IEVERN 4y
Patterns

A Hands-On Experience with
Real-World Examples

Second Edition

\/askaran Sarcar
Foreword by Sunil Sati

Apress’

Java Design Patterns

A Hands-On Experience with
Real-World Examples

Second Edition

Vaskaran Sarcar
Foreword by Sunil Sati

Apress’

Java Design Patterns: A Hands-On Experience with Real-World Examples

Vaskaran Sarcar
Bangalore, Karnataka, India

ISBN-13 (pbk): 978-1-4842-4077-9 ISBN-13 (electronic): 978-1-4842-4078-6
https://doi.org/10.1007/978-1-4842-4078-6

Library of Congress Control Number: 2018964945

Copyright © 2019 by Vaskaran Sarcar

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: Laura Berendson

Coordinating Editor: Aditee Mirashi

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/978-1-4842-4077-9. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-4078-6

This book is dedicated to
Almighty God, my family, and the Gang of Four.

You are my inspiration.

Table of Contents

About the AUNOFccccismrmssnmmisnnmsssnsmssssnessnsessnsesssnsesssnsesssnnesssnnssssnnssssnnssssnnsssnn Xix
About the Technical REVIEWEI'Sccusesrsssnsssssnsssssnsssssnsssssnsssssnnssssnnsssssnssssanssssnnssssas Xxi
AcknNoWIedgmentsccccuusemmmmmssssnnmmsssssnnssssssnssssssssnsnssssssnnnssssssnnnssssssnnnsssssnnnnssssnnns Xxiii
FOrE@WOKdcooiiisnmnnmsssnnnnmssssnnnnsssssnnnnsssssnnnnsssssnnnnnssssnnnnsssssnnnnsssssnnnnsssssnnnnsssssnnnnnsssn XXV
INtroduCtionccucismmrissnnmsssnnmsssnsnsssnnssssnnssssnnssssansessannessannessannesssnnesssnnssssnnssssnnnssnns XXVii
Part I: Gang of Four Patterns...........cccccimnnsssemmmmnmsssssssnmmmssssssssssssssssssssnnssssnnns 1
Chapter 1: Singleton Patternccccinninemmmnnnseennmnnsssnmmmsssssssssssss s 3
(€ T0] 1231171 1T O RS 3
{01 0T o OSSPSR 3
Real-World EXAMPIE.........cccriiicirincre s st s st s st s e 3
Computer-World EXAMPIE ..o s st se s s sas s e snens 4
HTUSTFALION ... e b e e R e e e e e e ae e e e e ae e 4
LTI D o = OSSOSO 4
Package EXPIOrEr VIEWouccerrenmrrinessnessssesssese s ssssesss s sss e sssssssssssessssssessssssssssssssessssssnnns 5
DISCUSSION ...t e e bbb e e b e e e e R b e e e e R b et e e e e ae 5
IMPIEMENTALION ... ———————— 6

0 1] SRS 7

Q&A SBSSION...c.uieirrrierriserrsserrsesr e s e e s e s e R e e e e R e R e e e R e e e Re e Re e R e e e e e rnRa e s 7

0 1] O RS 11
Eager INItalization ... s 12

Bill PUGN’S SOIULION.......ccirieieeeiriee e 14
Double-Checked LOCKING......c.cccierermerrrenssese s ses s s e s ssssess s ssssssessessssssessnnes 15

TABLE OF CONTENTS

Chapter 2: Prototype Pattern..........ccccvnnnmmmmnnssennnmnsssssnnmssssssssnssssssssssssssssesssssssnsnnss 19
LCT0] o DT {111 (o] TP 19
{080 1 (0T o OO OO S SO 19
Real-World EXAMPIE........cccvririiirinesin s s st s st s s e s s 19
Computer-World EXAMPIE ... s s se s s s s e sne s 20
HIUSTFALION ..o ——————— 20

L P T TT- T - O RRS 20
PaCKage EXPIOTEr VIBWcc.ccvvierererirsirere s sese e ses e s s ssssesesaesasssssesaesaessssessesaessssssnesnenes 22
IMPIEMENTALIONcveeeecce e 23
OUEPUL .t e e e R e 25
L0 T o] S 26
DEMONSTIALIONvviccce e 29
0 1] RS 31

Chapter 3: Builder Patiern.........cccuemmimmssnmnmmnsssssnmmmssssssesssssssssssssssssssssssssssssssssssnnss 33
LCT0] o DT {111 (o] TP 33
{080 1 (0T o OO OSSPSR 33
Real-World EXAMPIE........ccccveiinirirnesin s s st s st s s s 34
Computer-World EXAMPIE ... s sss e saesss e sne s 34
HIUSTFALION ..o ————————————— 35

L8 T Vo - RS 36
PacKage EXPIOTEr VIBWcceiveriererinsirere s sesses e ses e s s sss e s e saesessssesaesaessssessesaessssssnesneees 36
IMPIEMENTALIONcvveeeiceee e 38
OUEPUL .t e e e R e 42
L0 TE o] R 42
Modified HUSTFALION.........coiiirere s 46
Modified Package EXPIOrEr VIEWccccvrevrrrrerierenenseriesessssesse e ssssessessessessssessesaesssssssessenes 46
Modified ImplemEntation..........c.ccoevrrririnnrrsre e e 48
LT T 01 R 52
ANGIYSIS ..ovveireitrierere s e e e e e R e nan 53

TABLE OF CONTENTS

Chapter 4: Factory Method Patternccccunsemmimnsssnnnnssssssnnmsssssssssssssssssssssnsnns 55
LCT0] o 0T {111 (o] TP 55
{080 1 (0T o OO OSSR 55
Real-World EXAMPIE........cccciiinirrirnesis s s s st s st st s s 56
Computer-World EXAMPIE ... s s se s s s ses s sae s e sne s 56
HIUSTFALION ..o ———— 57

L T TT- T - O RRS 57
PaCKage EXPIOTEr VIBWc..ccvvverererinsirere st sese s ses e e s e s e saesassssesaesaessssessesassessssnesnenes 58
IMPIEMENTALIONccvveeeiceee e ———— 58
OUEPUL .t e R R e 61
Modified Implementation...........coccviennenn e —————————— 61
MOdiIfied QUIPUL......cccericeericircser e e nr s 63
ANAIYSIS .vveerreerreesessesrsse s r e E R e e e R e e nr R 63
L0 T o] S 63

Chapter 5: Abstract Factory Pattern..........ccccunsemmmnnsssnsnnmssssssnnnnsssssnsssssssssssssssssssnns 67
LCT0] o 0T {111 (o] TP 67
{080 1 (0T o OSSOSO 67
Real-World EXAMPIE........cccviiriisireneris s s st s st st s s 68
Computer-World EXAMPIE ... s s sss e s saessssessesne s 68
HUSTFALION ..o ——————————— 68

L T TT- Vo - RS 70
PacKage EXPIOTEr VIBWccuvvererenirsirere st sese s ssesss e s e saesasssssesaesaessssessesaessssesnesnees 71
IMPIEMENTALIONccveeeece e 72
OUEPUL .t e R R e 76
L0 T o] 76
Simple Factory Pattern Code SNIPPeL........ccvvvirinrirrri e 77
Factory Method Pattern Code SNIpPet.......ccccovvririinnrnine e 78
Abstract Factory Pattern Code Snippetccccvvrernrnrnine s se e enes 78
0] 3T 11 10 R 79
Modified HUSTrALION. ... ————————— 80

vii

TABLE OF CONTENTS

Modified Implementation............ccoviininnnrr e ——————— 80
LT T T 01 85
Chapter 6: Proxy Patterncccccunsemmmnmmsssnnmmnsssssnmmsssnnsnss 87
LCT0] o 0T {111 (o] TSP 87
{080 1 (0T o OO O S 87
Real-World EXAMPIE........ccccvriiirrenisin s st s st st s st s 87
Computer-World EXAMPIE ... s s sss e sae st e s s s 88
HIUSTFALION ..o s 88
L0 TN 1T Vo - RS 88
PaCKage EXPIOTEr VIBWcc.ccvvverererirsirere s sesses e e s e e sss e s e saesassssesaesasssssessesasssssesnesne s 89
IMPIEMENTALIONceceverece e b e ae s ae e e aenne s 90
01] RS 92
L0 T= T o] 92
Alternate Implementation........cccvevevrinin s —————— 93
Output Without Lazy Instantiation.........c.ccovervriniennsninnn e sessessesaens 95
ANGIYSIS ..cveveirierere st s s e e R e g e R e e e R R e e e e aenan 96
Output with Lazy InStantiation...........cccveveirinininnnsrse s sese s s sessessessens 96
ANGIYSIS ..cuveveierere st e e e R e e e R e e e e R R e e e e aenan 96
Modified Package EXPIOrer VIEWccccvrevrrrsrenenenseriesessssessessessssesessessessssessesaesssssssesseses 98
Modified Implementation..........c.ccovvrrrinnnnrr e ——— 99
LT T =T 01 O 101
Chapter 7: Decorator Pattern.........ccccinnsemmnmnsssssnnmmssnnnes 103
C 0] o DT {11 (o] TSP 103
oM. . —————————————————————————— 103
Real-World EXAMPIE.......cccciiriiirirerenin e s ss s et se s s sss s s s st s e snens 103
Computer-World EXAMPIE ... s se s s sss e s e s snessssesaesnes 105
HIUSTFAION ..o s 106
{8 T 1T T - OO 106
PaCKage EXPIOTEr VIBWcccevverererinsire s sese s s ses e s ses e ssessessssessesnessssessesaesasssssensesnes 107
IMPIEMENTALIONoceveree e 107

viil

TABLE OF CONTENTS

1] O 110
Q&A SESSION....ecuivirerirrerrrereresesesesesesessss s s s s s e a b b e e e e e e e e AR bR R R R e e nEnr s 11
Chapter 8: Adapter Pattern.........ccuccmmmnnnmnmmsssnnnmmmsssssmmssssnensssssssssss s 117
L€ oLl 1= 1 71 (o] 117
CONCEPE. . 117
Real-World EXAMPIE.........ccociieiirrr et sn e s s n e s s 117
Computer-World EXAMPIEccocvererirrrere e s s ses s sse e sae e s e ssessessssessesaesassessesnesaes 118
LT U0 O 119
[T30 1T Vo - 120
PaCKAQE EXPIOTEr VIBWccvevrereeriererseressesessessessessssessessesassassessessessssessessesssssssessesasssssensesses 120

10T 01 L=T 1 T=T 1) L0 | O 121
1] O 123
Modified HUSTrALION.......cccoiiiirrrir e 123
Modified Class DIagramccceeevrerrserieriersnsessesessssessesessessssesessessssessessesssssssessesassssssssesses 123
Key Characteristics of the Modified Implementation............c.ccerievnrnininnnnsniene s senennes 124
Modified Package EXPIOrer VIEWcccccvevrrrierennnensesesssessese e ssssessessessssessessesasssssessesaes 126
Modified ImplemEentation..........c.ccocvvrrrirennirer e e 127
LT T 01 O 130
LRI F= 0 T O 130
Q&A SESSION.....cuverrrrerererereseseseseseses s s s s a b b e e e e e e e e e R R b b e e e e e 132
Chapter 9: Facade Pattern...........cccccvismmmisemmmssssmmssssssssssssssssssssssssssssssssssnssssansessas 135
L€ oLl 1= 1 71 (o] 135
CONCEPE. . 135
Real-World EXAMPIE.........cociiiirrn et s s s e sn e s n e s 135
Computer-World EXAMPIE ..o sese e s ssesss e ssessessessssessesaesassessesaesaes 136
LT U0 O 136
[T30 1T Vo - 137
PaCKAQE EXPIOTEr VIBWccvevrereeriererseressesessessessessssessessesassassessessessssessessesssssssessesasssssensesses 138

ix

TABLE OF CONTENTS

IMPIEMENTALIONocveiirire e e 139
1] O 143

QBA SESSION....vvereeeseseseessssssssssss s s s s s s s e e e e e e e e e e e e R R R R R E e e e e s 144
Chapter 10: Flyweight Pattern..........ccccnsmmmmnnssnmnmmsssssnmmsssssssssssssssssssssssssssssssnnnss 147
L€ oLl 1= 1 71 o] T 147
CONCEPE . ———————————————————— 147
Real-World EXAMPIE.........ccociieeicrin st s s n e s s 148
Computer-World EXAMPIEccvcvererirrerene e ssese e ssssesse e sae s ssessessessssessesaessesessessesnes 148
|01 = 11 3 149

[T30 1T T - O 150
PACKAQE EXPIOTEr VIBWccveerereeriererserersesessesessessesessessesaessssessessessssessesaesssssssessesasssssensesaes 150

10T 01 L=T =T 1) LA 0] | O 151
1] | O 157
ANIYSIS .everrerteerere e s s s a e e e e R R e e R e e AR e e e e e R R R e e e e Renan 159

Q&A SESSION....ecuvrrrrerererereresesesesesesessss s s s s s s a s b a e e e e e e e e n e R bR bR e e e e e s 159
Chapter 11: Composite Pattern.........ccccunmmmmnssssnnnmmsssssnmmmsssssmmsssssessssssesssnn 165
L€ oLl 1= 1 71 (o] T 165
CONCEPL. . aes 165
Real-World EXAMPIE.........cociiiririrsie et s s s e sn e s s 166
Computer-World EXAMPIEccccvererririenie s sese e ses s sse s sse e ssessessessssessesaessssessessesnes 166
LT U0 166
(T DT 1o - 1 1 R 167
PaACKAQE EXPIOTEr VIBWccveerereriererseressesessesessessssessessesasssssessessessssessessesssssssessesasssssensenaes 168

10T 01 L=T 0 T=T 1) L0 O 169
1] | O 174

Q&A SESSION.....cuvirirrererrrereresesesesesesessss s s s s s s s s s s b e e e e e e e e e e e e s R bR bR e e e e e 176
Chapter 12: Bridge Patiern.........ccuvmmmnnsenmmmmsssssnmmmsssssssssssssssssssssssssssssssssssssnnns 179
L€ oLl 1= 1 71 (o] 179
CONCEPL. . aes 179
Real-World EXAMPIE.........ccociierrrr et s s sn e n e s s sn e s 179

TABLE OF CONTENTS

Computer-World EXAMPIEccvcverenirrirerenes s s sessessessesssssssessesssssssessessesssssssessesssssssessesses 180
11T U0 180
LTI D T - OO 183
Package EXPIOTEr VIEWciceriereerirersee e sesessee e sesessse s ssessesssesaessessssssesaessesssssaesnessenns 184
G T T T (=T 185

1] 0010 =] 01 1A | 185
1] O 189
Q&A SESSION.....curvirirrrrererereresereseseseseses s s s s s s s s a s b e e e ne e e e e e e AR R R R R e e e 190
Chapter 13: Visitor Pattern.........ccconrmmmmmmmnnnmnnnssssssnmnmnsssssssssssssssessssssssssssssnns 193
(610 o] 1 T o] OSSR 193
[0 1 - o SO S S SS 193
Real-World EXAMPIE........ccociiirirsin et ss e s s r s n e s 194
Computer-World EXAMPIEccocvierenirrirereriesessesessesessessessessssesessessessssssessessssessessssssssssessesaes 194
LT U0 194
LTI 0] T - OO 195
Package EXPIOrEr VIEWcocvieereriirir e seressee s s se s s s sse s e e s s ssesseessesnessesssssnesnesnenns 196
IMPIEMENTALIONc.eeeriee s n e e ae e ae s 196
1] 198
Modified HUSTFAtION..........ccc o 198
Modified Class DIaQramccceevrererrerierierersesseressssessesessessssessessessssessessessessssessesssssssessesses 204
Modified Package EXPIOrEr VIEWccccvrerininnnne s sses s sse s ssessssssessessesssssaessessenns 204
Modified Implementation............ccoevvririnnirir e ———— 206
MOdified QUIPUL ..o s 212
Q&A SESSION....ecueriririrrrrrrereresesesesese s s s s s s s s s s a b b e e e e e e e e e e e e e R R R R R e e e nE s 213
Chapter 14: Observer Pattern..........ccccuccmnismmmnsnmmssssmmssssmssssssssssssssssssssnsssssnssnnsns 217
(610] 1 T o] S 217
[0 1 - o SO S S SS 217
Real-World EXAMPIE........ccociiieririnse st ss e s s sr s n e s r e e 220
Computer-World EXAMPIEccocviererrrireresissessesese s sessessessssessessessssssssssessessssessesassssssssessesaes 220
LT U0 221

xi

TABLE OF CONTENTS

{08 T30 1T Vo - O 222
Package EXPIOrEr VIEWciciieieiiiriin e ne e s s s s e s s s sn e s s s ssnesnesaesnenns 222
IMPIEMENTALIONcveiiriie e 224
1] O 227
ANGIYSIS ..everrereeiererere s s s rae s r e s e e e s s e e e s e e e R e e e e e R R e e e e e Re R e e e e e Re e Re R e e e e Renan 227
QBUA SESSION....vverereeseseseeresssssssss s ssssssesese e e e e e e e e e e e e s e AR bR b e e e e e e 227
Chapter 15: Strategy (Policy) Pattern.......c..ccccurcmmssmsmsssmsmsssnssssssssssssssssssnsssssnssssns 233
L€ oLl 1= 1 71 (o] T 233
CONCEPE . ———————————————————— 233
Real-World EXAMPIE.........ccociiercrir et s s s s n e s s n e 233
Computer World EXAMPIE........ccvcvierierinierieresis e s s s e sessesse e ssesessessessessssessesaessesessessesses 234
LT U0 234
[0 T 1T T - O 235
PACKAQE EXPIOTEr VIBWccveerereeriererserersesessesessessesessessesaessssessessessssessesaesssssssessesasssssensesaes 235

10T 01 L=T =T 1) LA 0] | O 237
1] | O 240
Q&A SESSION.....cuvrirrrrererereresesesesesesessss s s s s s s a b b e se e e e e e e e e e bR bR e e e e e s 240
Chapter 16: Template Method Pattern..........ccuccmmrnssnmnnnsssssnnmnnssssssmsssssssessssssnns 251
L€ oLl 1= 1 71 (o] T 251
CONCEPL. . aes 251
Real-World EXAMPIE.........cociiiririrsie et s s s e sn e s s 251
Computer-World EXAMPIE ..o sese e ses e ssessessesessessessessssessesaessesessesnesnes 252
LT U0 252
[T30 1T T - O 252
PaACKAQE EXPIOTEr VIBWccveerereriererseressesessesessessssessessesasssssessessessssessessesssssssessesasssssensenaes 253
10T 01 L=T 0 T=T 1) L0 O 254
1] | O 256
Q&A SESSION....ecuvirirrrrererereresesesesesesesess s s s s s s b a b b e e e e e e e e e e R R bR e e e e e 256
Modified Implementation............ccocvcrvriencirr e e 257
MOdified QUIPUL ..o 260

xii

TABLE OF CONTENTS

Chapter 17: Command Patlernccccuseemmmnssssmnmmmsssssnmmssssssmmssssssssssssssesssssnns 263
C 0] o 0T {11 (0] TP 263
CONCEPE ... nren 263
Real-World EXAMPIE........ccciiriiririre sttt nnens 263
Computer-World EXAMPIE ... s ss s s sss e s e s ssssessesaesnes 264
HIUSTFALION ..o ———— 264

[T T = O 265
PaCKage EXPIOTEr VIBWccccvrverererinsere s sese e sssses e s saeses e ssessessssessesnesssssssessesasssssensesaes 266
IMPIEMENTALIONcveveeeec e nr s 267
L0101 OSSPSR 270
0T o] 270
Modified Class DIagramcccevievrrrierienennerseseseses e ssesessesessessssessessessessssessesasssssessesses 271
Modified Package EXPIOrer VIEWccccvevrrrienernnensene s sessese e ssssessessessssessessesasssssessesaes 272
Modified Implementation..........c.ccocvvririrennirr e 274
LT T T 01 O 280

Chapter 18: Iterator Patterncccccinnnemmnmnnnssnnnmmsssnmnssssnsssn s 285
C 0] o 0T {11 (o] PR 285
CONCEPE ... 285
Real-World EXAMPIE........ccciiiiiririre s sn s st st s st 286
Computer-World EXAMPIE ... s e s s se s s ssessssesaesnes 287
HIUSTFALION ..o ————— 287

[T 1T Vo - S 288
PaCKage EXPIOTEr VIBWcccevvererierinieresesissesesse s e e ssesae e e ssessessssessesaesssssssesaesasssssensesnes 290
First IMplementation ..o s 291
L0101 OSSPSR 293
Key Characteristics of the Second Implementation.............cccoovevnrnnrenninsnnssnesesenene 294
Second IMPIEmMENTAtioN...........ccoverrerrnesr e ————— 294
011 0] | RS 296
0T T o] 297
Third IMmplementationcccovvririr e 299
01] RS 302

TABLE OF CONTENTS

Chapter 19: Memento Pattern.........ccccivnnemmmmnsssnmnmmssssnsnmmssssssnmssssssssssssssssssssssnnnss 303
C 0] o 0T {141 (o] TP 303
CONCEPE ... 303
Real-World EXAMPIE........ccciiiiiririre s s sttt 303
Computer-World EXAMPIE ... se s s sss e s s ssssessesnes 304
HIUSTFALION ..o ———— 304

(I8 T 1T T - S 305
PaCKage EXPIOTEr VIBWccvvererierinierese s sesessessssessessesaesessessessessssessesassssssssessesassssensesnes 306
IMPIEMENTALIONcveveeeiecrece e 306
L0101 OSSPSR 309
0T T o] 310
Modified Caretaker CIASS ..o s s sssssssens 31
LT T T 01 O 312
ANGIYSIS ..eveiverieerere s re e s s e s e a e R e e e R R e e e e e R R e e e e R nnn 313
Shallow Copy vS. DEep COPY iN JAVA.......cecreererrererreriesessesessessessesessessessessssessessessessssensessens 321

Chapter 20: State Patternccccunemmnnnnsmnnnnnssnnmnmssssnmnssssnsnssssn s 329
C 0] o 0T {11 (o] TP 329
CONCEPE. . naen 329
Real-World EXAMPIE........ccciiriirrre s ss s st se s s s st s s st snen 330
Computer-World EXAMPIE ... s e s sssse s s ssssessesaesnes 330
HIUSTFALION ..o ———— 330

G T T (=T R 332
[T 1T T - S 332
Package EXPIOTEr VIBWccvcerererinierere s seses s ses e s ses s s st e ssesnessssessesaesassssessesaes 334
IMPIEMENTALIONcveveeeccre e 335
L0101 OSSPSR 339
0T o] 340
Modified Package EXPIOrer VIEWcccccvevrrrierennsensene e ses s s sessessessssessessesasssssessesaes 343
Modified ImplemEntation..........c.ccocevririrennir e e 345
LT T T 01 350

Xiv

TABLE OF CONTENTS

Chapter 21: Mediator Patternccccivnsemmnnnsssnnnmmssssssnmssssssssmsssssssssssssssssssssssnnns 353
C 0] o 0T {11 (0] TP 353
CONCEPE ... nren 353
Real-World EXAMPIE........ccciiriiririre sttt nnens 353
Computer-World EXAMPIE ... s ss s s sss e s e s ssssessesaesnes 354
HIUSTFALION ..o ———— 355

[T T = O 356
PaCKage EXPIOTEr VIBWccccvrverererinsere s sese e sssses e s saeses e ssessessssessesnesssssssessesasssssensesaes 357
IMPIEMENTALIONcveveeeec e nr s 359
L0101 OSSPSR 363
ANAIYSIS c.vuerrseerreerree s e R e e Re e e e Re s 363
Modified HUSTFAtION........ccociieerrcrer s 363
Modified Class Diagramcccucevrinrnsesnsesrnnse s s sss s ssssessssesssssssssnses 365
Modified Package EXPIOrer VIEWcovcvvreresesesnsessssesssssessssessssesssssssssssessssessssssssssssssnnes 366
Modified Implementation..........c.ccvrinrnrn e —————————— 367
Modified OUIPUL ..o e e e 372
ANAIYSIS .veeereeerreerrese s e e re e s s e e e R e e R e R e e e e rnRe e 373
0T T o] N 373

Chapter 22: Chain-of-Responsibility Pattern.........ccccccimmnsnmmnmnnssssnnsnsssssnssssssnnns 377
C 0] o 0T {11 (0] TP 377
CONCEPE ... ————— 377
Real-World EXAMPIE........ccciiriiririre sttt nnens 378
Computer-World EXAMPIE ... s e s s se s s ssessssesaesnes 378
HIUSTFALION ..o ————— 379

[T 1T Vo - S 380
PaCKage EXPIOTEr VIBWccvvererenirsiresesissese e ssssessessesaesessessesaessssessesassssssssessesasssssensesnes 381
IMPIEMENTALIONccveveeecc e nr s 382
L0101 OSSPSR 385
0T o] 386

TABLE OF CONTENTS

Chapter 23: Interpreter Patternccccuvemmmnnsssmnnmnsssnnmnssssnmnssssnessssssensssnn 389
C 0] o 0T {141 (o] TP 389
CONCEPE ... 389
Real-World EXAMPIE.......cccvierererierserseerererseessessessesssessesessesssessessssssessessessesnsessesasssssssessesaensenns 391
Computer-World EXAMPIEccevevierienieeseriessessse e sesssessessesssssessessessssssessessssssessessessssssesaesassanes 391
HIUSTFALION ..o ———— 391

(I8 T 1T T - S 393
PaCKage EXPIOTEr VIBWccvvererierinierese s sesessessssessessesaesessessessessssessesassssssssessesassssensesnes 394
IMPIEMENTALIONcveveeeiecrece e 395
L0101 OSSPSR 399
ANAIYSIS ..vvereeeerreerree s s r e e R e e e nRe s 400
Modified HUSTFAtION.......cccciieerrcrer e 400
Modified Class Diagramcucevrinernsennesnnse s ssssesssssssssssessases 400
Modified Package EXPIOrer VIEWccovcevviereresesnsesssesssssessssessssesssssssssssessssessssssssssssssnses 400
Modified Implementation..........c.ccvriininnin e ———————— 401
Modified OUIPUL ..o e e s e 406
ANAIYSIS .veeerreerreerrese s e se e e s s e R e e e Re e R e e e rnRe s 406
07N 7 [0 407

Part II: Additional Design Patternsccccsmmsemmmmmssmsmmmsssssmsssnssssssssssnsssnsnas 409

Chapter 24: Simple Factory Patternccccunmmmmmnssnnnmmssssssnmmsssssnsmsssssssnssssnns 411
1= 0 T 411
CONCEPE ... naen 411
Real-World EXAMPIE........ccciiiiiririre s s sttt 411
Computer-World XamPIE ... e 412
HIUSTFALION ..o ———— 413

(I8 T 1T T - S 413
PaCKage EXPIOTEr VIBWccevverereriniere s sesessesssses e s saeses e s ssessssessesnessssessesaesasssssensesnes 414
IMPIEMENTALIONcveveeccrecre e 415
L0101 OSSPSR 417
0T o] R 419

TABLE OF CONTENTS

Chapter 25: Null Object Pattern........cccccusemmmnsssnnnmmssssssnmssssssnnssssssssssssssssssssssssnnnss 421
0]) OO 421
A Faulty Program........ccccicciienisinsine s sssse s ss s s s sss e ssessssss e ssessssssssssesaesssssssssnesnes 422
Output With Valid INPULScceveerereirrere e sesse e s s s saesssessesaessssssnesae s 424
Analysis with an Unwanted INPUL ..o 424
Encountered EXCEPLION.........covr e rirrer e rtrer et s e e e 425
Immediate REMEAY........cccoeiirire s s n e s ae e 425
Y021 LS 425
Real-World EXaMPIE........ccccoiiiirirere e ss s s st nne s 426
Computer-World EXAMPIE ... s 426
1T £ U0 ST 426
LT TS D T = T 427
Package EXPIOrEr VIEBWc.cuccerererenerrnsesesesesssse s sessssesssse s sessesesssssssssssssssssssssssssssssnnes 428
IMPIEMENTALION ... —————————— 429
011 0] | OSSR 432
ANAIYSISecereeeriee e s e e e s e R e R e e e nRe e 433
Q&A SESSION....cvereerereeseeseeesss s b e b s e e e e e e e R b et e e 433

Chapter 26: MVC Patterncccnmmmmmmmmmnmnmmmmmmmssesssnsss 437

0] 1T 0 R 437
Key Points 10 REBMEMDEKccccvverrrce e e 438
Variation 1 ... 439
L LT TP 439
L LT 0 TP 440

Real-World EXAMPIE.........cccceieeererrersee s rerie s s e s e s s e s e s s s s e s e sne s s e e e e snesnenannns 440

Computer-World EXAMPIE ... se s s s sns s snas 441

1T £ U0 T 442
LT TS D T = T 442
Package EXPIOrEr VIBWcocccorcoerererencre s e sese s ses e sssesenns 444
IMPIEMENTALION ..o ————————— 444
{011 0] OSSOSO 452

Xvii

TABLE OF CONTENTS

Q&A SESSION.....c.cieririrriseiririres st se e e e e b e e b e e e AR e R s 453
LT LT 01 455
Part lll: Final Discussions on Design Patterns.........cccoimmmsssmnnmmssssssssnnnsssnns 459
Chapter 27: Criticisms of Design Patterns..........ccccunsemmnmnssssnnnmnsssssnnsssssssssssssssnnns 461
L0272 10 463
Chapter 28: AntiPatterns: Avoid the Common MiStakes.......ccocusssmnsrsssssnnssssssnnnnss 467
What Is an Antipattern?..........ccrinrnins s s 467
Brief History of ANtipatterns........coocovvernsnnessese s s 468
Examples of ANtipatterns ... 469
TyPes Of ANIPAIIEINScoveiccrcere e e e e 471
0T o] OO 471
Chapter 29: FAQS ...ccucuussssnmmmssssnsnmsssssssnsssssssssssssssnsssssssnnssssssssnnnsssssnnnssssssnnnsssssnnnnss 475
Appendix A: A Brief Overview of GoF Design Patterns........c.cccemnnsssnnnnnssssnnnssssanns 481
KBY POINIS ...ttt s e e r e b e nne 482
A. Creational PAttErNScccceeervriererersir e s s s s e s re s e s s s e s e e s sae s e e sa e sae s e e e naesnesaennes 483
B. STruCtUral PattErnS........cccvveriririerree s reres s sesessse e sessessasssesaesssssesaessessessesnessesnsssaesaenanens 483
L ST T 0 L 11 (=T 0 484
Q&A SBSSION...c.uiuerrrsirerrieriese s bR E R E e R e e 486
Appendix B: Winning Notes and the Road Aheadccccvvsemmmnnssnnnnnnssssnnnnnssnnns 489
Appendix C: Bibliographyccuccccusmmmssssmmmssssssnmmsssssssmmsssssssssssssssssssssssssssssssssssssssnns 491
INA@X iiiiiiinnnnnnnnnnnnssssssssnnnnnnnnnessssssssnnnnnnnnesssssssssnnnnnnneesssssssssnnnnnnnesssssssssnnnnnnnnesssssnnn 493

Xviii

About the Author

Vaskaran Sarcar obtained his Master of Engineering degree
from Jadavpur University, Kolkata. Currently, he is senior
software engineer and team lead in the R&D Hub at HP Inc.
India. He was a national Gate Scholar and has more than

12 years of experience in education and the IT industry.

He is an alumnus of prestigious institutions in India, such
as Jadavpur University, Vidyasagar University, and
Presidency University (formerly Presidency College).

Reading and learning new things are his passions. You can connect with him at vaskaran
@rediffmail.com or find him on LinkedIn at www.1linkedin.com/in/vaskaransarcar.

Other books by Vaskaran include the following:

Design Patterns in C# (Apress, 2018)

Interactive C# (Apress, 2017)

Interactive Object-Oriented Programming in Java (Apress, 2016)
Java Design Patterns (First Edition) (Apress, 2016)

C# Basics: Test Your Skill (CreateSpace, 2015)

Operating System: Computer Science Interview Series (CreateSpace, 2014)

http://www.linkedin.com/in/vaskaransarcar

About the Technical Reviewers

¥ 4 Shekhar Kumar Maravi is a system software engineer
| | whose main interests are programming languages,

algorithms, and data structures. He obtained his master’s
degree in computer science and engineering from the Indian
Institute of Technology, Bombay. After graduation, he joined
Hewlett-Packard’s R&D Hub in India to work on printer
firmware. Currently, he is a technical lead for automated

|

Healthcare India. He can be reached by email at shekhar .maravi@gmail.com or via

lab diagnostic device firmware and software at Siemens
LinkedIn at www.linkedin.com/in/shekharmaravi.

Ritesh Jha is passionate about large-scale distributed
systems. Currently, he is working as a senior development
engineer for the Supply Chain Technology Group at

Walmart Labs. Before Walmart, he worked at eBay and
Hewlett-Packard. He has a BE in computer science from
Jadavpur University, Kolkata. When he is not exploring new
technologies, he can be found exploring new places on his
bike. He can be reached by email at ritesh.jha@hotmail.com
or via LinkedIn at www. linkedin.com/in/riteshjha9/.

http://www.linkedin.com/in/shekharmaravi
http://www.linkedin.com/in/riteshjha9/

ABOUT THE TECHNICAL REVIEWERS

xxii

Ankit Khare is a senior software engineer with expertise

in software architecture and designing, programming
languages, algorithms, and data structure. After obtaining

a BE in computer science, he joined Hewlett-Packard’s

R&D Center in India in 2010, where he worked with various
laser-jet firmware teams. He is currently involved in future
machine vision development for print image diagnostic tools
involving ink-jet, large-format, and laser-jet printers. He can
be reached by email atakikhare@gmail.comor via LinkedIn
https://www.linkedin.com/in/khareankit/.

https://www.linkedin.com/in/khareankit/

Acknowledgments

At first, I thank the Almighty. I sincerely believe that with His blessings only, I could
complete this book. I extend my deepest gratitude and thanks to

Ratanlal Sarkar and Manikuntala Sarkar. My dear parents, with your blessings only, I
could complete the work.

Indrani, my wife, and Ambika, my daughter. Sweethearts, once again, without your
love, I could not proceed at all. I know that we needed to limit many social gatherings
and invitations to complete this work on time and each time I promise you that I'll take a
long break and spend more time with you.

Sambaran, my brother. Thank you for your constant encouragement toward me.

Shekhar, Ritesh, and Ankit. You are my friends and technical advisors. I know that
whenever I was in need, your supports were there. Thank you one more time.

Anupam. My friend and another technical advisor. Though this time, you were not
involve but still I acknowledge your support and help toward me in the development of
Java Design Patterns first edition.

Sunil Sati. My ex-colleague cum senior. A special thanks to you for investing your
time to write a foreword for my book. From the moment when experts like you agreed to
write for me, I got some additional motivation to enhance the quality of my work.

Celestin, thanks for giving me another opportunity to work with you and Apress.

Laura, Amrita, Nagarajan, Sivachandran, Pradapsankar and Vinoth thank you for
your exceptional support to beautify my work.

Lastly, I extend my deepest gratitude to my publisher, the editorial board members,
and everyone who directly or indirectly supported this book.

xxiii

Foreword

“A problem well stated is a problem half solved.”

—Charles Kettering, inventor and engineer

To build on this concept, I must say that thinking about all possible scenarios and
coming out with a best possible option is the key to a robust and lasting solution. This
new second edition of Java Design Patterns will serve as a mentor and guide to engineers
and designers who are regularly challenged to come up with the best possible solution
in resource-constrained environments. This book explains in very clear terms the design
patterns, the alternatives, and the concept of antipatterns. The complete section on
antipatterns is very thought-provoking and helps us appreciate the utility of design in the
first place.

As in his previous books, Vaskaran has provided hands-on experience in
implementing design patterns. His innate way of getting engineers to think of an
alternative solution is very insightful. This book will serve as mentor and task master as
one traverses the chapters.

When I reflect on my interactions with Vaskaran while facing some complex
engineering issues in HPI, I find him to be a keen listener, deep thinker, and a person
who doesn’t rush for a solution. After analyzing all possible alternatives, he picks the
best one among the lot. In summary, this is what this book all about.

Sunil Sati

Senior Project Manager, BU Automotive Division, NXP Semiconductors

About Sunil Sati

Sunil Sati is an engineer with a major in electronics and communication from NIIT
Surathkal and EGMP from IIM-Bangalore. He has 23 years of experience in various roles
and capacities in process automation and semiconductor industries. Currently, he is
working as senior manager with NXP Semiconductors in the automotive division. He
was the brand ambassador in HPI for the Print Renaissance program. He loves to work
and build teams across geographic locations.

Introduction

Welcome to your journey through Design Patterns in C#.

This is an introductory guide to the design patterns that you want to use in Java.
You probably know that the concept of design patterns became extremely popular with
the Gang of Four’s famous book Design Patterns: Elements of Reusable Object-Oriented
Software (Addison-Wesley, 1994). Most important, these concepts still apply in today’s
programming world. The book came out at the end of 1994, and it primarily focused on
C++.

But Sun Microsystems released its first public implementation Java 1.0 in 1995. So,
in 1995, Java was totally new to the programming world. But it grew rapidly, becoming
rich with features. It has now secured its rank in world’s top programming languages.
In today’s programming world, it is always in high demand. On the other hand, the
concepts of design patterns are universal. So, when you exercise these fundamental
concepts of design patterns with Java, you will be a better programmer and you'll open
new opportunities for yourself.

In 2015, I wrote Design Patterns in C#: Computer Science Interview Series, and in
2016, I wrote Java Design Pattern : A tour with 23 Gang of Four Design Patterns in Java.
They are basically the companions to this book.

In those books, my core intention was to implement each of the 23 Gang of Four
(GoF) design patterns with C# and Java implementations. I wanted to present each
pattern with simple examples. One thing was always on my mind when writing Java
Design Patterns (First Edition): I wanted to use the most basic constructs of Java, so that
the code would be compatible with both the upcoming version and the legacy version of
Java. I have found this method helpful in the world of programming.

In the last two years, I got a lot of constructive feedback from my readers. This fully
revised and updated version is created keeping those feedback in mind. I also took the
opportunity to update the formatting and correct some typos in the previous version of
the book and add new content to this new edition.

This time, I wanted to focus on another important area; I call it the “doubt-clearing
sessions.” I knew that if I could add some more information such as alternative ways to
write these implementations, the pros and cons of these patterns, when to choose one

Xxvii

INTRODUCTION

approach over another, and so on, readers would find this book even more helpful. So,
in this enhanced version of the original, have added a “Q&A Session” section to each
chapter that can help you learn about each pattern in more depth.

In the world of programming, there is no shortage of patterns, and each has its own
significance. So, in addition to the 23 GoF design patterns covered in Part I, I discuss
three design patterns that are equally important in today’s world of programming in Part
I1. Finally, in Part ITI, I discuss the criticism of design patterns and give you an overview
of antipatterns, which are also important when you implement the concepts of design
patterns in your applications.

Before jumping into these topics, I want to highlight few more points.

e You are an intelligent person. You have chosen a subject that
can assist you throughout your career. If you are a developer/
programmer, you need these concepts. If you are an architect at a
software organization, you need these concepts. If you are a college
student, you need these concepts, not only to score high on exams
but to enter the corporate world. Even if you are a tester who needs to
take care of white-box testing or needs to know about the code paths
of a product, these concepts will help you a lot.

o Talready mentioned that this book was written using the most basic
features of Java so that you do not need to be familiar with advanced
Java topics. These examples are simple and straightforward. I believe
that these examples are written in such a way that even if you are
familiar with another popular language, such as C#, C++, and so on,
you can still easily grasp the concepts in this book.

o There are many books about design patterns and related topics.
You may be wondering why I would want to write a new one about
the same topics. The simple answer is that I have found other
reference material to be scattered. Second, in most cases, many of
those examples are unnecessarily large and complex. I like simple
examples. I believe that anyone can grasp a new idea with simple
examples, and if the core concept is clear, you can easily move into
more advanced areas. I believe that this book scores high in this
context. The illustrated examples are simple. I wanted to keep this
book concise so that it motivates you to continue your journey of
learning.

xxviii

INTRODUCTION

Each chapter is divided into six parts: a definition (which is basically
called intent in Design Patterns: Elements of Reusable Object-Oriented
Software), a core concept, a real-world example, a computer/coding-
world example, a sample program with various output, and the Q&A
Session section. These Q&A Session sections help you learn about
each pattern in more depth.

Please remember that you have just started on this journey. As you
learn about these concepts, try to write your own code; only then will
you master the area.

You will be able to download all the source code in the book from the
publisher’s website. I plan to maintain the “Errata,” and if required, I
can also make update/announcements there. So, I suggest that you
visit those pages to receive any corrections or updates.

Guidelines for Using This Book

Here are some suggestions for you to use the book more effectively.

You should have a basic understanding of Java and you should
know how to create classes, interfaces, and so forth. It is helpful to
be familiar with common terms in object-oriented programming;
for example, encapsulation, abstraction, polymorphism, and
inheritance.

I assume that you have some idea about the GoF design patterns. If
you are absolutely new to design patterns, I suggest you quickly go
through Appendix A. This appendix will help you become familiar
with the basic concepts of design patterns.

If you are confident about the content in Appendix A, you can start
with any part of the book. But I suggest you go through the chapters
sequentially. The reason is that some fundamental design techniques
may be discussed in the “Q&A Session” section of a previous chapter,
and I did not repeat those techniques in the later chapters.

XXix

INTRODUCTION

o There is only one exception to the previous suggestion. There are
three factory patterns: simple factory, factory method, and abstract
factory. These three patterns are closely related, but the simple
factory pattern does not directly fall into the GoF design catalog,
so it appears in Part II of the book. So, I suggest that when you start
learning about these three factory patterns, you begin with the simple
factory pattern.

o These programs are tested with Java 8 (update 172). I used the Eclipse
editor in a Windows 10 environment. So, in the Eclipse Package
Explorer view, you may notice the string jdk1.8.0_172. At the time of
this writing, Photon is the latest edition of Eclipse (released in June
27,2018), Java 8 is the long-term support (LTS) version, and Java 10
is the rapid release version. Java 11 is the next LTS version after Java 8
and planned for September 2018. But all of this version information
should not matter much because I used the most basic constructs
of Java. So, I believe that the code should execute smoothly in the
upcoming versions of Java/Eclipse as well.

e One of my reviewers tested the code in a Linux environment. So, I
believe that the results should not vary in other environments, but
you know the nature of software—it is naughty. So, I recommend
that if you want to see the same output, it is best if you can mimic the
same environment.

e To draw class diagrams, ObjectAid Uml Explorer is used in the
Eclipse editor. It is a lightweight tool for Eclipse. At the time of this
writing, it is free if you want to draw the class diagrams, but to draw
the sequence diagrams, you need to purchase a license. The website
atwww.objectaid.com/home gives more information about licenses,
terms, and conditions.

Lastly, I hope that this enhanced edition provides more help to you.

http://www.objectaid.com/home

INTRODUCTION

Conventions Used in This Book

e All the output and code in the book follow the same font and
structure. To draw your attention, in some places, I made it bold, like
the following.

Mediator Pattern Demo

At present, registered employees are:

Amit

Sohel

Raghu

Communication starts among participants...

Amit posts: Hi Sohel, can we discuss the mediator pattern? Last
message posted at 2018-09-09T17:41:21.868

Sohel posts: Hi Amit, yup, we can discuss now. Last message posted
at 2018-09-09T17:41:23.369

Raghu posts: Please get back to work quickly. Last message posted
at 2018-09-09T17:41:24.870

An outsider named Jack trying to send some messages.

o Insome cases, to present a cleaner class diagram and focus on the
important parts, the less important dependencies are not shown. For
example, consider the diagram presented in Chapter 18.

XXXi

INTRODUCTION

<<Java Class>>
(9 Artslterator
jdp2e.iterator.demo

<<Java Class>>

G IteratorPatternExample

jdp2e.iterator.demo

<<Java Class>>
(S Arts

jdp2e.iterator.demo

o papers: String[]
o position: int

ecArtsIlerator(String[])
@ first():void

@ next():String

© currentltem():String

oc IteratorPatternExample()

@ hasNext():boolean

v

<<Java Interface>>
€3 Iterator
jdp2e.iterator.demo

@ first():void

© next():String

@ currentltem():String
@ hasNext():boolean

Xxxii

esmain{Stringm:void

\1

o papers: String[]

@ Arts()

@ createlterator():Iterator

1'1';-1 v

<<Java Interface>>
€9 Subjects

jdp2e.iterator.demo

@ createlterator():Iterator

But if I need to show all the dependencies, it may look like the following.

<<Java Class>>
(9 Artsliterator
jdp2e.iterator.demo

<<Java Class>>
@ IteratorPatternExample
jdp2e.iterator.demo

o papers: String[]

o position: int

@ Artslterator(String][])
@ first():void
@ next():String

@ currentltem():String

@ hasNext():boolean

<<Java Interface>>
@9 Iterator

jdp2e.iterator.demo

© first():void

@ next():String

@ currentltem():String
@ hasNext():boolean

e':lleratorPaﬁernEx_g_mg]g(}_.,......
g ain(Strinal]):void

<<Java Class>>
(9 Arts

jdp2e.iterator.demo

o papers: String[]

& Arts()
@ createlterator():Iterator

oV

<<Java Interface>>
€9 Subjects

jdp2e.iterator.demo

© createlterator():Iterator

You can see that the later one is much more complex and difficult to understand. For

the ObjectAid class diagrams in Eclipse, you can always show these dependencies by

selecting an element in the diagram, right-clicking and selecting Add » Dependencies.

o Ilike to put curly braces on a new line. and I love to see a method

body like the following.

public void myFunction()

{

//Some code

}

Instead of the following:
public void myFunction(){
//Some code

}

I used the same format for most of the methods, except main() methods.

xxxiii

PART |

Gang of Four Patterns

CHAPTER 1

Singleton Pattern

This chapter covers the singleton pattern.

GoF Definition

Ensure a class only has one instance, and provide a global point of access to it.

Concept

A class cannot have multiple instances. Once created, the next time onward, you use
only the existing instance. This approach helps you restrict unnecessary object creations
in a centralized system. The approach also promotes easy maintenance.

Real-World Example

Let’s assume that you are a member of a sports team, and your team is participating

in a tournament. Your team needs to play against multiple opponents throughout the
tournament. Before each of these matches, as per the rules of the game, the captains of
the two sides must do a coin toss. If your team does not have a captain, you need to elect
someone as a captain. Prior to each game and each coin toss, you may not repeat the
process of electing a captain if you already nominated a person as a captain for the team.
Basically, from every team member’s perspective, there should be only one captain of
the team.

© Vaskaran Sarcar 2019
V. Sarcar, Java Design Patterns, https://doi.org/10.1007/978-1-4842-4078-6_1

CHAPTER 1 SINGLETON PATTERN

Computer-World Example

In some specific software systems, you may prefer to use only one file system for the
centralized management of resources. Also, this pattern can implement a caching
mechanism.

Note You notice a similar pattern when you consider the getRuntime() method
of the java.lang.Runtime class. It is implemented as an eager initialization of a
Singleton class. You'll learn about eager initialization shortly.

lllustration

These are the key characteristics in the following implementation.
e The constructor is private to prevent the use of a “new” operator.

e You'll create an instance of the class, if you did not create any such
instance earlier; otherwise, you'll simply reuse the existing one.

o To take care of thread safety, I use the “synchronized” keyword.

Class Diagram

Figure 1-1 shows the class diagram for the illustration of the singleton pattern.

<<Java Class>> <<Java Class>>
(<) Captain (9 SingletonPatternExample
jdp2e.singleton.demo jdp2e.singleton.demo
EFCaptain() QCSingletonPatternExample()
-captain . . .
QggetCaptain():Captain esmaln(Strlng[]):vold
< |0. A

Figure 1-1. Class diagram

CHAPTER 1 SINGLETON PATTERN

Package Explorer View

Figure 1-2 shows the high-level structure of the program.

L,;‘J SingletonPattern
v i# jdp2e.singleton.demo
v |J] SingletonPatternExample.java
v G‘F Captain
o captain
GcsggetCaptain() : Captain
Ec Captain()
v G&SingletonPatternExample
@ main(String]]) : void

Figure 1-2. Package Explorer view

Discussion

I have shown you a simple example to illustrate the concept of the singleton pattern.

Let’s review the notable characteristics with the following approach.

o The constructor is private, so you cannot instantiate the Singleton
class(Captain) outside. It helps us to refer the only instance that can
exist in the system, and at the same time, you restrict the additional
object creation of the Captain class.

o The private constructor also ensures that the Captain class cannot be
extended. So, subclasses cannot misuse the concept.

e Tused the “synchronized” keyword. So, multiple threads cannot
involve in the instantiation process at the same time. I am forcing
each thread to wait its turn to get the method, so thread- safety is
ensured. But synchronization is a costly operation and once the
instance is created, it is an additional overhead. (I'll discuss some
alternative methods in the upcoming sections, but each of them has
its own pros and cons).

CHAPTER 1

SINGLETON PATTERN

Implementation

Here’s the implementation.

package jdp2e.singleton.demo;

final class Captain

{

}

private static Captain captain;
//We make the constructor private to prevent the use of "new"
private Captain() { }

public static synchronized Captain getCaptain()

{

// Llazy initialization
if (captain == null)

{
captain = new Captain();
System.out.println("New captain is elected for your team.");
}
else
{
System.out.print("You already have a captain for your team.");
System.out.println("Send him for the toss.");
}

return captain;

// We cannot extend Captain class.The constructor is private in this case.
//class B extends Captain{}// error

public class SingletonPatternExample {

public static void main(String[] args) {

System.out.println("***Singleton Pattern Demo***\n");
System.out.println("Trying to make a captain for your team:");
//Constructor is private.We cannot use "new" here.

//Captain c3 = new Captain();//error

CHAPTER 1 SINGLETON PATTERN

Captain captaini = Captain.getCaptain();
System.out.println("Trying to make another captain for your
team:");

Captain captain2 = Captain.getCaptain();

if (captaini == captain2)

{

System.out.println("captaini and captain2 are same instance.");

Output

Here's the output.
Singleton Pattern Demo

Trying to make a captain for your team:

New captain is elected for your team.

Trying to make another captain for your team:

You already have a captain for your team.Send him for the toss.
captainl and captain2 are same instance.

Q&A Session

1. Why are you complicating the program? You could simply write
the Singleton class as follows.

class Captain

{

private static Captain captain;

//We make the constructor private to prevent the use of "new"

private Captain() { }

CHAPTER 1

2.

SINGLETON PATTERN

public static Captain getCaptain()
{

// lazy initialization
if (captain == null)

{
captain = new Captain();
System.out.println("New captain is elected for
your team.");
}
else
{
System.out.print("You already have a captain for
your team.");
System.out.println("Send him for the toss.");
}

return captain;

}

Is this understanding correct?

It can work in a single threaded environment only but it cannot
be considered a thread-safe implementation in a multithreaded
environment. Consider the following case. Suppose, in a
multithreaded environment, two (or more) threads try to
evaluate this:

if (captain == null)

And if they see that the instance is not created yet, each of them
will try to create a new instance. As a result, you may end up with
multiple instances of the class.

Why did you use the term lazy initialization in the code?

Because the singleton instance will not be created until the
getCaptain() method is called here.

CHAPTER 1 SINGLETON PATTERN

3. What do you mean by lazy initialization?

In simple terms, lazy initialization is a technique through which
you delay the object creation process. It says that you should
create an object only when it is required. This approach can be
helpful when you deal with expensive processes to create an
object.

4. Why are you making the class final? You have a private
constructor that could prevent the inheritance. Is this correct?

Subclassing can be prevented in various ways. Yes, in this
example, since the constructor is already marked with the
“private” keyword, it was not needed. But if you make the Captain
class final, as shown in the example, that approach is considered
a better practice. It is effective when you consider a nested class.
For example, let’s modify the private constructor body to examine
the number of instances (of the Captain class) created. Let’s
further assume that in the preceding example, you have a non-
static nested class (called inner class in Java) like the following. (All
changes are shown in bold.)

//final class Captain
class Captain
{
private static Captain captain;
//We make the constructor private to prevent the use of "new"
static int numberOfInstance=0;
private Captain()

{
numberOfInstance++;
System.out.println("Number of instances at this moment="+
numberOfInstance);

}

public static synchronized Captain getCaptain()

{

CHAPTER 1 SINGLETON PATTERN

// Lazy initialization
if (captain == null)

{
captain = new Captain();
System.out.println("New captain is elected for your
team.");

}

else

{
System.out.print("You already have a captain for your
team.");
System.out.println("Send him for the toss.");

}

return captain;
}
//A non-static nested class (inner class)
public class CaptainDerived extends Captain

{

//Some code

}

Now add an another line of code (shown in bold) inside the
main() method, as follows.

public class SingletonPatternExample {

public static void main(String[] args) {
System.out.println("***Singleton Pattern Demo***\n");
System.out.println("Trying to make a captain for your
team:");
//Constructor is private.We cannot use "new" here.
//Captain c3 = new Captain();//error
Captain captaini = Captain.getCaptain();
System.out.println("Trying to make another captain for your
team:");
Captain captain2 = Captain.getCaptain();

10

CHAPTER 1 SINGLETON PATTERN

if (captainil == captain2)

{
System.out.println("captainl and captain2 are same
instance.");
}
Captain.CaptainDerived derived=captaini.new
CaptainDerived();

}

Now notice the output.

Output

Now, you can see that the program has violated the key objective, because I never
intended to create more than one instance.

Singleton Pattern Demo

Trying to make a captain for your team:

Number of instances at this moment=1

New captain is elected for your team.

Trying to make another captain for your team:

You already have a captain for your team.Send him for the toss.
captainl and captain2 are same instance.

Number of instances at this moment=2

5. Are there any alternative approaches for modelling singleton

design patterns?

There are many approaches. Each has its own pros and cons. You
have already have seen two of them. Let’s discuss some alternative
approaches.

11

CHAPTER 1 SINGLETON PATTERN

Eager Initialization

Here is a sample implementation of the eager initialization.

class Captain

{
//Early initialization
private static final Captain captain = new Captain();
//We make the constructor private to prevent the use of "new"
private Captain()
{
System.out.println("A captain is elected for your team.");
}
/* Global point of access.The method getCaptain() is a public static
method*/
public static Captain getCaptain()
{
System.out.println("You have a captain for your team.");
return captain;
}
}
Discussion

An eager initialization approach has the following pros and cons.
Pros

o Itisstraightforward and cleaner.
o Itis the opposite of lazy initialization but still thread safe.

o Ithasasmall lag time when the application is in execution mode
because everything is already loaded in memory.

Cons

o The application takes longer to start (compared to lazy initialization)
because everything needs to be loaded first. To examine the penalty,
let’s add a dummy method (shown in bold) in the Singleton class.
Notice that in the main method, I am invoking only this dummy
method. Now examine the output.

12

CHAPTER 1 SINGLETON PATTERN

package jdp2e.singleton.questions_answers;

class Captain

{

}

//Early initialization

private static final Captain captain
//We make the constructor private to prevent the use of "new

new Captain();

private Captain()

{
}

System.out.println("A captain is elected for your team.");

/* Global point of access.The method getCaptain() is a public static
method*/
public static Captain getCaptain()

{

}

System.out.println("You have a captain for your team.");
return captain;

public static void dummyMethod()

{

System.out.println("It is a dummy method");

public class EagerInitializationExample {
public static void main(String[] args) {

System.out.println("***Singleton Pattern Demo With Eager
Initialization***\n");

Captain.dummyMethod();

/*System.out.println("Trying to make a captain for your team:");
Captain captainl = Captain.getCaptain();
System.out.println("Trying to make another captain for your
team:");

Captain captain2 = Captain.getCaptain();

13

CHAPTER 1 SINGLETON PATTERN

if (captainl == captain2)

{

System.out.println("captainl and captain2 are same
instance.");
Y/

}
Output

Singleton Pattern Demo With Eager Initialization

A captain is elected for your team.
It is a dummy method

Analysis

Notice that A captain is elected for your team still appears in the output, though you may
have no intention to deal with that.

So, in the preceding situation, an object of the Singleton class is always instantiated.
Also, prior to Java 5, there were many issues that dealt with Singleton classes.

Bill Pugh’s Solution

Bill Pugh came up with a different approach using a static nested helper class.
package jdp2e.singleton.questions_answers;

class Captaini

{
private Captaini() {

System.out.println("A captain is elected for your team.");

}
//Bill Pugh solution

private static class SingletonHelper{
/*Nested class is referenced after getCaptain() is called*/

private static final Captaini captain = new Captaini();

14

CHAPTER 1 SINGLETON PATTERN

public static Captaini getCaptain()

{
return SingletonHelper.captain;
}
/*public static void dummyMethod()
{
System.out.println("It is a dummy method");
o

This method does not use a synchronization technique and eager initialization.
Notice that the SingletonHelper class comes into consideration only when someone
invokes the getCaptain() method. And this approach will not create any unwanted
output if you just call any dummyMethod() from main(), as with the previous case (to
examine the result, you need to uncomment the dummyMethod() body). It is also treated
one of the common and standard methods for implementing singletons in Java.

Double-Checked Locking

There is another popular approach, which is called double-checked locking. If you
notice our synchronized implementation of the singleton pattern, you may find that
synchronization operations are costly in general and the approach is useful for some
initial threads that might break the singleton implementation. But in later phases, the
synchronization operations might create additional overhead. To avoid that problem,
you can use a synchronized block inside an if condition, as shown in the following
code, to ensure that no unwanted instance is created.

package jdp2e.singleton.questions answers;

final class Captain2
{
private static Captain2 captain;
//We make the constructor private to prevent the use of "new"
static int numberOfInstance=0;
private Captain2() {
numberOfInstance++;

15

CHAPTER 1 SINGLETON PATTERN

System.out.println("Number of instances at this moment="+
numberOfInstance);

}

public static Captain2 getCaptain(){
if (captain == null) {
synchronized (Captain2.class) {
// lazy initialization
if (captain == null){
captain = new Captain2();
System.out.println("New captain is elected for your

team.");
}
else
{
System.out.print("You already have a captain for your
team.");
System.out.println("Send him for the toss.");
}

}

return captain;

If you are further interested in singleton patterns, read the article at www.
journaldev.com/1377/java-singleton-design-pattern-best-practices-examples

6. Inshort, ifI need to create synchronized code, I can use the
synchronized keyword in Java. Is this correct?

Yes, JVM ensures this. Internally, it uses locks on a class or an
object to ensure that only one thread is accessing the data. In Java,
you can apply this keyword to a method or statements(or, block
of code). In this chapter, I have exercised it in both ways. (In the
initial implementation, you used the synchronized method, and
in double-checked locking, you saw the use of the other version).

16

http://www.journaldev.com/1377/java-singleton-design-pattern-best-practices-examples
http://www.journaldev.com/1377/java-singleton-design-pattern-best-practices-examples

CHAPTER 1 SINGLETON PATTERN

7. Why are multiple object creations a big concern?

o Inreal-world scenarios, object creations are treated as costly
operations.

e Sometimes you need to implement a centralized system for easy
maintenance, because it can help you provide a global access
mechanism.

8. When should I consider singleton patterns?

Use of a pattern depends on particular use cases. But in general,
you can consider singleton patterns to implement a centralized
management system, to maintain a common log file, to maintain
thread pools in a multithreaded environment, to implement
caching mechanism or device drivers, and so forth.

9. I'have some concern about the eager initialization example.
Following the definition, it appears that it is not exactly eager
initialization. This class is loaded by the JVM only when it is
referenced by code during execution of the application. That
means this is also lazy initialization. Is this correct?

Yes, to some extent your observation is correct. There is a
debate on this discussion. In short, it is eager compared to the
previous approaches. You saw that when you called only the
dummyMethod(); still, you instantiated the singleton, though you
did not need it. So, in a context like this, it is eager but it is lazy in
the sense that the singleton instantiation will not occur until the
class is initialized. So, the degree of laziness is the key concern
here.

17

CHAPTER 2

Prototype Pattern

This chapter covers the prototype pattern.

GoF Definition

Specify the kinds of objects to create using a prototypical instance, and create new
objects by copying this prototype.

Concept

In general, creating a new instance from scratch is a costly operation. Using the
prototype pattern, you can create new instances by copying or cloning an instance of an
existing one. This approach saves both time and money in creating a new instance from

scratch.

Real-World Example

Suppose we have a master copy of a valuable document. We need to incorporate some
changes to it to see the effect of the change. In such a case, we can make a photocopy of
the original document and edit the changes.

Consider another example. Suppose a group of people decide to celebrate the
birthday of their friend Ron. They go to a bakery and buy a cake. To make it special, they
request the seller to write, “Happy Birthday Ron” on the cake. From the seller’s point
of view, he is not making any new model. He already defined the model and produces
many cakes (which all look the same) every day by following the same process, and
finally makes each special with some small changes.

19
© Vaskaran Sarcar 2019

V. Sarcar, Java Design Patterns, https://doi.org/10.1007/978-1-4842-4078-6_2

CHAPTER 2 PROTOTYPE PATTERN

Computer-World Example

Let’s assume that you have an application that is very stable. In the future, you may want
to update the application with some small modifications. So, you start with a copy of
your original application, make changes, and analyze further. Surely, to save your time
and money, you do not want to start from scratch.

Note Consider the Object.clone() method as an example of a prototype.

lllustration

Figure 2-1 illustrates a simple prototype structure.

BasicCar) Client

Nano Ford

Figure 2-1. A sample prototype structure

Here, BasicCar is a basic prototype. Nano and Ford are the concrete prototypes that
have implemented the clone() method defined in BasicCar. In this example, we have
created a BasicCar class with a default price (in Indian currency). Later, we modify the
price per model. PrototypePatternExample.java is the client in this implementation.

Class Diagram

Figure 2-2 shows a class diagram of the prototype pattern.

20

<<Java Class>>

(¥ BasicCar
jdp2e.prototype.demo

CHAPTER 2 PROTOTYPE PATTERN

© modelName: String
© basePrice: int

© onRoadPrice: int

<<Java Class>>

(9 PrototypePatternExample

jdp2e.prototype.demo

GcBasicCar()

& getModelname():String

& setModelname(String):void
@ setAdditionalPrice():int

& clone():BasicCar

QD PrototypePatternExample()
esmain(String[]):void

<<Java Class>>
(9 Nano
jdp2e.prototype.demo

© basePrice: int

chano(String)
@& clone():BasicCar

Figure 2-2. Class diagram

<<Java Class>>
(9Ford
jdp2e.prototype.demo

© basePrice: int

@ Ford(String)
i clone():BasicCar

21

CHAPTER 2 PROTOTYPE PATTERN

Package Explorer View

Figure 2-3 shows the high-level structure of the program.

=7 PrototypePattern
> B\ JRE System Library [jre1.8.0_172]
v {# jdp2e.prototype.demo
v m BasicCar.java
v & BasicCar
@ setAdditionalPrice() : int
© basePrice
© modelName
© onRoadPrice
@ clone() : BasicCar
@ getModelname() : String
@ setModelname(String) : void
v m Ford.java
v Q Ford
© basePrice
e Ford(String)
@ clone() : BasicCar
v m Nano.java
v Q Nano
© basePrice
e Nano(String)
@ clone() : BasicCar
v PrototypePatternExample.java
v QPrototypePatternExample
@ main(String[]) : void
T2 ClassDiagramForPrototypePattern.ucls

Figure 2-3. Package Explorer view

22

CHAPTER 2 PROTOTYPE PATTERN

Implementation

Here’s the implementation.

//BasicCar.java
package jdp2e.prototype.demo;
import java.util.Random;

public abstract class BasicCar implements Cloneable

{
public String modelName;
public int basePrice,onRoadPrice;
public String getModelname() {
return modelName;
}
public void setModelname(String modelname) {
this.modelName = modelname;
}
public static int setAdditionalPrice()
{
int price = 0;
Random r = new Random();
//We will get an integer value in the range 0 to 100000
int p = r.nextInt(100000);
price = p;
return price;
}
public BasicCar clone() throws CloneNotSupportedException
{
return (BasicCar)super.clone();
}
}
//Nano.java

package jdp2e.prototype.demo;

23

CHAPTER 2 PROTOTYPE PATTERN

class Nano extends BasicCar

{

//A base price for Nano
public int basePrice=100000;
public Nano(String m)

{

modelName = m;

}

@Override
public BasicCar clone() throws CloneNotSupportedException

{

return (Nano)super.clone();
//return this.clone();

}
//Ford. java
package jdp2e.prototype.demo;

class Ford extends BasicCar

{
//A base price for Ford
public int basePrice=100000;
public Ford(String m)
{
modelName = m;
}
@verride
public BasicCar clone() throws CloneNotSupportedException
{
return (Ford)super.clone();
}
}
//Client

// PrototypePatternExample.java

24

CHAPTER 2 PROTOTYPE PATTERN

package jdp2e.prototype.demo;

public class PrototypePatternExample

{

public static void main(String[] args) throws
CloneNotSupportedException

{

System.out.println("***Prototype Pattern Demo***\n");
BasicCar nano = new Nano("Green Nano") ;
100000;

nano.basePrice

BasicCar ford = new Ford("Ford Yellow");
ford.basePrice=500000;

BasicCar bci;

//Nano

bc1 =nano.clone();

//Price will be more than 100000 for sure

bci.onRoadPrice = nano.basePrice+BasicCar.setAdditionalPrice();
System.out.println("Car is: "+ bcil.modelName+" and it's price is
Rs."+bc1.onRoadPrice);

//Ford

bc1 =ford.clone();

//Price will be more than 500000 for sure

bci.onRoadPrice = ford.basePrice+BasicCar.setAdditionalPrice();
System.out.println("Car is: "+ bcl.modelName+" and it's price is
Rs."+bc1.onRoadPrice);

Output

Here’s the output.

prototype Pattern Demo

Car is: Green Nano and it's price is Rs.123806
Car is: Ford Yellow and it's price is Rs.595460

25

CHAPTER 2 PROTOTYPE PATTERN

Note You can see a different price in your system because we are generating a
random price in the setAdditionalPrice() method inside the BasicCar class.
But | have assured that the price of the Ford will be greater than the Nano.

Q&A Session

1. What are the advantages of using prototype design patterns?

o Itis useful when creating an instance of a class is a complicated
(or boring) process. Instead, you can focus on other key activities.

e You can include or discard products at runtime.
e You can create new instances at a cheaper cost.

2. What are the challenges associated with using prototype design
patterns?

o Each subclass needs to implement the cloning or copying
mechanism.

e Sometimes creating a copy from an existing instance is not
simple. For example, implementing a cloning mechanism can
be challenging if the objects under consideration do not support
copying/cloning or if there are circular references. For example,
in Java, a class with the clone() method needs to implement
the Cloneable marker interface; otherwise, it will throw a
CloneNotSupportedException.

o Inthis example, I have used the clone() method that performs
a shallow copy in Java. Following the convention, I obtained
the returned object by calling super .clone().(If you want to
learn more about this, put your cursor on the eclipse editor and
go through the instructions). If you need a deep copy for your
application, that can be expensive.

26

CHAPTER 2 PROTOTYPE PATTERN

Can you please elaborate the difference between a shallow
copy and a deep copy?

A shallow copy creates a new object and then copies various field
values from the original object to the new object. So, it is also
known as a field-by-field copy. If the original object contains any
references to other objects as fields, then the references of those
objects are copied into the new object, (i.e., you do not create the
copies of those objects).

Let’s try to understand the mechanism with a simple diagram.
Suppose we have an object, X1, and it has a reference to another
object, Y1. Further assume that object Y1 has a reference to object Z1.

Figure 2-4. Before shallow copy of the reference/s

Now, with the shallow copy of X1, a new object, X2, is created; it
also has a reference to Y1.

27

CHAPTER 2

28

PROTOTYPE PATTERN

Figure 2-5. After the shallow copy of the reference

You have already seen the use of the clone () method in our
implementation. It performs a shallow copy.

For a deep copy of X1, a new object, X3, is created. X3 has a reference
to new object Y3, which is actually a copy of Y1. Also, Y3, in turn,
has a reference to another new object, Z3, which is a copy of Z1.

Y3
(Actual

copy of Y1)

Z3

(Actual
copy of Z1)

Figure 2-6. After the deep copy of the reference

In a deep copy, the new object is totally separated from the
original one. Any changes made in one object should not be
reflected on the other one. To create a deep copy in Java, you
may need to override the clone() method and then proceed.
Also, a deep copy is expensive because you need to create

CHAPTER 2 PROTOTYPE PATTERN

additional objects. A complete implementation of deep copy is
presented in the “Q&A Session” of Memento Pattern (Chapter 19)
in this book.

4. 'When do you choose a shallow copy over a deep copy (and vice
versa)?

A shallow copy is faster and less expensive. It is always better if
your target object has the primitive fields only.

A deep copy is expensive and slow. But it is useful if your target
object contains many fields that have references to other objects.

5. When I copy an object in Java, I need to use the clone() method.
Is this understanding correct?

No. There are alternatives available, and one of them is to use the
serialization mechanism. But you can always define your own
copy constructor and use it.

6. Canyou give a simple example that demonstrates a user-
defined copy constructor?

Java does not support a default copy constructor. You may need
to write your own. Consider the following program, which
demonstrates such a usage.

Demonstration

Here’s the demonstration.
package jdp2e.prototype.questions_answers;

class Student

{
int rollNo;

String name;
//Instance Constructor

29

CHAPTER 2 PROTOTYPE PATTERN

}

public Student(int rollNo, String name)
{
this.rollNo = rollNo;
this.name = name;
}
//Copy Constructor
public Student(Student student)
{
this.name = student.name;
this.rollNo = student.rollNo;

}
public void displayDetails()
{
System.out.println(" Student name: "
}

class UserDefinedCopyConstructorExample {

30

public static void main(String[] args) {

+ name + ",Roll no: "+rollNo);

System.out.println("***User defined copy constructor example in

Java***\n");

Student student1l = new Student(1, "John");
System.out.println(" The details of Student1 is as follows:");

student1.displayDetails();

System.out.println("\n Copying studenti to student2 now");

//Invoking the user-defined copy constructor
Student student2 = new Student (student1);
System.out.println(" The details of Student2 is as follows:");

student2.displayDetails();

CHAPTER 2

Output
Here’s the output.
User defined copy constructor example in Java

The details of Student1l is as follows:
Student name: John,Roll no: 1

Copying student1l to student2 now
The details of Student2 is as follows:
Student name: John,Roll no: 1

PROTOTYPE PATTERN

31

CHAPTER 3

Builder Pattern

This chapter covers the builder pattern.

GoF Definition

Separate the construction of a complex object from its representation so that the same
construction processes can create different representations.

Concept

The builder pattern is useful for creating complex objects that have multiple parts.
The creational mechanism of an object should be independent of these parts. The
construction process does not care about how these parts are assembled. The same
construction process must allow us to create different representations of the objects.

The structure in Figure 3-1 is an example of the builder pattern. The structure is
adopted from the Gang of Four book, Design Patterns: Elements of Reusable Object-
Oriented Software (Addison-Wesley, 1995).

Director >——» Builder

_________ Product
ConcreteBuilder >

Figure 3-1. An example of the builder pattern

© Vaskaran Sarcar 2019
V. Sarcar, Java Design Patterns, https://doi.org/10.1007/978-1-4842-4078-6_3

CHAPTER 3 BUILDER PATTERN

Product is the complex object that you want to create. ConcreteBuilder constructs
and assembles the parts of a product by implementing an abstract interface, Builder.
The ConcreteBuilder objects build the product’s internal representations and define the
creational process/assembling mechanisms. Builders can also provide methods to get
an object that is created and available for use (notice the getVehicle() method in the
Builder interface in the following implementation). Director is responsible for creating
the final object using the Builder interface. In other words, Director uses Builder and
controls the steps/sequence to build the final Product. Builders can also keep reference
of the products that they built, so that they can be used again.

Real-World Example

To complete an order for a computer, different parts are assembled based on customer
preferences (e.g., one customer can opt for a 500 GB hard disk with an Intel processor,
and another customer can choose a 250 GB hard disk with an AMD processor). Consider
another example. Suppose that you intend to go on a tour with a travel company that
provides various packages for the same tour (for example, they can provide special
arrangements, a different kind of vehicle for the sightseeing, etc.). You can choose your
package based on your budget.

Computer-World Example

The builder pattern can be used when we want to convert one text format to another text
format (e.g., RTF to ASCII text).

Note The Java.util.Calendar.Builder class is an example in this category, but it

is available in Java 8 and onward only. The java.lang.StringBuilder class is a close
example in this context. But you need to remember that the GoF definition says
that this pattern allows you to use the same construction process to make different
representations. In this context, this example does not fully qualify for this pattern.

34

CHAPTER 3 BUILDER PATTERN

lllustration

In this example, we have the following participants: Builder, Car, MotorCycle, Product,
and Director. The first three are very straightforward; Car and MotorCycle are concrete
classes and they implement the Builder interface. Builder is used to create parts of the
Product object, where Product represents the complex object under construction.

Since Car and MotorCycle are the concrete implementations of the Builder interface,
they need to implement the methods that are declared in the Builder interface. That'’s
why they needed to supply the body for the startUpOperations(), buildBody(),
insertWheels(), addHeadlights(), endOperations(), and getVehicle()methods.

The first five methods are straightforward; they are used to perform an operation at the
beginning (or end), build the body of the vehicle, insert the wheels, and add headlights.
getVehicle() returns the final product. In this case, Director is responsible for
constructing the final representation of these products using the Builder interface. (See
the structure defined by the GoF). Notice that Director is calling the same construct()
method to create different types of vehicles.

Now go through the code to see how different parts are assembled for this pattern.

35

CHAPTER 3 BUILDER PATTERN

Class Diagram

Figure 3-2 shows the class diagram of the builder pattern.

<<Java Class>>
(9 Director

<<Java Interface>>
€9 Builder
jdp2e.builder. pattern

@ startUpOperations():void

<<Java Class>>

@car

jdp2e.builder.pattern

o brandName: String

@ Car(String)

@ startUpOperations():void
@ buildBody():void

@ insertWheels():void

@ addHeadlights():void

@ endOperations():void

@ getVehicle():Product

Figure 3-2. Class diagram

jdp2e.builder pattern ~builder
€ 0.1
A Director()
@ construct{Builder):void
.-"'.MI

@ buildBody():void

@ insertWheels():void
@ addHeadlights():void
@ endOperations():void
@ getVehicle():Product

<<Java Class>>
(9 BuilderPatternExample
jdp2e.builder.pattern

@ BuilderPatternExample()
@’ main(String[]):void

<<Java Class>>

(9 Product

<<Java Class>>

(9 MotorCycle

jdp2e_builder.pattem

o brandName: String

& MotorCycle(String)
@ startUpOperations():void

jdp2e.builder. pattern JM @ buildBody():void

o parts: LinkedList<String>

@ Product()
@ add(String):void
@ showProduct():void

Package Explorer View

Figure 3-3 shows the high-level structure of the program.

36

@ insertWheels():void

@ addHeadlights():void
@ endOperations():void
@ getVehicle():Product

CHAPTER 3 BUILDER PATTERN

(= BuilderPattern
> B\ JRE System Library (jdk1.8.0_172)
v # jdp2e.builder.demo
v |J] BuilderPatternExample.java
v QBuilder
@' addHeadlights() : void
@ buildBody() : void
¢ endOperations() : void
¢ getVehicle() : Product
¢ insertWheels() : void
¢ startUpOperations() : void
v QBuilderPatternExample
@ main(String(]) : void
v QCar
o brandName
o product
& Car(String)
@ addHeadlights() : void
@ buildBody() : void
@ endOperations() : void
@ getVehicle() : Product
@ insertWheels() : void
@. startUpOperations() : void
v Q Director
4 builder
@ construct(Builder) : void
v QMotorCycle
@ brandName
o product
¢ MotorCycle(String)
@ addHeadlights() : void
@ buildBody() : void
@ endOperations() : void
@. getVehicle() : Product
@ insertWheels() : void
@ startUpOperations() : void
v QProduct
o parts
e Product()
@ add(String) : void
@ showProduct() : void

Figure 3-3. Package Explorer view
37

CHAPTER 3 BUILDER PATTERN

Implementation

Here’s the implementation.
package jdp2e.builder.demo;
import java.util.linkedlist;

//The common interface
interface Builder
{
void startUpOperations();
void buildBody();
void insertWheels();
void addHeadlights();
void endOperations();
/*The following method is used to retrieve the object that is
constructed.*/
Product getVehicle();
}
//Car class
class Car implements Builder
{
private String brandName;
private Product product;
public Car(String brand)
{
product = new Product();
this.brandName = brand;

}
public void startUpOperations()

{
//Starting with brand name

product.add(String. format("Car model is :%s",this.brandName));

38

}

CHAPTER 3

public void buildBody()

{
product.add("This is a body of a Car");
}
public void insertWheels()
{
product.add("4 wheels are added");
}
public void addHeadlights()
{
product.add("2 Headlights are added");
}

public void endOperations()
{ //Nothing in this case

}
public Product getVehicle()
{
return product;
}

//Motorcycle class
class MotorCycle implements Builder

{

private String brandName;
private Product product;
public MotorCycle(String brand)
{
product = new Product();
this.brandName = brand;
}
public void startUpOperations()
{ //Nothing in this case

}

BUILDER PATTERN

39

CHAPTER 3 BUILDER PATTERN

}
/1

public void buildBody()

{
product.add("This is a body of a Motorcycle");
}
public void insertWheels()
{
product.add("2 wheels are added");
}
public void addHeadlights()
{
product.add("1 Headlights are added");
}
public void endOperations()
{
//Finishing up with brand name
product.add(String.format("Motorcycle model is :%s", this.
brandName));
}
public Product getVehicle()
{
return product;
}

Product class

class Product

{

40

/* You can use any data structure that you prefer.
I have used LinkedlList<String> in this case.*/

private LinkedlList<String> parts;

public Product()

{

parts = new LinkedList<String>();

CHAPTER 3 BUILDER PATTERN

public void add(String part)

{
//Adding parts
parts.addLast(part);
}
public void showProduct()
{

System.out.println("\nProduct completed as below :");
for (String part: parts)
System.out.println(part);

}

// Director class
class Director

{
Builder builder;
// Director knows how to use the builder and the sequence of steps.
public void construct(Builder builder)
{
this.builder = builder;
builder.startUpOperations();
builder.buildBody();
builder.insertWheels();
builder.addHeadlights();
builder.endOperations();
}
}

public class BuilderPatternExample {

public static void main(String[] args) {
System.out.println("***Builder Pattern Demo***");
Director director = new Director();

Builder fordCar = new Car("Ford");
Builder hondaMotorycle = new MotorCycle("Honda");

41

CHAPTER 3 BUILDER PATTERN

// Making Car
director.construct(fordCar);
Product p1 = fordCar.getVehicle();
pl.showProduct();

//Making MotorCycle
director.construct(hondaMotorycle);
Product p2 = hondaMotorycle.getVehicle();
p2.showProduct();

Output

Here's the output.
Byilder Pattern Demo

Product completed as below :
Car model is :Ford

This is a body of a Car

4 wheels are added

2 Headlights are added

Product completed as below :
This is a body of a Motorcycle
2 wheels are added

1 Headlights are added
Motorcycle model is :Honda

Q&A Session

1. What are the advantages of using a builder pattern?

e You can create a complex object, step by step, and vary the steps.
You promote encapsulation by hiding the details of the complex
construction process. The director can retrieve the final product
from the builder when the whole construction is over. In general,
42

CHAPTER 3 BUILDER PATTERN

at a high level, you seem to have only one method that makes the
complete product. Other internal methods only involve partial
creation. So, you have finer control over the construction process.

o Using this pattern, the same construction process can produce
different products.

o Since you can vary the construction steps, you can vary product’s

internal representation.

2. What are the drawbacks/pitfalls associated with the builder
pattern?

o Itis not suitable if you want to deal with mutable objects (which
can be modified later).

¢ You may need to duplicate some portion of the code. These
duplications may have significant impact in some context and
turn into an antipattern.

e A concrete builder is dedicated to a particular type of product.
So, to create different type of products, you may need to come up
with different concrete builders.

o The approach makes more sense if the structure is very complex.

3. CanIuse an abstract class instead of the interface in the
illustration of this pattern?

Yes. You can use an abstract class instead of an interface in this
example.

4. Howdo I decide whether I should use an abstract class or an
interface in an application?

I believe that if you want to have some centralized or default
behavior, the abstract class is a better choice. In those cases, you
can provide some default implementation. On the other hand,
interface implementation starts from scratch. They indicate some
kind of rules/contracts on what is to be done (e.g., you must
implement the method) but they will not enforce the how part of
it. Also, interfaces are preferred when you are trying to implement
the concept of multiple inheritance.

43

CHAPTER 3 BUILDER PATTERN

But at the same time, if you need to add a new method in an
interface, then you need to track down all the implementations of
that interface and you need to put the concrete implementation
for that method in all of those places. You can add a new method
in an abstract class with a default implementation and the existing
code can run smoothly.

Java has taken special care with this last point. Java 8 introduced
the use of ‘default’ keyword in the interface. You can prefix the
default word before the intended method signature and provide a
default implementation. Interface methods are public by default,
so you do not need to mark it with the keyword public.

These summarized suggestions are from the Oracle Java
documentation at https://docs.oracle.com/javase/tutorial/
java/IandI/abstract.html.

You should prefer the abstract class in the following scenarios:
¢ You want to share code among multiple closely related classes.

o The classes that extend the abstract class can have many
common methods or fields, or they require non-public access
modifiers inside them.

e You want to use non-static or/and non-final fields, which
enables us to define methods that can access and modify the
state of the object to which they belong.

e On the other hand, you should prefer interfaces for these
scenarios:

e You expect that several unrelated classes are going to
implement your interface (e.g., comparable interface can be
implemented by many unrelated classes).

e You specify the behavior of a particular data type, but it does

not matter how the implementer implements that.

e You want to use the concept of multiple inheritance in your
application.

44

https://docs.oracle.com/javase/tutorial/java/IandI/abstract.html
https://docs.oracle.com/javase/tutorial/java/IandI/abstract.html

CHAPTER 3 BUILDER PATTERN

Note

In my book Interactive Object-Oriented Programming in Java (Apress,
2016), | discussed abstract classes, interfaces, and the use of the “default”
keyword with various examples and outputs. Refer to that book for a detailed

discussion and analysis.

5.

I am seeing that in cars, model names are added in the
beginning, but for motorcycles, model names are added at the

end. Is it intentional?

Yes. It was used to demonstrate the fact that each of the concrete
builders can decide how they want to produce the final products.
They have this freedom.

Why are you using a separate class for director? You could use
the client code to play the role of the director.

No one restricts you to do that. In the preceding implementation,
I'wanted to separate this role from the client code in the
implementation. But in the upcoming/modified implementation,
I have used the client as a director.

What do you mean by client code?

The class that contains the main() method is the client code. In
most parts of the book, client code means the same.

You mentioned varying steps several times. Can you
demonstrate an implementation where the final product is
created with different variations and steps?

Good catch. You asked for a demonstration of the real power of
the builder pattern. So, let us consider another example.

45

CHAPTER 3 BUILDER PATTERN

Modified lllustration

Here are the key characteristics of the modified implementation.

e In this modified implementation, I consider only cars as the final
products.

o I create custom cars that have the following attributes: a start-
up message (startUpMessage), a process completion message
(endOperationsMessage), the body material of the car (bodyType),
the number of wheels on the car (noOfWheels), and the number of
headlights (noOfHeadLights) on the car.

o The client code is playing the role of a director in this
implementation.

o Thave renamed the builder interface as ModifiedBuilder. Apart from
the constructCar() and getConstructedCar() methods, each of the
methods in the interface has the ModifiedBuilder return type, which
helps us to apply method chaining mechanism in the client code.

Modified Package Explorer View

Figure 3-4 shows the modified Package Explorer view.

46

CHAPTER 3 BUILDER PATTERN

|J] BuilderPatternModifiedExample java
v Q..Bui|derPatternModifiedExarnple
@ main(String(]) : void
v QCarBuiIder
o bodyType
endOperationsMessage
noOfHeadLights
noOfWheels
A product
o startUpMessage
@ addHeadlights(int) : ModifiedBuilder
@ buildBody(String) : ModifiedBuilder
@ constructCar() : ProductClass
@ endOperations(String) : ModifiedBuilder
@ getConstructedCar() : ProductClass
@ insertWheels(int) : ModifiedBuilder
@ startUpOperations(String) : ModifiedBuilder
v QModifiedBuilder
@ addHeadlights(int) : ModifiedBuilder
@' buildBody(String) : ModifiedBuilder
¢ constructCar() : ProductClass
@ endOperations(String) : ModifiedBuilder
¢ getConstructedCar() : ProductClass
¢ insertWheels(int) : ModifiedBuilder
¢ startUpOperations(String) : ModifiedBuilder
v GiProductCIass
o bodyType
endOperationsMessage
noOfHeadLights
noOfWheels
o startUpMessage
¢ ProductClass(String, String, int, int, String)
@, toString() : String

Figure 3-4. Modified Package Explorer view

47

CHAPTER 3 BUILDER PATTERN

Modified Implementation

Here is the modified implementation.
package jdp2e.builder.pattern;

//The common interface
interface ModifiedBuilder
{
/*All these methods return type is ModifiedBuilder.

* This will help us to apply method chaining*/
ModifiedBuilder startUpOperations(String startUpMessage);
ModifiedBuilder buildBody(String bodyType);

ModifiedBuilder insertWheels(int noOfWheels);
ModifiedBuilder addHeadlights(int noOfHeadlLights);
ModifiedBuilder endOperations(String endOperationsMessage);
//Combine the parts and make the final product.
ProductClass constructCar();
//0ptional method:To get the already constructed object
ProductClass getConstructedCar();

}

//Car class

class CarBuilder implements ModifiedBuilder

{
private String startUpMessage="Start building the product”;//Default
//start-up message
private String bodyType="Steel";//Default body
private int noOfWheels=4;//Default number of wheels
private int noOfHeadlLights=2;//Default number of head lights
//Default finish up message
private String endOperationsMessage="Product creation completed”;
ProductClass product;
@verride

48

CHAPTER 3 BUILDER PATTERN

public ModifiedBuilder startUpOperations(String startUpMessage)
{

this.startUpMessage=startUpMessage;

return this;

}

@0verride
public ModifiedBuilder buildBody(String bodyType)
{

this.bodyType=bodyType;

return this;

}

@0verride
public ModifiedBuilder insertWheels(int noOfWheels)
{

this.noOfWheels=noOfWheels;

return this;

}

@0verride
public ModifiedBuilder addHeadlights(int noOfHeadlLights)
{
this.noOfHeadlLights=noOfHeadlights;
return this;
}
@0verride
public ModifiedBuilder endOperations(String endOperationsMessage)
{ this.endOperationsMessage=endOperationsMessage;
return this;

}

@Override
public ProductClass constructCar() {

product= new ProductClass(this.startUpMessage,this.
bodyType, this.noOfWheels,this.noOfHeadlLights,this.
endOperationsMessage);

49

CHAPTER 3 BUILDER PATTERN

return product;

}
@0verride
public ProductClass getConstructedCar()
{
return product;
}
}

//Product class
final class ProductClass
{
private String startUpMessage;
private String bodyType;
private int noOfWheels;
private int noOfHeadlights;
private String endOperationsMessage;
public ProductClass(final String startUpMessage, String bodyType,
int noOfWheels, int noOfHeadlLights,
String endOperationsMessage) {
this.startUpMessage = startUpMessage;
this.bodyType = bodyType;
this.noOfWheels = noOfWheels;
this.noOfHeadlLights = noOfHeadlLights;
this.endOperationsMessage = endOperationsMessage;
}
/*There is no setter methods used here to promote immutability.
Since the attributes are private and there is no setter methods, the
keyword "final" is not needed to attach with the attributes.
*/
@verride
public String toString() {
return "Product Completed as:\n startUpMessage=" +
startUpMessage + "\n bodyType=" + bodyType + "\n noOfWheels="

50

CHAPTER 3 BUILDER PATTERN

+ noOflheels + "\n noOfHeadlLights=" +
noOfHeadLights + "\n endOperationsMessage=" +
endOperationsMessage

)

}

//Director class
public class BuilderPatternModifiedExample {

public static void main(String[] args) {
System.out.println("***Modified Builder Pattern Demo***");
/*Making a custom car (through builder)
Note the steps:
Stepl:Get a builder object with required parameters
Step2:Setter like methods are used.They will set the
optional fields also.
Step3:Invoke the constructCar() method to get the final car.
*/
final ProductClass customCarl = new CarBuilder().
addHeadlights(5)

.insertWheels(5)

.buildBody("Plastic")

.constructCar();
System.out.println(customCari);
System.out.println("-------------- ");

/* Making another custom car (through builder) with a
different
* sequence and steps.
*/
ModifiedBuilder carBuilder2=new CarBuilder();
final ProductClass customCar2 = carBuilder2.insertWheels(7)

.addHeadlights(6)

.startUpOperations("I am making my own car")

.constructCar();
System.out.println(customCar2);

51

CHAPTER 3 BUILDER PATTERN

System.out.println("-------------- ");

//Verifying the getConstructedCar() method
final ProductClass customCar3=carBuilder2.getConstructedCar();
System.out.println(customCar3);

Modified Output

Here’s the modified output. (Some of the lines are bold to draw your attention to notice
the differences in the output).

Modified Builder Pattern Demo

Product Completed as:

startUpMessage=Start building the product
bodyType=Plastic

noOflheels=5

noOfHeadlLights=5

endOperationsMessage=Product creation completed
Product Completed as:

startUpMessage=I am making my own car
bodyType=Steel

noOflheels=7

noOfHeadlLights=6

endOperationsMessage=Product creation completed
Product Completed as:

startUpMessage=I am making my own car
bodyType=Steel

noOfWheels=7

noOfHeadlLights=6

endOperationsMessage=Product creation completed

52

CHAPTER 3 BUILDER PATTERN

Analysis

Note the following lines of code (from the preceding implementation) for the custom
cars creation in the client code.

System.out.println("***Modified Builder Pattern Demo***");
/*Making a custom car (through builder)
Note the steps:
Step1l:Get a builder object with required parameters
Step2:Setter like methods are used.They will set the
optional fields also.
Step3:Invoke the constructCar() method to get the final car.
*/
final ProductClass customCari = new CarBuilder().
addHeadlights(5)
.insertWheels(5)
.buildBody("Plastic")
.constructCar();
System.out.println(customCar1);
System.out.println("-------------- ");
/* Making another custom car (through builder) with a
different
* sequence and steps.
*/
ModifiedBuilder carBuilder2=new CarBuilder();
final ProductClass customCar2 = carBuilder2.insertWheels(7)
.addHeadlights(6)
.startUpOperations("I am making my own car")
.constructCar();
System.out.println(customCar2);

You are using a builder to create multiple objects by varying the builder attributes
between calls to the “build” methods; for example, in the first case, you are invoking
the addHeadLights(), insertWheels(), buildBody() methods, one by one, through
a builder object, and then you are getting the final car (customCar1). But in the

53

CHAPTER 3 BUILDER PATTERN

second case, when you create another car object (customCar2), you are invoking the
methods in a different sequence. When you are not invoking any method, the default
implementation is provided for you.

9. TIam seeing the use of final keywords in client codes. But you
have not used those for ProductClass attributes. What is the
reason for that?

In the client code, I used the final keywords to promote
immutability. But in the ProductClass class, the attributes are
already marked with private keywords and there are no setter
methods, so these are already immutable.

10. Whatis the key benefit of immutable objects?

Once constructed, they can be safely shared, and most
importantly, they are thread safe, so you save lots in
synchronization costs in a multithreaded environment.

11. When should I consider using a builder pattern?

If you need to make a complex object that involves various steps
in the construction process, and at the same time, the products
need to be immutable, the builder pattern is a good choice.

54

CHAPTER 4

Factory Method Pattern

This chapter covers the factory method pattern.

GoF Definition

Define an interface for creating an object, but let subclasses decide which class to
instantiate. Factory method lets a class defer instantiation to subclasses.

POINTS TO REMEMBER

To understand this pattern, | suggest you go to Chapter 24, which covers the simple factory
pattern. The simple factory pattern does not fall directly into the Gang of Four design patterns,
so | put the discussion of that pattern in Part Il of this book. The factory method pattern will
make more sense if you start with the simple factory pattern.

Concept

Here you start your development with an abstract creator class (creator) that defines

the basic structure of the application. The subclasses that derive from this abstract class

perform the actual instantiation process. The concept will make sense to you when you

start thinking about the pattern using the following examples.

© Vaskaran Sarcar 2019
V. Sarcar, Java Design Patterns, https://doi.org/10.1007/978-1-4842-4078-6_4

55

CHAPTER 4 FACTORY METHOD PATTERN

Real-World Example

Consider a car manufacturing company that produces different models of a car and runs
its business well. Based on the model of the car, different parts are manufactured and
assembled.

The company should be prepared for changes where customers can opt for better
models in the near future. If the company needs to do a whole new setup for a new
model, which demands only a few new features, it can hugely impact its profit margin.
So, the company should set up the factory in such a way that it can produce parts for the
upcoming models also.

Computer-World Example

Suppose that you are building an application that needs to support two different
databases, let’s say Oracle and SQL Server. So, whenever you insert a data into a
database, you create a SQL Server-specific connection (SqlServerConnection) or an
Oracle server-specific connection (OracleConnection) and then you can proceed.
If you put these codes into if-else (or switch) statements, you may need to repeat
alot of code. This kind of code is not easily maintainable because whenever you
need to support a new type of connection, you need to reopen your code and place
the modifications. A factory method pattern focuses on solving similar problems in
application development.

Note Since the simple factory pattern is the simplest form of the factory method
pattern, you can consider the same examples here. So, the static getinstance()
method of the java.text.NumberFormat class is an example of this category. The
createURLStreamHandler(String protocol) of the java.net.URLStreamHandlerFactory
interface is another example in this category. You can pass ftp, http, and so forth as
different protocols and the method will return a URLStreamHandler for the specific
protocol.

56

lllustration

CHAPTER 4 FACTORY METHOD PATTERN

I am continuing the discussion the simple factory pattern that is covered in Chapter 24.
So, I'll try to improve the implementation. For simplicity, I have placed all classes in this

implementation in a single file. So, you do not need to create any separate folders for
the individual classes. I suggest that you refer to the associated comments for a better

understanding.

Class Diagram

Figure 4-1 shows the class diagram of the factory method pattern.

<<Java Class>>
@ FactoryMethodPatternExample
jdp2e.factorymethod.demo

esmain;Stringm:\.roid

‘c FactoryMethodPatternExample()

<<Java Class>>

<<Java Interface>>
€9 Animal
jdp2e.factorymethod.demo

@ Speak():void
@ Action():void

(% AnimalFactory
jdp2e.factorymethod.demo

J.,"".»ﬂmimaIFacloryr()
GqcmazeAn.i‘man'f):Anfma.‘

4

£

K

"
N

<<Java Class>>

(®Dog

jdp2e.factorymethod.demo

<<Java Class>>

(9 Tiger
jdp2e factorymethod.demo

a’Dog()
@ Speak():void
@ Action():void

A" Tiger()
@ Speak():void
@ Action():void

Figure 4-1. Class diagram

<<Java Class>>

(3 DogFactory
jdp2e.factorymethod.demo

<<Java Class>>
(9 TigerFactory
jdp2e.factorymethod.demo

4" DogFactory()
@ createAnimal():Animal

‘c‘l'lgerFactory()
© createAnimal():Animal

57

CHAPTER 4 FACTORY METHOD PATTERN

Package Explorer View

Figure 4-2 shows the high-level structure of the program.

1= FactoryMethodPattern
> ®\ JRE System Library [jre1.8.0_172]
v i jdp2e.factorymethod.demo
v [J) FactoryMethodPatternExample.java
v QAnimal
¢ preferredAction() : void
¢ speak() : void
v GﬂAnimalFactory
¢ createAnimal() : Animal
v QDog
@ preferredAction() : void
@ speak() : void
v QDogFactory
@ createAnimal() : Animal
v G}.FactoryMethodPatternExample
@ main(String[)) : void
v QTiger
@ preferredAction() : void
@ speak() : void
v QTigerFactory
@ createAnimal() : Animal
T2 ClassDiagramForFactoryMethodPattern.ucls

Figure 4-2. Package Explorer view

Implementation

Here’s the implementation.

package jdp2e.factorymethod.demo;
interface Animal

{
void speak();

void preferredAction();

58

CHAPTER 4 FACTORY METHOD PATTERN

class Dog implements Animal

{
public void speak()
{
System.out.println("Dog says: Bow-Wow.");
}
public void preferredAction()
{
System.out.println("Dogs prefer barking...\n");
}
}
class Tiger implements Animal
{
public void speak()
{
System.out.println("Tiger says: Halum.");
}
public void preferredAction()
{
System.out.println("Tigers prefer hunting...\n");
}
}
abstract class AnimalFactory
{

/*Remember that the GoF definition says
defer instantiation to subclasses.™

....Factory method lets a class

In our case, the following method will create a Tiger or Dog but at this
point it does not know whether it will get a Dog or a Tiger. This decision
will be taken by the subclasses i.e. DogFactory or TigerFactory. So,in this
implementation, the following method is playing the role of a factory (of
creation)*/

public abstract Animal createAnimal();

59

CHAPTER 4 FACTORY METHOD PATTERN

class DogFactory extends AnimalFactory

{
public Animal createAnimal()
{
//Creating a Dog
return new Dog();
}
}
class TigerFactory extends AnimalFactory
{
public Animal createAnimal()
{
//Creating a Tiger
return new Tiger();
}
}

class FactoryMethodPatternExample {
public static void main(String[] args) {

System.out.println("***Factory Pattern Demo***\n");
// Creating a Tiger Factory
AnimalFactory tigerFactory =new TigerFactory();
// Creating a tiger using the Factory Method
Animal aTiger = tigerFactory.createAnimal();
aTiger.speak();
aTiger.preferredAction();

// Creating a DogFactory

AnimalFactory dogFactory = new DogFactory();
// Creating a dog using the Factory Method
Animal aDog = dogFactory.createAnimal();
aDog.speak();

aDog.preferredAction();

60

CHAPTER 4 FACTORY METHOD PATTERN

Output

Here’s the output.
Factory Pattern Demo

Tiger says: Halum.
Tigers prefer hunting...

Dog says: Bow-Wow.
Dogs prefer barking...

Modified Implementation

In this implementation, the AnimalFactory class is an abstract class. So, let us take
advantage of using an abstract class. Suppose that you want a subclass to follow a rule
that can be imposed from its parent (or base) class. So, I am testing such a scenario in the
following design.

The following are the key characteristics of the design.

o Only AnimalFactory is modified as follows (i.e., I am introducing a
new makeAnimal() method).

//Modifying the AnimalFactory class.
abstract class AnimalFactory

{
public Animal makeAnimal()

{

System.out.println("I am inside makeAnimal() of AnimalFactory.You

cannot ignore my rules.");
/*
At this point, it doesn't know whether it will get a Dog or a
Tiger. It will be decided by the subclasses i.e.DogFactory or
TigerFactory.But it knows that it will Speak and it will have a
preferred way of Action.
*/
Animal animal = createAnimal();
animal.speak();

61

CHAPTER 4 FACTORY METHOD PATTERN

animal.preferredAction();
return animal;

}

/*Remember that the GoF definition says
defer instantiation to subclasses."

....Factory method lets a class

In our case, the following method will create a Tiger or Dog but at this
point it does not know whether it will get a Dog or a Tiger.
This decision will be taken by the subclasses i.e. DogFactory or
TigerFactory. So,in this implementation, the following method is playing
the role of a factory (of creation)*/

public abstract Animal createAnimal();

o C(lient code has adapted these changes:

class ModifiedFactoryMethodPatternExample {
public static void main(String[] args) {

System.out.println("***Modified Factory Pattern Demo***\n");
// Creating a Tiger Factory
AnimalFactory tigerFactory =new TigerFactory();
// Creating a tiger using the Factory Method
Animal aTiger = tigerFactory.makeAnimal();
//aTiger.speak();
//aTiger.preferredAction();

// Creating a DogFactory

AnimalFactory dogFactory = new DogFactory();
// Creating a dog using the Factory Method
Animal aDog = dogFactory.makeAnimal();
//aDog.speak();

//aDog.preferredAction();

62

CHAPTER 4 FACTORY METHOD PATTERN

Modified Output

Here’s the modified output.
Modified Factory Pattern Demo

I am inside makeAnimal() of AnimalFactory.You cannot ignore my rules.
Tiger says: Halum.
Tigers prefer hunting...

I am inside makeAnimal() of AnimalFactory.You cannot ignore my rules.
Dog says: Bow-Wow.
Dogs prefer barking...

Analysis

In each case, you see the message (or warning) “..You cannot ignore my rules”

Q&A Session

1. Why have you separated the CreateAnimal() method from
client code?

Itis my true intention. I want the subclasses to create specialized
objects. If you look carefully, you will find that only this “creational
part” is varying across the products. I discuss this in detail in the
Q&A session on the simple factory pattern (see Chapter 24).

2. What are the advantages of using a factory like this?

e You are separating code that can vary from the code that does not
vary (i.e., the advantages of using a simple factory pattern is still
present). This technique helps you easily maintain code.

e Your code is not tightly coupled; so, you can add new classes
like Lion, Beer, and so forth, at any time in the system without
modifying the existing architecture. So, you have followed the
“closed for modification but open for extension” principle.

63

CHAPTER 4 FACTORY METHOD PATTERN

3. What are the challenges of using a factory like this?

If you need to deal with a large number of classes, then you may
encounter maintenance overhead.

4. Isee that the factory pattern is supporting two parallel
hierarchies. Is this correct?
Good catch. Yes, from the class diagram (see Figure 4-3), it is
evident that this pattern supports parallel class hierarchies.
So, in this example, AnimalFactory, DogFactory, and TigerFactory
are placed in one hierarchy, and Animal, Dog, and Tiger are
placed in another hierarchy. So, the creators and their creations/
products are two hierarchies running in parallel.
Hierarchy-1 Hierarchy-2
<<Java Interface>> <<Java Class>>
€9 Animal (& AnimalFactory
jdp2e.factorymethod.demo jdp2e.factorymethod.demo
@ speak():void ‘CAnimalFactory()
@ preferredAction():void ' createAnimal():Animal
4 >
<<Java Clas‘;» <<Java Class>> . a
<<, >
@Dog @Tlger <<Java Class>> GTTVE Fasst
jdp2e.factorymethod.demo jdp2e.factorymethod.demo GDOQ Factory . gettaciory
jdp2e.factorymethod.demo jdp2e.factorymethod.demo
C C—
& Dog() & Tiger()
¥ . . 2" DogFactory() & TigerFactory()
@ speak():void © speak():void A A I o createAnimal(:Animal
. . imal():Ani I :
© preferredAction():void @ preferredAction():void i ki

Figure 4-3. The two class hierarchies in our example

64

5.

I should always mark the factory method with an abstract
keyword so that subclasses can complete them. Is this correct?

No. You may be interested in a default factory method if the
creator has no subclasses. And in that case, you cannot mark the
factory method with the abstract keyword.

To show the real power of the factory method pattern, you may
need to follow a similar design, which is implemented here.

CHAPTER 4 FACTORY METHOD PATTERN

6. Itstill appears to me that the factory method pattern is not
much different from simple factory. Is this correct?

If you look at the subclasses in the examples in both chapters, you
may find some similarities. But you should not forget the key aim
of the factory method pattern is that it is supplying the framework
through which different subclasses can make different products.
But in a simple factory, you cannot vary the products like you

can with the factory method pattern. Think of simple factory as a
one-time deal but most importantly, your creational part will not
be closed for modification. Whenever you want to add a new stuff,
you need to add an if/else block or a switch statement in the
factory class of your simple factory pattern.

In this context, remember the GoF definition: the factory

method lets a class defer instantiation to subclasses. So, in our
simple factory pattern demonstration, you used a concrete

class only (SimpleFactory). You did not need to override

the createAnimal() method and there was no subclass that
participated in the final decision/product making process. But

if you try to code to an abstract class (or interface), that is always
considered a good practice, and this mechanism provides you the
flexibility to put some common behaviors in the abstract class.

Note In the simple factory pattern, you simply segregate the instantiation logic
from client code. In this case, it knows about all the classes whose objects it can
create. On the other hand, when using a factory method pattern, you delegate the
object creation to subclasses. Also, the factory method is not absolutely sure about
the product subclasses in advance.

65

CHAPTER 4

66

7.

FACTORY METHOD PATTERN

In the factory method pattern, I can simply use a subclassing
mechanism (i.e., using inheritance) and then implement the
factory method (that is defined in the parent class). Is this
correct?

The answer to this question is yes if you want to strictly follow
the GoF definitions. But it is important to note that in many
applications/implementations, there is no use of an abstract
class or interface; for example, in Java, an XML reader object is
used like this:

//Some code before..
XMLReader xmlReaderl = XMLReaderFactory.createXMLReader();
//Some code after

XMLReaderFactory is a final class in Java. So, you cannot inherit
from it.

But when you use SAXPaserFactory, as follows, you are using an
abstract class SAXParserFactory.

//some code before...

SAXParserFactory factory = SAXParserFactory.newInstance();
SAXParser parser = factory.newSAXParser();
XMLReader xmlReader2 = parser.getXMLReader();

//Some code after

CHAPTER 5

Abstract Factory Pattern

This chapter covers the abstract factory pattern.

GoF Definition

Provide an interface for creating families of related or dependent objects without

specifying their concrete classes.

Note To better understand this pattern, | suggest that you start at Chapter 24
(simple factory pattern) and then cover Chapter 4 (factory method pattern). The
simple factory pattern does not fall directly in the Gang of Four design patterns, so
the discussion on that pattern is placed in Part Il of this book.

Concept

This is basically a factory of factories that provides one level of higher abstraction
than the factory method pattern. This pattern helps us to interchange specific
implementations without changing the code that uses them, even at runtime.

This pattern provides a way to encapsulate a group of individual factories that have a
common theme. Here a class does not create the objects directly; instead, it delegates the
task to a factory object.

The simple factory method pattern creates a set of related objects. In a similar way,
since an abstract factory is basically a factory of factories, it returns factories that create a
set of related objects. (I discuss the differences in detail in the “Q&A Session” section.)

67
© Vaskaran Sarcar 2019

V. Sarcar, Java Design Patterns, https://doi.org/10.1007/978-1-4842-4078-6_5

CHAPTER 5 ABSTRACT FACTORY PATTERN

Real-World Example

Suppose that we are decorating our room with two different tables: one made of wood
and one made of steel. For the wooden table, we need to visit to a carpenter, and for
the other table, we need to go to a metal shop. Both are table factories, so based on our
demand, we decide what kind of factory we need.

In this context, you may consider two different car manufacturing companies:
Honda and Ford. Honda makes models, such as CR-V, Jazz, Brio, and so forth. Ford
makes different models, such as Mustang, Figo, Aspire, and so forth. So, if you want to
purchase a Jazz, you must visit a Honda showroom, but if you prefer a Figo, you go to a
Ford showroom.

Computer-World Example

To understand this pattern, I'll extend the requirement in the factory method pattern.
In factory method pattern, we had two factories: one created dogs and the other created
tigers. But now, you want to categorize dogs and tigers further. You may choose a
domestic animal (dog or tiger) or a wild animal (dog or tiger) through these factories.

To fulfil that demand, I introduce two concrete factories: WildAnimalFactory and
PetAnimalFactory. The WildAnimalFactory is responsible for creating wild animals and
the PetAnimalFactory is responsible for creating domestic animals, or pets.

Note The newlnstance() method of javax.xml.parsers.DocumentBuilderFactory

is an example of the abstract factory pattern in JDK. The newlnstance() method

of javax.xml.transform.TransformerFactory is another such example in this context.
If you are familiar with C#, you may notice that ADO.NET has already implemented
similar concepts to establish a connection to a database.

lllustration

Wikipedia describes a typical structure of the abstract factory pattern (https://
en.wikipedia.org/wiki/Abstract factory pattern), which is similar to what’s shown
in Figure 5-1.

68

https://en.wikipedia.org/wiki/Abstract_factory_pattern
https://en.wikipedia.org/wiki/Abstract_factory_pattern

CHAPTER 5 ABSTRACT FACTORY PATTERN

Client
Abstract Factory
A AbstractProductA |
ConcreteFactory2 ConcreteFactoryl ProductAl ProductA2
SN i
AbstractProductB {7 ------eeeeee s ek
: [|
\:.r" | |
ProductB1 ProductB2

Figure 5-1. A typical example of an abstract factory pattern

I am going to follow a similar structure in our implementation. So, in the
following implementation, I used two concrete factories: WildAnimalFactory and
PetAnimalFactory. They are responsible for the creations of the concrete products, dogs
and tigers. WildAnimalFactory creates wild animals (wild dogs and wild tigers) and
PetAnimalFactory creates domesticated pet animals (pet dogs and pet tigers). For your
ready reference, the participants with their roles are summarized as follows.

o AnimalFactory: An interface that is treated as the abstract factory in
the following implementation.

o WildAnimalFactory: A concrete factory that implements
AnimalFactory interface. It creates wild dogs and wild tigers.

o PetAnimalFactory: Another concrete factory that implements the
AnimalFactory interface. It creates pet dogs and pet tigers.

e Tiger and Dog: Two interfaces that are treated as abstract products in
this example.

o PetTiger, PetDog, WildTiger, and WildDog: The concrete products in
the following implementation.

69

CHAPTER 5 ABSTRACT FACTORY PATTERN

Here the client code is looking for animals (dogs and tigers). A common usage of this
pattern is seen when we compose classes using the concrete instances of the abstract
factory. I have followed the same. Notice that the client class contains the composed

implementation of AnimalFactory. You can explore the construction process of both pet
and wild animals in the following implementation.

Class Diagram

Figure 5-2 shows the class diagram.

Wavalnledie? L o o e mddmccccccccccc s — e, —————— <<Java Class>>
0 AnimalFactory (3 AbstractFactoryPatterExample
Hp2e absiractiaciory demo R ple abstactactory demo
=u << Java Interfaces>
@ createDogi}Dog (1)1 A AbstractFactoryPatiemExangle(
© createTger() Tger ipls sbetactctorydemo main(String]rvoid
I b @ speakf)vod '
/ i preferrediction(| void N !
e O /V <<Java Class>> :
. (HWildTiger (3 PetTiger i
<<Java Class>> <<Java Class>> Modeabetcticonydemo do2e abstactiaciorydema .
(O WildAnimalFactory| | PetAnimalFactory : '
p ; CWadh) A PeiTgen) i
e sbetactctrydemo | | e abstactiacioy demo & WidTger : '
0 speaoid S -
{ (e NI i
& WidAnimalFaclory() A PeténimaFactory) —— 9 preferredaction(jvoid !
@ createDog(}Dog @ createDog()Dog N /l’\ :
0 createTigen() Tiger QurealeTiger)Tger [———===~= Fmmmmmm e ¢ !
[J‘ 1 1
"""""""""""""" ! - "
<clava Class» v i
GWII dDog <<Java Class>> :
o i (©PetDog 1
S ol dvstactiniory dema :
t, I
- fon =
: il 0 speak(jvod |
ol i o preferredActon()void v
]
:
1
1
1
1

Figure 5-2. Class diagram

70

prre—

{3Dog
Ko sty e

© speak{jvod
 prefemedacton()void

CHAPTER 5

Package Explorer View

Figure 5-3 shows the high-level structure of the program.

1 jdp2e.abstractfactory.demo
v |J) AbstractFactoryPatternExample.java

> G.’.AbstractFactoryPatternExample

v QAnimaIFactory
¢ createDog() : Dog
T createTiger() : Tiger

v QDog
@ preferredAction() : void
@ speak() : void

v QPetAnimaIFactory
@ createDog() : Dog
@ createTiger() : Tiger

v QPetDog
@ preferredAction() : void
@ speak() : void

v QPetTiger
@ preferredAction() : void
@ speak() : void

v QTiger
¢ preferredAction() : void
@ speak() : void

v QWiIdAnimaIFactory
@ createDog() : Dog
@ createTiger() : Tiger

v @ WildDog
@ preferredAction() : void
@ speak() : void

v @ wildTiger
@ preferredAction() : void
@ speak() : void

Figure 5-3. Package Explorer view

ABSTRACT FACTORY PATTERN

71

CHAPTER 5 ABSTRACT FACTORY PATTERN

Implementation
Here’s the implementation.
package jdp2e.abstractfactory.demo;

interface Dog

{

void speak();

void preferredAction();
}
interface Tiger
{

void speak();

void preferredAction();
}

//Types of Dogs-wild dogs and pet dogs
class WildDog implements Dog
{

@0verride

public void speak()

{
System.out.println("Wild Dog says loudly: Bow-Wow.");

}

@0verride
public void preferredAction()

{
System.out.println("Wild Dogs prefer to roam freely in

jungles.\n");

}
class PetDog implements Dog

{

@0verride
public void speak()

72

CHAPTER 5 ABSTRACT FACTORY PATTERN

{
System.out.println("Pet Dog says softly: Bow-Wow.");

}

@Override

public void preferredAction()

{

System.out.println("Pet Dogs prefer to stay at home.\n");

}

}
//Types of Tigers-wild tigers and pet tigers

class WildTiger implements Tiger

{

@0verride
public void speak()

{
System.out.println("Wild Tiger says loudly: Halum.");

}

@0verride
public void preferredAction()

{
System.out.println("Wild Tigers prefer hunting in jungles.\n");

}

class PetTiger implements Tiger

{

@0verride
public void speak()

{
System.out.println("Pet Tiger says softly: Halum.");

73

CHAPTER 5 ABSTRACT FACTORY PATTERN

@Override
public void preferredAction()

{

System.out.println("Pet Tigers play in the animal circus.\n");

}

//Abstract Factory
interface AnimalFactory
{
Dog createDog();
Tiger createTiger();
}
//Concrete Factory-Wild Animal Factory
class WildAnimalFactory implements AnimalFactory
{
@0verride
public Dog createDog()

{
return new WildDog();

}

@Override
public Tiger createTiger()

{

return new WildTiger();

}

//Concrete Factory-Pet Animal Factory
class PetAnimalFactory implements AnimalFactory

{

@0verride
public Dog createDog()

{

return new PetDog();

74

CHAPTER 5 ABSTRACT FACTORY PATTERN

@0verride
public Tiger createTiger()
{
return new PetTiger();
}
}
//Client

class AbstractFactoryPatternExample {

public static void main(String[] args) {
AnimalFactory myAnimalFactory;
Dog myDog;
Tiger myTiger;
System.out.println("***Abstract Factory Pattern Demo***\n");
//Making a wild dog through WildAnimalFactory
myAnimalFactory = new WildAnimalFactory();
myDog = myAnimalFactory.createDog();
myDog . speak();
myDog.preferredAction();
//Making a wild tiger through WildAnimalFactory
myTiger = myAnimalFactory.createTiger();
myTiger.speak();
myTiger.preferredAction();

System.out.println("¥rkekirtiitiintik) .

//Making a pet dog through PetAnimalFactory
myAnimalFactory = new PetAnimalFactory();
myDog = myAnimalFactory.createDog();
myDog . speak();

myDog.preferredAction();

//Making a pet tiger through PetAnimalFactory
myTiger = myAnimalFactory.createTiger();
myTiger.speak();

myTiger.preferredAction();

75

CHAPTER 5 ABSTRACT FACTORY PATTERN

Output

Here’s the output.
Abstract Factory Pattern Demo

Wild Dog says loudly: Bow-Wow.
Wild Dogs prefer to roam freely in jungles.

Wild Tiger says loudly: Halum.
Wild Tigers prefer hunting in jungles.

kokok ok ok ok ok >k kook sk ok ok sk >k kok ok

Pet Dog says softly: Bow-Wow.
Pet Dogs prefer to stay at home.

Pet Tiger says softly: Halum.
Pet Tigers play in the animal circus.

Q&A Session

1. Iam seeing that both the dog and the tiger interfaces
contain methods that have the same names (both interfaces
contain the speak() and the preferredAction() methods.

Is it mandatory?

No. You can use different names for your methods. Also, the
number of methods can be different in these interfaces. But I
covered a simple factory pattern and factory method pattern
in this book. You may be interested in the similarities or the
differences between them. So, I started with an example and
keep modifying it. This is why I kept both the speak() and
preferredAction() methods in this example. Notice that these
methods are used in both the simple factory pattern (see
Chapter 24) and the factory method pattern (see Chapter 4).

76

CHAPTER 5 ABSTRACT FACTORY PATTERN

2. What are the challenges of using an abstract factory like this?

o Any change in the abstract factory forces us to propagate
the modification of the concrete factories. If you follow the
design philosophy that says program to an interface, not to an
implementation, you need to prepare for this. This is one of the
key principles that developers always keep in mind. In most
scenarios, developers do not want to change their abstract
factories.

o The overall architecture may look complex. Also, debugging
becomes tricky in some scenarios.

3. How can you distinguish a simple factory pattern from a
factory method pattern or an abstract factory pattern?

I discussed the differences between a simple factory pattern and
factory method pattern in the “Q&A Session” section of Chapter 4.

Let’s revise all three factories with the following diagrams.

Simple Factory Pattern Code Snippet

Here’s the code snippet.

Animal preferredType=null;

SimpleFactory simpleFactory = new SimpleFactory();

// The code that will vary based on users preference.
preferredType = simpleFactory.createAnimal();

Figure 5-4 shows how to get animal objects in the Simple Factory pattern.

Dog
Request for an animal (Animal)
Client Simple Factory
Get an animal Tiger
(Animal)

Figure 5-4. Simple factory pattern

77

CHAPTER 5 ABSTRACT FACTORY PATTERN

Factory Method Pattern Code Snippet

Here’s the code snippet.

// Creating a Tiger Factory

AnimalFactory tigerFactory =new TigerFactory();
// Creating a tiger using the Factory Method
Animal aTiger = tigerFactory.createAnimal();

//...Some code in between...
// Creating a DogFactory
AnimalFactory dogFactory = new DogFactory();

// Creating a dog using the Factory Method
Animal aDog = dogFactory.createAnimal();

Figure 5-5 shows how to get animal objects in the factory method pattern.

DogFactory o Dog
Request for an animal (Animal)
Client "| AnimalFactory
Get an animal TigerFactory Tiger
(Animal)

Figure 5-5. Factory method pattern

Abstract Factory Pattern Code Snippet

Here’s the code snippet.

AnimalFactory myAnimalFactory;

Dog myDog;

Tiger myTiger;

System.out.println("***Abstract Factory Pattern Demo***\n");
//Making a wild dog through WildAnimalFactory
myAnimalFactory = new WildAnimalFactory();

myDog = myAnimalFactory.createDog();

78

CHAPTER 5

//Making a wild tiger through WildAnimalFactory
myTiger = myAnimalFactory.createTiger();

//Making a pet dog through PetAnimalFactory
myAnimalFactory = new PetAnimalFactory();
myDog = myAnimalFactory.createDog();

//Making a pet tiger through PetAnimalFactory
myTiger = myAnimalFactory.createTiger();
myTiger.speak();

myTiger.preferredAction();

ABSTRACT FACTORY PATTERN

Figure 5-6 shows how to get animal objects in the abstract factory method pattern.

WildAnimalFactory

Request for an animal

Client AnimalFactory

Get an arimal
PetAnimalFactory

Figure 5-6. Abstract factory method pattern

Conclusion

WildDog

/v (Dog)

PetDog
(Dog)

WildTiger
(Tiger)

PetTiger
(Tiger)

With simple factory, you can separate the code that varies from the rest of the code

(basically, you decouple the client codes). This approach helps you easily manage your

code. Another key advantage of this approach is that the client is unaware of how the

objects are created. So, it promotes both security and abstraction. But it can violate the

open-close principle.

79

CHAPTER 5 ABSTRACT FACTORY PATTERN

You can overcome this drawback using the factory method pattern that allows subclasses to
decide how the instantiation process is completed. In other words, you delegate the objects
creation to the subclasses that implement the factory method to create objects.

The abstract factory is basically a factory of factories. It creates the family of related
objects but it does not depend on the concrete classes.

I tried to maintain simple examples that were close to each other. The factory method
promotes inheritance; their subclasses need to implement the factory method to create
objects. The abstract factory pattern promotes object composition, where you compose
classes using the concrete instances of an abstract factory.

Each of these factories promote loose coupling by reducing the dependencies on
concrete classes.

4. In all of these factory examples, you avoid the use of

parameterized constructors. Was this intentional?

In many applications, you see the use of parameterised
constructors; many experts prefer this approach. But my focus
is purely on design, and so, I ignored the use of parameterised
constructors. But if you are a fan of parameterized constructors,
let’'s modify the implementation slightly so that you can do the

same for the remaining parts.

Modified llustration

Let’s assume that you want your factories to initialize tigers with specified colors, and the
client can choose these colors.
Let’s modify the following pieces of code (changes are shown in bold).

Modified Implementation

Here’s the modified implementation.
package jdp2e.abstractfactory.questions answers;

interface Dog

{
void speak();

void preferredAction();

80

CHAPTER 5 ABSTRACT FACTORY PATTERN

interface Tiger
{
void speak();
void preferredAction();

}

//Types of Dogs-wild dogs and pet dogs
class WildDog implements Dog
{

@0verride

public void speak()

{
System.out.println("Wild Dog says loudly: Bow-Wow.");

}

@0verride

public void preferredAction()

{
System.out.println("Wild Dogs prefer to roam freely in
jungles.\n");

}
class PetDog implements Dog

{

@0verride
public void speak()

{
System.out.println("Pet Dog says softly: Bow-Wow.");

}

@0verride
public void preferredAction()

{
System.out.println("Pet Dogs prefer to stay at home.\n");

81

CHAPTER 5 ABSTRACT FACTORY PATTERN

//Types of Tigers-wild tigers and pet tigers

class

{

class

82

WildTiger implements Tiger

public WildTiger(String color)

{
System.out.println("A wild tiger with "+ color+ " is
created.");
}
@verride
public void speak()
{
System.out.println("Wild Tiger says loudly: Halum.");
}
@0verride
public void preferredAction()
{
System.out.println("Wild Tigers prefer hunting in jungles.\n");
}

PetTiger implements Tiger

public PetTiger(String color)

{
System.out.println("A pet tiger with "+ color+ " is created.");
}
@0verride
public void speak()
{
System.out.println("Pet Tiger says softly: Halum.");
¥
@0verride

public void preferredAction()

CHAPTER 5 ABSTRACT FACTORY PATTERN

System.out.println("Pet Tigers play in the animal circus.\n");

}

//Abstract Factory
interface AnimalFactory
{

Dog createDog();

Tiger createTiger(String color);
}
//Concrete Factory-Wild Animal Factory
class WildAnimalFactory implements AnimalFactory
{

@verride

public Dog createDog()

{
return new WildDog();

}
@0verride
public Tiger createTiger(String color)

{

return new WildTiger(color);

}

//Concrete Factory-Pet Animal Factory
class PetAnimalFactory implements AnimalFactory
{

@0verride

public Dog createDog()

{

return new PetDog();

}

@0verride
public Tiger createTiger(String color)

83

CHAPTER 5 ABSTRACT FACTORY PATTERN

{
return new PetTiger(color);
}
}
//Client

class AbstractFactoryPatternModifiedExample {
public static void main(String[] args) {
AnimalFactory myAnimalFactory;
Dog myDog;
Tiger myTiger;
System.out.println("***Abstract Factory Pattern Demo***\n");
//Making a wild dog through WildAnimalFactory
myAnimalFactory = new WildAnimalFactory();
myDog = myAnimalFactory.createDog();
myDog . speak();
myDog.preferredAction();
//Making a wild tiger through WildAnimalFactory
//myTiger = myAnimalFactory.createTiger();
myTiger = myAnimalFactory.createTiger("white and black stripes");
myTiger.speak();
myTiger.preferredAction();

System . Out . println (1ok sk sk ok ok skook sk sk sk sksk sk skok sk k !) ;

//Making a pet dog through PetAnimalFactory
myAnimalFactory = new PetAnimalFactory();

myDog = myAnimalFactory.createDog();

myDog . speak();

myDog.preferredAction();

//Making a pet tiger through PetAnimalFactory

myTiger = myAnimalFactory.createTiger("golden and cinnamon
stripes");

myTiger.speak();

myTiger.preferredAction();

84

CHAPTER 5

Modified Output

Here’s the modified output.
Abstract Factory Pattern Demo

Wild Dog says loudly: Bow-Wow.
Wild Dogs prefer to roam freely in jungles.

A wild tiger with white and black stripes is created.
Wild Tiger says loudly: Halum.
Wild Tigers prefer hunting in jungles.

sk koK ok ok ok ok ok ok ok

Pet Dog says softly: Bow-Wow.
Pet Dogs prefer to stay at home.

ABSTRACT FACTORY PATTERN

A pet tiger with golden and cinnamon stripes is created.

Pet Tiger says softly: Halum.
Pet Tigers play in the animal circus.

85

CHAPTER 6

Proxy Pattern

This chapter covers the proxy pattern.

GoF Definition

Provide a surrogate or placeholder for another object to control access to it.

Concept

A proxy is basically a substitute for an intended object. Access to the original object is not
always possible due to many factors. For example, it is expensive to create, it is in need

of being secured, it resides in a remote location, and so forth. The proxy design pattern
helps us in similar contexts. When a client deals with a proxy object, it assumes that it

is talking to the actual object. So, in this pattern, you may want to use a class that can
perform as an interface to something else.

Real-World Example

In a classroom, when a student is absent, his best friend may try to mimic his voice
during roll call to try to get attendance for his friend.

87
© Vaskaran Sarcar 2019

V. Sarcar, Java Design Patterns, https://doi.org/10.1007/978-1-4842-4078-6_6

CHAPTER6 PROXY PATTERN

Computer-World Example

In the programming world, to create multiple instances of a complex object (heavy
object) is costly . So, whenever you are in need, you can create multiple proxy

objects that point to the original object. This mechanism can also help save your
system/application memory. An ATM can implement this pattern to hold proxy objects

for bank information that may exist on a remote server.

Note In the java.lang.reflect package, you can have a Proxy class and an
InvocationHandler interface that supports a similar concept. The java.rmi.* package
also provides methods through which an object on one Java virtual machine can
invoke methods on an object that resides in a different Java virtual machine.

lllustration

In the following program, I am calling the doSomework () method of the proxy object,
which in turn, calls the doSomework () method of an object of ConcreteSubject. When
clients see the output, they do not know that the proxy object does the trick.

Class Diagram

Figure 6-1 shows the class diagram.

88

CHAPTER6 PROXY PATTERN

<<Java Class>> <<Java Class>>
@Subject (9 ProxyPatternExample

jdp2e.proxy.demo jdp2e.proxy.demo
‘FSubject() ecProxyPatternExample()
d‘doSomeWork():void esmain(String[]):void

N
cs | 0..1
<<Java Class>> <<Java Class>>
(9 Proxy (9 ConcreteSubject
jdp2e.proxy.demo jdp2e.proxy.demo
C

& Proxy() & ConcreteSubject()
@ doSomeWork():void @ doSomeWork():void

Figure 6-1. Class diagram

Package Explorer View

Figure 6-2 shows the high-level structure of the program.

89

CHAPTER6 PROXY PATTERN

= ProxyPattern
> W\ JRE System Library [jre1.8.0_172]
v 1 jdp2e.proxy.demo
v ProxyPatternExample.java
v QConcreteSubject
@ doSomeWork() : void
v Q Proxy
& cs
@. doSomeWork() : void
v Q ProxyPatternExample
@ main(String(]) : void
v QSubject
¢ doSomeWork() : void
22, ClassDiagramForProxyPattern.ucls

Figure 6-2. Package Explorer view

Implementation

Here’s the implementation.
package jdp2e.proxy.demo;

// Abstract class Subject
abstract class Subject

{
public abstract void doSomeWork();

}

// ConcreteSubject class
class ConcreteSubject extends Subject

{

@0verride

90

CHAPTER6 PROXY PATTERN

public void doSomeWork()
{

System.out.println("doSomeWork() inside ConcreteSubject is
invoked.");

}

Ve
* Proxy Class: It will try to invoke the doSomeWork()
* of a ConcreteSubject instance

*/
Class Proxy extends Subject
{
static Subject cs;
@0verride
public void doSomeWork()
{
System.out.println("Proxy call happening now...");
//Lazy initialization:We'll not instantiate until the method is
//called
if (¢s == null)
{
¢s = new ConcreteSubject();
}
cs.doSomeWork();
}
}
/**

* The client is talking to a ConcreteSubject instance
* through a proxy method.
*/

91

CHAPTER6 PROXY PATTERN

public class ProxyPatternExample {
public static void main(String[] args) {
System.out.println("***Proxy Pattern Demo***\n");
Proxy px = new Proxy();

px .doSomeWork();
}
}
Output
Here's the output.

kProxy Pattern Demo*

Proxy call happening now...
doSomeWork() inside ConcreteSubject is invoked.

Q&A Session

1. What are the different types of proxies?
These are the common types:

e Remote proxies. Hide the actual object that stays in a different
address space.

o Virtual proxies. Perform optimization techniques, such as the
creation of a heavy object on a demand basis.

o Protection proxies. Deal with different access rights.

o Smart reference. Performs additional housekeeping work when an
object is accessed by a client. A typical operation is counting the
number of references to the actual object at a particular moment.

92

CHAPTER6 PROXY PATTERN

2. You could create the ConcreteSubject instance in the proxy
class constructor, as follows.

class Proxy extends Subject

{

static Subject cs;
public Proxy()

{

//Instantiating inside the constructor
cs = new ConcreteSubject();

}

@0verride
public void doSomeWork()

{
System.out.println("Proxy call happening now...");

c¢s .doSomeWork();

}

Is this correct?

Yes, you could do that. But if you follow this design, whenever you
instantiate a proxy object, you need to instantiate an object of the
ConcreteSubject class also. So, this process may end up creating
unnecessary objects. You can simply test this with the following
piece of code and the corresponding outputs.

Alternate Implementation

Here’s the alternative implementation.
package jdp2e.proxy.questions_answers;

//Abstract class Subject
abstract class Subject

{

public abstract void doSomeWork();

93

CHAPTER6 PROXY PATTERN

//ConcreteSubject class

class ConcreteSubject extends Subject

{

}

/**

@0verride

public void doSomeWork()

{
System.out.println("doSomeWork() inside ConcreteSubject is
invoked");

* Proxy Class
* Tt will try to invoke the doSomeWork() of a ConcreteSubject instance *

*/

class Proxy extends Subject

{

94

static Subject cs;
static int count=0;//A counter to track the number of instances
public Proxy()

{
//Instantiating inside the constructor
cs = new ConcreteSubject();
count ++;

}

@0verride

public void doSomeWork()
{
System.out.println("Proxy call happening now...");
//Lazy initialization:We'll not instantiate until the method is
//called
/*¥if (cs == null)

CHAPTER6 PROXY PATTERN

{
cs = new ConcreteSubject();
count ++;
P/
¢s.doSomeWork();
}

}
/**

* The client is talking to a ConcreteSubject instance

* through a proxy method.

*/

public class ProxyPatternQuestionsAndAnswers {

public static void main(String[] args) {

System.out.println("***Proxy Pattern Demo without lazy
instantiation***\n");
//System.out.println("***Proxy Pattern Demo with lazy
instantiation***\n");
Proxy px = new Proxy();
px.doSomeWork();
//2nd proxy instance
Proxy px2 = new Proxy();
px2.doSomeWork();

System.out.println("Instance Count="+Proxy.count);

Output Without Lazy Instantiation
Here’s the output.
Proxy Pattern Demo without lazy instantiation

Proxy call happening now...
doSomelWork() inside ConcreteSubject is invoked

95

CHAPTER6 PROXY PATTERN

Proxy call happening now...
doSomeWork() inside ConcreteSubject is invoked
Instance Count=2

Analysis

Notice that you have created two proxy instances.
Now, try our earlier approach with lazy instantiation. (Remove the proxy constructor and
uncomment the lazy instantiation stuffs).

Output with Lazy Instantiation

Here's the output.
kproxy Pattern Demo with lazy instantiation

Proxy call happening now...

doSomeWork() inside ConcreteSubject is invoked
Proxy call happening now...

doSomelWork() inside ConcreteSubject is invoked
Instance Count=1

Analysis

Notice that you have created only one proxy instance this time.

3. Butin this lazy instantiation technique, you may create
unnecessary objects in a multithreaded application.
Is this correct?

Yes. In this book, I am presenting simple illustrations only, so

I have ignored that part. In the discussions on the singleton
pattern, I analyzed some alternative approaches to deal with

a multithreaded environment. You can always refer to those
discussions in situations like this. (For example, in this particular
scenario, you can implement a synchronization technique, or a
locking mechanism, or a smart proxy, and so forth to ensure that a
particular object is locked before you grant access to the object.)

96

CHAPTER6 PROXY PATTERN

4. Canyou give an example of a remote proxy?

Suppose, you want to call a method of an object but the object is
running in a different address space (e.g., different locations or
different computers, etc.). How do you proceed? With the help

of remote proxies, you can call the method on the proxy object,
which in turn forwards the call to the actual object that is running
on the remote machine. This type of need can be realized through
well-known mechanisms like ASP.NET, CORBA, C#’s WCF
(version 3.0 onward), or Java’s RMI (Remote Method Invocation).

Figure 6-3 demonstrates a simple remote proxy structure.

~

Client < Remote Proxy
Object

A
Local environment

Remote Location Original Object

Figure 6-3. A simple remote proxy diagram

5. When can you use a virtual proxy?
It can be used to avoid multiple loadings of an extremely large
image.

6. When can you use a protection proxy?

The security team in an organization can implement a protection
proxy to block Internet access to specific websites.

Consider the following example, which is basically a modified
version of the proxy pattern implementation described earlier.
For simplicity, let’s assume that at present, we have only three
registered users who can exercise the doSomeWork () proxy
method. Apart from them, if any other user (say, Robin) tries to

97

CHAPTER6 PROXY PATTERN

invoke the method, the system will reject those attempts. You
must agree, when the system will reject this kind of unwanted
access; there is no point in making a proxy object. So, if you avoid
instantiating an object of ConcreteSubject in the Proxy class
constructor, you can easily avoid these kinds of additional objects
creation.

Now go through the modified implementation.

Modified Package Explorer View

Figure 6-4 shows the modified high-level structure of the program.

+H jdp2e.proxy.modified.demo
v 4J] ModifiedProxyPatternExample java
v QConcreteSubject
@. doSomeWork() : void
v QModiﬁedProxy
& cs
4 currentUser
A registeredUsers
¢ ModifiedProxy(String)
@. doSomeWork() : void
v @.ModifiedProxyPatternExampIe
@ main(String(]) : void
v Gﬂ Subject
& doSomeWork() : void

Figure 6-4. Modlified Package Explorer view

98

CHAPTER 6

Modified Implementation

Here’s the modified implementation.
package jdp2e.proxy.modified.demo;

import java.util.Arraylist;
import java.util.Arrays;
import java.util.Llist;

//Abstract class Subject
abstract class Subject

{
public abstract void doSomeWork();

}

//ConcreteSubject class
class ConcreteSubject extends Subject

PROXY PATTERN

{
@0verride
public void doSomeWork()
{
System.out.println("doSomeWork() inside ConcreteSubject is
invoked.");
}
}
Vais

* Proxy Class:It will try to invoke the doSomeWork()
* of a ConcreteSubject instance
*/
class ModifiedProxy extends Subject
{
static Subject cs;
String currentUser;
List<String> registeredUsers;
//0r, simply create this mutable list in one step

99

CHAPTER6 PROXY PATTERN

/*List<String> registeredUsers=new ArraylList<String>(Arrays.asList(
"Admin","Rohit","Sam"));*/
public ModifiedProxy(String currentUser)

{
//Registered users are Admin, Rohit and Sam only.
registeredUsers = new ArraylList<String>();
registeredUsers.add("Admin");
registeredUsers.add("Rohit");
registeredUsers.add("Sam");
this.currentUser = currentUser;
}
@Override
public void doSomeWork()
{
System.out.println("\n Proxy call happening now...");
System.out.println(currentUser+" wants to invoke a proxy
method.");
if (registeredUsers.contains(currentUser))
{
//Lazy initialization:We'll not instantiate until the
//method is called
if (cs == null)
{
cs = new ConcreteSubject();
}
//Allow the registered user to invoke the method
cs.doSomeWork();
}
else
{
System.out.println("Sorry "+ currentUser+ " , you do
not have access rights.");
}
}

100

CHAPTER6 PROXY PATTERN

/**

* The client is talking to a ConcreteSubject instance
* through a proxy method.

*/

public class ModifiedProxyPatternExample {

public static void main(String[] args) {
System.out.println("***Modified Proxy Pattern Demo***\n");
//Admin is an authorized user
ModifiedProxy px1 = new ModifiedProxy("Admin");
px1.doSomeWork();
//Robin is an unauthorized user
ModifiedProxy px2 = new ModifiedProxy("Robin");
px2.doSomeWork();

Modified Output

Here’s the modified output.
Modified Proxy Pattern Demo

Proxy call happening now...
Admin wants to invoke a proxy method.
doSomelork() inside ConcreteSubject is invoked.

Proxy call happening now...
Robin wants to invoke a proxy method.
Sorry Robin, you do not have access rights.

101

CHAPTER6 PROXY PATTERN

102

7. Proxies act like decorators. Is this correct?

8.

You can implement a protection proxy similar to decorators but
you should not forget the intent. Decorators focus on adding
responsibilities, but proxies focus on controlling the access to

an object. Proxies differ from each other with their types and
implementations. Also, in general, proxies work on the same
interface but decorators can work on extended interfaces. So, if
you can remember their purposes, in most cases, you can clearly
distinguish them from decorators.

What are the cons associated with proxies?

If you are careful enough in your implementation, the pros are
much greater than the cons, but

¢ You can raise your concern about the response time. Since you
are not directly talking to the actual object, it is possible that the
response time through these proxies is longer.

¢ You need to maintain additional code for the proxies.

e A proxy can hide the actual responses from objects, which may
create confusion in special scenarios.

CHAPTER 7

Decorator Pattern

This chapter covers the decorator pattern.

GoF Definition

Attach additional responsibilities to an object dynamically. Decorators provide a flexible
alternative to subclassing for extending functionality.

Concept

This pattern says that the class must be closed for modification but open for extension;
that is, a new functionality can be added without disturbing existing functionalities.

The concept is very useful when we want to add special functionalities to a specific
object instead of the whole class. In this pattern, we try to use the concept of object
composition instead of inheritance. So, when we master this technique, we can add new
responsibilities to an object without affecting the underlying classes.

Real-World Example

Suppose you already own a house. Now you have decided to build an additional floor
on top of it. You may not want to change the architecture of the ground floor (or existing
floors), but you may want to change the design of the architecture for the newly added
floor without affecting the existing architecture.

103
© Vaskaran Sarcar 2019

V. Sarcar, Java Design Patterns, https://doi.org/10.1007/978-1-4842-4078-6_7

CHAPTER 7 DECORATOR PATTERN

Figure 7-1, Figure 7-2, and Figure 7-3 illustrate this concept.

Original House

Figure 7-1. Original house

Original House

Figure 7-2. Original house with a decorator (new structure is built on top of
original structure)

104

CHAPTER 7 DECORATOR PATTERN

Painting the House

Additional Structure

Original House

Figure 7-3. Creating an additional decorator from an existing one (and painting
the house)

Note Case 3 is optional. You can use already a decorated object to enhance the
behavior in this way or you can create a new decorator object and put all the new
behavior in it.

Computer-World Example

Suppose that in a GUI-based toolkit, we want to add some border properties. We can do
this with inheritance. But it cannot be treated as an ultimate solution because the user
cannot have absolute control over this creation from the beginning. So, the core choice is
static in this case.

Decorators comes into picture with a flexible approach. They promote the concept
of dynamic choices, for example, we can surround the component in another object. The
enclosing object is called a decorator. It must conform to the interface of the component
that it decorates. It forwards the requests to the component. It can perform additional
operations before or after the forwardings. An unlimited number of responsibilities can
be added with this concept.

105

CHAPTER 7 DECORATOR PATTERN

Note You can notice the use of the decorator pattern in the I/0 streams
implementations in both .NET Framework and Java. For example, the java.
io.BufferedOutputStream class can decorate any java.io.OutputStream object.

lllustration

Go through the following example. Here we never tried to modify the core makeHouse()
method. We have created two additional decorators: ConcreteDecoratorEx1 and

ConcreteDecoratorEx2 to serve our needs but we kept the original structure intact.

Class Diagram

Figure 7-4 shows the class diagram for the illustration of the decorator pattern.

<<Java Class>>

@' Component

jdp2e.decorator.demo

‘c Component()

ef‘ makeHouse():void

A

<<Java Class>>

jdp2e.decorator.demo

(9 ConcreteComponent

© makeHouse():void

gcConcreteComponent()

mponent

Figure 7-4. Class diagram

106

<<Java Class>>
(9 DecoratorPatternExample
jdp2e.decorator.demo

9‘: DecoratorPatternExample()

esmain;Stringl]):void

<<Java Class>>
(3% AbstractDecorator

jdp2e.decorator.demo

© makeHouse():void

‘cAbstractDecorator(}
© setTheComponent(Component):void

f

X

<<Java Class>>
(9 FloorDecorator
jdp2e.decorator.demo

<<Java Class>>
(9 PaintDecorator
jdp2e.decorator.demo

‘c FloorDecorator()
@ makeHouse():void
addFloor():void

‘c PaintDecorator()
@ makeHouse():void
@ paintTheHouse():void

CHAPTER 7

Package Explorer View

Figure 7-5 shows the high-level structure of the program.

4 jdp2e.decorator.demo
v [J] DecoratorPatternExample java
v GﬂAbstractDecorator
¢ component
@. makeHouse() : void
@ setTheComponent(Component) : void
v QComponent
¢ makeHouse() : void
v QConcreteComponent
@ makeHouse() : void
v G.!. DecoratorPatternExample
@ main(String]]) : void
v Q FloorDecorator
@ addFloor() : void
@. makeHouse() : void
v QPaintDecorator
@. makeHouse() : void
B paintTheHouse() : void
22 ClassDiagramForDecoratorPattern.ucls

Figure 7-5. Package Explorer view

Implementation

Here’s the implementation.

package jdp2e.decorator.demo;
abstract class Component

{
public abstract void makeHouse();
}
class ConcreteComponent extends Component
{

DECORATOR PATTERN

107

CHAPTER 7 DECORATOR PATTERN

public void makeHouse()

{
System.out.println("Original House is complete. It is closed for
modification.");
}
}
abstract class AbstractDecorator extends Component
{
protected Component component ;
public void setTheComponent(Component c)
{
component = c;
}
public void makeHouse()
{
if (component != null)
{
component.makeHouse();//Delegating the task
}
}
}

//A floor decorator
class FloorDecorator extends AbstractDecorator

{

public void makeHouse()

{
super.makeHouse();
//Decorating now.
System.out.println("***Floor decorator is in action***");
addFloor();
/*You can put additional stuffs as per your need*/

}

108

CHAPTER 7 DECORATOR PATTERN

private void addFloor()

{

}

System.out.println("I am making an additional floor on top
of it.");

//A paint decorator
class PaintDecorator extends AbstractDecorator

public void makeHouse()

super .makeHouse();

//Decorating now.

System.out.println("***Paint decorator is in action now***");
paintTheHouse();

//You can add additional stuffs as per your need

private void paintTheHouse()

{
{
}
{
}
}

System.out.println("Now I am painting the house.");

public class DecoratorPatternExample {

public static void main(String[] args) {

System.out.println("***Decorator pattern Demo***\n");
ConcreteComponent withoutDecorator = new ConcreteComponent();
withoutDecorator.makeHouse();

System.out.println(" ");

//Using a decorator to add floor
System.out.println("Using a Floor decorator now.");
FloorDecorator floorDecorator = new FloorDecorator();
floorDecorator.setTheComponent (withoutDecorator);

109

CHAPTER 7 DECORATOR PATTERN

floorDecorator.makeHouse();
System.out.println(" ");

//Using a decorator to add floor to original house and then
//paint it.

System.out.println("Using a Paint decorator now.");
PaintDecorator paintDecorator = new PaintDecorator();
//Adding results from floor decorator
paintDecorator.setTheComponent(floorDecorator);
paintDecorator.makeHouse();

System.out.println(” ");

Output
Here’s the output.
Decorator pattern Demo

Original House is complete. It is closed for modification.

Using a Floor decorator now.

Original House is complete. It is closed for modification.
Floor decorator is in action

I am making an additional floor on top of it.

Using a Paint decorator now.

Original House is complete. It is closed for modification.
Floor decorator is in action

I am making an additional floor on top of it.

Paint decorator is in action now

Now I am painting the house.

110

CHAPTER 7 DECORATOR PATTERN

Q&A Session

1. Canyou explain how composition is promoting a dynamic
behavior that inheritance cannot?

We know that when a derived class inherits from a parent class, it
inherits the behavior of the base class at that time only. Though
different subclasses can extend the base/parent class in different
ways, this type of binding is known in compile-time, so the
choice is static in nature. But the way that you used the concept
of composition in the example lets you experiment with dynamic
behavior.

When we design a parent class, we may not have enough visibility
about what kind of additional responsibilities our clients may want
in later phases. And our constraint is that we should not modify
the existing code frequently. In such a case, object composition
not only outclasses inheritances, it also ensures that we are not
introducing bugs to the existing architecture.

Lastly, in this context, you must remember one of the key design
principles: Classes should be open for extension but closed for
modification.

2. What are the key advantages of using a decorator?

o The existing structure is untouched, so that you are not
introducing bugs there.

o New functionalities can be easily added to an existing object.

e Youdo not need to predict/implement all the supported
functionalities at the initial design phase. You can develop
incrementally (e.g., add decorator objects one by one to support
incremental needs). You must acknowledge the fact that if
you make a complex class first, and then you try to extend the
functionalities, it will be a tedious process.

111

CHAPTER 7 DECORATOR PATTERN

3.

How is the overall design pattern different from inheritance?

You can add or remove responsibilities by simply attaching or
detaching decorators. But with a simple inheritance mechanism,
you need to create a new class for the new responsibilities. So, it is
possible that you may end up with a complex system.

Consider the example again. Suppose that you want to add a

new floor, paint the house, and do some extra work. To fulfill this
need, you start with decorator2 because it is already providing the
support to add a floor to the existing architecture, and then you
can paint it. So, you can add a simple wrapper to complete those
additional responsibilities.

But if you start with inheritance from the beginning, then you
may have multiple subclasses (e.g., one for adding a floor, one for
painting the house). Figure 7-6 shows hierarchical inheritance.

Core Structure

Additional Floor Paint

Figure 7-6. A hierarchical inheritance

112

If you need an additional painted floor with extra features, you
may end up with a design like the one shown in Figure 7-7.

CHAPTER 7 DECORATOR PATTERN

Core Structure

Additional Floor Paint

Extra Features

Figure 7-7. A class (Extra Features) needs to inherit from multiple base classes

Now you feel the heat of the diamond effect because in many
programming languages including Java, multiple parent classes

are not allowed.

In this context, even if you consider multilevel inheritance, you
discover that overall the inheritance mechanism is much more
challenging and time-consuming than the decorator pattern, and
it may promote duplicate code in your application. Lastly, you
must remember that inheritance mechanism is promoting only
compile-time binding (not the dynamic binding).

4. Why can’t multilevel inheritance score higher in the previous
context?

Let’s assume that the Paint class is derived from Additional Floor,
which in turn is derived from the Core Architecture. Now if your
client wants to paint the house without creating an additional
floor, the decorator pattern surely outclasses the inheritance
mechanism because you can simply add a decorator to the
existing system that supports the paint only.

113

CHAPTER 7

114

5.

DECORATOR PATTERN

Why are you creating a class with a single responsibility? You
could make a subclass that can simply add a floor and then
paint. In that case, you end up with fewer subclasses. Is this

understanding correct?

If you are familiar with SOLID principles, you know that there

is a principle called single responsibility. The idea behind

this principle is that each class should have a responsibility

over a single part of the functionality in the software. The
decorator pattern is very much effective when you use the single
responsibility principle because you can simply add/remove
responsibilities dynamically.

What are the disadvantages associated with this pattern?

I believe that if you are careful enough, there is no significant
disadvantage. But you must be aware of the fact that if you create
too many decorators in the system, it will be hard to maintain and
debug. So, in that case, it can create unnecessary confusion.

In the example, there is no abstract method in the
AbstractDecorator class. How is this possible?

In Java, you can have an abstract class without any abstract
method in it, but the reverse is not true; that is, if a class contains
at least one abstract method, then the class itself is incomplete
and you are forced to mark it with the abstract keyword.

Let’s revisit the AbstractDecorator class in the comment shown
in bold.

abstract class AbstractDecorator extends Component

{

protected Component component ;
public void setTheComponent(Component c)

{

component = c;

CHAPTER 7 DECORATOR PATTERN

public void makeHouse()
{
if (component != null)
{
component .makeHouse(); //Delegating the task

}

You can see that I am delegating the task to a concrete decorator
because I want to use and instantiate the concrete decorators
only.

Also, in this example, you cannot simply instantiate an
AbstractDecorator instance because it is marked with the
abstract keyword.

The following line creates the Cannot instantiate the type
AbstractDecorator compilation error.

AbstractDecorator abstractDecorator = new AbstractDecorator();

v @ Errors (1 item)
@ Cannot instantiate the type AbstractDecorator

8. Inyour example, instead of using concrete decorators, you
could use the concept of polymorphism in the following way to
generate the same output.

System.out.println("Using a Floor decorator now.");
//FloorDecorator floorDecorator = new FloorDecorator();
AbstractDecorator floorDecorator = new FloorDecorator();
floorDecorator.setTheComponent (withoutDecorator);
floorDecorator.makeHouse();

//Using a decorator to add floor to original house and then paint
//1it.
System.out.println("Using a Paint decorator now.");

115

CHAPTER 7 DECORATOR PATTERN

//PaintDecorator paintDecorator = new PaintDecorator();
AbstractDecorator paintDecorator = new PaintDecorator();
//Adding results from decoratori
paintDecorator.setTheComponent(floorDecorator);
paintDecorator.makeHouse();

System.out.println(” ");

Is this correct?
Yes.
9. Isitmandatory to use decorators for dynamic binding only?

No. You can use both static and dynamic binding. But dynamic
binding is its strength, so I concentrated on it. You may notice that
the GoF definition also focused on dynamic binding only.

10. You are using decorators to wrap your core architecture. Is this
correct?

Yes. The decorators are wrapper code to extend the core
functionalities of the application. But the core architecture is
untouched when you use them.

116

CHAPTER 8

Adapter Pattern

This chapter covers the adapter pattern.

GoF Definition

Convert the interface of a class into another interface that clients expect. Adapter lets
classes work together that could not otherwise because of incompatible interfaces.

Concept

The core concept is best described by the following examples.

Real-World Example

A very common use of this pattern can be seen in an electrical outlet adapter/AC
power adapter in international travels. These adapters act as a middleman when an
electronic device (let’s say, a laptop) that accepts a US power supply can be plugged
into a European power outlet. Consider another example. Suppose that you need to
charge your mobile phone, but you see that the switchboard is not compatible with your
charger. In this case, you may need to use an adapter. Or, a translator who is translating
language for someone can be considered following this pattern in real life.

Now you can imagine a situation where you need to plug in an application into an
adapter (which is X-shaped in this example) to use the intended interface. Without using
this adapter, you cannot properly join the application and the interface.

117
© Vaskaran Sarcar 2019

V. Sarcar, Java Design Patterns, https://doi.org/10.1007/978-1-4842-4078-6_8

CHAPTER 8 ADAPTER PATTERN

Figure 8-1 shows the case before using an adapter.

Adapter

Intended
Interfcae

Our
Application

Figure 8-1. Before using an adapter

Figure 8-2 shows the case after using an adapter.

Our
Application

Intended
Interface

Figure 8-2. After using an adapter

Computer-World Example

Suppose that you have an application that can be broadly classified into two parts: user
interface (UI or front end) and database (back end). Through the user interface, clients
can pass a specific type of data or objects. Your database is compatible with those objects
and can store them smoothly. Over a period of time, you may feel that you need to
upgrade your software to make your clients happy. So, you may want to allow new type
of objects to pass through the Ul But in this case, the first resistance comes from your

118

CHAPTER 8 ADAPTER PATTERN

database because it cannot store these new types of objects. In such a situation, you can
use an adapter that takes care of the conversion of the new objects to a compatible form
that your old database can accept.

Note In Java, you can consider the java.io.InputStreamReader class and the
java.io.OutputStreamWriter class as examples of object adapters. They adapt an
existing InputStream/OutputStream object to a Reader/Writer interface. You will
learn about class adapters and object adapters shortly.

lllustration

A simple use of this pattern is described in the following example.

In this example, you can easily calculate the area of a rectangle. If you notice the
Calculator class and its getArea() method, you understand that you need to supply a
rectangle object in the getArea() method to calculate the area of the rectangle. Now
suppose that you want to calculate the area of a triangle, but your constraint is that you
want to get the area of it through the getArea()method of the Calculator class. So how
can you achieve that?

To deal with this type of problem, I made CalculatorAdapter for the Triangle class
and passed a triangle in its getArea() method. In turn, the method treats the triangle
like a rectangle and calculates the area from the getArea() method of the Calculator
class.

119

CHAPTER 8 ADAPTER PATTERN

Class Diagram

Figure 8-3 shows the class diagram.

<<Java Class>>
(9 Triangle
jdp2e.adapter.demo

© base: double
© height: double

eFTriangIe(inl,int)

.....

<<Java Class>>

<<Java Class>>
(9 Rectangle
jdp2e.adapter.demo

<<Java Class>>
(9 Calculator
jdp2e.adapter.demo

=
© length: double [™

© width: double

‘cRectangle()

.,
e,
.,

""""

& Calculator()
@ getArea(Rectangle):double

\

esmain(Stringﬂ):void

Figure 8-3. Class diagram

Package Explorer View

Figure 8-4 shows the high-level structure of the program.

120

AdapterPatternExample| ™
C ap P (9 CalculatorAdapter
jdp2e.adapter.demo .
jdp2e.adapter.demo
C
AdapterPatternExample
& P Ple0) ‘CCaIculatorAdapter{}

<<Java Class>>

@ getArea(Triangle):double

CHAPTER 8

IbJAdapterPattern
> B\ JRE System Library [jdk1.8.0_172]
v {# jdp2e.adapter.demo
v |4l AdapterPatternExample.java
v @AdapterPatternExample
@ main(String(]) : void
v QCaIcuIator
@ getArea(Rectangle) : double
v QCaIculatorAdapter
@ getArea(Triangle) : double
v QRectangIe
© length
© width
v QTriangIe
© base
© height
GFTHangbﬁntinﬂ

Figure 8-4. Package Explorer view

Implementation

package jdp2e.adapter.demo;
class Rectangle

{
public double length;
public double width;
}
class Calculator
{
public double getArea(Rectangle rect)
{
return rect.length * rect.width;
}
}

ADAPTER PATTERN

121

CHAPTER 8 ADAPTER PATTERN

class Triangle

public double base;//base
public double height;//height
public Triangle(int b, int h)

this.base = b;
this.height = h;

class CalculatorAdapter

public double getArea(Triangle triangle)

{
{
}
}
{
{
}
}

Calculator ¢ = new Calculator();
Rectangle rect = new Rectangle();
//Area of Triangle=0.5*base*height
rect.length = triangle.base;
rect.width = 0.5 * triangle.height;
return c.getArea(rect);

class AdapterPatternExample {
public static void main(String[] args) {

122

System.out.println("***Adapter Pattern Demo***\n");
CalculatorAdapter calculatorAdapter = new CalculatorAdapter();
Triangle t = new Triangle(20,10);
System.out.println("Area of Triangle is
getArea(t) + " Square unit");

+ calculatorAdapter.

CHAPTER 8 ADAPTER PATTERN

Output

Here’s the output.
Adapter Pattern Demo

Area of Triangle is 100.0 Square unit

Modified llustration

You have just seen a very simple example of the adapter design pattern. But if you

want to strictly follow object-oriented design principles, you may want to modify the

implementation because you have learned that instead of using concrete classes, you

should always prefer to use interfaces. So, keeping this key principle in mind, let’s modify

the implementation.

Modified Class Diagram

<<Java Interface>>

&9 Trilnterface

<<Java Class>>
(9 TriangleAdapter
jdp2e.adapter.modified.demo

Qc TriangleAdapter(Triangle)
© aboutRectangle():void
@ calculateAreaOfRectangle():double

jdp2e adapter modified. demo T 13

@ aboutTriangle():void v R -
@ calculateAreaOfTriangle():double <<Java Interface>> \,_\x

A €9 Rectinterface .,

jdp2e.adapter.modified.demo

i ~triangle <<Java Class>>

i 0.1 @ aboutRectangle():void <., | ®@ModifiedAdapterPatternExample

<<Java Class>> @ calculateAreaOfRectangle():double jdp2e.adapter madified.demo
(9 Triangle —
jdp2e adaptermedifieddema | T A ModifiedAdapterPatternExample()
............. @ main(String[]):void
© base: double P 5 oth Rectintert doub
etArea(Rectinterface):double
© height: double a = real idou
.-'/
@ Triangle(double double) f;”
@ aboutTriangle():void] _/.--"’r
@ calculateAreaOfTriangle():double <<Java C|ass>>
(9 Rectangle
jdp2e.adapter medified.demo

© length: double
© width: double

@c Rectangle(double,double)
@ aboutRectangle():void

@ calculateAreaOfRectangle():.double

123

CHAPTER 8 ADAPTER PATTERN

Key Characteristics of the Modified Implementation

The following are the key characteristics of the modified implementation.

124

The Rectangle class is implementing RectInterface and the
calculateAreaOfRectangle() method helps calculate the area of a
rectangle object.

The Triangle class implements Trilnterface and the
calculateAreaOfTriangle() method helps calculate the area of a
triangle object.

But the constraint is that you need to calculate the area of the triangle
using the RectInterface (or, you can simply say that your existing
system needs to adapt the triangle objects). To serve this purpose,
ILintroduced an adapter(TriangleAdapter), which interacts with the
RectInterface interface.

Neither the rectangle nor the triangle code needs to change. You are
simply using the adapter because it implements the RectInterface
interface, and using a RectInterface method, you can easily compute
the area of a triangle. This is because I am overriding the interface
method to delegate to the corresponding method of the class
(Triangle) that I am adapting from.

Notice that getArea(RectInterface) method does not know that
through TriangleAdapter, it is actually processing a Triangle object
instead of a Rectangle object.

Notice another important fact and usage. Suppose thatin a
specific case, you need to play with some rectangle objects
that have an area of 200 square units, but you do not have a
sufficient number of such objects. But you notice that you have

CHAPTER 8 ADAPTER PATTERN

triangle objects whose area are 100 square units. So, using this
pattern, you can adapt some of those triangle objects. How?

Well, if you look carefully, you find that when using the adapter’s
calculateAreaOfRectangle() method, you are actually invoking
calculateAreaOfTriangle() of a Triangle object (i.e., you

are delegating the corresponding method of the class you are
adapting from). So, you can modify (override) the method body as
you need (e.g., in this case, you could multiply the triangle area by
2.0 to get an area of 200 square units (just like a rectangle object
with length 20 units and breadth 10 units).

This technique can help you in a scenario where you may need to
deal with objects that are not exactly same but are very similar. In
the last part of the client code, I have shown such a usage where
the application displays current objects in the system using an
enhanced for loop (which was introduced in Java 5.0).

Note In the context of the last point, you must agree that you should not make
an attempt to convert a circle to a rectangle (or similar type of conversion) to get
an area because they are totally different. But in this example, | am talking about
triangles and rectangles because they have some similarities and the areas can be
computed easily with minor changes.

125

CHAPTER 8 ADAPTER PATTERN

Modified Package Explorer View

Figure 8-5 shows the structure of the modified program.

H# jdp2e.adapter.modified.demo
v [Jl ModifiedAdapterPatternExample.java
v Q..ModifiedAdapterPatternExample
"N getArea(Rectinterface) : double
@ main(String]]) : void
v QRectangIe
© length
© width
e Rectangle(double, double)
@ aboutRectangle() : void
@ calculateAreaOfRectangle() : double
v QRectInterface
¢ aboutRectangle() : void
¢ calculateAreaOfRectangle() : double
v QTriangIe
© base
© height
Gc Triangle(double, double)
@ aboutTriangle() : void
@ calculateAreaOfTriangle() : double
v QTriangIeAdapter
A triangle
¢ TriangleAdapter(Triangle)
@ aboutRectangle() : void
@ calculateAreaOfRectangle() : double
v QTriInterface
¢ aboutTriangle() : void
@ calculateAreaOfTriangle() : double

Figure 8-5. Modified Package Explorer view

126

CHAPTER 8

Modified Implementation

This is the modified implementation.
package jdp2e.adapter.modified.demo;

import java.util.Arraylist;
import java.util.Llist;

interface RectInterface
{

void aboutRectangle();

double calculateAreaOfRectangle();
}

class Rectangle implements RectInterface
{
public double length;
public double width;
public Rectangle(double length, double width)
{
this.length = length;
this.width = width;
}

@verride
public void aboutRectangle()

{

ADAPTER PATTERN

System.out.println("Rectangle object with length: "+ this.length +"

unit and width :" +this.width+ " unit.");

}

@verride
public double calculateAreaOfRectangle()

{
return length * width;

127

CHAPTER 8 ADAPTER PATTERN

interface Trilnterface
{

void aboutTriangle();

double calculateAreaOfTriangle();
}

class Triangle implements TriInterface
{
public double base;//base
public double height;//height
public Triangle(double base, double height)
{
this.base = base;
this.height = height;
}

@0verride
public void aboutTriangle() {

System.out.println("Triangle object with base:

and height :" +this.height+ " unit.");

}

@verride
public double calculateAreaOfTriangle() {
return 0.5 * base * height;

}

/*TriangleAdapter is implementing RectInterface.
So, it needs to implement all the methods defined
in the target interface.*/
class TriangleAdapter implements RectInterface
{

Triangle triangle;

public TriangleAdapter(Triangle t)

{
this.triangle = t;

128

"+ this.base +" unit

CHAPTER 8 ADAPTER PATTERN

@verride
public void aboutRectangle() {
triangle.aboutTriangle();

}

@verride
public double calculateAreaOfRectangle() {
return triangle.calculateAreaOfTriangle();

class ModifiedAdapterPatternExample {
public static void main(String[] args) {

System.out.println("***Adapter Pattern Modified Demo***\n");
Rectangle rectangle = new Rectangle(20, 10);
System.out.println("Area of Rectangle is : "+ rectangle.
calculateAreaOfRectangle()+" Square unit.");
Triangle triangle = new Triangle(10,5);
System.out.println("Area of Triangle is : "+triangle.
calculateAreaOfTriangle()+ " Square unit.");

RectInterface adapter = new TriangleAdapter(triangle);

//Passing a Triangle instead of a Rectangle

System.out.println("Area of Triangle using the triangle adapter is

: "tgetArea(adapter)+" Square unit.");

//Some Additional code (Optional) to show the power of adapter
//pattern

List<RectInterface> rectangleObjects=new ArraylList<RectInterfa
ce>();

rectangleObjects.add(rectangle);
//rectangleObjects.add(triangle);//Error
rectangleObjects.add(adapter);//0k

System.out.println("");

System.out.println("*****Current objects in the system
gre : kEkkKek!)’

129

CHAPTER 8 ADAPTER PATTERN

for(RectInterface rectObjects:rectangleObjects)

{
rectObjects.aboutRectangle();

}
/*getArea(RectInterface r) method does not know that through

TriangleAdapter, it is getting a Triangle object instead of a
Rectangle object*/
static double getArea(RectInterface r)

{

return r.calculateAreaOfRectangle();

Modified Output

This is the modified output.
Adapter Pattern Modified Demo

Area of Rectangle is : 200.0 Square unit.
Area of Triangle is : 25.0 Square unit.
Area of Triangle using the triangle adapter is : 25.0 Square unit.

KrxkkCurrent objects in the system are:*dokekx
Rectangle object with length: 20.0 unit and width :10.0 unit.
Triangle object with base: 10.0 unit and height :5.0 unit.

Types of Adapters

GoF explains two types of adapters: class adapters and object adapters.

Object Adapters

Object adapters adapt through object compositions, as shown in Figure 8-6. The adapter
discussed so far is an example of an object adapter.

130

<<interface>>
Target

Client

Request()

CHAPTER 8 ADAPTER PATTERN

Adaptee

ParticularRequest ()

Adapter

Request()

Figure 8-6. A typical object adapter

In our example, TriangleAdapter is the adapter that implements the RectInterface

(Target interface). Triangle is the Adaptee interface. The adapter holds the adaptee

instance.

Note So, if you follow the body of the TriangleAdapter class, you can conclude
that to create an object adapter, you need to follow these general guidelines:

(1) Your class needs to implement the target interface (adapting to interface). If the
target is an abstract class, you need to extend it.

(2) Mention the class that you are adapting from in the constructor and store a

reference to it in an instance variable.

(3) Override the interface methods to delegate the corresponding methods of the

class you are adapting from.

Class Adapters

Class adapters adapt through subclassing. They are the promoters of multiple

inheritance. But you know that in Java, multiple inheritance through classes is not

supported. (You need interfaces to implement the concept of multiple inheritance.)

Figure 8-7 shows the typical class diagram for class adapters, which support multiple

inheritance.

131

CHAPTER 8 ADAPTER PATTERN

Client | Target Adaptee
Request() ParticularRequest ()
/s
Adapter
Request()

Figure 8-7. A typical class adapter

Q&A Session

132

1.

How can you implement class adapter design patterns in Java?

You can subclass an existing class and implement the desired
interface. For example, if you want to use a class adapter instead
of an object adapter in the modified implementation, then you
can use the following code.

class TriangleClassAdapter extends Triangle implements
RectInterface
{
public TriangleClassAdapter(double base, double height) {
super(base, height);
}

@0verride
public void aboutRectangle()

{
aboutTriangle();

}

@Override

CHAPTER 8 ADAPTER PATTERN

public double calculateAreaOfRectangle()
{

return calculateAreaOfTriangle();

But note that you cannot always apply this approach. For example,
consider when the Triangle class is a final class (so, you cannot
derive from it). Apart from this case , you will be blocked again when
you notice that you need to adapt a method that is not specified in
the interface. So, in cases like this, object adapters are useful.

“Apart from this case, you will be blocked again when you
notice that you need to adapt a method that is not specified in
the interface.” What do you mean by this?

In the modified implementation, you have used the
aboutRectangle() and aboutTriangle() methodsThese
methods are actually telling about the objects of the Rectangle
and Triangle classes. Now, say, instead of aboutTriangle(), there
is a method called aboutMe (), which is doing the same but there
is no such method in the RectInterface interface. Then it will be a
challenging task for you to adapt the aboutMe () method from the
Triangle class and write code similar to this:

for(RectInterface rectObjects:rectangleObjects)

{
rectObjects.aboutMe();

}

Which do you prefer—class adapters or object adapters?

In most cases, I prefer compositions over inheritance. Object
adapters use compositions and are more flexible. Also, in
many cases, you may not implement a true class adapter. (In
this context, you may go through the answers to the previous
questions again.)

133

CHAPTER 8 ADAPTER PATTERN

4. What are the drawbacks associated with this pattern?

I do not see any big challenges. I believe that you can make an
adapter’s job simple and straightforward, but you may need to
write some additional code. But the payoff is great—particularly
for those legacy systems that cannot be changed but you still need
to use them for their stability.

At the same time, experts suggest that you do not use different
types of validations or add a new behavior to the adapter. Ideally,
the job of an adaptar should be limited to only performing simple
interface translations.

134

CHAPTER 9

Facade Pattern

This chapter covers the facade pattern.

GoF Definition

Provide a unified interface to a set of interfaces in a subsystem. Facade defines a higher-
level interface that makes the subsystem easier to use.

Concept

Facades make a client’s life easier. Suppose that there is a complex system where
multiple objects need to perform a series of tasks, and you need to interact with the
system. In a situation like this, facade can provide you a simplified interface that takes
care of everything (the creation of those objects, providing the correct sequence of tasks,
etc.). As a result, instead of interacting with multiple objects in a complicated way, you
just interact with a single object.

It is one of those patterns that supports loose coupling. Here you emphasize the
abstraction and hide the complex details by exposing a simple interface. As a result, the
code becomes clearer and more attractive.

Real-World Example

Suppose that you are going to organize a birthday party, and you plan to invite 500
people. Nowadays, you can go to any party organizer and let them know the key
information—party type, the date and time, number of attendees, and so forth. The
organizer does the rest for you. You do not need to think about how the hall will be

135
© Vaskaran Sarcar 2019

V. Sarcar, Java Design Patterns, https://doi.org/10.1007/978-1-4842-4078-6_9

CHAPTER9 FACADE PATTERN

decorated, whether attendees will get their food from a buffet table or be served by the
caterer, and so forth. So, you do not need to buy items from the store or decorate the
party hall yourself—you just pay the organizer and let them do the job properly.

Computer-World Example

Think about a situation where you use a method from a library (in the context of a
programming language). You do not care how the method is implemented in the library.
You just call the method to experiment the easy usage of it.

Note You can use the concept of facade design pattern effectively to make
your JDBC application attractive. You can consider the java.net.URL class

as an example of a facade pattern implementation.Consider the shorthand
openStream() or getContent() methods in this class. The openStream() method
returns openConnection().getinputStream() and the getContent() method returns
openConnection.getContent().The getinputStream() and getContent() methods are
further defined in the URLConnection class.

lllustration

In the following implementation, you create some robots, and later, you destroy those
objects. (The word “destroy” is not used in the context of garbage collection in this
example). Here you can construct or destroy a particular kind of robot by invoking
simple methods like constructMilanoRobot() and destroyMilanoRobot () of the
RobotFacade class.

From a client’s point of view, he/she needs to interact only with the facade (see
FacadePatternExample.java). RobotFacade is taking full responsibility in creating or
destroying a particular kind of robot. This facade is talking to each of the subsystems
(RobotHands, RobotBody, RobotColor) to fulfill the client’s request. The RobotBody
class includes two simple static methods that provide instructions prior to the creation
or destruction of a robot.

So, in this implementation, the clients do not need to worry about the creation of the
separate classes and the calling sequence of the methods.

136

CHAPTER9 FACADE PATTERN

Class Diagram

Figure 9-1 shows the class diagram.

Subsystem

<<Java Class>>
(9 RobotHands
jdp2e.facade.demo

<<Java Class>>
(9 FacadePatternExample
jdp2e. facade.demo & RobotHands()
@ setMilanoHands():void
@ setRobonautHands():void
© resetMilanoHands():void
~rHands

© resetRobonautHands():void
/ <<Java Class>>

ocFacadePattemExample(}
@ main(String[]):void

<<Java Class>>] GRobotBody

(9 RobotFacade jdp2e.facade.demo

jdp2e.facade.demo Oc RobotBody()
& RobotFacade() ~rBody &°createRobot():void
@ constructMilanoRobot():void 0.1 © createHands():void
@ constructRobonautRobot():void @ createRemainingParts():void
@ destroyMilanoRobot():void ™~ ~rColor OsdestroyRobot{):void
e A T \ <<Java Class>> © destroyHands():void

0.1 (9 RobotColor

@ destroyRemainingParts():void

jdp2e.facade.demo

& RobotColor()
© setDefaultColor():void

© setGreenColor():void

Figure 9-1. Class diagram

137

CHAPTER9 FACADE PATTERN

Package Explorer View

Figure 9-2 shows the high-level structure of the program.

4 jdp2e.facade.demo
> [J] FacadePatternExample.java
v [J) RobotBody.java
v0O RobotBody
@ createRobot() : void
@ destroyRobot() : void
@ createHands() : void
@ createRemainingParts() : void
@ destroyHands() : void
@ destroyRemainingParts() : void
v @ RobotColor.java
v © RobotColor
@ setDefaultColor() : void
@ setGreenColor() : void
v @ RobotFacade.java
v © RobotFacade
A rBody
4 rColor
4 rHands
@ RobotFacade()
@ constructMilanoRobot() : void
@ constructRobonautRobot() : void
@ destroyMilanoRoboty() : void
@ destroyRobonautRobot() : void
v [J] RobotHands.java
v © RobotHands
@ resetMilanoHands() : void
@ resetRobonautHands() : void
@ setMilanoHands() : void
@ setRobonautHands() : void

Figure 9-2. Package Explorer view

138

CHAPTER9 FACADE PATTERN

Implementation

Here’s the implementation.

// RobotBody.java

package jdp2e.facade.demo;

public class RobotBody

{

//Instruction manual -how to create a robot

public static void createRobot()

{
System.out.println(" Refer the manual before creation of a
robot.");

}

//Method to create hands of a robot

public void createHands()

{

System.out.println(" Hands manufactured.");
}
//Method to create remaining parts (other than hands) of a robot
public void createRemainingParts()
{
System.out.println(" Remaining parts (other than hands) are
created.");

}

//Instruction manual -how to destroy a robot
public static void destroyRobot()

{

System.out.println(" Refer the manual before destroying of a robot.");

}
//Method to destroy hands of a robot

public void destroyHands()

{
System.out.println(" The robot's hands are destroyed.");

139

CHAPTER9 FACADE PATTERN

//Method to destroy remaining parts (other than hands) of a robot
public void destroyRemainingParts()

{
System.out.println(" The robot's remaining parts are destroyed.");
}
}
//RobotColor. java

package jdp2e.facade.demo;

public class RobotColor

{
public void setDefaultColor()
{
System.out.println(" This is steel color robot.");
}
public void setGreenColor()
{
System.out.println(" This is a green color robot.");
}
}

// RobotHands. java
package jdp2e.facade.demo;

public class RobotHands

{
public void setMilanoHands()
{
System.out.println(" The robot will have EH1 Milano hands.");
}
public void setRobonautHands()
{
System.out.println(" The robot will have Robonaut hands.");
}

140

CHAPTER9 FACADE PATTERN

public void resetMilanoHands()

{
System.out.println(" EH1 Milano hands are about to be destroyed.");
}
public void resetRobonautHands()
{
System.out.println(" Robonaut hands are about to be destroyed.");
}

}

// RobotFacade.java
package jdp2e.facade.demo;

public class RobotFacade
{
RobotColor rColor;
RobotHands rHands ;
RobotBody rBody;
public RobotFacade()

{
rColor = new RobotColor();
rHands = new RobotHands();
rBody = new RobotBody();

}

//Constructing a Milano Robot

public void constructMilanoRobot()

{
RobotBody.createRobot();
System.out.println("Creation of a Milano Robot Start.");
rColor.setDefaultColor();
rHands.setMilanoHands();
rBody.createHands();
rBody.createRemainingParts();
System.out.println(" Milano Robot Creation End.");
System.out.println();

141

CHAPTER 9

142

FACADE PATTERN

//Constructing a Robonaut Robot
public void constructRobonautRobot()

{

}

RobotBody.createRobot();

System.out.println("Initiating the creational process of a Robonaut
Robot.");

rColor.setGreenColor();

rHands . setRobonautHands();

rBody.createHands();

rBody.createRemainingParts();

System.out.println("A Robonaut Robot is created.");
System.out.println();

//Destroying a Milano Robot
public void destroyMilanoRobot()

{

}

RobotBody.destroyRobot();

System.out.println(" Milano Robot's destruction process is
started.");

rHands.resetMilanoHands();

rBody.destroyHands();

rBody.destroyRemainingParts();

System.out.println(" Milano Robot's destruction process is over.");
System.out.println();

//Destroying a Robonaut Robot
public void destroyRobonautRobot()

{

RobotBody.destroyRobot();

System.out.println(" Initiating a Robonaut Robot's destruction
process.");

rHands.resetRobonautHands();

rBody.destroyHands();

rBody.destroyRemainingParts();

System.out.println(" A Robonaut Robot is destroyed.");

CHAPTER 9

System.out.println();

}
//Client code

//FacadePatternExample.java
package jdp2e.facade.demo;

public class FacadePatternkExample {
public static void main(String[] args) {

System.out.println("***Facade Pattern Demo***\n");
//Creating Robots
RobotFacade milanoRobotFacade = new RobotFacade();
milanoRobotFacade.constructMilanoRobot();
RobotFacade robonautRobotFacade = new RobotFacade();
robonautRobotFacade.constructRobonautRobot();
//Destroying robots
milanoRobotFacade.destroyMilanoRobot();
robonautRobotFacade.destroyRobonautRobot();

Output

Here's the output.
Facade Pattern Demo

Refer the manual before creation of a robot.
Creation of a Milano Robot Start.

This is steel color robot.

The robot will have EH1 Milano hands.

Hands manufactured.

Remaining parts (other than hands) are created.
Milano Robot Creation End.

FACADE PATTERN

143

CHAPTER9 FACADE PATTERN

Refer the manual before creation of a robot.
Initiating the creational process of a Robonaut Robot.
This is a green color robot.

The robot will have Robonaut hands.

Hands manufactured.

Remaining parts (other than hands) are created.
A Robonaut Robot is created.

Refer the manual before destroying of a robot.
Milano Robot's destruction process is started.
EH1 Milano hands are about to be destroyed.
The robot's hands are destroyed.

The robot's remaining parts are destroyed.
Milano Robot's destruction process is over.

Refer the manual before destroying of a robot.
Initiating a Robonaut Robot's destruction process.
Robonaut hands are about to be destroyed.

The robot's hands are destroyed.

The robot's remaining parts are destroyed.

A Robonaut Robot is destroyed.

Q&A Session

1. What are key advantages of using a facade pattern?

o Ifasystem consists of many subsystems, managing all those
subsystems becomes very tough and clients may find their
life difficult to communicate separately with each of these
subsystems. In this scenario, facade patterns are very much
handy. It provides a simple interface to clients. In simple words,
instead of presenting complex subsystems, you present one
simplified interface to clients. This approach also promotes weak
coupling by separating a client from the subsystems.

o Itcan also help you to reduce the number of objects that a client
needs to deal with.

144

CHAPTER9 FACADE PATTERN

I see that the facade class is using compositions. Is this
intentional?

Yes. With this approach, you can easily access the methods in each
subsystem.

It appears to me that facades do not restrict us to directly
connect with subsystems. Is this understanding correct?

Yes. A facade does not encapsulate the subsystem classes or
interfaces. It just provides a simple interface (or layer) to make
your life easier. You are free to expose any functionality of the
subsystem, but in those cases, your code may look dirty, and at the
same time, you lose all the benefits associated with this pattern.

How is it different from adapter design pattern?

In the adapter pattern, you try to alter an interface so that the
clients do not feel the difference between the interfaces. The
facade pattern simplifies the interface. They present the client a
simple interface to interact with (instead of a complex subsystem).

There should be only one facade for a complex subsystem. Is
this correct?

Not at all. You can create any number of facades for a particular
subsystem.

Can I add more stuffs/logic with a facade?
Yes, you can.
What are the challenges associated with a facade pattern?

o Subsystems are connected with the facade layer. So, you need
to take care of an additional layer of coding (i.e., your codebase

increases).

o When the internal structure of a subsystem changes, you need to
incorporate the changes in the facade layer also.

o Developers need to learn about this new layer, whereas some of
them may already be aware of how to use the subsystems/APIs
efficiently.

145

CHAPTER 9

8.

146

FACADE PATTERN

How is it different from the mediator design pattern?

In a mediator pattern implementation, subsystems are aware of
the mediator. They talk to each other. But in a facade, subsystems
are not aware of the facade and the one-way communication is
provided from facade to the subsystem(s). (The mediator pattern
is discussed in Chapter 21 of this book).

It appears to me that to implement a facade pattern, I have to
write lots of code. Is this understanding correct?

Not at all. It depends on the system and corresponding
functionalities. For example, in the preceding implementation, if
you consider only one type of robot (either Milano or Robonaut),
and if you do not want to provide the destruction mechanism

of robots, and if you want to ignore the instruction manuals

(two static methods in this example), your code size will drop
significantly. I have kept all of these for complete illustration
purposes.

CHAPTER 10

Flyweight Pattern

This chapter covers the flyweight pattern.

GoF Definition

Use sharing to support large numbers of fine-grained objects efficiently.

Concept

In their famous book Design Patterns: Elements of Reusable Object-Oriented Software
(Addison-Wesley, 1995), the Gang of Four (GoF) wrote about flyweights as follows:

A flyweight is a shared object that can be used in multiple contexts simulta-
neously. The flyweight acts as an independent object in each context—it’s
indistinguishable from an instance of the object that’s not shared. Flyweights
cannot make assumptions about the context in which they operate.

When you consider flyweight pattern, you need to remember following points:

e The pattern is useful when you need a large number of similar
objects that are unique in terms of only a few parameters and most of
the stuffs are common in general.

o Aflyweight is an object. It tries to minimize memory usage by sharing
data as much as possible with other similar objects. Sharing objects
may allow their usage at fine granularities with minimum costs.

o Two common terms are used in this context: extrinsic and intrinsic.
An intrinsic state is stored/shared in the flyweight object, and it is
independent of flyweight’s context. On the other hand, an extrinsic

147
© Vaskaran Sarcar 2019

V. Sarcar, Java Design Patterns, https://doi.org/10.1007/978-1-4842-4078-6_10

CHAPTER 10 FLYWEIGHT PATTERN

state varies with flyweight’s context, which is why they cannot be
shared. Client objects maintain the extrinsic state, and they need
to pass this to a flyweight. Note that, if required, clients can also
compute the extrinsic state on the fly when using flyweights.

o Experts suggest that while implementing this pattern, we should
make intrinsic states immutable.

Real-World Example

Suppose that you have pen. You can replace different refills to write with different colors.
So, a pen without refills is considered as a flyweight with intrinsic data, and a pen with
refills is considered as extrinsic data.

Consider another example. Suppose that a company needs to print visiting cards
for its employees. So, where does the process start? The company can create a common
template with the company logo, address, and so forth (intrinsic), and later it adds each
employee’s particular contact information (extrinsic) on the cards.

Computer-World Example

Suppose that you want to make a website where different users can compile and execute
the programs with their preferred computer languages, such as Java, C++, C#, and so forth.
If you need to set up a unique environment for each individual user within a short period
of time, your site will overload and the response time of the server will become so slow
that no one will be interested in using your site. So, instead of creating a new programming
environment for every user, you can make a common programming environment (which
supports different programming language with/without minor changes) among them. And
to check the existing/available programming environment and to make decisions whether
you need to create a new one or not, you can maintain a factory.

Consider another example. Suppose that in a computer game, you have large
number of participants whose core structures are same, but their appearances vary (e.g.,
different states, colors, weapons, etc.) Therefore, assume that if you need to create (or
store) all of these objects with all of these variations/states, the memory requirement
will be huge. So, instead of storing all of these objects, you can design your application
in such way that you create these instances with common properties (flyweights with

148

CHAPTER 10 FLYWEIGHT PATTERN

intrinsic state) and your client object maintains all of these variations (extrinsic states).
If you can successfully implement this concept, you can claim that you have followed the
flyweight design pattern in your application.

Another common use of this pattern is seen in the graphical representation of
characters in a word processor.

Note In Java, you may notice the use of this pattern when you use the wrapper
classes, such as java.lang.Integer, java.lang.Short, java.lang.Byte, and java.lang.
Character, where the static method valueof() replicates a factory method. (It is
worth remembering that some of the wrapper classes, such as java.lang.Double
and java.lang.Float, do not follow this pattern.) The String pool is another example
of a flyweight.

lllustration

In the following example, I used three different types of objects: small, large, and fixed-
size robots. These robots have two states: “robotTypeCreated” and “color”. The first one
can be shared among “similar” objects, so it is an intrinsic state. The second one (color)
is supplied by the client and it varies with the context. So, it is an extrinsic state in this
example.

For the fixed-size robots, it does not matter which color is supplied by the client. For
these robots, I am ignoring the extrinsic state, so you can conclude that these fixed-size
robots are representing unshared flyweights.

In this implementation, the robotFactory class caches these flyweights and provides
a method to get them.

Lastly, these objects are similar. So, once a particular robot is created, you do not
want to repeat the process from scratch. Instead, the next time onward, you will try to
use these flyweights to serve your needs. Now go through the code with the comments
for your ready reference.

149

CHAPTER 10 FLYWEIGHT PATTERN

Class Diagram

Figure 10-1 shows the class diagram.

<<Java Class>>
(9 FlyweightPatternExample
jdp2e.flyweight.demo

@ FlyweightPatternExample()

esmaingString[]):void
‘sg etRandomColor():String

-

L/
<<Java Class>> N

(9 RobotFactory <<Java Interface>>

jdp2e.flyweight.demo ~robotFactory 0 Robot
4" RobotFactory() 0.~ g
@ totalObjectsCreated():int @ showMe(String):void
gsgetRobotmeFactory(String):Robut ﬂ & VN_

e e

<<Java .Class>>
(9 LargeRobot
jdp2e.flyweight.demo

<<Java Class>>
(9 FixedSizeRobot
jdp2e flyweight.demo

<<Java Class>>

(9 SmallRobot
jdp2e.flyweight.demo

of robotTypeCreated: String o robotTypeCreated: String

o robotTypeCreated: String

@ LargeRobot()

@ FixedSizeRobot()
@ showMe(String):void

@ showMe(String):void

& SmallRobot()
@ showMe(String):void

Figure 10-1. Class diagram

Package Explorer View

Figure 10-2 shows the high-level structure of the program.

150

CHAPTER 10

= FlyweightPattern
> B\ JRE System Library [jdk1.8.0_172]
v # jdp2e.flyweight.demo
v [J] FlyweightPatternExample java
v Q FixedSizeRobot
o robotTypeCreated
e FixedSizeRobot()
@ showMe(String) : void
v@ FlyweightPatternExample
A getRandomColor() : String
3 main(String([]) : void
v Q LargeRobot
o robotTypeCreated
¢ LargeRobot()
@ showMe(String) : void
v Q Robot
¢ showMe(String) : void
v@ RobotFactory
N robotFactory
Q%getRobotFrom Factory(String) : Robot
@ totalObjectsCreated() : int
v Q SmallRobot
o robotTypeCreated
@ SmallRobot()
@ showMe(String) : void

Figure 10-2. Package Explorer view

Implementation

Here’s the implementation.
package jdp2e.flyweight.demo;

import java.util.Map;
import java.util.HashMap;
import java.util.Random;

FLYWEIGHT PATTERN

151

CHAPTER 10 FLYWEIGHT PATTERN

interface Robot
{
//Color comes from client.It is extrinsic.
void showMe(String color);
}
//A shared flyweight implementation
class SmallRobot implements Robot
{
/*
Intrinsic state.
It is not supplied by client.
So, it is independent of the flyweight’s context.
This can be shared across.

* ¥ X X %

These data are often immutable.

*/

private final String robotTypeCreated;

public SmallRobot()

{
robotTypeCreated="A small robot created";
System.out.print(robotTypeCreated);

}

@0verride

public void showMe(String color)

{

System.out.print(" with " +color + " color");

}
//A shared flyweight implementation

class LargeRobot implements Robot
{
/*
Intrinsic state.
It is not supplied by client.
So, it is independent of the flyweight’s context.

EEE R S 3

This can be shared across.

152

CHAPTER 10 FLYWEIGHT PATTERN

* These data are often immutable.

*/

private final String robotTypeCreated;
public LargeRobot()

{
robotTypeCreated="A large robot created";
System.out.print(robotTypeCreated);
}
@0verride
public void showMe(String color)
{
System.out.print(" with " + color + " color");
}

}
//An unshared flyweight implementation

class FixedSizeRobot implements Robot

{
/*

*

Intrinsic state.

It is not supplied by client.

* So, it is independent of the flyweight’s context.
* This can be shared acorss.

*/

private final String robotTypeCreated;

public FixedSizeRobot()

*

{
robotTypeCreated="A robot with a fixed size created";
System.out.print(robotTypeCreated);

}

@verride

//Ingoring the extrinsic state argument
//Since it is an unshared flyweight

153

CHAPTER 10 FLYWEIGHT PATTERN

public void showMe(String color)

{
System.out.print(" with " + " blue (default) color");
}
}
class RobotFactory
{

static Map<String, Robot> robotFactory = new HashMap<String, Robot>();
public int totalObjectsCreated()
{

return robotFactory.size();

}

public static synchronized Robot getRobotFromFactory(String robotType)
throws Exception
{
Robot robotCategory = robotFactory.get(robotType);
if(robotCategory==null)

{
switch (robotType)
{
case "small":

System.out.println("We do not have Small Robot at present.
So we are creating a small robot now.") ;
robotCategory = new SmallRobot();
break;
case "large":
System.out.println("We do not have Large Robot at present.
So we are creating a large robot now.");
robotCategory = new LargeRobot();
break;

case "fixed":
System.out.println("We do not have fixed size at present.
So we are creating a fixed size robot now.");

154

CHAPTER 10 FLYWEIGHT PATTERN

robotCategory = new FixedSizeRobot();
break;
default:
throw new Exception(" Robot Factory can create only small
,large or fixed size robots");

}
robotFactory.put(robotType,robotCategory);
}
else
{
System.out.print("\n \t Using existing "+ robotType +" robot
and coloring it");
}

return robotCategory;

}
public class FlyweightPatternExample {

public static void main(String[] args) throws Exception {
RobotFactory robotFactory = new RobotFactory();
System.out.println("\n***Flyweight Pattern Example ***\n");
Robot myRobot;
//Here we are trying to get 3 Small type robots
for (int i = 0; i < 3; i++)
{
myRobot = RobotFactory.getRobotFromFactory("small");
/*
Not required to add sleep().But it is included to
increase the probability of getting a new random number
to see the variations in the output.
*/
Thread.sleep(1000);
//The extrinsic property color is supplied by the client code.
myRobot . showMe (getRandomColor());

155

CHAPTER 10 FLYWEIGHT PATTERN

int numOfDistinctRobots = robotFactory.totalObjectsCreated();
System.out.println("\n Till now, total no of distinct robot objects
created: " + numOfDistinctRobots);

//Here we are trying to get 5 Large type robots
for (int i = 0; i < 5; i++)
{
myRobot = RobotFactory.getRobotFromFactory("large");
/*
Not required to add sleep().But it is included to
increase the probability of getting a new random number
to see the variations in the output.
*/
Thread.sleep(1000);
//The extrinsic property color is supplied by the client code.
myRobot . showMe (getRandomColor());
}
numOfDistinctRobots = robotFactory.totalObjectsCreated();
System.out.println("\n Till now, total no of distinct robot objects
created: " + numOfDistinctRobots);

//Here we are trying to get 4 fixed sizerobots
for (int i = 0; i < 4; i++)
{
myRobot = RobotFactory.getRobotFromFactory("fixed");
/*
Not required to add sleep().But it is included to
increase the probability of getting a new random number
to see the variations in the output.
*/
Thread.sleep(1000);
//The extrinsic property color is supplied by the client code.
myRobot . showMe (getRandomColor());

}
numOfDistinctRobots = robotFactory.totalObjectsCreated();

156

CHAPTER 10 FLYWEIGHT PATTERN

System.out.println("\n Till now, total no of distinct robot objects
created: " + numOfDistinctRobots);

}

static String getRandomColor()
{
Random r = new Random();
/* T am simply checking the random number generated that can be
either an even number or an odd number. And based on that we are
choosing the color. For simplicity, I am using only two colors-red
and green
*/
int random = r.nextInt();
if (random % 2 == 0)
{

return "red";

}

else

{

return "green";

Output
Here’s the first run output.
***Flyweight Pattern Example ***

We do not have Small Robot at present.So we are creating a small robot now.
A small robot created with green color

Using existing small robot and coloring it with green color

Using existing small robot and coloring it with red color

157

CHAPTER 10 FLYWEIGHT PATTERN

Till now, total no of distinct robot objects created: 1
We do not have Large Robot at present.So we are creating a large robot now.
A large robot created with green color
Using existing large robot and coloring it with red color
Using existing large robot and coloring it with green color
Using existing large robot and coloring it with green color
Using existing large robot and coloring it with green color
Till now, total no of distinct robot objects created: 2
We do not have fixed size at present.So we are creating a fixed size robot
now.
A robot with a fixed size created with blue (default) color
Using existing fixed robot and coloring it with blue (default) color
Using existing fixed robot and coloring it with blue (default) color
Using existing fixed robot and coloring it with blue (default) color
Till now, total no of distinct robot objects created: 3

Here’s the second run output.
***Flyweight Pattern Example ***

We do not have Small Robot at present.So we are creating a small robot now.
A small robot created with red color
Using existing small robot and coloring it with green color
Using existing small robot and coloring it with green color
Till now, total no of distinct robot objects created: 1
We do not have Large Robot at present.So we are creating a large robot now.
A large robot created with red color
Using existing large robot and coloring it with green color
Using existing large robot and coloring it with green color
Using existing large robot and coloring it with red color
Using existing large robot and coloring it with green color
Till now, total no of distinct robot objects created: 2
We do not have fixed size at present.So we are creating a fixed size robot
now.
A robot with a fixed size created with blue (default) color
Using existing fixed robot and coloring it with blue (default) color

158

CHAPTER 10 FLYWEIGHT PATTERN

Using existing fixed robot and coloring it with blue (default) color
Using existing fixed robot and coloring it with blue (default) color
Till now, total no of distinct robot objects created: 3

Analysis

o The output varies because in this implementation, I am choosing
color at random.

« The fixed-size robot’s color never changes because the extrinsic state
(color) is ignored to represent an unshared flyweight.

o The client needed to play with 12 robots (3 small, 5 large, 4 fixed-size)
but these demands are served by only three distinct template objects
(one from each category) and these were configured on the fly.

Q&A Session

1. Inotice some similarities between a singleton pattern and
a flyweight pattern. Can you highlight the key differences
between them?

The singleton pattern helps you maintain only one required object
in the system. In other words, once the required object is created,
you cannot create more. You need to reuse the existing object.

The flyweight pattern is generally concerned about a large
number of similar (which can be heavy) objects, because they
may occupy big blocks of memory. So, you try to create a smaller
set of template objects that can be configured on the fly to
complete the creation of the heavy objects. These smaller and
configurable objects are called flyweights. You can reuse them
in your application to appear that you have many large objects.
This approach helps you reduce the consumption of big chunks
of memory. Basically, flyweights make one look like many. This
is why the GoF tells us: A flyweight is a shared object that can be

159

CHAPTER 10 FLYWEIGHT PATTERN

used in multiple contexts simultaneously. The flyweight acts as an
independent object in each context — it’s indistinguishable from an
instance of the object that’s not shared.

Figure 10-3 visualizes the core concepts of the flyweight pattern
before using flyweights.

Heavy Object-1 Heavy Object-2

Our Application

Figure 10-3. Before using flyweights

Figure 10-4 shows the design after using flyweights.

Flyweight Object

Configuration-2

Configuration-1

[Our Application

Figure 10-4. After using flyweights

160

CHAPTER 10 FLYWEIGHT PATTERN

In Figure 10-4, you can see that

e Heavy Object 1 = Flyweight Object (shared) + Configuration 1
(extrinsic and not shared)

e Heavy Object 2 = Flyweight Object(shared) + Configuration 2
(extrinsic and not shared)

By combining the intrinsic and extrinsic states, the flyweight
objects provide the complete functionality.

Can you observe any impact due to multithreading?

If you are creating objects with new operators in a multithreaded
environment, you may end up with multiple unwanted objects
(similar to singleton patterns). The remedy is similar to the way
you handle multithreaded environment in a singleton pattern.

What are the advantages of using flyweight design patterns?

¢ You can reduce memory consumptions of heavy objects that can
be controlled identically.

¢ You can reduce the total number of “complete but similar
objects” in the system.

¢ You can provide a centralized mechanism to control the states of
many “virtual” objects.

What are the challenges associated with using flyweight design
patterns?

o In this pattern, you need to take the time to configure these
flyweights. The configuration time can impact the overall
performance of the application.

o To create flyweights, you extract a common template class from
the existing objects. This additional layer of programming can be
tricky and sometimes hard to debug and maintain.

¢ You can see that logical instances of a class cannot behave
differently from other instances.

161

CHAPTER 10

162

FLYWEIGHT PATTERN

o The flyweight pattern is often combined with singleton factory
implementation and to guard the singularity, additional cost is

required (e.g., you may opt for a synchronized method or double-

checked locking, but each of them are costly operations).
Can I have non-shareable flyweight interface?

Yes. A flyweight interface does not enforce that it needs to always
be shareable. In some cases, you may have non-shareable
flyweights with concrete flyweight objects as children. In our
example, you saw the use of non-shareable flyweights using fixed-
size robots.

Since intrinsic data of flyweights are the same, I can share
them. Is this correct?

Yes.
How do clients handle the extrinsic data of these flyweights?

They need to pass the information (states) to the flyweights.
Clients either manage the data or compute them on the fly.

Extrinsic data is not shareable. Is this correct?
Yes.

You said that I should try to make intrinsic states immutable.
How can I achieve that?

Yes, for thread safety and security, experts suggest that you
implement that. In this case, it is already implemented. In Java,
you must remember that String objects are inherently immutable.

Also, you may notice that in the concrete flyweights (SmallRobot,
LargeRobot, FixedSizeRobot), there are no setter methods to set/
modify the value of robotTypeCreated. When you supply the data
only through a constructor and there are no setter methods, you
are following an approach that promotes immutability.

10.

11.

12.

13.

CHAPTER 10 FLYWEIGHT PATTERN

You have tagged the final keyword with the intrinsic state
robotTypeCreated to achieve immutability. Is this correct?

You need to remember that final and immutability are not
synonymous. In the context of design patterns, the word
immutability generally means that once created, you cannot
change the state of the object. Although the keyword final can be
applied to a class, a method, or a field, the aim is different.

The final field can help you construct a thread-safe immutable
object without synchronization, and it provides safety in a
multithreaded environment. So, I used it in this example.

The concept is described in detail in the article at https://
docs.oracle.com/javase/specs/jls/se7/html/jls-17.
html#jls-17.5-110.

The getRobotFromFactory() method is synchronized here to
provide thread safety. Is this understanding correct?

Exactly. In a single-threaded environment, it is not required.

The getRobotFromFactory() method is static here. Is that
mandatory?

No. You can implement a non-static factory method also. You may
often notice the presence of a singleton factory with flyweight
pattern implementations.

What is the role of “RobotFactory” in this implementation?

It caches flyweights and provides a method to get them. In this
example, there are many objects that can be shared. So, storing
them in a central place is always a good idea.

163

https://docs.oracle.com/javase/specs/jls/se7/html/jls-17.html#jls-17.5-110
https://docs.oracle.com/javase/specs/jls/se7/html/jls-17.html#jls-17.5-110
https://docs.oracle.com/javase/specs/jls/se7/html/jls-17.html#jls-17.5-110

CHAPTER 11

Composite Pattern

This chapter covers the composite pattern.

GoF Definition

Compose objects into tree structures to represent part-whole hierarchies. Composite
lets clients treat individual objects and compositions of objects uniformly.

Concept

To help you understand this concept, [will start with an example. Consider a shop that
sells different kinds of dry fruits and nuts; let’s say cashews, dates, and walnuts. Each of
these items is associated with a certain price. Let’s assume that you can purchase any
of these individual items or you can purchase “gift packs” (or boxed items) that contain
different items. In this case, the cost of a packet is the sum of its component parts. The
composite pattern is useful in a similar situation, where you treat both the individual
parts and the combination of the parts in the same way so that you can process them
uniformly.

This pattern is useful to represent part-whole hierarchies of objects. In object-
oriented programming, a composite is an object with a composition of one-or-more
similar objects, where each of these objects has similar functionalities. (This is also
known as a “has-a” relationship among objects). The usage of this pattern is very
common in a tree-like data structure. If you can apply it properly, you do not need to
discriminate between a branch and the leaf-nodes. You can achieve two key goals with
this pattern.

165
© Vaskaran Sarcar 2019

V. Sarcar, Java Design Patterns, https://doi.org/10.1007/978-1-4842-4078-6_11

CHAPTER 11 COMPOSITE PATTERN

» You can compose objects into a tree structure to represent a part-
whole hierarchy.

e You can access both the composite objects (branches) and the
individual objects (leaf-nodes) uniformly. As a result, you can
reduce the complexity of codes and at the same time, you make your
application less error prone.

Real-World Example

You can also think of an organization that consists of many departments. In general, an
organization has many employees. Some of these employees are grouped together to
form a department, and those departments can be further grouped together to build the
final structure of the organization.

Computer-World Example

Any tree data structure can follow this concept. Clients can treat the leaves of the tree and
the non-leaves (or branches of the tree) in the same way.

Note This pattern is commonly seen in various Ul frameworks. In Java, the
generic Abstract Window Toolkit (AWT) container object is a component that

can contain other AWT components. For example, in java.awt.Container class
(which extends java.awt.Component) you can see various overloaded version of
add(Component comp) method. In JSF, UlViewRoot class acts like a composite
node and UlOutput acts like a leaf node. When you traverse a tree, you often use
the iterator design pattern, which is covered in Chapter 18.

lllustration

In this example, I am representing a college organization. Let’s assume that there is a
principal and two heads of departments—one for computer science and engineering
(CSE) and one for mathematics (Maths). In the Maths department, there are two

166

CHAPTER 11 COMPOSITE PATTERN

teachers (or professors/lecturers), and in the CSE department, there are three teachers
(or professors/lecturers). The tree structure for this organization is similar to Figure 11-1.

Principal

HOD-Comp.Sc

HOD-Maths

ﬁ /
Teacher-1 ‘ Teacher-2 Teacher-1 | Teacher-2 | L Teacher-3

Figure 11-1. A sample college organization

Let’s also assume that at the end, one lecturer from the CSE department retires.

You'll examine all of these cases in the following sections.

Class Diagram

Figure 11-2 shows the class diagram.

167

CHAPTER 11 COMPOSITE PATTERN

<<Java Interface>>
€9 Employee

jdp2e.composite.demo

A

<<Java Class>>
(9 CompositePatternExample

jdp2e.composite.demo

@ printStructures():void
@ getEmployeeCount():int

fCompositePatternExample()

esmain(String[[}:void

.;

Fi

<<Java Class>>
(9 SimpleEmployee

jdp2e.composite.demo

o name: String
o dept: String
o employeeCount: int

eCSimple Employee(String,String)
@ printStructures():void
& getEmployeeCount():int

Figure 11-2. Class diagram

Package Explorer View

<<Java Class>>
(9 CompositeEmployee
jdp2e.composite.demo

o employeeCount: int
o name: String
o dept: String

ecCompositeEmployee(String,String)
@& addEmployee(Employee):void

& removeEmployee(Employee):void
@ printStructures():void

@ getEmployeeCount():int

Figure 11-3 shows the high-level structure of the program.

168

CHAPTER 11 COMPOSITE PATTERN

b‘JCompositePattern
> ®\ JRE System Library [jdk1.8.0_172)]
v # jdp2e.composite.demo
v [J] CompositePatternExample.java
v@Q CompositeEmployee
o controls
o dept
o employeeCount
8 name
@& CompositeEmployee(String, String)
@ addEmployee(Employee) : void
@. getEmployeeCount() : int
@ printStructures() : void
@ removeEmployee(Employee) : void
v@ CompositePatternExample
@ main(String(]) : void
v Employee
¢ getEmployeeCount() : int
¢ printStructures() : void
v@Q SimpleEmployee
o dept
o employeeCount
o name
& SimpleEmployee(String, String)
@ getEmployeeCount() : int
@ printStructures() : void

Figure 11-3. Package Explorer view

Implementation
Here is the implementation.
package jdp2e.composite.demo;

import java.util.Arraylist;
import java.util.Llist;

169

CHAPTER 11 COMPOSITE PATTERN

interface IEmployee

{

}

void printStructures();
int getEmployeeCount();

class CompositeEmployee implements IEmployee

{

170

//private static int employeeCount=0;
private int employeeCount=0;

private String name;

private String dept;

//The container for child objects

private List<IEmployee> controls;

//Constructor

public CompositeEmployee(String name, String dept)
{

this.name = name;
this.dept = dept;
controls = new ArraylList<IEmployee>();
}
public void addEmployee(IEmployee e)
{
controls.add(e);
}
public void removeEmployee(IEmployee e)
{
controls.remove(e);
}
@verride

public void printStructures()

{

System.out.println("\t" + this.name + " works in
for(IEmployee e: controls)

" + this.dept);

CHAPTER 11 COMPOSITE PATTERN

{
e.printStructures();
}
}
@verride
public int getEmployeeCount()
{
employeeCount=controls.size();
for(IEmployee e: controls)
{
employeeCount+=e.getEmployeeCount();
}
return employeeCount;
}
}
class Employee implements IEmployee
{

private String name;

private String dept;

private int employeeCount=0;
//Constructor

public Employee(String name, String dept)

{
this.name = name;
this.dept = dept;
}
@verride
public void printStructures()
{
System.out.println("\t\t"+this.name + " works in " + this.dept);
}
@verride

171

CHAPTER 11 COMPOSITE PATTERN

public int getEmployeeCount()
{

return employeeCount;//0

}

class CompositePatternExample {

/**Principal is on top of college.

*HOD -Maths and Comp. Sc directly reports to him

*Teachers of Computer Sc. directly reports to HOD-CSE

*Teachers of Mathematics directly reports to HOD-Maths

*/

public static void main(String[] args) {
System.out.println("***Composite Pattern Demo ***");
//2 teachers other than HOD works in Mathematics department

new Employee("Math Teacher-1","Maths");

Employee mathTeacher1

Employee mathTeacher2 = new Employee("Math Teacher-2","Maths");

//teachers other than HOD works in Computer Sc. Department

Employee cseTeacherl = new Employee("CSE Teacher-1", "Computer Sc.");
Employee cseTeacher2 = new Employee("CSE Teacher-2", "Computer Sc.");
Employee cseTeacher3 = new Employee("CSE Teacher-3", "Computer Sc.");

//The College has 2 Head of Departments-One from Mathematics, One
//from Computer Sc.

CompositeEmployee hodMaths = new CompositeEmployee("Mrs.S.Das(HOD-
Maths)","Maths");

CompositeEmployee hodCompSc = new CompositeEmployee(

"Mr. V.Sarcar(HOD-CSE)", "Computer Sc.");

//Principal of the college
CompositeEmployee principal = new CompositeEmployee("Dr.S.Som

(Principal)","Planning-Supervising-Managing");

//Teachers of Mathematics directly reports to HOD-Maths
hodMaths.addEmployee(mathTeacher1);
hodMaths.addEmployee(mathTeacher2);

172

CHAPTER 11~ COMPOSITE PATTERN
//Teachers of Computer Sc. directly reports to HOD-CSE

hodCompSc.addEmployee(cseTeacher1);
hodCompSc.addEmployee(cseTeacher2);
hodCompSc.addEmployee(cseTeacher3);

/*Principal is on top of college.HOD -Maths and Comp. Sc directly
reports to him*/

principal.addEmployee(hodMaths);
principal.addEmployee(hodCompSc);

/*Printing the leaf-nodes and branches in the same way i.e.
in each case, we are calling PrintStructures() method

*/

System.out.println("\n Testing the structure of a Principal

object");

//Prints the complete structure

principal.printStructures();

System.out.println("At present Principal has control over "+

principal.getEmployeeCount()+ " number of employees.");

System.out.println("\n Testing the structure of a HOD-CSE
object:");

//Prints the details of Computer Sc, department
hodCompSc.printStructures();

System.out.println("At present HOD-CSE has control over "+
hodCompSc.getEmployeeCount()+ " number of employees.");

System.out.println("\n Testing the structure of a HOD-Maths
object:");

//Prints the details of Mathematics department
hodMaths.printStructures();

System.out.println("At present HOD-Maths has control over "+
hodMaths.getEmployeeCount()+ " number of employees.");

173

CHAPTER 11 COMPOSITE PATTERN

//Leaf node

System.out.println("\n Testing the structure of a leaf node:");
mathTeacherl.printStructures();

System.out.println("At present Math Teacher-1 has control over "+

mathTeacherl.getEmployeeCount()+ " number of employees.");

/*Suppose, one computer teacher is leaving now

from the organization*/
hodCompSc.removeEmployee(cseTeacher2);
System.out.println("\n After CSE Teacher-2 resigned, the
organization has following members:");
principal.printStructures();

System.out.println("At present Principal has control over "+
principal.getEmployeeCount()+ " number of employees");
System.out.println("At present HOD-CSE has control over "+
hodCompSc.getEmployeeCount()+ " number of employees");

System.out.println("At present HOD-Maths has control over "+

hodMaths.getEmployeeCount()+ " number of employees");

Output

Here is the output. The key changes are shown in bold.
***Composite Pattern Demo ***

Testing the structure of a Principal object
Dr.S.Som(Principal) works in Planning-Supervising-Managing
Mrs.S.Das(HOD-Maths) works in Maths

Math Teacher-1 works in Maths
Math Teacher-2 works in Maths
Mr. V.Sarcar(HOD-CSE) works in Computer Sc.
CSE Teacher-1 works in Computer Sc.
CSE Teacher-2 works in Computer Sc.
CSE Teacher-3 works in Computer Sc.

174

CHAPTER 11 COMPOSITE PATTERN
At present Principal has control over 7 number of employees.

Testing the structure of a HOD-CSE object:
Mr. V.Sarcar(HOD-CSE) works in Computer Sc.
CSE Teacher-1 works in Computer Sc.
CSE Teacher-2 works in Computer Sc.
CSE Teacher-3 works in Computer Sc.
At present HOD-CSE has control over 3 number of employees.

Testing the structure of a HOD-Maths object:
Mrs.S.Das(HOD-Maths) works in Maths
Math Teacher-1 works in Maths
Math Teacher-2 works in Maths
At present HOD-Maths has control over 2 number of employees.

Testing the structure of a leaf node:
Math Teacher-1 works in Maths
At present Math Teacher-1 has control over 0 number of employees.

After CSE Teacher-2 resigned, the organization has following members:
Dr.S.Som(Principal) works in Planning-Supervising-Managing
Mrs.S.Das(HOD-Maths) works in Maths

Math Teacher-1 works in Maths

Math Teacher-2 works in Maths

Mr. V.Sarcar(HOD-CSE) works in Computer Sc.

CSE Teacher-1 works in Computer Sc.

CSE Teacher-3 works in Computer Sc.
At present Principal has control over 6 number of employees
At present HOD-CSE has control over 2 number of employees
At present HOD-Maths has control over 2 number of employees

175

CHAPTER 11

Q&A Session

1. What are the advantages of using composite design patterns?

176

COMPOSITE PATTERN

In a tree-like structure, you can treat both the composite objects
(branches) and the individual objects (leaf-nodes) uniformly.
Notice that in this example, I have used two common methods:
printStructures() and getEmployeeCount() to print the
structure and get the employee count from both the composite
object structure (principal or HODs) and the single object
structure (i.e., leaf nodes like Math Teacher 1.)

It is very common to implement a part-whole hierarchy using this
design pattern.

You can easily add a new component to an existing architecture
or delete an existing component from your architecture.

2. What are the challenges associated with using composite

design patterns?

If you want to maintain the ordering of child nodes (e.g., if parse
trees are represented as components), you may need to use
additional efforts.

If you are dealing with immutable objects, you cannot simply
delete those.

You can easily add a new component but that kind of support can
cause maintenance overhead in the future. Sometimes, you want
to deal with a composite object that has special components.
This kind of constraint can cause additional development

costs because you may need to implement a dynamic checking
mechanism to support the concept.

3. Inthis example, you have used list data structure. But I prefer

to use other data structures. Is this okay?

Absolutely. There is no universal rule. You are free to use your

preferred data structure. GoF confirmed that it is not necessary to

use any general—purpose data structure.

CHAPTER 11 COMPOSITE PATTERN

How can you connect the iterator design pattern to a composite
design pattern?

Go through our example once again. If you want to examine
composite object architecture, you may need to iterate over the
objects. In other words, if you want to do special activities with
branches, you may need to iterate over its leaf nodes and non-leaf
nodes. Iterator patterns are often used with composite patterns.

In the interface of your implementation, you defined only two
methods: printStructures() and getEmployeeCount(). But
you are using other methods for the addition and removal of
objects in the Composite class (CompositeEmployee). Why
didn’t you put these methods in the interface?

Nice observation. GoF discussed this. Let’s look at what happens if
you put the addEmployee (..) and removeEmployee (..) methods
in the interface. The leaf nodes need to implement the addition
and removal operations. But will it be meaningful in this case? The
obvious answer is no. It may appear that you lose transparency,
but I believe that you have more safety because I have blocked

the meaningless operations in the leaf nodes. This is why the GoF
mentioned that this kind of decision involves a trade-off between
safety and transparency.

I want to use an abstract class instead of an interface. Is this
allowed?

In most of the cases, the simple answer is yes. But you need to
understand the difference between an abstract class and an
interface. In a typical scenario, you find one of them more useful
than the other one. Since I am presenting only simple and easy to
understand examples, you may not see much difference between
the two. Particularly in this example, if I use the abstract class
instead of the interface, I may put a default implementation of
getEmployeeCount() in the abstract class definition. Although you
can still argue that with Java’s default keyword, you could achieve
the same, as in the following:

177

CHAPTER 11 COMPOSITE PATTERN

interface IEmployee

{
void printStructures();
//int getEmployeeCount();
default public int getEmployeeCount()
{
return 0O;
}
}

Note Inthe Q&A session of the builder pattern (see Chapter 3), | discussed how
to decide between an abstract class and an interface.

178

CHAPTER 12

Bridge Pattern

This chapter covers the bridge pattern.

GoF Definition

Decouple an abstraction from its implementation so that the two can vary
independently.

Concept

This pattern is also known as the handle/body pattern, in which you separate an
implementation from its abstraction and build separate inheritance structures for them.
Finally, you connect them through a bridge.

You must note that the abstraction and the implementation can be represented
either through an interface or an abstract class, but the abstraction contains a reference
to its implementer. Normally, a child of an abstraction is called a refined abstraction and
a child of an implementation is called a concrete implementation.

This bridge interface makes the functionality of concrete classes independent from
the interface implementer classes. You can alter different kinds of classes structurally
without affecting each other.

Real-World Example

In a software product development company, the development team and the marketing
team both play a crucial role. Marketing teams do market surveys and gather customers’
needs, which may vary depending on the nature of the customers. Development

teams implement those requirements in their products to fulfill the customers’ needs.

179
© Vaskaran Sarcar 2019

V. Sarcar, Java Design Patterns, https://doi.org/10.1007/978-1-4842-4078-6_12

CHAPTER 12 BRIDGE PATTERN

Any change (e.g., in the operational strategy) in one team should not have a direct
impact on the other team. Also, when new requirements come from the customer side,

it should not change the way that developers work in their organization. In a software
organization, the marketing team plays the role of the bridge between the clients and the

development team.

Computer-World Example

GUI frameworks can use the bridge pattern to separate abstractions from platform-
specific implementation. For example, using this pattern, it can separate a window
abstraction from a window implementation for Linux or macOS.

Note In Java, you may notice the use of JDBC, which provides a bridge
between your application and a particular database. For example, the java.sql.
DriverManager class and the java.sql.Driver interface can form a bridge pattern
where the first one plays the role of abstraction and the second one plays the role
of implementor. The concrete implementors are com.mysql.jdbc.Driver or oracle.
jdbc.driver.OracleDriver, and so forth.

lllustration

Suppose that you are a remote-control maker and you need to make remote controls
for different electronic items. For simplicity, let’s assume that you are presently getting
orders to make remote controls for televisions and DVD players. Let’s also assume that
your remote control has two major functionalities: on and off.

You may want to start with the design shown in Figure 12-1 or the one shown

in Figure 12-2.

180

Electronicltems

/'

CHAPTER 12

‘\

BRIDGE PATTERN

Television State DVD
On off On off
Figure 12-1. Approach 1
Electronicltems
Television DVD
On off On Off

Figure 12-2. Approach 2

On further analysis, you discover that Approach 1 is truly messy and difficult to
maintain.

At first, Approach 2 looks cleaner, but if you want to include new states, such as sleep,
mute, and so forth, or if you want to include new electronic items, such as AC, DVD, and
so on, you face new challenges because the elements are tightly coupled in this design
approach. But in a real-world scenario, this kind of enhancement is often required.

This is why, you need to start with a loosely coupled system for future enhancements
so that either of the two hierarchies (electronics items and their states) can grow
independently. The bridge pattern perfectly fits this scenario.

181

CHAPTER 12 BRIDGE PATTERN

Let’s start with the most common bridge pattern class diagram (see Figure 12-3).

Abstraction

% Implementor

i

l

Refined Abstraction

Concretelmplementor

Figure 12-3. A classic bridge pattern

e Abstraction (an abstract class) defines the abstract interface and it
maintains the Implementor reference.

e RefinedAbstraction (a concrete class) extends the interface defined by

Abstraction.

o Implementor (an interface) defines the interface for implementation

classes.

e ConcretelImplementor (Concrete class) implements the Implementor

interface.

I followed a similar architecture in the following implementation. For your ready
reference, I have pointed out all the participants in the following implementation with

comments.

182

Class Diagram

Figure 12-4 shows the class diagram.

<<Java Class>>

(9 BridgePatternDemo
jdp2e.bridge.demo

Qc BridgePatternDemo()

CHAPTER 12

BRIDGE PATTERN

. . . voi
Brldge osmam{Slrmglll void
1 1
! <<Java Class>>
: (*¥ ElectronicGoods
| jdp2e. bridge.demo <<Java Interface>>
) State
: 4" ElectronicGoods() #state jdp2e.bridge.demo
© getState():State 0..1 -
! g 0 . © moveState():void
| © setState(State):void _
. @ hardPressed():void
1 @ moveToCurrentState():void d
: @ hardButtonPressed():void
A o N e e e e e R S

<<Java Class>>
(®DVD
jdp2e.bridge.demo

4°DVD()
© doublePress():void

<<Java Class>>
(9 Television
jdp2e.bridge.demo

<<Java Class>>

<<Java Class>>

© moveState():void
© hardPressed():void

(® offstate (9 Onstate
jdp2e.bridge.demo jdp2e.bridge.demo
& OffState() 4 OnState()

© moveState():void
@ hardPressed():void

gcTeIevision()

Figure 12-4. Class diagram

183

CHAPTER 12 BRIDGE PATTERN

Package Explorer View

Figure 12-5 shows the high-level structure of the program.

= BridgePattern
> i\ JRE System Library [jre1.8.0_172]
v {# jdp2e.bridge.demo
v] BridgePatternDemo.java
v@ BridgePatternDemo
& main(String[]) : void
v @QpvD
@ doublePress() : void
v G} ElectronicGoods
¢ state
@ getState() : State
@ hardButtonPressed() : void
@ moveToCurrentState() : void
@ setState(State) : void
v QOffState
@ hardPressed() : void
@ moveState() : void
v QOnState
@ hardPressed() : void
@ moveState() : void
v O“State
¢ hardPressed() : void
¢ moveState() : void
(@ Television

Figure 12-5. Package Explorer view

184

CHAPTER 12 BRIDGE PATTERN

Key Characteristics

Here are the key characteristics of the following implementation.

The ElectronicGoods abstract class plays the role of abstraction. The
State interface plays the role of the implementor.

The concrete implementors are OnState class and OffState class. They
have implemented the moveState() and hardPressed()interface
methods as per their requirements.

The ElectronicGoods abstract class holds a reference of the State

implementor.

The abstraction methods are delegating the implementation to the
implementor object. For example, notice that hardButtonPressed()
is actually shorthand for state.hardPressed(), where state is the
implementor object.

There are two refined abstractions: Television and DVD. The class is
happy with the methods that it inherits from its parent. But the DVD
class wants to provide an additional feature, so it implements a DVD-
specific method: doublePress(). The doublePress() method is coded
in terms of superclass abstraction only.

Implementation

Here is the implementation.

package jdp2e.bridge.demo;

//Implementor
interface State

{

void moveState();
void hardPressed();

}

//A Concrete Implementor.
class OnState implements State

{

185

CHAPTER 12 BRIDGE PATTERN

@verride
public void moveState()
{
System.out.print("On State\n");
}
@verride
public void hardPressed()
{
System.out.print("\tThe device is already On.Do not press the
button so hard.\n");
}

}

//Another Concrete Implementor.
class OffState implements State

{
@Override
public void moveState()
{
System.out.print("0ff State\n");
}
@verride
public void hardPressed()
{
System.out.print("\tThe device is Offline now.Do not press the off
button again.\n");
}
}
//Abstraction
abstract class ElectronicGoods
{

//Composition - implementor
protected State state;
/*Alternative approach:

186

CHAPTER 12 BRIDGE PATTERN

We can also pass an implementor (as input argument) inside a

constructor.
*/
/*public ElectronicGoods(State state)
{
this.state = state;
P/
public State getState()
{
return state;
}
public void setState(State state)
{
this.state = state;
}

/*Implementation specific:
We are delegating the implementation to the Implementor object.
*/
public void moveToCurrentState()
{
System.out.print("The electronic item is functioning at : ");
state.moveState();

}
public void hardButtonPressed()

{
state.hardPressed();

}
//Refined Abstraction

//Television does not want to modify any superclass method.
class Television extends ElectronicGoods

{

187

CHAPTER 12 BRIDGE PATTERN

/*public Television(State state)
{
super (state);

P/
}
/*DVD class also ok with the super class method.
In addition to this, it uses one additional method*/
class DVD extends ElectronicGoods

{
/*public DVD(State state)
{
super(state);
¥/
/* Notice that following DVD specific method is coded with superclass
methods but not with the implementor (State) method.So, this approach
will allow to vary the abstraction and implementation independently.
*/
public void doublePress() {
hardButtonPressed();
hardButtonPressed();
}
}

public class BridgePatternDemo {

public static void main(String[] args) {
System.out.println("***Bridge Pattern Demo***");

System.out.println("\n Dealing with a Television at present.");

State presentState = new OnState();

//ElectronicGoods eItem = new Television(presentState);
ElectronicGoods eItem = new Television();
eltem.setState(presentState);
eltem.moveToCurrentState();

//hard press

eltem.hardButtonPressed();

188

CHAPTER 12 BRIDGE PATTERN

//Verifying Off state of the Television now
presentState = new OffState();

//eltem = new Television(presentState);
eltem.setState(presentState);
eltem.moveToCurrentState();

System.out.println("\n Dealing with a DVD now.");
presentState = new OnState();

//eltem = new DVD(presentState);

eltem = new DVD();

eltem.setState(presentState);
eltem.moveToCurrentState();

presentState = new OffState();
//eItem = new DVD(presentState);
eltem = new DVD();
eltem.setState(presentState);
eltem.moveToCurrentState();

//hard press-A DVD specific method
//(new DVD(presentState)).doublePress();
((DVD)eItem).doublePress();

/*The following line of code will cause error because a television
object does not have this method.*/
//(new Television(presentState)).doublePress();

Output

Here is the output.
Bridge Pattern Demo

Dealing with a Television at present.
The electronic item is functioning at : On State

The device is already On.Do not press the button so hard.
The electronic item is functioning at : Off State

189

CHAPTER 12 BRIDGE PATTERN

Dealing with a DVD now.

The electronic item is functioning at : On State
The electronic item is functioning at : Off State

The device is Offline now.Do not press the off button again.
The device is Offline now.Do not press the off button again.

Q&A Session

190

2.

This pattern looks similar to a state pattern. Is this correct?

No. The state pattern falls into the behavioral pattern and its intent is
different. In this chapter, you have seen an example where the electronic
items can be in different states, but the key intent was to show that

e Howyou can avoid tight coupling between the items and their
states.

e Howyou can maintain two different hierarchies and both of them
can extend without making an impact to each other.

In addition to these points, you are dealing with multiple objects
in which implementations are shared among themselves.

For a better understanding, go through the comments that are
attached with this implementation. I am also drawing your
attention to the DVD-specific doublePress() method. Notice that
it is constructed with superclass methods, which in turn delegate
the implementation to the implementor object (a state object in
this case). This approach allows you to vary the abstraction and
implementation independently, which is the key objective of the
bridge pattern.

You could use simple subclassing instead of this kind of design.
Is this correct?

No. With simple subclassing, your implementations cannot vary
dynamically. It may appear that the implementations behave
differently with subclassing techniques, but actually, those kinds
of variations are already bound to the abstraction at compile time.

CHAPTER 12 BRIDGE PATTERN

In this example, I see lots of dead code. Why are you keeping
those?

Some developers prefer constructors over Getter/Setter methods.
You can see the variations in different implementations. I am
keeping those for your ready reference. You are free to use any of
them.

What are key advantages of using a bridge design pattern?
e The implementations are not bound to the abstractions.

o Both the abstractions and the implementations can grow
independently.

o Concrete classes are independent from the interface implementer
classes (i.e., changes in one of these does not affect the other).
You can also vary the interface and the concrete implementations
in different ways.

What are the challenges associated with this pattern?
e The overall structure may become complex.

e Sometimes it is confused with the adapter pattern. (The key
purpose of an adapter pattern is to deal with incompatible
interfaces only.)

Suppose I have only one state; for example, either OnState or
OffState. In this case, do I need to use the State interface?

No, it is not mandatory. GoF classified this case as a degenerate
case of the bridge pattern.

In this example, an abstract class is used to represent an
abstraction and an interface is used for an implementation.
Is it mandatory?

No. You can also use an interface for abstraction. Basically, you
can use either of an abstract class or an interface for any of the
abstractions or implementations. I simply used this format for
better readability.

191

CHAPTER 13

Visitor Pattern

This chapter covers the visitor pattern.

GoF Definition

Represent an operation to be performed on the elements of an object structure. Visitor
lets you define a new operation without changing the classes of the elements on which it
operates.

Concept

This pattern helps you add new operations on the objects without modifying the
corresponding classes, especially when your operations change very often. Ideally,
visitors define class-specific methods, which work with an object of that class to support
new functionalities. Here you separate an algorithm from an object structure, and you
add new operations using a new hierarchy. Therefore, this pattern can support the open/
close principle (extension is allowed but modification is disallowed for entities like class,
function, modules, etc.). The upcoming implementations will make the concept clearer
to you.

Note You can experience the true power of this design pattern when you
combine it with the composite pattern, as shown in the modified implementation
later in this chapter.

193
© Vaskaran Sarcar 2019

V. Sarcar, Java Design Patterns, https://doi.org/10.1007/978-1-4842-4078-6_13

CHAPTER 13 VISITOR PATTERN

Real-World Example

Think of a taxi-booking scenario. When the tax arrives and you get into it, the taxi driver
takes the control of the transportation. The taxi may take you to your destination through
a new route that you are not familiar with. So, you can explore the new route with the
help of the taxi driver. But you should use the visitor pattern carefully, otherwise, you
may encounter some problem. (For example, consider a case when your taxi driver alters

the destination unknowingly, and you face the trouble).

Computer-World Example

This pattern is very useful when public APIs need to support plugging operations. Clients
can then perform their intended operations on a class (with the visiting class) without
modifying the source.

Note In Java, you may notice the use of this pattern when you use the abstract
class org.domd4j.VisitorSupport, which extends Object and implements the org.
domd4j.Visitor interface. Also, when you work with the javax.lang.model.element.
Element interface or javax.lang.model.element.ElementVisitor<R,P> (where R is
the return type of visitor’s method and P is the type of additional parameter to the
visitor’s method), you may notice the use of visitor design pattern.

lllustration

Here our discussion will start with a simple example of the visitor design pattern. Let’s
assume that you have an inheritance hierarchy where a MyClass concrete class implements
the Originallnterface interface. MyClass has an integer, myInt. When you create an instance
of MyClass, it is initialized with a value, 5. Now suppose, you want to update this initialized
value and display it. You can do it in two different ways: you can add a method inside
MyClass to do your job or use a visitor pattern, which I am about to explain.

In the following implementation, I am multiplying the existing value by 2 and
displaying this double value of myInt using the visitor design pattern. If I do not use this
pattern, I need to add an operation (or method) inside MyClass, which does the same.

194

CHAPTER 13 VISITOR PATTERN

But there is a problem with the later approach. If you want to further update the logic
(e.g., you want to triple myInt and display the value), you need to modify the operation
in MyClass. One drawback with this approach is that if there are many classes involved, it
will be tedious to implement this updated logic in all of them.

But in a visitor pattern, you can just update the visitor’s method. The advantage is
that you do not need to change the original classes. This approach helps you when your
operations change quite often.

So, let’s start with an example. Let’s assume that in this example, you want to double
the initial integer value in MyClass and manipulate it, but your constraint is that you
cannot change the original codes in the Originallnterface hierarchy. So, you are using a
visitor pattern in this case.

To achieve the goal, in the following example, I am separating the functionality
implementations (i.e., algorithms) from the original class hierarchy.

Class Diagram

Figure 13-1 shows the class diagram.

<<Java Class>>
(9 MyClass

jdp2e.visitor.demo

<<Java Class>>
(9 VisitorPatternExample

jdp2e.visitor.demo

<<Java Class>>
(9 ConcreteVisitor
jdp2e.visitor.demo

\ nmeInt: int

A

ecVisitorF'attern Example()
esmaingstringl]):void

o @ acceptVisitor(Visitor):void

-".

@ MyClass()
© getMylint():int

gcConcreteVisitor()

@ visit(MyClass):void

v e

<<Java Interface>>
9 Visitor

jdp2e.visitor.demo

@ visit(MyClass):void

Figure 13-1. Class diagram

<<Java Interface>>
€3 Originalinterface

jdp2e.visitor.demo

@ acceptVisitor(Visitor):void

195

CHAPTER 13 VISITOR PATTERN

Package Explorer View

Figure 13-2 shows the high-level structure of the program.

(=2 VisitorPattern
> B\ JRE System Library [jdk1.8.0_172]
v 1 jdp2e.visitor.demo
v |J] VisitorPatternExample java
v QConcreteVisitor
@ visit(MyClass) : void
v Q MyClass
of myint
@ MyClass()
@ acceptVisitor(Visitor) : void
@ getMyint() : int
v QOriginaIlnterface
¢ acceptVisitor(Visitor) : void
v QZLVﬁﬂtor
¢ visit(MyClass) : void
v @.VisitorPatternExample
@ main(String[]) : void

Figure 13-2. Package Explorer view

Implementation

Here’s the implementation.

package jdp2e.visitor.demo;

interface OriginallInterface

{
//The following method has a Visitor argument.
void acceptVisitor(Visitor visitor);

196

CHAPTER 13 VISITOR PATTERN

class MyClass implements OriginalInterface

{

}

//Here "myInt" is final.So, once initialized, it should not be changed.
private final int myInt;
public MyClass()

{
myInt=5;//Initial or default value
}
public int getMyInt()
{
return myInt;
}
@0verride
public void acceptVisitor(Visitor visitor)
{
visitor.visit(this);
}

interface Visitor

{

}

//The method to visit MyClass
void visit(MyClass myClassObject);

class ConcreteVisitor implements Visitor

{

@verride
public void visit(MyClass myClassObject)

{
System.out.println("Current value of myInt="+ myClassObject.

getMyInt());
System.out.println("Visitor will make it double and display it.");

System.out.println("Current value of myInt="+ 2*myClassObject.
getMyInt());

197

CHAPTER 13 VISITOR PATTERN

System.out.println("Exiting from Visitor.");

}

public class VisitorPatternkExample {

public static void main(String[] args) {
System.out.println("***Visitor Pattern Demo***\n");
Visitor visitor = new ConcreteVisitor();
MyClass myClass = new MyClass();
myClass.acceptVisitor(visitor);

Output

Here’s the output.
\Visitor Pattern Demo

Current value of myInt=5

Visitor will make it double and display it.
Current value of myInt=10

Exiting from Visitor.

Modified lllustration

You have already seen a very simple example of the visitor design pattern. But you can
exercise the true power of this design pattern when you combine it with the composite
pattern (see Chapter 11). So, let’s examine a scenario where you need to combine both
the composite pattern and the visitor pattern.

198

CHAPTER 13 VISITOR PATTERN

Key Characteristic of the Modified Example

Let’s revisit the example of our composite design pattern from Chapter 11. In that
example, there is a college with two different departments. Each of these departments
has one head of department (HOD) and multiple teachers (or professors/lecturers).
Each HOD reports to the principal of the college. Figure 13-3 shows the tree structure
that I discussed in that chapter.

Hod-Comp.Sc

/ b
e . 5

/ k.S
\ rd Y

f': \ /

/ N

Figure 13-3. Tree structure of a composite design example

Now suppose that the principal of the college wants to promote a few employees.
Let’s consider that teaching experience is the only criteria to promote someone. Ideally,
the criteria should vary among senior teachers and junior teachers. So, let’s assume
that for a junior teacher, the minimum criteria for promotion is 12 years and for senior
teachers, it is 15 years.

199

CHAPTER 13 VISITOR PATTERN

To accomplish this, you need to introduce a new field, yearsOfExperience. So,
when a visitor gathers the necessary information from the college, it shows the eligible
candidates for promotion.

The visitor is collecting the data from the original college structure without making
any modifications to it, and once the collection process is over, it analyses the data to
display the intended results. To understand this visually, you can follow the arrows in the
upcoming figures. The principal is at the top of the organization, so you can assume that
no promotion is required for that person.

Step 1

Figure 13-4 shows step 1.

Step-1 \‘

Hod-Comp.Sc

"

Figure 13-4. Step 1

Step 2

Figure 13-5 shows step 2.

200

CHAPTER 13 VISITOR PATTERN

Step-z‘/

Hod-Comp.5c
N\
, / b

/ | \\

Figure 13-5. Step 2

Step 3

Figure 13-6 shows step 3.

.‘\\

Figure 13-6. Step 3
201

CHAPTER 13 VISITOR PATTERN

Step 4

Figure 13-7 shows step 4.

Figure 13-7. Step 4

Step 5

Figure 13-8 shows step 5.

202

CHAPTER 13 VISITOR PATTERN

Hod-Comp.Sc

\ Step-5

Figure 13-8. Step 5

And so on...

In the following implementation, there are code blocks like the following.

@verride
public void acceptVisitor(Visitor visitor)

{

visitor.visitTheElement(this);

From this structure, you can see two important things.

o Each time a visitor visits a particular object, the object invokes a
method on the visitor, passing itself as an argument. The visitor has
methods that are specific to a particular class.

e Objects of the concrete employee classes (CompositeEmployee,
SimpleEmployee) only implement the acceptVisitor(Visitor visitor)
method. These objects know about the specific method of the visitor
(which is passed as an argument here) that it should invoke.

So, let’s start.
203

CHAPTER 13 VISITOR PATTERN

Modified Class Diagram

Figure 13-9 shows the modified class diagram.

<<Java Class>>
(9 CompositeEmployee
jdp2e visitor modified demo

o name: String
o dept: String
o yearsOfExperience: int

OCCcmpcslie Employee(String, String,int)
@ addEmployee(Employee):void

@ removeEmployee(Employee):void
@ getName():String

@ getDept():String

@ getExperience()int

@ getControls():List<Employee>

@ printStructures():void

@ acceptVisitor(Visitor):void

i &
| &

-C ontr%s .
L
<<Java Interface>>

£ Employee
jdp2e.visitor. medified demo

o
.

@ printStructures():void

@ acceptVisitor(Visitor):void

<<Java Class>>
(9 SimpleEmployee
jdpZ2e visitor modified demo

<<Java Class>>
(9 ConcreteVisitor
jdp2e visitor. modified demo

o name: String

,..': ConcreteVisitor()

o dept: String © visitTheE (CompositeEmployee):veid
a yearsOfExperience: int @ visitTheElement(SimpleEmployee):void
QCSimpleEmployee{String.String‘int} 4
© getName():String /
@ getDept():String
@ getExperience()int },-'
@ printStructures():void 4
@ acceplVisitor(Visitor):void
'-.\\ J;':.
H\ i
N
Y i
i V
<<Java Class>> <<Java Interface>>
(3 ModifiedVisitorPatternExample O Visitor
jdp2e.visiter modified. demo jdp2e visitor.modified demo

o':Modiﬂ edVisitorPatternExample()
esmain;Stri ng[]):veid

@ visitTheElement(CompositeEmployee):vaid
@ visitTheElement{SimpleEmployee):void

Figure 13-9. Modified class diagram

Modified Package Explorer View

Figure 13-10 shows the high-level structure of the modified program.

204

CHAPTER 13 VISITOR PATTERN

ModifiedVisitorPatternExample.java
v QCompositeEmployee
o controls
o dept
o name
o yearsOfExperience
e CompositeEmployee(String, String, int)
@ acceptVisitor(Visitor) : void
@ addEmployee(Employee) : void
@ getControls() : List<Employee>
@ getDept() : String
@ getExperience() : int
@ getName() : String
@ printStructures() : void
@ removeEmployee(Employee) : void
v QConcreteVisitor
@ visitTheElement(CompositeEmployee) : void
@ visitTheElement(SimpleEmployee) : void
vQ Employee
¢ acceptVisitor(Visitor) : void
¢ printStructures() : void
v Q ModifiedVisitorPatternExample
Gg main(String(]) : void
v QSimpIeEmponee
o dept
o name
o yearsOfExperience
¢ SimpleEmployee(String, String, int)
@ acceptVisitor(Visitor) : void
@ getDept() : String
@ getExperience() : int
@ getName() : String
@ printStructures() : void
v QVisitor
¢ visitTheElement(CompositeEmployee) : void
¢ visitTheElement(SimpleEmployee) : void

Figure 13-10. Modified Package Explorer view

205

CHAPTER 13 VISITOR PATTERN

Modified Implementation

Here’s the modified implementation.

package jdp2e.visitor.modified.demo;
import java.util.Arraylist;
import java.util.Llist;

interface Employee

{
void printStructures();
//The following method has a Visitor argument.
void acceptVisitor(Visitor visitor);

}

//Employees who have Subordinates
class CompositeEmployee implements Employee
{
private String name;
private String dept;
//New field for this example.
//1t is tagged with "final", so visitor cannot modify it.
private final int yearsOfExperience;
//The container for child objects
private List<Employee> controls;
// Constructor
public CompositeEmployee(String name,String dept, int experience)
{
this.name = name;
this.dept = dept;
this.yearsOfExperience = experience;

controls = new ArraylList<Employee>();

}
public void addEmployee(Employee e)
{
controls.add(e);
}

206

CHAPTER 13 VISITOR PATTERN

public void removeEmployee(Employee e)

{

controls.remove(e);

}
// Gets the name

public String getName()
{

return name;

}
// Gets the department name

public String getDept()
{

return dept;

}

// Gets the yrs. of experience
public int getExperience()

{
return yearsOfExperience;
}
public List<Employee> getControls()
{
return this.controls;
}
@verride
public void printStructures()
{
System.out.println("\t" + getName() + " works in " + getDept() + "
Experience :" + getExperience() + " years");
for(Employee e: controls)
{
e.printStructures();
}
}

207

CHAPTER 13 VISITOR PATTERN

@verride
public void acceptVisitor(Visitor visitor)
{
visitor.visitTheElement(this);
}
}
class SimpleEmployee implements Employee
{

private String name;

private String dept;

//New field for this example

private int yearsOfExperience;

//Constructor

public SimpleEmployee(String name, String dept, int experience)

{
this.name
this.dept
this.yearsOfExperience = experience;

name;

dept;

}
// Gets the name

public String getName()
{

return name;

}
// Gets the department name

public String getDept()
{

return this.dept;

}

// Gets the yrs. of experience
public int getExperience()

{

return yearsOfExperience;

208

CHAPTER 13 VISITOR PATTERN

@verride
public void printStructures()
{
System.out.println("\t\t" + getName() + " works in " + getDept() +
" Experience :" + getExperience() + " years");
}
@verride
public void acceptVisitor(Visitor visitor)
{
visitor.visitTheElement(this);
}
}
interface Visitor
{
void visitTheElement(CompositeEmployee employees);
void visitTheElement(SimpleEmployee employee);
}
class ConcreteVisitor implements Visitor
{

@verride

public void visitTheElement(CompositeEmployee employee)

{
//We'll promote them if experience is greater than 15 years
boolean eligibleForPromotion = employee.getExperience() > 15 ?
true : false;
System.out.printIn("\t\t" + employee.getName() + " from
+ employee.getDept() + "
eligibleForPromotion);

is eligible for promotion? " +

}

@verride

public void visitTheElement(SimpleEmployee employee)

{
//We'll promote them if experience is greater than 12 years
boolean eligibleForPromotion = employee.getExperience() > 12 ?
true : false;

209

CHAPTER 13 VISITOR PATTERN

System.out.println("\t\t" + employee.getName() + " from
+ employee.getDept() + " is eligible for promotion? " +

eligibleForPromotion);

public class ModifiedVisitorPatternExample {

210

public static void main(String[] args) {

System.out.println("***Visitor Pattern combined with Composite
Pattern Demo***\n");

/*2 teachers other than HOD works in

Mathematics department*/
SimpleEmployee mathTeacherl = new SimpleEmployee("Math Teacher-1",
"Maths",13);

SimpleEmployee mathTeacher2

"Maths",6);

new SimpleEmployee("Math Teacher-2",

/* 3 teachers other than HOD works in
Computer Sc. department*/
SimpleEmployee cseTeacher1

new SimpleEmployee("CSE Teacher-1",
"Computer Sc.",10);
SimpleEmployee cseTeacher2
"Computer Sc.",13);
SimpleEmployee cseTeacher3

new SimpleEmployee("CSE Teacher-2",

new SimpleEmployee("CSE Teacher-3",
"Computer Sc.",7);

//The College has 2 Head of Departments-One from Mathematics, One
from Computer Sc.

CompositeEmployee hodMaths = new CompositeEmployee("Mrs.S.Das(HOD-
Maths)","Maths",14);

CompositeEmployee hodCompSc = new CompositeEmployee("Mr.
V.Sarcar(HOD-CSE)", "Computer Sc.",16);

//Principal of the college
CompositeEmployee principal = new CompositeEmployee("Dr.S.Som

(Principal)","Planning-Supervising-Managing",20);

CHAPTER 13 VISITOR PATTERN

//Teachers of Mathematics directly reports to HOD-Maths
hodMaths.addEmployee(mathTeacher1);
hodMaths.addEmployee(mathTeacher2);

//Teachers of Computer Sc. directly reports to HOD-CSE

hodCompSc.addEmployee(cseTeacher1);
hodCompSc.addEmployee(cseTeacher2);
hodCompSc.addEmployee(cseTeacher3);

/*Principal is on top of college.HOD -Maths and Comp. Sc directly
reports to him */

principal.addEmployee(hodMaths);
principal.addEmployee(hodCompSc);

System.out.println("\n Testing the overall structure");
//Prints the complete structure
principal.printStructures();

System.out.println("\n***Visitor starts visiting our composite
structure***\n");
System.out.println("---The minimum criteria for promotion is as
follows ---");
System.out.println("--Junior Teachers-12 years and Senior
teachers-15 years.--\n");
Visitor myVisitor = new ConcreteVisitor();
/*
* At first, we are building a container for employees who will be
considered for promotion.
Principal is holding the highest position.So, he is not considered
for promotion.
*/
List<Employee> employeeContainer= new ArraylList<Employee>();
//For employees who directly reports to Principal
for (Employee e : principal.getControls())
{

employeeContainer.add(e);

211

CHAPTER 13 VISITOR PATTERN

//For employees who directly reports to HOD-Maths
for (Employee e : hodMaths.getControls())
{

employeeContainer.add(e);
}
//For employees who directly reports to HOD-Comp.Sc
for (Employee e : hodCompSc.getControls())
{

employeeContainer.add(e);
}
//Now visitor can traverse through the container.
for (Employee e :employeeContainer)

{

e.acceptVisitor(myVisitor);

Modified Output

Here’s the modified output.
Visitor Pattern combined with Composite Pattern Demo

Testing the overall structure
Dr.S.Som(Principal) works in Planning-Supervising-Managing Experience
years
Mrs.S.Das(HOD-Maths) works in Maths Experience :14 years
Math Teacher-1 works in Maths Experience :13 years
Math Teacher-2 works in Maths Experience :6 years
Mr. V.Sarcar(HOD-CSE) works in Computer Sc. Experience :16 years
CSE Teacher-1 works in Computer Sc. Experience :10 years
CSE Teacher-2 works in Computer Sc. Experience :13 years
CSE Teacher-3 works in Computer Sc. Experience :7 years

Visitor starts visiting our composite structure

212

:20

CHAPTER 13 VISITOR PATTERN

---The minimum criteria for promotion is as follows ---
--Junior Teachers-12 years and Senior teachers-15 years.--

Mrs.S.Das(HOD-Maths) from Maths is eligible for promotion? false

Mr. V.Sarcar(HOD-CSE) from Computer Sc. is eligible for promotion? true
Math Teacher-1 from Maths is eligible for promotion? true

Math Teacher-2 from Maths is eligible for promotion? false

CSE Teacher-1 from Computer Sc. is eligible for promotion? false

CSE Teacher-2 from Computer Sc. is eligible for promotion? true

CSE Teacher-3 from Computer Sc. is eligible for promotion? false

Q&A Session

1. When should you consider implementing visitor design
patterns?

You need to add new operations to a set of objects without
changing their corresponding classes. It is one of the primary
aims to implement a visitor pattern. When the operations change
very often, this approach can be your savior. In this pattern,
encapsulation is not the primary concern.

If you need to change the logic of various operations, you can
simply do it through visitor implementation.

2. Are there any drawbacks associated with this pattern?

« Encapsulation is not its key concern. So, you can break the power
of encapsulation by using visitors.

o Ifyouneed to frequently add new concrete classes to an existing
architecture, the visitor hierarchy becomes difficult to maintain.
For example, suppose you want to add another concrete class in
the original hierarchy now. Then in this case, you need to modify
visitor class hierarchy accordingly to fulfill the purpose.

213

CHAPTER 13 VISITOR PATTERN

214

3.

Why are you saying that a visitor class can violate the
encapsulation?

In our illustration, I have tested a very simple visitor design
pattern in which I show an updated integer value of myInt
through the visitor class. Also, in many cases, you may see that
the visitor needs to move around a composite structure to gather
information from them, and then it can modify that information.
So, when you provide this kind of support, you violate the core
aim of encapsulation.

Why does this pattern compromise the encapsulation?

Here you perform some operations on a set of objects that can

be heterogeneous. But your constraint is that you cannot change
their corresponding classes. So, your visitor needs a way to access
the members of these objects. As a result, you need to expose the
information to the visitor.

In the visitor interfaces of the modified implementation, you
are using the concept of method overloading (i.e., method
names are same). Is this mandatory?

No. In my book Design Patterns in C#, used method names like
VisitCompositeElement() and VisitLeafNode() in a similar
context. Remember that these interface methods should target the
specific classes, such as SimpleEmployee or CompositeEmployee.

Suppose that in the modified implementation, I add a concrete
subclass of Employee called UndefinedEmployee. How should
I proceed? Should I have another specific method in the visitor

interface?

Exactly. You need to define a new method that is specific to this
new class. So, your interface may look like the following.

CHAPTER 13 VISITOR PATTERN

interface Visitor

{
void visitTheElement(CompositeEmployee employees);
void visitTheElement(SimpleEmployee employee);
void visitTheElement(UndefinedEmployee employee);
}

And later you need to implement this new method in the concrete
visitor class.

Suppose that I need to support new operations in the existing
architecture. How should I proceed with the visitor pattern?

For each new operation, create a new visitor subclass and
implement the operation in it. Then, visit your existing structure
the way that was shown in the preceding examples.

In the client code, you made a container of employees first,
and then it starts visiting. Is it mandatory to create such a
structure?

No. It just helps clients to visit smoothly in one shot. If you do not
create any such structure, you can always call it separately.

215

CHAPTER 14

Observer Pattern

This chapter covers the observer pattern.

GoF Definition

Define a one-to-many dependency between objects so that when one object changes
state, all its dependents are notified and updated automatically.

Concept

In this pattern, there are many observers (objects) that are observing a particular subject
(also an object). Observers register themselves to a subject to get a notification when
there is a change made inside that subject. When they lose interest of the subject, they
simply unregister from the subject. It is also referred to as the publish-subscribe pattern.
The whole idea can be summarized as follows: Using this pattern, an object (subject) can
send notifications to multiple observers (a set of objects) at the same time.

217
© Vaskaran Sarcar 2019

V. Sarcar, Java Design Patterns, https://doi.org/10.1007/978-1-4842-4078-6_14

CHAPTER 14 OBSERVER PATTERN

You can visualize the scenarios in the following diagrams.
Step 1. Observers are requesting a subject to get notifications (see Figure 14-1).

Register me please

Observerl

Subject

Register me please
T
Register me please
Observer3

Step 2. The subject grants the requests and the connection is established (see

Figure 14-1. Step 1

Figure 14-2).

; Observerl ;
@

@

Subject

Figure 14-2. Step 2
218

CHAPTER 14 OBSERVER PATTERN

Step 3. The subject sends notifications to the registered users (in case a typical event

occurs in the subject and it wants to notify others) (see Figure 14-3).

Subject

Figure 14-3. Step 3

Notification
Observerl
Notification
Observer2
Notification @

Step 4 (optional). Observer2 does not want to get further notification, so it

unregisters itself (see Figure 14-4).

Subject

Observerl

Observer2

Observer3

Figure 14-4. Step 4

OOW

219

CHAPTER 14 OBSERVER PATTERN

Step 5. Now onward, only Observerl and Observer3 get notifications from the
subject (see Figure 14-5).

Notification
Observerl
Subject
Notification Observer3

Figure 14-5. Step 5

Real-World Example

Think about a celebrity who has many followers on social media. Each of these followers
wants all the latest updates from their favorite celebrity. So, they follow the celebrity until
their interest wanes. When they lose interest, they simply do not follow that celebrity any
longer. You can think each of these fans or followers as an observer and the celebrity as a
subject.

Computer-World Example

In the world of computer science, consider a simple Ul-based example. Let’s assume that
this Ul is connected to a database. A user can execute a query through that U], and after
searching the database, the result is returned in the Ul Here you segregate the Ul from
the database in such a way that if a change occurs in the database, the Ul is notified, and
it updates its display according to the change.

220

CHAPTER 14 OBSERVER PATTERN

To simplify this scenario, assume that you are the person responsible for maintaining
a particular database in your organization. Whenever there is a change made inside the
database, you want a notification so that you can take action if necessary.

Note In general, you see the presence of this pattern in event-driven software.
Modern languages like C#, Java, and so forth have built-in support for handling
events following this pattern. Those constructs make your life easy.

In Java, you can see the use of event listeners. These listeners are observers

only. In Java, you have a ready-made class called Observable, which can have
multiple observers. These observers need to implement the Observer interface.
The Observer interface has an “update” method: void update(Observable o,0bject
arg). This method is invoked whenever a change occurs in the observed object.
Your application needs to call the Observable object’s notifyObservers method

to notify about the change to the observers. The addObserver(Observer o) and
deleteObserver(Observer 0) methods add or and delete an observer, similar to the
register and unregister methods discussed earlier. You can learn more from https://
docs.oracle.com/javase/8/docs/api/java/util/Observer.ntml and https://docs.oracle.
com/javase/8/docs/api/index.html?java/util/Observable.html.

If you are familiar with the .NET Framework, you see that in C#, you have the
generic System.|Observable<T> and System.lObserver<T> interfaces, where the
generic type parameter provides notifications.

lllustration

Let’s consider the following example and go through the post analysis of the output.

I have created three observers and one subject. The subject maintains a list for all its
registered users. Our observers want to receive notification when a flag value changes in
the subject. In the output, you discover that the observers are getting the notifications
when flag values are changed to 5, 50, and 100, respectively. But one of them did not
receive any notification when the flag value changed to 50, because at that moment, he
was not a registered user in subject. But in the end, he is getting notifications because he
registered himself again.

221

https://docs.oracle.com/javase/8/docs/api/java/util/Observer.html
https://docs.oracle.com/javase/8/docs/api/java/util/Observer.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/util/Observable.html
https://docs.oracle.com/javase/8/docs/api/index.html?java/util/Observable.html

CHAPTER 14 OBSERVER PATTERN

In this implementation, the register(), unregister(), and

notifyRegisteredUsers() methods have their typical meanings. The register()
method registers an observer in the subject’s notification list, the unregister() method
removes an observer from the subject’s notification list, and notifyRegisteredUsers()
notifies all the registered users when a typical event occurs in the subject.

Class Diagram

Figure 14-6 shows the class diagram.

<<Java Class>>
(9 ObserverPatternExample

jdp2e.observer.demo

<<Java Interface>>

€3 Observer

jdp2e.observerdemo

~observerList

<

<<Java Class>>
(9 Subject
jdp2e.cbserver.demo

o flag: int

0.”

QCObserverPattemExample()
@’ main(String[]):void

@ update(int):void

4 D

2" Subject()

@ getFlag():int

@ setFlag(int):void

@ register(Observer):void
@ unregister(Observer):void

@ notifyRegisteredUsers(int):void

<<Java Clas§>>
(9 ObserverType1

jdp2e.observer.demo

<<Java Class>>
(9 ObserverType2

jdp2e.observer.demo

<<Java Interface>>
€3 Subjectinterface

jdp2e.observer.demo

4 nameOfObserver: String

4 nameOfObserver: String

QcObser\rerType‘l (String)
@ update(int):void

ec ObserverType2(String)

@ update(int):void

@ register(Observer):void
@ unregister(Observer):void

@ notifyRegisteredUsers(int):void

Figure 14-6. Class diagram

Package Explorer View

Figure 14-7 shows high-level structure of the program.

222

(> ObserverPattern
> B\ JRE System Library [jre1.8.0_172]
v f# jdp2e.observer.demo
v |[J] ObserverPatternExample java
v QObser\rer
¢ update(int) : void
v G{ObserverPatternExample
@ main(String(]) : void
v QObseNerType1
4 nameOfObserver
GcObserverTypeHString)
@. update(int) : void
v QObseNerTypeZ
4 nameOfObserver
@ ObserverType2(String)
@. update(int) : void
v QSubject
o flag
4 observerlist
@ getFlag() : int

CHAPTER 14 OBSERVER PATTERN

@. notifyRegisteredUsers(int) : void

@. register(Observer) : void
@ setFlag(int) : void

@ unregister(Observer) : void

v QSubjectlnterface

¢ notifyRegisteredUsers(int) : void

¢ register(Observer) : void

¢ unregister(Observer) : void
Eé, ClassDiagramFORObserverPattern.ucls

Figure 14-7. Package Explorer view

223

CHAPTER 14 OBSERVER PATTERN

Implementation

Here is the implementation.
package jdp2e.observer.demo;
import java.util.*;

interface Observer

{
void update(int updatedvalue);
}
class ObserverTypel implements Observer
{
String nameOfObserver;
public ObserverTypel(String name)
{
this.nameOfObserver = name;
}
@verride
public void update(int updatedValue)
{
System.out.println(nameOfObserver+" has received an alert: Updated
myValue in Subject is: "+ updatedValue);
}
}
class ObserverType2 implements Observer
{

String nameOfObserver;
public ObserverType2(String name)

{

this.nameOfObserver = name;
}
@verride

224

}

CHAPTER 14 OBSERVER PATTERN

public void update(int updatedValue)
{

System.out.println(nameOfObserver+" has received an alert: The
current value of myValue in Subject is: "+ updatedValue);

interface SubjectInterface

{

}

void register(Observer anObserver);
void unregister(Observer anObserver);
void notifyRegisteredUsers(int notifiedValue);

class Subject implements SubjectInterface

{

private int flag;
public int getFlag()

{
return flag;
}
public void setFlag(int flag)
{
this.flag = flag;
//Flag value changed. So notify registered users/observers.
notifyRegisteredUsers(flag);
}

List<Observer> observerList = new ArraylList<Observer>();

@verride

public void register(Observer anObserver) {
observerlList.add(anObserver);

}

@verride
public void unregister(Observer anObserver) {
observerlList.remove(anObserver);

225

CHAPTER 14 OBSERVER PATTERN

@verride
public void notifyRegisteredUsers(int updatedValue)
{
for (Observer observer : observerlList)
observer.update(updatedvalue);

}

public class ObserverPatternExample {

public static void main(String[] args) {
System.out.println(" ***Observer Pattern Demo***\n");
//We have 3 observers- 2 of them are ObserverTypel, 1 of them is of
//0bserverType2
Observer myObserveri

new ObserverType1("Roy");

Observer myObserver2 = new ObserverTypel("Kevin");

Observer myObserver3 = new ObserverType2("Bose");
Subject subject = new Subject();

//Registering the observers-Roy,Kevin,Bose
subject.register(myObserver1);
subject.register(myObserver2);
subject.register(myObserver3);
System.out.println(" Setting Flag = 5 ");
subject.setFlag(5s);

//Unregistering an observer(Roy))
subject.unregister(myObserver1);

//No notification this time Roy. Since it is unregistered.
System.out.println("\n Setting Flag = 50 ");
subject.setFlag(50);

//Roy is registering himself again
subject.register(myObserveri);
System.out.println("\n Setting Flag = 100 ");
subject.setFlag(100);

226

CHAPTER 14 OBSERVER PATTERN

Output

Here is the output.
Observer Pattern Demo

Setting Flag = 5

Roy has received an alert: Updated myValue in Subject is: 5

Kevin has received an alert: Updated myValue in Subject is: 5

Bose has received an alert: The current value of myValue in Subject is: 5

Setting Flag = 50
Kevin has received an alert: Updated myValue in Subject is: 50
Bose has received an alert: The current value of myValue in Subject is: 50

Setting Flag = 100

Kevin has received an alert: Updated myValue in Subject is: 100

Bose has received an alert: The current value of myValue in Subject is: 100
Roy has received an alert: Updated myValue in Subject is: 100

Analysis

Initially, all three observers—Roy, Kevin and Bose—registered for notifications from

the subject. So, in the initial phase, all of them received notifications. At some point,

Roy became disinterested in notifications, so he unregistered himself. So, from this time
onward, only Kevin and Bose received notifications (notice when I set the flag value to 50).
But Roy has changed his mind and he re-registered himself to get notifications from the
subject. So, in the final case, all of them received notifications from the subject.

Q&A Session

1. IfIhave only one observer, then I may not need to set up the
interface. Is this correct?

Yes. But if you want to follow the pure object-oriented
programming guidelines, programming to an interface/abstract
class is always considered a better practice. So, you should prefer

227

CHAPTER 14 OBSERVER PATTERN

interfaces (or abstract classes) over concrete classes. Also, usually,
you have multiple observers, and you want them to implement the
methods in a systematic manner that follows the contract. You get
benefit from this kind of design.

2. Canyou have different types of observers in the same
application?

Yes. This is why I have played with three observers from two
different classes. But you should not feel that for each observer;
you need to create a different class.

Consider a real-world scenario. When a company releases or
updates new software, the company business partners and the
customers who purchased the software get notifications. In this
case, the business partners and the customers are two different
types of observers.

3. CanlIadd or remove observers at runtime?

Yes. At the beginning our program, Roy registered to get
notifications; then he unregistered and later reregistered.

4. Itappears that there are similarities between the observer
pattern and the chain of responsibility pattern. Is this correct?

In an observer pattern, all registered users get notifications at the
same time, but in a chain of responsibility pattern, objects in the
chain are notified one by one, and this process continues until the
object fully handles the notification. Figure 14-8 and Figure 14-9
summarize the differences.

228

CHAPTER 14 OBSERVER PATTERN

Subject

Notification o
Notification

Observer2
Notification Observer3

Figure 14-8. The basic workflow of an observer pattern

Notification

Notification

MNotification

Observerl Observer2

Subject

Figure 14-9. The basic workflow of a chain of responsibility pattern

229

CHAPTER 14 OBSERVER PATTERN

230

5.

7.

This model supports one-to-many relationships. Is this
correct?

Yes. Since a subject can send notifications to multiple observers,
this kind of dependency is clearly depicting a one-to-many
relationship.

If you already have these ready-made constructs, why are you

writing your own code?

Changing the ready-made constructs to your preference is not
always easy. In many cases, you cannot change the built-in
functionalities at all. When you try to implement the concept
yourself, you may have a better understanding of how to use those
ready-made constructs.

Consider some typical scenarios.

o InJava, Observable is a concrete class. It does not implement
an interface. So, you can'’t create your own implementation that
works with Java’s built-in Observer API.

o Java does not allow multiple inheritance. So, when you have
to extend the Observable class, you have to keep in mind the
restriction. This may limit the reuse potential.

o The signature of the setChanged method in an Observable is as
follows: protected void setChanged(). That means to use it,
you need to subclass Observable class. This violates one of the
key design principles, which basically says to prefer composition
over inheritance.

What are the key benefits of the observer pattern?

e The subject and its registered users(observers) are making a
loosely coupled system. They do not need to know each other
explicitly.

e No modification is required in subjects when you add or remove
an observer from its notification lists.

e Also, you can independently add or remove observers at any

time.

CHAPTER 14 OBSERVER PATTERN

8. What are the key challenges associated with an observer
pattern?

e Undoubtedly, memory leak is the greatest concern when you
deal with any event-based mechanism. An automatic garbage
collector may not always help you in this context. You can
consider such a case where the deregister/unregister operations
are not performed properly.

¢ The order of notification is not dependable.

e Java’s built-in support for the observer pattern has some key
restrictions, which I discussed earlier. (Revisit the answer to
question 6 .) One of them forces you to prefer inheritance over
composition, so it clearly violates one of the key design principles
that prefers the opposite.

231

CHAPTER 15

Strategy (Policy) Pattern

This chapter covers the strategy pattern.

GoF Definition

Define a family of algorithms, encapsulate each one, and make them interchangeable.
Strategy lets the algorithm vary independently from the clients that use it.

Concept

Suppose there is an application where you have multiple algorithms and each of these
algorithms can perform a specific task. A client can dynamically pick any of these
algorithms to serve its current need.

The strategy pattern suggests that you implement these algorithms in separate
classes. When you encapsulate an algorithm in a separate class, you call it a strategy.
An object that uses the strategy object is often referred to as a context object. These
“algorithms” are also called behaviors in some applications.

Real-World Example

Generally at the end of a soccer match, if team A is leading 1-0 over team B, instead of
attacking they become defensive to maintain the lead. On the other hand, team B goes
for an all-out attack to score the equalizer.

233
© Vaskaran Sarcar 2019

V. Sarcar, Java Design Patterns, https://doi.org/10.1007/978-1-4842-4078-6_15

CHAPTER 15 STRATEGY (POLICY) PATTERN

Computer world Example

Suppose that you have a list of integers and you want to sort them. You do this by using
various algorithms; for example, Bubble Sort, Merge Sort, Quick Sort, Insertion Sort, and
so forth. So, you can have a sorting algorithm with many different variations. Now you
can implement each of these variations (algorithms) in separate classes and pass the
objects of these classes in client code to sort your integer list.

Note You can consider the java.util.Comparator interface in this context. You can
implement this interface and provide multiple implementations of comparators
with different algorithms to do various comparisons using the compare() method.
This comparison result can be further used in various sorting techniques. The
Comparator interface plays the role of a strategy interface in this context.

lllustration

Before you proceed, let’s keep in mind the following points.

o The strategy pattern encourages you to use object composition
instead of subclassing. So, it suggests you do not override parent class
behaviors in different subclasses. Instead, you put these behaviors in
separate classes (called a strategy) that share a common interface.

o The client class only decides which algorithm to use; the context class
does not decide that.

e A context object contains reference variables for the strategy objects’
interface type. So, you can obtain different behaviors by changing the
strategy in the context.

In the following implementation, the Vehicle class is an abstract class that plays the
role of a context. Boat and Aeroplane are two concrete implementations of the Vehicle
class. You know that they are associated with different behaviors: one travels through
water and the other one travels through air.

These behaviors are placed in two concrete classes: AirTransport and
WaterTransport. These classes share a common interface, TransportMedium. So, these

234

CHAPTER 15 STRATEGY (POLICY) PATTERN

concrete classes are playing the role of the strategy classes where different behaviors are
reflected through the transport() method implementations.

In the Vehicle class, there is a method called showTransportMedium(). Using this
method, I am delegating the task to the corresponding behavior class. So, once you pick
your strategy, the corresponding behavior can be invoked. Notice that in the Vehicle
class, there is a method called commonJob (),which is not supposed to vary in the future,

so its behavior is not treated as a volatile behavior.

Class Diagram

Figure 15-1 shows the class diagram.

<<Java Class>> T
<<Java Class>>
. (9 Aeroplane ®Boat <<Java Class>> <<Java Class>>
[d2s:stmiegy,deirio dp2e.strategy.dermo (@ AirTransport (9 WaterTransport
& Aeroplane() QCBOEIL) idp2e.strategy.demo jdp2e.sirategy.demo
© showMe():void 4 © showMe():void & AirTransport() @ WaterTransport()
4 @ transport():void @ transport():void
/ .a-"/ "\.\. . ;
; o \
; S L El <<Java Class>> (] P
<ejava Cass>> & Vehicle
(9 StrategyPatternExample idp2e.strategy.demo <<Java Interface>>
jdp2e.strategy.demo = ~transportMedium | &9 TransportMedium
T3 @ Vehicle() = idp2e.strategy.d
@ StrategyPatternExample()) . 0.1 idp2e.strategy.demo
@ showTransportMedium():void -
@°main(String[]):void) @ transport():void
@ commanJob():void
Q“showMeU:vo:’d

Figure 15-1. Class diagram

Package Explorer View

Figure 15-2 shows the high-level structure of the program.

235

CHAPTER 15 STRATEGY (POLICY) PATTERN

rlpd StrategyPattern
> ®\ JRE System Library [jdk1.8.0_172]
v # jdp2e.strategy.demo
v |J| Aeroplane.java
vO Aeroplane
@ Aeroplane()
@ showMe() : void
v |J] AirTransport.java
v0O AirTransport
@ transport() : void
v |J| Boat.,java
v © Boat
@ Boat()
@ showMe() : void
v StrategyPatternExample.java
v e. StrategyPatternExample
@ main(String[]) : void
v ErTransportMedium.java
vO TransportMedium
¢ transport() : void
v m\fehicle.java
v & Vehicle
4 transportMedium
@ Vehicle()
@ commonlJob() : void
¢ showMe() : void
@ showTransportMedium() : void
v |J] WaterTransport.java
v0O WaterTransport
@ transport() : void

Figure 15-2. Package Explorer view

236

CHAPTER 15 STRATEGY (POLICY) PATTERN

Implementation

Here’s the implementation.

// Vehicle.java

package jdp2e.strategy.demo;

//Context class
public abstract class Vehicle

{

/*A context object contains reference variable/s for the strategy
object/s interface type.*/

TransportMedium transportMedium;

public Vehicle()

{

}

public void showTransportMedium()

{
//Delegate the task to the //corresponding behavior class.
transportMedium.transport();

}

//The code that does not vary.
public void commonJob()

{

System.out.println("We all can be used to transport");

}

public abstract void showMe();

237

CHAPTER 15 STRATEGY (POLICY) PATTERN
// Boat.java
package jdp2e.strategy.demo;

public class Boat extends Vehicle

{
public Boat()
{
transportMedium= new WaterTransport();
}
@verride
public void showMe() {
System.out.println("I am a boat.");
}
}

// Aeroplane.java
package jdp2e.strategy.demo;

public class Aeroplane extends Vehicle

{
public Aeroplane()

{

transportMedium= new AirTransport();
}
@verride

public void showMe() {
System.out.println("I am an aeroplane.");

}

// TransportMedium.java
package jdp2e.strategy.demo;

public interface TransportMedium

{
public void transport();

238

CHAPTER 15 STRATEGY (POLICY) PATTERN

//WaterTransport.java

package jdp2e.strategy.demo;

//This class represents an algorithm/behavior.

public class WaterTransport implements TransportMedium

{
@verride
public void transport()
{
System.out.println("I am transporting in water.");
}
}
//AirTransport.java

package jdp2e.strategy.demo;
//This class represents an algorithm/behavior.
public class AirTransport implements TransportMedium

{
@verride
public void transport()
{
System.out.println("I am transporting in air.");
}
}

// StrategyPatternExample.java
package jdp2e.strategy.demo;

//Client code
public class StrategyPatternExample {

public static void main(String[] args) {
System.out.println("***Strategy Pattern Demo***");
Vehicle vehicleContext=new Boat();
vehicleContext.showMe();
vehicleContext.showTransportMedium();
System.out.println("” ");

239

CHAPTER 15

STRATEGY (POLICY) PATTERN

vehicleContext=new Aeroplane();

vehicleContext.showMe();
vehicleContext.showTransportMedium();

Output

Here's the

output.

Strategy Pattern Demo
I am a boat.
I am transporting in water.

I am an aeroplane.
I am transporting in air.

Q&A Session

240

Why are you complicating the example by avoiding simple
subclassing of these behaviors?

In object-oriented programming, you may prefer to use the
concept of polymorphism so that your code can pick the intended
object (among different object types) at runtime, leaving your
code unchanged.

When you are familiar with design patterns, most often, you prefer
composition over inheritance.

Strategy patterns help you combine composition with
polymorphism. Let’s examine the reasons behind this.

Itis assumed that you try to use the following guidelines in any
application you write:

CHAPTER 15 STRATEGY (POLICY) PATTERN

Separate the code that varies a lot from the part of code that does
not vary.

Try to maintain the varying parts as freestanding as possible (for

easy maintenance).
Try to reuse them as much as possible.

Following these guidelines, I have used composition to extract
and encapsulate the volatile/varying parts of the code, so that the
whole task can be handled easily, and you can reuse them.

But when you use inheritance, your parent class can provide a
default implementation, and then the derived class changes it
(Java calls it overriding it). The next derived class can further
modify the implementation, so you are basically spreading out the
tasks over different levels, which may cause severe maintenance
and extensibility issues in the future. Let’s examine such a case.

Let’s assume that your vehicle class has the following construct.

abstract class Vehicle

{
//Default implementation
public void showTransportMedium()
{
System.out.println("I am transporting in air.");
}
//The code that does not vary.
public void commonJob()
{
System.out.println("We all can be used to transport");
}
public abstract void showMe();
}

241

CHAPTER 15 STRATEGY (POLICY) PATTERN
So, make a concrete implementation of Vehicle, like this:

class Aeroplane extends Vehicle

{
@0verride
public void showMe() {
System.out.println("I am an aeroplane.");
}
}

And use following lines of codes in client class.

Aeroplane aeroplane=new Aeroplane();
aeroplane.showMe();
aeroplane.showTransportMedium();

You will receive following output:

I am an aeroplane.
I am transporting in air.

So far, it looks good. Now suppose that you have introduced
another class, Boat, like in the following.

class Boat extends Vehicle

{
@verride
public void showMe() {
System.out.println("I am a boat.");
}
}

Use the following lines of codes in the client class (new lines are
shown in bold).

Aeroplane aeroplane=new Aeroplane();
aeroplane.showMe();
aeroplane.showTransportMedium();

242

CHAPTER 15 STRATEGY (POLICY) PATTERN

Boat boat=new Boat();
boat.shoulMe();
boat.showTransportMedium();

You receive the following output.

I am an aeroplane.

I am transporting in air.
I am a boat.

I am transporting in air.

You can see that your boat is moving into the air now. To prevent
this ugly situation, you need to override it properly.

Now further assume that you need to introduce another class,
SpeedBoat, which can also transport through water at high speed.
You need to guard the situations like this:

class Boat extends Vehicle
{

@verride

public void showMe()

{
System.out.println("I am a boat.");

}

@verride
public void showTransportMedium() {
System.out.println("I am transporting in water.");

}

class SpeedBoat extends Vehicle

{

@verride
public void showMe() {
System.out.println("I am a speedboat.");

243

CHAPTER 15 STRATEGY (POLICY) PATTERN

@verride

public void showTransportMedium() {
System.out.println("I am transporting in water with high
speed.");

}

You can see that if you spread out the task that can vary

across different classes (and their subclasses), in the long run,
maintenance becomes very costly. You can experience a lot of
pain if you want to accommodate similar changes very often,
because you need to keep updating the showTransportMedium()
method in each case.

2. Ifthisis the case, you could create a separate interface,
TransportInterface, and place the showTransportMedium()
method in that interface. Now any class that wants to get
the method can implement that interface also. Is this

understanding correct?
Yes, you can do that. But this is what the code looks like:

abstract class Vehicle

{
//The code that does not vary.
public void commonJob()
{
System.out.println("We all can be used to transport");
}
public abstract void showMe();
}
interface TransportInterface
{
void showTransportMedium();
}

244

CHAPTER 15 STRATEGY (POLICY) PATTERN

class Aeroplane extends Vehicle implements TransportInterface
{
@Override
public void showMe() {
System.out.println("I am an aeroplane.");

}

@0verride
public void showTransportMedium() {
System.out.println("I am transporting in air.");

}

class Boat extends Vehicle implements TransportInterface
{

@verride

public void showMe()

{
System.out.println("I am a boat.");

}

@verride
public void showTransportMedium() {
System.out.println("I am transporting in water.");

You can see that each class and its subclasses may need to provide
its own implementations for the showTransportMedium() method.
So, you cannot reuse your code, which is as bad as inheritance in
this case.

245

CHAPTER 15 STRATEGY (POLICY) PATTERN

3. Canyou modify the default behavior at runtime in your
implementation?

Yes, you can. Let’s introduce a special vehicle that can transport in
both water and air, as follows.

public class SpecialVehicle extends Vehicle

{
public SpecialVehicle()
{
//Initialized with AirTransport
transportMedium= new AirTransport();
}
@0verride
public void showMe()
{
System.out.println("I am a special vehicle who can
transport both in air and water.");
}
}
And add a setter method in the Vehicle class(changes are shown
in bold).

//Context class

public abstract class Vehicle

{
//A context object contains reference variable/s
//for the strategy object/s interface type
TransportMedium transportMedium;
public Vehicle()

{
}

public void showTransportMedium()

{

//Delegate the task to the corresponding behavior class.
transportMedium.transport();

246

CHAPTER 15 STRATEGY (POLICY) PATTERN

}
//The code that does not vary.

public void commonJob()

{
System.out.println("We all can be used to transport");

}

public abstract void showMe();

//Additional code to explain the answer of question no 3 in
//the "Q&A session"

public void setTransportMedium(TransportMedium
transportMedium)

{

this.transportMedium=transportMedium;

To test this, add a few lines of code in the client class, as well.

//Client code
public class StrategyPatternExample {

public static void main(String[] args) {
System.out.println("***Strategy Pattern Demo***");
Vehicle vehicleContext=new Boat();
vehicleContext.showMe();
vehicleContext.showTransportMedium();
System.out.println("” ");

vehicleContext=new Aeroplane();
vehicleContext.showMe();
vehicleContext.showTransportMedium();
System.out.println(" ");

//Additional code to explain the answer of question no
//3 in the "Q&A session"
vehicleContext=new SpecialVehicle();

247

CHAPTER 15 STRATEGY (POLICY) PATTERN

vehicleContext.showMe();
vehicleContext.showTransportMedium();
System.out.println("- - - - - ");

//Changing the behavior of Special vehicle
vehicleContext.setTransportMedium(new WaterTransport());
vehicleContext.showTransportMedium();

}

Now if you execute this modified program, you get the following
output.

Strategy Pattern Demo
Strategy Pattern Demo
I am a boat.

I am transporting in water.

I am an aeroplane.
I am transporting in air.

I am a special vehicle who can transport both in air and water.
I am transporting in air.

I am transporting in water.
The initial behavior is modified dynamically in a later phase.
4. Canyou use an abstract class instead of an interface?

Yes. It is suitable in some cases where you may want to put
common behaviors in the abstract class. I discussed it in detail in
the “Q&A Session” section on the builder pattern.

5. What are the key advantages of using a strategy design pattern?

o This pattern makes your classes independent from algorithms. Here, a
class delegates the algorithms to the strategy object (that encapsulates
the algorithm) dynamically at runtime. So, you can simply say that the
choice of the algorithm is not bound at compile time.

248

CHAPTER 15 STRATEGY (POLICY) PATTERN

Easier maintenance of your codebase.

It is easily extendable. (Refer to the answers for questions 2 and
3 in this context.)

6. What are key challenges associated with a strategy design

pattern?

The addition of context classes causes more objects in our
application.

Users of the application must be aware of different strategies;
otherwise, the output may surprise them. So, there exists a tight
coupling between the client code and the implementation of
different strategies.

When you introduce a new behavior/algorithm, you may need to
change the client code also.

249

CHAPTER 16

Template Method Pattern

This chapter covers the Template Method pattern.

GoF Definition

Define the skeleton of an algorithm in an operation, deferring some steps to subclasses.
Template method lets subclasses redefine certain steps of an algorithm without
changing the algorithm’s structure.

Concept

In a template method, you define the minimum or essential structure of an algorithm.
Then you defer some responsibilities to the subclasses. The key intent is that you can
redefine certain steps of an algorithm, but those changes should not impact the basic
flow of the algorithm.

So, this design pattern is useful when you implement a multistep algorithm and you
want to allow customization through subclasses.

Real-World Example

Suppose that you are ordering a pizza from a restaurant. For the chef, the basic
preparation of the pizza is the same; he includes some final toppings based on customer
choice. For example, you can opt for a veggie pizza or a non-veggie pizza. You can also
choose toppings like bacons, onions, extra cheese, mushrooms, and so forth. The chef
prepares the final product according to your preferences.

251
© Vaskaran Sarcar 2019

V. Sarcar, Java Design Patterns, https://doi.org/10.1007/978-1-4842-4078-6_16

CHAPTER 16 TEMPLATE METHOD PATTERN

Computer-World Example

Suppose that you are making a program to design engineering courses. Let’s assume that
the first semester is common for all streams. In subsequent semesters, you need to add
new papers/subjects to the application based on the course. You see a similar situation
in the upcoming illustration. Remember that this pattern makes sense when you want

to avoid duplicate codes in your application. At the same time, you may want to allow
subclasses to change some specific details of the base class workflow to provide varying
behaviors in the application.

Note The removeAll() method of java.util.AbstractSet is an example of the
template method pattern. Apart from this, there are many non-abstract methods
in java.util.AbstractMap and java.util.AbstractSet classes, which can also be
considered as the examples of the template method pattern.

lllustration

In the following implementation, I assume that each engineering student needs to
complete the course of Mathematics and then Soft skills (This subject may deal with
communication skills, character traits, people management skills etc.) in their initial
semesters to obtain the degree. Later you will add special paper/s to these courses
(Computer Science or Electronics).

To serve the purpose, a method completeCourse() is defined in an abstract
class BasicEngineering. I have also marked the method final, so that subclasses of
BasicEngineering cannot override the completeCourse() method to alter the sequence of
course completion order.

Two other concrete classes- ComputerScience and Electronics are the
subclasses of BasicEngineering class and they are completing the abstract method
completeSpecialPaper() as per their needs.

Class Diagram

Figure 16-1 shows the class diagram.

252

CHAPTER 16 TEMPLATE METHOD PATTERN

<<Java Class>>
@BasicEnglneeﬂng
jdp2e.templatemethod.demo

<<Java Class>>

(9 TemplateMethodPatternExample
‘CBasicEngineering(} jdp2e.templatemethod.demo

Gf completeCourse():void

= completeMath():void
completeSoftSkills():void

d" complete SpecialPaper():void

A

ecTempIaleMethodPatternExample()
esmain[String|]):void

<<Java Class>>
(9 Electronics
jdp2e.templatemethod.demo

<<Java Class>>

(9 ComputerScience
jdp2e.templatemethod.demo

C .
A’ Electronics() &° ComputerScience()

© completeSpecialPaper():void

@ completeSpecialPaper():void

Figure 16-1. Class diagram

Package Explorer View

Figure 16-2 shows the high-level structure of the program.

253

CHAPTER 16 TEMPLATE METHOD PATTERN

EjJTempIateMethodPattern
> B\ JRE System Library [jdk1.8.0 172]
v i jdp2e.templatemethod.demo
v |J] TemplateMethodPatternExample.java
v Gi BasicEngineering
d completeCourse() : void
@ completeMath() : void
completeSoftSkills() : void
& completeSpecialPaper() : void
v QComputerScience
@ completeSpecialPaper() : void
v Q Electronics
@ completeSpecialPaper() : void
v @.TempIateMethodPatternExampIe
@ main(String(]) : void

Figure 16-2. Package Explorer View

Implementation

Here’s the implementation:
package jdp2e.templatemethod.demo;

abstract class BasicEngineering
{
//Making the method final to prevent overriding.
public final void completeCourse()
{
//The course needs to be completed in the following sequence
//1.Math-2.SoftSkills-3.Special Paper
//Common Papers:
completeMath();
completeSoftSkills();
//Specialization Paper:
completeSpecialPaper();

254

CHAPTER 16 TEMPLATE METHOD PATTERN

private void completeMath()

{
System.out.println("1.Mathematics");
}
private void completeSoftSkills()
{
System.out.println("2.SoftSkills");
}
public abstract void completeSpecialPaper();
}
class ComputerScience extends BasicEngineering
{
@verride
public void completeSpecialPaper() {
System.out.println("3.0bject-Oriented Programming");
}
}
class Electronics extends BasicEngineering
{
@verride
public void completeSpecialPaper()
{
System.out.println("3.Digital Logic and Circuit Theory");
}
}

public class TemplateMethodPatternExample {

public static void main(String[] args) {
System.out.println("***Template Method Pattern Demo***\n");
BasicEngineering preferrredCourse = new ComputerScience();
System.out.println("Computer Sc. course will be completed in
following order:");
preferrredCourse.completeCourse();
System.out.println();

255

CHAPTER 16 TEMPLATE METHOD PATTERN

preferrredCourse = new Electronics();
System.out.println("Electronics course will be completed in
following order:");

preferrredCourse.completeCourse();

Output

Here's the output:
Template Method Pattern Demo

Computer Sc. course will be completed in following order:
1.Mathematics

2.5SoftSkills

3.0bject-Oriented Programming

Electronics course will be completed in following order:
1.Mathematics

2.SoftSkills

3.Digital Logic and Circuit Theory

Q&A Session

1. Inthis pattern, I am seeing that subclasses can simply redefine
the methods as per their need. Is the understanding correct?

Yes.

2. Inthe abstract class BasicEngineering, only one method is
abstract, other two methods are concrete methods. What is the
reason behind it?

It is a simple example with only 3 methods where [wanted the
subclasses to override only the completeSpecialPaper () method.
Other methods are common to both stream and they do not need
to be overridden by the subclasses.

256

CHAPTER 16 TEMPLATE METHOD PATTERN

Consider a situation like this: Suppose you want to add some
more methods in the BasicEngineering class but you want to
work on those methods if and only if, the child classes need
them otherwise you will ignore them. This type of situation is
very common in some PhD courses where some courses are
not mandatory for all candidates. For example, if a student
has certain qualifications, he/she may not need to attend the
lectures of those subjects. Can you design this kind of situation
with the Template Method Pattern?

Yes, we can. Basically, you may need to put a hook which is
nothing but a method that can help us to control the flow in an
algorithm.

To show an example of this kind of design, I am adding

one more method in BasicEngineering called is
AdditionalPapersNeeded(). Let us assume that Computer
science students need to complete this course, but Electronics
students can opt out this paper. Let’s go through the program and
output.

Modified Implementation

Here’s the modified implementation. Key changes are shown in bold.

package jdp2e.templatemethod.questions answers;

abstract class BasicEngineering

{

//Making the method final to prevent overriding.
public final void completeCourse()

{

//The course needs to be completed in the following sequence
//1.Math-2.SoftSkills-3.Special Paper-4.Additional Papers(if any)
//Common Papers:

completeMath();

completeSoftSkills();

257

CHAPTER 16 TEMPLATE METHOD PATTERN

//Specialization Paper:
completeSpecialPaper();
if (isAdditionalPapersNeeded())

{
completeAdditionalPapers();

}
}
private void completeMath()
{

System.out.println("1.Mathematics");
}
private void completeSoftSkills()
{

System.out.println("2.SoftSkills");
}

public abstract void completeSpecialPaper();

private void completeAdditionalPapers()

{
System.out.println("4.Additional Papers are needed for this
course.");

}

//By default, AdditionalPapers are needed for a course.

boolean isAdditionalPapersNeeded()

{
return true;
}
}
class ComputerScience extends BasicEngineering
{
@verride
public void completeSpecialPaper()
{
System.out.println("3.0bject-Oriented Programming");
}

258

CHAPTER 16 TEMPLATE METHOD PATTERN

//Additional papers are needed for ComputerScience
//So0, there is no change for the hook method.
}

class Electronics extends BasicEngineering
{

@Override

public void completeSpecialPaper()

{
System.out.println("3.Digital Logic and Circuit Theory");

}

//0verriding the hook method:

//Indicating that AdditionalPapers are not needed for Electronics.
@verride

public boolean isAdditionalPapersNeeded()

{

return false;

}
public class TemplateMethodPatternModifiedExample {

public static void main(String[] args) {
System.out.println("***Template Method Pattern Modified
Demo***\n");
BasicEngineering preferrredCourse = new ComputerScience();
System.out.println("Computer Sc. course will be completed in
following order:");
preferrredCourse.completeCourse();
System.out.println();
preferrredCourse = new Electronics();
System.out.println("Electronics course will be completed in
following order:");
preferrredCourse.completeCourse();

259

CHAPTER 16 TEMPLATE METHOD PATTERN

Modified Output

Here’s the modified output:
Template Method Pattern Modified Demo

Computer Sc. course will be completed in following order:
1.Mathematics

2.5SoftSkills

3.0bject-Oriented Programming

4.Additional Papers are needed for this course.

Electronics course will be completed in following order:
1.Mathematics

2.SoftSkills

3.Digital Logic and Circuit Theory

Note You may prefer an alternative approach. For example, you could make a
default method isAdditionalPapersNeeded() in BasicEngineering. Then you could
override the method in Electronics class and then you could make the method body
empty. But this approach does not look better if you compare it to the previous
approach.

4. Looks like this pattern is similar to Builder pattern.Is the
understanding correct ?

No. You should not forget the core intent;Template Method is
a behavioral design patterns, and Builder is a creational design
pattern. In Builder Patterns, the clients/customers are the boss-
they can control the order of the algorithm. On the other hand,
in Template Method pattern, you are the boss-you put your code
in a central location and you only provide the corresponding
behavior (For example, notice the completeCourse() method in
BasicEngineering and see how the course completion order is
defined there).So, you have absolute control over the flow of the
execution. You can also alter your template as per your need and
then other participants need to follow you.

260

CHAPTER 16 TEMPLATE METHOD PATTERN

5. What are the key advantages of using a template design

pattern?

You can control the flow of the algorithms. Clients cannot
change them. (Notice that completeCourse() is marked with final
keyword in the abstract class BasicEngineering)

Common operations are placed in a centralized location, for
example, in an abstract class. The subclasses can redefine only
the varying parts, so that, you can avoid redundant codes.

6. What are key challenges associated with a template design

pattern?

Client code cannot direct the sequence of steps (If you need that
approach, you may follow the Builder pattern).

A subclass can override a method defined in the parent class (i.e.
hiding the original definition in parent class) which can go against
Liskov Substitution Principle that basically says: If S is a subtype
of T, then objects of type T can be replaced with objects of type

S. You can learn the details from the following link: https://
en.wikipedia.org/wiki/Liskov_substitution_principle

More subclass means more scattered codes and difficult

maintenance.

Looks like the subclasses can override other parent methods

also in the BasicEngineering. Is the understanding correct?

You can do this but ideally that should not be your intent. In this

pattern, you may not want to override all the parent methods

entirely to bring the radical changes in the subclasses. In this way,

it differs from simple polymorphism.

261

https://en.wikipedia.org/wiki/Liskov_substitution_principle
https://en.wikipedia.org/wiki/Liskov_substitution_principle

CHAPTER 17

Command Pattern

This chapter covers the command pattern.

GoF Definition

Encapsulate a request as an object, thereby letting you parameterize clients with
different requests, queues, or log requests, and supports undoable operations.

Concept

Here you encapsulate a method invocation process. In general, four terms are
associated: invoker, client, command, and receiver. A command object can invoke a
method of the receiver in a way that is specific to that receiver’s class. The receiver then
starts processing the job. A command object is separately passed to the invoker object
to invoke the command. The client object holds the invoker object and the command
objects. The client only makes the decision—which commands to execute—and then it
passes the command to the invoker object (for that execution).

Real-World Example

When you draw something with a pencil, you may need to undo (erase and redraw)
some parts to make it better.

263
© Vaskaran Sarcar 2019

V. Sarcar, Java Design Patterns, https://doi.org/10.1007/978-1-4842-4078-6_17

CHAPTER 17 COMMAND PATTERN

Computer-World Example

The real-world scenario for painting applies to Microsoft Paint. You can use the Menu or
Shortcut keys to perform the undo/redo operations in those contexts.

In general, you can observe this pattern in the menu system of an editor or IDE
(integrated development environment). So, if you want to make an application that
needs to support undos, multiple undos, or similar operations, then the command
pattern can be your savior.

Microsoft used this pattern in Windows Presentation Foundation (WPF). The online
source at https://visualstudiomagazine.com/articles/2012/04/10/command-
pattern-in-net.aspx describes it in detail: “The command pattern is well suited
for handling GUI interactions. It works so well that Microsoft has integrated it tightly
into the Windows Presentation Foundation (WPF) stack. The most important piece is
the ICommand interface from the System. Windows.Input namespace. Any class that
implements the [Command interface can be used to handle a keyboard or mouse event
through the common WPF controls. This linking can be done either in XAML or in a
code-behind.”

Note When you implement the run() method of java.lang.Runnable interface , you
are basically using the command design pattern. Another interface, java.swing.
Action, also represents the command design pattern. It is important to note that the
implementation of undos varies and can be complex. The memento design pattern
also supports undo operations. You may need to use both of these design patterns
in your application to implement a complex undo operation.

lllustration

Consider the following example. For an easy understanding, I am following similar class
names to the concept described earlier. You can refer to the associated comments for a
better understanding.

264

https://visualstudiomagazine.com/articles/2012/04/10/command-pattern-in-net.aspx
https://visualstudiomagazine.com/articles/2012/04/10/command-pattern-in-net.aspx

Class Diagram

Figure 17-1 shows the class diagram.

<<Java Class>>

CHAPTER 17 COMMAND PATTERN

jdp2e.command.demo

ecCommandPattemExample()
esmain{String| 1):void

(& Invoker <<Java Interface>>
dp2e’command demol ~commandToBePerformed 3 Command
jdp2e.command.demo
anvoker() 0.1 —=
@ setCommand(Command):void @ executeCommand():void
© invokeCommand):void < v
3 e ™.
A
<<Java Class>> e
(® MyUndoCommand Sl R
jdp2e.command.demo G MyRedoCommand
jdp2e.command.demo
ocMyUndoCommand(Receiver) =
e e @ MyRedoCommand(Receiver)
7 : 7 © executeCommand():void
AN e
y o
fﬁ IIIIII ot
e .
7 0.1 -receiver 0.1
el
rd i <<Java Class>>
yd e (9 Receiver
A (E e ' e jdp2e.command.demo
(9 CommandPatternExample CReceiver()

@ performUndo():void
@ performRedo():void
@ doOptionalTaskPriorToUndo():void
@ doOptionalTaskPriorToRedo():void

Figure 17-1. Class diagram

265

CHAPTER 17 COMMAND PATTERN

Package Explorer View

Figure 17-2 shows the high-level structure of the program.

=2 CommandPattern
> B\ JRE System Library [jdk1.8.0_172]
v {1 jdp2e.command.demo
v |[J] CommandPatternExample.java
v QCornrnand
¢ executeCommand() : void
v QCommandPatternExample
@ main(String(]) : void
v anvoker
4 commandToBePerformed
@ invokeCommand() : void
@ setCommand(Command) : void
v Q MyRedoCommand
o receiver
¢ MyRedoCommand(Receiver)
@ executeCommand() : void
v Q MyUndoCommand
o receiver
GcMyUndoCommand{Receiver)
@. executeCommand() : void
v Q Receiver
@ doOptionalTaskPriorToRedo() : void
@ doOptionalTaskPriorToUndo() : void
@ performRedo() : void
@ performUndo() : void

Figure 17-2. Package Explorer view

266

CHAPTER 17

Implementation

Here’s the implementation.

package jdp2e.command.demo;

interface Command

{

}

//Typically this method does not take any argument.
//Some of the reasons are:

//1.We supply all the information when it is created.
//2.Invoker may reside in different address space.etc.
void executeCommand();

class MyUndoCommand implements Command

{

}

private Receiver receiver;
public MyUndoCommand(Receiver receiver)

{
this.receiver=receiver;

}

@verride

public void executeCommand()

{
//Pexform any optional task prior to UnDo
receiver.doOptionalTaskPriorToUndo();
//Call UnDo in receiver now
receiver.performUndo();

}

class MyRedoCommand implements Command

{

private Receiver receiver;
public MyRedoCommand(Receiver receiver)

{

this.receiver=receiver;

COMMAND PATTERN

267

CHAPTER 17 COMMAND PATTERN

@verride

public void executeCommand()

{
//Pexrform any optional task prior to ReDo
receiver.doOptionalTaskPriorToRedo();
//Call ReDo in receiver now
receiver.performRedo();

}

}

//Receiver Class
class Receiver

{
public void performUndo()

{

System.out.println("Performing an undo command in Receiver.");

}
public void performRedo()

{

System.out.println("Performing an redo command in Receiver.");

}

/*0ptional method-If you want to perform

any prior tasks before undo operations.*/

public void doOptionalTaskPriorToUndo()

{
System.out.println("Executing -Optional Task/s prior to execute
undo command.");

}

/*Optional method-If you want to perform

any prior tasks before redo operations*/

public void doOptionalTaskPriorToRedo()

{
System.out.println("Executing -Optional Task/s prior to execute
redo command.");

268

CHAPTER 17 COMMAND PATTERN

//Invoker class
class Invoker

{

}

Command commandToBePerformed;
//Alternative approach:
//You can also initialize the invoker with a command object
/*public Invoker(Command command)
{
this.commandToBePerformed = command;
Y/

//Set the command
public void setCommand(Command command)

{

this.commandToBePerformed = command;

}

//Invoke the command
public void invokeCommand()

{

commandToBePerformed.executeCommand();

//Client
public class CommandPatternExample {

public static void main(String[] args) {
System.out.println("***Command Pattern Demo***\n");
/*Client holds both the Invoker and Command Objects*/
Receiver intendedReceiver = new Receiver();
MyUndoCommand undoCmd = new MyUndoCommand(intendedReceiver);
//1f you use parameterized constructor of Invoker
//use the following line of code.
//Invoker invoker = new Invoker(undoCmd);
Invoker invoker = new Invoker();
invoker.setCommand(undoCmd);
invoker.invokeCommand();

269

CHAPTER 17 COMMAND PATTERN

MyRedoCommand redoCmd = new MyRedoCommand(intendedReceiver);
invoker.setCommand(redoCmd);
invoker.invokeCommand();

Output

Here’s the output.
Command Pattern Demo

Executing -Optional Task/s prior to execute undo command.
Performing an undo command in Receiver.
Executing -Optional Task/s prior to execute redo command.
Performing an redo command in Receiver.

Q&A Session

1. Ihave two questions. In this example, you are dealing with a
single receiver only. How can you deal with multiple receivers?
And the GoF definition says that this pattern supports undoable
operations. Can you show an example with a true undo
operation using this pattern?

Consider the following program. The key characteristics of this
program are as follows:

e Here you have two different receivers (Receiver1 and Receiver2).
Each of them implements the Receiver interface methods. Since I am
dealing with multiple receivers, I introduced a common interface,

Receiver.

270

CHAPTER 17 COMMAND PATTERN

o Inanundo operation, you generally want to reverse the last action or
operation. A typical undo operation may involve complex logic. But
in the upcoming implementation, I am presenting a simple example
that supports undo operations with the following assumptions.

o AReceiverl object is initialized with the value 10 (the myNumber
instance variable is used for this purpose) and a Receiver2 object
is initialized with the “power off” status (the status instance
variable is used for this purpose). Any Receiverl object can keep
adding 2 to an existing integer.

e Thave put a checkmark on the value 10, so that when you
process an undo operation, if you notice that a Receiverl
object’s myNumber is 10, you will not go beyond (because you
started at 10).

e AReceiver2 object does different things. It can switch a machine
on or off. If the machine is already powered on, then by
requesting an undo operation, you can switch off the machine
and vice versa. But if your machine is already in switch on mode,

then a further “switch on” request is ignored.

Modified Class Diagram

There are many participants and dependencies in the modified class diagram shown in
Figure 17-3. To illustrate the main design and keep the diagram neat and clean, I do not
show the client code dependencies.

271

CHAPTER 17 COMMAND PATTERN

<<Java Class>>

<<Java Class>> (9 Receiver1
(9 Receiver2 jdp2e command modified demo
jdp2e.c | fified.demo |
o myNumber: int

4 status: boolean I
= : @ getMyNumber{):int

@ Receiver2() @ setMyNumber(int):void
@ performDo():void L

_ @ Receiver1()
@ performUnDo():void @ performDe):void

‘ @ performUnDo():void
<<Java Class>> AN
(® ModifiedCommandPatternExample 4 24 FEe e
! ified. <<Java Interface>>
Idp2e.commend modified demo ©Recelver Lreceiver (9 PowerCommand
@ ModifiedCc jPatternExample() idp2e.command modified.domo | O1 jdp2e.command. modified.demo
émmm © performDo():void 6’: PowerCommand(Receiver)
© performUnDo():void -receiver By @ executeDo()void
A =" | @ executeUnDo():void

0.1 L

<<Java Class>>

©invoker <<Java Interface>> A
jdp2e.command. modified.demo 0 Command
aInvoker() iToBePerformed | j4poe command modified demo <<Java Class>>
5 . 0.1 - s (9 AdditionCommand
B ’ PR © executeDo().void T—— S | jdp2e.command.modified.demo
@ executeCommand():void @ executeUnDo():void

OC AdditionCommand(Receiver)
@ executeDo():void
@ executeUnDo():void

@ undoCommand().void

Figure 17-3. Modlified class diagram

Modified Package Explorer View

Figure 17-4 shows the modified Package Explorer view.

272

CHAPTER 17

H# jdp2e.command.modified.demo
v |J] ModifiedCommandPatternExample java
v QAdditionCommand
o receiver
=3 AdditionCommand(Receiver)
@ executeDo() : void
@ executeUnDo() : void
v QCommand
¢ executeDo() : void
¢ executeUnDo() : void
v anvoker
4 commandToBePerformed
@ executeCommand() : void
@ setCommand(Command) : void
@ undoCommand() : void
v QModifiedCommandPatternExample
& main(String(]) : void
v QPowerCornmand
o receiver
& PowerCommand(Receiver)
@. executeDo() : void
@. executeUnDo() : void
v QReceiver
¢ performDo() : void
¢ performUnDo() : void
v QReceiveﬂ
o myNumber
OcReceiveﬂ()
@ getMyNumber() : int
@. performDo() : void
@. performUnDo() : void
@ setMyNumber(int) : void
v @ Receiver2
4 status
¢ Receiver2()
@ performDo() : void
@ performUnDo() : void

Figure 17-4. Modified Package Explorer view

COMMAND PATTERN

273

CHAPTER 17 COMMAND PATTERN

Modified Implementation

Here’s the modified implementation

package jdp2e.command.modified.demo;

/**

*In general, an undo operation involves complex logic.

But for simplicity, in this example,I assume that executeDo() can either
add 2 with a given integer or it can switch on a machine.

Similarly, executeUnDo() can either subtract 2 from a given number() or,
it will switch off a machine.But you cannot go beyond the initialized
value(i.e.10 in this case)*/

interface Command

{
void executeDo();
void executeUnDo();

}

class AdditionCommand implements Command
{
private Receiver receiver;
public AdditionCommand(Receiver receiver)

{

this.receiver = receiver;

}

@verride
public void executeDo()

{

receiver.performDo();

}

@verride
public void executeUnDo()

{

receiver.performUnDo();

274

CHAPTER 17

class PowerCommand implements Command

{

}

private Receiver receiver;
public PowerCommand(Receiver receiver)

{
this.receiver = receiver;
}
@verride
public void executeDo()
{
receiver.performDo();
}
@verride
public void executeUnDo()
{
receiver.performUnDo();
}

COMMAND PATTERN

//To deal with multiple receivers , we are using interfaces here

interface Receiver

{

}

//1t will add 2 with a number or switch on the m/c
void performDo();

//I1t will subtract 2 from a number or switch off the m/c

void performUnDo();

//Receiver Class
class Receiver1 implements Receiver

{

private int myNumber;

public int getMyNumber()
{

return myNumber;

275

CHAPTER 17 COMMAND PATTERN

public void setMyNumber(int myNumber)

{
this.myNumber = myNumber;

}

public Receiveri()

{
myNumber = 10;
System.out.println("Receiver1l initialized with " + myNumber);
System.out.println("The objects of receiveri cannot set beyond "+
myNumber) ;

}

@verride

public void performDo()

{
System.out.println("Received an addition request.");
int presentNumber = getMyNumber();
setMyNumber (presentNumber + 2);
System.out.println(presentNumber +" + 2 ="+ this.myNumber);

}

@verride

public void performUnDo()

{
System.out.println("Received an undo addition request.");
int presentNumber = this.myNumber;
//We started with number 10.We'll not decrease further.
if (presentNumber > 10)

{
setMyNumber (this.myNumber - 2);
System.out.println(presentNumber +" - 2 ="+ this.myNumber);
System.out.println("\t Undo request processed.");

}

else

{
System.out.println("Nothing more to undo...");

}

276

CHAPTER 17 COMMAND PATTERN

}

//Receiver2 Class

class Receiver2 implements Receiver

{

boolean status;

public Receiver2()

{
System.out.println("Receiver2 initialized ");
status=false;
}
@verride
public void performDo()
{
System.out.println("Received a system power on request.");
if(status==false)
{
System.out.println("System is starting up.");
status=true;
}
else
{
System.out.println("System is already running.So, power on
request is ignored.");
}
}
@verride
public void performUnDo()
{

System.out.println("Received a undo request.");
if(status==true)

{

System.out.println("System is currently powered on.");

277

CHAPTER 17 COMMAND PATTERN

status=false;
System.out.println("\t Undo request processed.System is
switched off now.");

}

else

{
System.out.println("System is switched off at present.");
status=true;
System.out.println("\t Undo request processed.System is powered
on now.");

}

}

//Invoker class

class Invoker

{
Command commandToBePerformed;
public void setCommand(Command command)
{
this.commandToBePerformed = command;
}
public void executeCommand()
{
commandToBePerformed.executeDo();
}
public void undoCommand()
{
commandToBePerformed.executeUnDo();
}
}

278

CHAPTER 17 COMMAND PATTERN

//Client
public class ModifiedCommandPatternExample {
public static void main(String[] args) {

System.out.println("***Command Pattern QBAs***");
System.out.println("***A simple demo with undo supported
operations***\n");

//Client holds both the Invoker and Command Objects

//Testing receiver -Receiverl

System.out.println("----- Testing operations in Receiveri----- ");
Receiver intendedreceiver = new Receiveri();

Command currentCmd = new AdditionCommand(intendedreceiver);

Invoker invoker = new Invoker();
invoker.setCommand(currentCmd);
System.out.println("*Testing single do/undo operation*");
invoker.executeCommand();

invoker.undoCommand();

System.out.println(" ");
System.out.println("**Testing a series of do/undo operations**");
//Executed the command 2 times

invoker.executeCommand();

//invoker.undoCommand();

invoker.executeCommand();

//Trying to undo 3 times

invoker.undoCommand();

invoker.undoCommand();

invoker.undoCommand();

System.out.println("\n----- Testing operations in Receiver2----- ");
intendedreceiver = new Receiver2();

currentCmd = new PowerCommand(intendedreceiver);
invoker.setCommand(currentCmd);

System.out.println("*Testing single do/undo operation*");
invoker.executeCommand();
invoker.undoCommand();

279

CHAPTER 17 COMMAND PATTERN

System.out.println(" ");

System.out.println("**Testing a series of do/undo operations**");
//Executing the command 2 times

invoker.executeCommand();

invoker.executeCommand();

//Trying to undo 3 times

invoker.undoCommand();

invoker.undoCommand();

invoker.undoCommand();

Modified Output

Here’s the modified output.

Command Pattern Q&As
A simple demo with undo supported operations

Receiverl initialized with 10

The objects of receiveri cannot set beyond 10
Testing single do/undo operation

Received an addition request.

10 + 2 =12
Received an undo addition request.
12 - 2 =10

Undo request processed.

Testing a series of do/undo operations
Received an addition request.

10 + 2 =12
Received an addition request.
12 + 2 =14

Received an undo addition request.

280

CHAPTER 17

14 - 2 =12

Undo request processed.
Received an undo addition request.
12 - 2 =10

Undo request processed.
Received an undo addition request.
Nothing more to undo...

Receiver2 initialized
Testing single do/undo operation
Received a system power on request.
System is starting up.
Received a undo request.
System is currently powered on.
Undo request processed.System is switched off now.

Testing a series of do/undo operations
Received a system power on request.
System is starting up.
Received a system power on request.
System is already running.So, power on request is ignored.
Received a undo request.
System is currently powered on.
Undo request processed.System is switched off now.
Received a undo request.
System is switched off at present.
Undo request processed.System is powered on now.
Received a undo request.
System is currently powered on.
Undo request processed.System is switched off now.

COMMAND PATTERN

281

CHAPTER 17 COMMAND PATTERN

282

2.

In this modified program, two receivers are doing different
things. Is this intentional?

Yes. It shows the power and flexibilities provided by the command
design pattern. You can see that performDo() in these receivers
actually performs different actions. For Receiverl, it is adding 2
with an existing integer, and for Receiver, it is switching on

a machine. So, you may think that some other names like
addNumber () and powerOn() would be more appropriate for them.

But in this case, I needed to work with both the receivers and their
corresponding methods. So, I needed to use a common interface
and common names that could be used by both receivers.

So, if you need to work with two different receivers that have
different method names, you can replace them with a common
name, use a common interface, and through polymorphism, you
can invoke those methods easily.

Why do you need the invoker?

Most of the time, programmers try to encapsulate data and
corresponding methods in object-oriented programming. But
if you look carefully, you find that in this pattern, you are trying
to encapsulate command objects. In other words, you are
implementing encapsulation from a different perspective.

This approach makes sense when you deal with a complex set of

commands.

Now let’s review the terms again. You create command objects

to shoot them to receivers and invoke some methods. But you
execute those commands through an invoker, which calls the
methods of the command object (e.g., executeCommand). But for
a simple case, this invoker class is not mandatory; for example,
consider a case in which a command object has only one method
to execute and you are trying to dispense with the invoker to
invoke the method. But the invokers may play an important role
when you want to keep track of multiple commands in a log file
(or in a queue).

CHAPTER 17 COMMAND PATTERN

Why are you interested in keeping track of these logs?

They are useful if you want to do the undo or redo operations.

What are the key advantages associated with command

patterns?

Requests for creation and the ultimate execution are decoupled.
Clients may not know how an invoker is performing the
operations.

You can create macros (sequence of commands).

New commands can be added without affecting the existing
system.

Most importantly, you can support the undo/redo operations.

What are the challenges associated with command patterns?

To support more commands, you need to create more classes. So,
maintenance can be difficult as time goes on.

How to handle errors or make a decision about what to do with
return values when an erroneous situation occurs becomes
tricky. A client may want to know about those. But here you
decouple the command with client codes, so these situations
are difficult to handle. The challenge becomes significant in a
multithreaded environment where the invoker is also running in
a different thread.

283

CHAPTER 18

lterator Pattern

This chapter covers the iterator pattern.

GoF Definition

Provide a way to access the elements of an aggregate object sequentially without
exposing its underlying representation.

Concept

Using iterators, a client object can traverse a container (or a collection of objects) to
access its elements without knowing how these data are stored internally. The concept is
very useful when you need to traverse different kinds of collection objects in a standard
and uniform way. The following are some important points about this pattern.

o Itis often used to traverse the nodes of a tree-like structure. So, in
many scenarios, you may notice the use of iterator patterns with
composite patterns.

e Therole of an iterator is not limited to traversing. This role can vary to
support various requirements.

o Clients cannot see the actual traversal mechanism. A client program
only uses the iterator methods that are public in nature.

o Figure 18-1 shows a sample diagram for an iterator pattern.

285
© Vaskaran Sarcar 2019

V. Sarcar, Java Design Patterns, https://doi.org/10.1007/978-1-4842-4078-6_18

CHAPTER 18 ITERATOR PATTERN

<<interface>> <<interface>>

Aggregate Iterator

ConcreteAggregate Concretelterator

N

Figure 18-1. A sample diagram for an iterator pattern

The participants are as follows:

Iterator: An interface to access or traverse elements.

Concretelterator: Implements the Iterator interface methods.
It can also keep track of the current position in the traversal of
the aggregate.

Aggregate: Defines an interface that can create an Iterator object.

ConcreteAggregate: Implements the Aggregate interface. It returns an
instance of Concretelterator.

Real-World Example

Suppose there are two companies: company A and company B. Company A stores its

employee records (i.e., name, address, salary details, etc.) in a linked list data structure.

Company B stores its employee data in an array data structure. One day, the two

companies decide to merge to form a large organization. The iterator pattern is handy

in such a situation because the developers do not want to write code from scratch. They

can create a common interface so that they can access the data for both companies and

invoke the methods in a uniform way.

286

CHAPTER 18 ITERATOR PATTERN

Consider another example. Suppose that your company has decided to promote
some employees based on their performances. So, all the managers get together and
set a common criterion for promotion. Then they iterate over the past records of each
employee to mark potential candidates for promotion.

Lastly, when you store songs in your preferred audio devices— an MP3 player or your
mobile devices, for example, you can iterate over them through various button press or
swipe movements. The basic idea is to provide you some mechanism to smoothly iterate

over your list.

Computer-World Example

Similarly, let’s assume that, a college arts department is using an array data structure
to maintain its students’ records. The science department is using a linked list data
structure to keep their students’ records. The administrative department does not care
about the different data structures, they are simply interested in getting the data from
each of the departments and they want to access the data in a universal way.

Note The iterator classes in Java’s collection framework are iterator examples.
When you use the interfaces like java.util.lterator or java.util.Enumeration , you
basically use this pattern. The java.util.Scanner class also follows this pattern.
If you are familiar with C#, you may use C#’s own iterators that were introduced
in Visual Studio 2005.The foreach statement is frequently used in this context.

lllustration

In this chapter, there are three different implementations of the iterator pattern. I'll
start with an example that follows the core theory of this pattern. In the next example,
I'll modify the example using Java’s built-in support of the iterator pattern. In the third
and final example, you use this pattern with a different data structure. In the first two
examples, I'll simply use “String” data types but in the final example, I'll use a complex
data type.

287

CHAPTER 18 ITERATOR PATTERN

Before you start, I suggest that you note the structure in the Package Explorer view
for your immediate reference.

In the first implementation, let’s assume that in a particular college, an arts
department student needs to study four papers (or subjects)—English, history,
geography, and psychology. The details of these papers are stored in an array data
structure. And your job is to print the curriculum using an iterator.

Let’s assume that your iterator currently supports four basic methods: first(),
next(), currentItem(), and hasNext().

e The first() method resets the pointer to the first element before you
start traversing a data structure.

o The next() method returns the next element in the container.

o The currentItem() method returns the current element of the
container that the iterator is pointing at a particular point of time.

o The hasNext() validates whether any next element is available for
further processing. So, it helps you determine whether you have
reached the end of your container.

Class Diagram

Figure 18-2 shows the class diagram.

288

CHAPTER 18 ITERATOR PATTERN

<<Java Class>>
(9 Artslterator

jdp2e.iterator.demo

<<Java Class>>

(9 IteratorPatternExample

jdp2e.iterator.demo

<<Java Class>>
(B Arts
jdp2e.iterator.demo

o papers: String[]
o position: int

ecArlsIterator(String[])
@ first():void

@ next():String

@ currentltem():String

gc IteratorPatternExample()

>)
o papers: String[]

© hasNexi():boolean

v Ve

<<Java Interface>>
€9 Iterator

jdp2e.iterator.demo

© first():void
© next():String
@ currentltem():String

@ hasNext():boolean

esmainIStringm:void

-

Figure 18-2. Class diagram

@ Arts()

@ createlterator():lterator

<<Java Interface>>
€9 Subjects
jdp2e.iterator.demo

© createlterator():Iterator

Note Like many of the previous examples in this book, to present a clean class
diagram, | have shown only client code dependencies. For any ObjectAid class
diagrams shown in the Eclipse editor, you can always see other dependencies
by selecting an element in the diagram, right-clicking it, and selecting Add »

Dependencies.

289

CHAPTER 18 ITERATOR PATTERN

Package Explorer View

Figure 18-3 shows the high-level structure of the program.

1= IteratorPattern
> i\ JRE System Library [jdk1.8.0_172]
v 1 jdp2e.iterator.demo
v [IteratorPatternExample.java
v QArts
o papers
@ Arts()
@ createlterator() : lterator
v QArtsIterator
o papers
g position
@ Artslterator(String[])
@ currentltem() : String
@ first() : void
@ hasNext() : boolean
@ next() : String
v Qlterator
GA currentltem() : String
@ first() : void
e hasNext() : boolean
@ next() : String
v Q IteratorPatternExample
@ main(String(]) : void
v QSubjects
@ createlterator() : lterator

Figure 18-3. Package Explorer view

290

CHAPTER 18

First Implementation
Here’s the first implementation.
package jdp2e.iterator.demo;

interface Subjects

ITERATOR PATTERN

{
Iterator createlterator();
}
class Arts implements Subjects
{
private String[] papers;
public Arts()
{
papers = new String[] { "English","History",
"Geography", "Psychology” };
}
public Iterator createlterator()
{
return new ArtsIterator(papers);
}
}
interface Iterator
{
void first();//Reset to first element
String next();//To get the next element
String currentItem();//To retrieve the current element
boolean hasNext();//To check whether there is any next element or not.
}
class ArtsIterator implements Iterator
{

private String[] papers;
private int position;
public ArtsIterator(String[] papers)

291

CHAPTER 18 ITERATOR PATTERN

{
this.papers = papers;
position = 0;

}

@verride

public void first()

{
position = 0;

}

@verride

public String next()

{
//System.out.println("Currently pointing to: "+ this.
currentItem());
return papers[position++];

}

@verride

public String currentItem()

{
return papers[position];

}

@0verride

public boolean hasNext()

{
if(position >= papers.length)

return false;
return true;

}

}

public class IteratorPatternExample {

public static void main(String[] args) {
System.out.println("***Iterator Pattern Demo***");
Subjects artsSubjects = new Arts();

292

CHAPTER 18 ITERATOR PATTERN

Iterator iteratorForArts = artsSubjects.createlterator();
System.out.println("\n Arts subjects are as follows:");
while (iteratorForArts.hasNext())

{
System.out.println(iteratorForArts.next());

}

//Moving back to first element
iteratorForArts.first();

System.out.println(" Currently pointing back to: "+
iteratorForArts.currentItem());

Output

Here's the output.
Tterator Pattern Demo

Arts subjects are as follows:
English

History

Geography

Psychology

Currently pointing back to: English

Note If you want to see the current element that the iterator is pointing to, you
can uncomment the line in the next() method: // System.out.printin("Currently
pointing to: "+ this.currentltem());

Now let’s modify the previous implementation using Java’s built-in Iterator interface.

293

CHAPTER 18 ITERATOR PATTERN

Key Characteristics of the Second Implementation

I used Java’s built-in support for the iterator pattern. Note the inclusion of the following
line at the beginning of the program.

import java.util.Iterator;

If you open the source code, you see that this interface has three methods:
hasNext (), next(), and remove(). But the remove () method has a default
implementation already. So, in the following example, I needed to override the
hasNext () and next () methods only.

Here you are using the Java’s Iterator interface, so there is no need to define your own
Iterator interface.

In this modified implementation, key changes are shown in bold.

Second Implementation

Here’s the second implementation.
package jdp2e.iterator.modified.demo;
import java.util.Iterator;

interface Subjects

{
//Iterator Createlterator();
ArtsIterator createIterator();
}
class Arts implements Subjects
{

private String[] papers;

public Arts()

{
papers = new String[] { "English","History",

"Geography", "Psychology” };

294

}

CHAPTER 18

//public Iterator Createlterator()
public ArtsIterator createlterator()

{

return new ArtsIterator(papers);

class ArtsIterator implements Iterator<String»

{

private String[] papers;
private int position;
public ArtsIterator(String[] papers)

{
this.papers = papers;
position = 0;
}
public void first()
{
position = 0;
}
public String currentItem()
{
return papers[position];
}
@verride
public boolean hasNext()
{
if(position >= papers.length)
return false;
return true;
}

ITERATOR PATTERN

295

CHAPTER 18 ITERATOR PATTERN

@verride
public String next()
{

return papers[position++];

}
public class ModifiedIteratorPatternExample {

public static void main(String[] args) {
System.out.println("***Modified Iterator Pattern Demo.***");

Subjects artsSubjects = new Arts();

//Iterator IteratorForArts = artsSubjects.createlterator();
ArtsIterator iteratorForArts = artsSubjects.createlterator();
System.out.println("\nArts subjects are as follows:");

while (iteratorForArts.hasNext())

{
System.out.println(iteratorForArts.next());

}

//Moving back to first element

iteratorForArts.first();

System.out.println("Currently pointing to: "+ iteratorForArts.
currentItem());

Output

Here’s the modified output.
Modified Iterator Pattern Demo.

Arts subjects are as follows:
English

History

Geography

Psychology

Currently pointing to: English

296

CHAPTER 18 ITERATOR PATTERN

Q&A Session

1. Whatis the use of an iterator pattern?

e You can traverse an object structure without knowing its
internal details. As a result, if you have a collection of different
subcollections (e.g., your container is mixed up with arrays, lists,
or linked lists, etc.), you can still traverse the overall collection
and deal with the elements in a universal way without knowing
the internal details or differences among them.

e You can traverse a collection in different ways. You can also
provide an implementation that supports multiple traversals
simultaneously.

2. What are the key challenges associated with this pattern?

Ideally, during a traversal/iteration process, you should not
perform any accidental modification to the core architecture.

3. Butto deal with the challenge mentioned earlier, you could
make a backup and then proceed. Is this correct?

Making a backup and reexamining later is a costly operation.

4. Throughout the discussion, you have talked about collections.
What is a collection?

It is a group of individual objects that are presented in a single
unit. You may often see the use of the interfaces like java.util.
Collection, java.util.Map, and so forth, in Java programs. These are
some common interfaces for Java’s collection classes, which were
introduced in JDK 1.2.

Prior to collections, you had choices like arrays, vectors, and so
forth, to store or manipulate a group of objects. But these classes
did not have a common interface; the way you needed to access
elements in an array were quite different from the way you needed
to access the elements of a vector. That is why it was difficult to

297

CHAPTER 18

298

ITERATOR PATTERN

write a common algorithm to access different elements from these
different implementations. Also, many of these methods were
final, so you could not extend them.

The collection framework was introduced to address these kinds
of difficulties. At the same time, they provided high-performance
implementations to make a programmer’s life easier.

In the modified implementation, why am I not seeing the
@Override annotation for the first() and currentItem() methods?

These two methods are not present in the java.util.Iterator
interface. The built-in Iterator interface has the hasNext() and
next () methods. So, I used the @Override annotation for these
methods. There is another method, remove (), in this interface. It
has a default implementation. Since I have not used it, I did not
need to modify this method.

In these implementations, I am seeing that you are only using
strings of arrays to store and manipulate data. Can you show an
iterator pattern implementation that uses a relatively complex
data type and a different data structure?

To make these examples simple and straightforward, I only used
strings and an array data structure. You can always choose your
preferred data structure and apply the same process when you
consider a complex data type. For example, consider the following
illustration (third implementation) with these key characteristics.

o Here I am using a relatively complex data type, Employee. Each
employee object has three things: a name, an identification
number (id), and the salary.

o Instead of an array, I used a different data structure, LinkedList,
in the following implementation. So, I need to include the

following line in this implementation.
import java.util.linkedList;

o Thave followed the same approach that I used in the previous
example.

CHAPTER 18

Third Implementation

Here’s the third implementation.

package jdp2e.iterator.questions answers;
import java.util.Iterator;

import java.util.linkedlist;

class Employee

{

private String name;
private int id;
private double salary;
public Employee(String name, int id, double salary)
{
this.name=name;
this.id=id;
this.salary=salary;

}

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}

public int getId() {
return id;

}

public void setId(int id) {
this.id = id;

}

public double getSalary() {
return salary;

ITERATOR PATTERN

299

CHAPTER 18 ITERATOR PATTERN

public void setSalary(double salary) {
this.salary = salary;

}

@0verride

public String toString(){
return "Employee Name: "+this.getName()+", ID: "+this.getId()+ "
and salary: "+this.getSalary()+"$";

}
}
interface DataBase
{
Employeelterator createlterator();
}
class EmployeeDatabase implements DataBase
{
private LinkedlList<Employee> employeelist;
public EmployeeDatabase()
{
employeelist = new LinkedList<Employee>();
employeelist.add(new Employee("Ron",1, 1000.25));
employeelist.add(new Employee("Jack",2, 2000.5));
employeelist.add(new Employee("Ambrose",3, 3000.75));
employeelist.add(new Employee("Jian",4, 2550.0));
employeelist.add(new Employee("Alex",5, 753.83));
}
public EmployeeIterator createIterator()
{
return new EmployeeIterator(employeelist);
}
}
class Employeelterator implements Iterator<Employee>
{

private LinkedlList<Employee> employeelist;
private int position;

300

CHAPTER 18 ITERATOR PATTERN

public EmployeeIterator(LinkedList<Employee> employeelist)
{
this.employeelList= employeelist;
position = 0;
}
//@0verride
public void first()
{
position = 0;

}

//@0verride
public Employee currentItem()
{

return employeelist.get(position);

}

@Override
public Employee next()
{

return employeelist.get(position++);
}
@Override
public boolean hasNext() {
if(position »>= employeelist.size())
return false;
return true;

}

public class ModifiedIteratorPatternExample2 {

public static void main(String[] args) {
System.out.println("***Modified Iterator Pattern Demo.
Example-2.%¥*");
DataBase employeeslList = new EmployeeDatabase();

301

CHAPTER 18 ITERATOR PATTERN

Employeelterator iteratorForEmployee = employeeslist.
createlterator();

System.out.println("\n ----- Employee details are as
follows----- \n");

while (iteratorForEmployee.hasNext())

{
System.out.println(iteratorForEmployee.next());
}
}
}
Output

Here’s the output from the third implementation.

Modified Iterator Pattern Demo.Example-2.

Employee Name: Ron, ID: 1 and salary: 1000.25%
Employee Name: Jack, ID: 2 and salary: 2000.5%
Employee Name: Ambrose, ID: 3 and salary: 3000.75%
Employee Name: Jian, ID: 4 and salary: 2550.0%
Employee Name: Alex, ID: 5 and salary: 753.83%

Note You may use two or more different data structures in an implementation to
demonstrate the power of this pattern. You have seen that across these different
implementations, | have used the first(), next(), hasNext(), and currentltem()
methods with different implementations that vary due to their internal data
structures.

302

CHAPTER 19

Memento Pattern

This chapter covers the memento pattern.

GoF Definition

Without violating encapsulation, capture and externalize an object’s internal state so that
the object can be restored to this state later.

Concept

In your application, you may need to support “undo” operations. To achieve this, you
need to record the internal state of an object. So, you must save this state information in
a place that can be referred again to revert back the old state of the object. But in general,
objects encapsulate their states, and those states are inaccessible to the outer world.
So, if you expose the state information, then you violate encapsulation.

The dictionary meaning of memento is reminder (of past events). So, you can guess
that using this pattern, you can restore an object to its previous state, but it ensures that
you achieve your goal without violating the encapsulation.

Real-World Example

A classic example in this category is noticed in a finite state machine. It is a mathematical
model, but one of its simple applications can be found in a turnstile. It has rotating arms,
which initially are locked. If you are allowed to pass through it (for example, when you
insert coins or when a security person allows you to go through a security check), the
locks are opened. Once you pass through, the turnstile returns to the locked state again.

303
© Vaskaran Sarcar 2019

V. Sarcar, Java Design Patterns, https://doi.org/10.1007/978-1-4842-4078-6_19

CHAPTER 19 MEMENTO PATTERN

Computer-World Example

In a drawing application, you may need to revert back to a prior state.

Note You notice a similar pattern when you consider the JTextField class, which
extends the javax.swing.text.JTextComponent abstract class and provides an undo
support mechanism. Here javax.swing.undo.UndoManager can act as a caretaker,
an implementation of javax.swing.undo. UndoableEdit can act like a memento,
and an implementation of javax.swing.text.Document can act like an originator.
You will learn about the terms originator, caretaker, and memento shortly. Also,
java.io.Serializable is often called an example of a memento but although you can
serialize a memento object, it is not a mandatory requirement for the memento
design pattern.

lllustration

Go through the code and follow the comments for your ready reference. In this example,
three objects are involved: a memento, an originator, and a caretaker. (These names are
very common, so I have kept the same naming convention in our implementation.)

The originator object has an internal state. A client can set a state in it. A memento
object may store as much or as little of the originator’s state, at the originator’s discretion.
When a caretaker wants to record the state of the originator, it requests the current state
from it. So, it first asks the originator for a memento object.

In the following example, the caretaker object confirms the save operation by
displaying a console message. Suppose that the client makes some changes and then
wants to revert back to the previous state. Since the originator object’s state is already
changed, to roll back to the previous state requires help from the caretaker object,
which saved the state earlier. The caretaker object returns the memento object (with
the previous state) to the originator. The memento object itself is an opaque object
(one which the caretaker is not allowed to make any change to, and ideally, only the
originator, who created the memento can access the memento’s internal state).

So, you can conclude that caretaker has a narrow view/interface to the memento
because it can only pass it to other objects. In contrast, the originator sees the wide
interface because it can access the data necessary to return to a previous state.

304

CHAPTER 19 MEMENTO PATTERN

Class Diagram

Figure 19-1 shows the class diagram.

<<Java Class>>
(9 Memento

jdp2e.memento.demo

o stateld: int

eF Memento(int)
@ getStateld():int

A\
~myMemento | 0..1

<<Java Class>>
(9 Originator

jdp2e.memento.demo

P <<Java Class>>
o stateld: in

(¥ MementoPatternExample
jdp2e.memento.demo

eCOriginator() <
é getStateld(.):lnl) 9°MementoPatternExample()
@ setStateld(int):void Gvsmain BT

& saveMemento(int):Memento
& revertMemento(Memento):void

Figure 19-1. Class diagram

305

CHAPTER 19 MEMENTO PATTERN

Package Explorer View

Figure 19-2 shows the high-level structure of the parts of the program.

'MementoPattern
=\ JRE System Library [jdk1.8.0 172]
jdp2e.memento.demo
v |J] MementoPatternExample.java
v Q Memento
o stateld
@ Memento(int)
@ getStateld() : int
v @, MementoPatternExample
& main(String([]) : void
v QOriginator
A myMemento
o stateld
@ Originator()
@ getStateld() : int
@ revertMemento(Memento) : void
@ saveMemento(int) : Memento
@ setStateld(int) : void

Figure 19-2. Package Explorer view

Implementation

Here is the implementation.
package jdp2e.memento.demo;

class Memento

{

private int stateld;
public Memento(int stateld)

{
this.stateld = stateld;

306

CHAPTER 19 MEMENTO PATTERN

public int getStateId() {
return stateld;
}
/*This class does not have the
setter method.We need to use this class
to get the state of the object only.*/

/*public void setState(String state) {
this.state = state;
Y/

}

/*
The 'Originator' class
WikiPedia notes(for your reference):
Make an object (originator) itself responsible for:
1.Saving its internal state to a(memento) object and
2.Restoring to a previous state from a(memento) object.
3.0nly the originator that created a memento is allowed to access it.
*/
class Originator
{

private int stateld;

public Originator()

{
this.stateld = 0;
System.out.println(" Originator is created with state id :
"+ stateld);
}
public int getStateId()
{
return stateld;
}

307

CHAPTER 19 MEMENTO PATTERN

public void setStateId(int stateld)

{
System.out.println(" Setting the state id of the originator to :
"+ stateld);
this.stateld= stateld;

}

//Saving its internal state to a(memento) object
public Memento saveMemento(int stateId)

{
System.out.println(" Saving originator's current state id. ");
//Create memento with the current state and return it.
return new Memento(stateld);

}

//Restoring to a previous state from a(memento) object.
public void revertMemento(Memento previousMemento)

{
System.out.println(" Restoring to state id..."+ previousMemento.
getStateld());
this.stateld = previousMemento.getStateId();
System.out.println(" Current state id of originator : "+ stateld);
}
}
/*

The 'Caretaker' class.
WikiPedia notes(for your reference):
1.A client (caretaker) can request a memento from the originator to save
the internal state of the originator and
2.Pass a memento back to the originator (to restore to a previous state)
This enables to save and restore the internal state of an originator
without violating its encapsulation.

*/

public class MementoPatternExample {

public static void main(String[] args) {
System.out.println("***Memento Pattern Demo***\n");

308

CHAPTER 19 MEMENTO PATTERN

//0riginator is initialized with a state
Originator originatorObject = new Originator();
Memento mementoObject;
originatorObject.setStateId(1);

// A client (caretaker) can request a memento from the originator

//to save the internal state of the originator

mementoObject=originatorObject.saveMemento(originatorObject.

getStateId());

System.out.println(" Snapshot #1: Originator's current state id is

saved in caretaker.");

//A client (or caretaker) cannot set/modify the memento's state

//mementoObject.setState("arbitratyState");//error

//Changing the state id of Originator
originatorObject.setStateId(2);

mementoObject=originatorObject.saveMemento(originatorObject.

getStateld());

System.out.println(" Snapshot #2: Originator's current state id is

saved in caretaker.");

//Changing the state id of Originator again.
originatorObject.setStateId(3);

//Reverting back to previous state id.
originatorObject.revertMemento(mementoObject);

Output

Here is the output.
Memento Pattern Demo

Originator is created with state id : 0

Setting the state id of the originator to : 1

Saving originator's current state id.

Snapshot #1: Originator's current state id is saved in caretaker.

309

CHAPTER 19 MEMENTO PATTERN

Setting the state id of the originator to : 2

Saving originator's current state id.

Snapshot #2: Originator's current state id is saved in caretaker.
Setting the state id of the originator to : 3

Restoring to state id...2

Current state id of originator : 2

Note If you deal with a state that is a mutable reference type, you may need to
do a deep copy to store the state inside the Memento object.

Q&A Session

1. Icanrestore the previous snapshot/restore point. But in a real-
life scenario, I may have multiple restore points. How can you
implement that using this design pattern?

You can use an ArrayList in such a case. Consider the following
program.

The Originator class and Memento class are same as before, so I
am presenting the modified Caretaker class only. I am using the
following line of code in the upcoming implementation.

List<Memento> savedStateIds = new ArraylList<Memento>();
So, you need to include these two lines of code at the beginning.

import java.util.Arraylist;
import java.util.list;

310

CHAPTER 19 MEMENTO PATTERN

Modified Caretaker Class

This is the modified Caretaker class.

/*

The modified 'Caretaker' class.
WikiPedia notes(for your reference):

1.A client (caretaker) can request a memento from the originator to save
the internal state of the originator and

2.Pass a memento back to the originator (to restore to a previous state)
This enables to save and restore the internal state of an originator
without violating its encapsulation.

*/

public class ModifiedMementoPatternExample {

public static void main(String[] args) {
System.out.println("***Modified Memento Pattern Demo***\n");
List<Memento> savedStateIds = new ArraylList<Memento>();
//0riginator is initialized with a state
Originator originatorObject = new Originator();
Memento mementoObject;
originatorObject.setStateId(1);
mementoObject=originatorObject.saveMemento(originatorObject.
getStateld());
savedStateIds.add(mementoObject);
System.out.println(" Snapshot #1: Originator's current state id is
saved in caretaker.");
//A client or caretaker cannot set/modify the memento's state
//mementoObject.setState("arbitratyState");//error

//Changing the state id of Originator
originatorObject.setStateId(2);
mementoObject=originatorObject.saveMemento(originatorObject.
getStateld());

savedStateIds.add(mementoObject);

System.out.println(" Snapshot #2: Originator's current state id is
saved in caretaker.");

311

CHAPTER 19 MEMENTO PATTERN

//Changing the state id of Originator
originatorObject.setStateId(3);
mementoObject=originatorObject.saveMemento(originatorObject.
getStateId());

savedStateIds.add(mementoObject);

System.out.println(" Snapshot #3: Originator's current state id is
saved in caretaker (client).");

//Reverting back to previous state id.
//originatorObject.revertMemento(mementoObject);
//Reverting back to specific id -say, Snapshot #1)
//originatorObject.revertMemento(savedStateIds.get(0));

//Roll back everything...

System.out.println("Started restoring process...");
for (int i = savedStatelds.size(); i > 0; i--)
{

originatorObject.revertMemento(savedStatelds.get(i-1));

Modified Output

Once you run this modified program, you get the following output.
Modified Memento Pattern Demo

Originator is created with state id : 0

Setting the state id of the originator to : 1

Saving originator's current state id.

Snapshot #1: Originator's current state id is saved in caretaker.
Setting the state id of the originator to : 2

Saving originator's current state id.

Snapshot #2: Originator's current state id is saved in caretaker.
Setting the state id of the originator to : 3

Saving originator's current state id.

312

CHAPTER 19 MEMENTO PATTERN

Snapshot #3: Originator's current state id is saved in caretaker (client).

Started restoring process...
Restoring to state id...3
Current state id of originator : 3

Restoring to state id...2
Current state id of originator : 2
Restoring to state id...1

Current state id of originator : 1

Analysis

In this modified program, you can see three different variations of “undo” operations.

You can just go back to the previous restore point.
You can go back to your specified restore point.

You can revert back to all restore points.

To see cases 1 and 2, uncomment the lines in the previous implementation.

2.

In many applications, I notice that the memento class is
presented as an inner class of Originator. Why are you not
following that approach?

The memento design pattern can be implemented in many
different ways (for example, using package-private visibility or
using object serialization techniques). But in each case, if you
analyze the key aim, you find that once the memento instance is
created by an originator, no one else besides its creator is allowed
to access the internal state (this includes the caretaker/client).

A caretaker’s job is to store the memento instance (restore points
in our example) and supply them back when you are in need.

So, there is no harm if your memento class is public. You can just
block the public setter method for the memento. I believe that it is
sufficient enough.

313

CHAPTER 19 MEMENTO PATTERN

3. Butyou are still using the getter method getStateld(). Does it
not violate the encapsulation?

There is a lot of discussion and debate around this area—whether
you should use getter/setter or not, particularly when you
consider encapsulation. I believe that it depends on the amount
of strictness that you want to impose. For example, if you just
provide getter/setters for all fields without any reason, that is
surely a bad design. The same thing applies when you use all
the public fields inside the objects. But sometimes the accessor
methods are required and useful. In this book, my aim is to
encourage you learn design patterns with simple examples. If I
need to consider each and every minute detail such as this, you
may lose interest. So, in these examples, I show a simple way to
promote encapsulation using the memento pattern. But, if you
want to be stricter, you may prefer to implement the memento
class as an inner class of the originator and modify the initial
implementation, like in the following.

package jdp2e.memento.questions answers;

/*
The 'Originator' class
WikiPedia notes(for your reference):
Make an object (originator) itself responsible for:
1.Saving its internal state to a(memento) object and
2.Restoring to a previous state from a(memento) object.
3.0nly the originator that created a memento is allowed to access it.
*/

class Originator
{

private int stateld;

Memento myMemento;

public Originator()

{
this.stateld = 0;

314

CHAPTER 19 MEMENTO PATTERN

System.out.println(" Originator is created with state id :
"+ stateld);

}

public int getStateId()

{
return stateld;

}

public void setStateId(int stateld)

{
System.out.println(" Setting the state id of the
originator to : "+ stateld);
this.stateld= stateld;

}

//Saving its internal state to a(memento) object
public Memento saveMemento()

{
System.out.println(" Saving originator's current state id. ");
//Create memento with the current state and return it.
return new Memento(this.stateld);

}

//Restoring to a previous state from a(memento) object.
public void revertMemento(Memento previousMemento)
{
System.out.println(" Restoring to state id..."+
previousMemento.getStateId());
this.stateld = previousMemento.getStateId();
System.out.println(" Current state id of originator : "+
stateld);

315

CHAPTER 19 MEMENTO PATTERN

316

//A memento class implemented as an inner class of Originator
static class Memento
{

private int stateld;

public Memento(int stateld)

{
this.stateld = stateld;

}
//0nly outer class can access now
public int getStateId() {
return stateld;
}
/*This class does not have the
setter method.We need to use this class
to get the state of the object only.*/

/*public void setState(String state) {
this.state = state;
¥/

}
/%
The 'Caretaker' class.
WikiPedia notes(for your reference):
1.A client (caretaker) can request a memento from the originator
to save the internal state of the originator and
2.Pass a memento back to the originator (to restore to a previous
state)
This enables to save and restore the internal state of an
originator without violating its encapsulation.
*/
public class MementoAsInnerClassExample {

public static void main(String[] args) {
System.out.println("***Memento Pattern Demo***\n");

CHAPTER 19 MEMENTO PATTERN

//0riginator is initialized with a state

Originator originatorObject = new Originator();
Originator.Memento mementoObject;
originatorObject.setStateId(1);

// A client (caretaker) can request a memento from the
originator

//to save the internal state of the originator
mementoObject=originatorObject.saveMemento();
System.out.println(" Snapshot #1: Originator's current
state id is saved in caretaker.");

//A client (or caretaker) cannot set/modify the memento's

state

//Changing the state id of Originator
originatorObject.setStateId(2);
mementoObject=originatorObject.saveMemento();
System.out.println(" Snapshot #2: Originator's current
state id is saved in caretaker.");

//Changing the state id of Originator again.
originatorObject.setStateId(3);

//Reverting back to previous state id.
originatorObject.revertMemento(mementoObject);

What are the key advantages of using a memento design

pattern?

The biggest advantage is that you can always discard the
unwanted changes and restore it to an intended or stable state.

You do not compromise the encapsulation associated with the
key objects that are participating in this model.

Maintains high cohesion.

Provides an easy recovery technique.

317

CHAPTER 19 MEMENTO PATTERN

5. What are key challenges associated with a memento design
pattern?

e A high number of mementos require more storage. At the same
time, they put additional burdens on a caretaker.

o The preceding point increases maintenance costs in parallel.

¢ You cannot ignore the time to save these states. The additional
time to save the states decreases the overall performance of the
system.

Note In alanguage like C# or Java, developers may prefer the serialization/
deserialization techniques instead of directly implementing a memento design
pattern. Both techniques have their own pros/cons. But you can also combine both
techniques in your application.

6. Inthese implementations, if you make the originator’s state
public, then our clients also could directly access the states.
Is this correct?

Yes. But you should not try to break the encapsulation. Notice the
GoF definition that begins “without violating encapsulation...”

7. Inthese implementations, the memento class does not have a
public setter method. What is the reason behind this?

Go through the answer of question 2 again. And read the
comment in the code that says, “Only the originator that created
amemento is allowed to access it So, if you do not provide a
public setter method for your memento class, the caretaker or
client cannot modify the memento instances that are created by
an originator.

318

CHAPTER 19 MEMENTO PATTERN

8. Inthese implementations, you could ignore the getter method
of the memento by using package-private visibility for stateld.
For example, you could code memento class like the following.

class Memento

{
//private int stateld;
int stateld;//<-Change is here
public Memento(int stateld)

{
this.stateld = stateld;

}
public int getStateId() {
return stateld;
}
/*This class does not have the
setter method.We need to use this class
to get the state of the object only.*/

/*public void setState(String state) {
this.state = state;
Y/

And then you can use the following line.

//System.out.println(" Restoring to state id..."+
previousMemento.getStateld());

System.out.println(" Restoring to state id..."+
previousMemento.stateld);//<The change is shown in bold

Is this correct?

Yes. In many application, other classes (except originator) cannot
even read the memento’s state. When you use package-private
visibility, you do not need any accessor method. In other words,
you are simply using the default modifier in this case.

319

CHAPTER 19 MEMENTO PATTERN

So, this kind of visibility is slightly more open than private
visibility and other classes in the same package can access a class
member. So, in this case, the intended classes need to be placed
inside the same package. At the same time, you need to accept
that all other classes inside the same package will have the direct
access to this state. So, you need to be careful enough when you
place the classes in your special package.

9. Iam confused. To support undo operations, which pattern
should I prefer—memento or command?

The GoF told us that these are related patterns. It primarily
depends on how you want to handle the situation. For example,
suppose that you are adding 10 to an integer. After this addition,
you want to undo the operation by doing the reverse operation
(i.e., 50 + 10 = 60, so to go back, you do 60 -10 = 50). In this type of
operation, we do not need to store the previous state.

But consider a situation where you need to store the state of
your objects prior to the operations. In this case, memento is
your savior. So, in a paint application, you can avoid the cost of
undoing a paint operation. You can store the list of objects prior
to executing the commands. This stored list can be treated as a
memento in this case. You can keep this list with the associated
commands. I suggest that you read the nice online article at www.
developer.com/design/article.php/3720566/Working-With-
Design-Patterns-Memento.htm.

So, an application can use both patterns to support undo
operations.

Finally, you must remember that storing a memento object is
mandatory in a memento pattern, so that you can roll back to a
previous state; but in a command pattern, it is not necessary to
store the commands. Once you execute a command, its job is
done. If you do not support “undo” operations, you may not be
interested in storing these commands at all.

320

http://www.developer.com/design/article.php/3720566/Working-With-Design-Patterns-Memento.htm
http://www.developer.com/design/article.php/3720566/Working-With-Design-Patterns-Memento.htm
http://www.developer.com/design/article.php/3720566/Working-With-Design-Patterns-Memento.htm

CHAPTER 19 MEMENTO PATTERN

10. You talked about deep copy after the first implementation.
Why do I need that?

In Chapter 2 (the prototype pattern), I discussed shallow copy
and deep copy. You can refer to this discussion for your reference.
To answer your question, let’s analyze what is special about deep
copy with a simple example. Consider the following example.

Shallow Copy vs. Deep Copy in Java

You clone with the clone() method in Java, but at the same time, you need to implement
the Cloneable interface (which is a marker interface) because the Java objects that
implement this Cloneable interface are only eligible for cloning. The default version

of clone()creates a shallow copy. To create the deep copy, you need to override the
clone() method.

Key Characteristics of the Following Program

In the following example, you have two classes: Employee and EmpAddress.

o The Employee class has three fields: id, name, and EmpAddress. So,
you may notice that to form an Employee object, you need to pass an
EmpAddress object also. So, in the following example, you will notice
the line of code:

Employee emp=new Employee(1,"John",initialAddress);

o EmpAddress has only a field called address, which is a String
datatype.

o Inthe client code, you create an Employee object emp and then you
create another object, empClone, through cloning. So, you will notice
the line of code as follows:

Employee empClone=(Employee)emp.clone();

e Then you change the field values of the emp object. But as a side
effect of this change, the address of empClone object also changes,
but this is not wanted.

321

CHAPTER 19 MEMENTO PATTERN

Implementation

Here is the implementation.

package jdp2e.memento.questions answers;
class EmpAddress implements Cloneable

{

}

String address;
public EmpAddress(String address)

{
this.address=address;
}
public String getAddress()
{
return address;
}
public void setAddress(String address)
{
this.address = address;
}
@0Override
public String toString()
{
return this.address;
}
@Override

public Object clone() throws CloneNotSupportedException

{
//Shallow Copy

return super.clone();

class Employee implements Cloneable

{

322

int id;
String name;

CHAPTER 19 MEMENTO PATTERN

EmpAddress empAddress;
public Employee(int id,String name,EmpAddress empAddress)
{

this.id=id;

this.name=name;

this.empAddress=empAddress;

}
public int getId()
{
return id;
}
public void setId(int id)
{
this.id = id;
}
public String getName()
{
return name;
}
public void setName(String name)
{
this.name = name;
}
public EmpAddress getAddress()
{
return this.empAddress;
}
public void setAddress(EmpAddress newAddress)
{
this.empAddress=newAddress;
}
@verride

public String toString()
{

323

CHAPTER 19 MEMENTO PATTERN

}

return "EmpId=" +this.id+
EmpAddressName="+ this.empAddress;

EmpName="+ this.name+

@verride
public Object clone() throws CloneNotSupportedException

//Shallow Copy
return super.clone();

public class ShallowVsDeepCopy {

324

public static void main(String[] args) throws
CloneNotSupportedException {

System.out.println("***Shallow vs Deep Copy Demo***\n");
EmpAddress initialAddress=new EmpAddress("21, abc Road, USA");
Employee emp=new Employee(1,"John",initialAddress);
System.out.println("empl object is as follows:");
System.out.println(emp);

Employee empClone=(Employee)emp.clone();
System.out.println("empClone object is as follows:");
System.out.println(empClone);

System.out.println("\n Now changing the name, id and address of the
emp object ");

emp.setId(10);

emp.setName("Sam");

emp.empAddress.setAddress("221, xyz Road, Canada");
System.out.println("Now empl object is as follows:");
System.out.println(emp);

System.out.println("And empiClone object is as follows:");
System.out.println(empClone);

CHAPTER 19

Output

Here is the output.
Shallow vs Deep Copy Demo

empl object is as follows:

EmpId=1 EmpName=John EmpAddressName=21, abc Road, USA
empClone object is as follows:

EmpId=1 EmpName=John EmpAddressName=21, abc Road, USA

Now changing the name and id of emp object
Now empl object is as follows:
EmpId=10 EmpName=Sam EmpAddressName=221, xyz Road, Canada
And empiClone object is as follows:
EmpId=1 EmpName=John EmpAddressName=221, xyz Road, Canada

Analysis

MEMENTO PATTERN

Notice the last line of the output. You see an unwanted side effect. The address of the

cloned object is modified due the modification to the emp object. This is because the

original object and the cloned object both point to the same address, and they are not

100% disjoined. Figure 19-3 depicts the scenario.

emp Object empClone object
id=1 id=1
name=" John” name=" John”
empAddress empAddress
\\ /
/

/

21, abc
Road, USA

Figure 19-3. Shallow copy

325

CHAPTER 19 MEMENTO PATTERN

So, now let’s experiment with a deep copy implementation. Let’s modify the clone
method of the Employee class as follows.

@0verride
public Object clone() throws CloneNotSupportedException
{
//Shallow Copy
//return super.clone();

//For deep copy

Employee employee = (Employee) super.clone();
employee.empAddress = (EmpAddress) empAddress.clone();
return employee;

}
Modified Output

Here is the modified output.
Shallow vs Deep Copy Demo

empl object is as follows:

EmpId=1 EmpName=John EmpAddressName=21, abc Road, USA
empClone object is as follows:

EmpId=1 EmpName=John EmpAddressName=21, abc Road, USA

Now changing the name, id and address of the emp object
Now empl object is as follows:

EmpId=10 EmpName=Sam EmpAddressName=221, xyz Road, Canada
And emp1Clone object is as follows:

EmpId=1 EmpName=John EmpAddressName=21, abc Road, USA

Analysis

Notice the last line of the output. Now you do not see the unwanted side effect due to the
modification to the emp object. This is because the original object and the cloned object
are totally different and independent of each other. Figure 19-4 depicts the scenario.

326

CHAPTER 19 MEMENTO PATTERN

emp Object empClone Object
id=1 id=1
name="John” name="John”
empAddress empAddress

21, abc

Road, USA

Figure 19-4. Deep copy

Note You saw the theoretical parts of a shallow copy and a deep copy in the
“Q&A Session” of Chapter 2.

327

CHAPTER 20

State Pattern

This chapter covers the state pattern.

GoF Definition

Allow an object to alter its behavior when its internal state changes. The object will
appear to change its class.

Concept

Suppose that you are dealing with a large-scale application where the codebase is rapidly
growing. As a result, the situation becomes complex and you may need to introduce lots
of if-else blocks/switch statements to guard the various conditions. The state pattern
fits in such a context. It allows your objects to behave differently based on the current
state, and you can define state-specific behaviors with different classes.

So, in this pattern, you start thinking in terms of possible states of your application,
and you segregate the code accordingly. Ideally, each of the states is independent of
other states. You keep track of these states, and your code responds as per the behavior
of the current state. For example, suppose that you are watching a television (TV)
program/show. If you press the mute button on the TV’s remote control, you notice a
state change in your TV. But you cannot notice any change if the TV is already turned off.

So, the basic idea is that if your code can track the current state of the application,
you can centralize the task, segregate your code, and respond accordingly.

329
© Vaskaran Sarcar 2019

V. Sarcar, Java Design Patterns, https://doi.org/10.1007/978-1-4842-4078-6_20

CHAPTER 20 STATE PATTERN

Real-World Example

Consider the scenario of a network connection—a TCP connection. An object can be in
various states; for example, a connection might already be established, the connection
might be closed, or the object already started listening through the connection. When
this connection receives a request from other objects, it responds as per its present state.
The functionalities of a traffic signal or a television (TV) can also be considered in
this category. For example, you can change channels if the TV is already in a switched-on
mode. It will not respond to the channel change requests if it is in a switched-off mode.

Computer-World Example

Suppose that you have a job-processing system that can process a certain number of jobs
at a time. When a new job appears, either the system processes the job, or it signals that
the system is busy with the maximum number of jobs that it can process at one time.

In other words, the system sends a busy signal when its total number of job-processing

capabilities has been reached.

Note In the javax.faces.lifecycle package, there is class called Lifecycle. This
class has a method called execute(FacesContext context), in which you may notice
an implementation of the state design pattern. FacesServlet can invoke the execute
method of a LifeCycle and a LifeCycle object communicates with different phases
(states).

lllustration

The following implementation models the functionalities of a television and its remote
control. Suppose that you have a remote control to support the operations of a TV. You
can simply assume that at any given time, the TV is in either of these three states: On,
Off, or Mute. Initially, the TV is in the Off state. When you press the On button on the
remote control, the TV goes into the On state. If you press the Mute button, it goes into
the Mute state.

330

CHAPTER 20 STATE PATTERN

You can assume that if you press the Off button when the TV is already in the Off
state, or if you press the On button when the TV is already in the On state, or if you press
the Mute button when the TV is already in Mute mode, there is no state change for the TV.

The TV can go into the Off state from the On state if you press the Off button, or it
goes into a Mute state if you press the Mute button. Figure 20-1 shows the state diagram
that reflects all of these possible scenarios.

pressOnButton()

pressOnButton()

pressOffButton() pressMuteButton()

pressOnButton()

pressMuteButton()

pressOffButton(

pressOffButton()

Figure 20-1. Different states ofa TV

Note In this diagram, | have not marked any state as the final state, though in
this illustration, at the end, | am switching off the TV. To make the design simple,

| assume that if you press the Off button when the TV is already in the Off state, or
if you press the On button when the TV is already in On state, or if you press the
Mute button when the TV is already in Mute mode, there will be no state change to
the TV. But in the real-world, a remote control may work differently. For example, if
the TV is currently in the On state and you press the Mute button, the TV can go to
Mute mode, and then if press Mute button again, the TV may come back to the On
state again. So, you may need to put additional logic to support this behavior.

331

CHAPTER 20 STATE PATTERN

Key Characteristics

The key characteristics of the following implementations are as follows.

o For a state-specific behavior, you have separate classes. For example,
here you have classes like On, Off, and Mute.

e The TV class is the main class here (the word main does not mean
that it includes the main() method) and the client code only talks to
it. In design pattern terms, TV is the context class here.

e Operations defined in the TV class are delegating the behaviour to
the current state’s object implementation.

o DPossibleState is the interface that defines the methods/operations
that are called when you own an object. On, Off, and Mute are
concrete states that implement this interface.

o States are triggering state transitions (one state to another state)
themselves.

Class Diagram

Figure 20-2 shows the class diagram.

332

<<Java Class>>
() StatePatternExample
jdp2e.state.demo

ocStatePatternExample()
& main(String[]):void

<<Java Class>>

@1V

jdp2e.state.demo

eV

<<Java Interface>>

@ getCurrentState():PossibleState

@ setCurrentState(PossibleState):void
© pressOffButton():void

@ pressOnButton():void

@ pressMuteButton():void

&3 PossibleState
-currentState jdp2e.state.demo
0.1 @ pressOnButton(TV):void

Figure 20-2. Class diagram

@ pressOffButton(TV):void
@ pressMuteButton(TV):void

CHAPTER 20 STATE PATTERN

<<Java Class>>

(®on

jdp2e.state.demo

4°0n()

@ pressOnButton(TV):void
© pressOffButton(TV):void
@ pressMuteButton(TV):void
o @ toString():String

<<Java Class>>

®off

jdp2e.state.demo

&°0ff()

@ pressOnButton(TV):void
@ pressOffButton(TV):void
@ pressMuteButton(TV):void
@ toString():String

. <<Java Class>>
(& Mute
jdp2e state.demo

A" Mute()

@ pressOnButton(TV):void
@ pressOffButton(TV):void
@ pressMuteButton(TV):void
© toString():String

333

CHAPTER 20 STATE PATTERN

Package Explorer View

Figure 20-3 shows the high-level structure of the program.

t# jdp2e.state.demo
v m StatePatternExample.java

v QMute
@ pressMuteButton(TV) : void
@ pressOffButton(TV) : void
@ pressOnButton(TV) : void
@ toString() : String

v Qoff
@ pressMuteButton(TV) : void
@ pressOffButton(TV) : void
@ pressOnButton(TV) : void
@ toString() : String

v QOn
@ pressMuteButton(TV) : void
@ pressOffButton(TV) : void
@ pressOnButton(TV) : void
@ toString() : String

v QPossibleState
¢ pressMuteButton(TV) : void
¢ pressOffButton(TV) : void
& pressOnButton(TV) : void

> @.StatePatternExample

v@Qr1v
o currentState
@ TV(
@ getCurrentState() : PossibleState
@ pressMuteButton() : void
@ pressOffButton() : void
@ pressOnButton() : void
@ setCurrentState(PossibleState) : void

Figure 20-3. Package Explorer view

334

CHAPTER 20 STATE PATTERN

Implementation

Here’s the implementation.

package jdp2e.state.demo;
interface PossibleState

{

}

void pressOnButton(TV context);
void pressOffButton(TV context);
void pressMuteButton(TV context);

//0ff state
class Off implements PossibleState

{

//User is pressing Off button when the TV is in Off state
@verride
public void pressOnButton(TV context)

{
System.out.println("You pressed On button. Going from Off to On
state.");
context.setCurrentState(new On());
System.out.println(context.getCurrentState().toString());

}

//TV is Off already, user is pressing Off button again

@verride

public void pressOffButton(TV context)

{
System.out.println("You pressed Off button. TV is already in Off
state.");

}

//User is pressing Mute button when the TV is in Off state

@verride

public void pressMuteButton(TV context)

{
System.out.println("You pressed Mute button.TV is already in Off
state, so Mute operation will not work.");

335

CHAPTER 20 STATE PATTERN

}
public String toString()

{

return "\t**TV is switched off now.**";

}
//0n state

class On implements PossibleState
{

//TV is On already, user is pressing On button again

@verride

public void pressOnButton(TV context)

{
System.out.println("You pressed On button. TV is already in On
state.");

}

//User is pressing Off button when the TV is in On state

@verride

public void pressOffButton(TV context)

{
System.out.println("You pressed Off button.Going from On to Off
state.");
context.setCurrentState(new 0ff());
System.out.println(context.getCurrentState().toString());

}

//User is pressing Mute button when the TV is in On state

@verride

public void pressMuteButton(TV context)

{
System.out.println("You pressed Mute button.Going from On to Mute
mode.");
context.setCurrentState(new Mute());
System.out.println(context.getCurrentState().toString());

336

}

CHAPTER 20 STATE PATTERN

public String toString()
{

return "\t**TV is switched on now.**";

//Mute state
class Mute implements PossibleState

{

//User 1is pressing On button when the TV is in Mute mode
@verride
public void pressOnButton(TV context)

{
System.out.println("You pressed On button.Going from Mute mode to
On state.");
context.setCurrentState(new On());
System.out.println(context.getCurrentState().toString());

}

//User is pressing Off button when the TV is in Mute mode
@verride
public void pressOffButton(TV context)

{
System.out.println("You pressed Off button. Going from Mute mode to
Off state.");
context.setCurrentState(new 0ff());
System.out.println(context.getCurrentState().toString());

}

//TV is in mute mode already, user is pressing mute button again
@0verride
public void pressMuteButton(TV context)
{
System.out.println("You pressed Mute button.TV is already in Mute
mode.");

337

CHAPTER 20 STATE PATTERN

public String toString()

{
return "\t**TV is silent(mute) now**";
}
}
class TV
{
private PossibleState currentState;
public TV()
{
//Initially TV is initialized with Off state
this.setCurrentState(new 0ff());
}
public PossibleState getCurrentState()
{
return currentState;
}
public void setCurrentState(PossibleState currentState)
{
this.currentState = currentState;
}
public void pressOffButton()
{
currentState.pressOffButton(this);//Delegating the state
}
public void pressOnButton()
{
currentState.pressOnButton(this);//Delegating the state
}
public void pressMuteButton()
{
currentState.pressMuteButton(this);//Delegating the state
}
}

338

//Client
public c

publ

CHAPTER 20 STATE PATTERN

lass StatePatternkExample {

ic static void main(String[] args) {
System.out.println("***State Pattern Demo***\n");
//Initially TV is Off.

TV tv = new TV();

System.out.println("User is pressing buttons in the following
sequence:");
System.out.println("0ff->Mute->0n->0On->Mute->Mute->0ff\n");
//TV is already in Off state.Again Off button is pressed.
tv.pressOffButton();

//TV is already in Off state.Again Mute button is pressed.
tv.pressMuteButton();

//Making the TV on

tv.pressOnButton();

//TV 1is already in On state.Again On button is pressed.
tv.pressOnButton();

//Putting the TV in Mute mode

tv.pressMuteButton();

//TV 1is already in Mute mode.Again Mute button is pressed.
tv.pressMuteButton();

//Making the TV off

tv.pressOffButton();

Output

Here’s the output.

Gtate Pattern Demo

User is

pressing buttons in the following sequence:

0ff->Mute-»0n->0n-sMute->Mute->0ff

You pressed Off button. TV is already in Off state.

339

CHAPTER 20 STATE PATTERN

You pressed Mute button.TV is already in Off state, so Mute operation will
not work.
You pressed On button. Going from Off to On state.
TV is switched on now.
You pressed On button. TV is already in On state.
You pressed Mute button.Going from On to Mute mode.
TV is silent(mute) now
You pressed Mute button.TV is already in Mute mode.
You pressed Off button. Going from Mute mode to Off state.
TV is switched off now.

Q&A Session

1. Canyou elaborate how this pattern is useful with another real-

world scenario?

Psychologists repeatedly documented the fact that human beings
can perform their best when they are in a relaxed mode and they
are free of tension but in the reverse scenario, when their minds
are filled with tension, they cannot produce great results. That

is why psychologists always suggest that you should work in
relaxed mood. You can relate this simple philosophy with the TV
illustration. If the TV is on, it can entertain you; if it is off, it cannot.
Right? So, if you want to design similar kinds of behavior changes
of an object when it’s internal state changes, this pattern is useful.

Apart from this example, you can consider the scenario where a
customer buys an online ticket and in some later phase he/she
cancels it. The refund amount may vary with different conditions;
for example, the number of days before you can cancel the ticket.

340

2.

CHAPTER 20 STATE PATTERN

In this example, you have considered only three states of a TV:
On, Off, or Mute. There are many other states, for example,
there may be a state that deals with connection issues or
display conditions. Why have you ignored those?

The straightforward answer is to represent simplicity. If the
number of states increases significantly in the system, then it
becomes difficult to maintain the system (and it is one of the
key challenges associated with this design pattern). But if you
understand this implementation, you can easily add any states
you want.

I noticed that the GoF represented a similar structure for both
the state pattern and the strategy pattern in their famous book.
I am confused to see that.

Yes, the structures are similar, but you need to note that the intents
are different. Apart from this key distinction, you can simply think
like this: with a strategy pattern provides a better alternative to
subclassing. On the other hand, in a state design pattern, different
types of behaviors can be encapsulated in a state object and

the context is delegated to any of these states. When a context’s
internal states change, its behavior also changes.

State patterns can also help us avoid lots of if conditions in some
contexts. (Consider our example once again. If the TV is in the Off
state, it cannot go to the Mute state. From this state, it can move to
the On state only.) So, if you do not like state design pattern, you
may need to code like this for a On button press.

class TV
{

//Some code before
public void pressOnButton()

{
if(currentState==0ff)

{

341

CHAPTER 20 STATE PATTERN

System.out.println (" You pressed Onbutton. Going from Off to

OnState");
//Do some operations
}
if(currentState==0n)
{
System.out.println (" You pressed On button. TV is already in
On state");
}
//TV presently is in mute mode
else
{

System.out.println (" You pressed On button . Going from Mute
mode to On State");

}

//Do some operations

}

Notice that you need to repeat these checks for different kinds
of button presses. (For example, for the pressOffButton() and
pressMuteButton() methods, you need to repeat these checks
and perform accordingly.)

If you do not think in terms of states, if your code base grows,
maintenance becomes difficult.

4. How are you supporting the open-close principle in our
implementation?

Each of these TV states are closed for modification, but you can
add brand-new states to the TV class.

5. What are the common characteristics between the strategy
pattern and the state pattern?

Both can promote composition and delegation.

342

CHAPTER 20 STATE PATTERN

6. Itappears to me that these state objects are acting like
singletons. Is this correct?

Yes. Most times they act in this way.

7. Canyou avoid the use of “contexts” in the method parameters.
For example, can you avoid them in the following statements?

void pressOnButton(TV context);

If you do not want to use the context parameter like this, you may
need to modify the implementation. To give a quick overview,

I am presenting the modified Package Explorer view with a
modified implementation only.

One of the key changes in the following implementation can be
seen in the class TV. The TV() constructor is initialized with all
possible state objects, which are used for the change of states in
later phases. The getter methods are invoked for this purpose.
Consider the following implementation.

Modified Package Explorer View

In this case, all three possible states have similar components. So, to keep the diagram
short, I am showing only one of them in the following Package Explorer view.
Figure 20-4 shows the modified high-level structure of the program.

343

CHAPTER 20 STATE PATTERN

¥ jdp2e.state.modified.demo
v [J] StatePatternAlternativelmplementation.java

> QMute
> @ off
v QOn

A tvContext

@ On(TV)

@ pressMuteButton() : void
@ pressOffButton() : void
@ pressOnButton() : void
@ toString() : String

v Q PossibleStates

¢ pressMuteButton() : void
¢ pressOffButton() : void
¢ pressOnButton() : void

> Q,StatePatternAIternativeImplementation

v@QTv

o currentState

muteState

offState

o onState

@ TV(

@ getCurrentState() : PossibleStates
@ getMuteState() : PossibleStates
@ getOffState() : PossibleStates

@ getOnState() : PossibleStates

@ pressMuteButton() : void

@ pressOffButton() : void

@ pressOnButton() : void

@ setCurrentState(PossibleStates) : void

Figure 20-4. Modified Package Explorer View

344

CHAPTER 20

Modified Implementation
Here is the modified implementation.
package jdp2e.state.modified.demo;

interface PossibleStates

{
void pressOnButton();
void pressOffButton();
void pressMuteButton();
}
class Off implements PossibleStates
{

TV tvContext;
//Initially we'll start from Off state
public Off(TV context)
{
//System.out.println(" TV is Off now.");
this.tvContext = context;

}

STATE PATTERN

//Users can press any of these buttons at this state-On, Off or Mute

//TV is Off now, user is pressing On button

@0verride

public void pressOnButton()

{
System.out.println(" You pressed On button. Going from Off to On
state");
tvContext.setCurrentState(tvContext.getOnState());
System.out.println(tvContext.getCurrentState().toString());

}

//TV is Off already, user is pressing Off button again

@verride

345

CHAPTER 20 STATE PATTERN

}

public void pressOffButton()

{
System.out.println(" You pressed Off button. TV is already in Off
state");

}

//TV is Off now, user is pressing Mute button

@verride

public void pressMuteButton()

{
System.out.println(" You pressed Mute button.TV is already in Off
state, so Mute operation will not work.");

}

public String toString()

{
return "\t**TV is switched off now.**";

}

class On implements PossibleStates

{

346

TV tvContext;
public On(TV context)
{
//System.out.println(" TV is On now.");
this.tvContext = context;
}
//Users can press any of these buttons at this state-On, Off or Mute
//TV is On already, user is pressing On button again
@verride
public void pressOnButton()
{
System.out.println("You pressed On button. TV is already in On
state.");
}

//TV is On now, user is pressing Off button

@verride

}

CHAPTER 20 STATE PATTERN

public void pressOffButton()

{
System.out.println(" You pressed Off button.Going from On to Off
state.");
tvContext.setCurrentState(tvContext.getOffState());
System.out.println(tvContext.getCurrentState().toString());

}

//TV is On now, user is pressing Mute button

@0verride

public void pressMuteButton()

{
System.out.println("You pressed Mute button.Going from On to Mute
mode.");
tvContext.setCurrentState(tvContext.getMuteState());
System.out.println(tvContext.getCurrentState().toString());

}

public String toString()

{
return "\t**TV is switched on now.**";

}

class Mute implements PossibleStates

{

TV tvContext;
public Mute(TV context)
{

this.tvContext = context;
}
//Users can press any of these buttons at this state-On, Off or Mute
//TV is in mute, user is pressing On button
@0verride
public void pressOnButton()
{
System.out.println("You pressed On button.Going from Mute mode to
On state.");

347

CHAPTER 20 STATE PATTERN

tvContext.setCurrentState(tvContext.getOnState());
System.out.println(tvContext.getCurrentState().toString());

}

//TV is in mute, user is pressing Off button
@verride

public void pressOffButton()

{

System.out.println("You pressed Off button. Going from Mute mode to
Off state.");

tvContext.setCurrentState(tvContext.getOffState());
System.out.println(tvContext.getCurrentState().toString());

}
//TV is in mute already, user is pressing mute button again
@verride
public void pressMuteButton()
{
System.out.println(" You pressed Mute button.TV is already in Mute
mode.");
}
public String toString()
{
return "\t**TV is silent(mute) now**";
}
}
class TV
{

private PossibleStates currentState;
private PossibleStates onState;
private PossibleStates offState;
private PossibleStates muteState;
public TV()
{
onState=new On(this);
offState=new Off(this);
muteState=new Mute(this);
setCurrentState(offState);

348

CHAPTER 20
}
public PossibleStates getCurrentState()
{
return currentState;
}

public void setCurrentState(PossibleStates currentState)

{

this.currentState = currentState;

}
public void pressOffButton()
{
currentState.pressOffButton();
}
public void pressOnButton()
{
currentState.pressOnButton();
}
public void pressMuteButton()
{
currentState.pressMuteButton();
}
public PossibleStates getOnState()
{
return onState;
}
public PossibleStates getOffState()
{
return offState;
}
public PossibleStates getMuteState()
{
return muteState;
}

STATE PATTERN

349

CHAPTER 20 STATE PATTERN

//Client
public class StatePatternAlternativeImplementation {

public static void main(String[] args) {
System.out.println("***State Pattern Alternative Implementation
Demo***\n");
//Initially TV is Off.
TV tv = new TV();
System.out.println("User is pressing buttons in the following
sequence:");
System.out.println("0ff->Mute->0n->0On->Mute->Mute->0ff\n");
//TV is already in Off state.Again Off button is pressed.
tv.pressOffButton();
//TV 1is already in Off state.Again Mute button is pressed.
tv.pressMuteButton();
//Making the TV on
tv.pressOnButton();
//TV is already in On state.Again On button is pressed.
tv.pressOnButton();
//Putting the TV in Mute mode
tv.pressMuteButton();
//TV is already in Mute mode.Again Mute button is pressed.
tv.pressMuteButton();
//Making the TV off
tv.pressOffButton();

Modified Output

Here is the output from the modified implementation.
State Pattern Alternative Implementation Demo

User is pressing buttons in the following sequence:
Off->Mute->0n->0n->Mute->Mute->0ff

350

CHAPTER 20 STATE PATTERN

You pressed Off button. TV is already in Off state
You pressed Mute button.TV is already in Off state, so Mute operation will
not work.
You pressed On button. Going from Off to On state
TV is switched on now.
You pressed On button. TV is already in On state.
You pressed Mute button.Going from On to Mute mode.
TV is silent(mute) now
You pressed Mute button.TV is already in Mute mode.
You pressed Off button. Going from Mute mode to Off state.
TV is switched off now.

8. Inthese implementations, TV is a concrete class. Why are you
not programming to interface in this case?

I assume that the TV class is not going to change, and so I ignored
that part to reduce some code size of the program. But yes, you
can always start from an interface in which you can define the

contracts.
9. What are the pros and cons of a state design pattern?
Pros

e You have already seen that following the open/close principle,
you can easily add new states and new behaviors. Also, a state
behavior can be extended without hassle. For example, in this
implementation, you can add a new state and a new behavior for
a TV class without changing the TV class itself.

¢ Reduces the use of if-else statements (i.e., conditional
complexity is reduced. (Refer to the answer in question 3).

351

CHAPTER 20 STATE PATTERN

Cons

o The state pattern is also known as objects for states. So, you can
assume that more states need more codes, and the obvious side
effect is difficult maintenance for you.

10. Inthe TV class constructor, you are initializing the TV with an
Off state. So, can both the states and the context class trigger
the state transitions?

Yes.

352

CHAPTER 21

Mediator Pattern

This chapter covers the mediator pattern.

GoF Definition

Define an object that encapsulates how a set of objects interact. Mediator promotes
loose coupling by keeping objects from referring to each other explicitly, and it lets you
vary their interaction independently.

Concept

A mediator takes the responsibility of controlling and coordinating the interactions of a
specific group of objects that cannot refer to each other explicitly. So, you can imagine a
mediator as an intermediary through whom these objects talk to each other. This kind of
implementation helps reduce the number of interconnections among different objects.
As aresult, you can promote loose coupling in the system.

So, in this design, object communications are encapsulated with a mediator
object so that they cannot communicate directly with each other and you reduce the
dependencies among them.

Real-World Example

When a flight needs to take off, a series of verifications takes place. These kinds of
verifications conform that all components/parts (which are dependent on each other)
are in perfect condition.

353
© Vaskaran Sarcar 2019

V. Sarcar, Java Design Patterns, https://doi.org/10.1007/978-1-4842-4078-6_21

CHAPTER 21 MEDIATOR PATTERN

Also consider when airplane pilots (approaching or departing the terminal area)
communicate with the towers. They do not explicitly communicate with other pilots from
different airlines. They only send their status to the tower. These towers also send the
signals to conform which airplane can take-off or land. You must note that these towers
do not control the whole flight. They only enforce constraints in the terminal areas.

Computer-World Example

When a client processes a business application, the developer may need to put some
constraints on it. For example, a form in which a client needs to supply a user ID and
password to access their account. On the same form, the client must supply other
information, such as email, address, age, and so forth. Let’s assume that the developer
applied the constraints as follows.

Initially, the application checks whether the ID supplied by the user is valid or not. If it
is a valid user ID, then only the password field is enabled. After supplying these two fields,
the application form needs to check whether the email address was provided by the user.
Let’s further assume that after providing all of this information (a valid user ID, password,
a correctly formatted email, etc.), the Submit button is enabled. So, basically the Submit
button is enabled if the client supplies a valid user ID, password, email, and other
mandatory details in the correct order. The developer may also enforce that the user ID
must be an integer, so if the user mistakenly places any characters in that field, the Submit
button stays in disabled mode. The mediator pattern becomes handy in such a scenario.

So, when a program consists of many classes and the logic is distributed among them,
the code becomes harder to read and maintain. In those scenarios, if you want to bring new
changes in the system’s behavior, it can be difficult unless you use the mediator pattern.

Note The execute() method inside the java.util.concurrent.Executor interface
follows this pattern.

The javax.swing.ButtonGroup class is another example that supports this pattern.
This class has a method setSelected() that ensures that the user provides a new
selection.

The different overloaded versions of various schedule() methods of the java.util.
Timer class also can be considered to follow this pattern.

354

CHAPTER 21 MEDIATOR PATTERN

lllustration

A common structure of the mediator pattern (which is basically adopted from the GoF’s
Design Patterns: Elements of Reusable Object-Oriented Software) is often described with
the diagram shown in Figure 21-1.

Mediator _ Colleague

ConcreteMediator ConcreteColleaguel ConcreteColleague2

7

Figure 21-1. Mediator pattern example

The participants are described as follows.

e Mediator: Defines the interface to provide the communication
among Colleague objects.

o ConcreteMediator: Maintains the list of the Colleague objects.
It implements the Mediator interface and coordinates the
communication among the Colleague objects.

o Colleague: Defines the interface for communication with other
Colleagues.

e ConcreteColleaguel and ConcreteColleague2: Implements the
Colleague interface. These objects communicate with each other
through the mediator.

In this chapter, I provide two implementations of this pattern. In the first
implementation, I replaced the word Colleague with Employee. Also, ConcreteColleaguel
and ConcreteColleague? are replaced with JuniorEmployee and SeniorEmployee,
respectively. Let’s assume that you have three employees: Amit, Sohel, and Raghu, where
Amit and Sohel are junior employees who report to their boss, Raghu, who is a senior

355

CHAPTER 21 MEDIATOR PATTERN

employee. Raghu wants to smoothly coordinate things. Let’s further assume that they
can communicate with each other through a chat server.

In the following implementation, Mediator is an interface that has two methods:
register() and sendMessage(). The register() method registers an employee with the
mediator and sendMessage () posts messages to the server. The ConcreteMediator class
is the concrete implementation of the Mediator interface.

Employee is an abstract class and the JuniorEmployee and SeniorEmployee classes
are the concrete implementations of it. The sendMessage () method of the Employee
class is described as follows.

public void sendMessage(String msg) throws InterruptedException

{

mediator.sendMessage(this, msg);

You can see that when an employee invokes the sendMessage () method, it is
invoking mediator’s sendMessage () method. So, the actual communication process is
conducted through the mediator.

In the client code, I introduced another person, Jack. But he did not register himself
with the mediator object. So, the mediator is not allowing him to post any messages to
this server.

Now go through the code and the corresponding output.

Class Diagram

Figure 21-2 shows the class diagram.

356

<<Java Class>>
<<Java Class>> (9 ConcreteMediator
(9 MediatorPatternExample jdp2e mediator. demo
jdp2e.mediator.demo c
w3 & ConcreteMediator()
& MediatorPattemExample() © register(Employee) void
@ main(String[])-void i Ry] <<Java Class>> @ displayRegisteredEmployees()vaid
N “_ e Juni ploy @ sendMessage(Employee String):void
A ‘.‘\\ idp2e. mediator.demo 3
™. | e uuniorEmpioyes(Medator, Sting) \
", [}
*..| @ employeeType():String . A
- ~participants [0.*
A \ \H:;\ <<Java Class>> -
N\ <<Java Class>> & Employee ...
\ @ SeniorEmployee [dp2e.madiator demo D <<Java Interface>>
*, IEpde mecislordsme © name: String @ Mediator
r L " jdp2e. mediator.d
I sting) [g ciName(-Sting 0.1 e
' |_@ employeeType():String @ setName(String)void "7 | @ register(Employee)-void
\ OcElwloyW{Mediator) @ sendMessage(Employee, String):void
/ @ sendMessage(String).void
—_—
<<Java Class>> & empicyee Type(). String
(® Unknown
[dp2e mediator.demo

oc Unknown(Mediator,String)
@ employeeType():String

Figure 21-2. Class diagram

Package Explorer View

Figure 21-3 shows the high-level structure of the program.

357

CHAPTER 21 MEDIATOR PATTERN

{5'7‘J MediatorPattern
> B\ JRE System Library [jdk1.8.0_172]
v {1 jdp2e.mediator.demo
v |J] MediatorPatternExample.java
v QConcreteMediator
4 participants
@ displayRegisteredEmployees() : void
@ register(Employee) : void
@ sendMessage(Employee, String) : void
v @ Employee
¢ mediator
¢ name
¢ Employee(Mediator)
& employeeType() : String
@ getName() : String
@ sendMessage(String) : void
@ setName(String) : void
v QJuniorEmployee
¢ JuniorEmployee(Mediator, String)
@ employeeType() : String
v € Mediator
¢ register(Employee) : void
¢ sendMessage(Employee, String) : void
v@ MediatorPatternExample
55 main(String[]) : void
v QSeniorEmployee
@ SeniorEmployee(Mediator, String)
@ employeeType() : String
v Q Unknown
3 Unknown(Mediator, String)
@ employeeType() : String

Figure 21-3. Package Explorer view

358

CHAPTER 21 MEDIATOR PATTERN

Implementation

Here’s the first implementation.

package jdp2e.mediator.demo;

import java.time.LocalDateTime;

import java.util.Arraylist;

import java.util.Llist;

interface Mediator

{

}

void register(Employee employee);
void sendMessage(Employee employee, String msg) throws
InterruptedException;

// ConcreteMediator
class ConcreteMediator implements Mediator

{

List<Employee> participants = new ArraylList<Employee>();
@verride
public void register(Employee employee)
{
participants.add(employee);
}
public void displayRegisteredEmployees()
{
System.out.println("At present,registered employees are:");
for (Employee employee: participants)

{
System.out.println(employee.getName());

}

@verride
public void sendMessage(Employee employee, String msg) throws
InterruptedException

{
359

CHAPTER 21 MEDIATOR PATTERN

if (participants.contains(employee))

{
System.out.println(employee.getName() +" posts:"+ msg+"Last
message posted at "+LocalDateTime.now());
Thread.sleep(1000);

}

else

{
System.out.println("An outsider named "+ employee.getName()+"
is trying to send some messages.");

}

}
// The abstract class-Employee

abstract class Employee
{
protected Mediator mediator;
protected String name;
public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}

// Constructor
public Employee(Mediator mediator)

{

this.mediator = mediator;

}

public void sendMessage(String msg) throws InterruptedException

{

mediator.sendMessage(this, msg);

}
public abstract String employeeType();

360

CHAPTER 21

// Junior Employee
class JuniorEmployee extends Employee

{

}

public JuniorEmployee(Mediator mediator, String name)

{

super (mediator);
this.name = name;

}

@verride
public String employeeType()
{

return "JuniorEmployee";

//Senior Employee
class SeniorEmployee extends Employee

{

}

// Constructor
public SeniorEmployee(Mediator mediator, String name)
{
super(mediator);
this.name = name;
}
@verride
public String employeeType()
{

return "SeniorEmployee";

// Unknown participant.
class Unknown extends Employee

{

// Constructor
public Unknown(Mediator mediator, String name)

MEDIATOR PATTERN

361

CHAPTER 21 MEDIATOR PATTERN

}

{
super (mediator);
this.name = name;
}
@verride
public String employeeType()
{
return "Outsider";
}

public class MediatorPatternExample {

362

public static void main(String[] args) throws InterruptedException {

System.out.println("***Mediator Pattern Demo***\n");
ConcreteMediator mediator = new ConcreteMediator();

JuniorEmployee amit = new JuniorEmployee(mediator, "Amit");
JuniorEmployee sohel = new JuniorEmployee(mediator, "Sohel");
SeniorEmployee raghu = new SeniorEmployee(mediator, "Raghu");

//Registering participants
mediator.register(amit);
mediator.register(sohel);
mediator.register(raghu);

//Displaying the participant's list
mediator.displayRegisteredEmployees();

System.out.println("Communication starts among participants...");
amit.sendMessage("Hi Sohel,can we discuss the mediator pattern?");
sohel.sendMessage("Hi Amit,yup, we can discuss now.");
raghu.sendMessage("Please get back to work quickly.");

//An outsider/unknown person tries to participate

Unknown unknown = new Unknown(mediator, "Jack");

unknown. sendMessage("Hello Guys..");

CHAPTER 21 MEDIATOR PATTERN

Output

Here’s the output.
Mediator Pattern Demo

At present,registered employees are:

Amit

Sohel

Raghu

Communication starts among participants...

Amit posts:Hi Sohel,can we discuss the mediator pattern?Last message posted
at 2018-09-09T17:41:21.868

Sohel posts:Hi Amit,yup, we can discuss now.Last message posted at 2018-09-
09T17:41:23.369

Raghu posts:Please get back to work quickly.lLast message posted at 2018-09-
09T17:41:24.870

An outsider named Jack is trying to send some messages.

Analysis

Note that only registered users can communicate with each other and successfully post
messages on the chat server. The mediator does not allow any outsiders into the system.
(Notice the last line of the output.)

Modified lllustration

You have just seen a simple example of the mediator pattern. But you can make it better.
You identified the following points.

o The messages are only passing in one direction.

e When one participant posts a message, everyone can see the
message. So, there is no privacy.

363

CHAPTER 21 MEDIATOR PATTERN

« Ifan employee forgets to register himself, he is not allowed to send
a message. Itis fine, but he should not be treated like an outsider.
In a normal scenario, an organization outsider should be treated
differently from an employee of the organization who forgets to
register himself on the server.

o The client code needed to register the participants to the mediator.
Though you may argue that it is not a drawback, you may opt for
a better approach. For example, you may register the participants
automatically to a mediator when you create an Employee object
inside the client code.

¢ You have not used the employeeType() method in client code.

So, keeping these points in mind, let’s modify the previous example. Here are some
key characteristics of the modified implementation.

e The JuniorEmployee and SeniorEmployee classes are replaced
with a single ConcreteEmployee class. It helps us easily identify
who belongs to the organization and who does not (in other words,
outsiders).

o Inthe modified implementation, each of these participants can
see who is posting messages, but it is not disclosed to whom it is
targeted or what the actual message is. So, there is privacy between
two participants, but this approach can help someone like Raghu to
coordinate things because he may interfere if he sees that employees
are chatting too much.

o Inthe client code, you create participants like the following.

Employee Amit = new ConcreteEmployee(mediator, "Amit", true);

The third argument (true/false) is used to determine whether a participant wants to
register himself or not to the mediator. He is treated accordingly when he tries to post
messages.

e The employeeType() method determines whether a participant is
from inside the organization or if he or she is an outsider. In this
context, you may also note that instead of using the following line

364

CHAPTER 21 MEDIATOR PATTERN

if(fromEmployee.employeeType()=="UnauthorizedUser")

you could directly use this line of code:

if(fromEmployee.getClass().getSimpleName().equals("UnauthorizedUser"))

I used the former one for better readability.

Modified Class Diagram

Figure 21-4 shows the modified class diagram. To show the key changes and to present a
neat diagram, I do not show the client code dependencies in the following diagram.

<<Java Class>>

(9 ModifiedMediatorPatternExample
jdp2e.mediater modified demo

jdp2e.

(9 ConcreteMediator

<<Java Class>>

mediator modified demo

‘c ConcreteMed

iator()

QC ModifiedMediatorPatternExample()
osmain(strigg 1):void

@ register(Employee):void
@ displayRegisteredEmployees():void
@ sendMessage(Employee Employee, String):void

<<Java Class>>

~participants

@ setName(String):void
QCEmployee{MediatonSiring,boorean}
@ send(Employee, String):vaid

@ receive(Employee, String):void

&' smployeeType():String

(& Employee 0.! .
idp2e. mediator modified.demo *,
< name: String ?’ m—
<<Java Interface>>
o authorizedUser: boolean
diat €9 Mediator
-mediator
@ getName():String jdp2e.mediatormodified.demo

0.1

@ register(Employee):void
@ sendMessage(Employee Employee,String):void

/

\

<<Java Class>>
(9 UnauthorizedUser
jdp2e.mediater modified.demo

<<Java Class>>
(9 ConcreteEmployee
jdp2e mediator. modified.demo

QcUnauihorizedUser(M ediator,String)
@ receive(Employee, String):void
@ employeeType():String

@cCo ncreteEmployee(Mediator,String,boolean)
@ employeeType():String

Figure 21-4. Class diagram

365

CHAPTER 21 MEDIATOR PATTERN

Modified Package Explorer View

Figure 21-5 shows the modified Package Explorer view.

+H jdp2e.mediator.modified.demo
v 4J] ModifiedMediatorPatternExample.java
v QConcreteEmployee
-3 ConcreteEmployee(Mediator, String, boolean)
@ employeeType() : String
v @ ConcreteMediator
4 participants
@ displayRegisteredEmployees() : void
@ register(Employee) : void
@ sendMessage(Employee, Employee, String) : void
v ﬁ Employee
49 authorizedUser
o mediator
¢ name
¢ Employee(Mediator, String, boolean)
¢ employeeType() : String
@ getName() : String
@ receive(Employee, String) : void
@ send(Employee, String) : void
@ setName(String) : void
v Q Mediator
¢ register(Employee) : void
@ sendMessage(Employee, Employee, String) : void
v Q ModifiedMediatorPatternExample
@ main(String[]) : void
v Q UnauthorizedUser
e UnauthorizedUser(Mediator, String)
@ employeeType() : String
@ receive(Employee, String) : void

Figure 21-5. Modified Package Explorer view

366

CHAPTER 21 MEDIATOR PATTERN

Modified Implementation

Here is the modified implementation.
package jdp2e.mediator.modified.demo;

import java.time.LocalDateTime;
import java.util.Arraylist;
import java.util.Llist;

interface Mediator

{
void register(Employee employee);
void sendMessage(Employee fromEmployee, Employee toEmployee,String msg)
throws InterruptedException;

}

// ConcreteMediator
class ConcreteMediator implements Mediator
{
List<Employee> participants = new ArraylList<Employee>();
@verride
public void register(Employee employee)
{
participants.add(employee);

}
public void displayRegisteredEmployees()

{

System.out.println("At present ,registered participants are:");
for (Employee employee: participants)
{

System.out.println(employee.getName());

}

@verride
public void sendMessage(Employee fromEmployee,Employee
toEmployee, String msg) throws InterruptedException

{

367

CHAPTER 21 MEDIATOR PATTERN

/*1if(fromEmployee.getClass().getSimpleName().
equals("UnauthorizedUser"))*/
if(fromEmployee.employeeType()=="UnauthorizedUser")

{
System.out.println("[ALERT Everyone] An outsider named "+
fromEmployee.getName()+" trying to send some messages to "+
toEmployee.getName());
fromEmployee.receive(fromEmployee, ",you are not allowed to
enter here.");
}
else if (participants.contains(fromEmployee))
{
System.out.println("----- "+fromEmployee.getName() +" posts some
message at: "+LocalDateTime.now()+"----- ");
Thread.sleep(1000);
//No need to inform everyone or himself
//0nly let the target receiver know
if(participants.contains(toEmployee))
{
toEmployee.receive(fromEmployee,msg);
}
//1f target receipient does not exist
else
{
System.out.println(fromEmployee.getName() +" , your target
recipient does not exist");
}
}
//An outsider tries to send message.
else
{

System.out.println("[ALERT] An unregistered employee named "+
fromEmployee.getName()+" trying to send some messages to "+
toEmployee.getName());

368

CHAPTER 21 MEDIATOR PATTERN

System.out.println(fromEmployee.getName()+", you need to
register yourself first.");

}
// Employee

abstract class Employee
{
private Mediator mediator;
protected String name;
private boolean authorizedUser;
public String getName() {
return name;

}

public void setName(String name) {
this.name = name;
}
// Constructor
public Employee(Mediator mediator, String name, boolean authorizedUser)
{
this.mediator = mediator;
this.name=name;
this.authorizedUser=authorizedUser;
if(authorizedUser)

{

mediator.register(this);

}

//The following method name need not be same as the Mediator's method name
public void send(Employee toFriend,String msg) throws
InterruptedException

{

mediator.sendMessage(this,toFriend, msg);

369

CHAPTER 21 MEDIATOR PATTERN
//public abstract void receive(Friend fromFriend,String message);

public void receive(Employee fromFriend,String message)

{

System.out.println(this.name+" received a message :
from an employee "+ fromFriend.getName() +".");

+ message +"

}
public abstract String employeeType();

}
//A concrete friend
class ConcreteEmployee extends Employee

{

public ConcreteEmployee(Mediator mediator, String name,boolean
authorizedUser)

{

super (mediator,name, authorizedUser);
}
@Override
public String employeeType()
{

return "ConcreteEmployee";

}

//Unauthorized user
class UnauthorizedUser extends Employee

{

public UnauthorizedUser(Mediator mediator, String name)

{

//The user is always treated an unauthorized user.So, the flag is
//false always.
super (mediator,name, false);

}

@0verride
public void receive(Employee fromEmployee,String message)

370

CHAPTER 21 MEDIATOR PATTERN

{
System.out.println(this.name + message);
}
@0verride
public String employeeType()
{
return "UnauthorizedUser";
}

}

public class ModifiedMediatorPatternExample {
public static void main(String[] args) throws InterruptedException {
System.out.println("***Mediator Pattern Demo***\n");

ConcreteMediator mediator = new ConcreteMediator();

Employee Amit = new ConcreteEmployee(mediator, "Amit", true);
Employee Sohel = new ConcreteEmployee(mediator, "Sohel",true);
Employee Raghu = new ConcreteEmployee(mediator, "Raghu",true);
//Unauthorized user

Employee Jack = new ConcreteEmployee(mediator, "Jack",false);
//0nly two parameter needed to pass in the following case.
Employee Divya = new UnauthorizedUser(mediator, "Divya");

//Displaying the participant's list
mediator.displayRegisteredEmployees();

System.out.println("Communication starts among participants...");
Amit.send(Sohel,"Hi Sohel,can we discuss the mediator pattern?");
Sohel.send(Amit,"Hi Amit,Yup, we can discuss now.");

//Boss 1is sending messages to each of them individually
Raghu.send(Amit, "Please get back to work quickly.");
Raghu.send(Sohel, "Please get back to work quickly.");

371

CHAPTER 21 MEDIATOR PATTERN

//An unregistered employee(Jack) and an outsider(Divya) are also
//trying to participate.

Jack.send(Amit, "Hello Guys..");

Divya.send(Raghu, "Hi Raghu");

Modified Output

Here is the modified output.
Mediator Pattern Demo

At present ,registered participants are:
Amit

Sohel

Raghu

Communication starts among participants...

Sohel received a message : Hi Sohel,can we discuss the mediator pattern?
from an employee Amit.

Amit received a message : Hi Amit,Yup, we can discuss now. from an employee
Sohel.

Amit received a message : Please get back to work quickly. from an employee
Raghu.

Sohel received a message : Please get back to work quickly. from an
employee Raghu.

[ALERT] An unregistered employee named Jack trying to send some messages to
Amit

Jack, you need to register yourself first.

[ALERT Everyone] An outsider named Divya trying to send some messages to
Raghu

Divya,you are not allowed to enter here.

372

CHAPTER 21 MEDIATOR PATTERN

Analysis

Notice that when the employee named Jack (who belongs to the organization) sends a

message without registering himself, the system prevents him from posting the message

but gives him a suggestion. But Divya, who is an organization outsider, is told that she is

not allowed to enter into the system. It also warns others.

Q&A Session

1.

Why are you complicating the things? In the first example,
each of the participants could talk to each other directly and
you could bypass the use of mediator. Is this correct?

In this example, you have only three registered participants,

so it may appear that they can communicate with each other
directly. But you may need to consider a relatively complicated
scenario. For example, a participant can send a message to a
target participant only if the target participant is in online mode
(which is the common scenario for a chat server). So, with your
proposed architecture, if they try to communicate with each other,
each of them needs to maintain the status of all other participants
before sending a message. And if the number of participants keeps
growing, can you imagine the complexity of the system?

So, a mediator can certainly help you deal with a scenario like this.
Figure 21-6 and Figure 21-7 depict the scenario.

373

CHAPTER 21 MEDIATOR PATTERN

Case 1. Communication without a mediator.

Raghu

Figure 21-6. Communication without using a mediator

Case 2. Communication with a mediator.

Raghu

Mediator

Figure 21-7. Communication using a mediator

Also, you can consider the modified implementation in this
context. In the modified implementation, you can see that the
mediator is maintaining the logic—who should be allowed to post
messages on the server and how he/she should be treated.

374

CHAPTER 21 MEDIATOR PATTERN

What are advantages of using mediator patterns?

e You can reduce the complexity of objects’ communication in a
system.

e The pattern promotes loose coupling.
e Itreduces number of subclasses in the system.

¢ You can replace “many-to-many” relationship with “one-to-
many” relationships, so it is much easier to read and understand.
(Consider our first illustration in this context). And as an obvious
effect, maintenance becomes easy.

e You can provide a centralized control through the mediator with
this pattern.

e Inshort, it is always our aim to remove tight coupling (among
objects) from our code and this pattern scores high in this context.

What are the disadvantages of using mediator patterns?
o Insome cases, implementing the proper encapsulation is tricky.

¢ The mediator object’s architecture may become complex if you
put too much logic inside it. An inappropriate use of the mediator
pattern may end up with a “God Class” antipattern. (You'll learn
about antipatterns in Chapter 28).

o Sometimes maintaining the mediator becomes a big concern.

If you need to add a new rule or logic, you can directly add it to
the mediator. Is this correct?

Yes.

I am finding some similarities in the facade pattern and the
mediator pattern. Is this correct?

Yes. In his book Design Pattern for Dummies (Wiley Publishing,
2006), Steve Holzner mentions the similarity by describing the
mediator pattern as a multiplexed facade pattern. In mediator,
instead of working with an interface of a single object, you are
making a multiplexed interface among multiple objects to provide
smooth transitions.
375

CHAPTER 21

376

6.

10.

MEDIATOR PATTERN

In this pattern, you are reducing the number of
interconnections among various objects. What key benefits
have you achieved due to this reduction?

More interconnections among objects can make a monolithic
system where the system’s behavior is difficult to change (the
system’s behavior is distributed among many objects). As a side
effect, you may need to create many subclasses to bring those
changes in the system.

In the modified implementations, you are using Thread.
Sleep(1000). What is the reason for this?

You can ignore that. I used it to mimic a real-life scenario. I
assume that participants are posting messages after reading a
message properly and this activity takes a minimum of 1 second.

In some applications, I have seen the use of a concrete
mediator only. Is this approach OK?

The mediator pattern does not restrict you to use only a concrete
mediator. But I like to follow the experts’ advice that says,
“programming to the supertype (abstract class/interface) is a better
approach,” and it can provide more flexibility in the long run.

Can I simply say that if a class simply calls methods from
multiple objects, it is a mediator?

Not at all. The key purpose of a mediator is to simplify the
complex communications among objects in a system. I suggest
that you always keep in mind the GoF definition and the
corresponding concepts.

In the first implementation, both send methods (mediator and
employees) are named sendMessage() but in the modified
implementation, they are different—one is send() and the
other is sendMessage(). Do I need to follow any specific
naming convention?

No. Both are fine. It's your choice.

CHAPTER 22

Chain-of-Responsibility
Pattern

This chapter covers the chain-of-responsibility pattern.

GoF Definition

Avoid coupling the sender of a request to its receiver by giving more than one object a
chance to handle the request. Chain the receiving objects and pass the request along the
chain until an object handles it.

Concept

In this pattern, you form a chain of objects where each object in the chain handles a
particular kind of request. If an object cannot handle the request fully, it passes the
request to the next object in the chain. The same process may follow until the end of a
chain is reached. This kind of request handling mechanism gives you the flexibility to
add a new processing object (handler) at the end of the chain. Figure 22-1 depicts such a
chain with N number of handlers.

Incoming Requests End Of Chain

Figure 22-1. The concept of a chain-of-responsibility pattern

377
© Vaskaran Sarcar 2019

V. Sarcar, Java Design Patterns, https://doi.org/10.1007/978-1-4842-4078-6_22

CHAPTER 22 CHAIN-OF-RESPONSIBILITY PATTERN

Real-World Example

o Each organization employs customer care executives who receive
feedback or complaints directly from the customers. If the
employees cannot answer the customers’ issues properly, they
forward these issues/escalations to the appropriate departments
in the organization. These departments do not try to fix an issue
simultaneously. In the first phase of investigation, the department
that seems responsible analyzes the case, and if they believe that the
issue should be forwarded to another department, they do that.

e Asimilar scenario occurs when a patient visits a hospital. Doctors
from one department can refer a patient to a different department for
further diagnosis.

Computer-World Example

Consider a software application (e.g., a printer) that can send emails and faxes. So,
customers can report faxing issues or email issues. Let’s assume that these issues

are handled by handlers. So, you introduce two different types of error handlers:
EmailErrorHandler and FaxErrorHandler. You can assume that EmailErrorHandler
handles email errors only; it cannot fix the fax errors. In a similar manner,
FaxErrorHandler handles fax errors and does not care about email errors.

So, you may form a chain like this: whenever the application finds an error, it
raises a ticket and forwards the error with a hope that one of the handlers will handle
it. Let’s assume that the request first comes to FaxErrorhandler. If this handler agrees
that the error is a fax issue, it handles it; otherwise, the handler forwards the issue to
EmailErrorHandler.

Note that the chain ends with EmailErrorHandler. But if you need to handle a
different type of issue—for example, authentication issues (which can occur due to
security vulnerabilities), you can make a handler called AuthenticationErrorHandler
and place it after EmailErrorHandler. Now if an EmailErrorHandler cannot fix the issue
completely, it forwards the issue to AuthenticationErrorHandler, and the chain ends
there.

378

CHAPTER 22 CHAIN-OF-RESPONSIBILITY PATTERN

Note You are free to place these handlers in any order you choose in your
application.

So, the bottom line is that the processing chain may end in any of the following

scenarios.

e Any of these handlers could process the request completely and
control comes back.

¢ A handler cannot handle the request completely, so it passes the
request to the next handlers. This way, you reach the end of the
chain. So, the request is handled there. But if the request cannot be
processed there, you cannot pass it further. (You may need to take
special care for such a situation.)

You notice a similar mechanism when you are implementing an exception handling
mechanism with multiple catch blocks in your Java application. If an exception occurs
in a try block, the first catch block tries to handle it. If it cannot handle that type of
exception, the next catch block tries to handle it, and the same mechanism is followed
until the exception is handled properly by handlers (catch blocks). If the last catch block
in your application is unable to handle it, an exception is thrown outside of this chain.

Note In java.util.logging.Logger, you can see a different overloaded version of
log() methods that supports a similar concept.

Another built-in support can be seen in the doFilter (ServletRequest request,
ServletResponse response, FilterChain chain) interface method in javax.Servlet.Filter.

lllustration

Let’s consider the scenario that is discussed in the computer-world example. Let’s
further assume that in the following example, you can process both normal and
high-priority issues that may come from either the email or fax pillar.

379

CHAPTER 22

Class Diagram

CHAIN-OF-RESPONSIBILITY PATTERN

Figure 22-2 shows the class diagram.

<<Java Class>>
(9 IssueRaiser

<<Java Interface>>

@ raiseMessage(Message):void

) . T 3 Receiver
jdp2e.chainofresponsibility. dema +setFirstReceiver idp2e. chainofresponsibility.demo
C
1
A’lssueRaiser() 0 @ handleM, ge):boolean
@ setFirstErrorHandler(Receiver):void

@ nextErrorHandler(Receiver):void

0.1
-nextReceiver -,

=<Java Class>>
(9 EmallErrorHandler
jdp2e.chainofresponsibility. demo

0.1
-nextReceiver

<<Java Class>>
(9 ChainofResponsibilityPattern

jdp2e.chai

& EmailErrorHandler()

@ nextErrorHandler(Receiver):void
@ handleMessage(Message):boolean

ibility.deme

QC ChainofRespensibilityPattern()
es main(String[]):void

<<Java Class>>
(9 FaxErrorHandler
jdp2e.chaincfresponsibility.demo

& FaxErrorHandler()

@ nextErrorHandler(Receiver):void

<<Java Enumeration>>
{3 MessagePriority
jdp2e.chainofresponsibility.demo

s;')"_NORMAL: MessagePriority

3c»FHIGH: MessagePriority

‘cMessagePriority()
A

+priority | 0..1

<<Java Class>>

(9 Message
jdp2e.chainofresponsibility.demo

© text: String

@cMessage(String,MessagePriority)

Figure 22-2. Class diagram

380

@ handleMessage(Message):boolean

CHAPTER 22 CHAIN-OF-RESPONSIBILITY PATTERN

Package Explorer View

Figure 22-3 shows the high-level structure of the program.

'b‘JChainofResponsibiIityPattern
> i\ JRE System Library [jdk1.8.0_172]
v 1 jdp2e.chainofresponsibility.demo
v [J] ChainofResponsibilityPattern java

v @ chainofResponsibilityPattern
@ main(String[]) : void

v Q EmailErrorHandler
o nextReceiver
@ handleMessage(Message) : boolean
@ nextErrorHandler(Receiver) : void

v Q FaxErrorHandler
o nextReceiver
@ handleMessage(Message) : boolean
@ nextErrorHandler(Receiver) : void

v lesueRaiser
© setFirstReceiver
@ raiseMessage(Message) : void
@ setFirstErrorHandler(Receiver) : void

v Q Message
© priority
O text
o Message(String, MessagePriority)

v@ MessagePriority
¥ HIGH
¥ NORMAL

v Q Receiver
¢ handleMessage(Message) : boolean
¢ nextErrorHandler(Receiver) : void

Figure 22-3. Package Explorer view

381

CHAPTER 22 CHAIN-OF-RESPONSIBILITY PATTERN

Implementation
Here’s the implementation.
package jdp2e.chainofresponsibility.demo;

enum MessagePriority

{
NORMAL ,
HIGH
}
class Message
{
public String text;
public MessagePriority priority;
public Message(String msg, MessagePriority p)
{
text = msg;
this.priority = p;
}
}
interface Receiver
{
boolean handleMessage(Message message);
void nextErrorHandler(Receiver nextReceiver);
}
class IssueRaiser
{

public Receiver setFirstReceiver;
public void setFirstErrorHandler(Receiver firstErrorHandler)

{

this.setFirstReceiver = firstErrorHandler;

}

public void raiseMessage(Message message)

{

if (setFirstReceiver != null)

382

CHAPTER 22 CHAIN-OF-RESPONSIBILITY PATTERN

setFirstReceiver.handleMessage(message);

}

// FaxErrorHandler class
class FaxErrorHandler implements Receiver

{
private Receiver nextReceiver;
@verride
public void nextErrorHandler(Receiver nextReceiver)
{
this.nextReceiver = nextReceiver;
}
@verride
public boolean handleMessage(Message message)
{
if (message.text.contains("Fax"))
{
System.out.println(" FaxErrorHandler processed " +message.
priority +" priority issue :"+ message.text);
return true;
}
else
{
if (nextReceiver != null)
nextReceiver.handleMessage(message);
}
return false;
}
}

// EmailErrorHandler class
class EmailErrorHandler implements Receiver
{
private Receiver nextReceiver;
@Override
public void nextErrorHandler(Receiver nextReceiver)

383

CHAPTER 22 CHAIN-OF-RESPONSIBILITY PATTERN

{
this.nextReceiver = nextReceiver;
}
@verride
public boolean handleMessage(Message message)
{
if (message.text.contains("Email"))
{
System.out.println(" EmailErrorHandler processed "+message.
priority+ " priority issue: "+message.text);
return true;
}
else
{
if (nextReceiver != null)
nextReceiver.handleMessage(message);
}
return false;
}

}
//Client code

public class ChainofResponsibilityPattern {

public static void main(String[] args) {
System.out.println("\n ***Chain of Responsibility Pattern
Demo***\n");
/* Forming the chain as IssueRaiser->FaxErrorhandler->
EmailErrorHandler*/
Receiver faxHandler, emailHandler;
//0bjects of the chains
IssueRaiser issueRaiser = new IssueRaiser();
faxHandler = new FaxErrorHandler();
emailHandler = new EmailErrorHandler();
//Making the chain
//Starting point:IssueRaiser will raise issues and set the first
//handler

384

CHAPTER 22 CHAIN-OF-RESPONSIBILITY PATTERN

issueRaiser.setFirstErrorHandler(faxHandler);

//FaxErrorHandler will pass the error to EmailHandler if needed.
faxHandler.nextErrorHandler(emailHandler);

//EmailErrorHandler will be placed at the last position in the chain
emailHandler.nextErrorHandler(null);

Message ml = new Message("Fax is going slow.",
MessagePriority.NORMAL);

Message m2 = new Message("Emails are not reaching.",
MessagePriority.HIGH);

Message m3 = new Message("In Email, CC field is disabled always.",
MessagePriority.NORMAL);

Message m4 = new Message("Fax is not reaching destinations."”,
MessagePriority.HIGH);

issueRaiser.raiseMessage(m1);
issueRaiser.raiseMessage(m2);
issueRaiser.raiseMessage(m3);
issueRaiser.raiseMessage(m4);

Output

Here’s the output.
Chain of Responsibility Pattern Demo

FaxErrorHandler processed NORMAL priority issue :Fax is going slow.
EmailErrorHandler processed HIGH priority issue: Emails are not reaching.
EmailErrorHandler processed NORMAL priority issue: In Email, CC field is
disabled always.

FaxErrorHandler processed HIGH priority issue :Fax is not reaching
destinations.

385

CHAPTER 22 CHAIN-OF-RESPONSIBILITY PATTERN

Q&A Session

386

In the example, what is the purpose of message priorities?

Good catch. Actually, you could ignore them because, for
simplicity in the handlers, you are just searching for the words
email or fax. These priorities are added to beautify the code. But
instead of using separate handlers for email and fax, you could
make a different kind of chain that handles the messages based
on the priorities. In such a case, these priorities can be used more
effectively.

What are the advantages of using a chain-of-responsibility
design pattern?

e You can have more than one object to handle a request. (Notice
that if a handler cannot handle the whole request, it may forward
the responsibility to the next handler in the chain).

e The nodes of the chain can be added or removed dynamically.
Also, you can shuffle the order. For example, if you notice that the
majority of issues are with email processing, then you may place
EmailErrorHandler as the first handler in the chain to save the
average processing time of the application.

¢ Ahandler does not need to know how the next handler in the
chain will handle the request. It focuses only on its own handling
mechanism.

o In this pattern, you are promoting loose coupling because it
decouples the senders (of requests) from the receivers.

What are the challenges associated with using the chain-of-
responsibility design pattern?

e There is no guarantee that the request will be handled (fully or
partially) because you may reach the end of the chain; but it is
possible that you have not found any explicit receiver to handle
the request.

o Debugging may become tricky with this kind of design.

CHAPTER 22 CHAIN-OF-RESPONSIBILITY PATTERN

4. How can you handle the scenario where you have reached at
the end of chain, but the request is not handled at all?

One simple solution is to use try/catch (or try/finally or
try/catch/finally) blocks. You may put the handlers in these
constructs. You may notice that a try block can be associated with
multiple catch blocks also.

In the end, if no one can handle the request, you may raise an
exception with the appropriate messages and catch the exception
in your intended catch block to draw your attention (or handle it
in some different way).

The GoF talked about Smalltalk’s automatic forwarding
mechanism, doesNotUnderstand, in a similar context. If a message
cannot find a proper handler, it is caught in doesNotUnderstand
implementations that can be overridden to forward the message
in the object’s successor, log it in a file, and store it in a queue for
later processing, or you can simply perform any other intended
operations. But you must make a note that by default, this method
raises an exception that needs to be handled in a proper way.

5. Inshort, if a handler cannot handle the request fully, it will
pass it to the next handler. Is this correct?

Yes.

6. Itappears that there are similarities between the observer
pattern and the chain-of-responsibility pattern. Is this correct?

In an observer pattern, all registered users get notifications in
parallel; but in a chain-of-responsibility pattern, objects in the
chain are notified, one by one, in a sequential manner. This
process continues until an object handles the notification fully
(or you reach the end of the chain). I show the comparisons in
diagrams in the “Q&A Session” in Chapter 14.

387

CHAPTER 23

Interpreter Pattern

This chapter covers the interpreter pattern.

GoF Definition

Given a language, define a representation for its grammar along with an interpreter that
uses the representation to interpret sentences in the language.

Concept

To understand this pattern, you need to be familiar with some key terms, like sentences,
grammar, languages, and so forth. So, you may need to visit the topics of formal
languages in Automata, if you are not familiar with them.

Normally, this pattern deals with how to evaluate sentences in a language. So, you
first need to define a grammar to represent the language. Then the interpreter deals with
that grammar. This pattern is best if the grammar is simple.

Each class in this pattern may represent a rule in that language, and it should have a
method to interpret an expression. So, to handle a greater number of rules, you need to
create a greater number of classes. This is why an interpreter pattern should not be used
to handle complex grammar.

Let’s consider different arithmetic expressions in a calculator program. Though
these expressions are different, they are all constructed using some basic rules, which
are defined in the grammar of the language (of these arithmetic expressions). So, it is
best if you can interpret a generic combination of these rules rather than treat each
combination of rules as separate cases. An interpreter pattern can be used in such a
scenario.

A typical structure of this pattern is often described with a diagram similar to
Figure 23-1.

389
© Vaskaran Sarcar 2019

V. Sarcar, Java Design Patterns, https://doi.org/10.1007/978-1-4842-4078-6_23

CHAPTER 23 INTERPRETER PATTERN

Context
i
AbstractExpression
Client [~~~ >
Interpret(Context)
TerminalExpression NonterminalExpression
Interpret(Context) Interpret(Context)

Figure 23-1. Structure of a typical interpreter pattern

The terms are described as follows.

o AbstractExpression: Typically an interface with an interpret method.
You need to pass a context object to this method.

o TerminalExpression: Used for terminal expressions. A terminal
expression does not need other expressions to interpret. These are
basically leaf nodes (i.e., they do not have child nodes) in the data
structure.

e NonterminalExpression: Used for nonterminal expressions.
Also known as AlternationExpression, RepititionExpression, or
SequenceExpression. These are like composites that can contain
both the terminal and nonterminal expressions. When you call
interpret() method on this, you basically call it on all of its children.

e Context: Holds the global information that the interpreter needs.

e Client: Calls the interpret() method. It can optionally build a syntax
tree based on the rules of the language.

390

CHAPTER 23 INTERPRETER PATTERN

Note Aninterpreter is used to process a language with simple rules or grammar.
Ideally, developers do not want to create their own languages. This is the reason
why they seldom use this pattern.

Real-World Example

e A translator who translates a foreign language.

o Consider music notes as grammar, where musicians play the role of

interpreters.

Computer-World Example

e Java compiler interprets the Java source code into byte code that is
understandable by JVM.

o In C#, the source code is converted to MSIL code that is interpreted
by CLR. Upon execution, this MSIL (intermediate code) is converted
to native code (binary executable code) by JIT compiler.

Note In Java, you may also notice the java.util.regex.Pattern class that acts as
an interpreter. You can create an instance of this class by invoking the compile()

method and then you can use a Matcher instance to evaluate a sentence against
the grammar.

lllustration

These are some important steps to implement this pattern.

o Step 1. Define the rules of the language for which you want to build
an interpreter.

o Step 2. Define an abstract class or an interface to represent an
expression. It should contain a method to interpret an expression.

391

CHAPTER 23 INTERPRETER PATTERN

o Step 2A. Identify terminal and nonterminal expressions. For
example, in the upcoming example, IndividualEmployee class is
a terminal expression class.

o Step2B. Create nonterminal expression classes. Each of them
calls interpret method on their children. For example, in the
upcoming example, OrExpression and AndExpression classes are
nonterminal expression classes.

o Step 3. Build the abstract syntax tree using these classes. You can
do this inside the client code or you can create a separate class to
accomplish the task.

e Step 4. A client now uses this tree to interpret a sentence.

o Step 5. Pass the context to the interpreter. It typically has the
sentences that are to be interpreted. An interpreter can do additional
tasks using this context.

In the upcoming program, I use the interpreter pattern as a rule validator. I am
instantiating different employees with their “years of experience” and current grades.
Note the following lines.

new IndividualEmployee(5,"G1");
new IndividualEmployee(10,"G2");
new IndividualEmployee(15,"G3");
new IndividualEmployee(20,"G4");

Employee emp1

Employee emp2
Employee emp3
Employee emp4

For simplicity, four employees with four different grades—G1,G2,G3, and G4—are
considered here.
Also note the context, as follows.

//Minimum Criteria for promoton is:

//The year of experience is minimum 10 yrs. and
//Employee grade should be either G2 or G3
Context context=new Context(10,"G2","G3");

392

CHAPTER 23 INTERPRETER PATTERN

So, you can assume that I want to validate some condition against the context, which
basically tells you that to be promoted, an employee should have a minimum of 10 years

of experience and he/she should be either from the G2 grade or the G3 grade. Once
these expressions are interpreted, you see the output in terms of a boolean value.

One important point to note is that this design pattern does not instruct you how
to build the syntax tree or how to parse the sentences. It gives you freedom on how to
proceed. So, to present a simple scenario, I used an EmployeeBuilder class with a
method called buildExpression() to accomplish my task.

Class Diagram

Figure 23-2 shows the class diagram.

<<Java Class>> <<Java Class>>
] prpreterPatter I (9 EmployeeBuilder
idp2e.interpreter.demo idp2e.interpreter demo

& InterpreterPatternExample() :‘CE royesBuidert)

c . S
(String[]): E : R Erol
@’ main(Strin; \Tcld - @ buildE (Employee, String }Employ
T ~
T
\“‘w.
v \w___l.
<<Java Class>> R""'\..__
..
i \“"x.\ 0.1 <<Java Class>>
jdp2e.interpreter.dema ., o
— <<Java Class>> e, —emp2 ©OrExpression
Pieldeetaadld ® IndividualEmployee <<Java Interface>> Ap2e ke piwinr: demo
o permissibleGrades: List<String> idp2e.interpreter deme OEmployee e — ch‘ = ion(Empk .
N . i & -emp1 M "
@ Context(int String[]) o yearOfExperience: int [~[{ I S e Ipislerce e © interpret{Context)boal
@ getYearofExperience()int o currentGrade: String @ interpret(Context):boolean 0.1
@ getPermissibleGrades():List<String> . . N mp
eclndlwﬁuaIEmpbyueum,Sman -emp ;d .
@ interpret{Context):boolean 0.1 4 -
/
;
. ",
<<Java Class>> <<Java Class>>
(® NotExpression (9 AndExpression
dp2e interprater.dema

[dp2e.interprater.demo

& AndExpression(Empl Employee)

@& NotExpression(Employee)
@ interpret{Context):boolean

@ interpret(Context).boclean

Figure 23-2. Class diagram

CHAPTER 23 INTERPRETER PATTERN

Package Explorer View

Figure 23-3 shows the high-level structure of the program.

2= InterpreterPattern
> B\ JRE System Library [jdk1.8.0_172]
v i jdp2e.interpreter.demo
v [J] InterpreterPatternExamplejava
v QAndExpression
o empl
o emp2
¢ AndExpression(Employee, Employee)
@. interpret(Context) : boolean
v @ Context
o permissibleGrades
o yearofExperience
@ Context(int, String...
@ getPermissibleGrades() : List<String>
@ getYearofExperience() : int
v QEmployee
& interpret(Context) : boolean
v QEmployeeBuilder
@ buildExpression(Employee, String, Employee) : Employee
v QIndividuaIEmployee
o currentGrade
o yearOfExperience
e IndividualEmployee(int, String)
@ interpret(Context) : boolean
v@ InterpreterPatternExample
@ main(String[)) : void
v QNotExpression
o emp
e NotExpression(Employee)
@ interpret(Context) : boolean
v QOrExpression
o empl
o emp2
<3 OrExpression(Employee, Employee)
@ interpret(Context) : boolean

Figure 23-3. Package Explorer view

394

CHAPTER 23 INTERPRETER PATTERN

Implementation
Here is the implementation.
package jdp2e.interpreter.demo;

import java.util.Arraylist;
import java.util.Llist;

interface Employee

{
public boolean interpret(Context context);
}
class IndividualEmployee implements Employee
{

private int yearOfExperience;

private String currentGrade;

public IndividualEmployee(int experience, String grade){
this.yearOfExperience=experience;
this.currentGrade=grade;

}

@0verride

public boolean interpret(Context context)

{
if(this.yearOfExperience>=context.getYearofExperience() && context.
getPermissibleGrades().contains(this.currentGrade))
{

return true;
}
return false;
}
}

395

CHAPTER 23 INTERPRETER PATTERN

class OrExpression implements Employee

{

private Employee emp1;
private Employee emp2;

public OrExpression(Employee empl, Employee emp2)
{
this.emp1
this.emp2

emp1;

emp2;

}

@verride
public boolean interpret(Context context)

{

return empl.interpret(context) || emp2.interpret(context);

}

class AndExpression implements Employee

{

private Employee emp1;
private Employee emp2;

public AndExpression(Employee empl, Employee emp2)

{

this.emp1l = emp1;

this.emp2 = emp2;

}

@verride
public boolean interpret(Context context)

{

return empl.interpret(context) 8& emp2.interpret(context);

396

CHAPTER 23 INTERPRETER PATTERN

class NotExpression implements Employee

{

}

private Employee emp;

public NotExpression(Employee expr)

{
this.emp = expr;
}
@verride
public boolean interpret(Context context)
{
return lemp.interpret(context);
}

class Context

{

private int yearofExperience;
private List<String> permissibleGrades;
public Context(int experience,String... allowedGrades)
{
this.yearofExperience=experience;
this.permissibleGrades=new ArraylList<>();
for(String grade:allowedGrades)

{
permissibleGrades.add(grade);
}
}
public int getYearofExperience()
{
return yearofExperience;
}
public List<String> getPermissibleGrades()
{
return permissibleGrades;
}

397

CHAPTER 23 INTERPRETER PATTERN

class EmployeeBuilder

{
public Employee buildExpression(Employee emp1l, String operator,
Employee emp2)
{

//Whatever the input,converting it to lowarcase
switch(operator.toLowerCase())
{
case "or":
return new OrExpression(empl,emp2);
case "and":
return new AndExpression(empl,emp2);
case "not":
return new NotExpression(empl);
default:
System.out.println("Only AND,OR and NOT operators are allowed
at present");
return null;

}

public class InterpreterPatternExample {

public static void main(String[] args) {
System.out.println("***Interpreter Pattern Demo***\n");

//Minimum Criteria for promoton is:

//The year of experience is minimum 10 yrs. and
//Employee grade should be either G2 or G3
Context context=new Context(10,"G2","G3");

//Different employees with grades
Employee empl
Employee emp2
Employee emp3
Employee emp4

new IndividualEmployee(5,"G1");
new IndividualEmployee(10,"G2");
new IndividualEmployee(15,"G3");

new IndividualEmployee(20,"G4");

EmployeeBuilder builder=new EmployeeBuilder();
398

CHAPTER 23 INTERPRETER PATTERN

System.out.println("emp1 is eligible for promotion.
interpret(context));
System.out.println("emp2 is eligible for promotion.
interpret(context));
System.out.println("emp3 is eligible for promotion.
interpret(context));
System.out.println("emp4 is eligible for promotion.
interpret(context));

System.out.println("Is either empl or emp3 is eligible
for promotion?” +builder.buildExpression(emp1,"0r",emp3).
interpret(context));

System.out.println("Is both emp2 and emp4 are eligible for

promotion? ?" + builder.buildExpression(emp2,”And",emp4).
interpret(context));

System.out.println("The statement 'emp3 is NOT eligible for

+ empl.

+ emp2.

+ emp3.

+ emp4.

promotion' is true? " + builder.buildExpression(emp3, "Not",null).

interpret(context));
//Invalid input expression

//System.out.println("Is either empl or emp3 is eligible for

promotion?" +builder.buildExpression(emp1,"Wrong",emp3).
interpret(context));

Output

Here is the output.
Interpreter Pattern Demo

empl is eligible for promotion. false

emp2 is eligible for promotion. true

emp3 is eligible for promotion. true

emp4 is eligible for promotion. false

Is either empl or emp3 is eligible for promotion?true

Is both emp2 and emp4 are eligible for promotion? ?false

The statement 'emp3 is NOT eligible for promotion' is true? false

399

CHAPTER 23 INTERPRETER PATTERN

Analysis

You can see that each of the composite expressions are invoking the interpret()
method on all of its children.

Modified lllustration

You have just seen a simple example of the interpreter pattern. From this
implementation, it may appear to you that you have handled some easy and
straightforward expressions. So, lets handle some complex rules or expressions in the
modified implementation.

Modified Class Diagram

In the modified implementation, the key changes are made only in the EmployeeBuilder
class. So, let’s have a quick look of the class diagram for this class only (see Figure 23-4).

<<Java Class>>
(9 EmployeeBuilder

jdp2e.interpreter.modified.demo

,lcEmployeeBuilder()
@ buildTree(Employee,Employee,Employee,Employee):Employee

@ buildTreeBasedOnRule2(Employee, Employee, Employee):Employee

Figure 23-4. Modified Class diagram for EmployeeBuilder class

Modified Package Explorer View

In the modified implementation, the key changes are reflected only in the
EmployeeBuilder class. So, in this section I expanded this class only. Figure 23-5 shows
the modified Package Explorer view.

400

CHAPTER 23 INTERPRETER PATTERN

4 jdp2e.interpreter.modified.demo
v |J] ModifiedInterpreterPatternExample.java
: QAndExpression
J QContext
> Q Employee
v@Q EmployeeBuilder
@ buildTree(Employee, Employee, Employee, Employee) : Employee
@ buildTreeBasedOnRule2(Employee, Employee, Employee) : Employee
: andividualEmployee
; (9.ModifiedInterpreterPatternExampIe
QNotExpression
: QOrExpression

Figure 23-5. Modified Package Explorer View

Modified Implementation

Here is the modified implementation. Key changes are shown in bold.
package jdp2e.interpreter.modified.demo;

import java.util.Arraylist;
import java.util.Llist;

interface Employee

{
public boolean interpret(Context context);
}
class IndividualEmployee implements Employee
{

private int yearOfExperience;
private String currentGrade;

public IndividualEmployee(int experience, String grade){
this.yearOfExperience=experience;
this.currentGrade=grade;

401

CHAPTER 23 INTERPRETER PATTERN

@verride

public boolean interpret(Context context)

{
if(this.yearOfExperience>=context.getYearofExperience() && context.
getPermissibleGrades().contains(this.currentGrade))
{

return true;
}
return false;
}
}
class OrExpression implements Employee
{

private Employee emp1;

private Employee emp2;

public OrExpression(Employee empl, Employee emp2)

{
this.emp1l = empi;
this.emp2 = emp2;

}

@verride

public boolean interpret(Context context)

{
return empl.interpret(context) || emp2.interpret(context);

}

}
class AndExpression implements Employee
{

private Employee emp1;
private Employee emp2;

public AndExpression(Employee empl, Employee emp2)

{

402

CHAPTER 23 INTERPRETER PATTERN

this.emp1l = empi;

this.emp2

emp2;

}

@Override
public boolean interpret(Context context)

{

return empl.interpret(context) 8& emp2.interpret(context);

}

class NotExpression implements Employee

{

private Employee emp;

public NotExpression(Employee expr)
{
this.emp = expr;

}

@0verride
public boolean interpret(Context context)

{

return lemp.interpret(context);

}

class Context
{
private int yearofExperience;
private List<String> permissibleGrades;
public Context(int experience,String... allowedGrades)
{
this.yearofExperience=experience;
this.permissibleGrades=new ArraylList<>();
for(String grade:allowedGrades)
{

permissibleGrades.add(grade);

403

CHAPTER 23 INTERPRETER PATTERN

}
public int getYearofExperience()
{
return yearofExperience;
}
public List<String> getPermissibleGrades()
{
return permissibleGrades;
}
}
class EmployeeBuilder
{

// Building the tree
//Complex Rule-1: empl and (emp2 or (emp3 or emp4))

public Employee buildTree(Employee empi, Employee emp2,Employee
emp3,Employee emp4)

{
//emp3 or empsq
Employee firstPhase=new OrExpression(emp3,emp4);
//emp2 or (emp3 or emp4)
Employee secondPhase=new OrExpression(emp2,firstPhase);
//emp1 and (emp2 or (emp3 or emp4))
Employee finalPhase=new AndExpression(emp1,secondPhase);
return finalPhase;
}

//Complex Rule-2: empl or (emp2 and (not emp3))
public Employee buildTreeBasedOnRule2(Employee empi, Employee
emp2,Employee emp3)
{
//Not emp3
Employee firstPhase=new NotExpression(emp3);
//emp2 oxr (not emp3)
Employee secondPhase=new AndExpression(emp2,firstPhase);

404

CHAPTER 23 INTERPRETER PATTERN

//emp1 and (emp2 or (not emp3))
Employee finalPhase=new OrExpression(empi,secondPhase);
return finalPhase;

}
public class ModifiedInterpreterPatternExample {

public static void main(String[] args) {
System.out.println("***Modified Interpreter Pattern Demo***\n");

//Minimum Criteria for promoton is:

//The year of experience is minimum 10 yrs. and
//Employee grade should be either G2 or G3
Context context=new Context(10,"G2","G3");
//Different Employees with grades

Employee empl = new IndividualEmployee(5,"G1");
Employee emp2 = new IndividualEmployee(10,"G2");
Employee emp3 = new IndividualEmployee(15,"G3");
Employee emp4 = new IndividualEmployee(20,"G4");

EmployeeBuilder builder=new EmployeeBuilder();

//Nalidating the 1st complex rule

System.out.println("Is emp1 and any of emp2,emp3, empq is eligible
for promotion?" +builder.buildTree(emp1,emp2, emp3,empq).
intexrpret(context));

System.out.println("Is emp2 and any of empi,emp3, empq is eligible
for promotion?" +builder.buildTree(emp2,emp1, emp3,empq).
interpret(context));

System.out.println("Is emp3 and any of empi,emp2, emp3 is eligible
for promotion?" +builder.buildTree(emp3,empi, emp2,empq).
interpret(context));

405

CHAPTER 23 INTERPRETER PATTERN

System.out.println("Is emp4 and any of empi,emp2, emp3 is eligible
for promotion?" +builder.buildTree(emp4q,emp1, emp2,emp3).
interpret(context));

System.out.println("");

//Nalidating the 2nd complex rule

System.out.println("Is emp1 or (emp2 but not emp3) is eligible
for promotion?" +builder.buildTreeBasedOnRule2(emp1, emp2, emp3).
interpret(context));

System.out.println("Is emp2 or (emp3 but not emp4) is eligible
for promotion?" +builder.buildTreeBasedOnRule2(emp2, emp3, emp4).
interpret(context));

Modified Output

Here is the modified output.
Modified Interpreter Pattern Demo

Is emp1l and any of emp2,emp3, emp4 is eligible for promotion?false
Is emp2 and any of empi,emp3, emp4 is eligible for promotion?true
Is emp3 and any of empl,emp2, emp4 is eligible for promotion?true
Is emp4 and any of empi,emp2, emp3 is eligible for promotion?false

Is empl or (emp2 but not emp3) is eligible for promotion?false
Is emp2 or (emp3 but not emp4) is eligible for promotion?true

Analysis

Now you have an idea of how to handle complex rules that follow the approach shown

by using an interpreter pattern.

406

CHAPTER 23 INTERPRETER PATTERN

Q&A Session

1.

3.

When should I use this pattern?

In daily programming, it is not needed very much. Though

in some rare situations, you may need to work with your own
programming language to define specific protocols. In a situation
like this, this pattern may become handy. But before you proceed,
you must ask yourself about the return on investment (ROI).

What are the advantages of using an interpreter design
pattern?

e You are very much involved in the process of how to define
grammar for your language and how to represent and interpret
those sentences. You can change and extend your grammar also.

¢ You have full freedom over how to interpret these expressions.

What are the challenges associated with using interpreter
design patterns?

I believe that the amount of work is the biggest concern. Also
maintaining complex grammar becomes tricky because you
may need to create (and maintain) separate classes to deal with
different rules.

407

PART I

Additional Design
Patterns

CHAPTER 24

Simple Factory Pattern

This chapter covers the simple factory pattern.

Intent

Create an object without exposing the instantiation logic to the client.

Concept

In object-oriented programming, a factory is a special kind of object that can create
other objects. A factory can be invoked in many ways, but most often, it uses a method
that can return objects with varying prototypes. Any subroutine that can help create
these new objects is considered a factory. The ultimate purpose of using a factory
method is to abstract the object creational mechanism (or process) from the consumers
of the application.

Real-World Example

Consider a car manufacturing company that manufactures different models of a car.
They must have a factory with different production units. Some of these units can
produce the parts that are common to all models, while other units are dedicated to
produce the model-specific parts. When they make the final product, they assemble the
model-specific parts with the common parts. From a client’s point of view, a car is built
from a car factory; the client does not know how the car is built. But if you investigate
further, you see that based on the model of the car, a production unit of the factory varies
the parts. For example, a particular car model can support a manual gearbox only and

411
© Vaskaran Sarcar 2019

V. Sarcar, Java Design Patterns, https://doi.org/10.1007/978-1-4842-4078-6_24

CHAPTER 24 SIMPLE FACTORY PATTERN

another model can support both the automatic and manual gearbox. So, based on the
model of the car, the car factory constructs the particular gearbox for the car.

Consider a simpler example. When a kid demands a toy from his/her parent, the
child does not know how the parent will fulfill the demand. The parent, in this case, is
considered a factory for their small child. Now think from the parent’s point of view. The
parent can make the toy himself/herself or purchase a toy from a shop to make their kid

happy.

Computer-World example

The simple factory pattern is very common to software applications, but before we
proceed further, you must remember these points.

o Asimple factory is not treated as a standard design pattern in the
GoF’s famous book, but the approach is common to any application
that you write where you want to separate the code that varies a lot
from the part of code that does not vary. It is assumed that you try to
follow this approach in any application you write.

e Asimple factory is considered the simplest form of factory method
patterns (or abstract factory patterns). So, you can assume that any
application that follows either the factory method pattern or the
abstract factory pattern, also supports the concept of simple factory
pattern’s design goals.

Note The static getinstance()method of the java.text. NumberFormat class is an
example of this category.

Let’s follow the implementation in which I discuss this pattern in a common use

case.

412

CHAPTER 24 SIMPLE FACTORY PATTERN

lllustration

The following are the important characteristics of the following implementation.

o In this example, there are two types of animals: dogs and tigers. The
object creational process depends on users’ input.

o Tassume that each of them can speak and they prefer to perform
some actions.

o SimpleFactory is the factory class and simpleFactory (note that
the “s” is not in caps) is an object of the class. In the client code
(SimpleFactoryPatternExample class), you see the following line.

preferredType = simpleFactory.createAnimal();

This means that to get a preferredType object, you need to invoke the
createAnimal() method of the simpleFactory object. So, using this approach, you are
not directly using a “new” operator in the client code to get an object.

o Thave separated the code that varies from the code that are least
likely to vary. This approach helps you remove tight coupling in the
system. (How? Follow the “Q&A Session” section.)

Note In some applications, you may notice a slight variation of this pattern where
use of parameterized constructors is suggested. So, in those applications, to get

a preferredType object, you may need to use a line of code similar to this line:
preferredType=simpleFactory.createAnimal(“Tiger”).

Class Diagram

Figure 24-1 shows a class diagram for the simple factory pattern.

413

CHAPTER 24 SIMPLE FACTORY PATTERN

<<Java Class>>
(9 SimpleFactoryPatternExample
jdp2e.simplefactory.demo

‘CSimpleFactoryPatternExampIe()
esmain(String[]):void

%
<<Java Class>>
(9 SimpleFactory
jdp2e.simplefactory.demo

lCSimpleFactory()

i createAnimal():Animal |-,

N

«JavaClass>> | =~ T, <<Java Class>>
@ Tiger . (®Dog
jdp2e.simplefactory.demo jdp2e.simplefactory.demo
4 Tiger() 4 Dog()
& speak():void & speak():void
@ preferredAction():void @ preferredAction():void

Figure 24-1. Class diagram

Package Explorer View

Figure 24-2 shows the high-level structure of the program.

414

CHAPTER 24 SIMPLE FACTORY PATTERN

= SimpleFactoryPattern
> =\ JRE System Library [jre1.8.0_172]
v # jdp2e.simplefactory.demo
v [J] SimpleFactoryPatternExample.java
> @ Animal
v (al[)og
@ preferredAction() : void
@ speak() : void
v QSimpleFactor‘y
@ createAnimal() : Animal
v (.a..SimpIeFactoryPatternExample
& main(String[]) : void
v (alTiger
@ preferredAction() : void
@ speak() : void

Figure 24-2. Package Explorer view

Implementation

Here’s the implementation.

package jdp2e.simplefactory.demo;
import java.util.Scanner;//Available Java5 onwards

interface Animal

{
void speak();
void preferredAction();
}
class Dog implements Animal
{
public void speak()
{
System.out.println("Dog says: Bow-Wow.");
}

415

CHAPTER 24 SIMPLE FACTORY PATTERN

public void preferredAction()

{
System.out.println ("Dogs prefer barking...");
}
}
class Tiger implements Animal
{
public void speak()
{
System.out.println("Tiger says: Halum.");
}
public void preferredAction()
{
System.out.println("Tigers prefer hunting...");
}
}
class SimpleFactory
{

public Animal createAnimal()

{
Animal intendedAnimal=null;
System.out.println("Enter your choice(0 for Dog, 1 for Tiger)");
/* To suppress the warning message:Resource leak:'input' is never
closed. So,the following line is optional in this case*/
@SuppressWarnings("resource")
Scanner input=new Scanner(System.in);
int choice=Integer.parseInt(input.nextLine());
System.out.println("You have entered :"+ choice);
switch (choice)

{

case 0:
intendedAnimal = new Dog();
break;

416

CHAPTER 24 SIMPLE FACTORY PATTERN

case 1:
intendedAnimal = new Tiger();
break;

default:
System.out.println("You must enter either 0 or 1");
//We'll throw a runtime exception for any other choices.
throw new IllegalArgumentException(" Your choice tries to
create an unknown Animal");

}

return intendedAnimal;

}

//A client is interested to get an animal who can speak and perform an
//action.
class SimpleFactoryPatternExample
{
public static void main(String[] args) {
System.out.println("*** Simple Factory Pattern Demo***\n");
Animal preferredType=null;
SimpleFactory simpleFactory = new SimpleFactory();
// The code that will vary based on users preference.
preferredType = simpleFactory.createAnimal();
//The codes that do not change frequently.

//These animals can speak and prefer to do some specific actions.

preferredType.speak();
preferredType.preferredAction();

Output

Here’s the output.

417

CHAPTER 24 SIMPLE FACTORY PATTERN

Case1. User input:0
*** Simple Factory Pattern Demo***

Enter your choice(0 for Dog, 1 for Tiger)
0

You have entered :0

Dog says: Bow-Wow.

Dogs prefer barking...

Case2. User input:1
*** Simple Factory Pattern Demo***

Enter your choice(0 for Dog, 1 for Tiger)
1

You have entered :1

Tiger says: Halum.

Tigers prefer hunting...

Case3. An unwanted user input:2
*** Simple Factory Pattern Demo***

Enter your choice(0 for Dog, 1 for Tiger)

2

You have entered :2

You must enter either 0 or 1Exception in thread "main"
java.lang.IllegalArgumentException: Your choice tries to create an unknown

Animal
at jdp2e.simplefactory.demo.SimpleFactory.createAnimal(SimpleFactoryPat
ternExample.java:54)

at jdp2e.simplefactory.demo.SimpleFactoryPatternExample.main(SimpleFact
oryPatternExample.java:68)

418

CHAPTER 24 SIMPLE FACTORY PATTERN

Q&A Session

1. In this example, the clients are delegating the objects’ creation
through the SimpleFactory. But instead, they could directly
create the objects with the “new” operator. Is this correct?

No. These are the key reasons behind the preceding design.

e Animportant object-oriented design principle is to separate the
part of your code that is most likely to change from the rest.

« In this case, only “the objects creational part” varies. I assume
that these animals must speak and perform actions, and I do
not need to vary that portion of code inside the client. So, in the
future, if you need to modify the creational process, you need to
change only the createAnimal() method of SimpleFactory class.
This client code is unaffected due to those modifications.

e “How are you creating objects?” is hidden in the client code. This
kind of abstraction promotes security.

e This approach can help you avoid lots of if/else blocks (or
switch statements) inside the client code because they make your
code look clumsy.

2. What are the challenges associated with this pattern?

e Deciding which object to instantiate becomes complex over time.
In those cases, you should prefer the factory method pattern.

e Ifyouwantto add a new animal or delete an existing one, you
need to modify the createAnimal() method of the factory class.
This approach clearly violates the open-closed principle (which
basically says that your code should be open for extension but
closed for modification) of SOLID principles.

Note SOLID principles were promoted by Robert C. Martin. You can learn about
them at https://en.wikipedia.org/wiki/SOLID.

419

https://en.wikipedia.org/wiki/SOLID

CHAPTER 24 SIMPLE FACTORY PATTERN

420

3.

Ilearned that programming with an abstract class or
interface is always a better practice. So, to make a better
implementation, you could write something like this:

abstract class ISimpleFactory

{
public abstract IAnimal createAnimal() throws IOException;
}
class SimpleFactory extends ISimpleFactory
{
//rest of the code
}
Is this correct?

Yes. Programming with the abstract class or an interface is always
a better practice. This approach can prevent you from future
changes because any newly added classes can simply implement
the interface and settle down in the architecture through
polymorphism. But if you solely depend on concrete classes, you
need to change your code when you want to integrate a new class
in the architecture, and in such a case, you violate the rule that
says that your code should be closed for modifications.

So, your understanding is correct. You could use such a construct
to make it a better program. But ultimately, you learn the factory
method pattern (see Chapter 4), where you need to defer the
instantiation process to subclasses. So, you are advised to write
programs with an abstract class or an interface in such a case.

Can you make the factory class (SimpleFactory) static?

No. In Java, you are not allowed to tag the word static with a
top-level class. In other words, by design, the compiler always
complains about the top-level static classes in Java.

CHAPTER 25

Null Object Pattern

Wikipedia says, “In object-oriented computer programming, a null object is an object
with no referenced value or with defined neutral (null) behavior. The null object design
pattern describes the uses of such objects and their behavior (or lack thereof). It was first
published in the Pattern Languages of Program Design book series.” The Hillside Group
sponsors Pattern Languages of Programs (PLoP) annual conferences.

The pattern can implement a “do-nothing” relationship or it can provide a default
behavior when an application encounter with a null object instead of a real object.
In simple words, the core aim is to make a better solution by avoiding “null objects
check” or “null collaborations check” through if blocks. Using this pattern, you try to
encapsulate the absence of an object by providing a default behavior that does nothing.

Concept

The notable characteristic of this pattern is that you do not need to do anything (or store
nothing) when you invoke an operation on a null object. Consider the following program
and the corresponding output. Let’s try to understand the problems associated with

the following program segment, analyze the probable solutions and at the end of this
chapter, you see a better implementation that uses this design pattern.

In the following implementation, let’s assume that you have two types of vehicles:
bus and train. A client can opt for a bus or a train object through different input, like “a”
or “b” Let’s further assume that the application considers these two as the valid input
only.

421
© Vaskaran Sarcar 2019

V. Sarcar, Java Design Patterns, https://doi.org/10.1007/978-1-4842-4078-6_25

CHAPTER 25 NULL OBJECT PATTERN

A Faulty Program

Here is a faulty program.
package jdp2e.nullobject.context.demo;
import java.util.Scanner;

interface Vehicle

{

void travel();

}

class Bus implements Vehicle

{
public static int busCount = 0;
public Bus()
{

busCount++;

}

@verride
public void travel()

{

System.out.println("Let us travel with a bus");

}

class Train implements Vehicle

{

public static int trainCount = 0;
public Train()

{

trainCount++;

}

@Override
public void travel()

{

System.out.println("Let us travel with a train");

422

CHAPTER 25 NULL OBJECT PATTERN

public class NeedForNullObjectPattern {

public static void main(String[] args) {
System.out.println("***Need for Null Object Pattern Demo***\n");
String input = null;
int totalObjects = 0;

while (true)

{

System.out.println("Enter your choice(Type 'a' for Bus, 'b’
for Train) ");

Scanner scanner=new Scanner(System.in);

input = scanner.nextlLine();

Vehicle vehicle = null;

switch (input.tolLowerCase())

{

case "a":
vehicle = new Bus();
break;

case "b":
vehicle = new Train();
break;

}

totalObjects = Bus.busCount + Train.trainCount;

vehicle.travel();
System.out.println("Total number of objects created in the
system is : "+ totalObjects);

423

CHAPTER 25 NULL OBJECT PATTERN

Output with Valid Inputs
Need for Null Object Pattern Demo

Enter your choice(Type 'a' for Bus, 'b' for Train)
a

Let us travel with a bus

Total number of objects created in the system is : 1
Enter your choice(Type 'a' for Bus, 'b' for Train)
b

Let us travel with a train

Total number of objects created in the system is : 2
Enter your choice(Type 'a' for Bus, 'b' for Train)
b

Let us travel with a train

Total number of objects created in the system is : 3

Enter your choice(Type 'a' for Bus, 'b' for Train)

Analysis with an Unwanted Input

Let’s assume that by mistake, the user has supplied a different character ‘d’ now as
shown below:

Need for Null Object Pattern Demo

Enter your choice(Type 'a' for Bus, 'b' for Train)
a

Let us travel with a bus

Total number of objects created in the system is : 1
Enter your choice(Type 'a' for Bus, 'b' for Train)
b

Let us travel with a train

Total number of objects created in the system is : 2
Enter your choice(Type 'a' for Bus, 'b' for Train)
b

424

CHAPTER 25 NULL OBJECT PATTERN

Let us travel with a train

Total number of objects created in the system is : 3
Enter your choice(Type 'a' for Bus, 'b' for Train)
d

Encountered Exception

This time, you receive the System.NullPointerException runtime exception.

Enter your choice(Type 'a' for Bus, 'b' for Train)
d
Exception in thread "main" java.lang.NullPointerException
at jdp2e.nullobject.context.demo.NeedFoxrNullObjectPattern.

main(NeedForNullObjectPattern.java:61)

Immediate Remedy

The immediate remedy that may come in your mind is to do a null check before you
invoke the operation as follows:

//A immediate remedy
if(vehicle !=null)

{

vehicle.travel();
}
Analysis

The prior solution works in this case. But think of an enterprise application. If you need
to do null checks for each possible scenario, you may need to have a larger number of if
conditions to evaluate each time you proceed, and this approach makes your code dirty.
At the same time, you may notice the side effects of a difficult maintenance also. The
concept of null object pattern is useful in similar cases.

425

CHAPTER 25 NULL OBJECT PATTERN

Real-World Example

Let’s consider a real-life scenario with a washing machine. A washing machine can wash
properly if the door is closed and there is a smooth water supply without any internal
leakage. But suppose, in one occasion, you forget to close the door or stopped the water
supply in between. The washing machine should not damage itself in those situations.

It can beep some alarm to draw your attention and indicate that there is no water at
present or the door is still open.

Computer-World Example

Assume that in a client server architecture, the server does some kinds of processing
based on the client input. The server should be intelligent enough, so that it does not
initiate any calculation unnecessarily. Prior processing the input, it may want to do a
cross verification to ensure whether it needs to start the process at all or it should ignore
an invalid input. You may notice the use of the command pattern with a null object
pattern in such a case.

Basically, in an enterprise application, you can avoid a large number of null checks
and if/else blocks using this design pattern. The following implementation can give
you a nice overview about this pattern.

Note In Java, you may have seen the use of various adapter classes in java.
awt.event package. These classes can be thought closer to null object pattern.

For example, consider the MouseMotionAdapter class. It is an abstract class

but contains methods with empty bodies like mouseDragged(MouseEvent e){},
mouseMoved(MouseEvent e){}. But since the adapter class is tagged with abstract
keyword, you cannot directly create objects of the class.

lllustration

As before, in the following implementation, let’s assume that you have two types of
vehicles: bus and train. A client can opt for a bus or a train through different input: “a”
or “b” If by mistake, the user supplies any invalid data (i.e., any input other than “a”

426

CHAPTER 25

NULL OBJECT PATTERN

or “b” in this case), he cannot travel at all. The application ignores an invalid input by

doing nothing using a NullVehicle object. In the following example, I'll not create these

NullVehicle objects repeatedly. Once it is created, I'll simply reuse that object.

Class Diagram

Figure 25-1 shows the class diagram. (The concept is implemented with a singleton

pattern, so that, you can avoid unnecessary object creations).

<<Java Class>>

(9 Bus

jdp2e.nullobject.demo

o°busCount: int

@ Bus()
© travel():void

<<Java Interface>>
€3 Vehicle

jdp2e.nullobject.demo

© travel():void

n

A

.,

<<Java Class>>

(9 Train

jdp2e.nullobject.demo

ostrainCount: int

ecTrain()
@ travel():void

A

i

<<Java Class>>

(9 NullObjectPatternExample

jdp2e.nullobject.demo

ecNuIIObjectPatternExample()
@ main(String[]):void

Figure 25-1. Class diagram

-'{'

<<Java Class>>
(9 NullVehicle
jdp2e.nullobject.demo

o°nullVehicleCount: int

& NullVehicle()

95 etinstance():NullVehicle

© travel():void

-instance

\jO..1

427

CHAPTER 25 NULL OBJECT PATTERN

Package Explorer View

Figure 25-2 shows the high-level structure of the program.

= NullObjectPattern
> B\ JRE System Library [jdk1.8.0 172]
> ## jdp2e.nullobject.context.demo
v {# jdp2e.nullobject.demo
v [J] NullObjectPatternExample.java
v QBus
o® busCount
@ Bus()
@ travel() : void
v QNuIIObjectPatternExampIe
@ main(String(]) : void
v QNUIIVehicIe
&’ instance
©® nullVehicleCount
& getinstance() : NullVehicle
B NullVehicle()
@ travel() : void
v QTrain
¢® trainCount
@ Train()
@ travel() : void
v O‘AVehicIe
¢ travel() : void

Figure 25-2. Package Explorer view

428

CHAPTER 25

Implementation

Here’s the implementation.

package jdp2e.nullobject.demo;
import java.util.Scanner;

interface Vehicle

{

void travel();

}

class Bus implements Vehicle

{
public static int busCount = 0;
public Bus()
{

busCount++;
}
@verride
public void travel()
{

System.out.println("Let us travel with a bus");

}

class Train implements Vehicle

{
public static int trainCount = 0;
public Train()
{

trainCount++;

}

@verride
public void travel()

{

System.out.println("Let us travel with a train");

NULL OBJECT PATTERN

429

CHAPTER 25 NULL OBJECT PATTERN

class NullVehicle implements Vehicle

{

//Early initialization

private static NullVehicle instance = new NullVehicle();

public static int nullVehicleCount;

//Making constructor private to prevent the use of "new"

private NullVehicle()

{
nullVehicleCount++;
System.out.println(" A null vehicle object created.Currently null
vehicle count is : "+nullVehicleCount);

}

// Global point of access.

public static NullVehicle getInstance()

{
//System.out.println("We already have an instance now. Use it.");
return instance;

}

@0verride

public void travel()

{
//Do Nothing

}

}

public class NullObjectPatternExample {

public static void main(String[] args) {

System.out.println("***Null Object Pattern Demo***\n");

String input = "dummyInput";

int totalObjects = 0;

Scanner scanner;

while(!input.toLowerCase().contains("exit"))

{
System.out.println("Enter your choice(Type 'a' for Bus, 'b’
for Train.Type 'exit' to close the application.) ");
scanner=new Scanner(System.in);

430

CHAPTER 25 NULL OBJECT PATTERN

if(scanner.hasNextLine())

{

input = scanner.nextlLine();

}

Vehicle vehicle = null;
switch (input.tolLowerCase())

{
case "a":
vehicle = new Bus();
break;
case "b":
vehicle = new Train();
break;
case "exit":
System.out.println("Closing the application");
vehicle = NullVehicle.getInstance();
break;
default:
System.out.println("Invalid input");
vehicle = NullVehicle.getInstance();
}

totalObjects = Bus.busCount + Train.trainCount+NullVehicle.null
VehicleCount;

//A immediate remedy

//if(vehicle !=null)

/74

vehicle.travel();

/1}

System.out.println("Total number of objects created in the
system is : "+ totalObjects);

431

CHAPTER 25 NULL OBJECT PATTERN

Output

Here’s the output.

Null Object Pattern Demo

Enter your choice(Type 'a' for Bus, 'b' for Train.Type 'exit' to

application.)
a

A null vehicle object created.Currently null vehicle count is :

Let us travel with a bus

Total number of objects created
Enter your choice(Type 'a' for
application.)

b

Let us travel with a train
Total number of objects created
Enter your choice(Type 'a' for
application.)

c

Invalid input

Total number of objects created
Enter your choice(Type 'a' for
application.)

dfh

Invalid input

Total number of objects created
Enter your choice(Type 'a' for
application.)

exit

Closing the application

Total number of objects created

432

in the system is : 2
Bus, 'b' for Train.Type

in the system is : 3
Bus, 'b' for Train.Type

in the system is : 3
Bus, 'b' for Train.Type

in the system is : 3
Bus, 'b" for Train.Type

in the system is : 3

'exit' to

'exit' to

'exit' to

'exit' to

close the

close the

close the

close the

close the

CHAPTER 25 NULL OBJECT PATTERN

Analysis

Invalid input and their effects are shown in bold.

Apart from the initial case, notice that object count has not increased
due to null vehicle objects or invalid input.

I did not perform any null check this time (notice the commented
line in the following segment of code).

//A immediate remedy
//if(vehicle !=null)
//{

vehicle.travel();
/1}

This time program execution is not interrupted due to the invalid
user input.

Q&A Session

1.

At the beginning, I see that an additional object is created. Is it
intentional?

To save memory, I followed a singleton design pattern mechanism
that supports early initialization in the structure of the NullVehicle
class. I do not want to create a NullVehicle object for each invalid
input. It is very likely that the application may need to deal with a
larger number of invalid input. If you do not guard this situation,

a large number of NullVehicle objects reside in the system (which
are basically useless) and those occupy more memory. As a result,
you may notice some typical side effects (for example, the system
becomes slow, etc.).

433

CHAPTER 25 NULL OBJECT PATTERN

434

2. To implement a simple null object pattern, I can ignore

different object counters(that used in the prior example) and
reduce lots of code. Is this correct?

Yes. Ideally, consider the following code segment.

//Another context

List<Vehicle> vehiclelList=new ArraylList<Vehicle>();
vehiclelist.add(new Bus());

vehiclelist.add(new Train());
vehiclelist.add(null);

for(Vehicle vehicle : vehiclelist)

{

vehicle.travel();

}

You cannot loop through this code because you encounter the
java.lang.NullPointerException

Note a class like the following.

class NullVehicle implements Vehicle

{
@verride
public void travel()
{
//Do nothing
}
}
And you code like this:

//Another context discussed in Q&A session
List<Vehicle> vehiclelList=new ArraylList<Vehicle>();
vehiclelist.add(new Bus());

vehiclelist.add(new Train());
//vehiclelist.add(null);

vehiclelist.add(new NullVehicle());

CHAPTER 25 NULL OBJECT PATTERN

for(Vehicle vehicle : vehiclelist)

{

vehicle.travel();

}

This time you can loop through smoothly. So, remember that the

following structure prior to implementing a null object pattern

(see Figure 25-3).

Client

<<uses>>
"""""""""""""" | AbstractClass

or

Interface

+operation():void

NullClass | __| operation
ConcreteClass //Do nothing
+operation():void

+operation():void

Figure 25-3. The basic structure of a null object pattern

3. When should I use this pattern?

The pattern is useful if you do not want to encounter with a
NullPointerException in Java in some typical scenarios.

(For example, if by mistake, you try to invoke a method of a null
object.)

You can ignore lots of “null checks” in your code.

Absence of these null checks make your code cleaner and easily
maintainable.

435

CHAPTER 25

436

NULL OBJECT PATTERN

4. What are the challenges associated with null object patterns?

In some cases, you may want to get closure to the root cause

of failure. So, if you throw a NullPointerException that makes
more sense to you, you can always handle those exceptions in a
try/catchorinatry/catch/finally block and update the log
information accordingly.

The null object pattern basically helps us to implement a default
behavior when you unconsciously want to deal with an object
that is not present at all. But this approach may not suite every
possible object in a system.

Incorrect implementation of a null object pattern can suppress
true bags that may appear as normal in your program execution.

Creating a proper null object in every possible scenario may not
be easy. In some classes, this may cause a change that influences
the class methods.

5. Null objects work like proxies. Is this correct?

No. In general, proxies act on real objects at some point of time

and they may also provide some behavior. But a null object should

not do any such thing.

6. The null object pattern is always associated with

NullPointerException. Is this correct?

The concept is same, but the exception name can be different or

language specific. For example, in Java, you are using it to guard

java.lang.NullPointerException but in a language like C#, you may

use this pattern to guard System.NullReferenceException.

CHAPTER 26

MVC Pattern

Model-View-Controller (MVC) is an architectural pattern.

The use of this pattern is commonly seen in web applications or when we develop
powerful user interfaces. But it is important to note that Trygve Reenskaug first
described MVC in 1979 in a paper titled, “Applications Programming in Smalltalk-
80TM: How to Use Model-View-Controller,” which was before the World Wide Web era.
At that time, there was no concept of web applications. But modern-day applications
can be seen as an adaptation of that original concept. It is important to note that some
developers believe that it is not a true design pattern, instead, they prefer to call it “MVC
architecture.”

Here you separate the user interface logic from the business logic and decouple
the major components in such a way that they can be reused efficiently. This
approach also promotes parallel development. One of the best rubrics for MVC is
“We need SMART models, THIN controllers, and DUMB views.” (http://wiki.c2.com/
?ModelViewController)

Concept

From this introduction, it is apparent that the pattern consists of the three major
components: Model, View, and Controller. Controller is placed between View and
Model in such a way that Model and View can communicate to each other only
through Controller. Here you separate the mechanism of how data is displayed from
the mechanism of how the data is manipulated. Figure 26-1 shows a typical MVC
architecture.

437
© Vaskaran Sarcar 2019

V. Sarcar, Java Design Patterns, https://doi.org/10.1007/978-1-4842-4078-6_26

http://wiki.c2.com/?ModelViewController
http://wiki.c2.com/?ModelViewController

CHAPTER 26 MVC PATTERN

89

Figure 26-1. A typical MVC architecture

Key Points to Remember

The following are brief descriptions of the key components in this pattern.

o Viewrepresents the output. It is a presentation layer. Think of it as a user
interface/GUL You can design it with various technologies. For example,
in a .NET application, you can use HTML, CSS, WPE and so forth, and
for a Java application, you can use AWT, Swing, JSE JavaFX, and so forth.

e Modelis the brain of your application. It manages the data and the
business logic. It knows how to store and manage (or manipulate) the
data, and how to handle the requests that come from controller. But this
component is separated from the View component. A typical example is
a database, a file system, or similar kinds of storage. It can be designed
with JavaBeans, Oracle, SQL Server, DB2, Hadoop, MySQL, and so forth.

e Controller is the intermediary that accepts users input from the
View component and passes the request to the model. When it gets
aresponse from the model, it passes the data to the view. It can be
designed with C#.NET, ASP.NET, VB.NET, Core Java, JSP, servlets,
PHP, Ruby, Python, and so forth.

There are various implementations of this architecture in different applications.
Some of them are as follows:

e You can have multiple views.
e Views can pass runtime values (e.g., using JavaScript) to controllers.

¢ Your controller can validate the user’s input.

438

CHAPTER 26 MVC PATTERN

e Your controller can receive input in various ways. For example, it can
get input from a web request via a URL, or you can pass the input by
pressing a Submit button on a form.

o Insome applications, Model components can update the View
component.

Basically, you need to use this pattern to support your own needs. Figure 26-2,
Figure 26-3, and Figure 26-4 show some of the known variations of an MVC architecture.

Variation 1

View
L

observes updates
Model
User
uses manipulates

Controller

Figure 26-2. A typical MVC framework

Variation 2

A

View]11—{ Controller J!—bl Model]

Figure 26-3. A MVC framework with multiple views

439

CHAPTER 26 MVC PATTERN

Variation 3

Controller Event

[y)

———mm——————— View “n

Model

Figure 26-4. An MVC pattern implemented with an observer pattern/ event-
based mechanism

My favorite description of MVC comes from Connelly Barnes, who states, “An easy way
to understand MVC: the model is the data, the view is the window on the screen, and the
controller is the glue between the two.” (http://wiki.c2.com/?ModelViewController)

Real-World Example

Let’s revisit our template method pattern’s real-life example. But this time you interpret
it differently. I said that in a restaurant, based on customer input, a chef can vary the
taste and make the final products. The customers do not place their orders directly to
the chef. The customers see the menu card (view), may consult with the waiter/waitress,
and place their order. The waiter/waitress passes the order slip to the chef, who gathers
the required materials from the restaurant’s kitchen (similar to storehouses/computer
databases). Once prepared, the waiter/waitress carries the plate to the customer’s table.
So, you can consider the role of the waiter/waitress as the controller, and the chef with
their kitchen as the model (and the food preparation materials as data).

440

http://wiki.c2.com/?ModelViewController

Computer-World Example

Many web programming frameworks uses the concept of MVC framework. Some of the

CHAPTER 26 MVC PATTERN

typical example include Django, Ruby on Rails, ASP.NET, and so forth. For example, a
typical ASP.NET MVC project has the structure shown in Figure 26-5.

f MVCWebApplication1

& Connected Services

b

> M Properties

5-B References

h

App_Data

App_Start

Content

Controllers "(,

C#* DefaultController.cs
¢ MyMVCController.cs
fonts

Models '/
Scripts /
Views

Default
[@ AboutVaskaranView.cshtml
[@ AboutVaskaranView2.cshtml
MyMVC
Shared
[@ _Layout.cshtml

[@ ViewStart.cshtml

?’3 web.config

;3';3 Global.asax
) packages.config
¢ Web.config

Figure 26-5. A typical MVC structure in a ASP.NET project

But it should be noted that different technologies can follow different structure and

so, it is not necessary to get a folder structure with the strict naming convention like

this. In the Java world, in a MVC architecture, you may notice the use of Java servlets as

controllers and JavaBeans as models, whereas JSPs create different views.

441

CHAPTER 26 MVC PATTERN

lllustration

Most of the time, you want to use the concept of MVC with technologies that can give
you built-in support and that can do a lot of ground work for you. In that case, you may
need to learn new terminologies. In Java applications, you may want to use Swing or
JavaFX, and so forth, for a better GUI.

Throughout this book, I used a console window to show output from different design
pattern implementations. So, let’s continue to use the console window as a view in the
upcoming implementation because the focus here is on the MVC structure, not new
technologies.

For simplicity and to match our theory, I divided the upcoming implementation into
three basic parts: Model, View, and Controller. Once you look at the Package Explorer
view, you see that separate packages are created to accomplish this task. Here are some
important points.

o In this application, the requirement is very simple. There are
employees who need to register themselves in an application/
system. Initially, the application starts with three different registered
employees: Amit, Jon, and Sam. At any time, you should be able to
see the enrolled employees in the system.

e You can add a new employee or delete an employee from the
registered employees list.

o Asimple checkis added in the Employee class to ensure that you are
not adding an employee repeatedly in the application.

o To delete an employee from the registered list, you need to pass the
employee ID in the client code, but the application will do nothing if
an employee ID is not found in the registered list.

Now go through the implementation and consider the comments for your immediate
reference.

Class Diagram

Figure 26-6 shows the class diagram. I omitted the client code dependencies to
emphasize the core architecture.

442

CHAPTER 26 MVC PATTERN

ploa:(<aakojdwI»isin)seakojdwIapajjoiugmoys @

(mainsiosucD O

manaawazdpl

MaIA3josU0))
<<SSE|D BARM>>

pion:(<aakojdw3sysiq)saalodwIpsjougmoys ©

Mmawn aawazdpl

MIIA D

<<BOBUB| BAB 5>

(]

WpI3VIp SSV)) *9-9¢ 24N

pioa:(Buuig)lepopwol4aafojdwzarowsl @

ploa:(Bulyg)epopwoldaskodwlarcwal @
pion:(aafoldw3)spopolsafodwppe ©
<aakojdw3zisT:()lepopwol4siiejagealfodwapajoiuziet @

|spowaauwrazdpl
19PoN €3
<<BIEUIU| BAE[>>

ploa:(aafodw3)apopol2afodwsppe @
<safojdw=is17:()eponwol ds|ejeeaiodwIps|oiuliet @
:_ouozmwao_nEmuO

L0 | |epow-

pioa:(Bulyg)eafodwlanowal @
pioa:(sakoidws)aakodwppe ©
pion:()saakodwapa|oiuzfedsip @

pIOA:

I ULIS)UIEW &
(Jedwex3aun0a)IuyOAN uo

owep aawezdpl
a|dwex321n30a4Y21y IAN &)

<<SSB|D) BAB>>

M-

(me1n'epo)alionuog@eodus O

1ajjonuos-aaw azdpl
13jjonuoesfoldwa &)
<<SSB|D BAB[>>

plon(Buyg)safodwisnowss @
pioa:(@afodwa)saloidwippe @
pioa:()saafoidwapajoiuziedsp @

Jejjeauod aaw azdpl

13jjonuod €3

<<BOBLAU| BAB['>>

[epow aawazdpl
lopop@akoldw3 &)
<<SSE|D BAB>>

.0 | sesfojdwzpajoius~

ueajooq:(joalgp)sienba @
Buuis:()Buso; @
(Buyg'Buyg)aakodws 00
Bung:()pidwziet @
Buuis:()ewendwTiet @

Buug pidwa o
Buyg :aweNdw? o

18powr Awszdp!
eafo|dw3 &)
<<SSB|D BABM>>

443

CHAPTER 26 MVC PATTERN

Package Explorer View

Figure 26-7 shows the high-level structure of the program.

(=7 MVCPattern
> B\ JRE System Library [jdk1.8.0 172]
v jdp2e.mvc.controller
mController.java
> 4] EmployeeController,java
v 1 jdp2e.mvc.demo
> [J] MVCArchitectureExample java
v i jdp2e.mvc.model
> [J] Employee java
> [J) EmployeeModel.java
> mModeI.java
v 1 jdp2e.mvc.view
> [J] ConsoleView.java
@View.java

Figure 26-7. Package Explorer view

Implementation

Here is the implementation.

//Employee.java
package jdp2e.mvc.model;

//The key "data" in this application
public class Employee

{
private String empName;
private String empId;

444

CHAPTER 26

public String getEmpName() {
return empName;

}

public String getEmpId() {
return empId;

}

public Employee(String empName, String empId)

{
this.empName=empName;
this.empId=empId;

}

@Override

public String toString()

{

return empName + "'s employee id is: "+ empld ;
}
@verride
//To check uniqueness.
public boolean equals(Object o) {
if (this == o) return true;
if (!(o instanceof Employee)) return false;

Employee empObject = (Employee) o;

if (!empName.equals(empObject.empName)) return false;
//cannot use the following for an int

if (!empId.equals(empObject.empId)) return false;
return true;

MVC PATTERN

445

CHAPTER 26 MVC PATTERN
//Model.java

package jdp2e.mvc.model;
import java.util.list;

//Model interface
public interface Model

{
List<Employee> getEnrolledEmployeeDetailsFromModel();
void addEmployeeToModel(Employee employeee);
void removeEmployeeFromModel(String employeeld);

}

//EmployeeModel.java

package jdp2e.mvc.model;

import java.util.Arraylist;
import java.util.Llist;
import java.util.listIterator;

//EmployeeModel class

public class EmployeeModel implements Model
{

List<Employee> enrolledEmployees;

public EmployeeModel()

{
//Adding 3 employees at the beginning.
enrolledEmployees = new ArraylList<Employee>();
enrolledEmployees.add(new Employee("Amit","E1"));
enrolledEmployees.add(new Employee("John","E2"));
enrolledEmployees.add(new Employee("Sam","E3"));
}

public List<Employee> getEnrolledEmployeeDetailsFromModel()
{

return enrolledEmployees;

446

CHAPTER 26 MVC PATTERN

//Adding an employee to the model(student list)

@verride

public void addEmployeeToModel(Employee employee)

{
System.out.println("\nTrying to add an employee to the registered
list.");
if(!enrolledEmployees.contains(employee))

{
enrolledEmployees.add(employee);
System.out.println(employee+" [added recently.]");
}
else
{
System.out.println(employee+" is already added in the
system.");
}
}
//Removing an employee from model(student list)
@verride

public void removeEmployeeFromModel(String employeeld)
{
boolean flag=false;
ListIterator<Employee> employeelterator=enrolledEmployees.
listIterator();
System.out.println("\nTrying to remove an employee from the
registered list.");
while(employeeIterator.hasNext())
{
Employee removableEmployee=((Employee)employeelterator.next());
if(removableEmployee.getEmpId().equals(employeeld))
{
//To avoid ConcurrentModificationException,try to
//remember to invoke remove() on the iterator but not on
//the list.
employeeIterator.remove();

447

CHAPTER 26 MVC PATTERN

System.out.println("Employee " + removableEmployee.

getEmpName()+ " with id "+ employeeId+" is removed now.");
flag=true;
}
}
if(flag==false)
{
System.out.println("#i#Employee Id " + employeeId +" Not
found. ###");
}
}
}
//View.java

package jdp2e.mvc.view;
import java.util.Llist;
import jdp2e.mvc.model.Employee;

public interface View

{

void showEnrolledEmployees(List<Employee> enrolledEmployees);
}
//ConsoleView.java

package jdp2e.mvc.view;

import java.util.Llist;
import jdp2e.mvc.model.Employee;

//ConsoleView class

public class ConsoleView implements View

{

@verride
public void showEnrolledEmployees(List<Employee> enrolledEmployees)

448

CHAPTER 26 MVC PATTERN

{
System.out.println("\n ***This is a console view of currently
enrolled employees.*** ");
for(Employee employee : enrolledEmployees)
{
System.out.println(employee);
}
System.out.println("---------------mmnn- ");
}
}
//Controller.java

package jdp2e.mvc.controller;
import jdp2e.mvc.model.Employee;

//Controller
public interface Controller

{
void displayEnrolledEmployees();

void addEmployee(Employee employee);
void removeEmployee(String employeeld);

}

//EmployeeController.java
package jdp2e.mvc.controller;
import java.util.list;

import jdp2e.mvc.model.*;
import jdp2e.mvc.view.*;

public class EmployeeController implements Controller

{

private Model model;
private View view;

449

CHAPTER 26 MVC PATTERN

public EmployeeController(Model model, View view)
{
this.model = model;
this.view = view;
}
@Override
public void displayEnrolledEmployees()
{
//Get data from Model
List<Employee> enrolledEmployees = model.
getEnrolledEmployeeDetailsFromModel();
//Connect to View
view.showEnrolledEmployees(enrolledEmployees);

}

//Sending a request to model to add an employee to the list.
@0verride
public void addEmployee(Employee employee)
{
model.addEmployeeToModel (employee);
}
//Sending a request to model to remove an employee from the list.
@verride
public void removeEmployee(String employeeld)

{

model.removeEmployeeFromModel (employeeld);

}

//Client code
//MVCArchitectureExample.java

package jdp2e.mvc.demo;

import jdp2e.mvc.model.*;
import jdp2e.mvc.view.*;
import jdp2e.mvc.controller.*;

450

CHAPTER 26 MVC PATTERN
public class MVCArchitectureExample {

public static void main(String[] args) {
System.out.println("***MVC architecture Demo***\n");
//Model
Model model = new EmployeeModel();

//View
View view = new ConsoleView();

//Controller
Controller controller = new EmployeeController(model, view);
controller.displayEnrolledEmployees();

//Add an employee

controller.addEmployee(new Employee("Kevin","E4"));
controller.displayEnrolledEmployees();

//Remove an existing employee using the employee id.
controller.removeEmployee("E2");
controller.displayEnrolledEmployees();

//Cannot remove an employee who does not belong to the list.
controller.removeEmployee("E5");
controller.displayEnrolledEmployees();

//Avoiding duplicate entry
controller.addEmployee(new Employee("Kevin","E4"));

451

CHAPTER 26 MVC PATTERN

Output

Here is the output.
*¥**MVC architecture Demo***

***This is a console view of currently enrolled
Amit's employee id is: E1

John's employee id is: E2

Sam's employee id is: E3

Trying to add an employee to the registered list.
Kevin's employee id is: E4 [added recently.]

***This is a console view of currently enrolled
Amit's employee id is: E1
John's employee id is: E2
Sam's employee id is: E3
Kevin's employee id is: E4

Trying to remove an employee from the registered
Employee John with id E2 is removed now.

***This is a console view of currently enrolled
Amit's employee id is: E1

Sam's employee id is: E3

Kevin's employee id is: E4

Trying to remove an employee from the registered
###Employee Id E5 Not found.###

***This is a console view of currently enrolled
Amit's employee id is: E1

Sam's employee id is: E3

Kevin's employee id is: E4

Trying to add an employee to the registered list.

employees.***

employees.***

list.

employees.***

list.

employees.***

Kevin's employee id is: E4 is already added in the system.

452

CHAPTER 26 MVC PATTERN

Q&A Session

1.

2.

3.

Suppose you have a programmer, a DBA, and a graphic
designer. Can you guess their roles in a MVC architecture?

The graphic designer designs the view layer. The DBA makes the
model and programmer works to make an intelligent controller.

What are the key advantages of using MVC design patterns?

o “High cohesion and low coupling” is the slogan of MVC. Tight
coupling between model and view is easily removed in this
pattern. So, it can be easily extendable and reusable.

o Itsupports parallel development.

e You can also provide multiple runtime views.

What are the challenges associated with MVC patterns?
o Requires highly skilled personnel.

o It may not be suitable for a tiny application.

e Developers need to be familiar with multiple languages/
platforms/technologies.

o Multiartifact consistency is a big concern because you are
separating the overall project into three different parts.

Can you provide multiple views in this implementation?

Sure. Let’s add a new view called “Mobile view” in the application.
Let’s add this class inside the jdp2e.mvc.view package as follows.

package jdp2e.mvc.view;
import java.util.list;
import jdp2e.mvc.model.Employee;

//This class is added to discuss a question in "Q&A Session"

//MobileView class

453

CHAPTER 26 MVC PATTERN

public class MobileView implements View

{
@0verride
public void showEnrolledEmployees(List<Employee>
enrolledEmployees)
{
System.out.println("\n ***This is a mobile view of
currently enrolled employees.*** ");
System.out.println("Employee Id"+ "\t"+ " Employee Name");
System.out.println(” ");
for(Employee employee : enrolledEmployees)
{
System.out.println(employee.getEmpId() + "\t"+
employee.getEmpName());
}
System.out.println("-------------ccuuon- ");
}
}

The modified Package Explorer view is similar to Figure 26-8.

454

=2 MVCPattern

> mi\ JRE System Library [jdk1.8.0 172]

v {# jdp2e.mvc.controller
mController.java

> |J] EmployeeController.java

v i jdp2e.mvc.demo

MVCArchitectureExample.java

v {# jdp2e.mvc.model
> [J] Employee.java
> |J] EmployeeModel.java
mModeI.java
v # jdp2e.mvc.view
> [N ConsoleView.java

> MobileView.java “

m View.java
J

Figure 26-8. Modified Package Explorer view

Add the following segment of code at the end of your client code.

//This segment is addeed to discuss a question in "Q&A Session"

view = new MobileView();

controller = new EmployeeController(model, view);

controller.displayEnrolledEmployees();

Now if you run the application, you see the modified output.

Modified Output

MVC PATTERN

Here is the modified output. The last part of your output shows the effect of your new

changes. These changes are shown in bold.

MVC architecture Demo

This is a console view of currently enrolled employees.

Amit's employee id is: E1

455

CHAPTER 26 MVC PATTERN

John's employee id is: E2
Sam's employee id is: E3

Trying to add an employee to the registered list.
Kevin's employee id is: E4 [added recently.]

This is a console view of currently enrolled employees.
Amit's employee id is: E1
John's employee id is: E2
Sam's employee id is: E3
Kevin's employee id is: E4

Trying to remove an employee from the registered list.
Employee John with id E2 is removed now.

This is a console view of currently enrolled employees.
Amit's employee id is: E1

Sam's employee id is: E3

Kevin's employee id is: E4

Trying to remove an employee from the registered list.
###Employee Id E5 Not found.###

This is a console view of currently enrolled employees.
Amit's employee id is: E1

Sam's employee id is: E3

Kevin's employee id is: E4

Trying to add an employee to the registered list.
Kevin's employee id is: E4 is already added in the system.

456

CHAPTER 26 MVC PATTERN

*¥*This is a mobile view of currently enrolled employees.***
Employee Id Employee Name

E1 Amit
E3 Sam
E4 Kevin

457

PART il

Final Discussions on
Design Patterns

CHAPTER 27

Criticisms of Design
Patterns

In this chapter, I present some of the criticisms of design patterns. Reading about the
criticisms can offer real value. If you think critically about patterns before you design
your software, you can predict your “return on investment” to some degree. Design

patterns basically help you benefit from another people’s experience. This is often called

experience reuse. You learn how they solved challenges, how they tried to adapt new
behaviors in their systems, and so on. A pattern may not perfectly fit into your work,
but if you concentrate on the best practices as well as the problems of a pattern at the
beginning, you are more likely to make a better application.

The following are some of the criticisms of patterns.

o Christopher Alexander considered the domain that did not change a
lot over the years (compared to software industry). On the contrary,
software industry is always changing and the changes in software
development are much faster than any other domain. So, you cannot
start from the domain (of buildings and towns) that Christopher
Alexander considered.

o The way you write program in today’s world is different and the
facilities that you have nowadays are much more compared to old
days of programming. So, when you extract patterns based on some
old practices, you basically show additional respect to them.

o Many of the patterns are close to each other. And there are always
pros and cons associated with each of the patterns (I discussed about
them in the “Q&A Sessions” at the end of each chapter.)The pitfall in
one case can be a real virtue in a different case.

© Vaskaran Sarcar 2019
V. Sarcar, Java Design Patterns, https://doi.org/10.1007/978-1-4842-4078-6_27

461

CHAPTER 27 CRITICISMS OF DESIGN PATTERNS

462

The pattern that is giving you the satisfactory results today, can be a
big burden to you in the near future due to the “continuous changes”
in the software industry.

It is very unlikely that an infinite number of requirements can be well
designed with a finite number of design patterns.

Designing a software is basically an art. And there is no definition or
criteria for best art.

Design patterns give you the idea but not the implementations (like
libraries or frameworks). Each human mind is unique. So, each
engineer may have his/her own preferences for implementing a
similar concept, and that can create chaos in a team.

Consider a simple example. Patterns encourage people to code to
a super type (abstract class/ interface). But for a simple application
where you know that there are no upcoming changes, or the
application is created for a demo purposes only, this rule may not
make much sense.

In a similar way, in some small applications, you may find that
enforcing the rules of design patterns are increasing your code size
and maintenance costs.

Erasing the old and adapting the new is not always easy. For example,
when you first learned about inheritance, you were excited. You
probably wanted to use it in many ways and were seeing only the
benefits from the concept. But later when you started experimenting
with design patterns, you started learning that in many cases,
compositions are preferred over inheritance. This shifting of gears is
not easy.

Design patterns are based on some of the key principles, and one of
them is to identify the code that may vary and then separate it from
rest of the code. It sounds very good from theoretical perspective.
But in real world implementations, who guarantees you that your
judgment is perfect? Software industry always changes, and it needs
to adapt with new requirements/demands.

CHAPTER 27 CRITICISMS OF DESIGN PATTERNS

e Many patterns are already integrated with modern day languages.
Instead of implementing the pattern from the scratch, you can use
the built-in support in the language constructs. For example, you may
notice that each of the patterns has JDK implementations in some
context.

o Inappropriate use of patterns can lead to antipatterns (e.g., an
inappropriate use of mediator pattern can lead to a “God Class”
antipattern). I give a brief overview of antipatterns in Chapter 28.

o Many people believe that the concepts of design patterns simply
indicate that a programming language may need additional features.
So, patterns have less significance with the increasing capabilities of
modern-day programming languages. Wikipedia says that computer
scientist Peter Norvig believes that 16 out of the 23 patterns in the
GoF’s design patterns are simplified or eliminated via direct language
support in Lisp or Dylan. You can see some similar thoughts at
https://en.wikipedia.org/wiki/Software_design pattern.

e Atthe end, design patterns basically help you to get benefit from
others experience. You are getting their thoughts, you come to
know how they encountered the challenges, how they tried to adapt
new behaviors in their systems, and so forth. But you start with the
assumption that a beginner or relatively less-experienced person
cannot solve a problem better than his/her seniors. In some specific
occasions, a relatively less experienced person can have a better
vision than his seniors, and he can prove himself more effective in
the future.

Q&A Session

1. Isthere a catalog for these patterns?

I started with the GoF’s 23 design patterns and then discussed
three more patterns in this book. The GoF’s catalog is considered
the most fundamental pattern catalog.

463

https://en.wikipedia.org/wiki/Software_design_pattern

CHAPTER 27 CRITICISMS OF DESIGN PATTERNS

But there are definitely many other catalogs that focus on
particular domains.

The Portland Patterns Repository and The Hillside Group’s
website are well-known in this context. You can get valuable
insights and thoughts from these resources at http://wiki.
c2.com/?WelcomeVisitors and https://hillside.net/
patterns/patterns-catalog.

The Hillside Group’s website also notes its various conferences
and workshops.

Note At the time of writing, the URLs in the book worked fine but some of these
links and the policies to access the links may change in the future.

2. Why are you not covering other patterns?
These are my personal beliefs:

o Computer science keeps growing, and you keep getting new
patterns.

o Ifyou are not familiar with the fundamental patterns, you cannot
evaluate the true needs of the remaining or upcoming patterns.
For example, if you know MVC well, you can see how it is
different than Model-View-Presenter (MVP) and understand why
MVP is needed.

e The book s already fat. The detailed discussion of each pattern
would need many more pages, which would make the size of the
book too big to digest.

So, in this book, I focused on fundamental patterns that are
still relevant in today’s programming world.

464

http://wiki.c2.com/?WelcomeVisitors
http://wiki.c2.com/?WelcomeVisitors
https://hillside.net/patterns/patterns-catalog
https://hillside.net/patterns/patterns-catalog

3.

CHAPTER 27 CRITICISMS OF DESIGN PATTERNS

I often see the term “force” with the description of design
patterns. What does it mean?

It is the criteria based on which developers justify their
developments. Broadly, your target and current constraints are
two important parts of your force. Therefore, when you develop
your application, you can justify your development with these
parts.

In various forums, I have seen people fighting about the
pattern definition and say something like, “A pattern is a
proven solution to a problem in a context.” What does it mean?

This is a simple and easy-to-remember definition of what a
pattern is. But simply breaking it down into three parts (problem,
context, and solution) is not enough.

As an example, suppose you are visiting to Airport and you are in
a hurry. Suddenly, you discover that you have left your boarding
pass at home. Let’s analyze the situation:

Problem: You need to reach airport on time.
Context: Left the boarding pass at home.

The Solution that may come to mind: Turn back, go at a high
speed and rush toward home to get the boarding pass.

This solution may work one time, but can you apply the same
procedure repeatedly? You know the answer. It is not an intelligent
solution because it depends on how much time you have to collect
the pass from home and go back to the airport. It also depends on
the current traffic on the road and many other factors. So, even

if you can get the success for one time, you may want to prepare
yourself for a better solution for a similar situation in future.

So, try to understand the meaning, intent, context, and so on, to
understand a pattern clearly.

465

CHAPTER 27 CRITICISMS OF DESIGN PATTERNS

5. Sometimes I am confused to see similar UML diagrams
for two different patterns. Also, I am further confused with
the classification of the patterns in many cases. How can I

overcome this?

This is perfectly natural. The more you read and analyze the
implementations and the more you try to understand the intent
behind the designs, the distinctions among them will be clearer to
you.

6. When should I consider writing a new pattern?

Writing a new pattern is not easy. You need to study a lot and
evaluate the available patterns before you put your effort. But

if you do not find any existing pattern to serve your domain-
specific need, you may need to write your own pattern. It would
be very good if your solution passes the “rule of three” (which
basically says that to get the tag “pattern,” a solution needs to

be successfully applied in a real-world solution at least three
times). Once you have done this, you can let others know about it,
participate in discussion forums and take feedbacks from others.
This activity can help both you and the development community.

466

CHAPTER 28

AntiPatterns: Avoid
the Common Mistakes

The discussion of design patterns cannot be completed without antipatterns. This
chapter briefly overviews antipatterns. Let’s start.

What Is an Antipattern?

In real-world application development, you may follow approaches that are very
attractive at first, but in the long run, they cause problems. For example, you try to do a
quick fix to meet a delivery deadline, but if you are not aware of the potential pitfalls, you
may pay a big price.

Antipatterns alert you about common mistakes that lead to a bad solution. Knowing
them helps you take precautionary measures. The proverb “prevention is better than
cure” very much fits in this context.

Note Antipatterns alert you to common mistakes by describing how attractive
approaches can make your life difficult in future. At the same time, they suggest
alternate solutions that may seem tough or ugly at the beginning but ultimately
help you build a better solution. In short, antipatterns identify problems with
established practices and they can map general situations to a specific class of
highly productive solutions. They can also provide better plans to reverse some bad
practices and make healthy solutions.

467
© Vaskaran Sarcar 2019

V. Sarcar, Java Design Patterns, https://doi.org/10.1007/978-1-4842-4078-6_28

CHAPTER 28 ANTIPATTERNS: AVOID THE COMMON MISTAKES

Brief History of Antipatterns

The original idea of design patterns came from building architect Christopher
Alexander. He shared his ideas for the construction of buildings within well-planned
towns. Gradually, these concepts entered into software development and they gained
popularity through the leading-edge software developers like Ward Cunningham and
Kent Beck. In 1994, the idea of design patterns entered mainstream object-oriented
software development through an industry conference on design patterns, known as
Pattern Languages of Program Design (PLoP). It was hosted by the Hillside Group. Jim
Coplien’s paper “A Development Process Generative Pattern Language” is a famous
one in this context. And with the launch of the classic text Design Patterns: Elements
of Reusable Object—Oriented Software by the Gang of Four, design patterns became
extremely popular.

Undoubtedly, these great design patterns helped (and are still helping) programmers
to develop the high-quality software. But people started noticing the negative impacts
also. A common example is that many developers wanted to show their expertise
without the true evaluation or the consequences of these patterns in their specific
domains. As an obvious side effect, patterns were implanted in the wrong context, which
produced low-quality software, and ultimately caused big penalties to the developers
and their companies.

So, the software industry needed to focus on the negative consequences of these
mistakes, and eventually, the idea of antipatterns evolved. Many experts started
contributing to this field, but the first well-formed model came through Michael Akroyd’s
presentation, “AntiPatterns: Vaccinations against Object Misuse.” It was the antithesis of
the GoF’s design patterns.

The term antipattern became popular with the authors (Brown, Malveau,
McCormicklll, Mowbray) in their book AntiPatterns: Refactoring Software, Architectures,
and Projects in Crisis (Wiley, 1998). Later, Scott Thomas joined their group. They said,

Because AntiPatterns have had so many contributors, it would be unfair to
assign the original idea for AntiPatterns to a single source. Rather,
AntiPatterns are a natural step in complementing the work of the design
pattern movement and extending the design pattern model.

468

CHAPTER 28 ANTIPATTERNS: AVOID THE COMMON MISTAKES

Examples of Antipatterns

The following are some examples of the antipatterns and the concepts/mindsets behind

them.

Over Use of Patterns: Developers may try to use patterns at any cost,
regardless of whether it is appropriate or not.

God Class: A big object that tries to control almost everything with
many unrelated methods. An inappropriate use of the mediator
pattern may end up with this antipattern.

Not Invented Here: I am a big company and I want to build everything
from scratch. Although there is already a library available that

was developed by a smaller company, I'll not use that. I will make
everything of my own and once it is developed, I'll use my brand
value to announce, “Hey Guys. The ultimate library is launched for

”

you.

Zero Means Null: A common example includes developers who think
that no one wants to be at latitude zero, longitude zero. Another
common variation is when a programmer uses :1, 999 or anything
like that to represent an inappropriate integer value. Another
erroneous use case is observed when a user treats “09/09/9999” as
anull date in an application. So, in these cases, if the user needs to
have the numbers :1,999 or the date “09/09/9999’, he is unable to get
them.

Golden Hammer: Mr. X believes that technology T is always best. So,
if he needs to develop a new system (that demands new learning), he
still prefers T, even if it is inappropriate. He thinks, “I do not need to
learn any more technology if I can somehow manage it with T

Management by Numbers: The greater the number of commits,

the greater the number of lines of code, or the greater the number

of defects fixed are the signs of a great developer. Bill Gates said,
“Measuring programming progress by lines of code is like measuring
aircraft building progress by weight.”

469

CHAPTER 28 ANTIPATTERNS: AVOID THE COMMON MISTAKES

Shoot the Messenger: You are already under pressure and the program
deadline is approaching. There is a smart tester who always finds
typical defects that are hard to fix. So, at this stage, you do not want to
involve him because he will find more defects and the deadline may
be missed.

Swiss Army Knife: Demand a product that can serve the customer’s
every need. Or make a drug that cures all illnesses. Or design software
that serves a wide range of customers with varying needs. It does not
matter how complex the interface is.

Copy and Paste Programming: I need to solve a problem but I already
have a piece of code to deal with a similar situation. So, I can copy the
old code that is currently working and start modifying it if necessary.
But when you start from an existing copy, you essentially inherit all
the potential bugs associated with it. Also, if the original code needs
to be modified in the future, you need to implement the modification
in multiple places. This approach also violates the Don’t Repeat
Yourself (DRY) principle.

Architects Don’t Code: I am an architect. My time is valuable. I'll

only show paths or give a great lecture on coding. There are enough
implementers who should implement my idea. Architects Play Golfis
a sister of this antipattern.

Hide and Hover: Do not expose all edits or delete links until he/she
hovers the element.

Disguised Links and Ads: Earn revenue when users click a link or an
advertisement, but they cannot get what they want.

Note Nowadays, you can learn about various antipatterns from different

websites/sources. For example, a Wikipedia page talks about various antipatterns
(see https://en.wikipedia.org/wiki/Antipattern). You can also geta

detailed list of the antipattern catalog at http://wiki.c2.com/?AntiPatter
nsCatalog to learn more. You may also notice that the concept of antipatterns is

not limited to object-oriented programming.

470

https://en.wikipedia.org/wiki/Antipattern
http://wiki.c2.com/?AntiPatternsCatalog
http://wiki.c2.com/?AntiPatternsCatalog

CHAPTER 28 ANTIPATTERNS: AVOID THE COMMON MISTAKES

Types of Antipatterns

Antipatterns can belong in more than one category. Even a typical antipattern can
belong in more than one category.
The following are some common classifications.

o Architectural antipatterns: The Swiss Army Knife antipattern is an
example in this category.

o Development antipatterns: The God Class and Over Use of Patterns
are examples in this category.

e Management antipatterns: The Shoot the Messenger antipattern falls
in this category.
o Organizational antipatterns: Architects Don’t Code and Architects

Play Golf are examples in this category.

o User Interface antipatterns: Examples include Disguised Links and
Ads.

Note Disguised Links and Ads are also called as dark patterns.

Q&A Session

1. How are antipatterns related to design patterns?

With design patterns, you reuse the experiences of others who
came before you. When you start blindly using those concepts

for the sake of use only, you fall into the traps of reuse of recurring
solutions. This can lead you to a bad situation. And then you learn
that your return on investment keeps decreasing but maintenance
costs keep increasing. The apparently easy and standard solutions
(or patterns) may cause more problems for you in the future.

471

CHAPTER 28 ANTIPATTERNS: AVOID THE COMMON MISTAKES

472

2.

A design pattern may turn into an antipattern. Is this correct?

Yes. If you apply a design pattern in the wrong context, that can
cause more trouble than the problem it solves. Eventually it will
turn into an antipattern. So, understanding the nature and context
of the problem is very important.

Antipatterns are related to software developers only. Is this

correct?

No. The usefulness of an antipattern is not limited to developers;
it may be applicable to others also; for example, antipatterns are
useful to managers and technical architects also.

Even if you do not get much benefit from antipatterns now,
they can help you adapt new features easily with fewer
maintenance costs in future. Is this correct?

Yes.
What are the probable causes of antipatterns?

It can come from various sources/mindsets. The following are a
few common examples.

e “We need to deliver the product as soon as possible.”
¢ “We do not need to analyze the impact right now.”
o “Iam an expert of reuse. I know design patterns very well.”

o “We will use the latest technologies and features to impress our
customers. We do not need to care about legacy systems.”

e “More complicated code will reflect my expertise on the subject.”
Discuss some symptoms of antipatterns.

In object-oriented programming, the most common symptom is
your system cannot easily adapt a new feature. Also, maintenance
costs are keep increasing. You may also notice that you have

lost the power of key object-oriented features like inheritance,
polymorphism, and so forth.

CHAPTER 28 ANTIPATTERNS: AVOID THE COMMON MISTAKES

Apart from these, you may notice some/all of the following
symptoms.

Use of global variables

e Code duplication

o Limited/no reuse of code

¢ One big class (God Class)

e Alarge number of parameterless methods, etc.
What is the remedy if you detect an antipattern?

You may need to follow a refactored and better solution.
For example, the following are some solutions for avoiding
antipatterns.

Golden Hammer: You may try to educate Mr. X through proper

training.

Zero Means Null: You can use an additional boolean variable to
indicate the null value properly.

Management by Numbers: Numbers are good if you use them
wisely. You cannot judge the ability of a programmer by the
number of defects he/she fixes per week. The quality is also
important. A typical example includes fixing a simple Ul layout is
much easy compared to fix a critical memory leak in the system.
Consider another example. “More number of tests are passing”
does not indicate that your system is more stable unless the tests
exercise different code paths/branches.

Shoot the Messenger: Welcome the tester and involve him
immediately. He can find typical defects early, and you can avoid

last-moment surprises.

Copy and Paste Programming: Instead for searching a quick
solution, you can refactor your code. You can also make a
common place to maintain the frequently used methods to avoid
duplicates and provide easier maintenance.

473

CHAPTER 28 ANTIPATTERNS: AVOID THE COMMON MISTAKES

474

Architects Don’t Code: Involve architects in parts of the
implementation phase. This can help both the organization and
the architects. This activity can give them a clearer picture about
the true functionalities of the product.

What do you mean by refactoring?

In the coding world, the term refactoring means improving the
design of existing code without changing the external behavior of
the system/application. This process helps you get more readable
code. At the same time, the code should be more adaptable to
new requirements (or change requests) and they should be more
maintainable.

CHAPTER 29

FAQs

This chapter is a subset of the “Q&A Session” sections in all the chapters in this book.

Many of these questions were not discussed in certain chapters because the related

patterns were not yet covered. So, it is highly recommended that in addition to the

following Q&As, you go through all the “Q&A Session” sections in the book for a better

understanding of all the patterns.

1.

2.

3.

4.

Which design pattern do you like the most?

It depends on many factors, such as the context, situation,
demand, constraints, and so on. If you know about all the
patterns, you have more options to choose from.

Why should developers use design patterns?

They are reusable solutions for software design problems that
appear repeatedly in real-world software development.

What is the difference between the command and the memento
patterns?

All actions are stored for the command pattern, but the memento
pattern saves the state only on request. Additionally, the
command pattern has undo and redo operations for every action,
but the memento pattern does not need that.

What is the difference between the facade pattern and the
builder pattern?

The aim of the facade pattern is to make a specific portion of code
easier to use. It abstracts details away from the developer.

475

© Vaskaran Sarcar 2019
V. Sarcar, Java Design Patterns, https://doi.org/10.1007/978-1-4842-4078-6_29

CHAPTER 29 FAQS

476

The builder pattern separates the construction of an object from
its representation. In Chapter 3, the director is calling the same
construct() method to create different types of vehicles. In
other words, you can use the same construction process to create
multiple types.

What is the difference between the builder pattern and the
strategy pattern? They have similar UML representations.

You need to understand intent first. The builder pattern falls
into the category of creational patterns, and the strategy pattern
falls into the category of behavioral patterns. Their areas of
focus are different. With the builder pattern, you can use the
same construction process to create multiple types, and with the
strategy pattern, you have the freedom to select an algorithm at

runtime.

What is the difference between the command pattern and the
interpreter pattern?

In the command pattern, the commands are basically objects. In
the interpreter pattern, the commands are sentences. Sometimes
the interpreter pattern may look convenient, but you must keep in
mind the cost of building an interpreter.

What is the difference between the chain-of-responsibility
pattern and the observer pattern?

In observer patterns, all registered users are notified/get request
(for the change in subject) in parallel, but in the chain-of-
responsibility pattern, you may not reach the end of chain, so

all users need not handle the same scenario. The request can be
processed much earlier by a user who is placed at the beginning of
the chain.

What is the difference between the chain-of-responsibility
pattern and the decorator pattern?

They are not same at all but you may feel that they are similar in
the structures. Similar to the previous differences, in the chain-
of-responsibility pattern, only one class handles the request, but

10.

CHAPTER 29

in the decorator pattern, all classes handle the request. You must
remember that decorators are effective in the context of adding
and removing responsibilities only, and if you can combine the
decorator pattern with the single responsibility principle, you can
add/remove a single responsibility at runtime.

What is the difference between the mediator pattern and the
observer pattern?

The GoF says, “These are competing patterns. The difference
between them is that Observer distributes communication by
introducing observer and subject objects, whereas a mediator
object encapsulates the communication between other objects.”

I suggest you consider the mediator pattern example in Chapter
21. In this example, two workers are always getting messages from
their boss. It doesn’t matter whether they like those messages. But
if they are simple observers, then they should have the option to
unregister their boss’s control of them, effectively saying “I do not
want to see messages from the boss/Raghu.”

The GoF also found that you may face fewer challenges when
you make reusable observers and subjects compared to
when you make reusable mediators. But regarding the flow of
communication, the mediator pattern scores higher than the
observer pattern.

Which do you prefer—a singleton class or a static class?

The first thing to remember is that Java does not support a top-
level static class. You can create objects of a singleton class, which
is not possible with a static class. So, the concepts of inheritance
and polymorphism can be implemented with a singleton class.
Now let’s consider a language that supports a full-phased static
class(like C#). In that case, some developers believe that mocking
a static class (e.g., consider unit testing scenarios) in a real-world
application is challenging.

FAQS

477

CHAPTER 29 FAQS

478

11.

12.

13.

14.

15.

16.

How can you distinguish between proxies and adapters?

Proxies work on similar interfaces as their subjects but adapters
work on different interfaces (to the objects they adapt).

How are proxies different from decorators?

There are different types of proxies, and they vary by their
implementations. So, it may appear that some implementations
are close to decorators. For example, a protection proxy might

be implemented like a decorator. But you must remember that
decorators focus on adding responsibilities, while proxies focus on
controlling the access to an object.

How are mediators different from facades?

In general, both simplify a complex system. In a mediator pattern,
a two-way connection exists between a mediator and the internal
subsystems, whereas in a facade pattern, you provide a one-way
connection (the subsystems do not know about the facades).

Is there any relation between flyweight patterns and state
patterns?

The GoF says that the flyweight pattern can help you to decide
when and how to share the state objects.

What are the similarities among simple factory, factory
method, and abstract factory design patterns?

All of them encapsulate object creation. They suggest you code
to the abstraction (interface) but not to the concrete classes.
Each of these factories promotes loose coupling by reducing the
dependencies on concrete classes.

What are the differences among simple factory, factory method
and abstract factory design patterns?

This is an important question that you may face in various job
interviews. I suggest you clearly understand it. So, refer to the
answer of question 3 in the “Q&A Session” section in Chapter 5.

17.

18.

19.

20.

CHAPTER 29 FAQS

How can you distinguish the singleton pattern from the factory
method pattern?

The singleton pattern ensures that you get a unique instance each
time. It also restricts the creation of additional instances.

But the factory method pattern does not say that you will get a
unique instance only. Most often, this pattern is used to create

as many instances as you want, and these instances are not
necessarily unique. These newly typed instances may implement a
common base class. (Do you remember that the factory method lets
a class defer instantiation to subclasses from the GoF definition ?)

How can you distinguish the builder pattern from the prototype
pattern?

In the prototype pattern, you are using the cloning/ copying
mechanism. So, at the end, you may want to override the original
implementation (note the word @override in our implementation
of the Ford class and Nano class). But changing the legacy (or
original) code is not always easy.

Apart from this point, when you are using cloning mechanisms,
you do not need to think about the constructors with different

parameters.

But the use of constructors with different parameters is very
common in a builder pattern implementation.

How can you distinguish the visitor pattern from the strategy
pattern?

In a strategy pattern, each subclass uses different algorithms to
solve a common problem. But in a visitor design pattern, each

visitor subclass may provide different functionalities.
How are null objects different from proxies?

In general, proxies act on real objects at some point and they may
also provide behaviors. But a null object does not do any such
operation.

479

CHAPTER 29 FAQS

480

21.

22.

23.

How can you distinguish the interpreter pattern from the
visitor pattern?

In an interpreter pattern, you represent simple grammar as

an object structure, but in a visitor pattern, you define specific
operations that you want to use on an object structure. In addition
to this, an interpreter has direct access to the properties that are
needed, but in a visitor pattern, you need special functionalities
(similar to an observer) to access them.

How can you distinguish the flyweight pattern from the object
pool pattern?

I did not discuss the object pool pattern in this book. But if you
already know about the object pool pattern, you notice that in the
flyweight pattern, flyweights have intrinsic and extrinsic states. So,
if a flyweight has both states, the states are divided and the client
needs to pass some part of the state to it. Also in general, the client
does not change the intrinsic state because it is shared.

The object pool pattern does not store any part of state outside; all
state information is stored/encapsulated inside the pooled object.
Also, clients can change the state of a pooled object.

How are libraries (or frameworks) similar/different from
design patterns?

They are not design patterns. They provide the implementations
that you can use directly in your application. But they can use the
concept of the patterns in those implementations.

APPENDIX A

A Brief Overview of GoF
Design Patterns

We all have unique thought processes. So, in the early days of software development,
engineers faced a common problem—there was no standard to instruct them how to
design their applications. Each team followed their own style, and when a new member
(experienced or unexperienced) joined an existing team, understanding the architecture
was a gigantic task. Senior or experienced members of the team would need to explain
the advantages of the existing architecture and why alternative designs were not
considered.

The experienced developer also knows how to reduce future efforts by simply
reusing the concepts already in place. Design patterns address this kind of issue and
provide a common platform for all developers. You can think of them as the recorded
experience of experts in the field. Patterns were intended to be applied in object-
oriented designs with the intention of reuse.

In 1994, Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides published
the book Design Patterns: Elements of Reusable Object-Oriented Software (Addison-
Wesley). In this book, they introduced the concept of design patterns in software
development. These authors became known as the Gang of Four. I refer to them as the
“GoF” throughout this book. The GoF described 23 patterns that were developed by the
common experiences of software developers over a period of time. Nowadays, when a
new member joins a development team, the developer is expected to know about the
design patterns, and then the developer learns about the existing architecture. This
approach allows a developer to actively participate in the development process within a
short period of time.

481
© Vaskaran Sarcar 2019

V. Sarcar, Java Design Patterns, https://doi.org/10.1007/978-1-4842-4078-6

https://doi.org/10.1007/978-1-4842-4078-6

APPENDIXA A BRIEF OVERVIEW OF GOF DESIGN PATTERNS

The first concept of a real-life design pattern came from the building architect
Christopher Alexander. During his lifetime, he discovered that many of the problems
he faced were similar in nature. So, he tried to address those issues with similar types of

solutions.

Each pattern describes a problem, which occurs over and over again in our
environment, and then describes the core of the solution to that problem, in
such a way that you can use this solution a million times over, without ever
doing it the same way twice.

—Christopher Alexander

The software engineering community started believing that although these patterns were
described for buildings and towns, the same concepts could be applied to patterns in
object-oriented design. They felt that we could substitute the original concepts of walls
and doors with objects and interfaces. The common thing in both fields is that, at their
cores, patterns are solutions to common problems.

Lastly, it is important to note that the GoF discussed the original concepts of
design patterns in the context of C++. But Sun Microsystems released its first public
implementation of Java 1.0 in 1995, and then it went through various changes. In 1995, Java
was totally new to the programming world. But it grew rapidly and secured its rank in the
world’s top programming languages within a short period of time, and in today’s market,
itis always in high demand. (You may know that later Oracle Corporation acquired Sun
Microsystems and the acquisition process was finished on January 27, 2010.)

On the other hand, the concepts of design patterns are universal. So, when you
exercise the fundamental concepts of design patterns with Java, you will be a better
programmer, and you’ll remake yourself in the programming community.

Key Points

o Adesign pattern describes a general reusable solution to software
design problems. While developing software, you may encounter
these problems frequently. The basic idea is that you can solve similar
kinds of problems with similar kinds of solutions. And these solutions
were tested over a long period of time.

482

APPENDIXA A BRIEF OVERVIEW OF GOF DESIGN PATTERNS

o Patterns provide a template of how to solve a problem. They can be
used in many different situations. At the same time, they help you get
the best possible design much faster.

o Patterns are descriptions of how to create objects and classes, and
customize them to solve a general design problem in a particular
context.

o The GoF discussed 23 design patterns. Each of these patterns focuses
on a particular object-oriented design. Each pattern can also describe
the consequences and trade-offs of use. The GoF categorized these 23
patterns based on their purposes, as shown in the following sections.

A. Creational Patterns

Creational patterns abstract the instantiation process. You make the systems
independent from the way that their objects are composed, created and represented. In
these patterns, you are concerned about “Where should I place the “new” keyword in my
application?” This decision can determine the degree of coupling in your classes. The
following five patterns belong in this category.

o Singleton pattern

o Prototype pattern

o Factory method pattern
e Builder pattern

o Abstract factory pattern

B. Structural Patterns

Structural patterns focus on how classes and objects can be composed to form a
relatively large structure. They generally use inheritance or composition to group
different interfaces or implementations. Your choice of composition over inheritance
(and vice versa) can affect the flexibility of your software. The following seven patterns
fall into this category.

483

APPENDIXA A BRIEF OVERVIEW OF GOF DESIGN PATTERNS

o Proxy pattern

o Flyweight pattern
o Composite pattern
o Bridge pattern

o Facade pattern

e Decorator pattern

e Adapter pattern

C. Behavioral Patterns

Behavioral patterns concentrate on algorithms and the assignment of responsibilities
among objects. They focus on communication between them and how objects are
interconnected. The following 11 patterns fall into this category.

e Observer pattern

o Strategy pattern

o Template method pattern
e Command pattern

e Iterator pattern

¢ Memento pattern

o State pattern

e Mediator pattern

e Chain of Responsibility pattern
e Visitor pattern

e Interpreter pattern

The GoF made another classification based on scope, namely whether the pattern
primary focuses on the classes or its objects. Class patterns deal with classes and
subclasses. They use inheritance mechanisms, so they are static and fixed at compile
time. Object patterns deal with objects that can change at runtime. So, object patterns
are dynamic.

484

APPENDIXA A BRIEF OVERVIEW OF GOF DESIGN PATTERNS

For a quick reference, you can refer to the following table, which was introduced by

the GoE
Purpose
Creational | Structural Behavioral
Scope | Class | l.Factory 1.1.Adapter(class) | l.Interpreter
Method 2.Template
Method
Object | 2.Singleton | 1.2.Adapter(object) | 3.Observer
3.Prototype | 2.Proxy 4. Strategy
4.Builder 3.Flyweight 5.Command
5.Abstract | 4.Composite 6.Iterator
Factory 5.Bridge 7.Memento
6.Facade 8.State
7.Decorator 9.Mediator
10.Visitor
11.Chain of
Responsibility

Note In this book, each chapter is self-contained. You can start with any pattern
you like, following the guidelines given at the beginning of the book. | have chosen
simple examples so that you can pick up basic ideas quickly. But you must keep
reading and practice. Try to link problems and then keep coding. This process

helps you master the subject quickly.

485

APPENDIXA A BRIEF OVERVIEW OF GOF DESIGN PATTERNS

Q&A Session

486

1.

What are the differences between class patterns and object
patterns?

In general, class patterns focus on static relationship but object
patterns can focus on dynamic relationships. As name suggests,
class patterns focus on classes and its subclasses and object
patterns focus on the objects relationships.

As per GoF, these patterns can be further differentiated in Table A-1.

Table A-1. Class Patterns vs Object Patterns

Class Patterns Object Patterns

Creational Defers object creation to its Defers object creation to another
subclasses. object.

Structural Focuses on the composition Focuses on the different ways of
of classes (primarily uses the composition of objects.
concept of inheritance).

Behavioral Describes the algorithms and Describes how different objects can
execution flows. work together and complete a task.

Can I combine two or more patterns in an application?
Yes. In real-world scenarios, this type of activity is common.

Do these patterns depend on a particular programming
language?

Programming languages can play an important role. But the basic
ideas are same, patterns are just like templates and they give you
some idea in advance of how you can solve a particular problem.
In this book, I primarily focused on object-oriented programming
with the concept of reuse. But instead of any object-oriented
programming language, suppose you have chosen some other
language like C. In that case, you may need to think about the core
object-oriented principles such as inheritance, polymorphism,

APPENDIXA A BRIEF OVERVIEW OF GOF DESIGN PATTERNS

encapsulation, abstraction, and so on, and how to implement
them. So, the choice of a particular language is always important
because it may have specialized features that can make your life

easier.

Should I consider common data structures like arrays and
linked lists as design patterns?

The GoF clearly excludes those saying that they are not complex,
domain-specific designs for an entire application or subsystem.
They can be encoded in classes and reused as is. So, they are not
your concern in this book.

If no particular pattern is 100% suitable for my problem, how
should I proceed?

An infinite number of problems cannot be solved with a finite
number of patterns, for sure. But if you know these common
patterns and their trade-offs, you can pick a close match. No one
prevents you from using your own pattern for your own problem,
but you have to tackle the risk.

Do you suggest any general advice before I jump into the
topics?

I always follow the footsteps of my seniors and teachers who are
experts in this field. And the following are general suggestions
from them.

e Program to a supertype(Abstract class/Interface), not an
implementation.

e Prefer composition over inheritance.
e Tryto make aloosely coupled system.
o Segregate the code that is likely to vary from the rest of your code.

o Encapsulate what varies.

487

APPENDIXA A BRIEF OVERVIEW OF GOF DESIGN PATTERNS

488

7.

How can I use this book effectively?

This book focuses on commonly used design patterns. Most
likely, you face them very often in your everyday life. But the
world is always changing, and new patterns are keep evolving.
To understand the necessity of a new pattern, you may also need
to understand why an old/existing pattern is not enough to fulfil
the requirement. You may consider this book as an attempt to
make a solid foundation with design patterns, so that, you can
move smoothly in your professional life and you can adapt the
upcoming changes easily.

APPENDIX B

Winning Notes
and the Road Ahead

Congratulations. You have reached the end of the journey. Anyone can start a
journey but only few can complete it with care. So, you are among the minority who
possess the extraordinary capability to cover the distance successfully. I believe that
you have enjoyed your learning experience and this experience can help you learn
and experiment further. If you continue to think about the discussions, examples,
implementations, and the Q&A sessions from the book, you will have more clarity
and you will be confident about what you learned, and you can remake yourself in the
programming world.

Truly, an in-depth discussion of any particular design pattern would require many
more pages, and the size of the book would be too gigantic to digest.

So, what is next? You should not forget the basic principle: learning is a continuous
process. This book encourages you to learn the core concepts so that you can continue
learning in more depth.

I believe that learning and thinking on your own is not enough. So, I suggest you
participate in open forums and join discussion groups to get more clarity on this subject.
This process will not only help you, it will help others also.

I have a request. You can always point out areas for improvement in this book, but at
the same time, please let me know what you liked about it. In general, it is always easy to
criticize but an artistic view and open mind is required to discover the true efforts that
are associated with any kind of work.

Thank you and happy coding!

489
© Vaskaran Sarcar 2019

V. Sarcar, Java Design Patterns, https://doi.org/10.1007/978-1-4842-4078-6

https://doi.org/10.1007/978-1-4842-4078-6

APPENDIX C

Bibliography

This appendix lists some useful resources.

The following are helpful books.

Gamma, Erich, et al. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1995.

Freeman, Eric. Head First Design Patterns. O'Reilly, 2016.
Bevis, Tony. Java Design Pattern Essentials. Ability First, 2012.

Brown, William J., and Raphael Malveau. Anti-Patterns: Refactoring
Software, Architectures and Projects in Crisis. Wiley, 1998.

Sarcar, Vaskaran. Design Patterns in C#. Apress, 2018.

The following are helpful online resources/websites.

https://en.wikipedia.org/wiki/Design pattern
https://sourcemaking.com/design_patterns
www.tutorialspoint.com/design pattern
www.dotnetexamples.com

https://java.dzone.com
http://wiki.c2.com/?AntiPatternsCatalog
https://hillside.net

www. youtube.com/watch?v=ffQZIGTTM48&11ist=PL8C53D99ABAD3F4(8

© Vaskaran Sarcar 2019
V. Sarcar, Java Design Patterns, https://doi.org/10.1007/978-1-4842-4078-6

491

https://doi.org/10.1007/978-1-4842-4078-6
https://en.wikipedia.org/wiki/Design_pattern
https://sourcemaking.com/design_patterns
http://www.tutorialspoint.com/design_pattern
http://www.dotnetexamples.com
https://java.dzone.com
http://wiki.c2.com/?AntiPatternsCatalog
https://hillside.net
http://www.youtube.com/watch?v=ffQZIGTTM48&list=PL8C53D99ABAD3F4C8

APPENDIXC BIBLIOGRAPHY

e www.dofactory.com
e www.c-sharpcorner.com
o www.dotnet-tricks.com

e www.codeproject.com

492

http://www.dofactory.com
http://www.c-sharpcorner.com
http://www.dotnet-tricks.com
http://www.codeproject.com

Index

A

AbstractDecorator class, 114-116
AbstractExpression, 390
Abstract factory pattern
class diagram, 70
code snippet, 78-79
computer-world example, 68
concept, 67
GoF definition, 67
implementation, 72-75, 80
Package Explorer view, 71
real-world example, 68
structure, 68

Abstract Window Toolkit (AWT), 166

Adapter pattern
aboutMe() method, 133
aboutRectangle() method, 133
aboutTriangle() method, 133
challenges, 134
class adapters, 131-132
class diagram, 120

modified, 123

computer-world, 118
core concept, 117

electrical outlet/AC power adapter, 117

getArea() method, 119
GoF definition, 117
implementation, 121-122

© Vaskaran Sarcar 2019

mobile phone, 117
modified implementation,
127-128, 130
key characteristics, 124
modified output, 130
object, 130-131

object-oriented design principles, 123

output, 123
Package Explorer view

high-level structure, 120-121

modified program, 126
addHeadLights() methods, 35, 53
addNumber(), 282
AnimalFactory class, 61-63
Antipattern

causes, 472

defined, 467

examples, 469-470

history, 468

remedy, 473-474

symptoms, 472-473

types, 471
Architectural antipatterns, 471
AuthenticationErrorHandler, 378

B

Behavioral patterns, 484-485
Bill pugh’s solution, 14-15

V. Sarcar, Java Design Patterns, https://doi.org/10.1007/978-1-4842-4078-6

493

https://doi.org/10.1007/978-1-4842-4078-6

INDEX

Bridge pattern
abstract class, 191
advantages, 191
challenges, 191
characteristics, 185
class diagram, 182-183
computer-world example, 180
concept, 179
GoF definition, 179
implementation, 185-188
output, 189
Package Explorer view, 184
real-world example, 179-181
buildBody() methods, 35, 53
Builder pattern, 476
abstract class, 43-44
advantages, 42
characteristics, 46
class diagram, 36
computer-world example, 34
concept, 33
construction process, 33
drawbacks/pitfalls, 43
GoF definition, 33
implementation, 38-41, 48
output, 42

Package Explorer view, 36-37, 46-47

real-world example, 34
structure, 33
buildExpression() method, 393

C

Caching mechanism, 17

calculateAreaOfRectangle() method, 124

calculateAreaOfTriangle()
method, 124, 125
Caretaker class, 311-312

494

Catch block, 387
Centralized management system, 17
Chain-of-responsibility pattern, 476
class diagram, 380
computer-world example, 378
concept, 377
GoF definition, 377
implementation, 382-385
output, 385
Package Explorer view, 381
real-world example, 378
class adapters, 131-132
class patterns, 486
clone() method, 20, 26, 321
Command pattern, 475-476
characteristics, 270
class diagram, 265, 271
computer-world example, 264
concept, 263
GoF definition, 263
implementation, 267-269, 274
output, 270, 280-281
Package Explorer view, 266, 272-273
real-world example, 263
completeCourse() method, 252, 260
completeSpecialPaper() method, 256
Composite pattern
advantages, 176
challenges, 176
class diagram, 167-168
computer-world example, 166
concept, 165
GoF definition, 165
implementation, 169-173
output, 174-175
Package Explorer view, 169
real-world example, 166
usage, 165

INDEX

ConcreteAggregate, 286 E
ConcreteBuilder, 34

Concrete implementation, 179
Concretelterator, 286

ConcreteSubject class, 93

construct() method, 35, 476
constructCar() methods, 46
constructMilanoRobot() method, 136
createAnimal() method, 63, 65, 413, 419
Creational patterns, 483 F
currentltem() method, 288

EmailErrorHandler, 378
Encapsulation, 42, 67, 213
endOperations() methods, 35
execute() method, 354
Experience reuse, 461
Extrinsic state, 149

Facade pattern, 475
access, 145
D advantages, 144

challenges, 145
Data structures, 176

Decorator pattern
advantages, 111
class diagram, 106
computer-world example, 105
concept, 103
disadvantages, 114
GoF definition, 103
implementation, 107-110
inheritance, 112
Package Explorer view, 107
real-world example, 103-105

class diagram, 137

concept, 135

differences, mediator design pattern, 146

GoF definition, 135

implementation, 139-141, 143

interfaces, 145

key information,

party organizer, 135-136

output, 143-144

Package Explorer view, 138

programming language, 136
Factory method pattern, 479

abstract creator class, 55

class diagram, 57

code snippet, 78

computer-world example, 56

concept, 55

GoF definition, 55

implementation, 58-60

output, 61

Package Explorer view, 58

parallel class hierarchies, 64

real-world example, 56

Deep copy, 28

Default behavior, 246

Design patterns, criticisms, 461-463
destroyMilanoRobot() method, 136
Development antipatterns, 471
doSomework() method, 88
Double-checked locking, 15-16, 162
doublePress() method, 185, 190
dummyMethod(), 15, 17

Dynamic behavior, 111

Dynamic binding, 116

Dynamic checking mechanism, 176

495

INDEX

FaxErrorHandler, 378

Finite state machine, 303

first() method, 288

Flyweight pattern, 478
advantages, 161
challenges, 161
class diagram, 150
computer-world example, 148-149
concept, 147-148
core concepts, visualizes, 160
GoF definition, 147
implementation, 151-155, 157
output, 157-158
Package Explorer view, 151
real-world example, 148

G

getArea() method, 119
getArea(RectInterface) method, 124
getCaptain() method, 8, 15
getConstructedCar() methods, 46
getEmployeeCount() methods, 176-177
getRobotFromFactory() method, 163
getRuntime() method, 4
GetVehicle() method, 35
GoF design patterns
behavioral patterns, 484-485
creational patterns, 483
object-oriented design, 483
reusable solution, 482
structural patterns, 483-484
GUI frameworks, 180

H

Handle/body pattern, 179
hasNext() method, 288

496

Inheritance
hierarchy, 112
multilevel, 113
multiple base classes, 113
insertWheels() methods, 35, 53
Instantiation process, 5
interpret() method, 390
Interpreter pattern, 480
class diagram, 393, 400
computer-world
example, 391
concept, 389
GoF definition, 389
implementation, 395, 401
output, 399, 406
Package Explorer view, 394, 401
real-world example, 391
structure, 390
Intrinsic state, 147
Invocation process, 263
isAdditionalPapersNeeded(), 257
Iterator pattern
class diagram, 288-289
computer-world
example, 287
concept, 285
diagram, 286
GoF definition, 285
implementation, 291-294, 299
output, 293, 296, 302
Package Explorer view, 290
real-world example, 286-287

J, K

java.awt.event package, 426

L

Lazy initialization, 9
Lazy instantiation technique, 96

main() method, 10, 45
MakeHouse() method, 106
Management antipatterns, 471
Mediator pattern
advantages, 375
analysis, 363
class diagram, 356-357
communication, 374
computer-world example, 354
concept, 353
definition, 353
implementation, 359-362
modified illustration (see Modified
illustration, mediator pattern)
output, 363
Package Explorer view, 357-358
participants, 355
real-world example, 353-354
structure, 355
Memento pattern
challenges, 318
class diagram, 305
computer-world example, 304
concept, 303
GoF definition, 303
implementation, 306-309
output, 309
Package Explorer view, 306
real-world example, 303
Model-View-Controller (MVC) pattern
advantages, 453
architecture, 438

INDEX

ASP.NET project, 441
challenges, 453

class diagram, 442-443
concept, 437
controller, 438
description, 440

implementation, 438, 444-446, 448-451

key components, 438

model, 438

Modified Package Explorer
view, 454-455

multiple views, 439

observer pattern/event-based
mechanism, 440

output, 452

Package Explorer view, 442, 444

real-life example, 440

variations, 439

view, 438

Model-View-Presenter (MVP), 464
ModifiedBuilder return type, 46
Modified Illustration,

mediator pattern, 363-364
analysis, 373
class diagram, 365
implementation, 367, 369, 371-372
output, 372
Package Explorer view, 366

MouseMotionAdapter class, 426
MSIL code, 391
Multiple inheritance, 43

Multithreaded environment, 8, 54, 161

N

next() method, 288
non-static nested class, 9
NonterminalExpression, 390

497

INDEX

notifyRegisteredUsers() methods, 222
Null Object pattern
analysis, 425, 433
characteristic, 421
class diagram, 427
client server architecture, 426
demo, 424
exception, 425
faulty program, 422-423
implementation, 429-431
output, 432
Package Explorer view, 428
real-life scenario, 426
remedy, 425
unwanted input, 424
NullVehicle object, 427

O

Object adapters, 130-131, 133
Object-oriented programming, 165, 240
Object patterns, 486
Object pool pattern, 480
Observer pattern, 476
class diagram, 222
computer-world example, 220
concept, 217-220
GoF definition, 217
implementation, 224, 226
output, 227
Package Explorer view, 223
real-world example, 220
workflow, 229-230
one-time deal, 65
open/close principle, 193
Oracle Java documentation, 44
Oracle server-specific connection, 56
Organizational antipatterns, 471

498

PQ

Parameterized constructors, 80
Pattern Languages of Program Design
(PLoP), 468
PetAnimalFactory, 69
Polymorphism, 261, 282
Portland patterns repository, 464
preferredAction() methods, 76
printStructures() methods, 176-177
Private constructor, 5
ProductClass attributes, 54
Programming languages, 486
Protection proxies, 92, 97
Prototype pattern, 479
advantages, 26
challenges, 26
class diagram, 20
computer-world example, 20
concept, 19
field-by-field copy (see Shallow copy)
GoF definition, 19
implementation, 23-24
output, 25, 31
Package Explorer view, 22
real-world example, 19
structure, 20
user-defined copy constructor, 29-30
Proxy pattern
class diagram, 88-89
computer-world example, 88
concept, 87
GoF definition, 87
implementation, 90-91, 93-94, 99-101
output, 92, 95
Package Explorer view, 89-90, 98
real-world example, 87
Public setter method, 318
Publish-subscribe pattern, 217

R

Ready-made constructs, 230
RectInterface, 124
Refactoring, 474

Refined abstraction, 179
register() method, 222, 356
Remote-control maker, 180
Remote proxies, 92, 97
RobotFacade class, 136
RobotFactory class, 149, 163

S

SAXParserFactory, 66
sendMessage() method, 356

setAdditionalPrice() method, 26

setChanged method, 230
Setter method, 246
Shallow copy, 27

vs. deep copy, 321

implementation, 322-323, 325

output, 326
showTransportMedium()
method, 235, 244
Simple factory pattern
characteristics, 413
class diagram, 413-414
code snippet, 77

computer-world example, 412

concept, 411

GoF definition, 411
implementation, 415-417
output, 417-418

package explorer view, 415
real-world example, 411-412

Single responsibility, 114
Singleton class, 477

INDEX

Singleton pattern, 427, 479
characteristics, 5
class diagram, 4
computer-world example, 4
concept, 3
eager initialization, 12
GoF definition, 3
implementation, 6-7
object creations, 17
output, 7, 14
Package Explorer view, 5
real-world example, 3
Smart reference, 92
Software engineering
community, 482
SOLID principles, 114
SQL Server-specific connection, 56
startUpOperations() method, 35
State pattern
characteristics, 332
class diagram, 332-333
computer-world example, 330
concept, 329
GoF definition, 329
implementation, 335-338, 345
output, 339, 350
Package Explorer view, 334, 344
real-world example, 330
Static class, 477
Strategy pattern, 479
advantages, 248
class diagram, 235
computer-world example, 234
concept, 233
class Boat extends Vehicle, 242-243
GoF definition, 233
implementation, 237, 239

499

INDEX

Strategy pattern (cont.)
output, 240
Package Explorer view, 236
real-world example, 233
vehicle class, 241
Structural patterns, 483-484
Sun Microsystems, 482
Synchronized method, 162

T

TCP connection, 330
Television (TV), 329
functionalities, 330
states, 331
Template method pattern
advantages, 261
class diagram, 252-253
computer-world example, 252
concept, 251
GoF definition, 251
implementation, 254-255, 257-259
output, 256, 260
Package Explorer view, 254
real-world example, 251
TerminalExpression, 390
transport() method, 235
TV() constructor, 343

500

U

Unshared flyweights, 149

User interface (UI)
adapter, 118
antipatterns, 471

\"

Vehicle class, 234
Virtual proxies, 92, 97
VisitCompositeElement() method, 214
VisitLeafNode() method, 214
Visitor pattern
class diagram, 195, 204
computer-world example, 194
concept, 193
GoF definition, 193
implementation, 196-197, 206-211
output, 198, 212
Package Explorer view, 196, 205
real-world example, 194
tree structure, 199-203

W XY,Z
WildAnimalFactory, 69

Windows Presentation
Foundation (WPF), 264

	Table of Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Foreword
	Introduction
	Part I: Gang of Four Patterns
	Chapter 1: Singleton Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Illustration
	Class Diagram
	Package Explorer View
	Discussion
	Implementation
	Output

	Q&A Session
	Output
	Eager Initialization
	Discussion
	Output
	Analysis

	Bill Pugh’s Solution
	Double-Checked Locking

	Chapter 2: Prototype Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Illustration
	Class Diagram
	Package Explorer View
	Implementation
	Output

	Q&A Session
	Demonstration
	Output

	Chapter 3: Builder Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Illustration
	Class Diagram
	Package Explorer View
	Implementation
	Output

	Q&A Session
	Modified Illustration
	Modified Package Explorer View
	Modified Implementation
	Modified Output
	Analysis

	Chapter 4: Factory Method Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Illustration
	Class Diagram
	Package Explorer View
	Implementation
	Output
	Modified Implementation
	Modified Output
	Analysis

	Q&A Session

	Chapter 5: Abstract Factory Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Illustration
	Class Diagram
	Package Explorer View
	Implementation
	Output

	Q&A Session
	Simple Factory Pattern Code Snippet
	Factory Method Pattern Code Snippet
	Abstract Factory Pattern Code Snippet
	Conclusion
	Modified Illustration
	Modified Implementation
	Modified Output

	Chapter 6: Proxy Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Illustration
	Class Diagram
	Package Explorer View
	Implementation
	Output

	Q&A Session
	Alternate Implementation
	Output Without Lazy Instantiation
	Analysis
	Output with Lazy Instantiation
	Analysis
	Modified Package Explorer View
	Modified Implementation
	Modified Output

	Chapter 7: Decorator Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Illustration
	Class Diagram
	Package Explorer View
	Implementation
	Output

	Q&A Session

	Chapter 8: Adapter Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Illustration
	Class Diagram
	Package Explorer View
	Implementation
	Output
	Modified Illustration
	Modified Class Diagram
	Key Characteristics of the Modified Implementation
	Modified Package Explorer View
	Modified Implementation
	Modified Output
	Types of Adapters
	Object Adapters
	Class Adapters

	Q&A Session

	Chapter 9: Facade Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Illustration
	Class Diagram
	Package Explorer View
	Implementation
	Output

	Q&A Session

	Chapter 10: Flyweight Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Illustration
	Class Diagram
	Package Explorer View
	Implementation
	Output
	Analysis

	Q&A Session

	Chapter 11: Composite Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Illustration
	Class Diagram
	Package Explorer View
	Implementation
	Output

	Q&A Session

	Chapter 12: Bridge Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Illustration
	Class Diagram
	Package Explorer View
	Key Characteristics
	Implementation
	Output

	Q&A Session

	Chapter 13: Visitor Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Illustration
	Class Diagram
	Package Explorer View
	Implementation
	Output
	Modified Illustration
	Key Characteristic of the Modified Example
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5

	Modified Class Diagram
	Modified Package Explorer View
	Modified Implementation
	Modified Output

	Q&A Session

	Chapter 14: Observer Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Illustration
	Class Diagram
	Package Explorer View
	Implementation
	Output
	Analysis

	Q&A Session

	Chapter 15: Strategy (Policy) Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer world Example
	Illustration
	Class Diagram
	Package Explorer View
	Implementation
	Output

	Q&A Session

	Chapter 16: Template Method Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Illustration
	Class Diagram
	Package Explorer View
	Implementation
	Output

	Q&A Session
	Modified Implementation
	Modified Output

	Chapter 17: Command Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Illustration
	Class Diagram
	Package Explorer View
	Implementation
	Output

	Q&A Session
	Modified Class Diagram
	Modified Package Explorer View
	Modified Implementation
	Modified Output

	Chapter 18: Iterator Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Illustration
	Class Diagram
	Package Explorer View
	First Implementation
	Output
	Key Characteristics of the Second Implementation
	Second Implementation
	Output

	Q&A Session
	Third Implementation
	Output

	Chapter 19: Memento Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Illustration
	Class Diagram
	Package Explorer View
	Implementation
	Output

	Q&A Session
	Modified Caretaker Class
	Modified Output
	Analysis
	Shallow Copy vs. Deep Copy in Java
	Key Characteristics of the Following Program
	Implementation
	Output
	Analysis
	Modified Output
	Analysis

	Chapter 20: State Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Illustration
	Key Characteristics
	Class Diagram
	Package Explorer View
	Implementation
	Output

	Q&A Session
	Modified Package Explorer View
	Modified Implementation
	Modified Output

	Chapter 21: Mediator Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Illustration
	Class Diagram
	Package Explorer View
	Implementation
	Output
	Analysis
	Modified Illustration
	Modified Class Diagram
	Modified Package Explorer View
	Modified Implementation
	Modified Output
	Analysis

	Q&A Session

	Chapter 22: Chain-of-Responsibility Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Illustration
	Class Diagram
	Package Explorer View
	Implementation
	Output

	Q&A Session

	Chapter 23: Interpreter Pattern
	GoF Definition
	Concept
	Real-World Example
	Computer-World Example
	Illustration
	Class Diagram
	Package Explorer View
	Implementation
	Output
	Analysis
	Modified Illustration
	Modified Class Diagram
	Modified Package Explorer View
	Modified Implementation
	Modified Output
	Analysis

	Q&A Session

	Part II: Additional Design Patterns
	Chapter 24: Simple Factory Pattern
	Intent
	Concept
	Real-World Example
	Computer-World example
	Illustration
	Class Diagram
	Package Explorer View
	Implementation
	Output
	Case1. User input:0
	Case2. User input:1
	Case3. An unwanted user input:2

	Q&A Session

	Chapter 25: Null Object Pattern
	Concept
	A Faulty Program
	Output with Valid Inputs
	Analysis with an Unwanted Input
	Encountered Exception
	Immediate Remedy
	Analysis

	Real-World Example
	Computer-World Example
	Illustration
	Class Diagram
	Package Explorer View
	Implementation
	Output
	Analysis

	Q&A Session

	Chapter 26: MVC Pattern
	Concept
	Key Points to Remember
	Variation 1
	Variation 2
	Variation 3

	Real-World Example
	Computer-World Example
	Illustration
	Class Diagram
	Package Explorer View
	Implementation
	Output

	Q&A Session
	Modified Output

	Part III: Final Discussions on Design Patterns
	Chapter 27: Criticisms of Design Patterns
	Q&A Session

	Chapter 28: AntiPatterns: Avoid the Common Mistakes
	What Is an Antipattern?
	Brief History of Antipatterns
	Examples of Antipatterns
	Types of Antipatterns
	Q&A Session

	Chapter 29: FAQs

	Appendix A: A Brief Overview of GoF Design Patterns

	Key Points
	A. Creational Patterns
	B. Structural Patterns
	C. Behavioral Patterns
	Q&A Session

	Appendix B: Winning Notes and the Road Ahead

	Appendix C: Bibliography

	Index

