropriate for considering the long-term effects of core technologies as

they evolve. But what of more modest, short-term innovations, tools, and methods?

The Gartner Group [Gar08]—a consultancy that studies technology trends across

many industries—has developed a hype cycle for emerging technologies, represented

in Figure 31.2. The Gartner Group cycle exhibits five phases:

• Technology trigger—a research breakthrough or launch of an innovative new

product that leads to media coverage and public enthusiasm.

• Peak of inflated expectations—overenthusiasm and overly optimistic projections

of impact based on limited, but well-publicized successes.

CHAPTER 31 EMERGING TRENDS IN SOFTWARE ENGINEERING 811

2 Kurzweil [Kur05] presents a reasoned technical argument that predicts a strong artificial intelli-
gence (that will pass the Turing Test) by 2029 and suggests that the evolution of humans and
machines will begin to merge by 2045. The vast majority of readers of this book will live to see
whether this, in fact, comes to pass.

uote:

“I think there is a
world market for
maybe five
computers.”

Thomas Watson,
chairman of
IBM, 1943

The “hype cycle”
presents a realistic
view of short-term
technology integration.
The long-term trend,
however, is
exponential.

pre75977_ch31.qxd 11/27/08 6:35 PM Page 811

• Disillusionment—overly optimistic projections of impact are not met and

critics begin the drumbeat; the technology becomes unfashionable among

the cognoscenti.

• Slope of enlightenment—growing usage by a wide variety of companies leads

to a better understanding of the technology’s true potential; off-the-shelf

methods and tools emerge to support the technology.

• Plateau of productivity—real-world benefits are now obvious, and usage pene-

trates a significant percentage of the potential market.

Not every software engineering technology makes it all the way through the hype cycle.

In some cases, disillusionment is justified and the technology is relegated to obscurity.

31.3 IDENTIFYING “SOFT TRENDS”

Each nation with a substantial IT industry has a set of unique characteristics that de-

fine the manner in which business is conducted, the organizational dynamics that

arise within a company, the distinct marketing issues that apply to local customers,

and the overriding culture that dictates all human interaction. However, some trends

in each of these areas are universal and have as much to do with sociology, anthro-

pology, and group psychology (often referred to as the “soft sciences”) as they do

with academic or industrial research.

Connectivity and collaboration (enabled by high-bandwidth communication) has

already led to software teams that do not occupy the same physical space (tele-

commuting and part-time employment in a local context). One team collaborates

with other teams that are separated by time zones, primary language, and culture.

812 PART FIVE ADVANCED TOPICS

Visibility

Technology
trigger

Peak of
inflated

expectations

Trough
of

disillusionment

Slope
of

enlightenment

Plateau
of

productivity

FIGURE 31.2

The Gartner
Group’s hype
cycle for
emerging
technologies.
Source: [Gar08].

uote:

“640K ought to be
enough for
anybody.”

Bill Gates,
chairman of
Microsoft, 1981

pre75977_ch31.qxd 11/27/08 6:35 PM Page 812

Software engineering must respond with an overarching process model for “distrib-

uted teams” that is agile enough to meet the demands of immediacy but disciplined

enough to coordinate disparate groups.

Globalization leads to a diverse workforce (in terms of language, culture, problem

resolution, management philosophy, communication priorities, and person-to-

person interaction). This, in turn, demands a flexible organizational structure.

Different teams (in different countries) must respond to engineering problems in a

way that best accommodates their unique needs, while at the same time fostering

a level of uniformity that allows a global project to proceed. This type of organization

suggests fewer levels of management and a greater emphasis on team-level decision

making. It can lead to greater agility, but only if communication mechanisms have

been established so that every team can understand project and technical status (via

networked groupware) at any time. Software engineering methods and tools can

help achieve some level of uniformity (teams speak the same “language” imple-

mented through specific methods and tools). Software process can provide the

framework for the instantiation of these methods and tools.

In some world regions (the United States and Europe are examples), the popula-

tion is aging. This undeniable demographic (and cultural trend) implies that many

experienced software engineers and managers will be leaving the field over the com-

ing decade. The software engineering community must respond with viable mecha-

nisms that capture the knowledge of these aging managers and technologists [e.g.,

the use of patterns (Chapter 12) is a step in the right direction], so that it will be avail-

able to future generations of software workers. In other regions of the world, the

number of young people available to the software industry is exploding. This pro-

vides an opportunity to mold a software engineering culture without the burden of

50 years of “old-school” prejudices.

It is estimated that over one billion new consumers will enter the worldwide

marketplace over the next decade. Consumer spending in “emerging economies will

double to well over $9 trillion” [Pet06]. There is little doubt that a nontrivial percent-

age of this spending will be applied to products and services that have a digital

component—that are software based or software driven. The implication—an

increasing demand for new software. The question then is, “Can new software engi-

neering technologies be developed to meet this worldwide demand?” Modern

market trends are often driven by the supply side.3 In other cases, demand-side

requirements drive the market. In either case, a cycle of innovation and demand pro-

gresses in a way that sometimes makes it difficult to determine which came first!

Finally, human culture itself will impact the direction of software engineering.

Every generation establishes its own imprint on local culture, and yours will be no

different. Faith Popcorn [Pop08], a well-known consultant who specializes in

CHAPTER 31 EMERGING TRENDS IN SOFTWARE ENGINEERING 813

What soft
trends will

impact
technologies
related to
software
engineering?

?

3 Supply side adopts a “build it and they will come” approach to markets. Unique technologies are
created, and consumers flock to adopt them—sometimes!

pre75977_ch31.qxd 11/27/08 6:35 PM Page 813

cultural trends, characterizes them in the following manner: “Our Trends are not

fads. Our Trends endure. Our Trends evolve. They represent underlying forces, first

causes, basic human needs, attitudes, aspirations. They help us navigate the world,

understand what’s happening and why, and prepare for what is yet to come.” A de-

tailed discussion of how modern cultural trends will have an impact on software

engineering is best left to those who specialize in the “soft sciences.”

31.3.1 Managing Complexity

When the first edition of this book was written (1982), digital consumer products as

we now know them today didn’t exist, and mainframe-based systems containing a

million lines of source code (LOC) were considered to be quite large. Today, it is not

uncommon for small digital devices to encompass between 60,000 to 200,000 lines

of custom software, coupled with a few million LOC for operating system features.

Modern computer-based systems containing 10 to 50 million lines of code are not

uncommon.4 In the relatively near future, systems5 requiring over 1 billion LOC will

begin to emerge.6

Think about that for a moment!

Consider the interfaces for a billion LOC system, both to the outside world, to

other interoperable systems, to the Internet (or its successor), and to the millions of

internal components that must all work together to make this computing monster

operate successfully. Is there a reliable way to ensure that all of these connections

will allow information to flow properly?

Consider the project itself. How do we manage the workflow and track progress?

Will conventional approaches scale upward by orders of magnitude?

Consider the number of people (and their locations) who will be doing the work,

the coordination of people and technology, the unrelenting flow of changes, the like-

lihood of a multiplatform, multioperating system environment. Is there a way to

manage and coordinate people who are working on a monster project?

Consider the engineering challenge. How can we analyze tens of thousands of

requirements, constraints, and restrictions in a way that ensures that inconsistency

and ambiguity, omissions, and outright errors are uncovered and corrected? How

can we create a design architecture that is robust enough to handle a system of this

size? How can software engineers establish a change management system that will

have to handle hundreds of thousands of changes?

Consider the challenge of quality assurance. How can we perform verification and

validation in a meaningful way? How do you test a 1 billion LOC system?

814 PART FIVE ADVANCED TOPICS

4 For example, modern PC operating systems (e.g., Linux, MacOS, and Windows) have between 30
and 60 million LOC. Operating system software for mobile devices can exceed 2 million LOC.

5 In reality, this “system” will actually be a system of systems—hundreds of interoperable applica-

tions working together to achieve some overall objective.

6 Not all complex systems are large. A relatively small application (say, less than 100,000 LOC can

still be exceedingly complex.

uote:

“There is no reason
anyone would want
a computer in their
home.”

Ken Olson,
President,
Chairman, and
Founder of
Digital
Equipment
Corp., 1977

pre75977_ch31.qxd 11/27/08 6:35 PM Page 814

In the early days, software engineers attempted to manage complexity in what can

only be described as an ad hoc fashion. Today, we use process, methods, and tools to

keep complexity under control. But tomorrow? Is our current approach up to the task?

31.3.2 Open-World Software

Concepts such as ambient intelligence,7 context-aware applications, and pervasive/

ubiquitous computing—all focus on integrating software-based systems into an envi-

ronment far broader that a PC, a mobile computing device, or any other digital device.

These separate visions of the near-term future of computing collectively suggest

“open-world software”—software that is designed to adapt to a continually changing

environment “by self-organizing its structure and self-adapting its behavior” [Bar06].

To help illustrate the challenges that software engineers will face in the foresee-

able future, consider the notion of ambient intelligence (amI). Ducatel [Duc01] defines

amI in the following way: “People are surrounded by intelligent, intuitive interfaces

that are embedded in all kinds of objects. The ambient intelligence environment is

capable of recognizing and responding to the presence of different individuals [while

working] in a seamless, unobstrusive way.”

Let’s examine a vision of the near future in which amI has become ubiquitous.

You’ve just purchased a personal communicator (called a P-com, a pocket-sized mo-

bile device) and have spent the last few weeks creating8 your “image”—everything

from your daily schedule, to-do list, address book, medical records, business-related

information, travel documents, wish list (things you’re looking for, e.g., a specific

book, a bottle of hard-to-find wine, a local course in glass blowing), and “Digital-Me”

(D-Me) that describes you at a level of detail that allows a digital introduction to oth-

ers (sort of a MySpace or FaceBook that moves with you). The P-com contains a per-

sonal identifier called a “key of keys”—a multifunctional personal identifier that would

provide access to and enable queries from a wide range of amI devices and systems.

It should be obvious that significant privacy and security issues come into play. A

“trust management system” [Duc01] will be an integral part of amI and will manage

privileges that enable communication with networks, health, entertainment, finan-

cial, employment, and personal systems.

New amI-capable systems will be added to the network constantly, each provid-

ing useful capabilities and demanding access to your P-com. Therefore, the P-com

software must be designed so that it can adapt to the requirements that emerge

as some new amI systems go online. There are many ways to accomplish this, but

the bottom line is this: the P-com software must be flexible and robust in ways that

conventional software can’t match.

CHAPTER 31 EMERGING TRENDS IN SOFTWARE ENGINEERING 815

7 A worthwhile and quite detailed introduction to ambient intelligence can be found at
www.emergingcommunication.com/volume6.html. More information can be obtained at
www.ambientintelligence.org/.

8 All interaction with the P-com occurs via continuous voice recognition commands and statements,

which has evolved to become 99 percent accurate.

Open-world software
encompasses ambient
intelligence, context-
aware apps, and per-
vasive computing.

pre75977_ch31.qxd 11/27/08 6:35 PM Page 815

http://www.emergingcommunication.com/volume6.html
http://www.ambientintelligence.org/

31.3.3 Emergent Requirements

At the beginning of a software project, there’s a truism that applies equally to every

stakeholder involved: “You don’t know what you don’t know.” That means that cus-

tomers rarely define “stable” requirements. It also means that software engineers

cannot always foresee where ambiguities and inconsistencies lie. Requirements

change—but that’s nothing new.

As systems become more complex, it follows that even a rudimentary attempt to

state comprehensive requirements is doomed to failure. A statement of overall goals

may be possible, delineation of intermediate objectives can be accomplished, but

stable requirements—not a chance! Requirements will emerge as everyone involved

in the engineering and construction of a complex system learns more about it, the

environment in which it is to reside, and the users who will interact with it.

This reality implies a number of software engineering trends. First, process mod-

els must be designed to embrace change and adopt the basic tenets of the agile phi-

losophy (Chapter 3). Next, methods that yield engineering models (e.g., requirements

and design models) must be used judiciously because those models will change

repeatedly as more knowledge about the system is acquired. Finally, tools that

support both process and methods must make adaptation and change easy.

But there is another aspect to emergent requirements. The vast majority of soft-

ware developed to date assumes that the boundary between the software-based

system and its external environment is stable. The boundary may change, but it will

do so in a controlled manner, allowing the software to be adapted as part of a regular

software maintenance cycle. This assumption is beginning to change. Open-world

software (Section 31.2.2) demands that computer-based systems “adapt and react to

changes dynamically, even if they’re unanticipated” [Bar06].

By their nature, emergent requirements lead to change. How do we control the

evolution of a widely used application or system over its lifetime, and what effect

does this have on the way we design software?

As the number of changes grows, the likelihood of unintended side effects also

grows. This should be a cause for concern as complex systems with emergent

requirements become the norm. The software engineering community must develop

methods that help software teams predict the impact of change across an entire sys-

tem, thereby mitigating unintended side effects. Today, our ability to accomplish this

is severely limited.

31.3.4 The Talent Mix

As software-based systems become more complex, as communication and collabo-

ration among global teams becomes commonplace, as emergent requirements (with

the resultant flow of changes) become the norm, the very nature of a software engi-

neering team may change. Each software team must bring a variety of creative tal-

ent and technical skills to its part of a complex system, and the overall process must

allow the output of these islands of talent to merge effectively.

816 PART FIVE ADVANCED TOPICS

Because emergent
requirements are
already a reality, your
organization should
consider adopting an
incremental process
model.

pre75977_ch31.qxd 11/27/08 6:35 PM Page 816

Alexandra Weber Morales [Mor05] suggests the talent mix of a “software dream

team.” The Brain is a chief architect who is able to navigate the demands of stake-

holders and map them into a technology framework that is both extensible and

implementable. The Data Grrl is a database and data structures guru who “blasts

through rows and columns with profound understanding of predicate logic and

set theory as it pertains to the relational model.” The Blocker is a technical leader

(manager) who allows the team to work free of interference from other teams while

at the same time ensuring that collaboration is occurring. The Hacker is a consum-

mate programmer who is at home with patterns and languages and can use both

effectively. The Gatherer “deftly discovers system requirements with . . . anthropo-

logical insight” and accurately expresses them with clarity.

31.3.5 Software Building Blocks

All of us who have fostered a software engineering philosophy have emphasized the

need for reuse—of source code, object-oriented classes, components, patterns, and

COTS software. Although the software engineering community has made progress

as it attempts to capture past knowledge and reuse proven solutions, a significant

percentage of the software that is built today continues to be built “from scratch.”

Part of the reason for this is a continuing desire (by stakeholders and software engi-

neering practitioners) for “unique solutions.”

In the hardware world, original equipment manufacturers (OEMs) of digital

devices use application-specific standard products (ASSPs) produced by silicon

vendors almost exclusively. This “merchant hardware” provides the building blocks

necessary to implement everything from a mobile phone to an HD-DVD player.

Increasingly, the same OEMs are using “merchant software”—software building

blocks designed specifically for a unique application domain [e.g., VoIP devices].

Michael Ward [War07] comments:

One advantage of the use of software components is that the OEM can leverage the func-

tionality provided by the software without having to develop in-house expertise in the

specific functions or invest developer time on the effort to implement and validate the

components. Other advantages include the ability to acquire and deploy only the specific

set of functionalities that are needed for the system, as well as the ability to integrate

these components into an already-existing architecture.

However, the software component approach does have a disadvantage in that there

is a given level of effort required to integrate the individual components into the overall

product. This integration challenge may be further complicated if the components are

sourced from a variety of vendors, each with its own interface methodologies. As addi-

tional sources of components are used, the effort required to manage various vendors in-

creases, and there is a greater risk of encountering problems related to the interaction

across components from different sources.

In addition to components packaged as merchant software, there is an increasing

tendency to adopt software platform solutions that “incorporate collections of related

CHAPTER 31 EMERGING TRENDS IN SOFTWARE ENGINEERING 817

uote:

“The proper artistic
response to digital
technology is to
embrace it as a
new window on
everything that’s
eternally human,
and to use it with
passion, wisdom,
fearlessness
and joy.”

Ralph
Lombreglia

pre75977_ch31.qxd 11/27/08 6:35 PM Page 817

functionalities, typically provided within an integrated software framework”

[War07]. A software platform frees an OEM from the work associated with develop-

ing base functionality and instead allows the OEM to dedicate software effort on

those features that differentiate its product.

31.3.6 Changing Perceptions of “Value”

During the last quarter of the twentieth century, the operative question that busi-

nesspeople asked when discussing software was: “Why does it cost so much?” That

question is rarely asked today and has been replaced by “Why can’t we get it (soft-

ware and/or the software-based product) sooner?”

When computer software is considered, the modern perception of value is chang-

ing from business value (cost and profitability) to customer values that include:

speed of delivery, richness of functionality, and overall product quality.

31.3.7 Open Source

Who owns the software you or your organization uses? Increasingly, the answer is

“everyone.” The “open source” movement has been described in the following man-

ner [OSO08]: “Open source is a development method for software that harnesses the

power of distributed peer review and transparency of process. The promise of open

source is better quality, higher reliability, more flexibility, lower cost, and an end to

predatory vendor lock-in.” The term open source when applied to computer software,

implies that software engineering work products (models, source code, test suites)

are open to the public and can be reviewed and extended (with controls) by anyone

with interest and permission.

An open-source “team” may have a number of full-time “dream team” members

(Section 31.3.4), but the number of people working on the software expands and

contracts as interest in the application strengthens or weakens. The power of the

open-source team is derived from constant peer review and design/code refactor-

ing that results in a slow progression toward an optimal solution.

If you have further interest, Weber [Web05] provides a worthwhile introduction,

and Feller and his colleagues [Fel07] have edited a comprehensive and objective

anthology that considers the benefits and problems associated with open source.

818 PART FIVE ADVANCED TOPICS

Technologies to Watch
Many emerging technologies are likely to have

a significant impact on the types of computer-
based systems that evolve. These technologies add to the
challenges confronting software engineers. The following
technologies are worthy of note:

Grid computing—this technology (available today)
creates a network that taps the billions of unused CPU
cycles from every machine on the network and allows
exceedingly complex computing jobs to be completed
without a dedicated supercomputer. For a real-life

INFO

pre75977_ch31.qxd 11/27/08 6:35 PM Page 818

31.4 TECHNOLOGY DIRECTIONS

We always seem to think that software engineering will change more rapidly than it

does. A new “hype” technology (it could be a new process, a unique method, or an

exciting tool) is introduced, and pundits suggest that “everything” will change. But

software engineering is about far more than technology—it’s about people and their

ability to communicate their needs and innovate to make those needs a reality.

Whenever people are involved, change occurs slowly in fits and starts. It’s only when

a “tipping point” [Gla02] is reached, that a technology cascades across the software

engineering community and broad-based change truly does occur.

In this section I’ll examine a few trends in process, methods, and tools that are

likely to have some influence on software engineering over the next decade. Will

they lead to a tipping point? We’ll just have to wait and see.

31.4.1 Process Trends

It can be argued that all of the business, organizational, and cultural trends discussed

in Section 31.3 reinforce the need for process. But do the frameworks discussed in

Chapter 30 provide a road map into the future? Will process frameworks evolve to

find a better balance between discipline and creativity? Will the software process

adapt to the differing needs of stakeholders who procure software, those who build

it, and those who use it? Can it provide a means for reducing risk for all three con-

stituencies at the same time?

These and many other questions remain open. However, some trends are begin-

ning to emerge. Conradi and Fuggetta [Con02] suggest six “theses on how to

CHAPTER 31 EMERGING TRENDS IN SOFTWARE ENGINEERING 819

example encompassing over 4.5 million computers,
visit http://setiathome.berkeley.edu/.

Open-world computing—“It’s ambient, implicit,
invisible, and adaptive. It’s when network devices
embedded in the environment provide unobtrusive
connectivity and services all the time” [McC05].

Microcommerce—a new branch of e-commerce that
charges very small amounts for access to or purchase
of various forms of intellectual property. Apple iTunes is
a widely used example.

Cognitive machines—the “holy grail” in the robotics
field is to develop machines that are aware of their
environment, that can “pick up on cues, respond to ever-
changing situations, and interact with people naturally”
[PCM03]. Cognitive machines are still in the early stages
of development, but the potential is enormous.

OLED displays—an OLED “uses a carbon-based
designer molecule that emits light when an electric
current passes through it. Piece lots of molecules

together and you’ve got a superthin display of stunning
quality—no power-draining backlight required”
[PCM03]. The result—ultrathin displays that can be
rolled up or folded, sprayed onto a curved surface, or
otherwise adapted to a specific environment.

RFIDs—radio frequency identification brings open-world
computing to an industrial base and the consumer
products industry. Everything from tubes of toothpaste
to automobile engines will be identifiable as it moves
through the supply chain to its ultimate destination.

Web 2.0—one of a broad array of Web services that
will lead to even greater integration of the Web into
both commerce and personal computing.

For further discussion of technologies to watch,
presented in a unique combination of video and print,
visit the Consumer Electronics Association website at
www.ce.org/Press/CEA_Pubs/135.asp.

uote:

“But what is it
good for?”

Engineer at the
Advanced
Computing
Systems
Division of
IBM, 1968,
commenting on
the microchip

pre75977_ch31.qxd 11/27/08 6:35 PM Page 819

http://setiathome.berkeley.edu/
http://www.ce.org/Press/CEA_Pubs/135.asp

enhance and better apply SPI frameworks.” They begin their discussion with the

following statement:

A software procurer’s goal is to select the best contractor objectively and rationally. A

software company’s goal is to survive and grow in a competitive market. An end user’s

goal is to acquire the software product that can solve the right problem, at the right time,

at an acceptable price. We cannot expect the same SPI approach and consequent effort

to accommodate all these viewpoints.

In the paragraphs that follow, I have adapted the theses proposed by Conradi and

Fuggetta [Con02] to suggest possible process trends over the next decade.

1. As SPI frameworks evolve, they will emphasize “strategies that focus on goal

orientation and product innovation” [Con02]. In the fast-paced world of soft-

ware development, long-term SPI strategies rarely survive in a dynamic

business environment. Too much changes too quickly. This means that a

stable, step-by-step road map for SPI may have to be replaced with a

framework that emphasizes short-term goals that have a product orienta-

tion. If the requirements for a new software-based product line will emerge

over a series of incremental product releases (to be delivered to end users

via the Web) the software organization may recognize the need to improve

its ability to manage change. Process improvements associated with

change management must be coordinated with the release cycle of the

product in a way that will improve change management while at the same

time not being disruptive.

2. Because software engineers have a good sense of where the process is weak,

process changes should generally be driven by their needs and should start form

the bottom up. Conradi and Fuggetta [Con02] suggest that future SPI activities

should “use a simple and focused scorecard to start with, not a large assess-

ment.” By focusing SPI efforts narrowly and working from the bottom up,

practitioners will begin to see substantive changes early—changes that make

a real difference in the way that software engineering work is conducted.

3. Automated software process technology (SPT) will move away from global

process management (broad-based support of the entire software process)

to focus on those aspects of the software process that can best benefit from

automation. No one is against tools and automation, but in many instances,

SPT has not met its promise (see Section 31.2). To be most effective, it

should focus on umbrella activities (Chapter 2)—the most stable elements

of the software process.

4. Greater emphasis will be placed on the return on investment of SPI activities. In

Chapter 30, you learned that return on investment (ROI) can be defined as:

ROI � � 100%
�(benefits) � �(costs)

�(costs)

820 PART FIVE ADVANCED TOPICS

What
process

trends are likely
over the next
decade?

?

pre75977_ch31.qxd 11/27/08 6:35 PM Page 820

To date, software organizations have struggled to clearly delineate “benefits”

in a quantitative manner. It can be argued [Con02] that “we therefore need a

standardized market-value model, such as the one employed in Cocomo II

(see Chapter 26) to account for software improvement initiatives.”

5. As time passes, the software community may come to understand that expertise

in sociology and anthropology may have as much or more to do with successful

SPI as other, more technical disciplines. Above all else, SPI changes organiza-

tional culture, and cultural change involves individuals and groups of people.

Conradi and Fuggetta [Con02] correctly note that “software developers are

knowledge workers. They tend to respond negatively to top-level dictates on

how to do work or change processes.” Much can be learned by examining the

sociology of groups to better understand effective ways to introduce change.

6. New modes of learning may facilitate the transition to a more effective software

process. In this context, “learning” implies learning from successes and mis-

takes. A software organization that collects metrics (Chapters 23 and 25)

allows itself to understand how elements of a process affect the quality of the

end product.

31.4.2 The Grand Challenge

There is one trend that is undeniable—software-based systems will undoubtedly

become bigger and more complex as time passes. It is the engineering of these large,

complex systems, regardless of delivery platform or application domain, that poses

the “grand challenge” [Bro06] for software engineers. Manfred Broy [Bro06] suggests

that software engineers can meet “the daunting challenge of complex software

systems development” by creating new approaches to understanding system mod-

els and using those models as a basis for the construction of high-quality next-

generation software.

As the software engineering community develops new model-driven approaches

(discussed later in this section) to the representation of system requirements and

design, the following characteristics [Bro06] must be addressed:

• Multifunctionality—as digital devices evolve into their second and third gener-

ation, they have begun to deliver a rich set of sometimes unrelated functions.

The mobile phone, once considered a communication device, is now used

for taking photos, keeping a calendar, navigating a journey, and as a music

player. If open-world interfaces come to pass, these mobile devices will be

used for much more over the coming years. As Broy [Bro06] notes,

“engineers must describe the detailed context in which the functions will be

delivered and, most important, must identify the potentially harmful interac-

tions between the system’s different features.”

• Reactivity and timeliness—digital devices increasingly interact with the real

world and must react to external stimuli in a timely manner. They must

CHAPTER 31 EMERGING TRENDS IN SOFTWARE ENGINEERING 821

What system
character-

istics must
analysts and
designers consider
for future apps?

?

pre75977_ch31.qxd 11/27/08 6:35 PM Page 821

interface with a broad array of sensors and must respond in a time frame

that is appropriate to the task at hand. New methods must be developed that

(1) help software engineers predict the timing of various reactive features

and (2) implement those features in a way that makes the feature less

machine dependent and more portable.

• New modes of user interaction—the keyboard and mouse work well in a

PC environment, but open-world trends for software mean that new modes

of interaction must be modeled and implemented. Whether these new

approaches use multitouch interfaces, voice recognition, or direct mind inter-

faces,9 new generations of software for digital devices must model these new

human-computer interfaces.

• Complex architectures—a luxury automobile has over 2000 functions

controlled by software that resides within a complex hardware architecture

that includes multiple CPUs, a sophisticated bus structure, actuators, sensors,

an increasingly sophisticated human interface, and many safety-rated

components. Even more complex systems are on the immediate horizon,

presenting significant challenges for software designers.

• Heterogeneous, distributed systems—the real-time components of any modern

embedded system can be connected via an internal bus, a wireless network,

or across the Internet (or all three).

• Criticality—software has become the pivotal component in virtually all

business-critical systems and in most safety-critical systems. Yet, the

software engineering community has only begun to apply even the most

basic principles of software safety.

• Maintenance variability—the life of software within a digital device rarely lasts

beyond 3 to 5 years, but the complex avionics systems within an aircraft has

a useful life of at least 20 years. Automobile software falls somewhere in

between. Should this have an impact on design?

Broy [Bro06] argues that these and other software characteristics can be managed

only if the software engineering community develops a more effective distributed

and collaborative software engineering philosophy, better requirements engineering

approaches, a more robust approach to model-driven development, and better soft-

ware tools. In the sections that follow I’ll explore each of these areas briefly.

31.4.3 Collaborative Development

It seems almost too obvious to state, but I’ll do so anyway: software engineering is an

information technology. From the onset of any software project, every stakeholder

822 PART FIVE ADVANCED TOPICS

9 A brief discussion of direct mind interfaces can be found at http://en.wikipedia.org/wiki/
Brain-computer_interface, and a commercial example is described at http://au.gamespot
.com/news/6166959.html.

pre75977_ch31.qxd 11/27/08 6:35 PM Page 822

http://en.wikipedia.org/wiki/
http://au.gamespot

must share information—about basic business goals and objectives, about specific

system requirements, about architectural design issues, about almost every aspect

of the software to be built.

Today, software engineers collaborate across time zones and international

boundaries, and every one of them must share information. The same holds for

open-source projects in which hundreds or thousands of software developers work

to build an open-source app. Again, information must be disseminated so that open

collaboration can occur.

The challenge over the next decade is to develop methods and tools that facilitate

that collaboration. Today, we continue to struggle to make collaboration easy.

Eugene Kim [Kim04] comments:

Consider a basic collaborative task: document-sharing. A number of applications (both

commercial and open source) claim to solve the document-sharing problem, and yet, the

predominant method for sharing files is to email them back and forth. This is the com-

putational equivalent of sneakernet. If the tools that purport to solve this problem are

good, why aren’t we using them?

We see similar problems in other basic areas. I can walk into any meeting anywhere

in the world with a piece of paper in hand, and I can be sure that people will be able to

read it, mark it up, pass it around, and file it away. I can’t say the same for electronic doc-

uments. I can’t annotate a Web page or use the same filing system for both my email and

my Word documents, at least not in a way that is guaranteed to be interoperable with

applications on my own machine and on others. Why not?

. . . In order to make a real impact in the collaborative space, tools must not only be

good, they must be interoperable.

But a lack of comprehensive collaborative tools is only one part of the challenge

faced by those who must develop software collaboratively.

Today, a significant percentage10 of IT projects are outsourced internationally, and

the number will grow substantially over the next decade. Not surprisingly, Bhat and

his colleagues [Bha06] contend that requirements engineering is the crucial activity

in an outsourcing project. They identify a number of success factors that lead to

successful collaborative efforts:

• Shared goals—project goals must be clearly enunciated, and all stakeholders

must understand them and agree with their intent.

• Shared culture—cultural differences should be clearly defined, and an

educational approach (that will help to mitigate those differences) and a

communication approach (that will facilitate knowledge transfer) should be

developed.

CHAPTER 31 EMERGING TRENDS IN SOFTWARE ENGINEERING 823

Collaboration involves
the timely
dissemination of
information and an
effective process for
communication and
decision making.

10 Approximately 20 percent of a typical IT budget for large companies is currently dedicated to
outsourcing, and the percentage is growing every year. (Source: www.logicacmg.com/page/
400002849.)

pre75977_ch31.qxd 11/27/08 6:35 PM Page 823

http://www.logicacmg.com/page/

• Shared process—in some ways, process serves as the skeleton of a collabora-

tive project, providing a uniform means for assessing progress and direction

and introducing a common technical “language” for all team members.

• Shared responsibility—every team member must recognize the importance of

requirements engineering and work to provide the best possible definition

of the system.

When combined, these success factors lead to “trust”—a global team that can rely

on disparate groups to accomplish the job they are assigned.

31.4.4 Requirements Engineering

Basic requirements engineering actions—elicitation, elaboration, negotiation, spec-

ification, and validation—were presented in Chapters 5 through 7. The success or

failure of these actions has a very strong influence on the success or failure of the

entire software engineering process. And yet, requirements engineering (RE) has

been compared to “trying to put a hose clamp around jello” [Gon04]. As I’ve noted in

many places throughout this book, software requirements have a tendency to keep

changing, and with the advent of open-world systems, emergent requirements (and

near-continuous change) may become the norm.

Today, most “informal” requirements engineering approaches begin with the cre-

ation of user scenarios (e.g., use cases). More formal approaches create one or more

requirements models and use these as a basis for design. Formal methods enable a

software engineer to represent requirements using a verifiable mathematical nota-

tion. All can work reasonably well when requirements are stable, but do not readily

solve the problem of dynamic or emergent requirements.

There are a number of distinct requirements engineering research directions

including natural language processing from translated textual descriptions into more

structured representations (e.g., analysis classes), greater reliance on databases for

structuring and understanding software requirements, the use of RE patterns to

describe typical problems and solutions when requirements engineering tasks are

conducted, and goal-oriented requirements engineering. However, at the industry

level, RE actions remain relatively informal and surprisingly basic. To improve the

manner in which requirements are defined, the software engineering community will

likely implement three distinct subprocesses as RE is conducted [Gli07]: (1) improved

knowledge acquisition and knowledge sharing that allows more complete under-

standing of application domain constraints and stakeholder needs, (2) greater empha-

sis on iteration as requirements are defined, and (3) more effective communication

and coordination tools that enable all stakeholders to collaborate effectively.

The RE subprocesses noted in the preceding paragraph will only succeed if they

are properly integrated into an evolving approach to software engineering. As

pattern-based problem solving and component-based solutions begin to dominate

many application domains, RE must accommodate the desire for agility (rapid

824 PART FIVE ADVANCED TOPICS

“New RE subprocesses
include: (1) improved
knowledge acquisition,
(2) even more
iteration, and
(3) more effective
communication and
coordination tools.”

pre75977_ch31.qxd 12/3/08 1:56 PM Page 824

incremental delivery) and the inherent emergent requirements that result. The con-

current nature of many software engineering process models means that RE will be

integrated with design and construction activities. As a consequence, the notion of

a static “software specification” is beginning to disappear, to be replaced by “value-

driven requirements” [Som05] derived as stakeholders respond to features and func-

tions delivered in early software increments.

31.4.5 Model-Driven Software Development

Software engineers grapple with abstraction at virtually every step in the software

engineering process. As design commences, architectural and component-level

abstractions are represented and assessed. They must then be translated into a pro-

gramming language representation that transforms the design (a relatively high level

of abstraction) into an operable system with a specific computing environment

(a low level of abstraction). Model-driven software development11 couples domain-

specific modeling languages with transformation engines and generators in a way

that facilitates the representation of abstraction at high levels and then transforms it

into lower levels [Sch06].

Domain-specific modeling languages (DSMLs) represent “application structure,

behavior and requirements within particular application domains” and are described

with meta-models that “define the relationships among concepts in the domain and

precisely specify the key semantics and constraints associated with these domain

concepts” [Sch06]. The key difference between a DSML and a general-purpose mod-

eling language such as UML (Appendix 1) is that the DSML is tuned to design con-

cepts inherent in the application domain and can therefore represent relationships

and constraints among design elements in an efficient manner.

31.4.6 Postmodern Design

In an interesting article on software design in the “postmodern era,” Philippe

Kruchten [Kru05] makes the following observation:

Computer science hasn’t achieved the grand narrative that explains it all, the big picture—

we haven’t found the fundamental laws of software that would play the role that the fun-

damental laws of physics play in other engineering disciplines. We still live with the bitter

aftertaste of the Internet bubble burst and the Y2K doomsday. So, in this postmodern era,

where it seems that everything matters a bit yet not much really matters, what are the

next directions for software design?

Part of any attempt to understand trends in software design is to establish bound-

aries for design. Where does requirements engineering stop and design begin?

Where does design stop and code generation begin? The answers to these questions

are not as easy as they might first appear. Even though the requirements model

should focus on “what,” not “how,” every analyst does a bit of design and almost all

CHAPTER 31 EMERGING TRENDS IN SOFTWARE ENGINEERING 825

11 The term model-driven engineering (MDE) is also used.

Model-driven
approaches address a
continuing challenge
for all software
developers—how to
represent software at a
higher level of
abstraction than code.

pre75977_ch31.qxd 12/3/08 1:56 PM Page 825

designers do a bit of analysis. Similarly, as the design of software components moves

closer to algorithmic detail, a designer begins to represent the component at a level

of abstraction that is close to code.

Postmodern design will continue to emphasize the importance of software archi-

tecture (Chapter 9). A designer must state an architectural issue, make a decision

that addresses the issue, and then clearly define the assumptions, constraints, and

implications that the decision places on the software as a whole. But is there a frame-

work in which the issues can be described and the architecture can be defined?

Aspect-oriented software development (Chapter 2) or model-driven software devel-

opment (Section 31.4.4) may become important design approaches in the years

ahead, but it’s still too soon to tell. It may be that breakthroughs in component-based

development (Chapter 10) may lead to a design philosophy that emphasizes the as-

sembly of existing components. If the past is prologue, it’s highly likely that many

“new” design methods will emerge, but few will ride the hype curve (Figure 31.2)

much beyond the “trough of disillusionment.”

31.4.7 Test-Driven Development

Requirements drive design, and design establishes a foundation for construction.

This simple software engineering reality works reasonably well and is essential as a

software architecture is created. However, a subtle change can provide significant

benefit when component-level design and construction are considered.

In test-driven development (TDD), requirements for a software component serve as

the basis for the creation of a series of test cases that exercise the interface and

attempt to find errors in the data structures and functionality delivered by the com-

ponent. TDD is not really a new technology but rather a trend that emphasizes the

design of test cases before the creation of source code.12

The TDD process follows the simple procedural flow illustrated in Figure 31.3.

Before the first small segment of code is created, a software engineer creates a test

to exercise the code (to try to make the code fail). The code is then written to satisfy

the test. If it passes, a new test is created for the next segment of code to be devel-

oped. The process continues until the component is fully coded and all tests execute

without error. However, if any test succeeds in finding an error, the existing code is

refactored (corrected) and all tests created to that point are reexecuted. This itera-

tive flow continues until there are no tests left to be created, implying that the com-

ponent meets all requirements defined for it.

During TDD, code is developed in very small increments (one subfunction at a

time), and no code is written until a test exists to exercise it. You should note that

each iteration results in one or more new tests that are added to a regression test

suite that is run with every change. This is done to ensure that the new code has not

generated side effects that cause errors in the older code.

826 PART FIVE ADVANCED TOPICS

12 Recall that Extreme Programming (Chapter 3) emphasizes this approach as part of its agile process
model.

“TDD is a trend that
emphasizes the design
of test cases before
the creation of
source code.”

pre75977_ch31.qxd 12/3/08 1:56 PM Page 826

In TDD, tests drive the detailed component design and the resultant source code. The

results of these tests cause immediate modifications to the component design (via the

code), and more important, the resultant component (when completed) has been ver-

ified in stand-alone fashion. If you have further interest in TDD, see [Bec04b] or [Ast04].

31.5 TOOLS-RELATED TRENDS

Hundreds of industry-grade software engineering tools are introduced each year.

The majority are provided by tools vendors who claim that their tool will improve

project management, or requirements analysis, or design modeling, or code gener-

ation, or testing, or change management, or any of the many software engineering

activities, actions, and tasks discussed throughout this book. Other tools have been

developed as open-source offerings. The majority of open-source tools focus on

“programming” activities with a specific emphasis on the construction activity (par-

ticularly code generation). Still other tools grow out of research efforts at universi-

ties and government labs. Although they have appeal in very limited applications, the

majority are not ready for broad industry application.

At the industry level, the most comprehensive tools packages form software engi-

neering environments (SEE)13 that integrate a collection of individual tools around

a central database (repository). When considered as a whole, an SEE integrates

CHAPTER 31 EMERGING TRENDS IN SOFTWARE ENGINEERING 827

Tests remain to
be created

Create a
test case

Write a new
code segment

Run the
test(s)

Refactor (correct)
the

code segment

No tests remain to
be created

Finds error Does not find error

FIGURE 31.3

Test-driven
development
process flow

13 The term integrated development environment (IDE) is also used.

pre75977_ch31.qxd 11/27/08 6:35 PM Page 827

information across the software process and assists in the collaboration that is

required for many large, complex software-based systems. But current environments

are not easily extensible (it’s difficult to integrate a COTS tool that is not part of the

package) and tend to be general purpose (i.e., they are not application domain

specific). There is also a substantial time lag between the introduction of new tech-

nology solutions (e.g., model-driven software development) and the availability of

viable SEEs that support the new technology.

Future trends in software tools will follow two distinct paths—a human-focused

path that responds to some of the “soft trends” discussed in Section 31.3, and a

technology-centered path that addresses new technologies (Section 31.4) as they are

introduced and adopted. In the sections that follow, I’ll examine each path briefly.

31.5.1 Tools That Respond to Soft Trends

The soft trends discussed in Section 31.3—the need to manage complexity, accom-

modate emergent requirements, establish process models that embrace change,

coordinate global teams with a changing talent mix, among others—suggest a new

era in which tools support for stakeholder collaboration will become as important as

tools support for technology. But what kind of tool set supports these soft trends?

One example of research in this area is GENESIS—a generalized, open-source

environment designed to support collaborative software engineering work [Ave04].

The GENESIS environment may or may not gain widespread usage, but its basic

elements are representative of the direction of collaborative SEEs that will evolve to

support the soft trends noted in this chapter.

A collaborative SEE “supports co-operation and communication among software

engineers belonging to distributed development teams involved in modeling, control-

ling, and measuring software development and maintenance processes. Moreover, it

includes an artifact management function that stores and manages software artifacts

(work products) produced by different teams in the course of their work” [Bol02].

Figure 31.4 illustrates an architecture for a collaborative SEE. The architecture,

based on the GENESIS environment [Ave04], is constructed of subsystems that are

integrated within a common Web client and is complemented by server-based

components that provide support for all clients. Each development organization

has its own client-side subsystems that communicate to other clients. Referring to

Figure 31.4, a resource management subsystem manages the allocation of human

resources to different projects or subprojects; a work product management system is

“responsible for the creation, modification, deletion,” indexing, searching, and stor-

age of all software engineering work products [Ave04]; a workflow management

subsystem coordinates the definition, instantiation, and implementation of software

process activities, actions, and tasks; an event engine “collects events” that occur dur-

ing the software process (e.g., a successful review of a work product, the completion

of unit testing of a component) and notifies others; a communication system supports

both synchronous and asynchronous communication among the distributed teams.

828 PART FIVE ADVANCED TOPICS

pre75977_ch31.qxd 11/27/08 6:35 PM Page 828

On the server side, four components share a workflow support database. The

components implement the following functions:

• Process definition—a tool set that enables a team to define new process

activities, actions, or tasks and defines the rules that govern how these

process elements interact with one another and the work products they

produce.

• Project management—a tool set that allows the team to build a project plan

and coordinate the plan with other teams or projects.

• Workflow engine—“interacts with the event engine to propagate events that

are relevant for the execution of cooperating processes executed on other

sites” [Ave04].

• Worklist handler—interacts with the server-side database to provide a

software engineer with information about the task currently under way or

any future task that is derived from work that is currently being performed.

Although the architecture of a collaborative SEE may vary considerably from the

one discussed in this section, the basic functional elements (management systems

CHAPTER 31 EMERGING TRENDS IN SOFTWARE ENGINEERING 829

Workflow
management

system

Client-side coordination layer

Communication
system

Resource
management

system

Work product
management

system

Worklist
handler

Server-side

Workflow
engine

Process
definition

tool

Workflow
support

database
Project

management
tool

Other sites and teams

Event
engine

FIGURE 31.4 Collaborative SEE architecture.
Source: Adapted from [Ave04].

pre75977_ch31.qxd 11/27/08 6:35 PM Page 829

and components) will appear to achieve the level of coordination that is required for

a distributed software engineering project.

31.5.2 Tools That Address Technology Trends

Agility in software engineering (Chapter 3) is achieved when stakeholders work as a

team. Therefore, the trend toward collaborative SEEs (Section 31.5.1) will provide

benefits even when software is developed locally. But what of the technology tools

that complement the system and components that empower better collaboration?

One of the dominant trends in technology tools is the creation of a tool set

that supports model-driven development (Section 31.4.4) with an emphasis on

architecture-driven design. Oren Novotny [Nov04] suggests that the model rather

than the source code becomes the central software engineering focus:

Platform independent models are created in UML and then undergo various levels of

transformation to eventually wind up as source code for a specific platform. It stands to

reason then, that the model, not the file, should become the new unit of output. A model

has many different views at different levels of abstraction. At the highest level, platform

independent components can be specified in analysis; at the lowest level there is a plat-

form specific implementation that reduces to a set of classes in code.

Novotny argues that a new generation of tools will work in conjunction with a repos-

itory to create models at all necessary levels of abstraction, establish relationships

between the various models, translate models at one level of abstraction to another

level (e.g., translate a design model into source code), manage changes and versions,

and coordinate quality control and assurance actions against the software models.

In addition to complete software engineering environments, point-solution tools

that address everything from requirements gathering to design/code refactoring to

testing will continue to evolve and become more functionally capable. In some in-

stances, modeling and testing tools targeted at a specific application domain will

provide enhanced benefit when compared to their generic equivalents.

31.6 SUMMARY

The trends that have an effect on software engineering technology often come from

the business, organizational, market, and cultural arenas. These “soft trends” can

guide the direction of research and the technology that is derived as a consequence

of research.

As a new technology is introduced, it moves through a life cycle that does not

always lead to widespread adoption, even though original expectations are high. The

degree to which any software engineering technology gains widespread adoption is

tied to its ability to address the problems posed by both soft and hard trends.

Soft trends—the growing need for connectivity and collaboration, global projects,

knowledge transfer, the impact of emerging economies, and the influence of human

culture itself, lead to a set of challenges that span managing complexity and emergent

830 PART FIVE ADVANCED TOPICS

pre75977_ch31.qxd 11/27/08 6:35 PM Page 830

requirements to juggling an ever-changing talent mix among geographically dispersed

software teams.

Hard trends—the ever-accelerating pace of technology change—flow out of soft

trends and affect the structure of the software and scope of the process and the man-

ner in which a process framework is characterized. Collaborative development, new

forms of requirements engineering, model-based and test-driven development, and

postmodern design will change the methods landscape. Tools environments will

respond to a growing need for communication and collaboration and at the same

time integrate domain-specific point solutions that may change the nature of current

software engineering tasks.

PROBLEMS AND POINTS TO PONDER

31.1. Get a copy of the best-selling book The Tipping Point by Malcolm Gladwell (available via
Google Book Search), and discuss how his theories apply to the adoption of new software
engineering technologies.

31.2. Why does open-world software present a challenge to conventional software engineer-
ing approaches?

31.3. Review the Gartner Group’s hype cycle for emerging technologies. Select a well-known
technology product and present a brief history that illustrates how it traveled along the curve.
Select another well-known technology product that did not follow the path suggested by the
hype curve.

31.4. What is a “soft trend”?

31.5. You’re faced with an extremely complex problem that will require a lengthy solution.
How would you go about addressed the complexity and crafting a solution?

31.6. What are “emergent requirements” and why do they present a challenge to software
engineers?

31.7. Select an open-source development effort (other than Linux), and present a brief history
of its evolution and relative success.

31.8. Describe how you think the software process will change over the next decade.

31.9. You’re based in Los Angeles and are working on a global software engineering team. You
and colleagues in London, Mumbai, Hong Kong, and Sydney must edit a 245-page requirements
specification for a large system. The first editing pass must be completed in three days. Describe
the ideal online tool set that would enable you to collaborate effectively.

31.10. Describe model-driven software development in your own words. Do the same for test-
driven development.

FURTHER READINGS AND INFORMATION SOURCES

Books that discuss the road ahead for software and computing span a vast array of technical,
scientific, economic, political, and social issues. Kurweil (The Singularity Is Near, Penguin Books,
2005) presents a compelling look at a world that will change in truly profound ways by the mid-
dle of this century. Sterling (Tomorrow Now, Random House, 2002) reminds us that real progress
is rarely orderly and efficient. Teich (Technology and the Future, Wadworth, 2002) presents
thoughtful essays on the societal impact of technology and how changing culture shapes

CHAPTER 31 EMERGING TRENDS IN SOFTWARE ENGINEERING 831

pre75977_ch31.qxd 11/27/08 6:35 PM Page 831

technology. Naisbitt, Philips, and Naisbitt (High Tech/High Touch, Nicholas Brealey, 2001) note
that many of us have become “intoxicated” with high technology and that the “great irony of the
high-tech age is that we’ve become enslaved to devices that were supposed to give us freedom.”
Zey (The Future Factor, McGraw-Hill, 2000) discusses five forces that will shape human destiny
during this century. Negroponte’s (Being Digital, Alfred A. Knopf, 1995) was a best seller in the
mid-1990s and continues to provide an insightful view of computing and its overall impact.

As software becomes part of the fabric of virtually every facet of our lives, “cyberethics” has
evolved as an important topic of discussion. Books by Spinello (Cyberethics: Morality and Law in
Cyberspace, Jones & Bartlett Publishers, 2002), Halbert and Ingulli (Cyberethics, South-Western
College Publishers, 2001), and Baird and his colleagues (Cyberethics: Social and Moral Issues in
the Computer Age, Prometheus Books, 2000) consider the topic in detail. The U.S Government
has published a voluminous report on CD-ROM (21st Century Guide to Cybercrime, Progressive
Management, 2003) that considers all aspects of computer crime, intellectual property issues,
and the National Infrastructure Protection Center (NIPC).

A wide variety of information sources on future directions in software-related technologies
and software engineering is available on the Internet. An up-to-date list of World Wide Web
references relevant to future trends in software engineering can be found at the SEPA website:
www.mhhe.com/engcs/compsci/pressman/professional/olc/ser.htm.

832 PART FIVE ADVANCED TOPICS

pre75977_ch31.qxd 11/27/08 6:35 PM Page 832

http://www.mhhe.com/engcs/compsci/pressman/professional/olc/ser.htm

833

C H A P T E R

32CONCLUDING
COMMENTS

In the 31 chapters that have preceded this one, I’ve explored a process for soft-
ware engineering that encompasses management procedures and technical
methods, basic concepts and principles, specialized techniques, people-

oriented activities and tasks that are amenable to automation, paper-and-pencil
notation, and software tools. I have argued that measurement, discipline, and an
overriding focus on agility and quality will result in software that meets the cus-
tomer’s needs, software that is reliable, software that is maintainable, software
that is better. Yet, I have never promised that software engineering is a panacea.

As we move into the second decade of this new century, software and systems
technologies remain a challenge for every software professional and every com-
pany that builds computer-based systems. Although he wrote these words with a
twentieth century outlook, Max Hopper [Hop90] accurately describes the current
state of affairs:

Because changes in information technology are becoming so rapid and unforgiving,

and the consequences of falling behind are so irreversible, companies will either mas-

ter the technology or die. . . . Think of it as a technology treadmill. Companies will have

to run harder and harder just to stay in place.

Changes in software engineering technology are indeed ”rapid and unforgiving,”
but at the same time progress is often quite slow. By the time a decision is made
to adopt a new process, method, or tool; conduct the training necessary to
understand its application; and introduce the technology into the software devel-
opment culture, something newer (and even better) has come along, and the
process begins anew.

What is it? As we come to the end
of a relatively long journey through
software engineering, it’s time to put
things into perspective and make a

few concluding comments.
Who does it? Authors like me. When you come

to the end of a long and challenging book,
it’s nice to wrap things up in a meaningful
way.

Why is it important? It’s always worthwhile to re-
member where we’ve been and to consider
where we’re going.

Q U I C K
L O O K

What are the steps? I’ll consider where we’ve
been and address some of the core issues and
some directions for the future.

What is the work product? A discussion that will
help you understand the big picture.

How do I ensure that I’ve done it right? That’s
difficult to accomplish in real time. It’s only after
a number of years that either you or I can tell
whether the software engineering concepts,
principles, methods, and techniques discussed in
this book have helped you to become a better
software engineer.

K E Y
C O N C E P T S

ethics838

future 837

information
spectrum 836

knowledge 836

people 834

software
revisited 834

pre75977_ch32.qxd 11/27/08 6:35 PM Page 833

One thing I’ve learned over my years in this field is that software engineering

practitioners are “fashion conscious.” The road ahead will be littered with the car-

casses of exciting new technologies (the latest fashion) that never really made it

(despite the hype). It will be shaped by more modest technologies that somehow

modify the direction and width of the thoroughfare. I discussed a few of those in

Chapter 31.

In this concluding chapter I’ll take a broader view and consider where we’ve been

and where we’re going from a more philosophical perspective.

32.1 THE IMPORTANCE OF SOFTWARE—REVIS ITED

The importance of computer software can be stated in many ways. In Chapter 1, soft-

ware was characterized as a differentiator. The function delivered by software dif-

ferentiates products, systems, and services and provides competitive advantage in

the marketplace. But software is more than a differentiator. When taken as a whole,

software engineering work products generate the most important commodity that

any individual, business, or government can acquire—information.

In Chapter 31, I briefly discussed open-world computing—ambient intelligence,

context-aware applications, and pervasive/ubiquitous computing—a direction that

will fundamentally change our perception of computers, the things that we do with

them (and they do for us), and our perception of information as a guide, a com-

modity, and a necessity. I also noted that software required to support open-world

computing will present dramatic new challenges for software engineers. But far

more important, the coming pervasiveness of computer software will present even

more dramatic challenges for society as a whole. Whenever a technology has a

broad impact—an impact that can save lives or endanger them, build businesses or

destroy them, inform government leaders or mislead them—it must be “handled

with care.”

32.2 PEOPLE AND THE WAY THEY BUILD SYSTEMS

The software required for high-technology systems becomes more and more com-

plex with each passing year, and the size of resultant programs increases propor-

tionally. The rapid growth in the size of the “average” program would present us with

few problems if it wasn’t for one simple fact: As program size increases, the number

of people who must work on the program must also increase.

Experience indicates that as the number of people on a software project team

increases, the overall productivity of the group may suffer. One way around this

problem is to create a number of software engineering teams, thereby compart-

mentalizing people into individual working groups. However, as the number of

software engineering teams grows, communication between them becomes as

difficult and time consuming as communication between individuals. Worse,

834 PART FIVE ADVANCED TOPICS

pre75977_ch32.qxd 11/27/08 6:35 PM Page 834

communication (between individuals or teams) tends to be inefficient—that is, too

much time is spent transferring too little information content, and all too often,

important information “falls into the cracks.”

If the software engineering community is to deal effectively with the communica-

tion dilemma, the road ahead for software engineers must include radical changes

in the way individuals and teams communicate with one another. In Chapter 31, I

discussed collaborative environments that may provide dramatic improvements in

the ways teams communicate.

In the final analysis, communication is the transfer of knowledge, and the acqui-

sition (and transfer) of knowledge is changing in profound ways. As search engines

become increasingly sophisticated and Web 2.0 applications provide better synergy,

the world’s largest library of research papers and reports, tutorials, commentary, and

references becomes readily accessible and usable.

If past history is any indication, it is fair to say that people themselves will not

change. However, the ways in which they communicate, the environment in which

they work, the manner in which they acquire knowledge, the methods and tools that

they use, the discipline that they apply, and therefore, the overall culture for software

development will change in significant and even profound ways.

32.3 NEW MODES FOR REPRESENTING INFORMATION

Over the history of computing, a subtle transition has occurred in the terminology

that is used to describe software development work performed for the business com-

munity. Forty years ago, the term data processing was the operative phrase for de-

scribing the use of computers in a business context. Today, data processing has given

way to another phrase—information technology—that implies the same thing but

presents a subtle shift in focus. The emphasis is not merely to process large quanti-

ties of data but rather to extract meaningful information from this data. Obviously,

this was always the intent, but the shift in terminology reflects a far more important

shift in management philosophy.

When software applications are discussed today, the words data, information, and

content occur repeatedly. We encounter the word knowledge in some artificial intel-

ligence applications, but its use is relatively rare. Virtually no one discusses wisdom

in the context of software applications.

Data is raw information—collections of facts that must be processed to be mean-

ingful. Information is derived by associating facts within a given context. Knowledge

associates information obtained in one context with other information obtained in

a different context. Finally, wisdom occurs when generalized principles are derived

from disparate knowledge. Each of these four views of “information” is represented

schematically in Figure 32.1.

To date, the vast majority of all software has been built to process data or infor-

mation. Software engineers are now equally concerned with systems that process

CHAPTER 32 CONCLUDING COMMENTS 835

uote:

“Future shock [is]
the shattering
stress and
disorientation that
we induce in
individuals by
subjecting them to
too much change in
too short a period
of time.”

Alvin Toffler

uote:

“The best
preparation for
good work
tomorrow is to do
good work today.”

Elbert Hubbard

pre75977_ch32.qxd 11/27/08 6:35 PM Page 835

knowledge.1 Knowledge is two dimensional. Information collected on a variety of re-

lated and unrelated topics is connected to form a body of fact that we call knowledge.

The key is our ability to associate information from a variety of different sources that

may not have any obvious connection and combine it in a way that provides us with

some distinct benefit.2

To illustrate the progression from data to knowledge, consider census data indi-

cating that the birthrate in 1996 in the United States was 4.9 million. This number

represents a data value. Relating this piece of data with birthrates for the preceding

40 years, we can derive a useful piece of information—aging baby boomers of the

1950s and early 1960s made a last-gasp effort to have children prior to the end of

their child-bearing years. In addition, gen-Xers began their childbearing years. The

census data can then be connected to other seemingly unrelated pieces of informa-

tion. For example, the current number of elementary school teachers who will retire

during the next decade, the number of college students graduating with degrees in

primary and secondary education, the pressure on politicians to hold down taxes and

therefore limit pay increases for teachers. All of these pieces of information can be

combined to formulate a representation of knowledge—there will be significant

pressure on the education system in the United States in the early twenty-first cen-

tury, and this pressure will continue for a number of decades. Using this knowledge,

a business opportunity may emerge. There may be significant opportunity to develop

new modes of learning that are more effective and less costly than current

approaches.

836 PART FIVE ADVANCED TOPICS

Data:
no associativity

Information:
associativity within
one context

Knowledge:
associativity within
multiple contexts

Wisdom:
creation of generalized
principles based on
existing knowledge
from different sources

FIGURE 32.1

An “informa-
tion” spectrum

uote:

“Wisdom is the
power that enables
us to use
knowledge for the
benefit of
ourselves and
others.”

Thomas J.
Watson

1 The rapid growth of data mining and data warehousing technologies reflect this growing trend.
2 The semantic Web (Web 2.0) allows the creation of “mashups” that may provide a facile mecha-

nism for achieving this.

pre75977_ch32.qxd 11/27/08 6:35 PM Page 836

The road ahead for software leads to systems that process knowledge. We have

been processing data using computers for over 50 years and extracting information

for more than three decades. One of the most significant challenges facing the soft-

ware engineering community is to build systems that take the next step along the

spectrum—systems that extract knowledge from data and information in a way that

is practical and beneficial.

32.4 THE LONG VIEW

In Section 32.3, I suggested that the road ahead leads to systems that “process

knowledge.” But the future of computing in general and software-based systems in

particular may lead to events that are considerably more profound.

In a fascinating book that is must reading for every person involved in computing

technologies, Ray Kurzweil [Kur05] suggests that we have reached a time when “the

pace of technological change will be so rapid, its impact so deep, that human life will

be irreversibly transformed.” Kurzweil3 makes a compelling argument that we are

currently at the “knee” of an exponential growth curve that will lead to enormous in-

creases in computing capacity over the next two decades. When coupled with equiv-

alent advances in nanotechnology, genetics, and robotics, we may approach a time

in the middle part of this century when the distinction between humans (as we know

them today) and machines begins to blur—a time when human evolution accelerates

in ways that are both frightening (to some) and spectacular (to others).

By sometime in the 2030s, Kurzweil argues that computing capacity and the req-

uisite software will be sufficient to model every aspect of the human brain—all of the

physical connections, analog processes, and chemical overlays. When this occurs,

human beings will have achieved “strong AI (artificial intelligence),” and as a conse-

quence, machines that truly do think (using today’s conventional use of the word).

But there will be a fundamental difference. Human brain processes are exceedingly

complex and only loosely connected to external informal sources. They are also

computationally slow, even in comparison to today’s computing technology. When

full human brain emulation occurs, “thought” will occur at speeds thousands of

times more rapid than its human counterpart with intimate connections to a sea of

information (think of the present-day Web as a primitive example). The result is . . .

well . . . so fantastical that it’s best left to Kurzweil to describe.

It’s important to note that not everyone believes that the future Kurzweil describes

is a good thing. In a now famous essay entitled “The Future Doesn’t Need Us,” Bill

Joy [Joy00], one of the founders of Sun Microsystems, argues that “robotics, genetic

CHAPTER 32 CONCLUDING COMMENTS 837

3 It’s important to note that Kurzweil is not a run-of-the mill science fiction writer or a futurist with-
out portfolio. He is a serious technologist who (from Wikipedia) “has been a pioneer in the fields of
optical character recognition (OCR), text-to-speech synthesis, speech recognition technology, and
electronic keyboard instruments.”

pre75977_ch32.qxd 11/27/08 6:35 PM Page 837

engineering, and nanotech are threatening to make humans an endangered

species.” His arguments predicting a technology dystopia represent a counterpoint

to Kurzweil’s predicted utopian future. Both should be seriously considered as

software engineers take one of the lead roles in defining the long view for the human

race.

32.5 THE SOFTWARE ENGINEER ’S RESPONSIB IL ITY

Software engineering has evolved into a respected, worldwide profession. As pro-

fessionals, software engineers should abide by a code of ethics that guides the work

that they do and the products that they produce. An ACM/IEEE-CS Joint Task Force

has produced a Software Engineering Code of Ethics and Professional Practices

(Version 5.1). The code [ACM98] states:

Software engineers shall commit themselves to making the analysis, specification,

design, development, testing and maintenance of software a beneficial and respected

profession. In accordance with their commitment to the health, safety and welfare of the

public, software engineers shall adhere to the following Eight Principles:

1. PUBLIC—Software engineers shall act consistently with the public interest.

2. CLIENT AND EMPLOYER—Software engineers shall act in a manner that is in the best

interests of their client and employer consistent with the public interest.

3. PRODUCT—Software engineers shall ensure that their products and related modifica-

tions meet the highest professional standards possible.

4. JUDGMENT—Software engineers shall maintain integrity and independence in their

professional judgment.

5. MANAGEMENT—Software engineering managers and leaders shall subscribe to and

promote an ethical approach to the management of software development and main-

tenance.

6. PROFESSION—Software engineers shall advance the integrity and reputation of the

profession consistent with the public interest.

7. COLLEAGUES—Software engineers shall be fair to and supportive of their colleagues.

8. SELF—Software engineers shall participate in lifelong learning regarding the practice

of their profession and shall promote an ethical approach to the practice of the

profession.

Although each of these eight principles is equally important, an overriding theme

appears: a software engineer should work in the public interest. On a personal level,

a software engineer should abide by the following rules:

• Never steal data for personal gain.

• Never distribute or sell proprietary information obtained as part of your work

on a software project.

838 PART FIVE ADVANCED TOPICS

WebRef
A complete discussion
of the ACM/IEEE
code of ethics
can be found at
seeri.etsu.edu/
Codes/default
.shtm.

pre75977_ch32.qxd 11/27/08 6:35 PM Page 838

• Never maliciously destroy or modify another person’s programs, files, or

data.

• Never violate the privacy of an individual, a group, or an organization.

• Never hack into a system for sport or profit.

• Never create or promulgate a computer virus or worm.

• Never use computing technology to facilitate discrimination or harassment.

Over the past decade, certain members of the software industry have lobbied for

protective legislation that [SEE03]: (1) allows companies to release software without

disclosing known defects, (2) exempts developers from liability for any damages

resulting from these known defects, (3) constrains others from disclosing defects

without permission from the original developer, (4) allows the incorporation of “self-

help” software within a product that can disable (via remote command) the opera-

tion of the product, and (5) exempts developers of software with “self-help” from

damages should the software be disabled by a third party.

Like all legislation, debate often centers on issues that are political, not techno-

logical. However, many people (including me) feel that protective legislation, if im-

properly drafted, conflicts with the software engineering code of ethics by indirectly

exempting software engineers from their responsibility to produce high-quality

software.

32.6 A FINAL COMMENT

It has been 30 years since I began work on the first edition of this book. I can still

recall sitting at my desk as a young professor, writing the manuscript for a book on

a subject that few people cared about and even fewer really understood. I remember

the rejection letters from publishers, who argued (politely, but firmly) that there

would never be a market for a book on “software engineering.” Luckily, McGraw-Hill

decided to give it a try,4 and the rest, as they say, is history.

Over the past 30 years, this book has changed dramatically—in scope, in size, in

style, and in content. Like software engineering, it has grown and (I hope) matured

over the years.

An engineering approach to the development of computer software is now con-

ventional wisdom. Although debate continues on the “right paradigm,” the impor-

tance of agility, the degree of automation, and the most effective methods, the

underlying principles of software engineering are now accepted throughout the

industry. Why, then, have we seen their broad adoption only recently?

The answer, I think, lies in the difficulty of technology transition and the cultural

change that accompanies it. Even though most of us appreciate the need for an

CHAPTER 32 CONCLUDING COMMENTS 839

4 Actually, credit should go to Peter Freeman and Eric Munson, who convinced McGraw-Hill that it
was worth a shot. Over a million copies later, it’s fair to say they made a good decision.

pre75977_ch32.qxd 11/27/08 6:35 PM Page 839

engineering discipline for software, we struggle against the inertia of past practice

and face new application domains (and the developers who work in them) that ap-

pear ready to repeat the mistakes of the past. To ease the transition we need many

things—an agile, adaptable, and sensible software process; more effective methods;

more powerful tools; better acceptance by practitioners and support from managers;

and no small dose of education.

You may not agree with every approach described in this book. Some of the tech-

niques and opinions are controversial; others must be tuned to work well in differ-

ent software development environments. It is my sincere hope, however, that

Software Engineering: A Practitioner’s Approach has delineated the problems we face,

demonstrated the strength of software engineering concepts, and provided a frame-

work of methods and tools.

As we move further into the twenty-first century, software continues to be the

most important product and the most important industry on the world stage. Its

impact and importance have come a long, long way. And yet, a new generation of

software developers must meet many of the same challenges that faced earlier gen-

erations. Let us hope that the people who meet the challenge—software engineers—

will have the wisdom to develop systems that improve the human condition.

840 PART FIVE ADVANCED TOPICS

pre75977_ch32.qxd 11/27/08 6:35 PM Page 840

The Unified Modeling Language (UML) is “a standard language for writing
software blueprints. UML may be used to visualize, specify, construct, and
document the artifacts of a software-intensive system” [Boo05]. In other

words, just as building architects create blueprints to be used by a construction
company, software architects create UML diagrams to help software developers
build the software. If you understand the vocabulary of UML (the diagrams’
pictorial elements and their meanings), you can much more easily understand
and specify a system and explain the design of that system to others.

Grady Booch, Jim Rumbaugh, and Ivar Jacobson developed UML in the mid-
1990s with much feedback from the software development community. UML
merged a number of competing modeling notations that were in use by the soft-
ware industry at the time. In 1997, UML 1.0 was submitted to the Object Manage-
ment Group, a nonprofit consortium involved in maintaining specifications for
use by the computer industry. UML 1.0 was revised to UML 1.1 and adopted later
that year. The current standard is UML 2.0 and is now an ISO standard. Because
this standard is so new, many older references, such as [Gam95] do not use UML
notation.

UML 2.0 provides 13 different diagrams for use in software modeling. In this
appendix, I will discuss only class, deployment, use case, sequence, communication,
activity, and state diagrams. These diagrams are used in this edition of Software
Engineering: A Practitioner’s Approach.

You should note that there are many optional features in UML diagrams. The
UML language provides these (sometimes arcane) options so that you can
express all the important aspects of a system. At the same time, you have
the flexibility to suppress those parts of the diagram that are not relevant to the
aspect being modeled in order to avoid cluttering the diagram with irrelevant
details. Therefore, the omission of a particular feature does not mean that the
feature is absent; it may mean that the feature was suppressed. In this appendix,
exhaustive coverage of all the features of the UML diagrams is not presented.
Instead, I will focus on the standard options, especially those options that have
been used in this book.

841

A P P E N D I X

1AN INTRODUCTION
TO UML1

K E Y
C O N C E P T S

activity
diagram 853
class diagram . .842
communication
diagram 851
dependency . . .844
deployment
diagram 846
generalization . .843
interaction
frames 850
multiplicity 844
Object Constraint
Language 859
sequence
diagram 848
state diagram . .856
stereotype 843
swimlanes 855
use-case
diagram 847

1 This appendix has been contributed by Dale Skrien and has been adapted from his book, An Intro-
duction to Object-Oriented Design and Design Patterns in Java (McGraw-Hill, 2008). All content is used
with permission.

pre75977_Apx1.qxd 11/27/08 6:41 PM Page 841

CLASS DIAGRAMS

To model classes, including their attributes, operations, and their relationships and

associations with other classes,2 UML provides a class diagram. A class diagram pro-

vides a static or structural view of a system. It does not show the dynamic nature of

the communications between the objects of the classes in the diagram.

The main elements of a class diagram are boxes, which are the icons used to rep-

resent classes and interfaces. Each box is divided into horizontal parts. The top part

contains the name of the class. The middle section lists the attributes of the class. An

attribute refers to something that an object of that class knows or can provide all the

time. Attributes are usually implemented as fields of the class, but they need not be.

They could be values that the class can compute from its instance variables or val-

ues that the class can get from other objects of which it is composed. For example,

an object might always know the current time and be able to return it to you when-

ever you ask. Therefore, it would be appropriate to list the current time as an

attribute of that class of objects. However, the object would most likely not have that

time stored in one of its instance variables, because it would need to continually

update that field. Instead, the object would likely compute the current time (e.g.,

through consultation with objects of other classes) at the moment when the time is

requested. The third section of the class diagram contains the operations or behav-

iors of the class. An operation refers to what objects of the class can do. It is usually

implemented as a method of the class.

Figure A1.1 presents a simple example of a Thoroughbred class that models

thoroughbred horses. It has three attributes displayed—mother, father, and birthyear.

The diagram also shows three operations: getCurrentAge(), getFather(), and

getMother(). There may be other suppressed attributes and operations not shown in

the diagram.

Each attribute can have a name, a type, and a level of visibility. The type and visi-

bility are optional. The type follows the name and is separated from the name by a

842 APPENDIX 1 AN INTRODUCTION TO UML

2 If you are unfamiliar with object-oriented concepts, a brief introduction is presented in Appendix 2.

Thoroughbred

-father: Thoroughbred
-mother: Thoroughbred
-birthyear: int

+getFather(): Thoroughbred
+getMother(): Thoroughbred
+getCurrentAge(currentYear:Date): int

FIGURE A1.1

A class
diagram for a
Thoroughbred
class

pre75977_Apx1.qxd 11/27/08 6:41 PM Page 842

colon. The visibility is indicated by a preceding –, #, ~, or +, indicating, respectively,

private, protected, package, or public visibility. In Figure A1.1, all attributes have private

visibility, as indicated by the leading minus sign (–). You can also specify that an

attribute is a static or class attribute by underlining it. Each operation can also be dis-

played with a level of visibility, parameters with names and types, and a return type.

An abstract class or abstract method is indicated by the use of italics for the name

in the class diagram. See the Horse class in Figure A1.2 for an example. An inter-

face is indicated by adding the phrase “«interface»” (called a stereotype) above the

name. See the OwnedObject interface in Figure A1.2. An interface can also be

represented graphically by a hollow circle.

It is worth mentioning that the icon representing a class can have other optional

parts. For example, a fourth section at the bottom of the class box can be used to list

the responsibilities of the class. This section is particularly useful when transitioning

from CRC cards (Chapter 6) to class diagrams in that the responsibilities listed on the

CRC cards can be added to this fourth section in the class box in the UML diagram

before creating the attributes and operations that carry out these responsibilities.

This fourth section is not shown in any of the figures in this appendix.

Class diagrams can also show relationships between classes. A class that is a

subclass of another class is connected to it by an arrow with a solid line for its shaft

and with a triangular hollow arrowhead. The arrow points from the subclass to the

superclass. In UML, such a relationship is called a generalization. For example, in

Figure A1.2, the Thoroughbred and QuarterHorse classes are shown to be sub-

classes of the Horse abstract class. An arrow with a dashed line for the arrow shaft

indicates implementation of an interface. In UML, such a relationship is called a

realization. For example, in Figure A1.2, the Horse class implements or realizes the

OwnedObject interface.

APPENDIX 1 AN INTRODUCTION TO UML 843

Horse
-name:String

+getName():String

+getOwner().Person

<< interface >>
OwnedObject

Thoroughbred QuarterHorse

Person
* owner

Date
uses

FIGURE A1.2

A class
diagram
regarding
horses

pre75977_Apx1.qxd 11/27/08 6:41 PM Page 843

An association between two classes means that there is a structural relationship

between them. Associations are represented by solid lines. An association has many

optional parts. It can be labeled, as can each of its ends, to indicate the role of each

class in the association. For example, in Figure A1.2, there is an association between

OwnedObject and Person in which the Person plays the role of owner. Arrows on

either or both ends of an association line indicate navigability. Also, each end of the

association line can have a multiplicity value displayed. Navigability and multiplicity

are explained in more detail later in this section. An association might also connect

a class with itself, using a loop. Such an association indicates the connection of an

object of the class with other objects of the same class.

An association with an arrow at one end indicates one-way navigability. The

arrow means that from one class you can easily access the second associated class

to which the association points, but from the second class, you cannot necessarily

easily access the first class. Another way to think about this is that the first class is

aware of the second class, but the second class object is not necessarily directly

aware of the first class. An association with no arrows usually indicates a two-way

association, which is what was intended in Figure A1.2, but it could also just mean

that the navigability is not important and so was left off.

It should be noted that an attribute of a class is very much the same thing as an

association of the class with the class type of the attribute. That is, to indicate that a

class has a property called “name” of type String, one could display that property

as an attribute, as in the Horse class in Figure A1.2. Alternatively, one could create

a one-way association from the Horse class to the String class with the role of the

String class being “name.” The attribute approach is better for primitive data types,

whereas the association approach is often better if the property’s class plays a major

role in the design, in which case it is valuable to have a class box for that type.

A dependency relationship represents another connection between classes and

is indicated by a dashed line (with optional arrows at the ends and with optional

labels). One class depends on another if changes to the second class might require

changes to the first class. An association from one class to another automatically

indicates a dependency. No dashed line is needed between classes if there is already

an association between them. However, for a transient relationship (i.e., a class that

does not maintain any long-term connection to another class but does use that class

occasionally) we should draw a dashed line from the first class to the second. For

example, in Figure A1.2, the Thoroughbred class uses the Date class whenever its

getCurrentAge() method is invoked, and so the dependency is labeled “uses.”

The multiplicity of one end of an association means the number of objects of that

class associated with the other class. A multiplicity is specified by a nonnegative

integer or by a range of integers. A multiplicity specified by “0..1” means that there are

0 or 1 objects on that end of the association. For example, each person in the world

has either a Social Security number or no such number (especially if they are not U.S.

844 APPENDIX 1 AN INTRODUCTION TO UML

pre75977_Apx1.qxd 11/27/08 6:41 PM Page 844

citizens), and so a multiplicity of 0..1 could be used in an association between a

Person class and a SocialSecurityNumber class in a class diagram. A multiplicity

specified by “1..*” means one or more, and a multiplicity specified by “0..*” or just “*“

means zero or more. An * was used as the multiplicity on the OwnedObject end of

the association with class Person in Figure A1.2 because a Person can own zero or

more objects.

If one end of an association has multiplicity greater than 1, then the objects of the

class referred to at that end of the association are probably stored in a collection,

such as a set or ordered list. One could also include that collection class itself in the

UML diagram, but such a class is usually left out and is implicitly assumed to be there

due to the multiplicity of the association.

An aggregation is a special kind of association indicated by a hollow diamond on

one end of the icon. It indicates a “whole/part” relationship, in that the class to which

the arrow points is considered a “part” of the class at the diamond end of the asso-

ciation. A composition is an aggregation indicating strong ownership of the parts. In

a composition, the parts live and die with the owner because they have no role in the

software system independent of the owner. See Figure A1.3 for examples of aggre-

gation and composition.

A College has an aggregation of Building objects, which represent the buildings

making up the campus. The college also has a collection of courses. If the college

were to fold, the buildings would still exist (assuming the college wasn’t physically

destroyed) and could be used for other things, but a Course object has no use out-

side of the college at which it is being offered. If the college were to cease to exist as

a business entity, the Course object would no longer be useful and so it would also

cease to exist.

Another common element of a class diagram is a note, which is represented by

a box with a dog-eared corner and is connected to other icons by a dashed line. It

can have arbitrary content (text and graphics) and is similar to comments in pro-

gramming languages. It might contain comments about the role of a class or con-

straints that all objects of that class must satisfy. If the contents are a constraint,

braces surround the contents. Note the constraint attached to the Course class in

Figure A1.3.

APPENDIX 1 AN INTRODUCTION TO UML 845

 {must take place in a Building}

CourseCollege

Building

*

*

FIGURE A1.3

The relation-
ship between
Colleges,
Courses, and
Buildings

pre75977_Apx1.qxd 11/27/08 6:41 PM Page 845

DEPLOYMENT DIAGRAMS

A UML deployment diagram focuses on the structure of a software system and is

useful for showing the physical distribution of a software system among hardware

platforms and execution environments. Suppose, for example, you are developing a

Web-based graphics-rendering package. Users of your package will use their Web

browser to go to your website and enter rendering information. Your website would

render a graphical image according to the user’s specification and send it back to the

user. Because graphics rendering can be computationally expensive, you decide to

move the rendering itself off the Web server and onto a separate platform. Therefore,

there will be three hardware devices involved in your system: the Web client (the

users’ computer running a browser), the computer hosting the Web server, and the

computer hosting the rendering engine.

Figure A1.4 shows the deployment diagram for such a package. In such a diagram,

hardware components are drawn in boxes labeled with “«device»”. Communication

paths between hardware components are drawn with lines with optional labels. In

Figure A1.4, the paths are labeled with the communication protocol and the type of

network used to connect the devices.

Each node in a deployment diagram can also be annotated with details about

the device. For example, in Figure A1.4, the browser client is depicted to show that

it contains an artifact consisting of the Web browser software. An artifact is typically

a file containing software running on a device. You can also specify tagged values,

as is shown in Figure A1.4 in the Web server node. These values define the vendor

of the Web server and the operating system used by the server.

Deployment diagrams can also display execution environment nodes, which are

drawn as boxes containing the label “«execution environment»”. These nodes rep-

resent systems, such as operating systems, that can host other software.

846 APPENDIX 1 AN INTRODUCTION TO UML

{web server = apache}
{OS = linux}

<<device>>
Web Server

http/LAN

http/Internet

<<device>>
Render engine

<<artifact>>
web brower

<<device>>
Browser Client

FIGURE A1.4

A deployment
diagram

pre75977_Apx1.qxd 11/27/08 6:41 PM Page 846

USE-CASE DIAGRAMS

Use cases (Chapters 5 and 6) and the UML use-case diagram help you determine the

functionality and features of the software from the user’s perspective. To give you a

feeling for how use cases and use-case diagrams work, I’ll create some for a soft-

ware application for managing digital music files, similar to Apple’s iTunes software.

Some of the things the software might do include:

• Download an MP3 music file and store it in the application’s library.

• Capture streaming music and store it in the application’s library.

• Manage the application’s library (e.g., delete songs or organize them in

playlists).

• Burn a list of the songs in the library onto a CD.

• Load a list of the songs in the library onto an iPod or MP3 player.

• Convert a song from MP3 format to AAC format and vice versa.

This is not an exhaustive list, but it is sufficient to understand the role of use cases

and use-case diagrams.

A use case describes how a user interacts with the system by defining the steps

required to accomplish a specific goal (e.g., burning a list of songs onto a CD). Vari-

ations in the sequence of steps describe various scenarios (e.g., what if all the songs

in the list don’t fit on one CD?).

A UML use-case diagram is an overview of all the use cases and how they are

related. It provides a big picture of the functionality of the system. A use-case

diagram for the digital music application is shown in Figure A1.5.

In this diagram, the stick figure represents an actor (Chapter 5) that is associ-

ated with one category of user (or other interaction element). Complex systems

typically have more than one actor. For example, a vending machine application

might have three actors representing customers, repair personnel, and vendors

who refill the machine.

In the use-case diagram, the use cases are displayed as ovals. The actors are con-

nected by lines to the use cases that they carry out. Note that none of the details of

the use cases are included in the diagram and instead need to be stored separately.

Note also that the use cases are placed in a rectangle but the actors are not. This rec-

tangle is a visual reminder of the system boundaries and that the actors are outside

the system.

Some use cases in a system might be related to each other. For example, there are

similar steps in burning a list of songs to a CD and in loading a list of songs to an

iPod. In both cases, the user first creates an empty list and then adds songs from the

library to the list. To avoid duplication in use cases, it is usually better to create a

new use case representing the duplicated activity, and then let the other uses cases

include this new use case as one of their steps. Such inclusion is indicated in

APPENDIX 1 AN INTRODUCTION TO UML 847

pre75977_Apx1.qxd 11/27/08 6:42 PM Page 847

848 APPENDIX 1 AN INTRODUCTION TO UML

User

download music file & save to library

capture streaming music & save to library

burn a list of songs to CD

load a list of songs to iPod

convert music file to new format

organize the library

FIGURE A1.5

A use-case
diagram for
the music
system

use-case diagrams, as in Figure A1.6, by means of a dashed arrow labeled «include»

connecting a use case with an included use case.

A use-case diagram, because it displays all use cases, is a helpful aid for ensuring

that you have covered all the functionality of the system. In the digital music organ-

izer, you would surely want more use cases, such as a use case for playing a song in

the library. But keep in mind that the most valuable contribution of use cases to the

software development process is the textual description of each use case, not the

overall use-case diagram. [Fow04b]. It is through the descriptions that you are able

to form a clear understanding of the goals of the system you are developing.

SEQUENCE DIAGRAMS

In contrast to class diagrams and deployment diagrams, which show the static struc-

ture of a software component, a sequence diagram is used to show the dynamic com-

munications between objects during execution of a task. It shows the temporal order

in which messages are sent between the objects to accomplish that task. One might

use a sequence diagram to show the interactions in one use case or in one scenario

of a software system.

pre75977_Apx1.qxd 11/27/08 6:42 PM Page 848

In Figure A1.7, you see a sequence diagram for a drawing program. The diagram

shows the steps involved in highlighting a figure in a drawing when it has been

clicked. Each box in the row at the top of the diagram usually corresponds to an

object, although it is possible to have the boxes model other things, such as classes.

If the box represents an object (as is the case in all our examples), then inside the

box you can optionally state the type of the object preceded by the colon. You can

also precede the colon and type by a name for the object, as shown in the third box

in Figure A1.7. Below each box there is a dashed line called the lifeline of the object.

The vertical axis in the sequence diagram corresponds to time, with time increasing

as you move downward.

A sequence diagram shows method calls using horizontal arrows from the caller

to the callee, labeled with the method name and optionally including its parameters,

their types, and the return type. For example, in Figure A1.7, the MouseListener

calls the Drawing’s getFigureAt() method. When an object is executing a method

(that is, when it has an activation frame on the stack), you can optionally display a

white bar, called an activation bar, down the object’s lifeline. In Figure A1.7, activa-

tion bars are drawn for all method calls. The diagram can also optionally show the

return from a method call with a dashed arrow and an optional label. In Figure A1.7,

APPENDIX 1 AN INTRODUCTION TO UML 849

User

convert music file to new format

download music file & save to library

capture streaming music & save to library

organize the library

<< include >>

<< include >>

<< include >> edit song list

burn a list of songs to CD

load a list of songs to iPod

FIGURE A1.6

A use-case
diagram with
included use
cases

pre75977_Apx1.qxd 11/27/08 6:42 PM Page 849

the getFigureAt() method call’s return is shown labeled with the name of the object

that was returned. A common practice, as we have done in Figure A1.7, is to leave

off the return arrow when a void method has been called, since it clutters up the di-

agram while providing little information of importance. A black circle with an arrow

coming from it indicates a found message whose source is unknown or irrelevant.

You should now be able to understand the task that Figure A1.7 is displaying. An

unknown source calls the mouseClicked() method of a MouseListener, passing in

the point where the click occurred as the argument. The MouseListener in turn

calls the getFigureAt() method of a Drawing, which returns a Figure. The

MouseListener then calls the highlight method of Figure, passing in a Graphics

object as an argument. In response, Figure calls three methods of the Graphics

object to draw the figure in red.

The diagram in Figure A1.7 is very straightforward and contains no conditionals

or loops. If logical control structures are required, it is probably best to draw a sepa-

rate sequence diagram for each case. That is, if the message flow can take two dif-

ferent paths depending on a condition, then draw two separate sequence diagrams,

one for each possibility.

If you insist on including loops, conditionals, and other control structures in a se-

quence diagram, you can use interaction frames, which are rectangles that surround

parts of the diagram and that are labeled with the type of control structures they rep-

resent. Figure A1.8 illustrates this, showing the process involved in highlighting all

figures inside a given rectangle. The MouseListener is sent the rectDragged message.

The MouseListener then tells the drawing to highlight all figures in the rectangle

by called the method highlightFigures(), passing the rectangle as the argument.

The method loops through all Figure objects in the Drawing object and, if the

850 APPENDIX 1 AN INTRODUCTION TO UML

:MouseListener :Drawing :GraphicsaFigure:Figure

.setColor(red)
.highlight(graphics)

.getFigureAt(point)
.mouseClicked(point)

 aFigure

.drawRect (x,y,w,h)

.drawString(s)

FIGURE A1.7

A sample
sequence
diagram

pre75977_Apx1.qxd 11/27/08 6:42 PM Page 850

Figure intersects the rectangle, the Figure is asked to highlight itself. The phrases

in square brackets are called guards, which are Boolean conditions that must be true

if the action inside the interaction frame is to continue.

There are many other special features that can be included in a sequence

diagram. For example:

1. You can distinguish between synchronous and asynchronous messages.

Synchronous messages are shown with solid arrowheads while asynchro-

nous messages are shown with stick arrowheads.

2. You can show an object sending itself a message with an arrow going out from

the object, turning downward, and then pointing back to the same object.

3. You can show object creation by drawing an arrow appropriately labeled (for

example, with a «create» label) to an object’s box. In this case, the box will

appear lower in the diagram than the boxes corresponding to objects already

in existence when the action begins.

4. You can show object destruction by a big X at the end of the object’s lifeline.

Other objects can destroy an object, in which case an arrow points from the

other object to the X. An X is also useful for indicating that an object is no

longer usable and so is ready for garbage collection.

The last three features are all shown in the sequence diagram in Figure A1.9.

COMMUNICATION DIAGRAMS

The UML communication diagram (called a “collaboration diagram” in UML 1.X) pro-

vides another indication of the temporal order of the communications but empha-

sizes the relationships among the objects and classes instead of the temporal order.

APPENDIX 1 AN INTRODUCTION TO UML 851

:MouseListener :Figure:Drawing

.highlightFiguresIn(rect)
.rectDragged(rect)

.highlight(g)[figure intersects
rect]

[for all Figures in the Drawing]
opt

loop ()

FIGURE A1.8

A sequence
diagram with
two interaction
frames

pre75977_Apx1.qxd 11/27/08 6:42 PM Page 851

A communication diagram, illustrated in Figure A1.10, displays the same actions

shown in the sequence diagram in Figure A1.7.

In a communication diagram the interacting objects are represented by rectan-

gles. Associations between objects are represented by lines connecting the rectan-

gles. There is typically an incoming arrow to one object in the diagram that starts

the sequence of message passing. That arrow is labeled with a number and a mes-

sage name. If the incoming message is labeled with the number 1 and if it causes

the receiving object to invoke other messages on other objects, then those messages

are represented by arrows from the sender to the receiver along an association line

and are given numbers 1.1, 1.2, and so forth, in the order they are called. If those

852 APPENDIX 1 AN INTRODUCTION TO UML

1.1: getFigureAt(point)

1: mouseClicked(point)

1.2: highlight(graphics)

1.2.2: drawRect(x,y,w,h)

1.2.1: setColor(red)

1.2.3: drawString(s)

MouseListener

Graphics

FigureDrawing

FIGURE A1.10

A UML
communica-
tion diagram

:Thing1

:Thing2
.Thing2()

.destroy()

.foo()

x

<< create >>

FIGURE A1.9

Creation,
destruction,
and loops in
sequence
diagrams

pre75977_Apx1.qxd 12/3/08 2:02 PM Page 852

messages in turn invoke other messages, another decimal point and number are

added to the number labeling these messages, to indicate further nesting of the

message passing.

In Figure A1.10, you see that the mouseClicked message invokes the methods

getFigureAt() and then highlight(). The highlight() message invokes three other mes-

sages: setColor(), drawRect(), and drawstring(). The numbering in each label shows the

nesting as well as the sequential nature of each message.

There are many optional features that can be added to the arrow labels. For

example, you can precede the number with a letter. An incoming arrow could be

labeled A1: mouseClicked(point). indicating an execution thread, A. If other messages

are executed in other threads, their label would be preceded by a different letter. For

example, if the mouseClicked() method is executed in thread A but it creates a new

thread B and invokes highlight() in that thread, then the arrow from MouseListener

to Figure would be labeled 1.B2: highlight(graphics).

If you are interested in showing the relationships among the objects in addition

to the messages being sent between them, the communication diagram is probably

a better option than the sequence diagram. If you are more interested in the tempo-

ral order of the message passing, then a sequence diagram is probably better.

ACTIVITY DIAGRAMS

A UML activity diagram depicts the dynamic behavior of a system or part of a system

through the flow of control between actions that the system performs. It is similar to

a flowchart except that an activity diagram can show concurrent flows.

The main component of an activity diagram is an action node, represented by a

rounded rectangle, which corresponds to a task performed by the software system.

Arrows from one action node to another indicate the flow of control. That is, an

arrow between two action nodes means that after the first action is complete the

second action begins. A solid black dot forms the initial node that indicates the start-

ing point of the activity. A black dot surrounded by a black circle is the final node

indicating the end of the activity.

A fork represents the separation of activities into two or more concurrent activi-

ties. It is drawn as a horizontal black bar with one arrow pointing to it and two or

more arrows pointing out from it. Each outgoing arrow represents a flow of control

that can be executed concurrently with the flows corresponding to the other outgo-

ing arrows. These concurrent activities can be performed on a computer using dif-

ferent threads or even using different computers.

Figure A1.11 shows a sample activity diagram involving baking a cake. The first

step is finding the recipe. Once the recipe has been found, the dry ingredients and

wet ingredients can be measured and mixed and the oven can be preheated. The

mixing of the dry ingredients can be done in parallel with the mixing of the wet

ingredients and the preheating of the oven.

APPENDIX 1 AN INTRODUCTION TO UML 853

pre75977_Apx1.qxd 11/27/08 6:42 PM Page 853

A join is a way of synchronizing concurrent flows of control. It is represented by

a horizontal black bar with two or more incoming arrows and one outgoing arrow.

The flow of control represented by the outgoing arrow cannot begin execution until

all flows represented by incoming arrows have been completed. In Figure A1.11, we

have a join before the action of mixing together the wet and dry ingredients. This join

indicates that all dry ingredients must be mixed and all wet ingredients must be

mixed before the two mixtures can be combined. The second join in the figure indi-

cates that, before the baking of the cake can begin, all ingredients must be mixed

together and the oven must be at the right temperature.

A decision node corresponds to a branch in the flow of control based on a condi-

tion. Such a node is displayed as a white triangle with an incoming arrow and two

854 APPENDIX 1 AN INTRODUCTION TO UML

Find recipe

Mix dry
ingredients

Mix wet
ingredients

Heat oven

Bake

Remove from oven

Mix together

(not done)
(done)

FIGURE A1.11

A UML activity
diagram
showing how
to bake a cake

pre75977_Apx1.qxd 11/27/08 6:42 PM Page 854

or more outgoing arrows. Each outgoing arrow is labeled with a guard (a condition

inside square brackets). The flow of control follows the outgoing arrow whose guard

is true. It is advisable to make sure that the conditions cover all possibilities so that

exactly one of them is true every time a decision node is reached. Figure A1.11 shows

a decision node following the baking of the cake. If the cake is done, then it is

removed from the oven. Otherwise, it is baked for a while longer.

One of the things the activity diagram in Figure A1.11 does not tell you is who or

what does each of the actions. Often, the exact division of labor does not matter. But

if you do want to indicate how the actions are divided among the participants, you can

decorate the activity diagram with swimlanes, as shown in Figure A1.12. Swimlanes,

as the name implies, are formed by dividing the diagram into strips or “lanes,” each of

which corresponds to one of the participants. All actions in one lane are done by the

corresponding participant. In Figure A1.12, Evan is responsible for mixing the dry

APPENDIX 1 AN INTRODUCTION TO UML 855

Find recipe

Mix dry
ingredients

Mix wet
ingredients

Heat oven

Bake

Mix together

(not done)

Evan Mary Helen

(done) Remove from oven

FIGURE A1.12

The cake-
baking
activity
diagram with
swimlanes
added

pre75977_Apx1.qxd 11/27/08 6:42 PM Page 855

ingredients and then mixing the dry and wet ingredients together, Helen is responsi-

ble for heating the oven and taking the cake out, and Mary is responsible for every-

thing else.

STATE DIAGRAMS

The behavior of an object at a particular point in time often depends on the state of

the object, that is, the values of its variables at that time. As a trivial example, con-

sider an object with a Boolean instance variable. When asked to perform an opera-

tion, the object might do one thing if that variable is true and do something else if it

is false.

A UML state diagram models an object’s states, the actions that are performed

depending on those states, and the transitions between the states of the object.

As an example, consider the state diagram for a part of a Java compiler. The input

to the compiler is a text file, which can be thought of as a long string of characters.

The compiler reads characters one at a time and from them determines the structure

of the program. One small part of this process of reading the characters involves

ignoring “white-space” characters (e.g., the space, tab, newline, and return charac-

ters) and characters inside a comment.

Suppose that the compiler delegates to a WhiteSpaceAndCommentEliminator

the job of advancing over white-space characters and characters in comments. That

is, this object’s job is to read input characters until all white-space and comment char-

acters have been read, at which point it returns control to the compiler to read and

process non-white-space and noncomment characters. Think about how the

WhiteSpaceAndCommentEliminator object reads in characters and determines

whether the next character is white space or part of a comment. The object can check

for white space by testing the next character against “ ”, “\t”, “\n”, and “\r”. But how

does it determine whether the next character is part of a comment? For example,

when it sees a“/”for the first time, it doesn’t yet know whether that character repre-

sents a division operator, part of the /= operator, or the beginning of a line or block

comment. To make this determination, WhiteSpaceAndCommentEliminator

needs to make a note of the fact that it saw a “/” and then move on to the next

character. If the character following the “/” is another “/” or an “*”, then

WhiteSpaceAndCommentEliminator knows that it is now reading a comment and

can advance to the end of the comment without processing or saving any characters.

If the character following the first “/” is anything other than a “/” or an “*”, then

WhiteSpaceAndCommentEliminator knows that the “/” represents the division

operator or part of the /= operator and so it stops advancing over characters.

In summary, as WhiteSpaceAndCommentEliminator reads in characters, it

needs to keep track of several things, including whether the current character is white

space, whether the previous character it read was a “/”, whether it is currently read-

ing characters in a comment, whether it has reached the end of comment, and so forth.

856 APPENDIX 1 AN INTRODUCTION TO UML

pre75977_Apx1.qxd 11/27/08 6:42 PM Page 856

These all correspond to different states of the WhiteSpaceAndCommentEliminator

object. In each of these states, WhiteSpaceAndCommentEliminator behaves dif-

ferently with regard to the next character read in.

To help you visualize all the states of this object and how it changes state, you can

use a UML state diagram as shown in Figure A1.13. A state diagram displays states us-

ing rounded rectangles, each of which has a name in its upper half. There is also a black

circle called the “initial pseudostate,” which isn’t really a state and instead just points

to the initial state. In Figure A1.13, the start state is the initial state. Arrows from one

state to another state indicate transitions or changes in the state of the object. Each

transition is labeled with a trigger event, a slash (/), and an activity. All parts of the

transition labels are optional in state diagrams. If the object is in one state and the trig-

ger event for one of its transitions occurs, then that transition’s activity is performed

and the object takes on the new state indicated by the transition. For example, in Fig-

ure A1.13, if the WhiteSpaceAndCommentEliminator object is in the start state and

the next character is “/”, then WhiteSpaceAndCommentEliminator advances past

that character and changes to the saw ‘/’ state. If the character after the “/” is another

“/”, then the object advances to the line comment state and stays there until it reads

APPENDIX 1 AN INTRODUCTION TO UML 857

next char = eoln/advance
next char != eoln/advance

next char != ‘*’/advance

next char = ‘/’/advance

next char = ‘/’/advance

next char = ‘*’/advance next char = ‘*’/advance

next char = ‘*’/advance

next char = ‘/’/advance

next char = anything else

next char = ‘ ’,’\t‘,’\r’,’\n’/advance

end of whitespace

next char != ‘/’ or ‘*’/pushback’/’

saw’*’

block comment

start

line comment

saw ‘/’

FIGURE A1.13 A state diagram for advancing past white space and comments in Java

pre75977_Apx1.qxd 11/27/08 6:42 PM Page 857

an end-of-line character. If instead the next character after the “/” is a “*”, then the

object advances to the block comment state and stays there until it sees another “*”

followed by a “/”, which indicates the end of the block comment. Study the diagram

to make sure you understand it. Note that, after advancing past white space or a

comment, WhiteSpaceAndCommentEliminator goes back to the start state and

starts over. That behavior is necessary since there might be several successive com-

ments or white-space characters before any other characters in the Java source code.

An object may transition to a final state, indicated by a black circle with a white

circle around it, which indicates there are no more transitions. In Figure A1.13, the

WhiteSpaceAndCommentEliminator object is finished when the next character

is not white space or part of a comment. Note that all transitions except the two tran-

sitions leading to the final state have activities consisting of advancing to the next

character. The two transitions to the final state do not advance over the next char-

acter because the next character is part of a word or symbol of interest to the com-

piler. Note that if the object is in the saw ‘/’ state but the next character is not “/” or

“*”, then the “/” is a division operator or part of the /= operator and so we don’t want

to advance. In fact, we want to back up one character to make the “/” into the next

character, so that the “/” can be used by the compiler. In Figure A1.13, this activity

of backing up is labeled as pushback ‘/’.

A state diagram will help you to uncover missed or unexpected situations. That

is, with a state diagram, it is relatively easy to ensure that all possible trigger events

for all possible states have been accounted for. For example, in Figure A1.13, you can

easily verify that every state has included transitions for all possible characters.

UML state diagrams can contain many other features not included in Figure A1.13.

For example, when an object is in a state, it usually does nothing but sit and wait for

a trigger event to occur. However, there is a special kind of state, called an activity

state, in which the object performs some activity, called a do-activity, while it is in that

state. To indicate that a state is an activity state in the state diagram, you include in

the bottom half of the state’s rounded rectangle the phrase “do/” followed by the

activity that is to be done while in that state. The do-activity may finish before any

state transitions occur, after which the activity state behaves like a normal waiting

state. If a transition out of the activity state occurs before the do-activity is finished,

then the do-activity is interrupted.

Because a trigger event is optional when a transition occurs, it is possible that no

trigger event may be listed as part of a transition’s label. In such cases for normal

waiting states, the object will immediately transition from that state to the new state.

For activity states, such a transition is taken as soon as the do-activity finishes.

Figure A1.14 illustrates this situation using the states for a business telephone.

When a caller is placed on hold, the call goes into the on hold with music state

(soothing music is played for 10 seconds). After 10 seconds, the do-activity of

the state is completed and the state behaves like a normal nonactivity state. If the

caller pushes the # key when the call is in the on hold with music state, the call

858 APPENDIX 1 AN INTRODUCTION TO UML

pre75977_Apx1.qxd 11/27/08 6:42 PM Page 858

transitions to the canceled state and then transitions immediately to the dial tone

state. If the # key is pushed before the 10 seconds of soothing music has completed,

the do-activity is interrupted and the music stops immediately.

OBJECT CONSTRAINT LANGUAGE—AN OVERVIEW

The wide variety of diagrams available as part of UML provide you with a rich set of

representational forms for the design model. However, graphical representations

are often not enough. You may need a mechanism for explicitly and formally repre-

senting information that constrains some element of the design model. It is possible,

of course, to describe constraints in a natural language such as English, but this

approach invariably leads to inconsistency and ambiguity. For this reason, a more

formal language—one that draws on set theory and formal specification languages

(see Chapter 21) but has the somewhat less mathematical syntax of a programming

language—seems appropriate.

The Object Constraint Language (OCL) complements UML by allowing you to use

a formal grammar and syntax to construct unambiguous statements about various

design model elements (e.g., classes and objects, events, messages, interfaces). The

simplest OCL statements are constructed in four parts: (1) a context that defines the

limited situation in which the statement is valid, (2) a property that represents some

characteristics of the context (e.g., if the context is a class, a property might be an

attribute), (3) an operation (e.g., arithmetic, set-oriented) that manipulates or quali-

fies a property, and (4) keywords (e.g., if, then, else, and, or, not, implies) that

are used to specify conditional expressions.

As a simple example of an OCL expression, consider the printing system dis-

cussed in Chapter 10. The guard condition placed on the jobCostAccepted event that

APPENDIX 1 AN INTRODUCTION TO UML 859

on hold with music

do/play soothing music for 10 seconds

put on hold

canceled conversing

key pushed taken off hold

hang up

dial tone

FIGURE A1.14

A state
diagram with
an activity
state and a
triggerless
transition

pre75977_Apx1.qxd 11/27/08 6:42 PM Page 859

causes a transition between the states computingJobCost and formingJob within the

statechart diagram for the PrintJob object (Figure 10.9). In the diagram (Figure 10.9),

the guard condition is expressed in natural language and implies that authorization

can only occur if the customer is authorized to approve the cost of the job. In OCL,

the expression may take the form:

customer

self.authorizationAuthority � ‘yes’

where a Boolean attribute, authorizationAuthority, of the class (actually a specific

instance of the class) named Customer must be set to “yes” for the guard condition

to be satisfied.

As the design model is created, there are often instances in which pre- or post-

conditions must be satisfied prior to completion of some action specified by the

design. OCL provides a powerful tool for specifying pre- and postconditions in a

formal manner. As an example, consider an extension to the print shop system

(discussed as an example in Chapter 10) in which the customer provides an upper

cost bound for the print job and a “drop-dead” delivery date at the same time as other

print job characteristics are specified. If cost and delivery estimates exceed these

bounds, the job is not submitted and the customer must be notified. In OCL, a set of

pre- and postconditions may be specified in the following manner:

context PrintJob::validate(upperCostBound : Integer, custDeliveryReq :

Integer)

pre: upperCostBound > 0

and custDeliveryReq > 0

and self.jobAuthorization � ‘no’

post: if self.totalJobCost <� upperCostBound

and self.deliveryDate <� custDeliveryReq

then

self.jobAuthorization = ‘yes’

endif

This OCL statement defines an invariant (inv)—conditions that must exist prior to

(pre) and after (post) some behavior. Initially, a precondition establishes that bound-

ing cost and delivery date must be specified by the customer, and authorization must

be set to “no.” After costs and delivery are determined, the postcondition specified is

applied. It should also be noted that the expression:

self.jobAuthorization = ‘yes’

is not assigning the value “yes” but is declaring that the jobAuthorization must have

been set to “yes” by the time the operation finishes. A complete description of OCL

is beyond the scope of this appendix. The complete OCL specification can be

obtained at www.omg.org/technology/documents/formal/ocl.htm.

860 APPENDIX 1 AN INTRODUCTION TO UML

pre75977_Apx1.qxd 12/1/08 3:28 PM Page 860

http://www.omg.org/technology/documents/formal/ocl.htm

FURTHER READINGS AND INFORMATION SOURCES

Dozens of books discuss UML. Those that address the latest version include: Miles and Hamilton
(Learning UML 2.0, O’Reilly Media, Inc., 2006); Booch, Rumbaugh, and Jacobson (Unified Model-
ing Language User Guide, 2d ed., Addison-Wesley, 2005), Ambler (The Elements of UML 2.0 Style,
Cambridge University Press, 2005), and Pilone and Pitman (UML 2.0 in a Nutshell, O’Reilly Media,
Inc., 2005).

A wide variety of information sources on the use of UML in the software engineering
modeling is available on the Internet. An up-to-date list of World Wide Web references can be
found under “analysis” and “design” at the SEPA website: www.mhhe.com/engcs/compsci/
pressman/professional/olc/ser.htm.

APPENDIX 1 AN INTRODUCTION TO UML 861

pre75977_Apx1.qxd 11/27/08 6:42 PM Page 861

http://www.mhhe.com/engcs/compsci/

pre75977_Apx1.qxd 11/27/08 6:42 PM Page 862

What is an object-oriented (OO) viewpoint? Why is a method considered
to be object oriented? What is an object? As OO concepts gained wide-
spread adherents during the 1980s and 1990s, there were many differ-

ent opinions about the correct answers to these questions, but today a coherent
view of OO concepts has emerged. This appendix is designed to provide you with
a brief overview of this important topic and to introduce basic concepts and
terminology.

To understand the object-oriented point of view, consider an example of a real-
world object—the thing you are sitting in right now—a chair. Chair is a subclass
of a much larger class that we can call PieceOfFurniture. Individual chairs are
members (usually called instances) of the class Chair. A set of generic attributes
can be associated with every object in the class PieceOfFurniture. For example,
all furniture has a cost, dimensions, weight, location, and color, among many pos-
sible attributes. These apply whether we are talking about a table or a chair, a sofa
or an armoire. Because Chair is a member of PieceOfFurniture, Chair inherits
all attributes defined for the class.

We have attempted an anecdotal definition of a class by describing its attrib-
utes, but something is missing. Every object in the class PieceOfFurniture can
be manipulated in a variety of ways. It can be bought and sold, physically modi-
fied (e.g., you can saw off a leg or paint the object purple), or moved from one
place to another. Each of these operations (other terms are services or methods)
will modify one or more attributes of the object. For example, if the attribute
location is a composite data item defined as

location � building � floor � room

then an operation named move() would modify one or more of the data items
(building, floor, or room) that form the attribute location. To do this, move() must have
“knowledge” of these data items. The operation move() could be used for a chair
or a table, as long as both are instances of the class PieceOfFurniture. Valid
operations for the class PieceOfFurniture—buy(), sell(), weigh()—are specified as
part of the class definition and are inherited by all instances of the class.

The class Chair (and all objects in general) encapsulates data (the attribute
values that define the chair), operations (the actions that are applied to change
the attributes of chair), other objects, constants (set values), and other related
information. Encapsulation means that all of this information is packaged under
one name and can be reused as one specification or program component.

863

A P P E N D I X

2OBJECT-ORIENTED
CONCEPTS

K E Y
C O N C E P T S

attributes865
classes 864

boundary 866
characteristics . .869
controller 866
definition 863
design 868
entity 866

encapsulation . .863
inheritance 866
messages 867
methods865
operations 865
polymorphism . .868
services 865
subclass 865
superclass 865

pre75977_Apx2.qxd 11/27/08 6:45 PM Page 863

Now that I have introduced a few basic concepts, a more formal definition of

object oriented will prove more meaningful. Coad and Yourdon [Coa91] define the

term this way:

Object oriented � objects � classification � inheritance � communication

Three of these concepts have already been introduced. Communication is discussed

later in this appendix.

CLASSES AND OBJECTS

A class is an OO concept that encapsulates the data and procedural abstractions

required to describe the content and behavior of some real-world entity. Data

abstractions that describe the class are enclosed by a “wall” of procedural abstrac-

tions [Tay90] (represented in Figure A2.1) that are capable of manipulating the data

in some way. In a well-designed class, the only way to reach the attributes (and

operate on them) is to go through one of the methods that form the “wall” illustrated

in the figure. Therefore, the class encapsulates data (inside the wall) and the pro-

cessing that manipulates the data (the methods that make up the wall). This achieves

information hiding (Chapter 8) and reduces the impact of side effects associated with

change. Since the methods tend to manipulate a limited number of attributes, their

cohesion is improved, and because communication occurs only through the meth-

ods that make up the “wall,” the class tends to be less strongly coupled from other

elements of a system.1

864 APPENDIX 2 OBJECT-ORIENTED CONCEPTS

Attributes

Method1()

Method3() Method4()

Methodn()Method2()

FIGURE A2.1

A schematic
representation
of a class

1 It should be noted, however, that coupling can become a serious problem in OO systems. It arises
when classes from various parts of the system are used as the data types of attributes, and argu-
ments to methods. Even though access to the objects may only be through procedure calls, this
does not mean that coupling is necessarily low, just lower than if direct access to the internals of
objects were allowed.

pre75977_Apx2.qxd 11/27/08 6:45 PM Page 864

Stated another way, a class is a generalized description (e.g., a template or blue-

print) that describes a collection of similar objects. By definition, objects are in-

stances of a specific class and inherit its attributes and the operations that are

available to manipulate the attributes. A superclass (often called a base class) is a gen-

eralization of a set of classes that are related to it. A subclass is a specialization of

the superclass. For example, the superclass MotorVehicle is a generalization of the

classes Truck, SUV, Automobile, and Van. The subclass Automobile inherits all

attributes of MotorVehicle, but in addition, incorporates additional attributes that

are specific only to automobiles.

These definitions imply the existence of a class hierarchy in which the attributes

and operations of the superclass are inherited by subclasses that may each add

additional “private” attributes and methods. For example, the operations sitOn() and

turn() might be private to the Chair subclass.

ATTRIBUTES

You have learned that attributes are attached to classes and that they describe the

class in some way. An attribute can take on a value defined by an enumerated

domain. In most cases, a domain is simply a set of specific values. For example,

assume that a class Automobile has an attribute color. The domain of values for color

is {white, black, silver, gray, blue, red, yellow, green}. In more complex situa-

tions, the domain can be a class. Continuing the example, the class Automobile also

has an attribute powerTrain that is itself a class. The class PowerTrain would contain

attributes that describe the specific engine and transmission for the car.

The features (values of the domain) can be augmented by assigning a default value

(feature) to an attribute. For example, the color attribute defaults to white. It may also

be useful to associate a probability with a particular feature by assigning {value,

probability} pairs. Consider the color attribute for automobile. In some applications

(e.g., manufacturing planning) it might be necessary to assign a probability to each

of the colors (e.g., white and black are highly probable as automobile colors).

OPERATIONS, METHODS, AND SERVICES

An object encapsulates data (represented as a collection of attributes) and the algo-

rithms that process the data. These algorithms are called operations, methods, or

services2 and can be viewed as processing components.

Each of the operations that is encapsulated by an object provides a representation

of one of the behaviors of the object. For example, the operation GetColor() for the

object Automobile will extract the color stored in the color attribute. The implication

of the existence of this operation is that the class Automobile has been designed to

APPENDIX 2 OBJECT-ORIENTED CONCEPTS 865

2 In the context of this discussion, the term operations is used, but the terms methods and services are
equally popular.

pre75977_Apx2.qxd 11/27/08 6:45 PM Page 865

receive a stimulus (we call the stimulus a message) that requests the color of the par-

ticular instance of a class. Whenever an object receives a stimulus, it initiates some

behavior. This can be as simple as retrieving the color of automobile or as complex

as the initiation of a chain of stimuli that are passed among a variety of different

objects. In the latter case, consider an example in which the initial stimulus received

by Object 1 results in the generation of two other stimuli that are sent to Object 2

and Object 3. Operations encapsulated by the second and third objects act on the

stimuli, returning necessary information to the first object. Object 1 then uses the

returned information to satisfy the behavior demanded by the initial stimulus.

OBJECT-ORIENTED ANALYSIS AND DESIGN CONCEPTS

Requirements modeling (also called analysis modeling) focuses primarily on classes

that are extracted directly from the statement of the problem. These entity classes typ-

ically represent things that are to be stored in a database and persist throughout the

duration of the application (unless they are specifically deleted).

Design refines and extends the set of entity classes. Boundary and controller

classes are developed and/or refined during design. Boundary classes create the

interface (e.g., interactive screen and printed reports) that the user sees and inter-

acts with as the software is used. Boundary classes are designed with the responsi-

bility of managing the way entity objects are represented to users.

Controller classes are designed to manage (1) the creation or update of entity

objects, (2) the instantiation of boundary objects as they obtain information from

entity objects, (3) complex communication between sets of objects, and (4) valida-

tion of data communicated between objects or between the user and the application.

The concepts discussed in the paragraphs that follow can be useful in analysis and

design work.

Inheritance. Inheritance is one of the key differentiators between conventional and

object-oriented systems. A subclass Y inherits all of the attributes and operations

associated with its superclass X. This means that all data structures and algorithms

originally designed and implemented for X are immediately available for Y—no

further work need be done. Reuse has been accomplished directly.

Any change to the attributes or operations contained within a superclass is

immediately inherited by all subclasses. Therefore, the class hierarchy becomes a

mechanism through which changes (at high levels) can be immediately propagated

through a system.

It is important to note that at each level of the class hierarchy new attributes and

operations may be added to those that have been inherited from higher levels in the

hierarchy. In fact, whenever a new class is to be created, you have a number of options:

• The class can be designed and built from scratch. That is, inheritance is not

used.

866 APPENDIX 2 OBJECT-ORIENTED CONCEPTS

pre75977_Apx2.qxd 11/27/08 6:45 PM Page 866

• The class hierarchy can be searched to determine if a class higher in the

hierarchy contains most of the required attributes and operations. The new

class inherits from the higher class and additions may then be added, as

required.

• The class hierarchy can be restructured so that the required attributes and

operations can be inherited by the new class.

• Characteristics of an existing class can be overridden, and different versions

of attributes or operations are implemented for the new class.

Like all fundamental design concepts, inheritance can provide significant benefit for

the design, but if it is used inappropriately,3 it can complicate a design unnecessar-

ily and lead to error-prone software that is difficult to maintain.

Messages. Classes must interact with one another to achieve design goals. A mes-

sage stimulates some behavior to occur in the receiving object. The behavior is

accomplished when an operation is executed.

The interaction between objects is illustrated schematically in Figure A2.2. An

operation within SenderObject generates a message of the form message

(<parameters>) where the parameters identify ReceiverObject as the object to be

stimulated by the message, the operation within ReceiverObject that is to receive the

message, and the data items that provide information that is required for the operation

to be successful. The collaboration defined between classes as part of the require-

ments model provides useful guidance in the design of messages.

Cox [Cox86] describes the interchange between classes in the following manner:

An object [class] is requested to perform one of its operations by sending it a message

telling the object what to do. The receiver [object] responds to the message by first choos-

ing the operation that implements the message name, executing this operation, and then

returning control to the caller. Messaging ties an object-oriented system together. Mes-

sages provide insight into the behavior of individual objects and the OO system as a whole.

APPENDIX 2 OBJECT-ORIENTED CONCEPTS 867

3 For example, designing a subclass that inherits attributes and operations from more than one
superclass (sometimes called “multiple inheritance”) is frowned upon by most designers.

:SenderObject

Message (<parameters>)

:ReceiverObject

FIGURE A2.2

Message
passing
between
objects

pre75977_Apx2.qxd 11/27/08 6:45 PM Page 867

Polymorphism. Polymorphism is a characteristic that greatly reduces the effort

required to extend the design of an existing object-oriented system. To understand

polymorphism, consider a conventional application that must draw four different

types of graphs: line graphs, pie charts, histograms, and Kiviat diagrams. Ideally,

once data are collected for a particular type of graph, the graph should draw itself.

To accomplish this in a conventional application (and maintain module cohesion), it

would be necessary to develop drawing modules for each type of graph. Then, within

the design, control logic similar to the following would have to be embedded:

case of graphtype:

if graphtype � linegraph then DrawLineGraph (data);

if graphtype � piechart then DrawPieChart (data);

if graphtype � histogram then DrawHisto (data);

if graphtype � kiviat then DrawKiviat (data);

end case;

Although this design is reasonably straightforward, adding new graph types could be

tricky. A new drawing module would have to be created for each graph type and then

the control logic would have to be updated to reflect the new graph type.

To solve this problem in an object-oriented system, all of the graphs become sub-

classes of a general class called Graph. Using a concept called overloading [Tay90],

each subclass defines an operation called draw. An object can send a draw message

to any one of the objects instantiated from any one of the subclasses. The object

receiving the message will invoke its own draw operation to create the appropriate

graph. Therefore, the design is reduced to

draw <graphtype>

When a new graph type is to be added to the system, a subclass is created with its own

draw operation. But no changes are required within any object that wants a graph

drawn because the message draw <graphtype> remains unchanged. To summarize,

polymorphism enables a number of different operations to have the same name. This

in turn decouples objects from one another, making each more independent.

Design classes. The requirements model defines a complete set of analysis

classes. Each describes some element of the problem domain, focusing on aspects

of the problem that are user or customer visible. The level of abstraction of an analy-

sis class is relatively high.

As the design model evolves, the software team must define a set of design classes

that (1) refine the analysis classes by providing design detail that will enable the

classes to be implemented and (2) create a new set of design classes that implement

a software infrastructure that supports the business solution. Five different types of

868 APPENDIX 2 OBJECT-ORIENTED CONCEPTS

pre75977_Apx2.qxd 11/27/08 6:45 PM Page 868

design classes, each representing a different layer of the design architecture are

suggested [Amb01]:

• User interface classes define all abstractions that are necessary for human-

computer interaction (HCI).

• Business domain classes are often refinements of the analysis classes defined

earlier. The classes identify the attributes and operations (methods) that are

required to implement some element of the business domain.

• Process classes implement lower-level business abstractions required to fully

manage the business domain classes.

• Persistent classes represent data stores (e.g., a database) that will persist

beyond the execution of the software.

• System classes implement software management and control functions that

enable the system to operate and communicate within its computing envi-

ronment and with the outside world.

As the architectural design evolves, the software team should develop a complete

set of attributes and operations for each design class. The level of abstraction is

reduced as each analysis class is transformed into a design representation. That is,

analysis classes represent objects (and associated methods that are applied to them)

using the jargon of the business domain. Design classes present significantly more

technical detail as a guide for implementation.

Arlow and Neustadt [Arl02] suggest that each design class be reviewed to ensure

that it is “well formed.” They define four characteristics of a well-formed design class:

Complete and sufficient. A design class should be the complete encapsu-

lation of all attributes and methods that can reasonably be expected (based

on a knowledgeable interpretation of the class name) to exist for the class.

For example, the class Scene defined for video-editing software is complete

only if it contains all attributes and methods that can reasonably be associ-

ated with the creation of a video scene. Sufficiency ensures that the design

class contains only those methods that are sufficient to achieve the intent of

the class, no more and no less.

Primitiveness. Methods associated with a design class should be focused

on accomplishing one specific function for the class. Once the function has

been implemented with a method, the class should not provide another way

to accomplish the same thing. For example, the class VideoClip of the video

editing software might have attributes start-point and end-point to indicate the

start and end points of the clip (note that the raw video loaded into the sys-

tem may be longer than the clip that is used). The methods, setStartPoint()

and setEndPoint() provide the only means for establishing start and end

points for the clip.

APPENDIX 2 OBJECT-ORIENTED CONCEPTS 869

pre75977_Apx2.qxd 11/27/08 6:45 PM Page 869

High cohesion. A cohesive design class is single minded. That is, it has a

small, focused set of responsibilities and single-mindedly applies attributes

and methods to implement those responsibilities. For example, the class

VideoClip of the video-editing software might contain a set of methods for

editing the video clip. As long as each method focuses solely on attributes

associated with the video clip, cohesion is maintained.

Low coupling. Within the design model, it is necessary for design classes

to collaborate with one another. However, collaboration should be kept to an

acceptable minimum. If a design model is highly coupled (all design classes

collaborate with all other design classes), the system is difficult to implement,

test, and maintain over time. In general, design classes within a subsystem

should have only limited knowledge of other classes. This restriction, called

the Law of Demeter [Lie03], suggests that a method should only send mes-

sages to methods in neighboring classes.4

FURTHER READINGS AND INFORMATION SOURCES

Over the past three decades hundreds of books have been written on object-oriented pro-
gramming, analysis, and design. Weisfeld (The Object-Oriented Thought Process, 2d ed., Sams
Publishing, 2003) presents a worthwhile treatment of general OO concepts and principles.
McLaughlin and his colleagues (Head First Object-Oriented Analysis and Design: A Brain Friendly
Guide to OOA&D, O’Reilly Media, Inc., 2006) provide an accessible and enjoyable treatment of
OO analysis and design approaches. A more in-depth treatment of OO analysis and design is
presented by Booch and his colleagues (Object-Oriented Analysis and Design with Applications,
3d ed., Addison-Wesley, 2007). Wu (An Introduction to Object-Oriented Programming with Java,
McGraw-Hill, 2005) has written a comprehensive book on OO programming that is typical of
dozens written for many different programming languages.

A wide variety of information sources on object-oriented technologies is available on the
Internet. An up-to-date list of World Wide Web references can be found under “analysis” and
“design” at the SEPA website: www.mhhe.com/engcs/compsci/pressman/professional/
olc/ser.htm.

870 APPENDIX 2 OBJECT-ORIENTED CONCEPTS

4 A less formal way of stating the Law of Demeter is, “Each unit should only talk to its friends; don’t
talk to strangers.”

pre75977_Apx2.qxd 11/27/08 6:45 PM Page 870

http://www.mhhe.com/engcs/compsci/pressman/professional/

871

REFERENCES

[Abb83] Abbott, R., “Program Design by Informal English Descriptions,“ CACM, vol. 26, no. 11,
November 1983, pp. 892–894.

[ACM98] ACM/IEEE-CS Joint Task Force, Software Engineering Code of Ethics and Professional
Practice, 1998, available at www.acm.org/serving/se/code.htm.

[Ada93] Adams, D., Mostly Harmless, Macmillan, 1993.
[AFC88] Software Risk Abatement, AFCS/AFLC Pamphlet 800-45, U.S. Air Force, September 30,

1988.
[Agi03] The Agile Alliance Home Page, www.agilealliance.org/home.
[Air99] Airlie Council, “Performance Based Management: The Program Manager’s Guide Based

on the 16-Point Plan and Related Metrics,” Draft Report, March 8, 1999.
[Aka04] Akao, Y., Quality Function Deployment, Productivity Press, 2004.
[Ale77] Alexander, C., A Pattern Language, Oxford University Press, 1977.
[Ale79] Alexander, C., The Timeless Way of Building, Oxford University Press, 1979.
[Amb95] Ambler, S., “Using Use-Cases,” Software Development, July 1995, pp. 53–61.
[Amb98] Ambler, S., Process Patterns: Building Large-Scale Systems Using Object Technology,

Cambridge University Press/SIGS Books, 1998.
[Amb01] Ambler, S., The Object Primer, 2d ed., Cambridge University Press, 2001.
[Amb02a] Ambler, S., “What Is Agile Modeling (AM)?” 2002, www.agilemodeling.com/

index.htm.
[Amb02b] Ambler, S., and R. Jeffries, Agile Modeling, Wiley, 2002.
[Amb02c] Ambler, S., “UML Component Diagramming Guidelines,” available at www.

modelingstyle.info/, 2002.
[Amb04] Ambler, S., “Examining the Cost of Change Curve,” in The Object Primer, 3d ed.,

Cambridge University Press, 2004.
[Amb06] Ambler, S., “The Agile Unified Process (AUP), 2006, available at www.ambysoft.com/

unifiedprocess/agileUP.html.
[And06] Andrews, M., and J. Whittaker, How to Break Web Software: Functional and Security

Testing of Web Applications and Web Services, Addison-Wesley, 2006.
[ANS87] ANSI/ASQC A3-1987, Quality Systems Terminology, 1987.
[Ant06] Anton, D., and C. Anton, ISO 9001 Survival Guide, 3d ed., AEM Consulting Group, 2006.
[AOS07] AOSD.net (Aspect-Oriented Software Development), glossary, available at http://

aosd.net/wiki/index.php?title=Glossary.
[App00] Appleton, B., “Patterns and Software: Essential Concepts and Terminology,” February

2000, available at www.cmcrossroads.com/bradapp/docs/patterns-intro.html.
[App08] Apple Computer, Accessibility, 2008, available at www.apple.com/disability/.
[Arl02] Arlow, J., and I. Neustadt, UML and the Unified Process, Addison-Wesley, 2002.
[Arn89] Arnold, R. S., “Software Restructuring,” Proc. IEEE, vol. 77, no. 4, April 1989,

pp. 607–617.
[Art97] Arthur, L. J., “Quantum Improvements in Software System Quality,” CACM, vol. 40, no. 6,

June 1997, pp. 47–52.
[Ast04] Astels, D., Test Driven Development: A Practical Guide, Prentice Hall, 2004.
[Ave04] Aversan, L., et al., “Managing Coordination and Cooperation in Distributed Software

Processes: The GENESIS Environment,” Software Process Improvement and Practice, vol. 9,
Wiley Interscience, 2004, pp. 239–263.

[Baa07] de Baar, B., “Project Risk Checklist,” 2007, available at www.softwareprojects.org/
project_riskmanagement_starting62.htm.

[Bab86] Babich, W. A., Software Configuration Management, Addison-Wesley, 1986.
[Bac97] Bach, J., “‘Good Enough Quality: Beyond the Buzzword,” IEEE Computer, vol. 30, no. 8,

August 1997, pp. 96–98.

pre75977_Ref.qxd 11/27/08 6:40 PM Page 871

http://www.acm.org/serving/se/code.htm
http://www.agilealliance.org/home
http://www.agilemodeling.com/
http://www.modelingstyle.info/
http://www.modelingstyle.info/
http://www.ambysoft.com/
http://aosd.net/wiki/index.php?title=Glossary
http://aosd.net/wiki/index.php?title=Glossary
http://www.cmcrossroads.com/bradapp/docs/patterns-intro.html
http://www.apple.com/disability/
http://www.softwareprojects.org/

[Bac98] Bach, J., “The Highs and Lows of Change Control,” Computer, vol. 31, no. 8, August 1998,
pp. 113–115.

[Bae98] Baetjer, Jr., H., Software as Capital, IEEE Computer Society Press, 1998, p. 85.
[Bak72] Baker, F. T., “Chief Programmer Team Management of Production Programming,” IBM

Systems Journal., vol. 11, no. 1, 1972, pp. 56–73.
[Ban06] Baniassad, E., et al., “Discovering Early Aspects,” IEEE Software, vol. 23, no. 1,

January–February, 2006, pp. 61–69.
[Bar06] Baresi, L., E. DiNitto, and C. Ghezzi, “Toward Open-World Software: Issues and

Challenges,” IEEE Computer, vol. 39, no. 10, October 2006, pp. 36–43.
[Bas84] Basili, V. R., and D. M. Weiss, “A Methodology for Collecting Valid Software Engineering

Data,” IEEE Trans. Software Engineering, vol. SE-10, 1984, pp. 728–738.
[Bas03] Bass, L., P. Clements, and R. Kazman, Software Architecture in Practice, 2d ed., Addison-

Wesley, 2003.
[Bec00] Beck, K., Extreme Programming Explained: Embrace Change, Addison-Wesley, 1999.
[Bec01a] Beck, K., et al., “Manifesto for Agile Software Development,” www.agilemanifesto.org/.
[Bec04a] Beck, K., Extreme Programming Explained: Embrace Change, 2d ed., Addison-Wesley,

2004.
[Bec04b] Beck, K., Test-Driven Development: By Example, 2d ed., Addison-Wesley, 2002.
[Bee99] Beedle, M., et al., “SCRUM: An Extension Pattern Language for Hyperproductive Soft-

ware Development,” included in: Pattern Languages of Program Design 4, Addison-Wesley
Longman, Reading MA, 1999, downloadable from http://jeffsutherland.com/scrum/
scrum_plop.pdf.

[Bei84] Beizer, B., Software System Testing and Quality Assurance, Van Nostrand-Reinhold, 1984.
[Bei90] Beizer, B., Software Testing Techniques, 2d ed., Van Nostrand-Reinhold, 1990.
[Bei95] Beizer, B., Black-Box Testing, Wiley, 1995.
[Bel81] Belady, L., Foreword to Software Design: Methods and Techniques (L. J. Peters, author),

Yourdon Press, 1981.
[Bel95] Bellinzona R., M. G. Gugini, and B. Pernici, “Reusing Specifications in OO Applications,”

IEEE Software, March 1995, pp. 65–75.
[Ben99] Bentley, J., Programming Pearls, 2d ed., Addison-Wesley, 1999.
[Ben00] Bennatan, E. M., Software Project Management: A Practitioner’s Approach, 3d ed.,

McGraw-Hill, 2000.
[Ben02] Bennett, S., S. McRobb, and R. Farmer, Object-Oriented Analysis and Design, 2d ed.,

McGraw-Hill, 2002.
[Ber80] Bersoff, E. H., V. D. Henderson, and S. G. Siegel, Software Configuration Management,

Prentice Hall, 1980.
[Ber93] Berard, E., Essays on Object-Oriented Software Engineering, vol. 1, Addison-Wesley, 1993.
[Bes04] Bessin, J., “The Business Value of Quality,” IBM developerWorks, June 15, 2004, avail-

able at www-128.ibm.com/developerworks/rational/library/4995.html.
[Bha06] Bhat, J., M. Gupta, and S. Murthy, “Lessons from Offshore Outsourcing,” IEEE Software,

vol. 23, no. 5, September–October 2006.
[Bie94] Bieman, J. M., and L. M. Ott, “Measuring Functional Cohesion,” IEEE Trans. Software

Engineering, vol. SE-20, no. 8, August 1994, pp. 308–320.
[Bin93] Binder, R., “Design for Reuse Is for Real,” American Programmer, vol. 6, no. 8, August

1993, pp. 30–37.
[Bin94a] Binder, R., “Testing Object-Oriented Systems: A Status Report,” American Programmer,

vol. 7, no. 4, April 1994, pp. 23–28.
[Bin94b] Binder, R. V., “Object-Oriented Software Testing,” Communications of the ACM, vol. 37,

no. 9, September 1994, p. 29.
[Bin99] Binder, R., Testing Object-Oriented Systems: Models, Patterns, and Tools, Addison-Wesley,

1999.
[Bir98] Biró, M., and T. Remzsö, “Business Motivations for Software Process Improvement,”

ERCIM News No. 32, January 1998, available at www.ercim.org/publication/Ercim_News/
enw32/biro.html.

[Boe81] Boehm, B., Software Engineering Economics, Prentice Hall, 1981.
[Boe88] Boehm, B., “A Spiral Model for Software Development and Enhancement,” Computer,

vol. 21, no. 5, May 1988, pp. 61–72.

872 REFERENCES

pre75977_Ref.qxd 11/27/08 6:40 PM Page 872

http://www.agilemanifesto.org/
http://jeffsutherland.com/scrum/
http://www.ercim.org/publication/Ercim_News/

[Boe89] Boehm, B. W., Software Risk Management, IEEE Computer Society Press, 1989.
[Boe96] Boehm, B., “Anchoring the Software Process,” IEEE Software, vol. 13, no. 4, July 1996,

pp. 73–82.
[Boe98] Boehm, B., “Using the WINWIN Spiral Model: A Case Study,” Computer, vol. 31, no. 7,

July 1998, pp. 33–44.
[Boe00] Boehm, B., et al., Software Cost Estimation in COCOMO II, Prentice Hall, 2000.
[Boe01a] Boehm, B., “The Spiral Model as a Tool for Evolutionary Software Acquisition,”

CrossTalk, May 2001, available at www.stsc.hill.af.mil/crosstalk/2001/05/boehm.html.
[Boe01b] Boehm, B., and V. Basili, “Software Defect Reduction Top 10 List,” IEEE Computer,

vol. 34, no. 1, January 2001, pp. 135–137.
[Boe08] Boehm, B., “Making a Difference in the Software Century,” IEEE Computer, vol. 41, no. 3,

March 2008, pp. 32–38.
[Boh66] Bohm, C., and G. Jacopini, “Flow Diagrams, Turing Machines and Languages with Only

Two Formation Rules,” CACM, vol. 9, no. 5, May 1966, pp. 366–371.
[Boh00] Bohl, M., and M. Rynn, Tools for Structured Design: An Introduction to Programming Logic,

5th ed., Prentice Hall, 2000.
[Boi04] Boiko, B., Content Management Bible, 2d ed., Wiley, 2004.
[Bol02] Boldyreff, C., et al., “Environments to Support Collaborative Software Engineering,”

2002, downloadable from www.cs.put.poznan.pl/dweiss/site/publications/download/
csmre-paper.pdf.

[Boo94] Booch, G., Object-Oriented Analysis and Design, 2d ed., Benjamin Cummings, 1994.
[Boo05] Booch, G., J. Rumbaugh, and I. Jacobsen, The Unified Modeling Language User Guide.

2d ed., Addison-Wesley, 2005.
[Boo06] Bootstrap-institute.com, 2006, www.cse.dcu.ie/espinode/directory/directory.html.
[Boo08] Booch, G., Handbook of Software Architecture, 2008, available at www.booch.com/

architecture/systems.jsp.
[Bor01] Borchers, J., A Pattern Approach to Interaction Design, Wiley, 2001.
[Bos00] Bosch, J., Design & Use of Software Architectures, Addison-Wesley, 2000.
[Bra85] Bradley, J. H., “The Science and Art of Debugging,” Computerworld, August 19, 1985,

pp. 35–38.
[Bra94] Bradac, M., D. Perry, and L. Votta, “Prototyping a Process Monitoring Experiment,” IEEE

Trans. Software Engineering, vol. 20, no. 10, October 1994, pp. 774–784.
[Bre02] Breen, P., “Exposing the Fallacy of ’Good Enough’ Software,” informit.com, February 1,

2002, available at www.informit.com/articles/article.asp?p=25141&rl=1.
[Bro95] Brooks, F., The Mythical Man-Month, Silver Anniversary edition, Addison-Wesley,

1995.
[Bro96] Brown, A. W., and K. C. Wallnau, “Engineering of Component Based Systems,”

Component-Based Software Engineering, IEEE Computer Society Press, 1996, pp. 7–15.
[Bro01] Brown, B., Oracle9i Web Development, 2d ed., McGraw-Hill, 2001.
[Bro03] Brooks, F, “Three Great Challenges for Half-Century-Old Computer Science,” JACM,

vol. 50, no. 1, January 2003, pp. 25–26.
[Bro06] Broy, M., “The ‘Grand Challenge’ in Informatics: Engineering Software Intensive

Systems,” IEEE Computer, vol. 39, no. 10, October 2006, pp. 72–80.
[Buc99] Bucanac, C., “The V-Model,” University of Karlskrona/Ronneby, January 1999, down-

loadable from www.bucanac.com/documents/The_V-Model.pdf.
[Bud96] Budd, T., An Introduction to Object-Oriented Programming, 2d ed., Addison-Wesley, 1996.
[Bus96] Buschmann, F., et al., Pattern-Oriented Software Architecture, Wiley, 1996.
[Bus07] Buschmann, F., et al., Pattern-Oriented Software Architecture, A System of Patterns, Wiley,

2007.
[Cac02] Cachero, C., et al., “Conceptual Navigation Analysis: A Device and Platform Indepen-

dent Navigation Specification,” Proc. 2nd Intl. Workshop on Web-Oriented Technology, June
2002, downloadable from www.dsic.upv.es/~west/iwwost02/papers/cachero.pdf.

[Cai03] Caine, Frarber, and Gordon, Inc., PDL/81, 2003, available at www.cfg.com/pdl81/
lpd.html.

[Car90] Card, D. N., and R. L. Glass, Measuring Software Design Quality, Prentice Hall, 1990.
[Cas89] Cashman, M., “Object Oriented Domain Analysis,” ACM Software Engineering Notes,

vol. 14, no. 6, October 1989, p. 67.

REFERENCES 873

pre75977_Ref.qxd 11/27/08 6:40 PM Page 873

http://www.stsc.hill.af.mil/crosstalk/2001/05/boehm.html
http://www.cs.put.poznan.pl/dweiss/site/publications/download/
http://www.cse.dcu.ie/espinode/directory/directory.html
http://www.booch.com/
http://www.informit.com/articles/article.asp?p=25141&rl=1
http://www.bucanac.com/documents/The_V-Model.pdf
http://www.dsic.upv.es/~west/iwwost02/papers/cachero.pdf
http://www.cfg.com/pdl81/

[Cav78] Cavano, J. P., and J. A. McCall, “A Framework for the Measurement of Software Quality,”
Proc. ACM Software Quality Assurance Workshop, November 1978, pp. 133–139.

[CCS02] CS3 Consulting Services, 2002, www.cs3inc.com/DSDM.htm.
[Cec06] Cechich, A., et al., “Trends on COTS Component Identification,” Proc. Fifth Intl. Conf. on

COTS-Based Software Systems, IEEE, 2006.
[Cha89] Charette, R. N., Software Engineering Risk Analysis and Management, McGraw-Hill/

Intertext, 1989.
[Cha92] Charette, R. N., “Building Bridges over Intelligent Rivers,” American Programmer, vol. 5,

no. 7, September 1992, pp. 2–9.
[Cha93] de Champeaux, D., D. Lea, and P. Faure, Object-Oriented System Development, Addison-

Wesley, 1993.
[Cha03] Chakravarti, A., “Online Software Design Pattern Links,” 2003, available at www

.anupriyo.com/oopfm.shtml.
[Che77] Chen, P., The Entity-Relationship Approach to Logical Database Design, QED Information

Systems, 1977.
[Chi94] Chidamber, S. R., and C. F. Kemerer, “A Metrics Suite for Object-Oriented Design,” IEEE

Trans. Software Engineering, vol. SE-20, no. 6, June 1994, pp. 476–493.
[Cho89] Choi, S. C., and W. Scacchi, “Assuring the Correctness of a Configured Software

Description,” Proc. 2nd Intl. Workshop on Software Configuration Management, ACM,
Princeton, NJ, October 1989, pp. 66–75.

[Chu95] Churcher, N. I., and M. J. Shepperd, “Towards a Conceptual Framework for Object-
Oriented Metrics,” ACM Software Engineering Notes, vol. 20, no. 2, April 1995, pp. 69–76.

[Cig07] Cigital, Inc., “Case Study: Finding Defects Earlier Yields Enormous Savings,” 2007, avail-
able at www.cigital.com/solutions/roi-cs2.php.

[Cla05] Clark, S., and E. Baniasaad, Aspect-Oriented Analysis and Design, Addison-Wesley, 2005.
[Cle95] Clements, P., “From Subroutines to Subsystems: Component Based Software Develop-

ment,” American Programmer, vol. 8, no. 11, November 1995.
[Cle03] Clements, P., R. Kazman, and M. Klein, Evaluating Software Architectures: Methods and

Case Studies, Addison-Wesley, 2003.
[Cle06] Clemmons, R., “Project Estimation with Use Case Points,” CrossTalk, February 2006,

p. 18–222, downloadable from www.stsc.hill.af.mil/crosstalk/2006/02/0602Clemmons.pdf.
[CMM07] Capability Maturity Model Integration (CMMI), Software Engineering Institute, 2007,

available at www.sei.cmu.edu/cmmi/.
[CMM08] People Capability Maturity Model Integration (People CMM), Software Engineering

Institute, 2008, available at www.sei.cmu.edu/cmm-p/.
[Coa91] Coad, P., and E. Yourdon, Object-Oriented Analysis, 2d ed., Prentice Hall, 1991.
[Coa99] Coad, P., E. Lefebvre, and J. DeLuca, Java Modeling in Color with UML, Prentice Hall, 1999.
[Coc01a] Cockburn, A., and J. Highsmith, “Agile Software Development: The People Factor,”

IEEE Computer, vol. 34, no. 11, November 2001, pp. 131–133.
[Coc01b] Cockburn, A., Writing Effective Use-Cases, Addison-Wesley, 2001.
[Coc02] Cockburn, A., Agile Software Development, Addison-Wesley, 2002.
[Coc04] Cockburn, A., “What the Agile Toolbox Contains,” CrossTalk, November 2004, available

at www.stsc.hill.af.mil/crosstalk/2004/11/0411Cockburn.html.
[Coc05] Cockburn, A., Crystal Clear, Addison-Wesley, 2005.
[Con96] Conradi, R., “Software Process Improvement: Why We Need SPIQ,” NTNU, October

1996, downloadable from www.idi.ntnu.no/grupper/su/publ/pdf/nik96-spiq.pdf.
[Con02] Conradi, R., and A. Fuggetta, “Improving Software Process Improvement,” IEEE

Software, July–August 2002, pp. 2–9, downloadable from http://citeseer.ist.psu.edu/
conradi02improving.html.

[Con93] Constantine, L., “Work Organization: Paradigms for Project Management and Organi-
zation, CACM, vol. 36, no. 10, October 1993, pp. 34–43.

[Con95] Constantine, L, “What DO Users Want? Engineering Usability in Software,” Windows
Tech Journal, December 1995, available from www.forUse.com.

[Con03] Constantine, L., and L. Lockwood, Software for Use, Addison-Wesley, 1999; see also
www.foruse.com/.

[Cop05] Coplien, J., “Software Patterns,” 2005, available at http://hillside.net/patterns/
definition.html.

874 REFERENCES

pre75977_Ref.qxd 11/27/08 6:40 PM Page 874

http://www.cs3inc.com/DSDM.htm
http://www.cigital.com/solutions/roi-cs2.php
http://www.stsc.hill.af.mil/crosstalk/2006/02/0602Clemmons.pdf
http://www.sei.cmu.edu/cmmi/
http://www.sei.cmu.edu/cmm-p/
http://www.stsc.hill.af.mil/crosstalk/2004/11/0411Cockburn.html
http://www.idi.ntnu.no/grupper/su/publ/pdf/nik96-spiq.pdf
http://citeseer.ist.psu.edu/
http://www.forUse.com
http://www.foruse.com/
http://hillside.net/patterns/

[Cor98] Corfman, R., “An Overview of Patterns,” in The Patterns Handbook, SIGS Books, 1998.
[Cou00] Coulouris, G., J. Dollimore, and T. Kindberg, Distributed Systems: Concepts and Design,

3d ed., Addison-Wesley, 2000.
[Cox86] Cox, Brad, Object-Oriented Programming, Addison-Wesley, 1986.
[Cri92] Christel, M. G., and K. C. Kang, “Issues in Requirements Elicitation,” Software Engineer-

ing Institute, CMU/SEI-92-TR-12 7, September 1992.
[Cro79] Crosby, P., Quality Is Free, McGraw-Hill, 1979.
[Cro07] Cross, M., and M. Fisher, Developer’s Guide to Web Application Security, Syngress

Publishing, 2007.
[Cur86] Curritt, P. A., M. Dyer, and H. D. Mills, “Certifying the Reliability of Software,” IEEE Trans,

Software Engineering, vol. SE-12, no. 1, January 1994.
[Cur88] Curtis, B., et al., “A Field Study of the Software Design Process for Large Systems,” IEEE

Trans. Software Engineering, vol. SE-31, no. 11, November 1988, pp. 1268–1287.
[Cur01] Curtis, B., W. Hefley, and S. Miller, People Capability Maturity Model, Addison-Wesley,

2001.
[CVS07] Concurrent Versions System, Ximbiot, http://ximbiot.com/cvs/wiki/index.php?title=

Main_Page, 2007.
[DAC03} “An Overview of Model-Based Testing for Software,” Data and Analysis Center for

Software, CR/TA 12, June 2003, downloadable from www.goldpractices.com/dwnload/
practice/pdf/Model_Based_Testing.pdf.

[Dah72] Dahl, O., E. Dijkstra, and C. Hoare, Structured Programming, Academic Press, 1972.
[Dar91] Dart, S., “Concepts in Configuration Management Systems,” Proc. Third International

Workshop on Software Configuration Management, ACM SIGSOFT, 1991, downloadable from
www.sei.cmu.edu/legacy/scm/abstracts/abscm_concepts.html.

[Dar99] Dart, S., “Change Management: Containing the Web Crisis,” Proc. Software Configuration
Management Symposium, Toulouse, France, 1999, available at www.perforce.com/perforce/
conf99/dart.html.

[Dar01] Dart, S., Spectrum of Functionality in Configuration Management Systems, Software
Engineering Institute, 2001, available at www.sei.cmu.edu/legacy/scm/tech_rep/TR11_90/
TOC_TR11_90.html.

[Das05] Dasari, R., “Lean Software Development,” a white paper, downloadable from www
.projectperfect.com.au/downloads/Info/info_lean_development.pdf, 2005.

[Dav90] Davenport, T. H., and J. E. Young, “The New Industrial Engineering: Information
Technology and Business Process Redesign,” Sloan Management Review, Summer 1990,
pp. 11–27.

[Dav93] Davis, A., et al., “Identifying and Measuring Quality in a Software Requirements
Specification,” Proc. First Intl. Software Metrics Symposium, IEEE, Baltimore, MD, May 1993,
pp. 141–152.

[Dav95a] Davis, M., “Process and Product: Dichotomy or Duality,” Software Engineering Notes,
ACM Press, vol. 20, no. 2, April, 1995, pp. 17–18.

[Dav95b] Davis, A., 201 Principles of Software Development, McGraw-Hill, 1995.
[Day99] Dayani-Fard, H., et al., “Legacy Software Systems: Issues, Progress, and Challenges,”

IBM Technical Report: TR-74.165-k, April 1999, available at www.cas.ibm.com/toronto/
publications/TR-74.165/k/legacy.html.

[Dem86] Deming, W. E., Out of the Crisis, MIT Press, 1986.
[DeM79] DeMarco, T., Structured Analysis and System Specification, Prentice Hall, 1979.
[DeM95] DeMarco, T., Why Does Software Cost So Much? Dorset House, 1995.
[DeM95a] DeMarco, T., “Lean and Mean,” IEEE Software, November 1995, pp. 101–102.
[DeM98] DeMarco, T., and T. Lister, Peopleware, 2d ed., Dorset House, 1998.
[DeM02] DeMarco, T., and B. Boehm, “The Agile Methods Fray,” IEEE Computer, vol. 35, no. 6,

June 2002, pp. 90–92.
[Den73] Dennis, J., “Modularity,” in Advanced Course on Software Engineering (F. L. Bauer, ed.),

Springer-Verlag, 1973, pp. 128–182.
[Dev01] Devedzik, V., “Software Patterns,” in Handbook of Software Engineering and Knowledge

Engineering, World Scientific Publishing Co., 2001.
[Dha95] Dhama, H., “Quantitative Metrics for Cohesion and Coupling in Software,” Journal of

Systems and Software, vol. 29, no. 4, April 1995.

REFERENCES 875

pre75977_Ref.qxd 11/27/08 6:40 PM Page 875

http://ximbiot.com/cvs/wiki/index.php?title=
http://www.goldpractices.com/dwnload/
http://www.sei.cmu.edu/legacy/scm/abstracts/abscm_concepts.html
http://www.perforce.com/perforce/
http://www.sei.cmu.edu/legacy/scm/tech_rep/TR11_90/
http://www.cas.ibm.com/toronto/

[Dij65] Dijkstra, E., “Programming Considered as a Human Activity,” in Proc. 1965 IFIP Congress,
North-Holland Publishing Co., 1965.

[Dij72] Dijkstra, E., “The Humble Programmer,” 1972 ACM Turing Award Lecture, CACM, vol. 15,
no. 10, October 1972, pp. 859–866.

[Dij76a] Dijkstra, E., “Structured Programming,” in Software Engineering, Concepts and
Techniques, (J. Buxton et al., eds.), Van Nostrand-Reinhold, 1976.

[Dij76b] Dijkstra, E., A Discipline of Programming, Prentice Hall, 1976.
[Dij82] Dijksta, E., “On the Role of Scientific Thought,” Selected Writings on Computing: A Personal

Perspective, Springer-Verlag, 1982.
[Dix99] Dix, A., “Design of User Interfaces for the Web,” Proc. User Interfaces to Data Systems

Conference, September 1999, downloadable from www.comp.lancs.ac.uk/computing/
users/dixa/topics/webarch/.

[Dob04] Dobb, F., ISO 9001:2000 Quality Registration Step-by-Step, 3d ed., Butterworth-
Heinemann, 2004.

[Don99] Donahue, G., S. Weinschenck, and J. Nowicki, “Usability Is Good Business,” Compuware
Corp., July 1999, available from www.compuware.com.

[Dre99] Dreilinger, S., “CVS Version Control for Web Site Projects,” 1999, available at www
.durak.org/cvswebsites/howto-cvs/howto-cvs.html.

[Dru75] Drucker, P., Management, W. H. Heinemann, 1975.
[Duc01] Ducatel, K., et al., Scenarios for Ambient Intelligence in 2010, ISTAG-European

Commission, 2001, downloadable from ftp://ftp.cordis.europa.eu/pub/ist/docs/
istagscenarios2010.pdf.

[Dun82] Dunn, R., and R. Ullman, Quality Assurance for Computer Software, McGraw-Hill, 1982.
[Dun01] Dunaway, D., and S. Masters, CMM-Based Appraisal for Internal Process Improvement

(CBA IPI Version 1,2 Method Description), Software Engineering Institute, 2001, downloadable
from www.sei.cmu.edu/publications/documents/01.reports/01tr033.html.

[Dun02] Dunn, W., Practical Design of Safety-Critical Computer Systems, William Dunn, 2002.
[Duy02] VanDuyne, D., J. Landay, and J. Hong, The Design of Sites, Addison-Wesley, 2002.
[Dye92] Dyer, M., The Cleanroom Approach to Quality Software Development, Wiley, 1992.
[Edg95] Edgemon, J., “Right Stuff: How to Recognize It When Selecting a Project Manager,”

Application Development Trends, vol. 2, no. 5, May 1995, pp. 37–42.
[Eji91] Ejiogu, L., Software Engineering with Formal Metrics, QED Publishing, 1991.
[Elr01] Elrad, T., R. Filman, and A. Bader (eds.), “Aspect Oriented Programming,” Comm. ACM,

vol. 44, no. 10, October 2001, special issue.
[Eri05] Ericson, C., Hazard Analysis Techniques for System Safety, Wiley-Interscience, 2005.
[Eri08] Erickson, T., The Interaction Design Patterns Page, May 2008, available at www.visi

.com/~snowfall/InteractionPatterns.html.
[Eva04] Evans, E., Domain Driven Design, Addison-Wesley, 2003.
[Fag86] Fagan, M., “Advances in Software Inspections,” IEEE Trans. Software Engineering,

vol. 12, no. 6, July 1986.
[Fel89] Felican, L., and G. Zalateu, “Validating Halstead’s Theory for Pascal Programs,” IEEE

Trans. Software Engineering, vol. SE-15, no. 2, December 1989, pp. 1630–1632.
[Fel07] Feller, J., et al. (eds.), Perspectives on Free and Open Source Software, The MIT Press, 2007.
[Fen91] Fenton, N., Software Metrics, Chapman and Hall, 1991.
[Fen94] Fenton, N., “Software Measurement: A Necessary Scientific Basis,” IEEE Trans. Software

Engineering, vol. SE-20, no. 3, March 1994, pp. 199–206.
[Fer97] Ferguson, P., et al., “Results of Applying the Personal Software Process,” IEEE Computer,

vol. 30, no. 5, May 1997, pp. 24–31.
[Fer98] Ferdinandi, P. L., “Facilitating Communication,” IEEE Software, September 1998,

pp. 92–96.
[Fer00] Fernandez, E. B., and X. Yuan, “Semantic Analysis Patterns,” Proceedings of the 19th Int.

Conf. on Conceptual Modeling, ER2000, Lecture Notes in Computer Science 1920, Springer,
2000, pp. 183–195. Also available from www.cse.fau.edu/~ed/SAPpaper2.pdf.

[Fir93] Firesmith, D. G., Object-Oriented Requirements Analysis and Logical Design, Wiley, 1993.
[Fis06] Fisher, R., and D. Shapiro, Beyond Reason: Using Emotions as You Negotiate, Penguin,

2006.

876 REFERENCES

pre75977_Ref.qxd 11/27/08 6:40 PM Page 876

http://www.comp.lancs.ac.uk/computing/
http://www.compuware.com
ftp://ftp.cordis.europa.eu/pub/ist/docs/
http://www.sei.cmu.edu/publications/documents/01.reports/01tr033.html
http://www.visi
http://www.cse.fau.edu/~ed/SAPpaper2.pdf

[Fit54] Fitts, P., “The Information Capacity of the Human Motor System in Controlling the
Amplitude of Movement,” Journal of Experimental Psychology, vol. 47, 1954, pp. 381–391.

[Fle98] Fleming, Q. W., and J. M. Koppelman, “Earned Value Project Management,” CrossTalk,
vol. 11, no. 7, July 1998, p. 19.

[Fos06] Foster, E., “Quality Culprits,” InfoWorld Grip Line Weblog, May 2, 2006, available at
http://weblog.infoworld.com/gripeline/2006/05/02_a395.html.

[Fow97] Fowler, M., Analysis Patterns: Reusable Object Models, Addison-Wesley, 1997.
[Fow00] Fowler, M., et al., Refactoring: Improving the Design of Existing Code, Addison-Wesley,

2000.
[Fow01] Fowler, M., and J. Highsmith, “The Agile Manifesto,” Software Development Magazine,

August 2001, www.sdmagazine.com/documents/s=844/sdm0108a/0108a.htm.
[Fow02] Fowler. M., “The New Methodology,” June 2002, www.martinfowler.com/articles/

newMethodology.html#N8B.
[Fow03] Fowler, M., et al., Patterns of Enterprise Application Architecture, Addison-Wesley, 2003.
[Fow04] Fowler, M., UML Distilled, 3d ed., Addison-Wesley, 2004.
[Fra93] Frankl, P. G., and S. Weiss, “An Experimental Comparison of the Effectiveness of Branch

Testing and Data Flow,” IEEE Trans. Software Engineering, vol. SE-19, no. 8, August 1993,
pp. 770–787.

[Fra03] Francois, A., “Software Architecture for Immersipresence,” IMSC Technical Report IMSC-
03-001, University of Southern California, December 2003, available at http://iris.usc.edu/
~afrancoi/pdf/sai-tr.pdf.

[Fre80] Freeman, P., “The Context of Design,” in Software Design Techniques, 3d ed. (P. Freeman
and A. Wasserman, eds.), IEEE Computer Society Press, 1980, pp. 2–4.

[Fre90] Freedman, D. P., and G. M. Weinberg, Handbook of Walkthroughs, Inspections and
Technical Reviews, 3d ed., Dorset House, 1990.

[Gag04] Gage, D., and J. McCormick, “We Did Nothing Wrong,” Baseline Magazine, March 4, 2004,
available at www.baselinemag.com/article2/0,1397,1544403,00.asp.

[Gai95] Gaines, B., “Modeling and Forecasting the Information Sciences,” Technical Report,
University of Calgary, Calgary, Alberta, September 1995.

[Gam95] Gamma, E., et al., Design Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley, 1995.

[Gar84] Garvin, D., “What Does ‘Product Quality’ Really Mean?” Sloan Management Review, Fall
1984, pp. 25–45.

[Gar87] Garvin D., “Competing on the Eight Dimensions of Quality,” Harvard Business Review,
November 1987, pp. 101–109. A summary is available at www.acm.org/crossroads/
xrds6-4/software.html.

[Gar95] Garlan, D., and M. Shaw, “An Introduction to Software Architecture,” Advances in
Software Engineering and Knowledge Engineering, vol. I (V. Ambriola and G. Tortora, eds.),
World Scientific Publishing Company, 1995.

[Gar08] GartnerGroup, “Understanding Hype Cycles,” 2008, available at www.gartner.com/
pages/story.php.id.8795.s.8.jsp.

[Gau89] Gause, D. C., and G. M. Weinberg, Exploring Requirements: Quality Before Design, Dorset
House, 1989.

[Gey01] Geyer-Schulz, A., and M. Hahsler, “Software Engineering with Analysis Patterns,”
Technical Report 01/2001, Institut für Informationsverarbeitung und -wirtschaft, Wirschaft-
suniversität Wien, November 2001, downloadable from wwwai.wu-wien.ac.at/~hahsler/
research/virlib_working2001/virlib/.

[Gil88] Gilb, T., Principles of Software Project Management, Addison-Wesley, 1988.
[Gil95] Gilb, T., “What We Fail to Do in Our Current Testing Culture,” Testing Techniques Newslet-

ter (online edition, ttn@soft.com), Software Research, January 1995.
[Gil06] Gillis, D., “Pattern-Based Design,” tehan + lax blog, September 14, 2006, available at

www.teehanlax.com/blog/?p=96.
[Gla98] Glass, R., “Defining Quality Intuitively,” IEEE Software, May 1998, pp. 103–104, 107.
[Gla00] Gladwell, M., The Tipping Point, Back Bay Books, 2002.
[Gli07] Glinz, M., and R. Wieringa, “Stakeholders in Requirements Engineering,” IEEE Software,

vol. 24, no. 2, March–April 2007, pp. 18–20.

REFERENCES 877

pre75977_Ref.qxd 11/27/08 6:40 PM Page 877

http://weblog.infoworld.com/gripeline/2006/05/02_a395.html
http://www.sdmagazine.com/documents/s=844/sdm0108a/0108a.htm
http://www.martinfowler.com/articles/
http://iris.usc.edu/
http://www.baselinemag.com/article2/0,1397,1544403,00.asp
http://www.acm.org/crossroads/
http://www.gartner.com/
mailto:ttn@soft.com
http://www.teehanlax.com/blog/?p=96

[Glu94] Gluch, D., “A Construct for Describing Software Development Risks,” CMU/SEI-94-TR-
14, Software Engineering Institute, 1994.

[Gna99] Gnaho, C., and F. Larcher, “A User-Centered Methodology for Complex and Customiz-
able Web Engineering,” Proc. 1st ICSE Workshop on Web Engineering, ACM, Los Angeles, May
1999.

[Gon04] Gonzales, R., “Requirements Engineering,” Sandia National Laboratories, a slide pres-
entation, available at www.incose.org/enchantment/docs/04AprRequirementsEngineer-
ing.pdf.

[Gor02] Gordon, B., and M. Gordon, The Complete Guide to Digital Graphic Design, Watson-
Guptill, 2002.

[Gor06] Gorton, I., Essential Software Architecture, Springer, 2006.
[Gra87] Grady, R. B., and D. L. Caswell, Software Metrics: Establishing a Company-Wide Program,

Prentice Hall, 1987.
[Gra92] Grady, R. B., Practical Software Metrics for Project Management and Process Improvement,

Prentice Hall, 1992.
[Gra99] Grable, R., et al., “Metrics for Small Projects: Experiences at SED,” IEEE Software, March

1999, pp. 21–29.
[Gra03] Gradecki, J., and N. Lesiecki, Mastering AspectJ: Aspect-Oriented Programming in Java,

Wiley, 2003.
[Gru02] Grundy, J., “Aspect-Oriented Component Engineering,” 2002, www.cs.auckland.ac.nz/

~john-g/aspects.html.
[Gus89] Gustavsson, A., “Maintaining the Evolution of Software Objects in an Integrated Envi-

ronment,” Proc. 2nd Intl. Workshop on Software Configuration Management, ACM, Princeton,
NJ, October 1989, pp. 114–117.

[Gut93] Guttag, J. V., and J. J. Horning, Larch: Languages and Tools for Formal Specification,
Springer-Verlag, 1993.

[Hac98] Hackos, J., and J. Redish, User and Task Analysis for Interface Design, Wiley, 1998.
[Hai02] Hailpern, B., and P. Santhanam, “Software Debugging, Testing and Verification,” IBM

Systems Journal, vol. 41, no. 1, 2002, available at www.research.ibm.com/journal/sj/
411/hailpern.html.

[Hal77] Halstead, M., Elements of Software Science, North-Holland, 1977.
[Hal90] Hall, A., “Seven Myths of Formal Methods,” IEEE Software, September 1990, pp. 11–20.
[Hal98] Hall, E. M., Managing Risk: Methods for Software Systems Development, Addison-Wesley,

1998.
[Ham90] Hammer, M., “Reengineer Work: Don’t Automate, Obliterate,” Harvard Business Review,

July–August 1990, pp. 104–112.
[Han95] Hanna, M., “Farewell to Waterfalls,” Software Magazine, May 1995, pp. 38–46.
[Har98a] Harmon, P., “Navigating the Distributed Components Landscape,” Cutter IT Journal.,

vol. 11, no. 2, December 1998, pp. 4–11.
[Har98b] Harrison, R., S. J. Counsell, and R. V. Nithi, “An Evaluation of the MOOD Set of Object-

Oriented Software Metrics,” IEEE Trans. Software Engineering, vol. SE-24, no. 6, June 1998,
pp. 491–496.

[Her00] Herrmann, D., Software Safety and Reliability, Wiley-IEEE Computer Society Press, 2000.
[Het84] Hetzel, W., The Complete Guide to Software Testing, QED Information Sciences, 1984.
[Het93] Hetzel, W., Making Software Measurement Work, QED Publishing, 1993.
[Hev93] Hevner, A. R., and H. D. Mills, “Box Structure Methods for System Development with

Objects,” IBM Systems Journal, vol. 31, no. 2, February 1993, pp. 232–251.
[Hig95] Higuera, R. P., “Team Risk Management,” CrossTalk, U.S. Dept. of Defense, January 1995,

pp. 2–4.
[Hig00] Highsmith, J., Adaptive Software Development: An Evolutionary Approach to Managing

Complex Systems, Dorset House Publishing, 2000.
[Hig01] Highsmith, J. (ed.), “The Great Methodologies Debate: Part 1,” Cutter IT Journal., vol. 14,

no. 12, December 2001.
[Hig02a] Highsmith, J. (ed.), “The Great Methodologies Debate: Part 2,” Cutter IT Journal., vol. 15,

no. 1, January 2002.
[Hig02b] Highsmith, J., Agile Software Development Ecosystems, Addison-Wesley, 2002.

878 REFERENCES

pre75977_Ref.qxd 11/27/08 6:40 PM Page 878

http://www.incose.org/enchantment/docs/04AprRequirementsEngineer-ing.pdf
http://www.incose.org/enchantment/docs/04AprRequirementsEngineer-ing.pdf
http://www.incose.org/enchantment/docs/04AprRequirementsEngineer-ing.pdf
http://www.cs.auckland.ac.nz/
http://www.research.ibm.com/journal/sj/

[Hil05] Hildreth, S., “Buggy Software: Up from a Low Quality Quagmire,” Computerworld, July 25,
2005, available at www.computerworld.com/developmenttopics/development/story/
0,10801,103378,00.html.

[Hil08] Hillside.net, Patterns Catalog, 2008, available at http://hillside.net/patterns/
onlinepatterncatalog.htm.

[Hob06] Hoberman, S., Data Modeling Made Simple, Technics Publications, 2006.
[Hof00] Hofmeister, C., R. Nord, and D. Soni, Applied Software Architecture, Addison-Wesley,

2000.
[Hof01] Hofmann, C., et al., “Approaches to Software Architecture,” 2001, downloadable from

http://citeseer.nj.nec.com/84015.html.
[Hol06] Holzner, S., Design Patterns for Dummies, For Dummies Publishers, 2006.
[Hoo96] Hooker, D., “Seven Principles of Software Development,” September 1996, available at

http://c2.com/cgi/wikiSevenPrinciplesOfSoftwareDevelopment.
[Hop90] Hopper, M. D., “Rattling SABRE, New Ways to Compete on Information,” Harvard

Business Review, May–June 1990.
[Hor03] Horch, J., Practical Guide to Software Quality Management, 2d ed., Artech House, 2003.
[HPR02] Hypermedia Design Patterns Repository, 2002, available at www.designpattern

.lu.unisi.ch/index.htm.
[Hum95] Humphrey, W., A Discipline for Software Engineering, Addison-Wesley, 1995.
[Hum96] Humphrey, W., “Using a Defined and Measured Personal Software Process,” IEEE

Software, vol. 13, no. 3, May–June 1996, pp. 77–88.
[Hum97] Humphrey, W., Introduction to the Personal Software Process, Addison-Wesley, 1997.
[Hum98] Humphrey, W., “The Three Dimensions of Process Improvement, Part III: The Team

Process,” CrossTalk, April 1998, available at www.stsc.hill.af.mil/crosstalk/1998/apr/
dimensions.asp.

[Hum00] Humphrey, W., Introduction to the Team Software Process, Addison-Wesley, 2000.
[Hun99] Hunt, A., D. Thomas, and W. Cunningham, The Pragmatic Programmer, Addison-Wesley,

1999.
[Hur83] Hurley, R. B., Decision Tables in Software Engineering, Van Nostrand-Reinhold, 1983.
[Hya96] Hyatt, L., and L. Rosenberg, “A Software Quality Model and Metrics for Identifying

Project Risks and Assessing Software Quality,” NASA SATC, 1996, available at http://satc
.gsfc.nasa.gov/support/STC_APR96/qualtiy/stc_qual.html.

[IBM81] “Implementing Software Inspections,” course notes, IBM Systems Sciences Institute,
IBM Corporation, 1981.

[IBM03] IBM, Web Services Globalization Model, 2003, available at www.ibm.com/
developerworks/webservices/library/ws-global/.

[IEE93a] IEEE Standards Collection: Software Engineering, IEEE Standard 610.12-1990, IEEE, 1993.
[IEE93b] IEEE Standard Glossary of Software Engineering Terminology, IEEE, 1993.
[IEE00] IEEE Standard Association, IEEE-Std-1471-2000, Recommended Practice for Architectural

Description of Software-Intensive Systems, 2000, available at http://standards.ieee.org/
reading/ieee/std_public/description/se/1471-2000_desc.html.

[IFP01] Function Point Counting Practices Manual, Release 4.1.1, International Function Point
Users Group, 2001, available from www.ifpug.org/publications/manual.htm.

[IFP05] Function Point Bibliography/Reference Library, International Function Point Users
Group, 2005, available from www.ifpug.org/about/bibliography.htm.

[ISI08] iSixSigma, LLC, “New to Six Sigma: A Guide for Both Novice and Experiences
Quality Practitioners,” 2008, available at www.isixsigma.com/library/content/six-sigma-
newbie.asp.

[ISO00] ISO 9001: 2000 Document Set, International Organization for Standards, 2000, www.iso
.ch/iso/en/iso9000-14000/iso9000/iso9000index.html.

[ISO02] Z Formal Specification Notation—Syntax, Type System and Semantics, ISO/IEC
13568:2002, Intl. Standards Organization, 2002.

[ISO08] ISO SPICE, 2008, www.isospice.com/categories/SPICE-Project/.
[Ivo01] Ivory, M., R. Sinha, and M. Hearst, “ Empirically Validated Web Page Design Metrics,”

ACM SIGCHI’01, March 31–April 4, 2001, available at http://webtango.berkeley.edu/papers/
chi2001/.

REFERENCES 879

pre75977_Ref.qxd 11/27/08 6:40 PM Page 879

http://www.computerworld.com/developmenttopics/development/story/
http://hillside.net/patterns/
http://citeseer.nj.nec.com/84015.html
http://c2.com/cgi/wikiSevenPrinciplesOfSoftwareDevelopment
http://www.designpattern
http://www.stsc.hill.af.mil/crosstalk/1998/apr/
http://satc
http://www.ibm.com/
http://standards.ieee.org/
http://www.ifpug.org/publications/manual.htm
http://www.ifpug.org/about/bibliography.htm
http://www.isixsigma.com/library/content/six-sigma-newbie.asp
http://www.isixsigma.com/library/content/six-sigma-newbie.asp
http://www.isixsigma.com/library/content/six-sigma-newbie.asp
http://www.iso
http://www.isospice.com/categories/SPICE-Project/
http://webtango.berkeley.edu/papers/

[Jac75] Jackson, M. A., Principles of Program Design, Academic Press, 1975.
[Jac92] Jacobson, I., Object-Oriented Software Engineering, Addison-Wesley, 1992.
[Jac98] Jackman, M., “Homeopathic Remedies for Team Toxicity,” IEEE Software, July 1998,

pp. 43-45.
[Jac99] Jacobson, I., G. Booch, and J. Rumbaugh, The Unified Software Development Process,

Addison-Wesley, 1999.
[Jac02a] Jacobson, I., “A Resounding ‘Yes’ to Agile Processes—But Also More,” Cutter IT Journal,

vol. 15, no. 1, January 2002, pp. 18–24.
[Jac02b] Jacyntho, D., D. Schwabe, and G. Rossi, “An Architecture for Structuring Complex Web

Applications,” 2002, available at www2002.org/CDROM/alternate/478/.
[Jac04] Jacobson, I., and P. Ng, Aspect-Oriented Software Development, Addison-Wesley, 2004.
[Jal04] Jalote, P., et al., “Timeboxing: A Process Model for Iterative Software Development,”

Journal of Systems and Software,vol. 70, issue 2, 2004, pp. 117–127. Available at www.cse
.iitk.ac.in/users/jalote/papers/Timeboxing.pdf.

[Jay94] Jaychandra, Y., Re-engineering the Networked Enterprise, McGraw-Hill, 1994.
[Jec06] Jech, T., Set Theory, 3d ed., Springer, 2006.
[Jon86] Jones, C., Programming Productivity, McGraw-Hill, 1986.
[Jon91] Jones, C., Systematic Software Development Using VDM, 2d ed., Prentice Hall, 1991.
[Jon96] Jones, C., “How Software Estimation Tools Work,” American Programmer, vol. 9, no. 7,

July 1996, pp. 19–27.
[Jon98] Jones, C., Estimating Software Costs, McGraw-Hill, 1998.
[Jon04] Jones, C., “Software Project Management Practices: Failure Versus Success,” CrossTalk,

October 2004. Available at www.stsc.hill.af.mil/crossTalk/2004/10/0410Jones.html.
[Joy00] Joy, B., “The Future Doesn’t Need Us,” Wired, vol. 8, no. 4, April 2000.
[Kai02] Kaiser, J., “Elements of Effective Web Design,” About, Inc., 2002, available at http://

webdesign.about.com/library/weekly/aa091998.htm.
[Kal03] Kalman, S., Web Security Field Guide, Cisco Press, 2003.
[Kan93] Kaner, C., J. Falk, and H. Q. Nguyen, Testing Computer Software, 2d ed., Van Nostrand-

Reinhold, 1993.
[Kan95] Kaner, C., “Lawyers, Lawsuits, and Quality Related Costs, 1995, available at www

.badsoftware.com/plaintif.htm.
[Kan01] Kaner, C., “Pattern: Scenario Testing” (draft), 2001, available at www.testing.com/

test-patterns/patterns/pattern-scenario-testing-kaner.html.
[Kar94] Karten, N., Managing Expectations, Dorset House, 1994.
[Kau95] Kauffman, S., At Home in the Universe, Oxford, 1995.
[Kaz98] Kazman, R., et al., The Architectural Tradeoff Analysis Method, Software Engineering

Institute, CMU/SEI-98-TR-008, July 1998.
[Kaz03] Kazman, R., and A. Eden, “Defining the Terms Architecture, Design, and Implementa-

tion,” news@sei interactive, Software Engineering Institute, vol. 6, no. 1, 2003, available at
www.sei.cmu.edu/news-at-sei/columns/the_architect/2003/1q03/architect-1q03.htm.

[Kei98] Keil, M., et al., “A Framework for Identifying Software Project Risks,” CACM, vol. 41,
no. 11, November 1998, pp. 76–83.

[Kel00] Kelly, D., and R. Oshana, “Improving Software Quality Using Statistical Techniques,
Information and Software Technology,” Elsevier, vol. 42, August 2000, pp. 801–807, available
at www.eng.auburn.edu/~kchang/comp6710/readings/Improving_Quality_with_Statistical_
Testing_InfoSoftTech_August2000.pdf.

[Ker78] Kernighan, B., and P. Plauger, The Elements of Programming Style, 2d ed., McGraw-Hill,
1978.

[Ker05] Kerievsky, J., Industrial XP: Making XP Work in Large Organizations, Cutter Consortium,
Executive Report, vol. 6., no. 2, 2005, available at www.cutter.com/content-and-analysis/
resource-centers/agile-project-management/sample-our-research/apmr0502.html.

[Kim04] Kim, E., “A Manifesto for Collaborative Tools,” Dr. Dobb’s Journal, May 2004, available
at www.blueoxen.com/papers/0000D/.

[Kir94] Kirani, S., and W. T. Tsai, “Specification and Verification of Object-Oriented Programs,”
Technical Report TR 94-64, Computer Science Department, University of Minnesota,
December 1994.

880 REFERENCES

pre75977_Ref.qxd 11/27/08 6:40 PM Page 880

http://www.cse
http://www.stsc.hill.af.mil/crossTalk/2004/10/0410Jones.html
http://webdesign.about.com/library/weekly/aa091998.htm
http://webdesign.about.com/library/weekly/aa091998.htm
http://www.testing.com/
http://www.sei.cmu.edu/news-at-sei/columns/the_architect/2003/1q03/architect-1q03.htm
http://www.eng.auburn.edu/~kchang/comp6710/readings/Improving_Quality_with_Statistical_
http://www.cutter.com/content-and-analysis/
http://www.blueoxen.com/papers/0000D/

[Kiz05] Kizza, J., Computer Network Security, Springer, 2005.
[Knu98] Knuth, D., The Art of Computer Programming, three volumes, Addison-Wesley, 1998.
[Kon02] Konrad, S., and B. Cheng, “Requirements Patterns for Embedded Systems,” Proceedings

of the 10th Anniversary IEEE Joint International Conference on Requirements Engineering, IEEE,
September 2002, pp. 127–136, downloadable from http://citeseer.ist.psu.edu/669258.html.

[Kra88] Krasner, G., and S. Pope, “A Cookbook for Using the Model-View-Controller User
Interface Paradigm in Smalltalk-80,” Journal of Object-Oriented Programming, vol. 1, no. 3,
August–September 1988, pp. 26–49.

[Kra95] Kraul, R., and L. Streeter, “Coordination in Software Development,” CACM, vol. 38, no. 3,
March 1995, pp. 69–81.

[Kru05] Krutchen, P., “Software Design in a Postmodern Era,” IEEE Software, vol. 22, no. 2,
March–April, 2005, pp. 16–18.

[Kru06] Kruchten, P., H. Obbink, and J. Stafford (eds.), “Software Architectural” (special issue),
IEEE Software, vol. 23, no. 2, March–April, 2006.

[Kur05] Kurzweil, R., The Singularity Is Near, Penguin Books, 2005.
[Kyb84] Kyburg, H. E., Theory and Measurement, Cambridge University Press, 1984.
[Laa00] Laakso, S., et al., “Improved Scroll Bars,” CHI 2000 Conf. Proc., ACM, 2000, pp. 97–98,

available at www.cs.helsinki.fi/u/salaakso/patterns/.
[Lai02] Laitenberger, A., “A Survey of Software Inspection Technologies,” in Handbook on Soft-

ware Engineering and Knowledge Engineering, World Scientific Publishing Company, 2002.
[Lam01] Lam, W., “Testing E-Commerce Systems: A Practical Guide,” IEEE IT Pro, March–April

2001, pp. 19–28.
[Lan01] Lange, M., “It’s Testing Time! Patterns for Testing Software, June 2001, downloadable

from www.testing.com/test-patterns/patterns/index.html.
[Lan02] Land, R., “A Brief Survey of Software Architecture,” Technical Report, Dept. of Computer

Engineering, Mälardalen University, Sweden, February 2002.
[Leh97a] Lehman, M., and L. Belady, Program Evolution: Processes of Software Change, Academic

Press, 1997.
[Leh97b] Lehman, M., et al., “Metrics and Laws of Software Evolution—The Nineties View,”

Proceedings of the 4th International Software Metrics Symposium (METRICS ’97), IEEE, 1997,
downloadable from www.ece.utexas.edu/~perry/work/papers/feast1.pdf.

[Let01] Lethbridge, T., and R. Laganiere, Object-Oriented Software Engineering: Practical Software
Development Using UML and Java, McGraw-Hill, 2001.

[Let03a] Lethbridge, T., Personal communication on domain analysis, May 2003.
[Let03b] Lethbridge, T., Personal communication on software metrics, June 2003.
[Lev95] Leveson, N. G., Safeware: System Safety and Computers, Addison-Wesley, 1995.
[Lev01] Levinson, M., “Let’s Stop Wasting $78 billion a Year,” CIO Magazine, October 15, 2001,

available at www.cio.com/archive/101501/wasting.html.
[Lew06] Lewicki, R., B. Barry, and D. Saunders, Essentials of Negotiation, McGraw-Hill, 2006.
[Lie03] Lieberherr, K., “Demeter: Aspect-Oriented Programming,” May 2003, available at

www.ccs.neu.edu/home/lieber/LoD.html.
[Lin79] Linger, R., H. Mills, and B. Witt, Structured Programming, Addison-Wesley, 1979.
[Lin88] Linger, R. M., and H. D. Mills, “A Case Study in Cleanroom Software Engineering: The

IBM COBOL Structuring Facility,” Proc. COMPSAC ’88, Chicago, October 1988.
[Lin94] Linger, R., “Cleanroom Process Model,” IEEE Software, vol. 11, no. 2, March 1994, pp. 50–58.
[Lis88] Liskov, B., “Data Abstraction and Hierarchy,” SIGPLAN Notices, vol. 23, no. 5, May 1988.
[Liu98] Liu, K., et al., “Report on the First SEBPC Workshop on Legacy Systems,” Durham Uni-

versity, February 1998, available at www.dur.ac.uk/CSM/SABA/legacy-wksp1/report.html.
[Lon02] Longstreet, D., “Fundamental of Function Point Analysis,” Longstreet Consulting, Inc.,

2002, available at www.ifpug.com/fpafund.htm.
[Lor94] Lorenz, M., and J. Kidd, Object-Oriented Software Metrics, Prentice Hall, 1994.
[Maa07] Maassen, O., and S. Stelting, “Creational Patterns: Creating Objects in an OO System,”

2007, available at www.informit.com/articles/article.asp?p=26452&rl=1.
[Man81] Mantai, M., “The Effect of Programming Team Structures on Programming Tasks,”

CACM, vol. 24, no. 3, March 1981, pp. 106–113.
[Man97] Mandel, T., The Elements of User Interface Design, Wiley, 1997.

REFERENCES 881

pre75977_Ref.qxd 11/27/08 6:40 PM Page 881

http://citeseer.ist.psu.edu/669258.html
http://www.cs.helsinki.fi/u/salaakso/patterns/
http://www.testing.com/test-patterns/patterns/index.html
http://www.ece.utexas.edu/~perry/work/papers/feast1.pdf
http://www.cio.com/archive/101501/wasting.html
http://www.ccs.neu.edu/home/lieber/LoD.html
http://www.dur.ac.uk/CSM/SABA/legacy-wksp1/report.html
http://www.ifpug.com/fpafund.htm
http://www.informit.com/articles/article.asp?p=26452&rl=1

[Mar94] Marick, B., The Craft of Software Testing, Prentice Hall, 1994.
[Mar00] Martin, R., “Design Principles and Design Patterns,” downloadable from www

.objectmentor.com, 2000.
[Mar01] Marciniak, J. J. (ed.), Encyclopedia of Software Engineering, 2d ed., Wiley, 2001.
[Mar02] Marick, B., “Software Testing Patterns,” 2002, www.testing.com/test-patterns/

index.html.
[McC76] McCabe, T., “A Software Complexity Measure,” IEEE Trans. Software Engineering,

vol. SE-2, December 1976, pp. 308–320.
[McC77] McCall, J., P. Richards, and G. Walters, “Factors in Software Quality,” three volumes,

NTIS AD-A049-014, 015, 055, November 1977.
[McC94] McCabe, T. J., and A. H. Watson, “Software Complexity,” CrossTalk, vol. 7, no. 12,

December 1994, pp. 5–9.
[McC96] McConnell, S., “Best Practices: Daily Build and Smoke Test”, IEEE Software, vol. 13,

no. 4, July 1996, pp. 143–144.
[McC98] McConnell, S., Software Project Survival Guide, Microsoft Press, 1998.
[McC99] McConnell, S., “Software Engineering Principles,” IEEE Software, vol. 16, no. 2,

March–April 1999, available at www.stevemcconnell.com/ieeesoftware/eic04.htm.
[McC04] McConnell, S., Code Complete, Microsoft Press, 2004.
[McC05] McCrory, A., “Ten Technologies to Watch in 2006,” SeachCIO.com, October 27, 2005,

available at http://searchcio.techtarget.com/originalContent/0,289142,sid19_gci1137889,00
.html.

[McDE93] McDermid, J., and P. Rook, “Software Development Process Models,” in Software
Engineer’s Reference Book, CRC Press, 1993, pp. 15/26–15/28.

[McG91] McGlaughlin, R., “Some Notes on Program Design,” Software Engineering Notes, vol. 16,
no. 4, October 1991, pp. 53–54.

[McG94] McGregor, J. D., and T. D. Korson, “Integrated Object-Oriented Testing and Develop-
ment Processes,” Communications of the ACM, vol. 37, no. 9, September, 1994, pp. 59–77.

[Men01] Mendes, E., N. Mosley, and S. Counsell, “Estimating Design and Authoring Effort,” IEEE
Multimedia, vol. 8, no. 1, January–March 2001, pp. 50–57.

[Mer93] Merlo, E., et al., “Reengineering User Interfaces,” IEEE Software, January 1993,
pp. 64–73.

[Mic08] Microsoft Accessibility Technology for Everyone, 2008, available at www.microsoft.com/
enable/.

[Mic04] Microsoft, “Prescriptive Architecture: Integration and Patterns,” MSDN, May 2004, avail-
able at http://msdn2.microsoft.com/en-us/library/ms978700.aspx.

[Mic07] Microsoft, “Patterns and Practices,” MSDN, 2007, available at http://msdn2.microsoft
.com/en-us/library/ms998478.aspx.

[Mil72] Mills, H. D., “Mathematical Foundations for Structured Programming,” Technical Report
FSC 71-6012, IBM Corp., Federal Systems Division, Gaithersburg, MD, 1972.

[Mil77] Miller, E., “The Philosophy of Testing,” in Program Testing Techniques, IEEE Computer
Society Press, 1977, pp. 1–3.

[Mil87] Mills, H. D., M. Dyer, and R. Linger, “Cleanroom Software Engineering,” IEEE Software,
September 1987, pp. 19–25.

[Mil88] Mills, H. D., “Stepwise Refinement and Verification in Box Structured Systems,”
Computer, vol. 21, no. 6, June 1988, pp. 23–35.

[Mil00a] Miller, E., “WebSite Testing,” 2000, available at www.soft.com/eValid/Technology/
White.Papers/website.testing.html.

[Mil00b] Mili, A., and R, Cowan, “Software Engineering Technology Watch,” April 6, 2000, avail-
able at www.serc.net/projects/TechWatch/NSF%20TechWatch%20Proposal.htm.

[Min95] Minoli, D., Analyzing Outsourcing, McGraw-Hill, 1995.
[Mon84] Monk, A. (ed.), Fundamentals of Human-Computer Interaction, Academic Press, 1984.
[Mor81] Moran, T. P., “The Command Language Grammar: A Representation for the User

Interface of Interactive Computer Systems,” Intl. Journal of Man-Machine Studies, vol. 15,
pp. 3–50.

[Mor05] Morales, A., “The Dream Team,” Dr. Dobbs Portal, March 3, 2005, available at www.ddj
.com/dept/global/184415303.

882 REFERENCES

pre75977_Ref.qxd 11/27/08 6:40 PM Page 882

http://www.testing.com/test-patterns/
http://www.stevemcconnell.com/ieeesoftware/eic04.htm
http://searchcio.techtarget.com/originalContent/0,289142
http://www.microsoft.com/
http://msdn2.microsoft.com/en-us/library/ms978700.aspx
http://msdn2.microsoft
http://www.soft.com/eValid/Technology/
http://www.serc.net/projects/TechWatch/NSF%20TechWatch%20Proposal.htm
http://www.ddj

[Mus87] Musa, J. D., A. Iannino, and K. Okumoto, Engineering and Managing Software with
Reliability Measures, McGraw-Hill, 1987.

[Mus93] Musa, J., “Operational Profiles in Software Reliability Engineering,” IEEE Software,
March 1993, pp. 14–32.

[Mut03] Mutafelija, B., and H. Stromberg, Systematic Process Improvement Using ISO 9001:2000
and CMMI, Artech, 2003.

[Mye78] Myers, G., Composite Structured Design, Van Nostrand, 1978.
[Mye79] Myers, G., The Art of Software Testing, Wiley, 1979.
[NAS07] NASA, Software Risk Checklist, Form LeR-F0510.051, March 2007, downloadable from

http://osat-ext.grc.nasa.gov/rmo/spa/SoftwareRiskChecklist.doc.
[Nau69] Naur, P., and B. Randall (eds.), Software Engineering: A Report on a Conference Sponsored

by the NATO Science Committee, NATO, 1969.
[Ngu00] Nguyen, H., “Testing Web-Based Applications,” Software Testing and Quality Engineer-

ing, May–June 2000, available at www.stqemagazine.com.
[Ngu01] Nguyen, H., Testing Applications on the Web, Wiley, 2001.
[Ngu06] Nguyen, T., “Model-Based Version and Configuration Management for a Web Engi-

neering Lifecycle,” Proc. 15th Intl. World Wide Web Conf., Edinburg, Scotland, 2006, download
from www2006.org/programme/item.php?id=4552.

[Nie92] Nierstrasz, O., S. Gibbs, and D. Tsichritzis, “Component-Oriented Software Develop-
ment,” CACM, vol. 35, no. 9, September 1992, pp. 160–165.

[Nie94] Nielsen, J., and J. Levy, “Measuring Usability: Preference vs. Performance,” CACM, vol. 37,
no. 4, April 1994, pp. 65–75.

[Nie96] Nielsen, J., and A. Wagner, “User Interface Design for the WWW,” Proc. CHI ’96 Conf. on
Human Factors in Computing Systems, ACM Press, 1996, pp. 330–331.

[Nie00] Nielsen, J., Designing Web Usability, New Riders Publishing, 2000.
[Nog00} Nogueira, J., C. Jones, and Luqi, “Surfing the Edge of Chaos: Applications to Software

Engineering,” Command and Control Research and Technology Symposium, Naval Post
Graduate School, Monterey, CA, June 2000, downloadable from www.dodccrp.org/
2000CCRTS/cd/html/pdf_papers/Track_4/075.pdf.

[Nor70] Norden, P., “Useful Tools for Project Management” in Management of Production, M. K.
Starr (ed.), Penguin Books, 1970.

[Nor86] Norman, D. A., “Cognitive Engineering,” in User Centered Systems Design, Lawrence
Earlbaum Associates, 1986.

[Nor88] Norman, D., The Design of Everyday Things, Doubleday, 1988.
[Nov04] Novotny, O., “Next Generation Tools for Object-Oriented Development,” The Architec-

ture Journal, January 2005, available at http://msdn2.microsoft.com/en-us/library/
aa480062.aspx.

[Noy02] Noyes, B., “Rugby, Anyone?” Managing Development (an online publication of Fawcette
Technical Publications), June 2002, www.fawcette.com/resources/managingdev/
methodologies/scrum/.

[Off02] Offutt, J., “Quality Attributes of Web Software Applications,” IEEE Software, March–April
2002, pp. 25–32.

[Ols99] Olsina, L., et al., “Specifying Quality Characteristics and Attributes for Web Sites,” Proc.
1st ICSE Workshop on Web Engineering, ACM, Los Angeles, May 1999.

[Ols06] Olsen, G., “From COM to Common,” Component Technologies, ACM, vol. 4, no. 5, June
2006, available at http://acmqueue.com/modules.php?name=Content&pa=showpage&
pid=394.

[OMG03a] Object Management Group, OMG Unified Modeling Language Specification, version
1.5, March 2003, available from www.rational.com/uml/resources/documentation/.

[OMG03b] “Object Constraint Language Specification,” in Unified Modeling Language, v2.0,
Object Management Group, September 2003, downloadable from www.omg.org.

[Orf99] Orfali, R., D. Harkey, and J. Edwards, Client/Server Survival Guide, 3d ed., Wiley, 1999.
[Osb90] Osborne, W. M., and E. J. Chikofsky, “Fitting Pieces to the Maintenance Puzzle,” IEEE

Software, January 1990, pp. 10–11.
[OSO08] OpenSource.org, 2008, available at www.opensource.org/.
[Pag85] Page-Jones, M., Practical Project Management, Dorset House, 1985, p. vii.

REFERENCES 883

pre75977_Ref.qxd 11/27/08 6:40 PM Page 883

http://osat-ext.grc.nasa.gov/rmo/spa/SoftwareRiskChecklist.doc
http://www.stqemagazine.com
http://www.dodccrp.org/
http://msdn2.microsoft.com/en-us/library/
http://www.fawcette.com/resources/managingdev/
http://acmqueue.com/modules.php?name=Content&pa=showpage&
http://www.rational.com/uml/resources/documentation/
http://www.omg.org
http://www.opensource.org/

[Pal02] Palmer, S., and J. Felsing, A Practical Guide to Feature Driven Development, Prentice Hall,
2002.

[Par72] Parnas, D. L., “On Criteria to Be Used in Decomposing Systems into Modules,” CACM,
vol. 14, no. 1, April 1972, pp. 221–227.

[Par96a] Pardee, W., To Satisfy and Delight Your Customer, Dorset House, 1996.
[Par96b] Park, R. E., W. B. Goethert, and W. A. Florac, Goal Driven Software Measurement—

A Guidebook, CMU/SEI-96-BH-002, Software Engineering Institute, Carnegie Mellon
University, August 1996.

[Pat07] Patton, J., “Understanding User Centricity,” IEEE Software, vol. 24, no. 6, November–-
December, 2007, pp. 9–11.

[Pau94] Paulish, D., and A. Carleton, “Case Studies of Software Process Improvement Measure-
ment,” Computer, vol. 27, no. 9, September 1994, pp. 50–57.

[PCM03] “Technologies to Watch,” PC Magazine, July 2003, available at www.pcmag.com/
article2/0,4149,1130591,00.asp.

[Per74] Persig, R., Zen and the Art of Motorcycle Maintenance, Bantam Books, 1974.
[Pet06] Pethokoukis, J., “Small Biz Watch: Future Business Trends,” U.S. News & World Report,

January 20, 2006, available at www.usnews.com/usnews/biztech/articles/060120/
20sbw.htm.

[Pha89] Phadke, M. S., Quality Engineering Using Robust Design, Prentice Hall, 1989.
[Pha97] Phadke, M. S., “Planning Efficient Software Tests,” CrossTalk, vol. 10, no. 10, October

1997, pp. 11–15.
[Phi98] Phillips, D., The Software Project Manager’s Handbook, IEEE Computer Society Press,

1998.
[Phi02] Phillips, M., “CMMI V1.1 Tutorial.,” April 2002, available at www.sei.cmu.edu/cmmi/.
[Pol45] Polya, G., How to Solve It, Princeton University Press, 1945.
[Poo88] Poore, J. H., and H. D. Mills, “Bringing Software Under Statistical Quality Control,”

Quality Progress, November 1988, pp. 52–55.
[Poo93] Poore, J. H., H. D. Mills, and D. Mutchler, “Planning and Certifying Software System

Reliability,” IEEE Software, vol. 10, no. 1, January 1993, pp. 88–99.
[Pop03] Poppendieck, M., and T. Poppendieck, Lean Software Development, Addison-Wesley,

2003.
[Pop06a] Poppendeick, LLC, Lean Software Development, available at www.poppendieck.com/.
[Pop06b] Poppendieck, M., and T. Poppendieck, Implementing Lean Software Development,

Addison-Wesley, 2006.
[Pop08] Popcorn, F., Faith Popcorn’s Brain Reserve, 2008, available at www.faithpopcorn.com/.
[Pot04] Potter, M., Set Theory and Its Philosophy: A Critical Introduction, Oxford University Press,

2004.
[Pow98] Powell, T., Web Site Engineering, Prentice Hall, 1998.
[Pow02] Powell, T., Web Design, 2d ed., McGraw-Hill/Osborne, 2002.
[Pre94] Premerlani, W., and M. Blaha, “An Approach for Reverse Engineering of Relational Data-

bases,” CACM, vol. 37, no. 5, May 1994, pp. 42–49.
[Pre88] Pressman, R., Making Software Engineering Happen, Prentice Hall, 1988.
[Pre05] Pressman, R., Adaptable Process Model, revision 2.0, R. S. Pressman & Associates, 2005,

available at www.rspa.com/apm/index.html.
[Pre08] Pressman, R., and D. Lowe, Web Engineering: A Practitioner’s Approach, McGraw-Hill,

2008.
[Put78] Putnam, L., “A General Empirical Solution to the Macro Software Sizing and Estimation

Problem,” IEEE Trans. Software Engineering, vol. SE-4, no. 4, July 1978, pp. 345–361.
[Put92] Putnam, L., and W. Myers, Measures for Excellence, Yourdon Press, 1992.
[Put97a] Putnam, L., and W. Myers, “How Solved Is the Cost Estimation Problem?” IEEE Software,

November 1997, pp. 105–107.
[Put97b] Putnam, L., and W. Myers, Industrial Strength Software: Effective Management Using

Measurement, IEEE Computer Society Press, 1997.
[Pyz03] Pyzdek, T., The Six Sigma Handbook, McGraw-Hill, 2003.
[QAI08] A Software Engineering Curriculum, QAI, 2008, information can be obtained at www

.qaieschool.com/innerpages/offer.asp.

884 REFERENCES

pre75977_Ref.qxd 11/27/08 6:40 PM Page 884

http://www.pcmag.com/
http://www.usnews.com/usnews/biztech/articles/060120/
http://www.sei.cmu.edu/cmmi/
http://www.poppendieck.com/
http://www.faithpopcorn.com/
http://www.rspa.com/apm/index.html

[QSM02] “QSM Function Point Language Gearing Factors,” Version 2.0, Quantitative Software
Management, 2002, www.qsm.com/FPGearing.html.

[Rad02] Radice, R., High-Quality Low Cost Software Inspections, Paradoxicon Publishing, 2002.
[Rai06] Raiffa, H., The Art and Science of Negotiation, Belknap Press, 2005.
[Ree99] Reel, J. S., “Critical Success Factors in Software Projects,” IEEE Software, May 1999,

pp. 18–23.
[Ric01] Ricadel, A., “The State of Software Quality,” InformationWeek, May 21, 2001, available at

www.informationweek.com/838/quality.htm.
[Ric04] Rico, D., ROI of Software Process Improvement, J. Ross Publishing, 2004. A summary

article can be found at http://davidfrico.com/rico03a.pdf.
[Roc94] Roche, J. M., “Software Metrics and Measurement Principles,” Software Engineering

Notes, ACM, vol. 19, no. 1, January 1994, pp. 76–85.
[Roc06] Graphic Design That Works, Rockport Publishers, 2006.
[Roe00] Roetzheim, W., “Estimating Internet Development,” Software Development, August 2000,

available at www.sdmagazine.com/documents/s=741/sdm0008d/0008d.htm.
[Roo96] Roos, J., “The Poised Organization: Navigating Effectively on Knowledge Landscapes,”

1996, available at www.imd.ch/fac/roos/paper_po.html.
[Ros75] Ross, D., J. Goodenough, and C. Irvine, “Software Engineering: Process, Principles and

Goals,” IEEE Computer, vol. 8, no. 5, May 1975.
[Ros04] Rosenhainer, L., “Identifying Crosscutting Concerns in Requirements Specifications,”

2004, available at http://trese.cs.utwente.nl/workshops/oopsla-early-aspects-2004/
Papers/Rosenhainer.pdf.

[Rou02] Rout, T (project manager), SPICE: Software Process Assessment—Part 1: Concepts and
Introductory Guide, 2002, downloadable from www.sqi.gu.edu.au/spice/suite/download
.html.

[Roy70] Royce, W. W., “Managing the Development of Large Software Systems: Concepts and
Techniques,” Proc. WESCON, August 1970.

[Roz05] Rozanski, N., and E. Woods, Software Systems Architecture, Addison-Wesley, 2005.
[Rub88] Rubin, T., User Interface Design for Computer Systems, Halstead Press (Wiley), 1988.
[Rum91] Rumbaugh, J., et al., Object-Oriented Modeling and Design, Prentice Hall, 1991.
[Sar06] Sarwate, A., “Hot or Not: Web Application Vulnerabilities,” SC Magazine, December 27,

2006, available at http://scmagazine.com/us/news/article/623765/hot-not-web-
application-vulnerabilities.

[Sca00] Scacchi, W., “Understanding Software Process Redesign Using Modeling, Analysis,
and Simulation,” Software Process Improvement and Practice, Wiley, 2000, pp. 185–195,
downloadable at www.ics.uci.edu/~wscacchi/Papers/Software_Process_Redesign/
SPIP-ProSim99.pdf.

[Sce02] Sceppa, D., Microsoft ADO.NET, Microsoft Press, 2002.
[Sch95] Schwabe, D., and G. Rossi, “The Object-Oriented Hypermedia Design Model,” CACM,

vol. 38, no. 8, August 1995, pp. 45–46.
[Sch96] Schorsch, T., “The Capability Im-Maturity Model,” CrossTalk, November 1996, available

at www.stsc.hill.af.mil/crosstalk/1996/11/xt96d11h.asp.
[Sch98a] Schneider, G., and J. Winters, Applying Use Cases, Addison-Wesley, 1998.
[Sch98b] Schwabe, D., and G. Rossi, “Developing Hypermedia Applications Using OOHDM,”

Proc. Workshop on Hypermedia Development Process, Methods and Models, Hypertext ‘98,
1998, downloadable from http://citeseer.nj.nec.com/schwabe98developing.html.

[Sch98c] Schulmeyer, G. C., and J. I. McManus (eds.), Handbook of Software Quality Assurance,
3d ed., Prentice Hall, 1998.

[Sch99] Schneidewind, N., “Measuring and Evaluating Maintenance Process Using Reliability,
Risk, and Test Metrics,” IEEE Trans. SE, vol. 25, no. 6, November–December 1999,
pp. 768–781, downloadable from www.dacs.dtic.mil/topics/reliability/IEEETrans.pdf.

[Sch01a] Schwabe, D., G. Rossi, and Barbosa, S., “Systematic Hypermedia Application Design
Using OOHDM,” 2001, available at www-di.inf.puc-rio.br/~schwabe/HT96WWW/section1
.html.

[Sch01b] Schwaber, K., and M. Beedle, Agile Software Development with SCRUM, Prentice Hall,
2001.

REFERENCES 885

pre75977_Ref.qxd 11/27/08 6:40 PM Page 885

http://www.qsm.com/FPGearing.html
http://www.informationweek.com/838/quality.htm
http://davidfrico.com/rico03a.pdf
http://www.sdmagazine.com/documents/s=741/sdm0008d/0008d.htm
http://www.imd.ch/fac/roos/paper_po.html
http://trese.cs.utwente.nl/workshops/oopsla-early-aspects-2004/
http://www.sqi.gu.edu.au/spice/suite/download
http://scmagazine.com/us/news/article/623765/hot-not-web-application-vulnerabilities
http://scmagazine.com/us/news/article/623765/hot-not-web-application-vulnerabilities
http://scmagazine.com/us/news/article/623765/hot-not-web-application-vulnerabilities
http://www.ics.uci.edu/~wscacchi/Papers/Software_Process_Redesign/
http://www.stsc.hill.af.mil/crosstalk/1996/11/xt96d11h.asp
http://citeseer.nj.nec.com/schwabe98developing.html
http://www.dacs.dtic.mil/topics/reliability/IEEETrans.pdf

[Sch02] Schwaber, K., “Agile Processes and Self-Organization,” Agile Alliance, 2002,
www.aanpo.org/articles/index.

[Sch03] Schlickman, J., ISO 9001: 2000 Quality Management System Design, Artech House
Publishers, 2003.

[Sch06] Schmidt, D., “Model-Driven Engineering,” IEEE Computer, vol. 39, no. 2, February 2006,
pp. 25–31.

[SDS08] Spice Document Suite, “The SPICE and ISO Document Suite,” ISO-Spice, 2008, avail-
able at www.isospice.com/articles/9/1/SPICE-Project/Page1.html.

[Sea93] Sears, A., “Layout Appropriateness: A Metric for Evaluating User Interface Widget
Layout, IEEE Trans. Software Engineering, vol. SE-19, no. 7, July 1993, pp. 707–719.

[SEE03] The Software Engineering Ethics Research Institute, “UCITA Updates,” 2003, available
at http://seeri.etsu.edu/default.htm.

[SEI00] SCAMPI, V1.0 Standard CMMI ®Assessment Method for Process Improvement: Method
Description, Software Engineering Institute, Technical Report CMU/SEI-2000-TR-009, down-
loadable from www.sei.cmu.edu/publications/documents/00.reports/00tr009.html.

[SEI02] “Maintainability Index Technique for Measuring Program Maintainability,” SEI, 2002,
available at www.sei.cmu.edu/str/descriptions/mitmpm_body.html.

[SEI08] “The Ideal Model,” Software Engineering Institute, 2008, available at www.sei.cmu
.edu/ideal/.

[Sha95a] Shaw, M., and D. Garlan, “Formulations and Formalisms in Software Architecture,”
Volume 1000—Lecture Notes in Computer Science, Springer-Verlag, 1995.

[Sha95b] Shaw, M., et al., “Abstractions for Software Architecture and Tools to Support Them,”
IEEE Trans. Software Engineering, vol. SE-21, no. 4, April 1995, pp. 314–335.

[Sha96] Shaw, M., and D. Garlan, Software Architecture, Prentice Hall, 1996.
[Sha05] Shalloway, A., and J. Trott, Design Patterns Explained, 2d ed., Addison-Wesley, 2005.
[Shn80] Shneiderman, B., Software Psychology, Winthrop Publishers, 1980, p. 28.
[Shn04] Shneiderman, B., and C. Plaisant, Designing the User Interface, 4th ed., Addison-Wesley,

2004.
[Sho83] Shooman, M. L., Software Engineering, McGraw-Hill, 1983.
[Sim05] Simsion, G., and G. Witt, Data Modeling Essentials, 3d ed., Morgan Kaufman, 2005.
[Sin99] Singpurwalla, N., and S. Wilson, Statistical Methods in Software Engineering: Reliability

and Risk, Springer-Verlag, 1999.
[Smi99] Smith, J., “The Estimation of Effort Based on Use Cases,” Rational Software Corp., 1999,

downloadable from www.rational.com/media/whitepapers/finalTP171.PDF.
[Smi05] Smith, D, Reliability, Maintainability and Risk, 7th ed., Butterworth-Heinemann, 2005.
[Sne95] Sneed, H., “Planning the Reengineering of Legacy Systems,” IEEE Software, January

1995, pp. 24–25.
[Sne03] Snee, R., and R. Hoerl, Leading Six Sigma, Prentice Hall, 2003.
[Sol99] van Solingen, R., and E. Berghout, The Goal/Question/Metric Method, McGraw-Hill, 1999.
[Som97] Somerville, I., and P. Sawyer, Requirements Engineering, Wiley, 1997.
[Som05] Somerville, I., “Integrating Requirements Engineering: A Tutorial,” IEEE Software,

vol. 22, no. 1, January–February 2005, pp. 16–23.
[SPI99] “SPICE: Software Process Assessment, Part 1: Concepts and Introduction,” Version 1.0,

ISO/IEC JTC1, 1999.
[Spl01] Splaine, S., and S. Jaskiel, The Web Testing Handbook, STQE Publishing, 2001.
[Spo02] Spolsky, J, “The Law of Leaky Abstractions,” November 2002, available at www

.joelonsoftware.com/articles/LeakyAbstractions.html.
[Sri01] Sridhar, M., and N. Mandyam, “Effective Use of Data Models in Building Web

Applications,” 2001, available at www2002.org/CDROM/alternate/698/.
[SSO08] Software-Supportability.org, www.software-supportability.org/, 2008.
[Sta97] Stapleton, J., DSDM—Dynamic System Development Method: The Method in Practice,

Addison-Wesley, 1997.
[Sta97b] Statz, J., D. Oxley, and P. O’Toole, “Identifying and Managing Risks for Software Process

Improvement,” CrossTalk, April 1997, available at www.stsc.hill.af.mil/crosstalk/1997/
04/identifying.asp.

[Ste74] Stevens, W., G. Myers, and L. Constantine, “Structured Design,” IBM Systems Journal,
vol. 13, no. 2, 1974, pp. 115–139.

886 REFERENCES

pre75977_Ref.qxd 11/27/08 6:40 PM Page 886

http://www.aanpo.org/articles/index
http://www.isospice.com/articles/9/1/SPICE-Project/Page1.html
http://seeri.etsu.edu/default.htm
http://www.sei.cmu.edu/publications/documents/00.reports/00tr009.html
http://www.sei.cmu.edu/str/descriptions/mitmpm_body.html
http://www.sei.cmu
http://www.rational.com/media/whitepapers/finalTP171.PDF
http://www.software-supportability.org/
http://www.stsc.hill.af.mil/crosstalk/1997/

[Ste93] Stewart, T. A., “Reengineering: The Hot New Managing Tool,” Fortune, August 23, 1993,
pp. 41–48.

[Ste99] Stelzer, D., and W. Mellis, “Success Factors of Organizational Change in Software
Process Improvement,” Software Process Improvement and Practice, vol. 4, no. 4, Wiley, 1999,
downloadable from www.systementwicklung.uni-koeln.de/forschung/artikel/dokumente/
successfactors.pdf.

[Ste03] Stephens, M., and D. Rosenberg, Extreme Programming Refactored, Apress, 2003.
[Sto05] Stone, D., et al., User Interface Design and Evaluation, Morgan Kaufman, 2005.
[Tai89] Tai, K. C., “What to Do Beyond Branch Testing,” ACM Software Engineering Notes, vol. 14,

no. 2, April 1989, pp. 58–61.
[Tay90] Taylor, D., Object-Oriented Technology: A Manager’s Guide, Addison-Wesley, 1990.
[Tha97] Thayer, R. H., and M. Dorfman, Software Requirements Engineering, 2d ed., IEEE

Computer Society Press, 1997.
[The01] Thelin, T., H. Petersson, and C. Wohlin, “Sample Driven Inspections,” Proc. of Workshop

on Inspection in Software Engineering (WISE’01), Paris, France, July 2001, pp. 81–91, down-
loadable from http://www.cas.mcmaster.ca/wise/wise01/ThelinPeterssonWohlin.pdf.

[Tho92] Thomsett, R., “The Indiana Jones School of Risk Management,” American Programmer,
vol. 5, no. 7, September 1992, pp. 10–18.

[Tic05] TickIT, 2005, www.tickit.org/.
[Tid02] Tidwell, J., “IU Patterns and Techniques,” May 2002, available at http://time-

tripper.com/uipatterns/index.html.
[Til93] Tillmann, G., A Practical Guide to Logical Data Modeling, McGraw-Hill, 1993.
[Til00] Tillman, H., “Evaluating Quality on the Net,” Babson College, May 30, 2000, available at

www.hopetillman.com/findqual.html#2.
[Tog01] Tognozzi, B., “First Principles,” askTOG, 2001, available at www.asktog.com/basics/

firstPrinciples.html.
[Tra95] Tracz, W., “Third International Conference on Software Reuse—Summary,” ACM

Software Engineering Notes, vol. 20, no. 2, April 1995, pp. 21–22.
[Tre03] Trivedi, R, Professional Web Services Security, Wrox Press, 2003.
[Tri05] Tricker, R., and B. Sherring-Lucas, ISO 9001: 2000 In Brief, 2d ed., Butterworth-

Heinemann, 2005.
[Tyr05] Tyree, J., and A. Akerman, “Architectural Decisions: Demystifying Architecture,” IEEE

Software, vol. 22, no. 2, March–April, 2005.
[Uem99] Uemura, T., S. Kusumoto, and K. Inoue: “A Function Point Measurement Tool for UML

Design Specifications,’” Proc. of Sixth International Symposium on Software Metrics, IEEE,
November 1999, pp. 62–69

[Ull97] Ullman, E., Close to the Machine: Technophilia and Its Discontents, City Lights Books,
2002.

[UML03] The UML Café, “Customers Don’t Print Themselves,” May 2003, available at
www.theumlcafe.com/a0079.htm.

[Uni03] Unicode, Inc., The Unicode Home Page, 2003, available at www.unicode.org/.
[USA87] Management Quality Insight, AFCSP 800-14 (U.S. Air Force), January 20, 1987.
[Vac06] Vacca, J., Practical Internet Security, Springer, 2006.
[Van89] Van Vleck, T., “Three Questions About Each Bug You Find,” ACM Software Engineering

Notes, vol. 14, no. 5, July 1989, pp. 62–63.
[Van02] Van Steen, M., and A. Tanenbaum, Distributed Systems: Principles and Paradigms,

Prentice Hall, 2002.
[Ven03] Venners, B., “Design by Contract: A Conversation with Bertrand Meyer,” Artima

Developer, December 8, 2003, available at www.artima.com/intv/contracts.html.
[Wal03] Wallace, D., I. Raggett, and J. Aufgang, Extreme Programming for Web Projects, Addison-

Wesley, 2003.
[War74] Warnier, J. D., Logical Construction of Programs, Van Nostrand-Reinhold, 1974.
[War07] Ward, M., “Using VoIP Software Building zBlocks—A Look at the Choices,” TMNNet,

2007, available at www.tmcnet.com/voip/0605/featurearticle-using-voip-software-
building-blocks.htm.

[Web05] Weber, S., The Success of Open Source, Harvard University Press, 2005.
[Wei86] Weinberg, G., On Becoming a Technical Leader, Dorset House, 1986.

REFERENCES 887

pre75977_Ref.qxd 11/27/08 6:40 PM Page 887

http://www.systementwicklung.uni-koeln.de/forschung/artikel/dokumente/
http://www.cas.mcmaster.ca/wise/wise01/ThelinPeterssonWohlin.pdf
http://www.tickit.org/
http://time-tripper.com/uipatterns/index.html
http://time-tripper.com/uipatterns/index.html
http://time-tripper.com/uipatterns/index.html
http://www.hopetillman.com/findqual.html#2
http://www.asktog.com/basics/
http://www.theumlcafe.com/a0079.htm
http://www.unicode.org/
http://www.artima.com/intv/contracts.html
http://www.tmcnet.com/voip/0605/featurearticle-using-voip-software-building-blocks.htm
http://www.tmcnet.com/voip/0605/featurearticle-using-voip-software-building-blocks.htm
http://www.tmcnet.com/voip/0605/featurearticle-using-voip-software-building-blocks.htm

[Wel99] Wells, D., “XP—Unit Tests,” 1999, available at www.extremeprogramming.org/
rules/unittests.html.

[Wel01] vanWelie, M., “Interaction Design Patterns,” 2001, available at www.welie.com/
patterns/.

[Whi95] Whittle, B., “Models and Languages for Component Description and Reuse,” ACM
Software Engineering Notes, vol. 20, no. 2, April 1995, pp. 76–89.

[Whi97] Whitmire, S., Object-Oriented Design Measurement, Wiley, 1997.
[Wie02] Wiegers, K., Peer Reviews in Software, Addison-Wesley, 2002.
[Wie03] Wiegers, K., Software Requirements, 2d ed., Microsoft Press, 2003.
[Wil93] Wilde, N., and R. Huitt, “Maintaining Object-Oriented Software,” IEEE Software, January

1993, pp. 75–80.
[Wil97] Williams, R. C, J. A. Walker, and A. J. Dorofee, “Putting Risk Management into Practice,”

IEEE Software, May 1997, pp. 75–81.
[Wil99] Wilkens, T. T., “Earned Value, Clear and Simple,” Primavera Systems, April 1, 1999, p. 2.
[Wil00] Williams, L., and R. Kessler, “All I Really Need to Know about Pair Programming I

Learned in Kindergarten,” CACM, vol. 43, no. 5, May 2000, available at http://collaboration
.csc.ncsu.edu/laurie/Papers/Kindergarten.PDF.

[Wil05] Willoughby, M., “Q&A: Quality Software Means More Secure Software,” Computerworld,
March 21, 2005, available at www.computerworld.com/securitytopics/security/story/
0,10801,91316,00.html.

[Win90] Wing, J. M., “A Specifier’s Introduction to Formal Methods,” IEEE Computer, vol. 23,
no. 9, September 1990, pp. 8–24.

[Wir71] Wirth, N., “Program Development by Stepwise Refinement,” CACM, vol. 14, no. 4, 1971,
pp. 221–227.

[Wir90] Wirfs-Brock, R., B. Wilkerson, and L. Weiner, Designing Object-Oriented Software,
Prentice Hall, 1990.

[WMT02] Web Mapping Testbed Tutorial., 2002, available at www.webmapping.org/
vcgdocuments/vcgTutorial/.

[Woh94] Wohlin, C., and P. Runeson, “Certification of Software Components,” IEEE Trans.
Software Engineering, vol. SE-20, no. 6, June 1994, pp. 494–499.

[Wor04] World Bank, Digital Technology Risk Checklist, 2004, downloadable from
www.moonv6.org/lists/att-0223/WWBANK_Technology_Risk_Checklist_Ver_6point1.pdf.

[W3C03] World Wide Web Consortium, Web Content Accessibility Guidelines, 2003, available at
www.w3.org/TR/2003/WD-WCAG20-20030624/.

[Yac03] Yacoub, S., et al., Pattern-Oriented Analysis and Design, Addison-Wesley, 2003.
[You75] Yourdon, E., Techniques of Program Structure and Design, Prentice Hall, 1975.
[You79] Yourdon, E., and L. Constantine, Structured Design, Prentice Hall, 1979.
[You95] Yourdon, E., “When Good Enough Is Best,” IEEE Software, vol. 12, no. 3, May 1995,

pp. 79–81.
[You01] Young, R., Effective Requirements Practices, Addison-Wesley, 2001.
[Zah90] Zahniser, R. A., “Building Software in Groups,” American Programmer, vol. 3, nos. 7–8,

July–August 1990.
[Zah94] Zahniser, R., “Timeboxing for Top Team Performance,” Software Development, March

1994, pp. 35–38.
[Zha98] Zhao, J, “On Assessing the Complexity of Software Architectures,” Proc. Intl. Software

Architecture Workshop, ACM, Orlando, FL, 1998, pp. 163–167.
[Zha02] Zhao, H., “Fitt’s Law: Modeling Movement Time in HCI,” Theories in Computer Human

Interaction, University of Maryland, October 2002, available at www.cs.umd.edu/class/
fall2002/cmsc838s/tichi/fitts.html.

[Zul92] Zultner, R., “Quality Function Deployment for Software: Satisfying Customers,” American
Programmer, February 1992, pp. 28–41.

[Zus90] Zuse, H., Software Complexity: Measures and Methods, DeGruyter, 1990.
[Zus97] Zuse, H., A Framework of Software Measurement, DeGruyter, 1997.

888 REFERENCES

pre75977_Ref.qxd 11/27/08 6:40 PM Page 888

http://www.extremeprogramming.org/
http://www.welie.com/
http://collaboration
http://www.computerworld.com/securitytopics/security/story/
http://www.webmapping.org/
http://www.moonv6.org/lists/att-0223/WWBANK_Technology_Risk_Checklist_Ver_6point1.pdf
http://www.w3.org/TR/2003/WD-WCAG20-20030624/
http://www.cs.umd.edu/class/

INDEX

Abstract interface design, 392
Abstraction 99, 223, 284
Access control, 597
Accessibility, 334, 541
ACS-DCV function, SafeHome, 157
Action, 14
Activity, see also Framework

activity, 15
Activity diagram, 162, 294, 853
Actors, 134
Adaptive Software Development

(ASD), 81
Aesthetic design, 380
Aggregation, 845
Agile manifesto, 65
Agile modeling, 88
Agility, 67

cost of change, 67
human factors, 71
politics of, 70
principles of, 69
process, 68

Alpha testing, 469
Ambient intelligence, 815
Analysis classes,

Attributes, 171
defining operations, 171
identification of, 169
selection criteria, 169
state diagrams for, 196
types of, 174

Analysis model (see also,
Requirements
model), 138

class-based, 168
elements of, 154
flow oriented, 187
scenario-based, 154

Analysis patterns, 142, 199
Anchor points, 46
Application domains, 7
Archetypes, 257
Architectural alternatives, 255
Architectural decisions, 246

template for, 247
Architectural description language

(ADL), 224, 264
Architectural design, see also

Design, architectural
context diagram, 256
elements of, 234
metrics, 624
WebApps, 383

Architectural mapping, 265
Architectural patterns, 253

Architectural structures, 250
grid, 385
hierarchical, 385
linear, 384
networked, 386

Architecture,
assessment of, 261
complexity of, 263
data centered, 250
data flow, 251
definition of, 223, 244
genres, 247
importance of, 245
instantiations of, 260
layered, 253
MVC, 387
object-oriented, 252
patterns, 360
refinement of, 258
styles, 249
types of, 250

Architecture Trade-Off Analysis
Method (ATAM), 262

Aspect-oriented development, 52
Aspects, 52, 228
Associations, 180
Attributes, 865

specifying, 171
Auditing, 609
Availability, 375

Baselines,
definition of, 588
project database, 588

Basis path testing, 485
Behavior models, 195

testing of, 526
Beta testing, 469
Black-box testing, 495
Bootstrap, 803
Boundary value analysis, 498, 544
Box structure specification,

558, 561
Bugs, characteristics of, 473
Business process reengineering

(BPR), 765

Call and return architecture, 251
Capability Maturity Model

(CMM), 789
Capability Maturity Model

Integration (CMMI),
797, 800

Certification, 560, 567

Change, 585
Change control, 596

process description, 597
types of, 598

Change control authority
(CCA), 596

Change management, 606
Change request, 596
Change set, 595
Chaos, 38
Check-in, 597, 606
Checkout, 597, 606
Chunking, 299
CK metrics suite, 628
Class diagrams, 842
Class model, consistency, 514
Class responsibility collaborator

(CRC) model, 173, 514
Class testing, 516
Class-based modeling, 167
Classes,

basic concepts, 863
design attributes, 868
metrics for, 628
testing methods, 522

Classic life cycle, 39
Cleanroom software engineering,

51, 558
design, 563
process model, 559
strategy, 558
testing, 566

Cluster testing, 467, 517
COCOMO II, 709
Code metrics, 638
Code restructuring, 771
Coding principles, 111
Cohesion, 227, 286

metrics for, 633
types of, 287

Collaboration, 126, 177
Collaborative development, 822
Common Closure Principle

(CCP), 285
Common Reuse Principle (CRP), 285
Communication, 15, 101
Communication diagram, 852
Compatibility tests, 542
Complexity,

architectural, 263
metrics defining, 634

Component-based development,
6, 50, 303

Component-based software
engineering (CBSE), 303

889

pre75977_Index.qxd 11/27/08 6:39 PM Page 889

Component-level design (see
Design, component level)

Components,
adaptation, 305
architectural design, 258
class-based, 282
classifying, 307
composition, 305
definition of, 277
dependencies, 286
design of, 237
interfaces, 286
metrics for, 632
naming conventions, 286
process-related view, 281
object-oriented view 277
qualification, 304
retrieving, 308
traditional, 298, 279
wrapping, 305

Composite aggregate class, 178
Composite information, 164
Composition, 845
Concerns, 228
Concretions, 284
Concurrent engineering, 48
Condition testing, 492
Condition-transition-

consequence (CTC), 754
Configuration audit, 599
Configuration objects, 589

identification, 594
WebApps, 603

Configuration review, 468
Configuration testing, 547
Construction, 15, 111
Content architecture, 384
Content design, 297, 382
Content management, 603
Content object, 208, 382
Content testing, 534
Contingency planning, 757
Control specification (CSPEC), 191
Control structure testing, 492
Correctness, 680

verification, 559, 564
Costs,

change, 67
defects, 417
quality, 408

Coupling, 227, 288
categories, 289
metrics 633

CRC cards, 75
Critical modules, 464
Critical path, 724
Cross cutting concerns, 52, 228
Crystal, 85
Customers, 103
Cyclomatic complexity, 488

Data abstraction, 223
Data attibutes, 164

Data design, 234
Data flow architecture, 251
Data flow diagram, 188

context level, 188
creation of, 189

Data flow testing, 493
Data invariant, 569
Data modeling, 164
Data objects, 164

relationships, 165
Data restructuring, 771
Data tree, 208
Database testing, 535
Data-centered architecture, 250
Debugging, 473

automated, 476
process, 473
psychological

considerations, 474
strategies, 475
tactics, 476
tools, 477

Decision tables, 300
Decision trees, 716
Defect amplification, 418
Defect removal efficiency

(DRE), 681
Defects, 417
Definition-use chain, 493
Dependencies, 181, 844
Dependency Inversion Principle

(DIP), 284
Dependency tracking, 592
Deployment, 15

diagrams, 846
principles, 113
testing, 472

Design classes,
characteristics of, 231
types of, 230

Design for reuse (DFR), 307
Design model, 233

dimensions of, 233
metrics, 624

Design patterns, 348
description of, 348, 352
goals, 349
granularity, 369
template, 353
types of, 351

Design process, 219
Design quality, assessment of, 220
Design recovery, 771
Design verification, 564
Design, 215

architectural, 255
component level, 237, 276

design steps, 290
graphical notation, 299
guidelines, 285
principles, 282
tabular notation, 300
WebApps, 296

concepts, 222
deployment level, 238
description of, 243
domain driven, 78
evolution of, 221
generic task set, 222
granularity, 369
object-oriented, 230
pattern-based, 224, 347, 354
postmodern, 825
principles, 109
reuse issues, 307
user interface, 312, 319, 328,

342, 331, 330
user-centric, 318
WebApps, see also WebApps,

373, 377
XP, 75

Deterioration, 5
Display content, 327
Document restructuring, 770
Domain analysis, 151
Domain driven design, 78
Domain engineering, 303
Drivers, 458
Dynamic Systems Development

Method (DSDM), 84

Earned value analysis (EVA), 739
Efficiency, 404
Elaboration, 122, 228, 324
Elicitation, 121, 128

work products, 133
End users, 103
Engineering change order

(ECO), 596
Entity relationship (ER)

diagrams, 166
Equivalence partitioning, 497, 544
Error density, 421
Errors

correction of, 409, 477
definition of, 417
estimation, 692
handling, 333

Estimation, 697
agile, 713
automated, 708
decomposition techniques, 698
empirical models, 708
example of, 704
FP-based, 702
LOC-based, 700
OO projects, 712
problem-based, 699
process-based, 703
reconciling, 707
use cases, 705
WebApps, 714

Ethics, 838
Events, 195
Evolutionary process model,

42, 49

890 INDEX

pre75977_Index.qxd 11/27/08 6:39 PM Page 890

INDEX 891

Extreme Programming (XP), 72
coding, 76
debate about, 78
design, 75
Industrial XP, 77
key elements, 72
planning, 73
process, 73
testing, 76

Factoring, 268
Failure, 442
Failure curve, 6
Failures-in-time (FIT), 443
Feature definition, 86
Feature Driven Development

(FDD), 86
Fitt’s Law, 337
Flow graph notation, 486
Flow-oriented modeling, 187
Formal design, 559
Formal methods, 51, 558

concepts, 568
examples of, 568
languages, 573
mathematical notation, 571

Formal technical reviews, see
also Reviews, 426

Forward engineering, 771, 778
client server, 779
OO systems, 780

Framework activity, 15, 32
Framework models, 224
Frameworks, 352, 787
Function point (FP), 620, 674

estimation of, 703
Functional design, 297
Functional independence, 227
Functional model, WebApps, 210
Functional specification, 560
Functionality, 403

Genres, 247
Glass-box testing, 485
Globalization, 813
Golden rules, 313
Good-enough software, 406
Grammatical parse, 169, 189
Granularity, 105
Graph matrix, 491, 496
Graphic design, WebApps, 380
Guard, 197

Hazard analysis, 444, 757
Help facilities, 332
Human factors, agility, 71

Inception, 121
Increment planning, 558
Independent paths, 487
Independent test group

(ITG), 452
Indicator, 614

Information,
representation, 835
spectrum, 836

Information flow continuity, 188
Information hiding, 226
Inheritance, 866
Inspections (see Reviews)
Integration testing, 459

bottom-up, 461
breadth-first, 460
depth-first, 460
OO context, 466, 516
top-down, 459
work products, 464

Integrity, 680
Interaction mechanisms, 313
Interaction model, WebApps, 209
Interface

analysis, 320
design, 235, 320
mechanisms, testing of, 538
semantics, testing of, 540
testing, 537

Interface Segregation Principle
(ISP), 284

Internationalization, 334
Inventory analysis, 770
ISO 9001:2000, 38, 444
ISO 9126 quality factors, 403
Issues list, 427

Lean Software development
(LSD), 87

Legacy software, 9
Liability, 410
Lines of code (LOC), 674
Liskov Substitution Principle

(LSP), 284
Load testing, 551
Loop testing, 493

Maintainability, 404, 680, 762
Maintenance, 6, 762

metrics, 641
Make/Buy decision, 715
Mapping, architectural, 265
Maturity model, 789
Mean-time-between-failure

(MTBF), 442
Mean-time-to-repair (MTTR), 442
Measure, 614
Measurement, see also Metrics,

614, 616, 671
Mental model, 318
Messages, 867
Metaphors, 338
Metrics,

architectural design, 624
arguments in favor, 683
attributes of, 618
baseline, 683
class-oriented, 627
components, 632

cyclomatic complexity, 488
definition of, 614
design model, 624
establishing a program, 686
etiquette, 669
function-oriented, 673
maintenance, 641
morphology, 625
object-oriented, 627, 675
process, 667
product, 613
project, 670
public and private, 668
reconciling LOC and FP, 673
reliability, 442
requirements, 619
size-oriented, 672
small organizations, 684
software quality, 679
specification quality, 623
SPI, 667
SQA, 438
technical reviews, 420
terminology, 614
testing, 639
use cases, 676
user interface, 635
WebApps, 636, 677

Modeling, 15, 105
Model-View-Controller

(MVC), 387
Modularity, 100, 225
MOOD metrics suite, 631
Multiplicity, 180, 844
Myths, 22

Navigation design, WebApps, 388
Navigation modeling, 212
Navigation semantic units

(NSUs), 388, 546
Navigation semantics, 388
Navigation syntax, 389
Navigation testing, 545
Negligence, 410
Negotiation, 122, 143
Netsourcing, 9

Object constraint language
(OCL), 574

example of, 576
notation, 574, 859

Object elaboration, 324
Object points, 710
Object-oriented,

analysis, 153, 187
architecture, 252
design, 230
models, 514

OMG/CORBA, 306
OOHDM, 390
Open source software, 9, 818
Open world computing, 8, 815
Open-closed principle (OCP), 282

pre75977_Index.qxd 11/27/08 6:39 PM Page 891

Operations, 171, 865
Orthogonal array testing, 499
Outsourcing, 717

Packages, 182
Pair programming, 76, 425
Partition testing, 524
Path testing, 544
Pattern languages, 353
Pattern organizing table, 358
Patterns, 100

analysis, 142, 199
architecture, 253, 360
component-level, 362
creational, 350
description of, 352
design, 224, 348
generative, 350
repository, 353
requirements modeling, 199
testing, 507
user interface, 330, 364
WebApps, 368

People, 647, 834
effort, 725
communication issues, 655

People CMM, 801
Performance testing, 471, 550
Personal Software Process (PSP),

56, 803
Phase pattern, 35
Planning, 15

effort distribution, 727
principles, 103
XP, 73

Polymorphism, 868
Portability, 404
Postcondition, 569
Practice, 17

description of, 97
essence of, 17
principles, 99

Precondition, 569
Priority points, 127
Problem decomposition, 656
Procedural abstraction, 223
Process,

adaptation, 16
agile, 68
business level, 765
decomposition, 658
duality of, 60
elements of, 14
management issues, 657
metrics integration, 682
patterns, 35, 37
principles, 98
trends, 819

Process activation table, 193
Process assessment, 37
Process flow, 31
Process framework, 15, 32

Process improvement (see
Software Process
Improvement)

Process model,
activities, 31
agile, 80
aspect-oriented, 52
concurrent, 48
evolutionary, 42
generic, 31
incremental, 41
prescriptive, 38
specialized, 50
work flow, 39

Process specification (PSPEC), 194
Process technology, 59
Producer, 426
Product, 648, 656
Program design language

(PDL), 301
Project, 648, 660
Project management,

concepts, 646
critical practices, 662

Project planning, 691
estimation, 692
resources, 695
task set, 694

Project tracking, 734
Project velocity, 74
Proof of correctness, 564
Prototyping, 43, 319
Putnam-Norden-Rayleigh (PNR)

Curve, 726

Quality, see also Software quality,
guidelines, 219
management, 397, 435
measurement, 680
metrics, 680
views of, 399

Quality function deployment
(QFD), 131

Questions, context free, 127

Random testing, 522
Readability, 339
Recovery testing, 470
Reengineering, see also Software

reengineering, 764
Refactoring, 75, 229, 292
Refinement, 228
Regression testing, 462
Release Reuse Equivalency

Principle (REP), 285
Reliability, 403

definition of, 442
metrics, 442

Reporting, 609
Repository, 308, 590

design patterns, 361
features, 591

hypermedia, 370
role of, 590

Requirements,
emergent, 816
negotiating, 142
tracing, 592
validating, 144

Requirements analysis, 149
limits on, 205
objectives, 150
rules of thumb, 151

Requirements engineering,
120, 824

Requirements gathering, 127, 558
Requirements management, 124
Requirements model, 138

class-based, 168
elements of, 139
eliciting, 140
metrics, 619
scenario-based, 154

Requirements modeling,
approaches, 153
input to, 206
output from, 207
patterns, 199
principles, 107
strategies, 186
WebApps, 205

Requirements specification,
template, 123

Requirements validation
checklist, 124

Resources, 695
Response time, 332
Responsibilities, 175

allocation guidelines, 175
Restructuring, 776
Reuse, 306
Reuse library, 308
Reverse engineering, 770, 772

data, 773
processing, 774
user interface, 775

Review leader, 426
Review meeting, 426
Reviews, 220, 416

analyzing effectiveness, 421
checklists, 425
cost effectiveness, 421
development effort , 422
formality spectrum, 423
guidelines, 427
informal, 424
inspection data, 422
issues list, 427
metrics for, 420
record keeping, 427
reference model, 423
reporting, 427
sample driven, 429
summary report, 427
walkthroughs, 426

892 INDEX

pre75977_Index.qxd 11/27/08 6:39 PM Page 892

Risk exposure, 753
Risk information sheet, 757
Risk item checklist, 748
Risk management, 744, 795
Risk table, 751
Risks, 409

assessing, 748
components and drivers, 749
CTC format, 755
exposure from, 753
identification of, 747
impact of, 752
mitigation, 756
projection, 749
refinement, 755
types of, 746

RMMM plan, 757

SafeHome, 24, 45, 47
ACS-DCV function, 157
activity diagram, 211
actors, 135
agile development, 79
archetypes, 258
architecture assessment, 263
architecture refinement,

254, 272
behavioral modeling, 141
CK metrics, 630
class diagram, 174
class models, 173
class testing, 523
cohesion, 288
content design, 382
context diagram, 257
coupling, 289
CRC models, 179
customer communication, 103
cyclomatic complexity, 488
data flow model, 189, 193, 622
data tree, 208
debugging, 475
design class, 232
design concepts, 229
design vs. coding, 218
domain analysis, 153
estimation, 702
function points, 622
golden rules, 315
grammatical parse, 169
interface design review, 339
interface representation, 236
metrics approach, 682
metrics debates, 619
negotiation, 143
NSUs, 388
OCP in action, 283
outsourcing, 717
patterns, 364
preliminary user scenario, 132
product narrative, 129
project initiation, 24
project metrics, 670

project tracking, 739
PSPEC, 194
requirements gathering, 131
reviews, 430
risk analysis, 755
SCM issues, 598
screen layout, 329
state diagram, 192
team structure, 655
test case design, 484
test preparations, 454
UI design, 323
use cases, 138, 155, 160, 161
validation, 469
WebApp, 206, 543

Scalability, 375
SCAMPI, 37
Scenario-based modeling, 154
Scheduling, 721

concepts, 722
principles, 725
WebApps, 736

Scope, 656
Scrum, 82
Security, 375, 410, 680
Security testing, 470, 548
Self-organization, 72
Sensitivity testing, 471
Separation of concerns, 99, 225
Sequence diagram, 198, 202, 848
Six Sigma, 441
Smoke testing, 463
Software,

application domains, 7
building blocks, 817
characteristics, 4
death of, 2
definition of, 4
economist’s view, 30
importance of, 834
myths, 20
nature of, 3
open source, 818
open-world, 815
questions about, 4

Software architecture, see also
Architecture, 223

Software configuration items
(SCIs), 584, 589

elements of, 587
process, 593
repository, 590
scenario, 586
standards, 609
tasks, 593
WebApps, 601

Software design, see also
Design, 215

Software engineering,
core principles, 98
definition of, 13
environments, 828
ethics, 838

general principles, 19
layers, 14
model driven, 825
practice, 17, 96
realities, 12
test driven, 826

Software equation, 711
Software evolution, 762
Software increment, 16
Software maintenance, see also

Maintenance, 762
Software maturity index, 641
Software Metrics (see Metrics)
Software process improvement

(SPI), 667, 786
approaches to, 37
assessment, 791
constituencies, 788
critical success factors, 796
definition of, 787
education, 793
elements of, 788
framework, 787
installation/migration, 794
process, 791
risk management, 795
ROI, 804
selection/justification, 793
trends, 805

Software process (see Process)
Software quality, 220

achieving, 412
assessing, 404
cost of, 407
definition of, 400
design guidelines, 219
dilemma, 406
dimensions of, 401
elements of, 400
impact of management

actions, 411
McCall’s factors, 402
quantitative view, 405
relative costs, 409

Software quality assurance
(SQA), 413, 432

attributes, 438
elements of, 434
formal approaches, 438
goals, 437
metrics, 438
planning, 445
statistical, 439
tasks, 436

Software quality control, 412
Software reengineering,

economics of, 780
process model, 768

Software reliability (see Reliability)
Software repository (see

Repository)
Software safety, 443, 757
Software science, 638

INDEX 893

pre75977_Index.qxd 11/27/08 6:39 PM Page 893

Software scope, 694
Software sizing, 698
Software team, (see Team)
Software testing (see Testing)
Software tools (see Tools)
Specification, 122
SPICE, 38, 803
Spike solution, 75
Spiral model, 45, 319
Stage pattern, 35
Stakeholders, 15, 104, 649

identifying, 125
multiple viewpoints, 126

Standards, component-based, 282
State diagram, 141, 295, 856
State representations, 196
Statistical SPI, 669
Statistical use testing, 566
Status reporting, 600
Stereotype, 181, 843
Story-driven development, 78
Stress testing, 471, 552
Strong AI, 837
Structure chart, 280
Structured analysis, 153, 186
Structured design, 265
Structured programming, 298
Stubs, 458
Styles, 249
Subclass, 865
Superclass, 865
Supportability, 764
Swimlane diagram, 163
Synchronization control, 597
System of forces, 348
System perception, 317
System testing, 470

Task, 14
analysis, 322
elaboration, 324
network, 731
pattern, 35

Task set, 31, 33
example, 729
identifying, 34

Team, 651
agile, 654
future trends, 817
jelling of, 653
leaders, 649
self organizing, 72
structures, 651

Team Software Process (TSP),
58, 803

Technical reviews (see Reviews)
Technology,

evolution, 809
grand challenge, 821
hype cycle, 812
innovation cycle, 810
long view, 837

managing complexity, 814
trends, 808, 818

Test cases, 489
Testability, 482
Testing,

behavior models, 526
black box, 495
class hierarchy, 519
client/server, 503
completion criteria, 455
component level, 543
content, 534
control structure, 492
conventional software,

456, 481
data flow, 493
database, 535
deep structure, 522
documentation, 505
exhaustive, 485
fault-based, 519
fundamentals, 482
graph-based, 495
GUIs, 503, 537
help facilities, 505
loops, 493
metrics, 639
model-based, 502
multiple classes, 524
navigation paths, 545
object-oriented software, 465,

511, 516
organization, 451
patterns, 507
performance, 550
principles, 112
real-time systems, 506
scenario-based, 520
security, 548
specialized, 503
state-based, 524
statistical, 560, 566
strategic approach, 450, 455
surface structure, 522
thread-based, 466, 517
use-based, 466, 517
WebApps, 467, 529, 547
white-box, 485
XP, 76

TickIT, 803
Time-line charts, 732
Time-to-market, 376
Tools,

ADLs, 264
agile development, 90
analysis modeing with

UML, 199
architectural design, 260
BPR, 767
CBSE, 309
change management, 605, 608
CVS, 596

data modeling, 167
debugging, 477
estimation, 714
formal methods, 580
process management, 53
process modeling, 60
product metrics, 641
project and process, 679
project management, 662
requirements engineering, 125
restructuring, 777
reverse engineering, 776
risk management, 758
scheduling, 732
SCM support, 600
SQA, 446
structured analysis, 194
test case design, 501
test management, 472
trends, 827
UI development, 335
use case development, 138
WebApp metrics, 638
WebApp testing, 552

Trends, 812

Umbrella activities, 16
UML, 841

activity diagram, 162, 211,
294, 854

class diagram notation, 843
communication diagram

notation, 852
component diagram, 237
deployment diagram notation,

238, 846
generalization, 843
history of, 841
OCL, 859
realization, 843
sequence diagram, 198, 850
state diagram, 295, 857
stereotype, 181, 843
swimlane diagram, 163,

326, 855
use-case diagram, 847

Unified Process, 53
agile version, 89
phases of, 54

Unit testing, 456
considerations, 457
OO context, 466, 516

Usability, 312, 317, 404
design, 235
tests, 540
questions, 541

Usage scenarios, 132
Use cases, 132

creating, 155
diagram, 846
exceptions, 159
formal, 159

894 INDEX

pre75977_Index.qxd 11/27/08 6:39 PM Page 894

interface design, 322
isolating events, 195
refining, 158
supplementary UML

models, 161
template, 136

Use-based testing, 466, 517
User analysis, 321
User interface,

analysis of, 317
design model, 317
patterns, 364
testing of, 537

User Interface Design (see also
Design, user interface),
312

User model, 318
User stories, 74
Users, types of, 318

Validation, 112, 123, 451
Validation testing, 468

OO context, 517
test criteria, 468

Verification, 451

Version control, 595, 608
Versioning, 592
Vital few, 439
V-model, 40

W5HH principle, 661
Walkthroughs (see Reviews)
Waterfall model, 39
Ways of navigating (WoN), 388
Wear, 5
Web applications (WebApps),

8, 10
aesthetic design, 380
architectural design, 383
characteristics of, 11
component-level design,

296, 390
configuration

management, 601
configuration model, 211
configuration objects, 603
content model, 207
design patterns, 368
design pyramid, 378
design quality, 374

errors, 531
functional model, 210
interaction model, 209
interface design, 336, 340, 377
managing changes, 606
metrics, 636
navigation design, 388
navigation modeling, 211
quality dimensions, 530
requirements modeling, 205
test planning, 532
testing concepts, 530
testing process, 533
testing strategy, 532
user interface design, 335

White-box testing, 485
Work breakdown structure

(WBS), 732
Work environment, 328
Work flow, 39, 325

XP (see Extreme Programming)

Z specification language, 577

INDEX 895

pre75977_Index.qxd 11/27/08 6:39 PM Page 895

pre75977_Index.qxd 11/27/08 6:39 PM Page 896

pre75977_Index.qxd 11/27/08 6:39 PM Page 897

pre75977_Index.qxd 11/27/08 6:39 PM Page 898

pre75977_Index.qxd 11/27/08 6:39 PM Page 899

pre75977_Index.qxd 11/27/08 6:39 PM Page 900

Praise for earlier editions of

Software Engineering: A Practitioner’s Approach
“Roger Pressman has written a solid comprehensive guidebook for the � eld of software
engineering for both students of the discipline and software developers and managers
practicing it—or needing to practice it.” IEEE Software

“This is a classic modern textbook, clear and authoritative, with lots of pictures, examples,
questions and references I recommend it to anyone who asks, ‘What is software
engineering and where is it now?’ ACM Computing Reviews

“An up-to-the minute, in-depth treatment of the software engineering process.”
Byte Book Club (main selection)

“... had the best explanations of what I want to cover ...”

“... The de� nitive book on the subject as far as I’m concerned ...”

“... A good textbook as well as reference ...” from comp.software-eng FAQ

“As a practicing Software Engineer, I � nd this book to be invaluable. It has served as
a great reference for all the projects that I have worked on.”

“This book is a framework on how to develop high quality software.”
reviews from Amazon.com

For almost three decades, Software Engineering: A Practitioner’s Approach has been the best selling guide to software
engineering for students and industry professionals alike.

In its seventh edition, the book has been restructured and redesigned, undergoing a substantial content update
that addresses every important topic in what many have called “the engineering discipline of the 21st century.”
Unique sidebars and marginal content have been expanded and enhanced, o� ering the reader an entertaining
and informative complement to chapter topics. New chapters and a new organization make the book still easier
to use in the classroom and as a self-study guide.

 Part 1, The Software Process, presents both prescriptive and agile process models.

 Part 2, Modeling, presents modern analysis and design methods with a new emphasis on UML-based modeling.

 Part 3, Quality Management, is new for the seventh edition and address all aspects of software testing, quality
assurance, formal veri� cation techniques, and change management.

 Part 4, Managing Software Projects, presents topics that are relevant to those who plan, manage, and control
a software project.

 Part 5, Advanced Topics, presents dedicated chapters that address software process improvement and
future software engineering trends.

Roger Pressman, continuing in the tradition of his earlier editions, has written a book that will serve as an excellent
guide to software engineering for everyone who must understand, build, or manage computer-based systems.

Visit the book’s On-Line Learning Center at www.mhhe.com/pressman.

The site, visited by thousands of readers each month, has been signi� cantly expanded and updated to provide
comprehensive software engineering resources for students, instructors, and industry professionals.

Software Engineering
A Practitioner’s Approach

Seventh Edition

Roger S. Pressman

Seventh
Edition

Softw
are Engineering

A Practitioner’s Approach

Pressman

Roger S. Pressman, Ph.D

M
D

 D
A

L
IM

 #1001702 12/23/08 C
Y

A
N

 M
A

G
 Y

E
L

O
 B

L
K

http://www.mhhe.com/pressman

	Cover Page
	Title Page
	Copyright Page
	Dedication
	About Author Page
	Preface
	CONTENTS AT A GLANCE
	CONTENTS
	CHAPTER 1: SOFTWARE AND SOFTWARE ENGINEERING
	1.1 The Nature of Software
	1.1.1 Defining Software
	1.1.2 Software Application Domains
	1.1.3 Legacy Software

	1.2 The Unique Nature of WebApps
	1.3 Software Engineering
	1.4 The Software Process
	1.5 Software Engineering Practice
	1.5.1 The Essence of Practice
	1.5.2 General Principles

	1.6 Software Myths
	1.7 How It All Starts
	1.8 Summary
	PROBLEMS AND POINTS TO PONDER
	FURTHER READINGS AND INFORMATION SOURCES

	PART ONE: THE SOFTWARE PROCESS
	CHAPTER 2: PROCESS MODELS
	2.1 A Generic Process Model
	2.2 Process Assessment and Improvement
	2.3 Prescriptive Process Models
	2.4 Specialized Process Models
	2.5 The Unified Process
	2.6 Personal and Team Process Models
	2.7 Process Technology
	2.8 Product and Process
	2.9 Summary
	PROBLEMS AND POINTS TO PONDER
	FURTHER READINGS AND INFORMATION SOURCES

	CHAPTER 3: AGILE DEVELOPMENT
	3.1 What Is Agility?
	3.2 Agility and the Cost of Change
	3.3 What Is an Agile Process?
	3.4 Extreme Programming (XP)
	3.5 Other Agile Process Models
	3.6 A Tool Set for the Agile Process
	3.7 Summary
	PROBLEMS AND POINTS TO PONDER
	FURTHER READINGS AND INFORMATION SOURCES

	PART TWO: MODELING
	CHAPTER 4: PRINCIPLES THAT GUIDE PRACTICE
	4.1 Software Engineering Knowledge
	4.2 Core Principles
	4.3 Principles That Guide Each Framework Activity
	4.4 Summary
	PROBLEMS AND POINTS TO PONDER
	FURTHER READINGS AND INFORMATION SOURCES

	CHAPTER 5: UNDERSTANDING REQUIREMENTS
	5.1 Requirements Engineering
	5.2 Establishing the Groundwork
	5.3 Eliciting Requirements
	5.4 Developing Use Cases
	5.5 Building the Requirements Model
	5.6 Negotiating Requirements
	5.7 Validating Requirements
	5.8 Summary
	PROBLEMS AND POINTS TO PONDER
	FURTHER READINGS AND INFORMATION SOURCES

	CHAPTER 6: REQUIREMENTS MODELING: SCENARIOS, INFORMATION, AND ANALYSIS CLASSES
	6.1 Requirements Analysis
	6.2 Scenario-Based Modeling
	6.3 UML Models That Supplement the Use Case
	6.4 Data Modeling Concepts
	6.5 Class-Based Modeling
	6.6 Summary
	PROBLEMS AND POINTS TO PONDER
	FURTHER READINGS AND INFORMATION SOURCES

	CHAPTER 7: REQUIREMENTS MODELING: FLOW, BEHAVIOR, PATTERNS, AND WEBAPPS
	7.1 Requirements Modeling Strategies
	7.2 Flow-Oriented Modeling
	7.3 Creating a Behavioral Model
	7.4 Patterns for Requirements Modeling
	7.5 Requirements Modeling for WebApps
	7.6 Summary
	PROBLEMS AND POINTS TO PONDER
	FURTHER READINGS AND INFORMATION SOURCES

	CHAPTER 8: DESIGN CONCEPTS
	8.1 Design within the Context of Software Engineering
	8.2 The Design Process
	8.3 Design Concepts
	8.4 The Design Model
	8.5 Summary
	PROBLEMS AND POINTS TO PONDER
	FURTHER READINGS AND INFORMATION SOURCES

	CHAPTER 9: ARCHITECTURAL DESIGN
	9.1 Software Architecture
	9.2 Architectural Genres
	9.3 Architectural Styles
	9.4 Architectural Design
	9.5 Assessing Alternative Architectural Designs
	9.6 Architectural Mapping Using Data Flow
	9.7 Summary
	PROBLEMS AND POINTS TO PONDER
	FURTHER READINGS AND INFORMATION SOURCES

	CHAPTER 10: COMPONENT-LEVEL DESIGN
	10.1 What Is a Component?
	10.2 Designing Class-Based Components
	10.3 Conducting Component-Level Design
	10.4 Component-Level Design for WebApps
	10.5 Designing Traditional Components
	10.6 Component-Based Development
	10.7 Summary
	PROBLEMS AND POINTS TO PONDER
	FURTHER READINGS AND INFORMATION SOURCES

	CHAPTER 11: USER INTERFACE DESIGN
	11.1 The Golden Rules
	11.2 User Interface Analysis and Design
	11.3 Interface Analysis
	11.4 Interface Design Steps
	11.5 WebApp Interface Design
	11.6 Design Evaluation
	11.7 Summary
	PROBLEMS AND POINTS TO PONDER
	FURTHER READINGS AND INFORMATION SOURCES

	CHAPTER 12: PATTERN-BASED DESIGN
	12.1 Design Patterns
	12.2 Pattern-Based Software Design
	12.3 Architectural Patterns
	12.4 Component-Level Design Patterns
	12.5 User Interface Design Patterns
	12.6 WebApp Design Patterns
	12.7 Summary
	PROBLEMS AND POINTS TO PONDER
	FURTHER READING AND INFORMATION SOURCES

	CHAPTER 13: WEBAPP DESIGN
	13.1 WebApp Design Quality
	13.2 Design Goals
	13.3 A Design Pyramid for WebApps
	13.4 WebApp Interface Design
	13.5 Aesthetic Design
	13.6 Content Design
	13.7 Architecture Design
	13.8 Navigation Design
	13.9 Component-Level Design
	13.10 Object-Oriented Hypermedia Design Method (OOHDM
	13.11 Summary
	PROBLEMS AND POINTS TO PONDER
	FURTHER READINGS AND INFORMATION SOURCES

	PART THREE: QUALITY MANAGEMENT
	CHAPTER 14: QUALITY CONCEPTS
	14.1 What Is Quality?
	14.2 Software Quality
	14.3 The Software Quality Dilemma
	14.4 Achieving Software Quality
	14.5 Summary
	PROBLEMS AND POINTS TO PONDER
	FURTHER READINGS AND INFORMATION SOURCES

	CHAPTER 15: REVIEW TECHNIQUES
	15.1 Cost Impact of Software Defects
	15.2 Defect Amplification and Removal
	15.3 Review Metrics and Their Use
	15.4 Reviews: A Formality Spectrum
	15.5 Informal Reviews
	15.6 Formal Technical Reviews
	15.7 Summary
	PROBLEMS AND POINTS TO PONDER
	FURTHER READINGS AND INFORMATION SOURCES

	CHAPTER 16: SOFTWARE QUALITY ASSURANCE
	16.1 Background Issues
	16.2 Elements of Software Quality Assurance
	16.3 SQA Tasks, Goals, and Metrics
	16.4 Formal Approaches to SQA
	16.5 Statistical Software Quality Assurance
	16.6 Software Reliability
	16.7 The ISO 9000 Quality Standards
	16.8 The SQA Plan
	16.9 Summary
	PROBLEMS AND POINTS TO PONDER
	FURTHER READINGS AND INFORMATION SOURCES

	CHAPTER 17: SOFTWARE TESTING STRATEGIES
	17.1 A Strategic Approach to Software Testing
	17.2 Strategic Issues
	17.3 Test Strategies for Conventional Software
	17.4 Test Strategies for Object-Oriented Software
	17.5 Test Strategies for WebApps
	17.6 Validation Testing
	17.7 System Testing
	17.8 The Art of Debugging
	17.9 Summary
	PROBLEMS AND POINTS TO PONDER
	FURTHER READINGS AND INFORMATION SOURCES

	CHAPTER 18: TESTING CONVENTIONAL APPLICATIONS
	18.1 Software Testing Fundamentals
	18.2 Internal and External Views of Testing
	18.3 White-Box Testing
	18.4 Basis Path Testing
	18.5 Control Structure Testing
	18.6 Black-Box Testing
	18.7 Model-Based Testing
	18.8 Testing for Specialized Environments, Architectures, and Applications
	18.9 Patterns for Software Testing
	18.10 Summary
	PROBLEMS AND POINTS TO PONDER
	FURTHER READINGS AND INFORMATION SOURCES

	CHAPTER 19: TESTING OBJECT-ORIENTED APPLICATIONS
	19.1 Broadening the View of Testing
	19.2 Testing OOA and OOD Models
	19.3 Object-Oriented Testing Strategies
	19.4 Object-Oriented Testing Methods
	19.5 Testing Methods Applicable at the Class Level
	19.6 Interclass Test-Case Design
	19.7 Summary
	PROBLEMS AND POINTS TO PONDER
	FURTHER READINGS AND INFORMATION SOURCES

	CHAPTER 20: TESTING WEB APPLICATIONS
	20.1 Testing Concepts for WebApps
	20.2 The Testing Process—An Overview
	20.3 Content Testing
	20.4 User Interface Testing
	20.5 Component-Level Testing
	20.6 Navigation Testing
	20.7 Configuration Testing
	20.8 Security Testing
	20.9 Performance Testing
	20.10 Summary
	PROBLEMS AND POINTS TO PONDER
	FURTHER READINGS AND INFORMATION SOURCES

	CHAPTER 21: FORMAL MODELING AND VERIFICATION
	21.1 The Cleanroom Strategy
	21.2 Functional Specification
	21.3 Cleanroom Design
	21.4 Cleanroom Testing
	21.5 Formal Methods Concepts
	21.6 Applying Mathematical Notation for Formal Specification
	21.7 Formal Specification Languages
	21.8 Summary
	PROBLEMS AND POINTS TO PONDER
	FURTHER READINGS AND INFORMATION SOURCES

	CHAPTER 22: SOFTWARE CONFIGURATION MANAGEMENT
	22.1 Software Configuration Management
	22.2 The SCM Repository
	22.3 The SCM Process
	22.4 Configuration Management for WebApps
	22.5 Summary
	PROBLEMS AND POINTS TO PONDER
	FURTHER READINGS AND INFORMATION SOURCES

	CHAPTER 23: PRODUCT METRICS
	23.1 A Framework for Product Metrics
	23.2 Metrics for the Requirements Model
	23.3 Metrics for the Design Model
	23.4 Design Metrics for WebApps
	23.5 Metrics for Source Code
	23.6 Metrics for Testing
	23.7 Metrics for Maintenance
	23.8 Summary
	PROBLEMS AND POINTS TO PONDER
	FURTHER READINGS AND INFORMATION SOURCES

	PART FOUR: MANAGING SOFTWARE PROJECTS
	CHAPTER 24: PROJECT MANAGEMENT CONCEPTS
	24.1 The Management Spectrum
	24.2 People
	24.3 The Product
	24.4 The Process
	24.5 The Project
	24.6 The W5HH Principle
	24.7 Critical Practices
	24.8 Summary
	PROBLEMS AND POINTS TO PONDER
	FURTHER READINGS AND INFORMATION SOURCES

	CHAPTER 25: PROCESS AND PROJECT METRICS
	25.1 Metrics in the Process and Project Domains
	25.2 Software Measurement
	25.3 Metrics for Software Quality
	25.4 Integrating Metrics within the Software Process
	25.5 Metrics for Small Organizations
	25.6 Establishing a Software Metrics Program
	25.7 Summary
	PROBLEMS AND POINTS TO PONDER
	FURTHER READINGS AND INFORMATION SOURCES

	CHAPTER 26: ESTIMATION FOR SOFTWARE PROJECTS
	26.1 Observations on Estimation
	26.2 The Project Planning Process
	26.3 Software Scope and Feasibility
	26.4 Resources
	26.5 Software Project Estimation
	26.6 Decomposition Techniques
	26.7 Empirical Estimation Models
	26.8 Estimation for Object-Oriented Projects
	26.9 Specialized Estimation Techniques
	26.10 The Make/Buy Decision
	26.11 Summary
	PROBLEMS AND POINTS TO PONDER
	FURTHER READINGS AND INFORMATION SOURCES

	CHAPTER 27: PROJECT SCHEDULING
	27.1 Basic Concepts
	27.2 Project Scheduling
	27.3 Defining a Task Set for the Software Project
	27.4 Defining a Task Network
	27.5 Scheduling
	27.6 Earned Value Analysis
	27.7 Summary
	PROBLEMS AND POINTS TO PONDER
	FURTHER READINGS AND INFORMATION SOURCES

	CHAPTER 28: RISK MANAGEMENT
	28.1 Reactive versus Proactive Risk Strategies
	28.2 Software Risks
	28.3 Risk Identification
	28.4 Risk Projection
	28.5 Risk Refinement
	28.6 Risk Mitigation, Monitoring, and Management
	28.7 The RMMM Plan
	28.8 Summary
	PROBLEMS AND POINTS TO PONDER
	FURTHER READINGS AND INFORMATION SOURCES

	CHAPTER 29: MAINTENANCE AND REENGINEERING
	29.1 Software Maintenance
	29.2 Software Supportability
	29.3 Reengineering
	29.4 Business Process Reengineering
	29.5 Software Reengineering
	29.6 Reverse Engineering
	29.7 Restructuring
	29.8 Forward Engineering
	29.9 The Economics of Reengineering
	29.10 Summary
	PROBLEMS AND POINTS TO PONDER
	FURTHER READINGS AND INFORMATION SOURCES

	PART FIVE: ADVANCED TOPICS
	CHAPTER 30: SOFTWARE PROCESS IMPROVEMENT
	30.1 What Is SPI?
	30.2 The SPI Process
	30.3 The CMMI
	30.4 The People CMM
	30.5 Other SPI Frameworks
	30.6 SPI Return on Investment
	30.7 SPI Trends
	30.8 Summary
	PROBLEMS AND POINTS TO PONDER
	FURTHER READINGS AND INFORMATION SOURCES

	CHAPTER 31: EMERGING TRENDS IN SOFTWARE ENGINEERING
	31.1 Technology Evolution
	31.2 Observing Software Engineering Trends
	31.3 Identifying “Soft Trends”
	31.4 Technology Directions
	31.5 Tools-Related Trends
	31.6 Summary
	PROBLEMS AND POINTS TO PONDER
	FURTHER READINGS AND INFORMATION SOURCES

	CHAPTER 32: CONCLUDING COMMENTS
	32.1 The Importance of Software—Revisited
	32.2 People and the Way They Build Systems
	32.3 New Modes for Representing Information
	32.4 The Long View
	32.5 The Software Engineer’s Responsibility
	32.6 A Final Comment

	APPENDIX 1: AN INTRODUCTION TO UML
	APPENDIX 2: OBJECT-ORIENTED CONCEPTS
	REFERENCES
	INDEX

