
M A N N I N G

François Chollet

SECOND EDITION

Deep Learning with Python

Deep Learning
with Python

SECOND EDITION

FRANÇOIS CHOLLET

MANN I NG
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2021 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning Publications
was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

The author and publisher have made every effort to ensure that the information in this book
was correct at press time. The author and publisher do not assume and hereby disclaim any
liability to any party for any loss, damage, or disruption caused by errors or omissions, whether
such errors or omissions result from negligence, accident, or any other cause, or from any usage
of the information herein.

Development editor: Jennifer Stout
Technical development editor: Frances Buontempo

Manning Publications Co. Review editor: Aleksandar Dragosavljević
20 Baldwin Road Production editor: Keri Hales
PO Box 761 Copy editor: Andy Carroll
Shelter Island, NY 11964 Proofreaders: Katie Tennant and Melody Dolab

Technical proofreader: Karsten Strøbæk
Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781617296864
Printed in the United States of America

 To my son Sylvain: I hope you’ll read this book someday!

vii

brief contents
1 ! What is deep learning? 1

2 ! The mathematical building blocks
of neural networks 26

3 ! Introduction to Keras and TensorFlow 68
4 ! Getting started with neural networks: Classification

and regression 95
5 ! Fundamentals of machine learning 121
6 ! The universal workflow of machine learning 153

7 ! Working with Keras: A deep dive 172
8 ! Introduction to deep learning

for computer vision 201
9 ! Advanced deep learning for computer vision 238

10 ! Deep learning for timeseries 280

11 ! Deep learning for text 309
12 ! Generative deep learning 364
13 ! Best practices for the real world 412

14 ! Conclusions 431

ix

contents
 preface xvii
acknowledgments xix
about this book xx
about the author xxiii
about the cover illustration xxiv

1 What is deep learning? 1
1.1 Artificial intelligence, machine learning, and deep

learning 2
Artificial intelligence 2 ! Machine learning 3 ! Learning
rules and representations from data 4 ! The “deep” in “deep
learning” 7 ! Understanding how deep learning works, in
three figures 8 ! What deep learning has achieved so far 10
Don’t believe the short-term hype 11 ! The promise of AI 12

1.2 Before deep learning: A brief history of machine
learning 13
Probabilistic modeling 13 ! Early neural networks 14
Kernel methods 14 ! Decision trees, random forests, and
gradient boosting machines 15 ! Back to neural networks 16
What makes deep learning different 17 ! The modern machine
learning landscape 18

CONTENTSx

1.3 Why deep learning? Why now? 20
Hardware 20 ! Data 21 ! Algorithms 22 ! A new wave of
investment 23 ! The democratization of deep learning 24
Will it last? 24

2 The mathematical building blocks of neural networks 26
2.1 A first look at a neural network 27
2.2 Data representations for neural networks 31

Scalars (rank-0 tensors) 31 ! Vectors (rank-1 tensors) 31
Matrices (rank-2 tensors) 32 ! Rank-3 and higher-rank
tensors 32 ! Key attributes 32 ! Manipulating tensors in
NumPy 34 ! The notion of data batches 35 ! Real-world
examples of data tensors 35 ! Vector data 35 ! Timeseries data
or sequence data 36 ! Image data 37 ! Video data 37

2.3 The gears of neural networks: Tensor operations 38
Element-wise operations 38 ! Broadcasting 40 ! Tensor product 41
Tensor reshaping 43 ! Geometric interpretation of tensor operations 44
A geometric interpretation of deep learning 47

2.4 The engine of neural networks: Gradient-based
optimization 48
What’s a derivative? 49 ! Derivative of a tensor operation:
The gradient 51 ! Stochastic gradient descent 52 ! Chaining
derivatives: The Backpropagation algorithm 55

2.5 Looking back at our first example 61
Reimplementing our first example from scratch in TensorFlow 63
Running one training step 64 ! The full training loop 65
Evaluating the model 66

3 Introduction to Keras and TensorFlow 68
3.1 What’s TensorFlow? 69
3.2 What’s Keras? 69
3.3 Keras and TensorFlow: A brief history 71
3.4 Setting up a deep learning workspace 71

Jupyter notebooks: The preferred way to run deep learning
experiments 72 ! Using Colaboratory 73

3.5 First steps with TensorFlow 75
Constant tensors and variables 76 ! Tensor operations: Doing
math in TensorFlow 78 ! A second look at the GradientTape
API 78 ! An end-to-end example: A linear classifier in pure
TensorFlow 79

CONTENTS xi

3.6 Anatomy of a neural network: Understanding core
Keras APIs 84
Layers: The building blocks of deep learning 84 ! From layers
to models 87 ! The “compile” step: Configuring the learning
process 88 ! Picking a loss function 90 ! Understanding the
fit() method 91 ! Monitoring loss and metrics on validation
data 91 ! Inference: Using a model after training 93

4 Getting started with neural networks: Classification and
regression 95
4.1 Classifying movie reviews: A binary classification

example 97
The IMDB dataset 97 ! Preparing the data 98 ! Building your
model 99 ! Validating your approach 102 ! Using a trained
model to generate predictions on new data 105 ! Further
experiments 105 ! Wrapping up 106

4.2 Classifying newswires: A multiclass classification
example 106
The Reuters dataset 106 ! Preparing the data 107 ! Building
your model 108 ! Validating your approach 109 ! Generating
predictions on new data 111 ! A different way to handle the labels
and the loss 112 ! The importance of having sufficiently large
intermediate layers 112 ! Further experiments 113
Wrapping up 113

4.3 Predicting house prices: A regression example 113
The Boston housing price dataset 114 ! Preparing the data 114
Building your model 115 ! Validating your approach using
K-fold validation 115 ! Generating predictions on new
data 119 ! Wrapping up 119

5 Fundamentals of machine learning 121
5.1 Generalization: The goal of machine learning 121

Underfitting and overfitting 122 ! The nature of generalization
in deep learning 127

5.2 Evaluating machine learning models 133
Training, validation, and test sets 133 ! Beating a common-sense
baseline 136 ! Things to keep in mind about model
evaluation 137

5.3 Improving model fit 138
Tuning key gradient descent parameters 138 ! Leveraging better
architecture priors 139 ! Increasing model capacity 140

CONTENTSxii

5.4 Improving generalization 142
Dataset curation 142 ! Feature engineering 143 ! Using early
stopping 144 ! Regularizing your model 145

6 The universal workflow of machine learning 153
6.1 Define the task 155

Frame the problem 155 ! Collect a dataset 156 ! Understand
your data 160 ! Choose a measure of success 160

6.2 Develop a model 161
Prepare the data 161 ! Choose an evaluation protocol 162
Beat a baseline 163 ! Scale up: Develop a model that
overfits 164 ! Regularize and tune your model 165

6.3 Deploy the model 165
Explain your work to stakeholders and set expectations 165
Ship an inference model 166 ! Monitor your model in the
wild 169 ! Maintain your model 170

7 Working with Keras: A deep dive 172
7.1 A spectrum of workflows 173
7.2 Different ways to build Keras models 173

The Sequential model 174 ! The Functional API 176
Subclassing the Model class 182 ! Mixing and matching different
components 184 ! Remember: Use the right tool for the job 185

7.3 Using built-in training and evaluation loops 185
Writing your own metrics 186 ! Using callbacks 187
Writing your own callbacks 189 ! Monitoring and visualization
with TensorBoard 190

7.4 Writing your own training and evaluation loops 192
Training versus inference 194 ! Low-level usage of metrics 195
A complete training and evaluation loop 195 ! Make it fast with
tf.function 197 ! Leveraging fit() with a custom training loop 198

8 Introduction to deep learning for computer vision 201
8.1 Introduction to convnets 202

The convolution operation 204 ! The max-pooling
operation 209

8.2 Training a convnet from scratch on a small dataset 211
The relevance of deep learning for small-data problems 212
Downloading the data 212 ! Building the model 215
Data preprocessing 217 ! Using data augmentation 221

CONTENTS xiii

8.3 Leveraging a pretrained model 224
Feature extraction with a pretrained model 225 ! Fine-tuning a
pretrained model 234

9 Advanced deep learning for computer vision 238
9.1 Three essential computer vision tasks 238
9.2 An image segmentation example 240
9.3 Modern convnet architecture patterns 248

Modularity, hierarchy, and reuse 249 ! Residual connections 251
Batch normalization 255 ! Depthwise separable convolutions 257
Putting it together: A mini Xception-like model 259

9.4 Interpreting what convnets learn 261
Visualizing intermediate activations 262 ! Visualizing convnet
filters 268 ! Visualizing heatmaps of class activation 273

10 Deep learning for timeseries 280
10.1 Different kinds of timeseries tasks 280
10.2 A temperature-forecasting example 281

Preparing the data 285 ! A common-sense, non-machine learning
baseline 288 ! Let’s try a basic machine learning model 289
Let’s try a 1D convolutional model 290 ! A first recurrent
baseline 292

10.3 Understanding recurrent neural networks 293
A recurrent layer in Keras 296

10.4 Advanced use of recurrent neural networks 300
Using recurrent dropout to fight overfitting 300 ! Stacking
recurrent layers 303 ! Using bidirectional RNNs 304
Going even further 307

11 Deep learning for text 309
11.1 Natural language processing: The bird’s eye view 309
11.2 Preparing text data 311

Text standardization 312 ! Text splitting (tokenization) 313
Vocabulary indexing 314 ! Using the TextVectorization
layer 316

11.3 Two approaches for representing groups of words:
Sets and sequences 319
Preparing the IMDB movie reviews data 320 ! Processing words
as a set: The bag-of-words approach 322 ! Processing words as a
sequence: The sequence model approach 327

CONTENTSxiv

11.4 The Transformer architecture 336
Understanding self-attention 337 ! Multi-head attention 341
The Transformer encoder 342 ! When to use sequence models over
bag-of-words models 349

11.5 Beyond text classification: Sequence-to-sequence
learning 350
A machine translation example 351 ! Sequence-to-sequence
learning with RNNs 354 ! Sequence-to-sequence learning with
Transformer 358

12 Generative deep learning 364
12.1 Text generation 366

A brief history of generative deep learning for sequence
generation 366 ! How do you generate sequence data? 367
The importance of the sampling strategy 368 ! Implementing
text generation with Keras 369 ! A text-generation callback
with variable-temperature sampling 372 ! Wrapping up 376

12.2 DeepDream 376
Implementing DeepDream in Keras 377 ! Wrapping up 383

12.3 Neural style transfer 383
The content loss 384 ! The style loss 384 ! Neural style transfer
in Keras 385 ! Wrapping up 391

12.4 Generating images with variational autoencoders 391
Sampling from latent spaces of images 391 ! Concept vectors
for image editing 393 ! Variational autoencoders 393
Implementing a VAE with Keras 396 ! Wrapping up 401

12.5 Introduction to generative adversarial networks 401
A schematic GAN implementation 402 ! A bag of
tricks 403 ! Getting our hands on the CelebA dataset 404
The discriminator 405 ! The generator 407 ! The adversarial
network 408 ! Wrapping up 410

13 Best practices for the real world 412
13.1 Getting the most out of your models 413

Hyperparameter optimization 413 ! Model ensembling 420

13.2 Scaling-up model training 421
Speeding up training on GPU with mixed precision 422
Multi-GPU training 425 ! TPU training 428

CONTENTS xv

14 Conclusions 431
14.1 Key concepts in review 432

Various approaches to AI 432 ! What makes deep learning special
within the field of machine learning 432 ! How to think about
deep learning 433 ! Key enabling technologies 434 ! The
universal machine learning workflow 435 ! Key network
architectures 436 ! The space of possibilities 440

14.2 The limitations of deep learning 442
The risk of anthropomorphizing machine learning models 443
Automatons vs. intelligent agents 445 ! Local generalization vs.
extreme generalization 446 ! The purpose of intelligence 448
Climbing the spectrum of generalization 449

14.3 Setting the course toward greater generality in AI 450
On the importance of setting the right objective: The shortcut
rule 450 ! A new target 452

14.4 Implementing intelligence: The missing ingredients 454
Intelligence as sensitivity to abstract analogies 454 ! The two poles
of abstraction 455 ! The missing half of the picture 458

14.5 The future of deep learning 459
Models as programs 460 ! Blending together deep learning and
program synthesis 461 ! Lifelong learning and modular
subroutine reuse 463 ! The long-term vision 465

14.6 Staying up to date in a fast-moving field 466
Practice on real-world problems using Kaggle 466 ! Read about
the latest developments on arXiv 466 ! Explore the Keras
ecosystem 467

14.7 Final words 467

index 469

xvii

 preface
If you’ve picked up this book, you’re probably aware of the extraordinary progress
that deep learning has represented for the field of artificial intelligence in the recent
past. We went from near-unusable computer vision and natural language processing
to highly performant systems deployed at scale in products you use every day. The
consequences of this sudden progress extend to almost every industry. We’re already
applying deep learning to an amazing range of important problems across domains as
different as medical imaging, agriculture, autonomous driving, education, disaster
prevention, and manufacturing.

 Yet, I believe deep learning is still in its early days. It has only realized a small frac-
tion of its potential so far. Over time, it will make its way to every problem where it can
help—a transformation that will take place over multiple decades.

 In order to begin deploying deep learning technology to every problem that it
could solve, we need to make it accessible to as many people as possible, including
non-experts—people who aren’t researchers or graduate students. For deep learning to
reach its full potential, we need to radically democratize it. And today, I believe that
we’re at the cusp of a historical transition, where deep learning is moving out of aca-
demic labs and the R&D departments of large tech companies to become a ubiquitous
part of the toolbox of every developer out there—not unlike the trajectory of web
development in the late 1990s. Almost anyone can now build a website or web app for
their business or community of a kind that would have required a small team of special-
ist engineers in 1998. In the not-so-distant future, anyone with an idea and basic coding
skills will be able to build smart applications that learn from data.

PREFACExviii

 When I released the first version of the Keras deep learning framework in March
2015, the democratization of AI wasn’t what I had in mind. I had been doing research
in machine learning for several years and had built Keras to help me with my own
experiments. But since 2015, hundreds of thousands of newcomers have entered the
field of deep learning; many of them picked up Keras as their tool of choice. As I
watched scores of smart people use Keras in unexpected, powerful ways, I came to
care deeply about the accessibility and democratization of AI. I realized that the fur-
ther we spread these technologies, the more useful and valuable they become. Accessi-
bility quickly became an explicit goal in the development of Keras, and over a few
short years, the Keras developer community has made fantastic achievements on this
front. We’ve put deep learning into the hands of hundreds of thousands of people,
who in turn are using it to solve problems that were until recently thought to be
unsolvable.

 The book you’re holding is another step on the way to making deep learning avail-
able to as many people as possible. Keras had always needed a companion course to
simultaneously cover the fundamentals of deep learning, deep learning best practices,
and Keras usage patterns. In 2016 and 2017, I did my best to produce such a course,
which became the first edition of this book, released in December 2017. It quickly
became a machine learning best seller that sold over 50,000 copies and was translated
into 12 languages.

 However, the field of deep learning advances fast. Since the release of the first edi-
tion, many important developments have taken place—the release of TensorFlow 2,
the growing popularity of the Transformer architecture, and more. And so, in late
2019, I set out to update my book. I originally thought, quite naively, that it would fea-
ture about 50% new content and would end up being roughly the same length as the
first edition. In practice, after two years of work, it turned out to be over a third lon-
ger, with about 75% novel content. More than a refresh, it is a whole new book.

 I wrote it with a focus on making the concepts behind deep learning, and their
implementation, as approachable as possible. Doing so didn’t require me to dumb
down anything—I strongly believe that there are no difficult ideas in deep learning. I
hope you’ll find this book valuable and that it will enable you to begin building intelli-
gent applications and solve the problems that matter to you.

xix

acknowledgments
First of all, I’d like to thank the Keras community for making this book possible. Over
the past six years, Keras has grown to have hundreds of open source contributors and
more than one million users. Your contributions and feedback have turned Keras into
what it is today.

 On a more personal note, I’d like to thank my wife for her endless support during
the development of Keras and the writing of this book.

 I’d also like to thank Google for backing the Keras project. It has been fantastic to
see Keras adopted as TensorFlow’s high-level API. A smooth integration between
Keras and TensorFlow greatly benefits both TensorFlow users and Keras users, and
makes deep learning accessible to most.

 I want to thank the people at Manning who made this book possible: publisher
Marjan Bace and everyone on the editorial and production teams, including Michael
Stephens, Jennifer Stout, Aleksandar Dragosavljević, and many others who worked
behind the scenes.

 Many thanks go to the technical peer reviewers: Billy O’Callaghan, Christian
Weisstanner, Conrad Taylor, Daniela Zapata Riesco, David Jacobs, Edmon Begoli,
Edmund Ronald PhD, Hao Liu, Jared Duncan, Kee Nam, Ken Fricklas, Kjell Jansson,
Milan Šarenac, Nguyen Cao, Nikos Kanakaris, Oliver Korten, Raushan Jha, Sayak Paul,
Sergio Govoni, Shashank Polasa, Todd Cook, and Viton Vitanis—and all the other
people who sent us feedback on the draft on the book.

 On the technical side, special thanks go to Frances Buontempo, who served as the
book’s technical editor, and Karsten Strøbæk, who served as the book’s technical
proofreader.

xx

about this book
This book was written for anyone who wishes to explore deep learning from scratch or
broaden their understanding of deep learning. Whether you’re a practicing machine
learning engineer, a software developer, or a college student, you’ll find value in
these pages.

 You’ll explore deep learning in an approachable way—starting simply, then work-
ing up to state-of-the-art techniques. You’ll find that this book strikes a balance between
intuition, theory, and hands-on practice. It avoids mathematical notation, preferring
instead to explain the core ideas of machine learning and deep learning via detailed
code snippets and intuitive mental models. You’ll learn from abundant code examples
that include extensive commentary, practical recommendations, and simple high-level
explanations of everything you need to know to start using deep learning to solve con-
crete problems.

 The code examples use the Python deep learning framework Keras, with Tensor-
Flow 2 as its numerical engine. They demonstrate modern Keras and TensorFlow 2
best practices as of 2021.

 After reading this book, you’ll have a solid understand of what deep learning is,
when it’s applicable, and what its limitations are. You’ll be familiar with the standard
workflow for approaching and solving machine learning problems, and you’ll know
how to address commonly encountered issues. You’ll be able to use Keras to tackle
real-world problems ranging from computer vision to natural language processing:
image classification, image segmentation, timeseries forecasting, text classification,
machine translation, text generation, and more.

ABOUT THIS BOOK xxi

Who should read this book
This book is written for people with Python programming experience who want to get
started with machine learning and deep learning. But this book can also be valuable
to many different types of readers:

� If you’re a data scientist familiar with machine learning, this book will provide
you with a solid, practical introduction to deep learning, the fastest-growing
and most significant subfield of machine learning.

� If you’re a deep learning researcher or practitioner looking to get started with
the Keras framework, you’ll find this book to be the ideal Keras crash course.

� If you’re a graduate student studying deep learning in a formal setting, you’ll
find this book to be a practical complement to your education, helping you
build intuition around the behavior of deep neural networks and familiarizing
you with key best practices.

Even technically minded people who don’t code regularly will find this book useful as
an introduction to both basic and advanced deep learning concepts.

 In order to understand the code examples, you’ll need reasonable Python profi-
ciency. Additionally, familiarity with the NumPy library will be helpful, although it
isn’t required. You don’t need previous experience with machine learning or deep
learning: this book covers, from scratch, all the necessary basics. You don’t need an
advanced mathematics background, either—high school–level mathematics should
suffice in order to follow along.

About the code
This book contains many examples of source code both in numbered listings and in
line with normal text. In both cases, source code is formatted in a fixed-width font
like this to separate it from ordinary text.

 In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. Additionally, comments in the source code have often been removed from the
listings when the code is described in the text. Code annotations accompany many of
the listings, highlighting important concepts.

 All code examples in this book are available from the Manning website at https://
www.manning.com/books/deep-learning-with-python-second-edition, and as Jupyter
notebooks on GitHub at https://github.com/fchollet/deep-learning-with-python-
notebooks. They can be run directly in your browser via Google Colaboratory, a
hosted Jupyter notebook environment that you can use for free. An internet connec-
tion and a desktop web browser are all you need to get started with deep learning.

liveBook discussion forum
Purchase of Deep Learning with Python, second edition, includes free access to a private
web forum run by Manning Publications where you can make comments about the

ABOUT THIS BOOKxxii

book, ask technical questions, and receive help from the author and from other users.
To access the forum, go to https://livebook.manning.com/#!/book/deep-learning-
with-python-second-edition/discussion. You can also learn more about Manning’s
forums and the rules of conduct at https://livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

xxiii

about the author
FRANÇOIS CHOLLET is the creator of Keras, one of the most
widely used deep learning frameworks. He is currently a soft-
ware engineer at Google, where he leads the Keras team. In
addition, he does research on abstraction, reasoning, and how
to achieve greater generality in artificial intelligence.

xxiv

about the cover illustration
The figure on the cover of Deep Learning with Python, second edition, is captioned
“Habit of a Persian Lady in 1568.” The illustration is taken from Thomas Jefferys’ A
Collection of the Dresses of Different Nations, Ancient and Modern (four volumes), London,
published between 1757 and 1772. The title page states that these are hand-colored
copperplate engravings, heightened with gum arabic.

 Thomas Jefferys (1719–1771) was called “Geographer to King George III.” He was
an English cartographer who was the leading map supplier of his day. He engraved
and printed maps for government and other official bodies and produced a wide
range of commercial maps and atlases, especially of North America. His work as a map
maker sparked an interest in local dress customs of the lands he surveyed and
mapped, which are brilliantly displayed in this collection. Fascination with faraway
lands and travel for pleasure were relatively new phenomena in the late eighteenth
century, and collections such as this one were popular, introducing both the tourist as
well as the armchair traveler to the inhabitants of other countries.

 The diversity of the drawings in Jefferys’ volumes speaks vividly of the uniqueness
and individuality of the world’s nations some 200 years ago. Dress codes have changed
since then, and the diversity by region and country, so rich at the time, has faded away.
It’s now often hard to tell the inhabitants of one continent from another. Perhaps, try-
ing to view it optimistically, we’ve traded a cultural and visual diversity for a more varied
personal life—or a more varied and interesting intellectual and technical life.

 At a time when it’s difficult to tell one computer book from another, Manning cel-
ebrates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Jefferys’ pictures.

1

What is deep learning?

In the past few years, artificial intelligence (AI) has been a subject of intense media
hype. Machine learning, deep learning, and AI come up in countless articles, often
outside of technology-minded publications. We’re promised a future of intelligent
chatbots, self-driving cars, and virtual assistants—a future sometimes painted in a
grim light and other times as utopian, where human jobs will be scarce and most
economic activity will be handled by robots or AI agents. For a future or current
practitioner of machine learning, it’s important to be able to recognize the signal
amid the noise, so that you can tell world-changing developments from overhyped
press releases. Our future is at stake, and it’s a future in which you have an active
role to play: after reading this book, you’ll be one of those who develop those AI
systems. So let’s tackle these questions: What has deep learning achieved so far?
How significant is it? Where are we headed next? Should you believe the hype?

 This chapter provides essential context around artificial intelligence, machine
learning, and deep learning.

This chapter covers
� High-level definitions of fundamental concepts
� Timeline of the development of machine learning
� Key factors behind deep learning’s rising

popularity and future potential

2 CHAPTER 1 What is deep learning?

1.1 Artificial intelligence, machine learning,
and deep learning
First, we need to define clearly what we’re talking about when we mention AI. What
are artificial intelligence, machine learning, and deep learning (see figure 1.1)? How
do they relate to each other?

1.1.1 Artificial intelligence

Artificial intelligence was born in the 1950s, when a handful of pioneers from the
nascent field of computer science started asking whether computers could be made to
“think”—a question whose ramifications we’re still exploring today.

 While many of the underlying ideas had been brewing in the years and even
decades prior, “artificial intelligence” finally crystallized as a field of research in 1956,
when John McCarthy, then a young Assistant Professor of Mathematics at Dartmouth
College, organized a summer workshop under the following proposal:

The study is to proceed on the basis of the conjecture that every aspect of learning or any
other feature of intelligence can in principle be so precisely described that a machine can
be made to simulate it. An attempt will be made to find how to make machines use
language, form abstractions and concepts, solve kinds of problems now reserved for
humans, and improve themselves. We think that a significant advance can be made in
one or more of these problems if a carefully selected group of scientists work on it together
for a summer.

At the end of the summer, the workshop concluded without having fully solved the
riddle it set out to investigate. Nevertheless, it was attended by many people who
would move on to become pioneers in the field, and it set in motion an intellectual
revolution that is still ongoing to this day.

 Concisely, AI can be described as the effort to automate intellectual tasks normally per-
formed by humans. As such, AI is a general field that encompasses machine learning and
deep learning, but that also includes many more approaches that may not involve any
learning. Consider that until the 1980s, most AI textbooks didn’t mention “learning” at

Artificial

intelligence

Machine

learning

Deep

learning

Figure 1.1 Artificial intelligence,
machine learning, and deep learning

3Artificial intelligence, machine learning, and deep learning

all! Early chess programs, for instance, only involved hardcoded rules crafted by pro-
grammers, and didn’t qualify as machine learning. In fact, for a fairly long time, most
experts believed that human-level artificial intelligence could be achieved by having
programmers handcraft a sufficiently large set of explicit rules for manipulating
knowledge stored in explicit databases. This approach is known as symbolic AI. It was
the dominant paradigm in AI from the 1950s to the late 1980s, and it reached its peak
popularity during the expert systems boom of the 1980s.

 Although symbolic AI proved suitable to solve well-defined, logical problems,
such as playing chess, it turned out to be intractable to figure out explicit rules for
solving more complex, fuzzy problems, such as image classification, speech recogni-
tion, or natural language translation. A new approach arose to take symbolic AI’s place:
machine learning.

1.1.2 Machine learning

In Victorian England, Lady Ada Lovelace was a friend and collaborator of Charles
Babbage, the inventor of the Analytical Engine : the first-known general-purpose
mechanical computer. Although visionary and far ahead of its time, the Analytical
Engine wasn’t meant as a general-purpose computer when it was designed in the
1830s and 1840s, because the concept of general-purpose computation was yet to be
invented. It was merely meant as a way to use mechanical operations to automate cer-
tain computations from the field of mathematical analysis—hence the name Analyti-
cal Engine. As such, it was the intellectual descendant of earlier attempts at encoding
mathematical operations in gear form, such as the Pascaline, or Leibniz’s step reck-
oner, a refined version of the Pascaline. Designed by Blaise Pascal in 1642 (at age 19!),
the Pascaline was the world’s first mechanical calculator—it could add, subtract, mul-
tiply, or even divide digits.

 In 1843, Ada Lovelace remarked on the invention of the Analytical Engine,

The Analytical Engine has no pretensions whatever to originate anything. It can do
whatever we know how to order it to perform. . . . Its province is to assist us in making
available what we’re already acquainted with.

Even with 178 years of historical perspective, Lady Lovelace’s observation remains
arresting. Could a general-purpose computer “originate” anything, or would it always be
bound to dully execute processes we humans fully understand? Could it ever be capable
of any original thought? Could it learn from experience? Could it show creativity?

 Her remark was later quoted by AI pioneer Alan Turing as “Lady Lovelace’s objec-
tion” in his landmark 1950 paper “Computing Machinery and Intelligence,”1 which
introduced the Turing test as well as key concepts that would come to shape AI.2 Turing

1 A.M. Turing, “Computing Machinery and Intelligence,” Mind 59, no. 236 (1950): 433–460.
2 Although the Turing test has sometimes been interpreted as a literal test—a goal the field of AI should set out to

reach—Turing merely meant it as a conceptual device in a philosophical discussion about the nature of cognition.

4 CHAPTER 1 What is deep learning?

was of the opinion—highly provocative at the time—that computers could in princi-
ple be made to emulate all aspects of human intelligence.

 The usual way to make a computer do useful work is to have a human programmer
write down rules—a computer program—to be followed to turn input data into appro-
priate answers, just like Lady Lovelace writing down step-by-step instructions for the
Analytical Engine to perform. Machine learning turns this around: the machine looks
at the input data and the corresponding answers, and figures out what the rules
should be (see figure 1.2). A machine learning system is trained rather than explicitly
programmed. It’s presented with many examples relevant to a task, and it finds statisti-
cal structure in these examples that eventually allows the system to come up with rules
for automating the task. For instance, if you wished to automate the task of tagging
your vacation pictures, you could present a machine learning system with many exam-
ples of pictures already tagged by humans, and the system would learn statistical rules
for associating specific pictures to specific tags.

Although machine learning only started to flourish in the 1990s, it has quickly
become the most popular and most successful subfield of AI, a trend driven by the
availability of faster hardware and larger datasets. Machine learning is related to math-
ematical statistics, but it differs from statistics in several important ways, in the same
sense that medicine is related to chemistry but cannot be reduced to chemistry, as
medicine deals with its own distinct systems with their own distinct properties. Unlike
statistics, machine learning tends to deal with large, complex datasets (such as a data-
set of millions of images, each consisting of tens of thousands of pixels) for which clas-
sical statistical analysis such as Bayesian analysis would be impractical. As a result,
machine learning, and especially deep learning, exhibits comparatively little mathe-
matical theory—maybe too little—and is fundamentally an engineering discipline.
Unlike theoretical physics or mathematics, machine learning is a very hands-on field
driven by empirical findings and deeply reliant on advances in software and hardware.

1.1.3 Learning rules and representations from data

To define deep learning and understand the difference between deep learning and other
machine learning approaches, first we need some idea of what machine learning
algorithms do. We just stated that machine learning discovers rules for executing a

Answers
Rules

Data

Classical

programming

Rules
Data

Answers

Machine

learning
Figure 1.2 Machine learning:
a new programming paradigm

5Artificial intelligence, machine learning, and deep learning

data processing task, given examples of what’s expected. So, to do machine learning,
we need three things:

� Input data points—For instance, if the task is speech recognition, these data
points could be sound files of people speaking. If the task is image tagging, they
could be pictures.

� Examples of the expected output—In a speech-recognition task, these could be
human-generated transcripts of sound files. In an image task, expected outputs
could be tags such as “dog,” “cat,” and so on.

� A way to measure whether the algorithm is doing a good job—This is necessary in
order to determine the distance between the algorithm’s current output and its
expected output. The measurement is used as a feedback signal to adjust the
way the algorithm works. This adjustment step is what we call learning.

A machine learning model transforms its input data into meaningful outputs, a pro-
cess that is “learned” from exposure to known examples of inputs and outputs. There-
fore, the central problem in machine learning and deep learning is to meaningfully
transform data : in other words, to learn useful representations of the input data at
hand—representations that get us closer to the expected output.

 Before we go any further: what’s a representation? At its core, it’s a different way to
look at data—to represent or encode data. For instance, a color image can be encoded
in the RGB format (red-green-blue) or in the HSV format (hue-saturation-value):
these are two different representations of the same data. Some tasks that may be diffi-
cult with one representation can become easy with another. For example, the task
“select all red pixels in the image” is simpler in the RGB format, whereas “make the
image less saturated” is simpler in the HSV format. Machine learning models are all
about finding appropriate representations for their input data—transformations of
the data that make it more amenable to the task at hand.

 Let’s make this concrete. Consider an x-axis, a y-axis, and
some points represented by their coordinates in the (x, y) sys-
tem, as shown in figure 1.3.

 As you can see, we have a few white points and a few black
points. Let’s say we want to develop an algorithm that can take
the coordinates (x, y) of a point and output whether that
point is likely to be black or to be white. In this case,

� The inputs are the coordinates of our points.
� The expected outputs are the colors of our points.
� A way to measure whether our algorithm is doing a good

job could be, for instance, the percentage of points that
are being correctly classified.

What we need here is a new representation of our data that cleanly separates the white
points from the black points. One transformation we could use, among many other
possibilities, would be a coordinate change, illustrated in figure 1.4.

y

x

Figure 1.3 Some
sample data

6 CHAPTER 1 What is deep learning?

In this new coordinate system, the coordinates of our points can be said to be a new
representation of our data. And it’s a good one! With this representation, the
black/white classification problem can be expressed as a simple rule: “Black points
are such that x > 0,” or “White points are such that x < 0.” This new representation,
combined with this simple rule, neatly solves the classification problem.

 In this case we defined the coordinate change by hand: we used our human intelli-
gence to come up with our own appropriate representation of the data. This is fine for
such an extremely simple problem, but could you do the same if the task were to clas-
sify images of handwritten digits? Could you write down explicit, computer-executable
image transformations that would illuminate the difference between a 6 and an 8,
between a 1 and a 7, across all kinds of different handwriting?

 This is possible to an extent. Rules based on representations of digits such as
“number of closed loops” or vertical and horizontal pixel histograms can do a decent
job of telling apart handwritten digits. But finding such useful representations by
hand is hard work, and, as you can imagine, the resulting rule-based system is brittle—
a nightmare to maintain. Every time you come across a new example of handwriting
that breaks your carefully thought-out rules, you will have to add new data transfor-
mations and new rules, while taking into account their interaction with every previ-
ous rule.

 You’re probably thinking, if this process is so painful, could we automate it? What
if we tried systematically searching for different sets of automatically generated repre-
sentations of the data and rules based on them, identifying good ones by using as
feedback the percentage of digits being correctly classified in some development data-
set? We would then be doing machine learning. Learning, in the context of machine
learning, describes an automatic search process for data transformations that produce
useful representations of some data, guided by some feedback signal—representa-
tions that are amenable to simpler rules solving the task at hand.

 These transformations can be coordinate changes (like in our 2D coordinates
classification example), or taking a histogram of pixels and counting loops (like in
our digits classification example), but they could also be linear projections, transla-
tions, nonlinear operations (such as “select all points such that x > 0”), and so on.

y

2: Coordinate change

x

y

1: Raw data

x

y

3: Better representation

x

Figure 1.4 Coordinate change

7Artificial intelligence, machine learning, and deep learning

Machine learning algorithms aren’t usually creative in finding these transformations;
they’re merely searching through a predefined set of operations, called a hypothesis
space. For instance, the space of all possible coordinate changes would be our
hypothesis space in the 2D coordinates classification example.

 So that’s what machine learning is, concisely: searching for useful representations
and rules over some input data, within a predefined space of possibilities, using guid-
ance from a feedback signal. This simple idea allows for solving a remarkably broad
range of intellectual tasks, from speech recognition to autonomous driving.

 Now that you understand what we mean by learning, let’s take a look at what makes
deep learning special.

1.1.4 The “deep” in “deep learning”

Deep learning is a specific subfield of machine learning: a new take on learning rep-
resentations from data that puts an emphasis on learning successive layers of increas-
ingly meaningful representations. The “deep” in “deep learning” isn’t a reference to
any kind of deeper understanding achieved by the approach; rather, it stands for
this idea of successive layers of representations. How many layers contribute to a
model of the data is called the depth of the model. Other appropriate names for the
field could have been layered representations learning or hierarchical representations learn-
ing. Modern deep learning often involves tens or even hundreds of successive layers
of representations, and they’re all learned automatically from exposure to training
data. Meanwhile, other approaches to machine learning tend to focus on learning
only one or two layers of representations of the data (say, taking a pixel histogram
and then applying a classification rule); hence, they’re sometimes called shallow
learning.

 In deep learning, these layered representations are learned via models called neu-
ral networks, structured in literal layers stacked on top of each other. The term “neural
network” refers to neurobiology, but although some of the central concepts in deep
learning were developed in part by drawing inspiration from our understanding of
the brain (in particular, the visual cortex), deep learning models are not models of
the brain. There’s no evidence that the brain implements anything like the learning
mechanisms used in modern deep learning models. You may come across pop-science
articles proclaiming that deep learning works like the brain or was modeled after the
brain, but that isn’t the case. It would be confusing and counterproductive for new-
comers to the field to think of deep learning as being in any way related to neurobiol-
ogy; you don’t need that shroud of “just like our minds” mystique and mystery, and
you may as well forget anything you may have read about hypothetical links between
deep learning and biology. For our purposes, deep learning is a mathematical frame-
work for learning representations from data.

 What do the representations learned by a deep learning algorithm look like? Let’s
examine how a network several layers deep (see figure 1.5) transforms an image of a
digit in order to recognize what digit it is.

8 CHAPTER 1 What is deep learning?

As you can see in figure 1.6, the network transforms the digit image into representa-
tions that are increasingly different from the original image and increasingly informa-
tive about the final result. You can think of a deep network as a multistage information-
distillation process, where information goes through successive filters and comes out
increasingly purified (that is, useful with regard to some task).

So that’s what deep learning is, technically: a multistage way to learn data representa-
tions. It’s a simple idea—but, as it turns out, very simple mechanisms, sufficiently
scaled, can end up looking like magic.

1.1.5 Understanding how deep learning works, in three figures

At this point, you know that machine learning is about mapping inputs (such as
images) to targets (such as the label “cat”), which is done by observing many examples
of input and targets. You also know that deep neural networks do this input-to-target
mapping via a deep sequence of simple data transformations (layers) and that these

Layer 1

Original

input

Final

output

Layer 2 Layer 3 Layer 4

0
1
2
3
4
5
6
7
8
9

Figure 1.5 A deep neural network
for digit classification

Layer 1

representations

Original

input

Layer 2

representations

Layer 3

representations

Layer 4

representations

(final output)

Layer 1 Layer 2 Layer 3 Layer 4

0
1
2
3
4
5
6
7
8
9

Figure 1.6 Data representations learned by a digit-classification model

9Artificial intelligence, machine learning, and deep learning

data transformations are learned by exposure to examples. Now let’s look at how this
learning happens, concretely.

 The specification of what a layer does to its input data is stored in the layer’s
weights, which in essence are a bunch of numbers. In technical terms, we’d say that the
transformation implemented by a layer is parameterized by its weights (see figure 1.7).
(Weights are also sometimes called the parameters of a layer.) In this context, learning
means finding a set of values for the weights of all layers in a network, such that the
network will correctly map example inputs to their associated targets. But here’s the
thing: a deep neural network can contain tens of millions of parameters. Finding the
correct values for all of them may seem like a daunting task, especially given that mod-
ifying the value of one parameter will affect the behavior of all the others!

To control something, first you need to be able to observe it. To control the output of
a neural network, you need to be able to measure how far this output is from what you
expected. This is the job of the loss function of the network, also sometimes called the
objective function or cost function. The loss function takes the predictions of the network
and the true target (what you wanted the network to output) and computes a distance
score, capturing how well the network has done on this specific example (see figure 1.8).

Goal: finding the
right values for

these weights

Layer

(data transformation)

Input X

Weights

Layer

(data transformation)

Predictions

Y'

Weights

Figure 1.7 A neural network is
parameterized by its weights.

Layer

(data transformation)

Input X

Weights

Layer

(data transformation)

Predictions

Y'

True targets

Y

Weights

Loss function

Loss score

Figure 1.8 A loss function
measures the quality of the
network’s output.

10 CHAPTER 1 What is deep learning?

The fundamental trick in deep learning is to use this score as a feedback signal to
adjust the value of the weights a little, in a direction that will lower the loss score for
the current example (see figure 1.9). This adjustment is the job of the optimizer, which
implements what’s called the Backpropagation algorithm: the central algorithm in deep
learning. The next chapter explains in more detail how backpropagation works.

Initially, the weights of the network are assigned random values, so the network
merely implements a series of random transformations. Naturally, its output is far
from what it should ideally be, and the loss score is accordingly very high. But with
every example the network processes, the weights are adjusted a little in the correct
direction, and the loss score decreases. This is the training loop, which, repeated a suffi-
cient number of times (typically tens of iterations over thousands of examples), yields
weight values that minimize the loss function. A network with a minimal loss is one for
which the outputs are as close as they can be to the targets: a trained network. Once
again, it’s a simple mechanism that, once scaled, ends up looking like magic.

1.1.6 What deep learning has achieved so far

Although deep learning is a fairly old subfield of machine learning, it only rose to
prominence in the early 2010s. In the few years since, it has achieved nothing short of
a revolution in the field, producing remarkable results on perceptual tasks and even
natural language processing tasks—problems involving skills that seem natural and
intuitive to humans but have long been elusive for machines.

 In particular, deep learning has enabled the following breakthroughs, all in histor-
ically difficult areas of machine learning:

� Near-human-level image classification
� Near-human-level speech transcription
� Near-human-level handwriting transcription

Layer

(data transformation)

Input X

Weights

Layer

(data transformation)

Predictions

Y'

Weight

update

True targets

Y

Weights

Loss functionOptimizer

Loss score

Figure 1.9 The loss score is
used as a feedback signal to
adjust the weights.

11Artificial intelligence, machine learning, and deep learning

� Dramatically improved machine translation
� Dramatically improved text-to-speech conversion
� Digital assistants such as Google Assistant and Amazon Alexa
� Near-human-level autonomous driving
� Improved ad targeting, as used by Google, Baidu, or Bing
� Improved search results on the web
� Ability to answer natural language questions
� Superhuman Go playing

We’re still exploring the full extent of what deep learning can do. We’ve started apply-
ing it with great success to a wide variety of problems that were thought to be impossi-
ble to solve just a few years ago—automatically transcribing the tens of thousands of
ancient manuscripts held in the Vatican’s Apostolic Archive, detecting and classifying
plant diseases in fields using a simple smartphone, assisting oncologists or radiologists
with interpreting medical imaging data, predicting natural disasters such as floods,
hurricanes, or even earthquakes, and so on. With every milestone, we’re getting closer
to an age where deep learning assists us in every activity and every field of human
endeavor—science, medicine, manufacturing, energy, transportation, software devel-
opment, agriculture, and even artistic creation.

1.1.7 Don’t believe the short-term hype

Although deep learning has led to remarkable achievements in recent years, expecta-
tions for what the field will be able to achieve in the next decade tend to run much
higher than what will likely be possible. Although some world-changing applications
like autonomous cars are already within reach, many more are likely to remain elusive
for a long time, such as believable dialogue systems, human-level machine translation
across arbitrary languages, and human-level natural language understanding. In par-
ticular, talk of human-level general intelligence shouldn’t be taken too seriously. The
risk with high expectations for the short term is that, as technology fails to deliver,
research investment will dry up, slowing progress for a long time.

 This has happened before. Twice in the past, AI went through a cycle of intense
optimism followed by disappointment and skepticism, with a dearth of funding as a
result. It started with symbolic AI in the 1960s. In those early days, projections about AI
were flying high. One of the best-known pioneers and proponents of the symbolic
AI approach was Marvin Minsky, who claimed in 1967, “Within a generation . . . the
problem of creating ‘artificial intelligence’ will substantially be solved.” Three years
later, in 1970, he made a more precisely quantified prediction: “In from three to eight
years we will have a machine with the general intelligence of an average human being.”
In 2021 such an achievement still appears to be far in the future—so far that we have no
way to predict how long it will take—but in the 1960s and early 1970s, several experts
believed it to be right around the corner (as do many people today). A few years later, as
these high expectations failed to materialize, researchers and government funds turned

12 CHAPTER 1 What is deep learning?

away from the field, marking the start of the first AI winter (a reference to a nuclear win-
ter, because this was shortly after the height of the Cold War).

 It wouldn’t be the last one. In the 1980s, a new take on symbolic AI, expert systems,
started gathering steam among large companies. A few initial success stories triggered
a wave of investment, with corporations around the world starting their own in-house
AI departments to develop expert systems. Around 1985, companies were spending
over $1 billion each year on the technology; but by the early 1990s, these systems had
proven expensive to maintain, difficult to scale, and limited in scope, and interest
died down. Thus began the second AI winter.

 We may be currently witnessing the third cycle of AI hype and disappointment,
and we’re still in the phase of intense optimism. It’s best to moderate our expectations
for the short term and make sure people less familiar with the technical side of the
field have a clear idea of what deep learning can and can’t deliver.

1.1.8 The promise of AI

Although we may have unrealistic short-term expectations for AI, the long-term pic-
ture is looking bright. We’re only getting started in applying deep learning to many
important problems for which it could prove transformative, from medical diagnoses
to digital assistants. AI research has been moving forward amazingly quickly in the
past ten years, in large part due to a level of funding never before seen in the short
history of AI, but so far relatively little of this progress has made its way into the prod-
ucts and processes that form our world. Most of the research findings of deep learning
aren’t yet applied, or at least are not applied to the full range of problems they could
solve across all industries. Your doctor doesn’t yet use AI, and neither does your
accountant. You probably don’t use AI technologies very often in your day-to-day life.
Of course, you can ask your smartphone simple questions and get reasonable answers,
you can get fairly useful product recommendations on Amazon.com, and you can
search for “birthday” on Google Photos and instantly find those pictures of your
daughter’s birthday party from last month. That’s a far cry from where such technolo-
gies used to stand. But such tools are still only accessories to our daily lives. AI has yet
to transition to being central to the way we work, think, and live.

 Right now, it may seem hard to believe that AI could have a large impact on our
world, because it isn’t yet widely deployed—much as, back in 1995, it would have been
difficult to believe in the future impact of the internet. Back then, most people didn’t
see how the internet was relevant to them and how it was going to change their lives.
The same is true for deep learning and AI today. But make no mistake: AI is coming.
In a not-so-distant future, AI will be your assistant, even your friend; it will answer your
questions, help educate your kids, and watch over your health. It will deliver your gro-
ceries to your door and drive you from point A to point B. It will be your interface to
an increasingly complex and information-intensive world. And, even more important,
AI will help humanity as a whole move forward, by assisting human scientists in new
breakthrough discoveries across all scientific fields, from genomics to mathematics.

13Before deep learning: A brief history of machine learning

 On the way, we may face a few setbacks and maybe even a new AI winter—in much
the same way the internet industry was overhyped in 1998–99 and suffered from a
crash that dried up investment throughout the early 2000s. But we’ll get there eventu-
ally. AI will end up being applied to nearly every process that makes up our society and
our daily lives, much like the internet is today.

 Don’t believe the short-term hype, but do believe in the long-term vision. It may
take a while for AI to be deployed to its true potential—a potential the full extent of
which no one has yet dared to dream—but AI is coming, and it will transform our
world in a fantastic way.

1.2 Before deep learning: A brief history
of machine learning
Deep learning has reached a level of public attention and industry investment never
before seen in the history of AI, but it isn’t the first successful form of machine learn-
ing. It’s safe to say that most of the machine learning algorithms used in the industry
today aren’t deep learning algorithms. Deep learning isn’t always the right tool for the
job—sometimes there isn’t enough data for deep learning to be applicable, and some-
times the problem is better solved by a different algorithm. If deep learning is your
first contact with machine learning, you may find yourself in a situation where all you
have is the deep learning hammer, and every machine learning problem starts to look
like a nail. The only way not to fall into this trap is to be familiar with other approaches
and practice them when appropriate.

 A detailed discussion of classical machine learning approaches is outside of the
scope of this book, but I’ll briefly go over them and describe the historical context in
which they were developed. This will allow us to place deep learning in the broader
context of machine learning and better understand where deep learning comes from
and why it matters.

1.2.1 Probabilistic modeling

Probabilistic modeling is the application of the principles of statistics to data analysis. It is
one of the earliest forms of machine learning, and it’s still widely used to this day. One
of the best-known algorithms in this category is the Naive Bayes algorithm.

 Naive Bayes is a type of machine learning classifier based on applying Bayes’ theo-
rem while assuming that the features in the input data are all independent (a strong,
or “naive” assumption, which is where the name comes from). This form of data analy-
sis predates computers and was applied by hand decades before its first computer
implementation (most likely dating back to the 1950s). Bayes’ theorem and the foun-
dations of statistics date back to the eighteenth century, and these are all you need to
start using Naive Bayes classifiers.

 A closely related model is logistic regression (logreg for short), which is sometimes
considered to be the “Hello World” of modern machine learning. Don’t be misled by
its name—logreg is a classification algorithm rather than a regression algorithm. Much

14 CHAPTER 1 What is deep learning?

like Naive Bayes, logreg predates computing by a long time, yet it’s still useful to this
day, thanks to its simple and versatile nature. It’s often the first thing a data scientist
will try on a dataset to get a feel for the classification task at hand.

1.2.2 Early neural networks

Early iterations of neural networks have been completely supplanted by the modern
variants covered in these pages, but it’s helpful to be aware of how deep learning orig-
inated. Although the core ideas of neural networks were investigated in toy forms as
early as the 1950s, the approach took decades to get started. For a long time, the miss-
ing piece was an efficient way to train large neural networks. This changed in the mid-
1980s, when multiple people independently rediscovered the Backpropagation algo-
rithm—a way to train chains of parametric operations using gradient-descent optimi-
zation (we’ll precisely define these concepts later in the book)—and started applying
it to neural networks.

 The first successful practical application of neural nets came in 1989 from Bell
Labs, when Yann LeCun combined the earlier ideas of convolutional neural networks
and backpropagation, and applied them to the problem of classifying handwritten
digits. The resulting network, dubbed LeNet, was used by the United States Postal Ser-
vice in the 1990s to automate the reading of ZIP codes on mail envelopes.

1.2.3 Kernel methods

As neural networks started to gain some respect among researchers in the 1990s, thanks
to this first success, a new approach to machine learning rose to fame and quickly sent
neural nets back to oblivion: kernel methods. Kernel methods are a group of classification
algorithms, the best known of which is the Support Vector Machine (SVM). The modern
formulation of an SVM was developed by Vladimir Vapnik and Corinna Cortes in the
early 1990s at Bell Labs and published in 1995,3 although an older linear formulation was
published by Vapnik and Alexey Chervonenkis as early as 1963.4

 SVM is a classification algorithm that works by finding “deci-
sion boundaries” separating two classes (see figure 1.10). SVMs
proceed to find these boundaries in two steps:

1 The data is mapped to a new high-dimensional represen-
tation where the decision boundary can be expressed as
a hyperplane (if the data was two-dimensional, as in fig-
ure 1.10, a hyperplane would be a straight line).

2 A good decision boundary (a separation hyperplane) is
computed by trying to maximize the distance between the
hyperplane and the closest data points from each class, a

3 Vladimir Vapnik and Corinna Cortes, “Support-Vector Networks,” Machine Learning 20, no. 3 (1995): 273–297.
4 Vladimir Vapnik and Alexey Chervonenkis, “A Note on One Class of Perceptrons,” Automation and Remote Con-

trol 25 (1964).

Figure 1.10
A decision boundary

15Before deep learning: A brief history of machine learning

step called maximizing the margin. This allows the boundary to generalize well to
new samples outside of the training dataset.

The technique of mapping data to a high-dimensional representation where a classifi-
cation problem becomes simpler may look good on paper, but in practice it’s often
computationally intractable. That’s where the kernel trick comes in (the key idea that
kernel methods are named after). Here’s the gist of it: to find good decision hyper-
planes in the new representation space, you don’t have to explicitly compute the coor-
dinates of your points in the new space; you just need to compute the distance
between pairs of points in that space, which can be done efficiently using a kernel
function. A kernel function is a computationally tractable operation that maps any two
points in your initial space to the distance between these points in your target repre-
sentation space, completely bypassing the explicit computation of the new representa-
tion. Kernel functions are typically crafted by hand rather than learned from data—in
the case of an SVM, only the separation hyperplane is learned.

 At the time they were developed, SVMs exhibited state-of-the-art performance on
simple classification problems and were one of the few machine learning methods
backed by extensive theory and amenable to serious mathematical analysis, making
them well understood and easily interpretable. Because of these useful properties,
SVMs became extremely popular in the field for a long time.

 But SVMs proved hard to scale to large datasets and didn’t provide good results for
perceptual problems such as image classification. Because an SVM is a shallow
method, applying an SVM to perceptual problems requires first extracting useful rep-
resentations manually (a step called feature engineering), which is difficult and brittle.
For instance, if you want to use an SVM to classify handwritten digits, you can’t start
from the raw pixels; you should first find by hand useful representations that make
the problem more tractable, like the pixel histograms I mentioned earlier.

1.2.4 Decision trees, random forests, and gradient boosting machines

Decision trees are flowchart-like structures that let you classify input data points or pre-
dict output values given inputs (see figure 1.11). They’re easy to visualize and inter-
pret. Decision trees learned from data began to receive significant research interest in
the 2000s, and by 2010 they were often preferred to kernel methods.

Question

Category Category

Question

Input data

Question

Category Category

Figure 1.11 A decision tree: the parameters
that are learned are the questions about the
data. A question could be, for instance, “Is
coefficient 2 in the data greater than 3.5?”

16 CHAPTER 1 What is deep learning?

In particular, the Random Forest algorithm introduced a robust, practical take on
decision-tree learning that involves building a large number of specialized decision trees
and then ensembling their outputs. Random forests are applicable to a wide range of
problems—you could say that they’re almost always the second-best algorithm for any
shallow machine learning task. When the popular machine learning competition web-
site Kaggle (http://kaggle.com) got started in 2010, random forests quickly became a
favorite on the platform—until 2014, when gradient boosting machines took over. A gra-
dient boosting machine, much like a random forest, is a machine learning technique
based on ensembling weak prediction models, generally decision trees. It uses gradient
boosting, a way to improve any machine learning model by iteratively training new
models that specialize in addressing the weak points of the previous models. Applied
to decision trees, the use of the gradient boosting technique results in models that
strictly outperform random forests most of the time, while having similar properties.
It may be one of the best, if not the best, algorithm for dealing with nonperceptual
data today. Alongside deep learning, it’s one of the most commonly used techniques
in Kaggle competitions.

1.2.5 Back to neural networks

Around 2010, although neural networks were almost completely shunned by the sci-
entific community at large, a number of people still working on neural networks
started to make important breakthroughs: the groups of Geoffrey Hinton at the Uni-
versity of Toronto, Yoshua Bengio at the University of Montreal, Yann LeCun at New
York University, and IDSIA in Switzerland.

 In 2011, Dan Ciresan from IDSIA began to win academic image-classification com-
petitions with GPU-trained deep neural networks—the first practical success of mod-
ern deep learning. But the watershed moment came in 2012, with the entry of
Hinton’s group in the yearly large-scale image-classification challenge ImageNet
(ImageNet Large Scale Visual Recognition Challenge, or ILSVRC for short). The
ImageNet challenge was notoriously difficult at the time, consisting of classifying high-
resolution color images into 1,000 different categories after training on 1.4 million
images. In 2011, the top-five accuracy of the winning model, based on classical
approaches to computer vision, was only 74.3%.5 Then, in 2012, a team led by Alex
Krizhevsky and advised by Geoffrey Hinton was able to achieve a top-five accuracy of
83.6%—a significant breakthrough. The competition has been dominated by deep
convolutional neural networks every year since. By 2015, the winner reached an accu-
racy of 96.4%, and the classification task on ImageNet was considered to be a com-
pletely solved problem.

 Since 2012, deep convolutional neural networks (convnets) have become the go-to
algorithm for all computer vision tasks; more generally, they work on all perceptual

5 “Top-five accuracy” measures how often the model selects the correct answer as part of its top five guesses (out
of 1,000 possible answers, in the case of ImageNet).

17Before deep learning: A brief history of machine learning

tasks. At any major computer vision conference after 2015, it was nearly impossible to
find presentations that didn’t involve convnets in some form. At the same time, deep
learning has also found applications in many other types of problems, such as natural
language processing. It has completely replaced SVMs and decision trees in a wide
range of applications. For instance, for several years, the European Organization for
Nuclear Research, CERN, used decision tree–based methods for analyzing particle
data from the ATLAS detector at the Large Hadron Collider (LHC), but CERN even-
tually switched to Keras-based deep neural networks due to their higher performance
and ease of training on large datasets.

1.2.6 What makes deep learning different

The primary reason deep learning took off so quickly is that it offered better perfor-
mance for many problems. But that’s not the only reason. Deep learning also makes
problem-solving much easier, because it completely automates what used to be the
most crucial step in a machine learning workflow: feature engineering.

 Previous machine learning techniques—shallow learning—only involved transform-
ing the input data into one or two successive representation spaces, usually via simple
transformations such as high-dimensional non-linear projections (SVMs) or decision
trees. But the refined representations required by complex problems generally can’t
be attained by such techniques. As such, humans had to go to great lengths to make
the initial input data more amenable to processing by these methods: they had to
manually engineer good layers of representations for their data. This is called feature
engineering. Deep learning, on the other hand, completely automates this step: with
deep learning, you learn all features in one pass rather than having to engineer them
yourself. This has greatly simplified machine learning workflows, often replacing sophis-
ticated multistage pipelines with a single, simple, end-to-end deep learning model.

 You may ask, if the crux of the issue is to have multiple successive layers of repre-
sentations, could shallow methods be applied repeatedly to emulate the effects of
deep learning? In practice, successive applications of shallow-learning methods pro-
duce fast-diminishing returns, because the optimal first representation layer in a
three-layer model isn’t the optimal first layer in a one-layer or two-layer model. What is
transformative about deep learning is that it allows a model to learn all layers of repre-
sentation jointly, at the same time, rather than in succession (greedily, as it’s called).
With joint feature learning, whenever the model adjusts one of its internal features, all
other features that depend on it automatically adapt to the change, without requiring
human intervention. Everything is supervised by a single feedback signal: every
change in the model serves the end goal. This is much more powerful than greedily
stacking shallow models, because it allows for complex, abstract representations to be
learned by breaking them down into long series of intermediate spaces (layers); each
space is only a simple transformation away from the previous one.

 These are the two essential characteristics of how deep learning learns from data:
the incremental, layer-by-layer way in which increasingly complex representations are developed,

18 CHAPTER 1 What is deep learning?

and the fact that these intermediate incremental representations are learned jointly, each layer
being updated to follow both the representational needs of the layer above and the
needs of the layer below. Together, these two properties have made deep learning
vastly more successful than previous approaches to machine learning.

1.2.7 The modern machine learning landscape

A great way to get a sense of the current landscape of machine learning algorithms
and tools is to look at machine learning competitions on Kaggle. Due to its highly
competitive environment (some contests have thousands of entrants and million-
dollar prizes) and to the wide variety of machine learning problems covered, Kaggle
offers a realistic way to assess what works and what doesn’t. So what kind of algorithm
is reliably winning competitions? What tools do top entrants use?

 In early 2019, Kaggle ran a survey asking teams that ended in the top five of any
competition since 2017 which primary software tool they had used in the competition
(see figure 1.12). It turns out that top teams tend to use either deep learning methods
(most often via the Keras library) or gradient boosted trees (most often via the
LightGBM or XGBoost libraries).

0 10 20

Number of competitions

Caffe

Fastai

Scikit-learn

TensorFlow

PyTorch

XGBoost

LightGBM

Keras

Deep Classic

30 40

Figure 1.12 Machine learning tools used by top teams on Kaggle

19Before deep learning: A brief history of machine learning

It’s not just competition champions, either. Kaggle also runs a yearly survey among
machine learning and data science professionals worldwide. With tens of thousands of
respondents, this survey is one of our most reliable sources about the state of the
industry. Figure 1.13 shows the percentage of usage of different machine learning
software frameworks.

From 2016 to 2020, the entire machine learning and data science industry has been
dominated by these two approaches: deep learning and gradient boosted trees. Specif-
ically, gradient boosted trees is used for problems where structured data is available,
whereas deep learning is used for perceptual problems such as image classification.

 Users of gradient boosted trees tend to use Scikit-learn, XGBoost, or LightGBM.
Meanwhile, most practitioners of deep learning use Keras, often in combination with

JAX

None

Other

MXNet

H2O3

Tidymodels

Fast.ai

Prophet

Catboost

Caret

LightGBM

PyTorch

Xgboost

Keras

TensorFlow

Scikit-learn

0.7%

3.2%

3.7%

2.1%

6%

7.2%

7.5%

10%

13.7%

14.1%

26.1%

30.9%

48.4%

50.5%

50.5%

82.8%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Figure 1.13 Tool usage across the machine learning and data science industry (Source: www.kaggle.com/
kaggle-survey-2020)

20 CHAPTER 1 What is deep learning?

its parent framework TensorFlow. The common point of these tools is they’re all
Python libraries: Python is by far the most widely used language for machine learning
and data science.

 These are the two techniques you should be the most familiar with in order to be
successful in applied machine learning today: gradient boosted trees, for shallow-
learning problems; and deep learning, for perceptual problems. In technical terms,
this means you’ll need to be familiar with Scikit-learn, XGBoost, and Keras—the three
libraries that currently dominate Kaggle competitions. With this book in hand, you’re
already one big step closer.

1.3 Why deep learning? Why now?
The two key ideas of deep learning for computer vision—convolutional neural networks
and backpropagation—were already well understood by 1990. The Long Short-Term
Memory (LSTM) algorithm, which is fundamental to deep learning for timeseries,
was developed in 1997 and has barely changed since. So why did deep learning only
take off after 2012? What changed in these two decades?

 In general, three technical forces are driving advances in machine learning:

� Hardware
� Datasets and benchmarks
� Algorithmic advances

Because the field is guided by experimental findings rather than by theory, algorith-
mic advances only become possible when appropriate data and hardware are available
to try new ideas (or to scale up old ideas, as is often the case). Machine learning isn’t
mathematics or physics, where major advances can be done with a pen and a piece of
paper. It’s an engineering science.

 The real bottlenecks throughout the 1990s and 2000s were data and hardware. But
here’s what happened during that time: the internet took off and high-performance
graphics chips were developed for the needs of the gaming market.

1.3.1 Hardware

Between 1990 and 2010, off-the-shelf CPUs became faster by a factor of approximately
5,000. As a result, nowadays it’s possible to run small deep learning models on your
laptop, whereas this would have been intractable 25 years ago.

 But typical deep learning models used in computer vision or speech recognition
require orders of magnitude more computational power than your laptop can deliver.
Throughout the 2000s, companies like NVIDIA and AMD invested billions of dollars
in developing fast, massively parallel chips (graphical processing units, or GPUs) to
power the graphics of increasingly photorealistic video games—cheap, single-purpose
supercomputers designed to render complex 3D scenes on your screen in real time.
This investment came to benefit the scientific community when, in 2007, NVIDIA
launched CUDA (https://developer.nvidia.com/about-cuda), a programming interface

21Why deep learning? Why now?

for its line of GPUs. A small number of GPUs started replacing massive clusters of
CPUs in various highly parallelizable applications, beginning with physics modeling.
Deep neural networks, consisting mostly of many small matrix multiplications, are
also highly parallelizable, and around 2011 some researchers began to write CUDA
implementations of neural nets—Dan Ciresan6 and Alex Krizhevsky7 were among
the first.

 What happened is that the gaming market subsidized supercomputing for the next
generation of artificial intelligence applications. Sometimes, big things begin as
games. Today, the NVIDIA Titan RTX, a GPU that cost $2,500 at the end of 2019, can
deliver a peak of 16 teraFLOPS in single precision (16 trillion float32 operations per
second). That’s about 500 times more computing power than the world’s fastest super-
computer from 1990, the Intel Touchstone Delta. On a Titan RTX, it takes only a few
hours to train an ImageNet model of the sort that would have won the ILSVRC com-
petition around 2012 or 2013. Meanwhile, large companies train deep learning mod-
els on clusters of hundreds of GPUs.

 What’s more, the deep learning industry has been moving beyond GPUs and is
investing in increasingly specialized, efficient chips for deep learning. In 2016, at its
annual I/O convention, Google revealed its Tensor Processing Unit (TPU) project: a
new chip design developed from the ground up to run deep neural networks signifi-
cantly faster and far more energy efficient than top-of-the-line GPUs. Today, in 2020,
the third iteration of the TPU card represents 420 teraFLOPS of computing power.
That’s 10,000 times more than the Intel Touchstone Delta from 1990.

 These TPU cards are designed to be assembled into large-scale configurations,
called “pods.” One pod (1024 TPU cards) peaks at 100 petaFLOPS. For scale, that’s
about 10% of the peak computing power of the current largest supercomputer, the
IBM Summit at Oak Ridge National Lab, which consists of 27,000 NVIDIA GPUs and
peaks at around 1.1 exaFLOPS.

1.3.2 Data

AI is sometimes heralded as the new industrial revolution. If deep learning is the steam
engine of this revolution, then data is its coal: the raw material that powers our intelli-
gent machines, without which nothing would be possible. When it comes to data, in
addition to the exponential progress in storage hardware over the past 20 years (follow-
ing Moore’s law), the game changer has been the rise of the internet, making it feasible
to collect and distribute very large datasets for machine learning. Today, large companies
work with image datasets, video datasets, and natural language datasets that couldn’t
have been collected without the internet. User-generated image tags on Flickr, for

6 See “Flexible, High Performance Convolutional Neural Networks for Image Classification,” Proceedings of the
22nd International Joint Conference on Artificial Intelligence (2011), www.ijcai.org/Proceedings/11/Papers/
210.pdf.

7 See “ImageNet Classification with Deep Convolutional Neural Networks,” Advances in Neural Information Pro-
cessing Systems 25 (2012), http://mng.bz/2286.

22 CHAPTER 1 What is deep learning?

instance, have been a treasure trove of data for computer vision. So are YouTube videos.
And Wikipedia is a key dataset for natural language processing.

 If there’s one dataset that has been a catalyst for the rise of deep learning, it’s the
ImageNet dataset, consisting of 1.4 million images that have been hand annotated
with 1,000 image categories (one category per image). But what makes ImageNet spe-
cial isn’t just its large size, but also the yearly competition associated with it.8

 As Kaggle has been demonstrating since 2010, public competitions are an excel-
lent way to motivate researchers and engineers to push the envelope. Having common
benchmarks that researchers compete to beat has greatly helped the rise of deep
learning, by highlighting its success against classical machine learning approaches.

1.3.3 Algorithms

In addition to hardware and data, until the late 2000s, we were missing a reliable way
to train very deep neural networks. As a result, neural networks were still fairly shal-
low, using only one or two layers of representations; thus, they weren’t able to shine
against more-refined shallow methods such as SVMs and random forests. The key
issue was that of gradient propagation through deep stacks of layers. The feedback signal
used to train neural networks would fade away as the number of layers increased.

 This changed around 2009–2010 with the advent of several simple but important
algorithmic improvements that allowed for better gradient propagation:

� Better activation functions for neural layers
� Better weight-initialization schemes, starting with layer-wise pretraining, which was

then quickly abandoned
� Better optimization schemes, such as RMSProp and Adam

Only when these improvements began to allow for training models with 10 or more
layers did deep learning start to shine.

 Finally, in 2014, 2015, and 2016, even more advanced ways to improve gradient
propagation were discovered, such as batch normalization, residual connections, and
depthwise separable convolutions.

 Today, we can train models that are arbitrarily deep from scratch. This has
unlocked the use of extremely large models, which hold considerable representa-
tional power—that is to say, which encode very rich hypothesis spaces. This extreme
scalability is one of the defining characteristics of modern deep learning. Large-scale
model architectures, which feature tens of layers and tens of millions of parameters,
have brought about critical advances both in computer vision (for instance, architec-
tures such as ResNet, Inception, or Xception) and natural language processing (for
instance, large Transformer-based architectures such as BERT, GPT-3, or XLNet).

8 The ImageNet Large Scale Visual Recognition Challenge (ILSVRC), www.image-net.org/challenges/LSVRC.

23Why deep learning? Why now?

1.3.4 A new wave of investment

As deep learning became the new state of the art for computer vision in 2012–2013,
and eventually for all perceptual tasks, industry leaders took note. What followed was
a gradual wave of industry investment far beyond anything previously seen in the his-
tory of AI (see figure 1.14).

In 2011, right before deep learning took the spotlight, the total venture capital invest-
ment in AI worldwide was less than a billion dollars, which went almost entirely to
practical applications of shallow machine learning approaches. In 2015, it had risen
to over $5 billion, and in 2017, to a staggering $16 billion. Hundreds of startups
launched in these few years, trying to capitalize on the deep learning hype. Mean-
while, large tech companies such as Google, Amazon, and Microsoft have invested in
internal research departments in amounts that would most likely dwarf the flow of
venture-capital money.

 Machine learning—in particular, deep learning—has become central to the prod-
uct strategy of these tech giants. In late 2015, Google CEO Sundar Pichai stated,
“Machine learning is a core, transformative way by which we’re rethinking how we’re

2

4

6

8

10

12

14

16

18

USD billion

0

2011 2012 2013 2014 2015 2016 2017

US US
US

US US

EU

EU

EU

China

China

Israel

Israel

US

US

Total estimated investments in Al start-ups, 2011 17 and first semester 2018–

By start-up location

US China EU Israel Canada Japan Other India

Figure 1.14 OECD estimate of total investments in AI startups (Source: http://mng.bz/zGN6)

24 CHAPTER 1 What is deep learning?

doing everything. We’re thoughtfully applying it across all our products, be it search,
ads, YouTube, or Play. And we’re in early days, but you’ll see us—in a systematic way—
apply machine learning in all these areas.” 9

 As a result of this wave of investment, the number of people working on deep
learning went from a few hundred to tens of thousands in less than 10 years, and
research progress has reached a frenetic pace.

1.3.5 The democratization of deep learning

One of the key factors driving this inflow of new faces in deep learning has been the
democratization of the toolsets used in the field. In the early days, doing deep learn-
ing required significant C++ and CUDA expertise, which few people possessed.

 Nowadays, basic Python scripting skills suffice to do advanced deep learning
research. This has been driven most notably by the development of the now-defunct
Theano library, and then the TensorFlow library—two symbolic tensor-manipulation
frameworks for Python that support autodifferentiation, greatly simplifying the imple-
mentation of new models—and by the rise of user-friendly libraries such as Keras,
which makes deep learning as easy as manipulating LEGO bricks. After its release in
early 2015, Keras quickly became the go-to deep learning solution for large numbers
of new startups, graduate students, and researchers pivoting into the field.

1.3.6 Will it last?

Is there anything special about deep neural networks that makes them the “right”
approach for companies to be investing in and for researchers to flock to? Or is
deep learning just a fad that may not last? Will we still be using deep neural networks
in 20 years?

 Deep learning has several properties that justify its status as an AI revolution, and
it’s here to stay. We may not be using neural networks two decades from now, but what-
ever we use will directly inherit from modern deep learning and its core concepts.
These important properties can be broadly sorted into three categories:

� Simplicity—Deep learning removes the need for feature engineering, replacing
complex, brittle, engineering-heavy pipelines with simple, end-to-end trainable
models that are typically built using only five or six different tensor operations.

� Scalability—Deep learning is highly amenable to parallelization on GPUs or TPUs,
so it can take full advantage of Moore’s law. In addition, deep learning models
are trained by iterating over small batches of data, allowing them to be trained on
datasets of arbitrary size. (The only bottleneck is the amount of parallel computa-
tional power available, which, thanks to Moore’s law, is a fast-moving barrier.)

� Versatility and reusability—Unlike many prior machine learning approaches, deep
learning models can be trained on additional data without restarting from

9 Sundar Pichai, Alphabet earnings call, Oct. 22, 2015.

25Why deep learning? Why now?

scratch, making them viable for continuous online learning—an important
property for very large production models. Furthermore, trained deep learning
models are repurposable and thus reusable: for instance, it’s possible to take a
deep learning model trained for image classification and drop it into a video-
processing pipeline. This allows us to reinvest previous work into increasingly
complex and powerful models. This also makes deep learning applicable to
fairly small datasets.

Deep learning has only been in the spotlight for a few years, and we may not yet have
established the full scope of what it can do. With every passing year, we learn about
new use cases and engineering improvements that lift previous limitations. Following
a scientific revolution, progress generally follows a sigmoid curve: it starts with a
period of fast progress, which gradually stabilizes as researchers hit hard limitations,
and then further improvements become incremental.

 When I was writing the first edition of this book, in 2016, I predicted that deep
learning was still in the first half of that sigmoid, with much more transformative
progress to come in the following few years. This has proven true in practice, as
2017 and 2018 have seen the rise of Transformer-based deep learning models for
natural language processing, which have been a revolution in the field, while deep
learning also kept delivering steady progress in computer vision and speech recog-
nition. Today, in 2021, deep learning seems to have entered the second half of that
sigmoid. We should still expect significant progress in the years to come, but we’re
probably out of the initial phase of explosive progress.

 Today, I’m extremely excited about the deployment of deep learning technology
to every problem it can solve—the list is endless. Deep learning is still a revolution in
the making, and it will take many years to realize its full potential.

26

The mathematical
building blocks

of neural networks

Understanding deep learning requires familiarity with many simple mathematical
concepts: tensors, tensor operations, differentiation, gradient descent, and so on. Our goal
in this chapter will be to build up your intuition about these notions without get-
ting overly technical. In particular, we’ll steer away from mathematical notation,
which can introduce unnecessary barriers for those without any mathematics back-
ground and isn’t necessary to explain things well. The most precise, unambiguous
description of a mathematical operation is its executable code.

 To provide sufficient context for introducing tensors and gradient descent, we’ll
begin the chapter with a practical example of a neural network. Then we’ll go over
every new concept that’s been introduced, point by point. Keep in mind that these
concepts will be essential for you to understand the practical examples in the fol-
lowing chapters!

This chapter covers
� A first example of a neural network
� Tensors and tensor operations
� How neural networks learn via backpropagation

and gradient descent

27A first look at a neural network

 After reading this chapter, you’ll have an intuitive understanding of the mathemat-
ical theory behind deep learning, and you’ll be ready to start diving into Keras and
TensorFlow in chapter 3.

2.1 A first look at a neural network
Let’s look at a concrete example of a neural network that uses the Python library
Keras to learn to classify handwritten digits. Unless you already have experience with
Keras or similar libraries, you won’t understand everything about this first example
right away. That’s fine. In the next chapter, we’ll review each element in the example
and explain them in detail. So don’t worry if some steps seem arbitrary or look like
magic to you! We’ve got to start somewhere.

 The problem we’re trying to solve here is to classify grayscale images of handwrit-
ten digits (28 × 28 pixels) into their 10 categories (0 through 9). We’ll use the MNIST
dataset, a classic in the machine learning community, which has been around almost
as long as the field itself and has been intensively studied. It’s a set of 60,000 training
images, plus 10,000 test images, assembled by the National Institute of Standards and
Technology (the NIST in MNIST) in the 1980s. You can think of “solving” MNIST as
the “Hello World” of deep learning—it’s what you do to verify that your algorithms are
working as expected. As you become a machine learning practitioner, you’ll see
MNIST come up over and over again in scientific papers, blog posts, and so on. You
can see some MNIST samples in figure 2.1.

NOTE In machine learning, a category in a classification problem is called a
class. Data points are called samples. The class associated with a specific sample
is called a label.

You don’t need to try to reproduce this example on your machine just now. If you wish
to, you’ll first need to set up a deep learning workspace, which is covered in chapter 3.

 The MNIST dataset comes preloaded in Keras, in the form of a set of four NumPy
arrays.

from tensorflow.keras.datasets import mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

train_images and train_labels form the training set, the data that the model will
learn from. The model will then be tested on the test set, test_images and test_labels.

Listing 2.1 Loading the MNIST dataset in Keras

Figure 2.1 MNIST sample digits

28 CHAPTER 2 The mathematical building blocks of neural networks

The images are encoded as NumPy arrays, and the labels are an array of digits, rang-
ing from 0 to 9. The images and labels have a one-to-one correspondence.

 Let’s look at the training data:

>>> train_images.shape
(60000, 28, 28)
>>> len(train_labels)
60000
>>> train_labels
array([5, 0, 4, ..., 5, 6, 8], dtype=uint8)

And here’s the test data:

>>> test_images.shape
(10000, 28, 28)
>>> len(test_labels)
10000
>>> test_labels
array([7, 2, 1, ..., 4, 5, 6], dtype=uint8)

The workflow will be as follows: First, we’ll feed the neural network the training data,
train_images and train_labels. The network will then learn to associate images and
labels. Finally, we’ll ask the network to produce predictions for test_images, and we’ll
verify whether these predictions match the labels from test_labels.

 Let’s build the network—again, remember that you aren’t expected to understand
everything about this example yet.

from tensorflow import keras
from tensorflow.keras import layers
model = keras.Sequential([
 layers.Dense(512, activation="relu"),
 layers.Dense(10, activation="softmax")
])

The core building block of neural networks is the layer. You can think of a layer as a fil-
ter for data: some data goes in, and it comes out in a more useful form. Specifically,
layers extract representations out of the data fed into them—hopefully, representations
that are more meaningful for the problem at hand. Most of deep learning consists of
chaining together simple layers that will implement a form of progressive data distilla-
tion. A deep learning model is like a sieve for data processing, made of a succession of
increasingly refined data filters—the layers.

 Here, our model consists of a sequence of two Dense layers, which are densely con-
nected (also called fully connected) neural layers. The second (and last) layer is a 10-way
softmax classification layer, which means it will return an array of 10 probability scores
(summing to 1). Each score will be the probability that the current digit image
belongs to one of our 10 digit classes.

Listing 2.2 The network architecture

29A first look at a neural network

 To make the model ready for training, we need to pick three more things as part of
the compilation step:

� An optimizer—The mechanism through which the model will update itself based
on the training data it sees, so as to improve its performance.

� A loss function—How the model will be able to measure its performance on the
training data, and thus how it will be able to steer itself in the right direction.

� Metrics to monitor during training and testing—Here, we’ll only care about accu-
racy (the fraction of the images that were correctly classified).

The exact purpose of the loss function and the optimizer will be made clear through-
out the next two chapters.

model.compile(optimizer="rmsprop",
 loss="sparse_categorical_crossentropy",
 metrics=["accuracy"])

Before training, we’ll preprocess the data by reshaping it into the shape the model
expects and scaling it so that all values are in the [0, 1] interval. Previously, our train-
ing images were stored in an array of shape (60000, 28, 28) of type uint8 with values
in the [0, 255] interval. We’ll transform it into a float32 array of shape (60000, 28 *
28) with values between 0 and 1.

train_images = train_images.reshape((60000, 28 * 28))
train_images = train_images.astype("float32") / 255
test_images = test_images.reshape((10000, 28 * 28))
test_images = test_images.astype("float32") / 255

We’re now ready to train the model, which in Keras is done via a call to the model’s
fit() method—we fit the model to its training data.

>>> model.fit(train_images, train_labels, epochs=5, batch_size=128)
Epoch 1/5
60000/60000 [===========================] - 5s - loss: 0.2524 - acc: 0.9273
Epoch 2/5
51328/60000 [=====================>.....] - ETA: 1s - loss: 0.1035 - acc: 0.9692

Two quantities are displayed during training: the loss of the model over the training
data, and the accuracy of the model over the training data. We quickly reach an accu-
racy of 0.989 (98.9%) on the training data.

 Now that we have a trained model, we can use it to predict class probabilities for
new digits—images that weren’t part of the training data, like those from the test set.

Listing 2.3 The compilation step

Listing 2.4 Preparing the image data

Listing 2.5 “Fitting” the model

30 CHAPTER 2 The mathematical building blocks of neural networks

>>> test_digits = test_images[0:10]
>>> predictions = model.predict(test_digits)
>>> predictions[0]
array([1.0726176e-10, 1.6918376e-10, 6.1314843e-08, 8.4106023e-06,
 2.9967067e-11, 3.0331331e-09, 8.3651971e-14, 9.9999106e-01,
 2.6657624e-08, 3.8127661e-07], dtype=float32)

Each number of index i in that array corresponds to the probability that digit image
test_digits[0] belongs to class i.

 This first test digit has the highest probability score (0.99999106, almost 1) at
index 7, so according to our model, it must be a 7:

>>> predictions[0].argmax()
7
>>> predictions[0][7]
0.99999106

We can check that the test label agrees:

>>> test_labels[0]
7

On average, how good is our model at classifying such never-before-seen digits? Let’s
check by computing average accuracy over the entire test set.

>>> test_loss, test_acc = model.evaluate(test_images, test_labels)
>>> print(f"test_acc: {test_acc}")
test_acc: 0.9785

The test-set accuracy turns out to be 97.8%—that’s quite a bit lower than the training-
set accuracy (98.9%). This gap between training accuracy and test accuracy is an
example of overfitting : the fact that machine learning models tend to perform worse
on new data than on their training data. Overfitting is a central topic in chapter 3.

 This concludes our first example—you just saw how you can build and train a
neural network to classify handwritten digits in less than 15 lines of Python code. In
this chapter and the next, we’ll go into detail about every moving piece we just pre-
viewed and clarify what’s going on behind the scenes. You’ll learn about tensors,
the data-storing objects going into the model; tensor operations, which layers are
made of; and gradient descent, which allows your model to learn from its training
examples.

Listing 2.6 Using the model to make predictions

Listing 2.7 Evaluating the model on new data

31Data representations for neural networks

2.2 Data representations for neural networks
In the previous example, we started from data stored in multidimensional NumPy
arrays, also called tensors. In general, all current machine learning systems use tensors
as their basic data structure. Tensors are fundamental to the field—so fundamental
that TensorFlow was named after them. So what’s a tensor?

 At its core, a tensor is a container for data—usually numerical data. So, it’s a con-
tainer for numbers. You may be already familiar with matrices, which are rank-2 ten-
sors: tensors are a generalization of matrices to an arbitrary number of dimensions
(note that in the context of tensors, a dimension is often called an axis).

2.2.1 Scalars (rank-0 tensors)

A tensor that contains only one number is called a scalar (or scalar tensor, or rank-0
tensor, or 0D tensor). In NumPy, a float32 or float64 number is a scalar tensor (or
scalar array). You can display the number of axes of a NumPy tensor via the ndim attri-
bute; a scalar tensor has 0 axes (ndim == 0). The number of axes of a tensor is also
called its rank. Here’s a NumPy scalar:

>>> import numpy as np
>>> x = np.array(12)
>>> x
array(12)
>>> x.ndim
0

2.2.2 Vectors (rank-1 tensors)

An array of numbers is called a vector, or rank-1 tensor, or 1D tensor. A rank-1 tensor is
said to have exactly one axis. Following is a NumPy vector:

>>> x = np.array([12, 3, 6, 14, 7])
>>> x
array([12, 3, 6, 14, 7])
>>> x.ndim
1

This vector has five entries and so is called a 5-dimensional vector. Don’t confuse a 5D
vector with a 5D tensor! A 5D vector has only one axis and has five dimensions along
its axis, whereas a 5D tensor has five axes (and may have any number of dimensions
along each axis). Dimensionality can denote either the number of entries along a spe-
cific axis (as in the case of our 5D vector) or the number of axes in a tensor (such as a
5D tensor), which can be confusing at times. In the latter case, it’s technically more
correct to talk about a tensor of rank 5 (the rank of a tensor being the number of axes),
but the ambiguous notation 5D tensor is common regardless.

32 CHAPTER 2 The mathematical building blocks of neural networks

2.2.3 Matrices (rank-2 tensors)

An array of vectors is a matrix, or rank-2 tensor, or 2D tensor. A matrix has two axes
(often referred to as rows and columns). You can visually interpret a matrix as a rectan-
gular grid of numbers. This is a NumPy matrix:

>>> x = np.array([[5, 78, 2, 34, 0],
 [6, 79, 3, 35, 1],
 [7, 80, 4, 36, 2]])
>>> x.ndim
2

The entries from the first axis are called the rows, and the entries from the second axis
are called the columns. In the previous example, [5, 78, 2, 34, 0] is the first row of x,
and [5, 6, 7] is the first column.

2.2.4 Rank-3 and higher-rank tensors

If you pack such matrices in a new array, you obtain a rank-3 tensor (or 3D tensor),
which you can visually interpret as a cube of numbers. Following is a NumPy rank-3
tensor:

>>> x = np.array([[[5, 78, 2, 34, 0],
 [6, 79, 3, 35, 1],
 [7, 80, 4, 36, 2]],
 [[5, 78, 2, 34, 0],
 [6, 79, 3, 35, 1],
 [7, 80, 4, 36, 2]],
 [[5, 78, 2, 34, 0],
 [6, 79, 3, 35, 1],
 [7, 80, 4, 36, 2]]])
>>> x.ndim
3

By packing rank-3 tensors in an array, you can create a rank-4 tensor, and so on. In
deep learning, you’ll generally manipulate tensors with ranks 0 to 4, although you
may go up to 5 if you process video data.

2.2.5 Key attributes

A tensor is defined by three key attributes:

� Number of axes (rank)—For instance, a rank-3 tensor has three axes, and a matrix
has two axes. This is also called the tensor’s ndim in Python libraries such as
NumPy or TensorFlow.

� Shape—This is a tuple of integers that describes how many dimensions the ten-
sor has along each axis. For instance, the previous matrix example has shape
(3, 5), and the rank-3 tensor example has shape (3, 3, 5). A vector has a shape
with a single element, such as (5,), whereas a scalar has an empty shape, ().

33Data representations for neural networks

� Data type (usually called dtype in Python libraries)—This is the type of the data
contained in the tensor; for instance, a tensor’s type could be float16, float32,
float64, uint8, and so on. In TensorFlow, you are also likely to come across
string tensors.

To make this more concrete, let’s look back at the data we processed in the MNIST
example. First, we load the MNIST dataset:

from tensorflow.keras.datasets import mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

Next, we display the number of axes of the tensor train_images, the ndim attribute:

>>> train_images.ndim
3

Here’s its shape:

>>> train_images.shape
(60000, 28, 28)

And this is its data type, the dtype attribute:

>>> train_images.dtype
uint8

So what we have here is a rank-3 tensor of 8-bit integers. More precisely, it’s an array of
60,000 matrices of 28 × 28 integers. Each such matrix is a grayscale image, with coeffi-
cients between 0 and 255.

 Let’s display the fourth digit in this rank-3 tensor, using the Matplotlib library (a
well-known Python data visualization library, which comes preinstalled in Colab); see
figure 2.2.

Figure 2.2 The fourth sample
in our dataset

34 CHAPTER 2 The mathematical building blocks of neural networks

import matplotlib.pyplot as plt
digit = train_images[4]
plt.imshow(digit, cmap=plt.cm.binary)
plt.show()

Naturally, the corresponding label is the integer 9:

>>> train_labels[4]
9

2.2.6 Manipulating tensors in NumPy

In the previous example, we selected a specific digit alongside the first axis using the
syntax train_images[i]. Selecting specific elements in a tensor is called tensor slicing.
Let’s look at the tensor-slicing operations you can do on NumPy arrays.

 The following example selects digits #10 to #100 (#100 isn’t included) and puts
them in an array of shape (90, 28, 28):

>>> my_slice = train_images[10:100]
>>> my_slice.shape
(90, 28, 28)

It’s equivalent to this more detailed notation, which specifies a start index and stop
index for the slice along each tensor axis. Note that : is equivalent to selecting the
entire axis:

>>> my_slice = train_images[10:100, :, :]
>>> my_slice.shape
(90, 28, 28)
>>> my_slice = train_images[10:100, 0:28, 0:28]
>>> my_slice.shape
(90, 28, 28)

In general, you may select slices between any two indices along each tensor axis. For
instance, in order to select 14 × 14 pixels in the bottom-right corner of all images, you
would do this:

my_slice = train_images[:, 14:, 14:]

It’s also possible to use negative indices. Much like negative indices in Python lists,
they indicate a position relative to the end of the current axis. In order to crop the
images to patches of 14 × 14 pixels centered in the middle, you’d do this:

my_slice = train_images[:, 7:-7, 7:-7]

Listing 2.8 Displaying the fourth digit

Equivalent to the
previous example

Also equivalent to the
previous example

35Data representations for neural networks

2.2.7 The notion of data batches

In general, the first axis (axis 0, because indexing starts at 0) in all data tensors you’ll
come across in deep learning will be the samples axis (sometimes called the samples
dimension). In the MNIST example, “samples” are images of digits.

 In addition, deep learning models don’t process an entire dataset at once; rather,
they break the data into small batches. Concretely, here’s one batch of our MNIST
digits, with a batch size of 128:

batch = train_images[:128]

And here’s the next batch:

batch = train_images[128:256]

And the nth batch:

n = 3
batch = train_images[128 * n:128 * (n + 1)]

When considering such a batch tensor, the first axis (axis 0) is called the batch axis or
batch dimension. This is a term you’ll frequently encounter when using Keras and other
deep learning libraries.

2.2.8 Real-world examples of data tensors

Let’s make data tensors more concrete with a few examples similar to what you’ll
encounter later. The data you’ll manipulate will almost always fall into one of the fol-
lowing categories:

� Vector data—Rank-2 tensors of shape (samples, features), where each sample
is a vector of numerical attributes (“features”)

� Timeseries data or sequence data—Rank-3 tensors of shape (samples, timesteps,
features), where each sample is a sequence (of length timesteps) of feature
vectors

� Images—Rank-4 tensors of shape (samples, height, width, channels), where
each sample is a 2D grid of pixels, and each pixel is represented by a vector of
values (“channels”)

� Video—Rank-5 tensors of shape (samples, frames, height, width, channels),
where each sample is a sequence (of length frames) of images

2.2.9 Vector data

This is one of the most common cases. In such a dataset, each single data point can be
encoded as a vector, and thus a batch of data will be encoded as a rank-2 tensor (that
is, an array of vectors), where the first axis is the samples axis and the second axis is the
features axis.

36 CHAPTER 2 The mathematical building blocks of neural networks

 Let’s take a look at two examples:

� An actuarial dataset of people, where we consider each person’s age, gender,
and income. Each person can be characterized as a vector of 3 values, and thus
an entire dataset of 100,000 people can be stored in a rank-2 tensor of shape
(100000, 3).

� A dataset of text documents, where we represent each document by the counts
of how many times each word appears in it (out of a dictionary of 20,000 com-
mon words). Each document can be encoded as a vector of 20,000 values (one
count per word in the dictionary), and thus an entire dataset of 500 documents
can be stored in a tensor of shape (500, 20000).

2.2.10 Timeseries data or sequence data

Whenever time matters in your data (or the notion of sequence order), it makes sense
to store it in a rank-3 tensor with an explicit time axis. Each sample can be encoded as
a sequence of vectors (a rank-2 tensor), and thus a batch of data will be encoded as a
rank-3 tensor (see figure 2.3).

The time axis is always the second axis (axis of index 1) by convention. Let’s look at a
few examples:

� A dataset of stock prices. Every minute, we store the current price of the stock,
the highest price in the past minute, and the lowest price in the past minute.
Thus, every minute is encoded as a 3D vector, an entire day of trading is
encoded as a matrix of shape (390, 3) (there are 390 minutes in a trading day),
and 250 days’ worth of data can be stored in a rank-3 tensor of shape (250,
390, 3). Here, each sample would be one day’s worth of data.

� A dataset of tweets, where we encode each tweet as a sequence of 280 characters
out of an alphabet of 128 unique characters. In this setting, each character can
be encoded as a binary vector of size 128 (an all-zeros vector except for a 1 entry
at the index corresponding to the character). Then each tweet can be encoded
as a rank-2 tensor of shape (280, 128), and a dataset of 1 million tweets can be
stored in a tensor of shape (1000000, 280, 128).

Features

Timesteps

Samples
Figure 2.3 A rank-3 timeseries
data tensor

37Data representations for neural networks

2.2.11 Image data

Images typically have three dimensions: height, width, and color depth. Although
grayscale images (like our MNIST digits) have only a single color channel and could
thus be stored in rank-2 tensors, by convention image tensors are always rank-3, with a
one-dimensional color channel for grayscale images. A batch of 128 grayscale images
of size 256 × 256 could thus be stored in a tensor of shape (128, 256, 256, 1), and a
batch of 128 color images could be stored in a tensor of shape (128, 256, 256, 3)
(see figure 2.4).

There are two conventions for shapes of image tensors: the channels-last convention
(which is standard in TensorFlow) and the channels-first convention (which is increas-
ingly falling out of favor).

 The channels-last convention places the color-depth axis at the end: (samples,
height, width, color_depth). Meanwhile, the channels-first convention places the
color depth axis right after the batch axis: (samples, color_depth, height, width).
With the channels-first convention, the previous examples would become (128, 1,
256, 256) and (128, 3, 256, 256). The Keras API provides support for both formats.

2.2.12 Video data

Video data is one of the few types of real-world data for which you’ll need rank-5 ten-
sors. A video can be understood as a sequence of frames, each frame being a color
image. Because each frame can be stored in a rank-3 tensor (height, width, color_
depth), a sequence of frames can be stored in a rank-4 tensor (frames, height,
width, color_depth), and thus a batch of different videos can be stored in a rank-5
tensor of shape (samples, frames, height, width, color_depth).

 For instance, a 60-second, 144 × 256 YouTube video clip sampled at 4 frames per
second would have 240 frames. A batch of four such video clips would be stored in a
tensor of shape (4, 240, 144, 256, 3). That’s a total of 106,168,320 values! If the

Color channels

Height

Width

Samples

Figure 2.4 A rank-4
image data tensor

38 CHAPTER 2 The mathematical building blocks of neural networks

dtype of the tensor was float32, each value would be stored in 32 bits, so the tensor
would represent 405 MB. Heavy! Videos you encounter in real life are much lighter,
because they aren’t stored in float32, and they’re typically compressed by a large fac-
tor (such as in the MPEG format).

2.3 The gears of neural networks: Tensor operations
Much as any computer program can be ultimately reduced to a small set of binary
operations on binary inputs (AND, OR, NOR, and so on), all transformations learned
by deep neural networks can be reduced to a handful of tensor operations (or tensor func-
tions) applied to tensors of numeric data. For instance, it’s possible to add tensors,
multiply tensors, and so on.

 In our initial example, we built our model by stacking Dense layers on top of each
other. A Keras layer instance looks like this:

keras.layers.Dense(512, activation="relu")

This layer can be interpreted as a function, which takes as input a matrix and returns
another matrix—a new representation for the input tensor. Specifically, the function
is as follows (where W is a matrix and b is a vector, both attributes of the layer):

output = relu(dot(input, W) + b)

Let’s unpack this. We have three tensor operations here:

� A dot product (dot) between the input tensor and a tensor named W
� An addition (+) between the resulting matrix and a vector b
� A relu operation: relu(x) is max(x, 0); “relu” stands for “rectified linear unit”

NOTE Although this section deals entirely with linear algebra expressions,
you won’t find any mathematical notation here. I’ve found that mathematical
concepts can be more readily mastered by programmers with no mathemati-
cal background if they’re expressed as short Python snippets instead of math-
ematical equations. So we’ll use NumPy and TensorFlow code throughout.

2.3.1 Element-wise operations

The relu operation and addition are element-wise operations: operations that are
applied independently to each entry in the tensors being considered. This means
these operations are highly amenable to massively parallel implementations (vectorized
implementations, a term that comes from the vector processor supercomputer architec-
ture from the 1970–90 period). If you want to write a naive Python implementation of
an element-wise operation, you use a for loop, as in this naive implementation of an
element-wise relu operation:

def naive_relu(x):
 assert len(x.shape) == 2

x is a rank-2
NumPy tensor.

39The gears of neural networks: Tensor operations

 x = x.copy()
 for i in range(x.shape[0]):
 for j in range(x.shape[1]):
 x[i, j] = max(x[i, j], 0)
 return x

You could do the same for addition:

def naive_add(x, y):
 assert len(x.shape) == 2
 assert x.shape == y.shape
 x = x.copy()
 for i in range(x.shape[0]):
 for j in range(x.shape[1]):
 x[i, j] += y[i, j]
 return x

On the same principle, you can do element-wise multiplication, subtraction, and so on.
 In practice, when dealing with NumPy arrays, these operations are available as well-

optimized built-in NumPy functions, which themselves delegate the heavy lifting to a
Basic Linear Algebra Subprograms (BLAS) implementation. BLAS are low-level,
highly parallel, efficient tensor-manipulation routines that are typically implemented
in Fortran or C.

 So, in NumPy, you can do the following element-wise operation, and it will be blaz-
ing fast:

import numpy as np
z = x + y
z = np.maximum(z, 0.)

Let’s actually time the difference:

import time

x = np.random.random((20, 100))
y = np.random.random((20, 100))

t0 = time.time()
for _ in range(1000):
 z = x + y
 z = np.maximum(z, 0.)
print("Took: {0:.2f} s".format(time.time() - t0))

This takes 0.02 s. Meanwhile, the naive version takes a stunning 2.45 s:

t0 = time.time()
for _ in range(1000):
 z = naive_add(x, y)
 z = naive_relu(z)
print("Took: {0:.2f} s".format(time.time() - t0))

Avoid overwriting
the input tensor.

x and y are rank-2
NumPy tensors.

Avoid overwriting
the input tensor.

Element-wise addition

Element-wise relu

40 CHAPTER 2 The mathematical building blocks of neural networks

Likewise, when running TensorFlow code on a GPU, element-wise operations are exe-
cuted via fully vectorized CUDA implementations that can best utilize the highly par-
allel GPU chip architecture.

2.3.2 Broadcasting

Our earlier naive implementation of naive_add only supports the addition of rank-2
tensors with identical shapes. But in the Dense layer introduced earlier, we added a
rank-2 tensor with a vector. What happens with addition when the shapes of the two
tensors being added differ?

 When possible, and if there’s no ambiguity, the smaller tensor will be broadcast to
match the shape of the larger tensor. Broadcasting consists of two steps:

1 Axes (called broadcast axes) are added to the smaller tensor to match the ndim of
the larger tensor.

2 The smaller tensor is repeated alongside these new axes to match the full shape
of the larger tensor.

Let’s look at a concrete example. Consider X with shape (32, 10) and y with shape
(10,):

import numpy as np
X = np.random.random((32, 10))
y = np.random.random((10,))

First, we add an empty first axis to y, whose shape becomes (1, 10):

y = np.expand_dims(y, axis=0)

Then, we repeat y 32 times alongside this new axis, so that we end up with a tensor Y
with shape (32, 10), where Y[i, :] == y for i in range(0, 32):

Y = np.concatenate([y] * 32, axis=0)

At this point, we can proceed to add X and Y, because they have the same shape.
 In terms of implementation, no new rank-2 tensor is created, because that would

be terribly inefficient. The repetition operation is entirely virtual: it happens at the
algorithmic level rather than at the memory level. But thinking of the vector being
repeated 10 times alongside a new axis is a helpful mental model. Here’s what a naive
implementation would look like:

def naive_add_matrix_and_vector(x, y):
 assert len(x.shape) == 2
 assert len(y.shape) == 1
 assert x.shape[1] == y.shape[0]
 x = x.copy()
 for i in range(x.shape[0]):

X is a random matrix
with shape (32, 10).

 y is a random vector
with shape (10,).

The shape of y
is now (1, 10).

Repeat y 32 times along axis 0 to
obtain Y, which has shape (32, 10).

x is a rank-2
NumPy tensor.

y is a NumPy vector.

Avoid overwriting
the input tensor.

41The gears of neural networks: Tensor operations

 for j in range(x.shape[1]):
 x[i, j] += y[j]
 return x

With broadcasting, you can generally perform element-wise operations that take two
inputs tensors if one tensor has shape (a, b, … n, n + 1, … m) and the other has shape (n,
n + 1, … m). The broadcasting will then automatically happen for axes a through n - 1.

 The following example applies the element-wise maximum operation to two tensors
of different shapes via broadcasting:

import numpy as np
x = np.random.random((64, 3, 32, 10))
y = np.random.random((32, 10))
z = np.maximum(x, y)

2.3.3 Tensor product

The tensor product, or dot product (not to be confused with an element-wise product, the
* operator), is one of the most common, most useful tensor operations.

 In NumPy, a tensor product is done using the np.dot function (because the math-
ematical notation for tensor product is usually a dot):

x = np.random.random((32,))
y = np.random.random((32,))
z = np.dot(x, y)

In mathematical notation, you’d note the operation with a dot (•):

z = x • y

Mathematically, what does the dot operation do? Let’s start with the dot product of
two vectors, x and y. It’s computed as follows:

def naive_vector_dot(x, y):
 assert len(x.shape) == 1
 assert len(y.shape) == 1
 assert x.shape[0] == y.shape[0]
 z = 0.
 for i in range(x.shape[0]):
 z += x[i] * y[i]
 return z

You’ll have noticed that the dot product between two vectors is a scalar and that only
vectors with the same number of elements are compatible for a dot product.

 You can also take the dot product between a matrix x and a vector y, which returns
a vector where the coefficients are the dot products between y and the rows of x. You
implement it as follows:

x is a random tensor with
shape (64, 3, 32, 10).

y is a random
tensor with
shape (32, 10).The output z has shape

(64, 3, 32, 10) like x.

x and y are
NumPy vectors.

42 CHAPTER 2 The mathematical building blocks of neural networks

def naive_matrix_vector_dot(x, y):
 assert len(x.shape) == 2
 assert len(y.shape) == 1
 assert x.shape[1] == y.shape[0]
 z = np.zeros(x.shape[0])
 for i in range(x.shape[0]):
 for j in range(x.shape[1]):
 z[i] += x[i, j] * y[j]
 return z

You could also reuse the code we wrote previously, which highlights the relationship
between a matrix-vector product and a vector product:

def naive_matrix_vector_dot(x, y):
 z = np.zeros(x.shape[0])
 for i in range(x.shape[0]):
 z[i] = naive_vector_dot(x[i, :], y)
 return z

Note that as soon as one of the two tensors has an ndim greater than 1, dot is no lon-
ger symmetric, which is to say that dot(x, y) isn’t the same as dot(y, x).

 Of course, a dot product generalizes to tensors with an arbitrary number of axes.
The most common applications may be the dot product between two matrices. You can
take the dot product of two matrices x and y (dot(x, y)) if and only if x.shape[1] ==
y.shape[0]. The result is a matrix with shape (x.shape[0], y.shape[1]), where the
coefficients are the vector products between the rows of x and the columns of y.
Here’s the naive implementation:

def naive_matrix_dot(x, y):
 assert len(x.shape) == 2
 assert len(y.shape) == 2
 assert x.shape[1] == y.shape[0]
 z = np.zeros((x.shape[0], y.shape[1]))
 for i in range(x.shape[0]):
 for j in range(y.shape[1]):
 row_x = x[i, :]
 column_y = y[:, j]
 z[i, j] = naive_vector_dot(row_x, column_y)
 return z

To understand dot-product shape compatibility, it helps to visualize the input and out-
put tensors by aligning them as shown in figure 2.5.

 In the figure, x, y, and z are pictured as rectangles (literal boxes of coefficients).
Because the rows of x and the columns of y must have the same size, it follows that the
width of x must match the height of y. If you go on to develop new machine learning
algorithms, you’ll likely be drawing such diagrams often.

x is a NumPy matrix.

y is a NumPy vector.

The first dimension of x
must be the same as the
0th dimension of y!

This operation returns a vector
of 0s with the same shape as y.

x and y are NumPy matrices.

The first dimension of x must be the
same as the 0th dimension of y!

This
operation
returns a
matrix of 0s
with a specific
shape.

Iterates over the rows of x . . .

. . . and over the columns of y.

43The gears of neural networks: Tensor operations

More generally, you can take the dot product between higher-dimensional tensors,
following the same rules for shape compatibility as outlined earlier for the 2D case:

(a, b, c, d) • (d,) → (a, b, c)
(a, b, c, d) • (d, e) → (a, b, c, e)

And so on.

2.3.4 Tensor reshaping

A third type of tensor operation that’s essential to understand is tensor reshaping.
Although it wasn’t used in the Dense layers in our first neural network example, we
used it when we preprocessed the digits data before feeding it into our model:

train_images = train_images.reshape((60000, 28 * 28))

Reshaping a tensor means rearranging its rows and columns to match a target shape.
Naturally, the reshaped tensor has the same total number of coefficients as the initial
tensor. Reshaping is best understood via simple examples:

>>> x = np.array([[0., 1.],
 [2., 3.],
 [4., 5.]])
>>> x.shape
(3, 2)
>>> x = x.reshape((6, 1))
>>> x
array([[0.],
 [1.],
 [2.],
 [3.],
 [4.],
 [5.]])

a

b

x • y = z

b

x.shape:
(a, b)

y.shape:
(b, c)

z.shape:
(a, c)

Row of x

Column of y

z [i, j]

c

Figure 2.5 Matrix dot-product
box diagram

44 CHAPTER 2 The mathematical building blocks of neural networks

 >>> x = x.reshape((2, 3))
 >>> x
 array([[0., 1., 2.],
 [3., 4., 5.]])

A special case of reshaping that’s commonly encountered is transposition. Transposing a
matrix means exchanging its rows and its columns, so that x[i, :] becomes x[:, i]:

>>> x = np.zeros((300, 20))
>>> x = np.transpose(x)
>>> x.shape
(20, 300)

2.3.5 Geometric interpretation of tensor operations

Because the contents of the tensors manipulated by tensor operations can be inter-
preted as coordinates of points in some geometric space, all tensor operations have a
geometric interpretation. For instance, let’s consider addition. We’ll start with the fol-
lowing vector:

A = [0.5, 1]

It’s a point in a 2D space (see figure 2.6). It’s common to picture a vector as an arrow
linking the origin to the point, as shown in figure 2.7.

Let’s consider a new point, B = [1, 0.25], which we’ll add to the previous one. This is
done geometrically by chaining together the vector arrows, with the resulting location
being the vector representing the sum of the previous two vectors (see figure 2.8). As
you can see, adding a vector B to a vector A represents the action of copying point A
in a new location, whose distance and direction from the original point A is determined
by the vector B. If you apply the same vector addition to a group of points in the plane
(an “object”), you would be creating a copy of the entire object in a new location (see

Creates an all-
zeros matrix of
shape (300, 20)

1

1

A [0.5, 1]

Figure 2.6 A point in a 2D
space

1

1

A [0.5, 1]

Figure 2.7 A point in a 2D
space pictured as an arrow

45The gears of neural networks: Tensor operations

figure 2.9). Tensor addition thus represents the action of translating an object (moving
the object without distorting it) by a certain amount in a certain direction.

In general, elementary geometric operations such as translation, rotation, scaling,
skewing, and so on can be expressed as tensor operations. Here are a few examples:

� Translation: As you just saw, adding a vector to a point will move the point by a
fixed amount in a fixed direction. Applied to a set of points (such as a 2D
object), this is called a “translation” (see figure 2.9).

� Rotation: A counterclockwise rotation of a 2D vector by an angle theta (see fig-
ure 2.10) can be achieved via a dot product with a 2 × 2 matrix R = [[cos(theta),
-sin(theta)], [sin(theta), cos(theta)]].

Figure 2.8 Geometric interpretation
of the sum of two vectors

1

1

A

B

A + B

x
y

K K
Vertical factor

Horizontal factor

Horizontal factor
Vertical factor

+

Figure 2.9 2D
translation as a
vector addition

cos(theta) –sin(theta)
sin(theta) cos(theta)

x
y

Theta
K K Figure 2.10 2D rotation

(counterclockwise) as a
dot product

46 CHAPTER 2 The mathematical building blocks of neural networks

� Scaling : A vertical and horizontal scaling of the image (see figure 2.11) can be
achieved via a dot product with a 2 × 2 matrix S = [[horizontal_factor, 0],
[0, vertical_factor]] (note that such a matrix is called a “diagonal matrix,”
because it only has non-zero coefficients in its “diagonal,” going from the top
left to the bottom right).

� Linear transform : A dot product with an arbitrary matrix implements a linear
transform. Note that scaling and rotation, listed previously, are by definition lin-
ear transforms.

� Affine transform : An affine transform (see figure 2.12) is the combination of a
linear transform (achieved via a dot product with some matrix) and a transla-
tion (achieved via a vector addition). As you have probably recognized, that’s
exactly the y = W • x + b computation implemented by the Dense layer! A Dense
layer without an activation function is an affine layer.

� Dense layer with relu activation : An important observation about affine trans-
forms is that if you apply many of them repeatedly, you still end up with an
affine transform (so you could just have applied that one affine transform in
the first place). Let’s try it with two: affine2(affine1(x)) = W2 • (W1 • x + b1)
+ b2 = (W2 • W1) • x + (W2 • b1 + b2). That’s an affine transform where the linear
part is the matrix W2 • W1 and the translation part is the vector W2 • b1 + b2. As a
consequence, a multilayer neural network made entirely of Dense layers without

1 0
0 –0.5

x
y

K
K

Figure 2.11
2D scaling as a
dot product

K

W • x + b

Figure 2.12 Affine
transform in the plane

47The gears of neural networks: Tensor operations

activations would be equivalent to a single Dense layer. This “deep” neural net-
work would just be a linear model in disguise! This is why we need activation
functions, like relu (seen in action in figure 2.13). Thanks to activation func-
tions, a chain of Dense layers can be made to implement very complex, non-linear
geometric transformations, resulting in very rich hypothesis spaces for your
deep neural networks. We’ll cover this idea in more detail in the next chapter.

2.3.6 A geometric interpretation of deep learning

You just learned that neural networks consist entirely of chains of tensor operations,
and that these tensor operations are just simple geometric transformations of the
input data. It follows that you can interpret a neural network as a very complex geo-
metric transformation in a high-dimensional space, implemented via a series of sim-
ple steps.

 In 3D, the following mental image may prove useful. Imagine two sheets of colored
paper: one red and one blue. Put one on top of the other. Now crumple them
together into a small ball. That crumpled paper ball is your input data, and each sheet
of paper is a class of data in a classification problem. What a neural network is meant
to do is figure out a transformation of the paper ball that would uncrumple it, so as to
make the two classes cleanly separable again (see figure 2.14). With deep learning,
this would be implemented as a series of simple transformations of the 3D space, such
as those you could apply on the paper ball with your fingers, one movement at a time.

Uncrumpling paper balls is what machine learning is about: finding neat representa-
tions for complex, highly folded data manifolds in high-dimensional spaces (a mani-
fold is a continuous surface, like our crumpled sheet of paper). At this point, you
should have a pretty good intuition as to why deep learning excels at this: it takes the

K

relu(W • x + b)

Figure 2.13 Affine
transform followed by
relu activation

Figure 2.14 Uncrumpling a
complicated manifold of data

48 CHAPTER 2 The mathematical building blocks of neural networks

approach of incrementally decomposing a complicated geometric transformation
into a long chain of elementary ones, which is pretty much the strategy a human
would follow to uncrumple a paper ball. Each layer in a deep network applies a trans-
formation that disentangles the data a little, and a deep stack of layers makes tractable
an extremely complicated disentanglement process.

2.4 The engine of neural networks: Gradient-based
optimization
As you saw in the previous section, each neural layer from our first model example
transforms its input data as follows:

output = relu(dot(input, W) + b)

In this expression, W and b are tensors that are attributes of the layer. They’re called
the weights or trainable parameters of the layer (the kernel and bias attributes, respec-
tively). These weights contain the information learned by the model from exposure to
training data.

 Initially, these weight matrices are filled with small random values (a step called
random initialization). Of course, there’s no reason to expect that relu(dot(input, W)
+ b), when W and b are random, will yield any useful representations. The resulting
representations are meaningless—but they’re a starting point. What comes next is to
gradually adjust these weights, based on a feedback signal. This gradual adjustment,
also called training, is the learning that machine learning is all about.

 This happens within what’s called a training loop, which works as follows. Repeat
these steps in a loop, until the loss seems sufficiently low:

1 Draw a batch of training samples, x, and corresponding targets, y_true.
2 Run the model on x (a step called the forward pass) to obtain predictions, y_pred.
3 Compute the loss of the model on the batch, a measure of the mismatch between

y_pred and y_true.
4 Update all weights of the model in a way that slightly reduces the loss on this

batch.

You’ll eventually end up with a model that has a very low loss on its training data: a low
mismatch between predictions, y_pred, and expected targets, y_true. The model has
“learned” to map its inputs to correct targets. From afar, it may look like magic, but
when you reduce it to elementary steps, it turns out to be simple.

 Step 1 sounds easy enough—just I/O code. Steps 2 and 3 are merely the application
of a handful of tensor operations, so you could implement these steps purely from what
you learned in the previous section. The difficult part is step 4: updating the model’s
weights. Given an individual weight coefficient in the model, how can you compute
whether the coefficient should be increased or decreased, and by how much?

 One naive solution would be to freeze all weights in the model except the one sca-
lar coefficient being considered, and try different values for this coefficient. Let’s say

49The engine of neural networks: Gradient-based optimization

the initial value of the coefficient is 0.3. After the forward pass on a batch of data, the
loss of the model on the batch is 0.5. If you change the coefficient’s value to 0.35 and
rerun the forward pass, the loss increases to 0.6. But if you lower the coefficient to
0.25, the loss falls to 0.4. In this case, it seems that updating the coefficient by –0.05
would contribute to minimizing the loss. This would have to be repeated for all coeffi-
cients in the model.

 But such an approach would be horribly inefficient, because you’d need to com-
pute two forward passes (which are expensive) for every individual coefficient (of
which there are many, usually thousands and sometimes up to millions). Thankfully,
there’s a much better approach: gradient descent.

 Gradient descent is the optimization technique that powers modern neural net-
works. Here’s the gist of it. All of the functions used in our models (such as dot or +)
transform their input in a smooth and continuous way: if you look at z = x + y, for
instance, a small change in y only results in a small change in z, and if you know the
direction of the change in y, you can infer the direction of the change in z. Mathemat-
ically, you’d say these functions are differentiable. If you chain together such functions,
the bigger function you obtain is still differentiable. In particular, this applies to the
function that maps the model’s coefficients to the loss of the model on a batch of
data: a small change in the model’s coefficients results in a small, predictable change
in the loss value. This enables you to use a mathematical operator called the gradient
to describe how the loss varies as you move the model’s coefficients in different direc-
tions. If you compute this gradient, you can use it to move the coefficients (all at once
in a single update, rather than one at a time) in a direction that decreases the loss.

 If you already know what differentiable means and what a gradient is, you can skip to
section 2.4.3. Otherwise, the following two sections will help you understand these
concepts.

2.4.1 What’s a derivative?

Consider a continuous, smooth function f(x) = y, mapping a number, x, to a new
number, y. We can use the function in figure 2.15 as an example.

Because the function is continuous, a small change in x can only result in a small change
in y—that’s the intuition behind continuity. Let’s say you increase x by a small factor,
epsilon_x: this results in a small epsilon_y change to y, as shown in figure 2.16.

y = f(x)

x

y Figure 2.15 A continuous,
smooth function

50 CHAPTER 2 The mathematical building blocks of neural networks

In addition, because the function is smooth (its curve doesn’t have any abrupt angles),
when epsilon_x is small enough, around a certain point p, it’s possible to approxi-
mate f as a linear function of slope a, so that epsilon_y becomes a * epsilon_x:

f(x + epsilon_x) = y + a * epsilon_x

Obviously, this linear approximation is valid only when x is close enough to p.
 The slope a is called the derivative of f in p. If a is negative, it means a small

increase in x around p will result in a decrease of f(x) (as shown in figure 2.17), and
if a is positive, a small increase in x will result in an increase of f(x). Further, the abso-
lute value of a (the magnitude of the derivative) tells you how quickly this increase or
decrease will happen.

For every differentiable function f(x) (differentiable means “can be derived”: for exam-
ple, smooth, continuous functions can be derived), there exists a derivative function
f'(x), that maps values of x to the slope of the local linear approximation of f in
those points. For instance, the derivative of cos(x) is -sin(x), the derivative of f(x) =
a * x is f'(x) = a, and so on.

 Being able to derive functions is a very powerful tool when it comes to optimization,
the task of finding values of x that minimize the value of f(x). If you’re trying to
update x by a factor epsilon_x in order to minimize f(x), and you know the deriva-
tive of f, then your job is done: the derivative completely describes how f(x) evolves
as you change x. If you want to reduce the value of f(x), you just need to move x a lit-
tle in the opposite direction from the derivative.

y = f(x)

epsilon_x

epsilon_y

x

y
Figure 2.16 With a continuous function,
a small change in x results in a small
change in y.

y = f(x)

x

y

Local linear
approximation of , withf
slope a

Figure 2.17 Derivative of f in p

51The engine of neural networks: Gradient-based optimization

2.4.2 Derivative of a tensor operation: The gradient

The function we were just looking at turned a scalar value x into another scalar value
y: you could plot it as a curve in a 2D plane. Now imagine a function that turns a tuple
of scalars (x, y) into a scalar value z: that would be a vector operation. You could plot
it as a 2D surface in a 3D space (indexed by coordinates x, y, z). Likewise, you can
imagine functions that take matrices as inputs, functions that take rank-3 tensors as
inputs, etc.

 The concept of derivation can be applied to any such function, as long as the sur-
faces they describe are continuous and smooth. The derivative of a tensor operation
(or tensor function) is called a gradient. Gradients are just the generalization of the
concept of derivatives to functions that take tensors as inputs. Remember how, for a
scalar function, the derivative represents the local slope of the curve of the function? In
the same way, the gradient of a tensor function represents the curvature of the multidi-
mensional surface described by the function. It characterizes how the output of the
function varies when its input parameters vary.

 Let’s look at an example grounded in machine learning. Consider

� An input vector, x (a sample in a dataset)
� A matrix, W (the weights of a model)
� A target, y_true (what the model should learn to associate to x)
� A loss function, loss (meant to measure the gap between the model’s current

predictions and y_true)

You can use W to compute a target candidate y_pred, and then compute the loss, or
mismatch, between the target candidate y_pred and the target y_true:

y_pred = dot(W, x)
loss_value = loss(y_pred, y_true)

Now we’d like to use gradients to figure out how to update W so as to make loss_value
smaller. How do we do that?

 Given fixed inputs x and y_true, the preceding operations can be interpreted as a
function mapping values of W (the model’s weights) to loss values:

loss_value = f(W)

Let’s say the current value of W is W0. Then the derivative of f at the point W0 is a ten-
sor grad(loss_value, W0), with the same shape as W, where each coefficient
grad(loss_value, W0)[i, j] indicates the direction and magnitude of the change in
loss_value you observe when modifying W0[i, j]. That tensor grad(loss_value,
W0) is the gradient of the function f(W) = loss_value in W0, also called “gradient of
loss_value with respect to W around W0.”

We use the model weights, W,
to make a prediction for x.

We estimate how far off
the prediction was.

f describes the curve (or high-dimensional
surface) formed by loss values when W varies.

52 CHAPTER 2 The mathematical building blocks of neural networks

Concretely, what does grad(loss_value, W0) represent? You saw earlier that the deriva-
tive of a function f(x) of a single coefficient can be interpreted as the slope of the curve
of f. Likewise, grad(loss_value, W0) can be interpreted as the tensor describing the
direction of steepest ascent of loss_value = f(W) around W0, as well as the slope of this
ascent. Each partial derivative describes the slope of f in a specific direction.

 For this reason, in much the same way that, for a function f(x), you can reduce
the value of f(x) by moving x a little in the opposite direction from the derivative,
with a function f(W) of a tensor, you can reduce loss_value = f(W) by moving W in the
opposite direction from the gradient: for example, W1 = W0 - step * grad(f(W0), W0)
(where step is a small scaling factor). That means going against the direction of steep-
est ascent of f, which intuitively should put you lower on the curve. Note that the scaling
factor step is needed because grad(loss_value, W0) only approximates the curva-
ture when you’re close to W0, so you don’t want to get too far from W0.

2.4.3 Stochastic gradient descent

Given a differentiable function, it’s theoretically possible to find its minimum analyti-
cally: it’s known that a function’s minimum is a point where the derivative is 0, so all
you have to do is find all the points where the derivative goes to 0 and check for which
of these points the function has the lowest value.

 Applied to a neural network, that means finding analytically the combination of
weight values that yields the smallest possible loss function. This can be done by solv-
ing the equation grad(f(W), W) = 0 for W. This is a polynomial equation of N variables,
where N is the number of coefficients in the model. Although it would be possible to
solve such an equation for N = 2 or N = 3, doing so is intractable for real neural net-
works, where the number of parameters is never less than a few thousand and can
often be several tens of millions.

 Instead, you can use the four-step algorithm outlined at the beginning of this
section: modify the parameters little by little based on the current loss value for a
random batch of data. Because you’re dealing with a differentiable function, you
can compute its gradient, which gives you an efficient way to implement step 4. If
you update the weights in the opposite direction from the gradient, the loss will be a
little less every time:

1 Draw a batch of training samples, x, and corresponding targets, y_true.
2 Run the model on x to obtain predictions, y_pred (this is called the forward pass).

Partial derivatives
The tensor operation grad(f(W), W) (which takes as input a matrix W) can be
expressed as a combination of scalar functions, grad_ij(f(W), w_ij), each of
which would return the derivative of loss_value = f(W) with respect to the coeffi-
cient W[i, j] of W, assuming all other coefficients are constant. grad_ij is called
the partial derivative of f with respect to W[i, j].

53The engine of neural networks: Gradient-based optimization

3 Compute the loss of the model on the batch, a measure of the mismatch
between y_pred and y_true.

4 Compute the gradient of the loss with regard to the model’s parameters (this is
called the backward pass).

5 Move the parameters a little in the opposite direction from the gradient—for
example, W -= learning_rate * gradient—thus reducing the loss on the batch
a bit. The learning rate (learning_rate here) would be a scalar factor modulat-
ing the “speed” of the gradient descent process.

Easy enough! What we just described is called mini-batch stochastic gradient descent
(mini-batch SGD). The term stochastic refers to the fact that each batch of data is
drawn at random (stochastic is a scientific synonym of random). Figure 2.18 illustrates
what happens in 1D, when the model has only one parameter and you have only one
training sample.

As you can see, intuitively it’s important to pick a reasonable value for the learning_
rate factor. If it’s too small, the descent down the curve will take many iterations, and
it could get stuck in a local minimum. If learning_rate is too large, your updates may
end up taking you to completely random locations on the curve.

 Note that a variant of the mini-batch SGD algorithm would be to draw a single sam-
ple and target at each iteration, rather than drawing a batch of data. This would be
true SGD (as opposed to mini-batch SGD). Alternatively, going to the opposite extreme,
you could run every step on all data available, which is called batch gradient descent.
Each update would then be more accurate, but far more expensive. The efficient com-
promise between these two extremes is to use mini-batches of reasonable size.

 Although figure 2.18 illustrates gradient descent in a 1D parameter space, in prac-
tice you’ll use gradient descent in highly dimensional spaces: every weight coefficient
in a neural network is a free dimension in the space, and there may be tens of thou-
sands or even millions of them. To help you build intuition about loss surfaces, you
can also visualize gradient descent along a 2D loss surface, as shown in figure 2.19. But
you can’t possibly visualize what the actual process of training a neural network looks

Loss
value

Starting
point (t=0)

Learning rate

t=1

t=2

t=3

Parameter
value

Figure 2.18 SGD down a 1D loss
curve (one learnable parameter)

54 CHAPTER 2 The mathematical building blocks of neural networks

like—you can’t represent a 1,000,000-dimensional space in a way that makes sense to
humans. As such, it’s good to keep in mind that the intuitions you develop through
these low-dimensional representations may not always be accurate in practice. This
has historically been a source of issues in the world of deep learning research.

Additionally, there exist multiple variants of SGD that differ by taking into account
previous weight updates when computing the next weight update, rather than just
looking at the current value of the gradients. There is, for instance, SGD with momen-
tum, as well as Adagrad, RMSprop, and several others. Such variants are known as opti-
mization methods or optimizers. In particular, the concept of momentum, which is used in
many of these variants, deserves your attention. Momentum addresses two issues with
SGD: convergence speed and local minima. Consider figure 2.20, which shows the
curve of a loss as a function of a model parameter.

As you can see, around a certain parameter value, there is a local minimum : around
that point, moving left would result in the loss increasing, but so would moving right.

Starting point

Final point

45
40
35
30
25
20
15
10
5

Figure 2.19 Gradient descent
down a 2D loss surface (two
learnable parameters)

Loss
value

Parameter
value

Local
minimum

Global
minimum

Figure 2.20 A local minimum
and a global minimum

55The engine of neural networks: Gradient-based optimization

If the parameter under consideration were being optimized via SGD with a small
learning rate, the optimization process could get stuck at the local minimum instead
of making its way to the global minimum.

 You can avoid such issues by using momentum, which draws inspiration from
physics. A useful mental image here is to think of the optimization process as a small
ball rolling down the loss curve. If it has enough momentum, the ball won’t get
stuck in a ravine and will end up at the global minimum. Momentum is imple-
mented by moving the ball at each step based not only on the current slope value
(current acceleration) but also on the current velocity (resulting from past accelera-
tion). In practice, this means updating the parameter w based not only on the cur-
rent gradient value but also on the previous parameter update, such as in this naive
implementation:

past_velocity = 0.
momentum = 0.1
while loss > 0.01:
 w, loss, gradient = get_current_parameters()
 velocity = past_velocity * momentum - learning_rate * gradient
 w = w + momentum * velocity - learning_rate * gradient
 past_velocity = velocity
 update_parameter(w)

2.4.4 Chaining derivatives: The Backpropagation algorithm

In the preceding algorithm, we casually assumed that because a function is differentia-
ble, we can easily compute its gradient. But is that true? How can we compute the gra-
dient of complex expressions in practice? In the two-layer model we started the
chapter with, how can we get the gradient of the loss with regard to the weights?
That’s where the Backpropagation algorithm comes in.

THE CHAIN RULE

Backpropagation is a way to use the derivatives of simple operations (such as addition,
relu, or tensor product) to easily compute the gradient of arbitrarily complex combi-
nations of these atomic operations. Crucially, a neural network consists of many tensor
operations chained together, each of which has a simple, known derivative. For
instance, the model defined in listing 2.2 can be expressed as a function parameter-
ized by the variables W1, b1, W2, and b2 (belonging to the first and second Dense layers
respectively), involving the atomic operations dot, relu, softmax, and +, as well as our
loss function loss, which are all easily differentiable:

loss_value = loss(y_true, softmax(dot(relu(dot(inputs, W1) + b1), W2) + b2))

Calculus tells us that such a chain of functions can be derived using the following
identity, called the chain rule.

 Consider two functions f and g, as well as the composed function fg such that
fg(x) == f(g(x)):

Constant momentum factor

Optimization loop

56 CHAPTER 2 The mathematical building blocks of neural networks

def fg(x):
 x1 = g(x)
 y = f(x1)
 return y

Then the chain rule states that grad(y, x) == grad(y, x1) * grad(x1, x). This
enables you to compute the derivative of fg as long as you know the derivatives of f
and g. The chain rule is named as it is because when you add more intermediate func-
tions, it starts looking like a chain:

def fghj(x):
 x1 = j(x)
 x2 = h(x1)
 x3 = g(x2)
 y = f(x3)
 return y

grad(y, x) == (grad(y, x3) * grad(x3, x2) *
 grad(x2, x1) * grad(x1, x))

Applying the chain rule to the computation of the
gradient values of a neural network gives rise to an
algorithm called backpropagation. Let’s see how that
works, concretely.

AUTOMATIC DIFFERENTIATION WITH COMPUTATION GRAPHS

A useful way to think about backpropagation is in
terms of computation graphs. A computation graph is
the data structure at the heart of TensorFlow and the
deep learning revolution in general. It’s a directed
acyclic graph of operations—in our case, tensor
operations. For instance, figure 2.21 shows the graph
representation of our first model.

 Computation graphs have been an extremely
successful abstraction in computer science because
they enable us to treat computation as data : a comput-
able expression is encoded as a machine-readable
data structure that can be used as the input or out-
put of another program. For instance, you could
imagine a program that receives a computation
graph and returns a new computation graph that
implements a large-scale distributed version of the
same computation—this would mean that you could
distribute any computation without having to write
the distribution logic yourself. Or imagine a pro-
gram that receives a computation graph and can

dot

+

x

W1

b1

loss_val

relu

dot

+

W2

b2

softmax

lossy_true

Figure 2.21 The computation
graph representation of our
two-layer model

57The engine of neural networks: Gradient-based optimization

automatically generate the derivative of the expression it represents. It’s much easier
to do these things if your computation is expressed as an explicit graph data structure
rather than, say, lines of ASCII characters in a .py file.

 To explain backpropagation clearly, let’s look at a really basic example of a com-
putation graph (see figure 2.22). We’ll consider a simplified version of figure 2.21,
where we only have one linear layer and where all variables are scalar. We’ll take two
scalar variables w and b, a scalar input x, and apply some operations to them to com-
bine them into an output y. Finally, we’ll apply an absolute value error-loss function:
loss_val = abs(y_true - y). Since we want to update w and b in a way that will min-
imize loss_val, we are interested in computing grad(loss_val, b) and grad(loss
_val, w).

Let’s set concrete values for the “input nodes” in the graph, that is to say, the input
x, the target y_true, w, and b. We’ll propagate these values to all nodes in the
graph, from top to bottom, until we reach loss_val. This is the forward pass (see
figure 2.23).

 Now let’s “reverse” the graph: for each edge in the graph going from A to B, we will
create an opposite edge from B to A, and ask, how much does B vary when A varies?
That is to say, what is grad(B, A)? We’ll annotate each inverted edge with this value.
This backward graph represents the backward pass (see figure 2.24).

*

+

loss

loss_val

x1

x2

x

b

w

y_true

Figure 2.22 A basic example
of a computation graph

58 CHAPTER 2 The mathematical building blocks of neural networks

*

+

loss

loss_val = 3

2

x1 = 6

x2 = 7

x

b

1

w
3

4

y_true

Figure 2.23 Running a forward pass

*

+

loss

loss_val

2

x1

x2 grad(loss_val, x2) = 1

grad(x2, x1) = 1

grad(x1, w) = 2

grad(x2, b) = 1

x

b

1

w
3

4

y_true

Figure 2.24 Running a backward pass

59The engine of neural networks: Gradient-based optimization

We have the following:

� grad(loss_val, x2) = 1, because as x2 varies by an amount epsilon, loss_val =
abs(4 - x2) varies by the same amount.

� grad(x2, x1) = 1, because as x1 varies by an amount epsilon, x2 = x1 + b = x1 +
1 varies by the same amount.

� grad(x2, b) = 1, because as b varies by an amount epsilon, x2 = x1 + b = 6 + b
varies by the same amount.

� grad(x1, w) = 2, because as w varies by an amount epsilon, x1 = x * w = 2 * w var-
ies by 2 * epsilon.

What the chain rule says about this backward graph is that you can obtain the deriva-
tive of a node with respect to another node by multiplying the derivatives for each edge
along the path linking the two nodes. For instance, grad(loss_val, w) = grad(loss_val,
x2) * grad(x2, x1) * grad(x1, w) (see figure 2.25).

By applying the chain rule to our graph, we obtain what we were looking for:

� grad(loss_val, w) = 1 * 1 * 2 = 2
� grad(loss_val, b) = 1 * 1 = 1

*

+

abs_diff

loss_val

2

x1

x2 grad(loss_val, x2) = 1

grad(x2, x1) = 1

grad(x1, w) = 2

grad(x2, b) = 1

x

b

1

w
3

4

y_true

Figure 2.25 Path from loss_val to w in the backward graph

60 CHAPTER 2 The mathematical building blocks of neural networks

NOTE If there are multiple paths linking the two nodes of interest, a and b, in
the backward graph, we would obtain grad(b, a) by summing the contribu-
tions of all the paths.

And with that, you just saw backpropagation in action! Backpropagation is simply the
application of the chain rule to a computation graph. There’s nothing more to it.
Backpropagation starts with the final loss value and works backward from the top lay-
ers to the bottom layers, computing the contribution that each parameter had in the
loss value. That’s where the name “backpropagation” comes from: we “back propa-
gate” the loss contributions of different nodes in a computation graph.

 Nowadays people implement neural networks in modern frameworks that are
capable of automatic differentiation, such as TensorFlow. Automatic differentiation is
implemented with the kind of computation graph you’ve just seen. Automatic differ-
entiation makes it possible to retrieve the gradients of arbitrary compositions of differ-
entiable tensor operations without doing any extra work besides writing down the
forward pass. When I wrote my first neural networks in C in the 2000s, I had to write
my gradients by hand. Now, thanks to modern automatic differentiation tools, you’ll
never have to implement backpropagation yourself. Consider yourself lucky!

THE GRADIENT TAPE IN TENSORFLOW

The API through which you can leverage TensorFlow’s powerful automatic differenti-
ation capabilities is the GradientTape. It’s a Python scope that will “record” the tensor
operations that run inside it, in the form of a computation graph (sometimes called a
“tape”). This graph can then be used to retrieve the gradient of any output with
respect to any variable or set of variables (instances of the tf.Variable class). A
tf.Variable is a specific kind of tensor meant to hold mutable state—for instance,
the weights of a neural network are always tf.Variable instances.

import tensorflow as tf
x = tf.Variable(0.)
with tf.GradientTape() as tape:
 y = 2 * x + 3
grad_of_y_wrt_x = tape.gradient(y, x)

The GradientTape works with tensor operations:

x = tf.Variable(tf.random.uniform((2, 2)))
with tf.GradientTape() as tape:
 y = 2 * x + 3
grad_of_y_wrt_x = tape.gradient(y, x)

Instantiate a scalar Variable
with an initial value of 0. Open a GradientTape scope.

Inside the scope, apply
some tensor operations
to our variable.

Use the tape to retrieve the
gradient of the output y with
respect to our variable x.

Instantiate a Variable with shape
(2, 2) and an initial value of all zeros.

grad_of_y_wrt_x is a tensor of shape (2, 2)
(like x) describing the curvature of y = 2 * a
+ 3 around x = [[0, 0], [0, 0]].

61Looking back at our first example

It also works with lists of variables:

W = tf.Variable(tf.random.uniform((2, 2)))
b = tf.Variable(tf.zeros((2,)))
x = tf.random.uniform((2, 2))
with tf.GradientTape() as tape:
 y = tf.matmul(x, W) + b
grad_of_y_wrt_W_and_b = tape.gradient(y, [W, b])

You will learn about the gradient tape in the next chapter.

2.5 Looking back at our first example
You’re nearing the end of this chapter, and you should now have a general under-
standing of what’s going on behind the scenes in a neural network. What was a mag-
ical black box at the start of the chapter has turned into a clearer picture, as
illustrated in figure 2.26: the model, composed of layers that are chained together,
maps the input data to predictions. The loss function then compares these predic-
tions to the targets, producing a loss value: a measure of how well the model’s pre-
dictions match what was expected. The optimizer uses this loss value to update the
model’s weights.

Let’s go back to the first example in this chapter and review each piece of it in the
light of what you’ve learned since.

 This was the input data:

(train_images, train_labels), (test_images, test_labels) = mnist.load_data()
train_images = train_images.reshape((60000, 28 * 28))
train_images = train_images.astype("float32") / 255
test_images = test_images.reshape((10000, 28 * 28))
test_images = test_images.astype("float32") / 255

matmul is how you say
“dot product” in TensorFlow.

grad_of_y_wrt_W_and_b is a
list of two tensors with the same
shapes as W and b, respectively.

Layer

(data transformation)

Input X

Weights

Layer

(data transformation)

Predictions

Y'

Weight

update

True targets

Y

Weights

Loss functionOptimizer

Loss score

Figure 2.26 Relationship between
the network, layers, loss function,
and optimizer

62 CHAPTER 2 The mathematical building blocks of neural networks

Now you understand that the input images are stored in NumPy tensors, which are
here formatted as float32 tensors of shape (60000, 784) (training data) and (10000,
784) (test data) respectively.

 This was our model:

model = keras.Sequential([
 layers.Dense(512, activation="relu"),
 layers.Dense(10, activation="softmax")
])

Now you understand that this model consists of a chain of two Dense layers, that each
layer applies a few simple tensor operations to the input data, and that these opera-
tions involve weight tensors. Weight tensors, which are attributes of the layers, are
where the knowledge of the model persists.

 This was the model-compilation step:

model.compile(optimizer="rmsprop",
 loss="sparse_categorical_crossentropy",
 metrics=["accuracy"])

Now you understand that sparse_categorical_crossentropy is the loss function
that’s used as a feedback signal for learning the weight tensors, and which the train-
ing phase will attempt to minimize. You also know that this reduction of the loss
happens via mini-batch stochastic gradient descent. The exact rules governing a spe-
cific use of gradient descent are defined by the rmsprop optimizer passed as the first
argument.

 Finally, this was the training loop:

model.fit(train_images, train_labels, epochs=5, batch_size=128)

Now you understand what happens when you call fit: the model will start to iterate
on the training data in mini-batches of 128 samples, 5 times over (each iteration over
all the training data is called an epoch). For each batch, the model will compute the
gradient of the loss with regard to the weights (using the Backpropagation algorithm,
which derives from the chain rule in calculus) and move the weights in the direction
that will reduce the value of the loss for this batch.

 After these 5 epochs, the model will have performed 2,345 gradient updates (469
per epoch), and the loss of the model will be sufficiently low that the model will be
capable of classifying handwritten digits with high accuracy.

 At this point, you already know most of what there is to know about neural net-
works. Let’s prove it by reimplementing a simplified version of that first example
“from scratch” in TensorFlow, step by step.

63Looking back at our first example

2.5.1 Reimplementing our first example from scratch in TensorFlow

What better demonstrates full, unambiguous understanding than implementing every-
thing from scratch? Of course, what “from scratch” means here is relative: we won’t
reimplement basic tensor operations, and we won’t implement backpropagation. But
we’ll go to such a low level that we will barely use any Keras functionality at all.

 Don’t worry if you don’t understand every little detail in this example just yet. The
next chapter will dive in more detail into the TensorFlow API. For now, just try to fol-
low the gist of what’s going on—the intent of this example is to help crystalize your
understanding of the mathematics of deep learning using a concrete implementation.
Let’s go!

A SIMPLE DENSE CLASS

You’ve learned earlier that the Dense layer implements the following input transfor-
mation, where W and b are model parameters, and activation is an element-wise
function (usually relu, but it would be softmax for the last layer):

output = activation(dot(W, input) + b)

Let’s implement a simple Python class, NaiveDense, that creates two TensorFlow
variables, W and b, and exposes a __call__() method that applies the preceding
transformation.

import tensorflow as tf

class NaiveDense:
 def __init__(self, input_size, output_size, activation):
 self.activation = activation

 w_shape = (input_size, output_size)
 w_initial_value = tf.random.uniform(w_shape, minval=0, maxval=1e-1)
 self.W = tf.Variable(w_initial_value)

 b_shape = (output_size,
 b_initial_value = tf.zeros(b_shape)
 self.b = tf.Variable(b_initial_value)

 def __call__(self, inputs)::
 return self.activation(tf.matmul(inputs, self.W) + self.b)

 @property
 def weights(self):
 return [self.W, self.b]

A SIMPLE SEQUENTIAL CLASS

Now, let’s create a NaiveSequential class to chain these layers. It wraps a list of layers
and exposes a __call__() method that simply calls the underlying layers on the
inputs, in order. It also features a weights property to easily keep track of the layers’
parameters.

Create a matrix,
W, of shape
(input_size,
output_size),
initialized with
random values.

Create a vector, b, of shape
(output_size,), initialized with zeros.

Apply the forward pass.

Convenience method for
retrieving the layer’s weights

64 CHAPTER 2 The mathematical building blocks of neural networks

class NaiveSequential:
 def __init__(self, layers):
 self.layers = layers

 def __call__(self, inputs):
 x = inputs
 for layer in self.layers:
 x = layer(x)
 return x

 @property
 def weights(self):
 weights = []
 for layer in self.layers:
 weights += layer.weights
 return weights

Using this NaiveDense class and this NaiveSequential class, we can create a mock
Keras model:

model = NaiveSequential([
 NaiveDense(input_size=28 * 28, output_size=512, activation=tf.nn.relu),
 NaiveDense(input_size=512, output_size=10, activation=tf.nn.softmax)
])
assert len(model.weights) == 4

A BATCH GENERATOR

Next, we need a way to iterate over the MNIST data in mini-batches. This is easy:

import math

class BatchGenerator:
 def __init__(self, images, labels, batch_size=128):
 assert len(images) == len(labels)
 self.index = 0
 self.images = images
 self.labels = labels
 self.batch_size = batch_size
 self.num_batches = math.ceil(len(images) / batch_size)

 def next(self):
 images = self.images[self.index : self.index + self.batch_size]
 labels = self.labels[self.index : self.index + self.batch_size]
 self.index += self.batch_size
 return images, labels

2.5.2 Running one training step

The most difficult part of the process is the “training step”: updating the weights of
the model after running it on one batch of data. We need to

1 Compute the predictions of the model for the images in the batch.
2 Compute the loss value for these predictions, given the actual labels.

65Looking back at our first example

3 Compute the gradient of the loss with regard to the model’s weights.
4 Move the weights by a small amount in the direction opposite to the gradient.

To compute the gradient, we will use the TensorFlow GradientTape object we intro-
duced in section 2.4.4:

def one_training_step(model, images_batch, labels_batch):
 with tf.GradientTape() as tape:

predictions = model(images_batch)
per_sample_losses = tf.keras.losses.sparse_categorical_crossentropy(

labels_batch, predictions)
average_loss = tf.reduce_mean(per_sample_losses)

gradients = tape.gradient(average_loss, model.weights)
update_weights(gradients, model.weights)

 return average_loss

As you already know, the purpose of the “weight update” step (represented by the pre-
ceding update_weights function) is to move the weights by “a bit” in a direction that
will reduce the loss on this batch. The magnitude of the move is determined by the
“learning rate,” typically a small quantity. The simplest way to implement this
update_weights function is to subtract gradient * learning_rate from each weight:

learning_rate = 1e-3

def update_weights(gradients, weights):
 for g, w in zip(gradients, weights):
 w.assign_sub(g * learning_rate)

In practice, you would almost never implement a weight update step like this by hand.
Instead, you would use an Optimizer instance from Keras, like this:

from tensorflow.keras import optimizers

optimizer = optimizers.SGD(learning_rate=1e-3)

def update_weights(gradients, weights):
 optimizer.apply_gradients(zip(gradients, weights))

Now that our per-batch training step is ready, we can move on to implementing an
entire epoch of training.

2.5.3 The full training loop

An epoch of training simply consists of repeating the training step for each batch in
the training data, and the full training loop is simply the repetition of one epoch:

def fit(model, images, labels, epochs, batch_size=128):
 for epoch_counter in range(epochs):
 print(f"Epoch {epoch_counter}")

Run the “forward
pass” (compute

the model’s
predictions under

a GradientTape
scope).

Compute the gradient of the loss with
regard to the weights. The output gradients

is a list where each entry corresponds to
a weight from the model.weights list.

Update the weights using the gradients
(we will define this function shortly).

assign_sub is the
equivalent of -= for
TensorFlow variables.

66 CHAPTER 2 The mathematical building blocks of neural networks

 batch_generator = BatchGenerator(images, labels)
 for batch_counter in range(batch_generator.num_batches):
 images_batch, labels_batch = batch_generator.next()
 loss = one_training_step(model, images_batch, labels_batch)
 if batch_counter % 100 == 0:
 print(f"loss at batch {batch_counter}: {loss:.2f}")

Let’s test drive it:

from tensorflow.keras.datasets import mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

train_images = train_images.reshape((60000, 28 * 28))
train_images = train_images.astype("float32") / 255
test_images = test_images.reshape((10000, 28 * 28))
test_images = test_images.astype("float32") / 255

fit(model, train_images, train_labels, epochs=10, batch_size=128)

2.5.4 Evaluating the model

We can evaluate the model by taking the argmax of its predictions over the test images,
and comparing it to the expected labels:

predictions = model(test_images)
predictions = predictions.numpy()
predicted_labels = np.argmax(predictions, axis=1)
matches = predicted_labels == test_labels
print(f"accuracy: {matches.mean():.2f}")

All done! As you can see, it’s quite a bit of work to do “by hand” what you can do in a
few lines of Keras code. But because you’ve gone through these steps, you should now
have a crystal clear understanding of what goes on inside a neural network when you
call fit(). Having this low-level mental model of what your code is doing behind the
scenes will make you better able to leverage the high-level features of the Keras API.

Summary
� Tensors form the foundation of modern machine learning systems. They come

in various flavors of dtype, rank, and shape.
� You can manipulate numerical tensors via tensor operations (such as addition,

tensor product, or element-wise multiplication), which can be interpreted as
encoding geometric transformations. In general, everything in deep learning is
amenable to a geometric interpretation.

� Deep learning models consist of chains of simple tensor operations, parameter-
ized by weights, which are themselves tensors. The weights of a model are where
its “knowledge” is stored.

� Learning means finding a set of values for the model’s weights that minimizes a loss
function for a given set of training data samples and their corresponding targets.

Calling .numpy() on a
TensorFlow tensor converts
it to a NumPy tensor.

67Summary

� Learning happens by drawing random batches of data samples and their tar-
gets, and computing the gradient of the model parameters with respect to the
loss on the batch. The model parameters are then moved a bit (the magnitude
of the move is defined by the learning rate) in the opposite direction from the
gradient. This is called mini-batch stochastic gradient descent.

� The entire learning process is made possible by the fact that all tensor operations
in neural networks are differentiable, and thus it’s possible to apply the chain rule
of derivation to find the gradient function mapping the current parameters and
current batch of data to a gradient value. This is called backpropagation.

� Two key concepts you’ll see frequently in future chapters are loss and optimizers.
These are the two things you need to define before you begin feeding data into
a model.
– The loss is the quantity you’ll attempt to minimize during training, so it

should represent a measure of success for the task you’re trying to solve.
– The optimizer specifies the exact way in which the gradient of the loss will be

used to update parameters: for instance, it could be the RMSProp optimizer,
SGD with momentum, and so on.

68

Introduction to Keras
and TensorFlow

This chapter is meant to give you everything you need to start doing deep learning
in practice. I’ll give you a quick presentation of Keras (https://keras.io) and Tensor-
Flow (https://tensorflow.org), the Python-based deep learning tools that we’ll use
throughout the book. You’ll find out how to set up a deep learning workspace, with
TensorFlow, Keras, and GPU support. Finally, building on top of the first contact
you had with Keras and TensorFlow in chapter 2, we’ll review the core components
of neural networks and how they translate to the Keras and TensorFlow APIs.

 By the end of this chapter, you’ll be ready to move on to practical, real-world
applications, which will start with chapter 4.

This chapter covers
� A closer look at TensorFlow, Keras, and their

relationship
� Setting up a deep learning workspace
� An overview of how core deep learning concepts

translate to Keras and TensorFlow

69What’s Keras?

3.1 What’s TensorFlow?
TensorFlow is a Python-based, free, open source machine learning platform, devel-
oped primarily by Google. Much like NumPy, the primary purpose of TensorFlow is to
enable engineers and researchers to manipulate mathematical expressions over
numerical tensors. But TensorFlow goes far beyond the scope of NumPy in the follow-
ing ways:

� It can automatically compute the gradient of any differentiable expression (as
you saw in chapter 2), making it highly suitable for machine learning.

� It can run not only on CPUs, but also on GPUs and TPUs, highly parallel hard-
ware accelerators.

� Computation defined in TensorFlow can be easily distributed across many
machines.

� TensorFlow programs can be exported to other runtimes, such as C++, Java-
Script (for browser-based applications), or TensorFlow Lite (for applications
running on mobile devices or embedded devices), etc. This makes TensorFlow
applications easy to deploy in practical settings.

It’s important to keep in mind that TensorFlow is much more than a single library. It’s
really a platform, home to a vast ecosystem of components, some developed by Google
and some developed by third parties. For instance, there’s TF-Agents for reinforce-
ment-learning research, TFX for industry-strength machine learning workflow man-
agement, TensorFlow Serving for production deployment, and there’s the TensorFlow
Hub repository of pretrained models. Together, these components cover a very wide
range of use cases, from cutting-edge research to large-scale production applications.

 TensorFlow scales fairly well: for instance, scientists from Oak Ridge National Lab
have used it to train a 1.1 exaFLOPS extreme weather forecasting model on the
27,000 GPUs of the IBM Summit supercomputer. Likewise, Google has used Tensor-
Flow to develop very compute-intensive deep learning applications, such as the chess-
playing and Go-playing agent AlphaZero. For your own models, if you have the bud-
get, you can realistically hope to scale to around 10 petaFLOPS on a small TPU pod or
a large cluster of GPUs rented on Google Cloud or AWS. That would still be around
1% of the peak compute power of the top supercomputer in 2019!

3.2 What’s Keras?
Keras is a deep learning API for Python, built on top of TensorFlow, that provides a con-
venient way to define and train any kind of deep learning model. Keras was initially
developed for research, with the aim of enabling fast deep learning experimentation.

 Through TensorFlow, Keras can run on top of different types of hardware (see fig-
ure 3.1)—GPU, TPU, or plain CPU—and can be seamlessly scaled to thousands of
machines.

 Keras is known for prioritizing the developer experience. It’s an API for human
beings, not machines. It follows best practices for reducing cognitive load: it offers

70 CHAPTER 3 Introduction to Keras and TensorFlow

consistent and simple workflows, it minimizes the number of actions required for com-
mon use cases, and it provides clear and actionable feedback upon user error. This
makes Keras easy to learn for a beginner, and highly productive to use for an expert.

 Keras has well over a million users as of late 2021, ranging from academic research-
ers, engineers, and data scientists at both startups and large companies to graduate
students and hobbyists. Keras is used at Google, Netflix, Uber, CERN, NASA, Yelp,
Instacart, Square, and hundreds of startups working on a wide range of problems
across every industry. Your YouTube recommendations originate from Keras models.
The Waymo self-driving cars are developed with Keras models. Keras is also a popular
framework on Kaggle, the machine learning competition website, where most deep
learning competitions have been won using Keras.

 Because Keras has a large and diverse user base, it doesn’t force you to follow a sin-
gle “true” way of building and training models. Rather, it enables a wide range of dif-
ferent workflows, from the very high level to the very low level, corresponding to
different user profiles. For instance, you have an array of ways to build models and an
array of ways to train them, each representing a certain trade-off between usability and
flexibility. In chapter 5, we’ll review in detail a good fraction of this spectrum of work-
flows. You could be using Keras like you would use Scikit-learn—just calling fit() and
letting the framework do its thing—or you could be using it like NumPy—taking full
control of every little detail.

 This means that everything you’re learning now as you’re getting started will still
be relevant once you’ve become an expert. You can get started easily and then gradu-
ally dive into workflows where you’re writing more and more logic from scratch. You
won’t have to switch to an entirely different framework as you go from student to
researcher, or from data scientist to deep learning engineer.

 This philosophy is not unlike that of Python itself! Some languages only offer one
way to write programs—for instance, object-oriented programming or functional pro-
gramming. Meanwhile, Python is a multiparadigm language: it offers an array of possi-
ble usage patterns that all work nicely together. This makes Python suitable to a wide
range of very different use cases: system administration, data science, machine learning

CPU GPU TPU

TensorFlow

Keras
Deep learning development:
layers, models, optimizers, losses,
metrics...

Tensor manipulation infrastructure:
tensors, variables, automatic
differentiation, distribution...

Hardware: execution

Figure 3.1 Keras and TensorFlow: TensorFlow is a low-level tensor computing
platform, and Keras is a high-level deep learning API

71Setting up a deep learning workspace

engineering, web development . . . or just learning how to program. Likewise, you can
think of Keras as the Python of deep learning: a user-friendly deep learning language
that offers a variety of workflows to different user profiles.

3.3 Keras and TensorFlow: A brief history
Keras predates TensorFlow by eight months. It was released in March 2015, and
TensorFlow was released in November 2015. You may ask, if Keras is built on top
of TensorFlow, how it could exist before TensorFlow was released? Keras was originally
built on top of Theano, another tensor-manipulation library that provided automatic
differentiation and GPU support—the earliest of its kind. Theano, developed at the
Montréal Institute for Learning Algorithms (MILA) at the Université de Montréal,
was in many ways a precursor of TensorFlow. It pioneered the idea of using static com-
putation graphs for automatic differentiation and for compiling code to both CPU
and GPU.

 In late 2015, after the release of TensorFlow, Keras was refactored to a multiback-
end architecture: it became possible to use Keras with either Theano or TensorFlow,
and switching between the two was as easy as changing an environment variable. By
September 2016, TensorFlow had reached a level of technical maturity where it became
possible to make it the default backend option for Keras. In 2017, two new addi-
tional backend options were added to Keras: CNTK (developed by Microsoft) and
MXNet (developed by Amazon). Nowadays, both Theano and CNTK are out of devel-
opment, and MXNet is not widely used outside of Amazon. Keras is back to being a
single-backend API—on top of TensorFlow.

 Keras and TensorFlow have had a symbiotic relationship for many years. Through-
out 2016 and 2017, Keras became well known as the user-friendly way to develop Ten-
sorFlow applications, funneling new users into the TensorFlow ecosystem. By late
2017, a majority of TensorFlow users were using it through Keras or in combination
with Keras. In 2018, the TensorFlow leadership picked Keras as TensorFlow’s official
high-level API. As a result, the Keras API is front and center in TensorFlow 2.0,
released in September 2019—an extensive redesign of TensorFlow and Keras that
takes into account over four years of user feedback and technical progress.

 By this point, you must be eager to start running Keras and TensorFlow code in
practice. Let’s get you started.

3.4 Setting up a deep learning workspace
Before you can get started developing deep learning applications, you need to set up
your development environment. It’s highly recommended, although not strictly nec-
essary, that you run deep learning code on a modern NVIDIA GPU rather than your
computer’s CPU. Some applications—in particular, image processing with convolu-
tional networks—will be excruciatingly slow on CPU, even a fast multicore CPU. And
even for applications that can realistically be run on CPU, you’ll generally see the
speed increase by a factor of 5 or 10 by using a recent GPU.

72 CHAPTER 3 Introduction to Keras and TensorFlow

 To do deep learning on a GPU, you have three options:

� Buy and install a physical NVIDIA GPU on your workstation.
� Use GPU instances on Google Cloud or AWS EC2.
� Use the free GPU runtime from Colaboratory, a hosted notebook service

offered by Google (for details about what a “notebook” is, see the next section).

Colaboratory is the easiest way to get started, as it requires no hardware purchase and
no software installation—just open a tab in your browser and start coding. It’s the
option we recommend for running the code examples in this book. However, the free
version of Colaboratory is only suitable for small workloads. If you want to scale up,
you’ll have to use the first or second option.

 If you don’t already have a GPU that you can use for deep learning (a recent, high-
end NVIDIA GPU), then running deep learning experiments in the cloud is a simple,
low-cost way for you to move to larger workloads without having to buy any additional
hardware. If you’re developing using Jupyter notebooks, the experience of running in
the cloud is no different from running locally.

 But if you’re a heavy user of deep learning, this setup isn’t sustainable in the long
term—or even for more than a few months. Cloud instances aren’t cheap: you’d pay
$2.48 per hour for a V100 GPU on Google Cloud in mid-2021. Meanwhile, a solid
consumer-class GPU will cost you somewhere between $1,500 and $2,500—a price
that has been fairly stable over time, even as the specs of these GPUs keep improving.
If you’re a heavy user of deep learning, consider setting up a local workstation with
one or more GPUs.

 Additionally, whether you’re running locally or in the cloud, it’s better to be using
a Unix workstation. Although it’s technically possible to run Keras on Windows
directly, we don’t recommend it. If you’re a Windows user and you want to do deep
learning on your own workstation, the simplest solution to get everything running is
to set up an Ubuntu dual boot on your machine, or to leverage Windows Subsystem
for Linux (WSL), a compatibility layer that enables you to run Linux applications
from Windows. It may seem like a hassle, but it will save you a lot of time and trouble
in the long run.

3.4.1 Jupyter notebooks: The preferred way to run deep learning
experiments

Jupyter notebooks are a great way to run deep learning experiments—in particular,
the many code examples in this book. They’re widely used in the data science and
machine learning communities. A notebook is a file generated by the Jupyter Notebook
app (https://jupyter.org) that you can edit in your browser. It mixes the ability to exe-
cute Python code with rich text-editing capabilities for annotating what you’re doing. A
notebook also allows you to break up long experiments into smaller pieces that can be
executed independently, which makes development interactive and means you don’t
have to rerun all of your previous code if something goes wrong late in an experiment.

73Setting up a deep learning workspace

 I recommend using Jupyter notebooks to get started with Keras, although that isn’t
a requirement: you can also run standalone Python scripts or run code from within an
IDE such as PyCharm. All the code examples in this book are available as open source
notebooks; you can download them from GitHub at github.com/fchollet/deep-
learning-with-python-notebooks.

3.4.2 Using Colaboratory

Colaboratory (or Colab for short) is a free Jupyter notebook service that requires no
installation and runs entirely in the cloud. Effectively, it’s a web page that lets you
write and execute Keras scripts right away. It gives you access to a free (but limited)
GPU runtime and even a TPU runtime, so you don’t have to buy your own GPU.
Colaboratory is what we recommend for running the code examples in this book.

FIRST STEPS WITH COLABORATORY

To get started with Colab, go to https://colab.research.google.com and click the New
Notebook button. You’ll see the standard Notebook interface shown in figure 3.2.

You’ll notice two buttons in the toolbar: + Code and + Text. They’re for creating exe-
cutable Python code cells and annotation text cells, respectively. After entering code
in a code cell, Pressing Shift-Enter will execute it (see figure 3.3).

 In a text cell, you can use Markdown syntax (see figure 3.4). Pressing Shift-Enter
on a text cell will render it.

 Text cells are useful for giving a readable structure to your notebooks: use them to
annotate your code with section titles and long explanation paragraphs or to embed
figures. Notebooks are meant to be a multimedia experience!

Figure 3.2 A Colab notebook

74 CHAPTER 3 Introduction to Keras and TensorFlow

INSTALLING PACKAGES WITH PIP

The default Colab environment already comes with TensorFlow and Keras installed,
so you can start using it right away without any installation steps required. But if you
ever need to install something with pip, you can do so by using the following syntax in
a code cell (note that the line starts with ! to indicate that it is a shell command rather
than Python code):

!pip install package_name

Figure 3.3 Creating a code cell

Figure 3.4 Creating a text cell

75First steps with TensorFlow

USING THE GPU RUNTIME

To use the GPU runtime with Colab, select Runtime > Change Runtime Type in the
menu and select GPU for the Hardware Accelerator (see figure 3.5).

TensorFlow and Keras will automatically execute on GPU if a GPU is available, so
there’s nothing more you need to do after you’ve selected the GPU runtime.

 You’ll notice that there’s also a TPU runtime option in that Hardware Accelerator
dropdown menu. Unlike the GPU runtime, using the TPU runtime with TensorFlow
and Keras does require a bit of manual setup in your code. We’ll cover this in chap-
ter 13. For the time being, we recommend that you stick to the GPU runtime to follow
along with the code examples in the book.

 You now have a way to start running Keras code in practice. Next, let’s see how the
key ideas you learned about in chapter 2 translate to Keras and TensorFlow code.

3.5 First steps with TensorFlow
As you saw in the previous chapters, training a neural network revolves around the fol-
lowing concepts:

� First, low-level tensor manipulation—the infrastructure that underlies all mod-
ern machine learning. This translates to TensorFlow APIs:
– Tensors, including special tensors that store the network’s state (variables)
– Tensor operations such as addition, relu, matmul

Figure 3.5 Using the GPU runtime with Colab

76 CHAPTER 3 Introduction to Keras and TensorFlow

– Backpropagation, a way to compute the gradient of mathematical expressions
(handled in TensorFlow via the GradientTape object)

� Second, high-level deep learning concepts. This translates to Keras APIs:
– Layers, which are combined into a model
– A loss function, which defines the feedback signal used for learning
– An optimizer, which determines how learning proceeds
– Metrics to evaluate model performance, such as accuracy
– A training loop that performs mini-batch stochastic gradient descent

In the previous chapter, you already had a first light contact with some of the corre-
sponding TensorFlow and Keras APIs: you’ve briefly used TensorFlow’s Variable class,
the matmul operation, and the GradientTape. You’ve instantiated Keras Dense layers,
packed them into a Sequential model, and trained that model with the fit()
method.

 Now let’s take a deeper dive into how all of these different concepts can be
approached in practice using TensorFlow and Keras.

3.5.1 Constant tensors and variables

To do anything in TensorFlow, we’re going to need some tensors. Tensors need to be
created with some initial value. For instance, you could create all-ones or all-zeros ten-
sors (see listing 3.1), or tensors of values drawn from a random distribution (see list-
ing 3.2).

>>> import tensorflow as tf
>>> x = tf.ones(shape=(2, 1))
>>> print(x)
tf.Tensor(
[[1.]
 [1.]], shape=(2, 1), dtype=float32)
>>> x = tf.zeros(shape=(2, 1))
>>> print(x)
tf.Tensor(
[[0.]
 [0.]], shape=(2, 1), dtype=float32)

>>> x = tf.random.normal(shape=(3, 1), mean=0., stddev=1.)
>>> print(x)
tf.Tensor(
[[-0.14208166]
 [-0.95319825]
 [1.1096532]], shape=(3, 1), dtype=float32)
>>> x = tf.random.uniform(shape=(3, 1), minval=0., maxval=1.)
>>> print(x)
tf.Tensor(

Listing 3.1 All-ones or all-zeros tensors

Listing 3.2 Random tensors

Equivalent to
np.ones(shape=(2, 1))

Equivalent to
np.zeros(shape=(2, 1))

Tensor of random values drawn from a normal distribution
with mean 0 and standard deviation 1. Equivalent to

np.random.normal(size=(3, 1), loc=0., scale=1.).

Tensor of random values drawn from a uniform distribution between 0
and 1. Equivalent to np.random.uniform(size=(3, 1), low=0., high=1.).

77First steps with TensorFlow

[[0.33779848]
 [0.06692922]
 [0.7749394]], shape=(3, 1), dtype=float32)

A significant difference between NumPy arrays and TensorFlow tensors is that Tensor-
Flow tensors aren’t assignable: they’re constant. For instance, in NumPy, you can do
the following.

import numpy as np
x = np.ones(shape=(2, 2))
x[0, 0] = 0.

Try to do the same thing in TensorFlow, and you will get an error: “EagerTensor object
does not support item assignment.”

x = tf.ones(shape=(2, 2))
x[0, 0] = 0.

To train a model, we’ll need to update its state, which is a set of tensors. If tensors
aren’t assignable, how do we do it? That’s where variables come in. tf.Variable is the
class meant to manage modifiable state in TensorFlow. You’ve already briefly seen it in
action in the training loop implementation at the end of chapter 2.

 To create a variable, you need to provide some initial value, such as a random tensor.

>>> v = tf.Variable(initial_value=tf.random.normal(shape=(3, 1)))
>>> print(v)
array([[-0.75133973],
 [-0.4872893],
 [1.6626885]], dtype=float32)>

The state of a variable can be modified via its assign method, as follows.

>>> v.assign(tf.ones((3, 1)))
array([[1.],
 [1.],
 [1.]], dtype=float32)>

It also works for a subset of the coefficients.

Listing 3.3 NumPy arrays are assignable

Listing 3.4 TensorFlow tensors are not assignable

Listing 3.5 Creating a TensorFlow variable

Listing 3.6 Assigning a value to a TensorFlow variable

This will fail, as a
tensor isn’t assignable.

78 CHAPTER 3 Introduction to Keras and TensorFlow

>>> v[0, 0].assign(3.)
array([[3.],
 [1.],
 [1.]], dtype=float32)>

Similarly, assign_add() and assign_sub() are efficient equivalents of += and -=, as
shown next.

>>> v.assign_add(tf.ones((3, 1)))
array([[2.],
 [2.],
 [2.]], dtype=float32)>

3.5.2 Tensor operations: Doing math in TensorFlow

Just like NumPy, TensorFlow offers a large collection of tensor operations to express
mathematical formulas. Here are a few examples.

a = tf.ones((2, 2))
b = tf.square(a)
c = tf.sqrt(a)
d = b + c
e = tf.matmul(a, b)
e *= d

Importantly, each of the preceding operations gets executed on the fly: at any point,
you can print what the current result is, just like in NumPy. We call this eager execution.

3.5.3 A second look at the GradientTape API

So far, TensorFlow seems to look a lot like NumPy. But here’s something NumPy can’t
do: retrieve the gradient of any differentiable expression with respect to any of its
inputs. Just open a GradientTape scope, apply some computation to one or several
input tensors, and retrieve the gradient of the result with respect to the inputs.

input_var = tf.Variable(initial_value=3.)
with tf.GradientTape() as tape:
 result = tf.square(input_var)
gradient = tape.gradient(result, input_var)

Listing 3.7 Assigning a value to a subset of a TensorFlow variable

Listing 3.8 Using assign_add()

Listing 3.9 A few basic math operations

Listing 3.10 Using the GradientTape

Take the square.

Take the square root.

Add two tensors (element-wise).

Take the product of two tensors
(as discussed in chapter 2).Multiply two tensors

(element-wise).

79First steps with TensorFlow

This is most commonly used to retrieve the gradients of the loss of a model with
respect to its weights: gradients = tape.gradient(loss, weights). You saw this in
action in chapter 2.

 So far, you’ve only seen the case where the input tensors in tape.gradient() were
TensorFlow variables. It’s actually possible for these inputs to be any arbitrary tensor.
However, only trainable variables are tracked by default. With a constant tensor, you’d
have to manually mark it as being tracked by calling tape.watch() on it.

input_const = tf.constant(3.)
with tf.GradientTape() as tape:
 tape.watch(input_const)
 result = tf.square(input_const)
gradient = tape.gradient(result, input_const)

Why is this necessary? Because it would be too expensive to preemptively store the
information required to compute the gradient of anything with respect to anything.
To avoid wasting resources, the tape needs to know what to watch. Trainable variables
are watched by default because computing the gradient of a loss with regard to a list of
trainable variables is the most common use of the gradient tape.

 The gradient tape is a powerful utility, even capable of computing second-order gra-
dients, that is to say, the gradient of a gradient. For instance, the gradient of the posi-
tion of an object with regard to time is the speed of that object, and the second-order
gradient is its acceleration.

 If you measure the position of a falling apple along a vertical axis over time and
find that it verifies position(time) = 4.9 * time ** 2, what is its acceleration? Let’s
use two nested gradient tapes to find out.

time = tf.Variable(0.)
with tf.GradientTape() as outer_tape:
 with tf.GradientTape() as inner_tape:
 position = 4.9 * time ** 2
 speed = inner_tape.gradient(position, time)
acceleration = outer_tape.gradient(speed, time)

3.5.4 An end-to-end example: A linear classifier in pure TensorFlow

You know about tensors, variables, and tensor operations, and you know how to com-
pute gradients. That’s enough to build any machine learning model based on gradi-
ent descent. And you’re only at chapter 3!

 In a machine learning job interview, you may be asked to implement a linear classi-
fier from scratch in TensorFlow: a very simple task that serves as a filter between candi-
dates who have some minimal machine learning background and those who don’t.

Listing 3.11 Using GradientTape with constant tensor inputs

Listing 3.12 Using nested gradient tapes to compute second-order gradients

We use the outer tape to
compute the gradient of
the gradient from the inner
tape. Naturally, the answer
is 4.9 * 2 = 9.8.

80 CHAPTER 3 Introduction to Keras and TensorFlow

Let’s get you past that filter and use your newfound knowledge of TensorFlow to
implement such a linear classifier.

 First, let’s come up with some nicely linearly separable synthetic data to work with:
two classes of points in a 2D plane. We’ll generate each class of points by drawing their
coordinates from a random distribution with a specific covariance matrix and a spe-
cific mean. Intuitively, the covariance matrix describes the shape of the point cloud,
and the mean describes its position in the plane (see figure 3.6). We’ll reuse the same
covariance matrix for both point clouds, but we’ll use two different mean values—the
point clouds will have the same shape, but different positions.

num_samples_per_class = 1000
negative_samples = np.random.multivariate_normal(
 mean=[0, 3],
 cov=[[1, 0.5],[0.5, 1]],
 size=num_samples_per_class)
positive_samples = np.random.multivariate_normal(
 mean=[3, 0],
 cov=[[1, 0.5],[0.5, 1]],
 size=num_samples_per_class)

In the preceding code, negative_samples and positive_samples are both arrays
with shape (1000, 2). Let’s stack them into a single array with shape (2000, 2).

inputs = np.vstack((negative_samples, positive_samples)).astype(np.float32)

Let’s generate the corresponding target labels, an array of zeros and ones of shape
(2000, 1), where targets[i, 0] is 0 if inputs[i] belongs to class 0 (and inversely).

targets = np.vstack((np.zeros((num_samples_per_class, 1), dtype="float32"),
 np.ones((num_samples_per_class, 1), dtype="float32")))

Next, let’s plot our data with Matplotlib.

import matplotlib.pyplot as plt
plt.scatter(inputs[:, 0], inputs[:, 1], c=targets[:, 0])
plt.show()

Listing 3.13 Generating two classes of random points in a 2D plane

Listing 3.14 Stacking the two classes into an array with shape (2000, 2)

Listing 3.15 Generating the corresponding targets (0 and 1)

Listing 3.16 Plotting the two point classes (see figure 3.6)

Generate the first class of points:
1000 random 2D points. cov=[[1,
0.5],[0.5, 1]] corresponds to an
oval-like point cloud oriented
from bottom left to top right.

Generate the other class of
points with a different mean and
the same covariance matrix.

81First steps with TensorFlow

Now let’s create a linear classifier that can learn to separate these two blobs. A linear
classifier is an affine transformation (prediction = W • input + b) trained to minimize
the square of the difference between predictions and the targets.

 As you’ll see, it’s actually a much simpler example than the end-to-end example of
a toy two-layer neural network you saw at the end of chapter 2. However, this time you
should be able to understand everything about the code, line by line.

 Let’s create our variables, W and b, initialized with random values and with zeros,
respectively.

input_dim = 2
output_dim = 1
W = tf.Variable(initial_value=tf.random.uniform(shape=(input_dim, output_dim)))
b = tf.Variable(initial_value=tf.zeros(shape=(output_dim,)))

Here’s our forward pass function.

def model(inputs):
 return tf.matmul(inputs, W) + b

Because our linear classifier operates on 2D inputs, W is really just two scalar coeffi-
cients, w1 and w2: W = [[w1], [w2]]. Meanwhile, b is a single scalar coefficient. As such,
for a given input point [x, y], its prediction value is prediction = [[w1], [w2]] • [x,
y] + b = w1 * x + w2 * y + b.

The following listing shows our loss function.

Listing 3.17 Creating the linear classifier variables

Listing 3.18 The forward pass function

Figure 3.6 Our synthetic
data: two classes of random
points in the 2D plane

The inputs will
be 2D points.

The output predictions will be a single score per
sample (close to 0 if the sample is predicted to
be in class 0, and close to 1 if the sample is
predicted to be in class 1).

82 CHAPTER 3 Introduction to Keras and TensorFlow

def square_loss(targets, predictions):
 per_sample_losses = tf.square(targets - predictions)
 return tf.reduce_mean(per_sample_losses)

Next is the training step, which receives some training data and updates the weights W
and b so as to minimize the loss on the data.

learning_rate = 0.1

def training_step(inputs, targets):
 with tf.GradientTape() as tape:
 predictions = model(inputs)
 loss = square_loss(predictions, targets)
 grad_loss_wrt_W, grad_loss_wrt_b = tape.gradient(loss, [W, b])
 W.assign_sub(grad_loss_wrt_W * learning_rate)
 b.assign_sub(grad_loss_wrt_b * learning_rate)
 return loss

For simplicity, we’ll do batch training instead of mini-batch training: we’ll run each training
step (gradient computation and weight update) for all the data, rather than iterate over
the data in small batches. On one hand, this means that each training step will take
much longer to run, since we’ll compute the forward pass and the gradients for 2,000
samples at once. On the other hand, each gradient update will be much more effective
at reducing the loss on the training data, since it will encompass information from all
training samples instead of, say, only 128 random samples. As a result, we will need many
fewer steps of training, and we should use a larger learning rate than we would typically
use for mini-batch training (we’ll use learning_rate = 0.1, defined in listing 3.20).

for step in range(40):
 loss = training_step(inputs, targets)
 print(f"Loss at step {step}: {loss:.4f}")

After 40 steps, the training loss seems to have stabilized around 0.025. Let’s plot how
our linear model classifies the training data points. Because our targets are zeros and
ones, a given input point will be classified as “0” if its prediction value is below 0.5, and
as “1” if it is above 0.5 (see figure 3.7):

predictions = model(inputs)
plt.scatter(inputs[:, 0], inputs[:, 1], c=predictions[:, 0] > 0.5)
plt.show()

Listing 3.19 The mean squared error loss function

Listing 3.20 The training step function

Listing 3.21 The batch training loop

per_sample_losses will be a tensor with the same shape as
targets and predictions, containing per-sample loss scores.

We need to average these per-sample loss scores into a
single scalar loss value: this is what reduce_mean does.

Forward pass, inside a
gradient tape scope

Retrieve the gradient
of the loss with regard

to weights.

Update the weights.

83First steps with TensorFlow

Recall that the prediction value for a given point [x, y] is simply prediction ==
[[w1], [w2]] • [x, y] + b == w1 * x + w2 * y + b. Thus, class 0 is defined as w1 * x + w2
* y + b < 0.5, and class 1 is defined as w1 * x + w2 * y + b > 0.5. You’ll notice that what
you’re looking at is really the equation of a line in the 2D plane: w1 * x + w2 * y + b = 0.5.
Above the line is class 1, and below the line is class 0. You may be used to seeing line
equations in the format y = a * x + b; in the same format, our line becomes y = - w1 / w2
* x + (0.5 - b) / w2.

 Let’s plot this line (shown in figure 3.8):

x = np.linspace(-1, 4, 100)
y = - W[0] / W[1] * x + (0.5 - b) / W[1]
plt.plot(x, y, "-r")
plt.scatter(inputs[:, 0], inputs[:, 1], c=predictions[:, 0] > 0.5)

Figure 3.7 Our model’s
predictions on the training
inputs: pretty similar to the
training targets

Generate 100 regularly spaced
numbers between –1 and 4, which

we will use to plot our line.

This is our line’s
equation.

Plot our line ("-r"
means “plot it as
a red line”).

Plot our model’s predictions on the same plot.

Figure 3.8 Our model,
visualized as a line

84 CHAPTER 3 Introduction to Keras and TensorFlow

This is really what a linear classifier is all about: finding the parameters of a line (or, in
higher-dimensional spaces, a hyperplane) neatly separating two classes of data.

3.6 Anatomy of a neural network: Understanding core
Keras APIs
At this point, you know the basics of TensorFlow, and you can use it to implement a
toy model from scratch, such as the batch linear classifier in the previous section, or
the toy neural network at the end of chapter 2. That’s a solid foundation to build
upon. It’s now time to move on to a more productive, more robust path to deep learn-
ing: the Keras API.

3.6.1 Layers: The building blocks of deep learning

The fundamental data structure in neural networks is the layer, to which you were
introduced in chapter 2. A layer is a data processing module that takes as input one or
more tensors and that outputs one or more tensors. Some layers are stateless, but
more frequently layers have a state: the layer’s weights, one or several tensors learned
with stochastic gradient descent, which together contain the network’s knowledge.

 Different types of layers are appropriate for different tensor formats and different
types of data processing. For instance, simple vector data, stored in rank-2 tensors of
shape (samples, features), is often processed by densely connected layers, also called
fully connected or dense layers (the Dense class in Keras). Sequence data, stored in rank-3
tensors of shape (samples, timesteps, features), is typically processed by recurrent
layers, such as an LSTM layer, or 1D convolution layers (Conv1D). Image data, stored in
rank-4 tensors, is usually processed by 2D convolution layers (Conv2D).

 You can think of layers as the LEGO bricks of deep learning, a metaphor that is
made explicit by Keras. Building deep learning models in Keras is done by clipping
together compatible layers to form useful data-transformation pipelines.

THE BASE LAYER CLASS IN KERAS

A simple API should have a single abstraction around which everything is centered. In
Keras, that’s the Layer class. Everything in Keras is either a Layer or something that
closely interacts with a Layer.

 A Layer is an object that encapsulates some state (weights) and some computation
(a forward pass). The weights are typically defined in a build() (although they could
also be created in the constructor, __init__()), and the computation is defined in
the call() method.

 In the previous chapter, we implemented a NaiveDense class that contained two
weights W and b and applied the computation output = activation(dot(input, W) +
b). This is what the same layer would look like in Keras.

from tensorflow import keras

class SimpleDense(keras.layers.Layer):

Listing 3.22 A Dense layer implemented as a Layer subclass

All Keras layers inherit
from the base Layer class.

85Anatomy of a neural network: Understanding core Keras APIs

 def __init__(self, units, activation=None):
 super().__init__()
 self.units = units
 self.activation = activation

 def build(self, input_shape):
 input_dim = input_shape[-1]
 self.W = self.add_weight(shape=(input_dim, self.units),
 initializer="random_normal")
 self.b = self.add_weight(shape=(self.units,),
 initializer="zeros")

 def call(self, inputs):
 y = tf.matmul(inputs, self.W) + self.b
 if self.activation is not None:
 y = self.activation(y)
 return y

In the next section, we’ll cover in detail the purpose of these build() and call()
methods. Don’t worry if you don’t understand everything just yet!

 Once instantiated, a layer like this can be used just like a function, taking as input
a TensorFlow tensor:

>>> my_dense = SimpleDense(units=32, activation=tf.nn.relu)
>>> input_tensor = tf.ones(shape=(2, 784))
>>> output_tensor = my_dense(input_tensor)
>>> print(output_tensor.shape)
(2, 32))

You’re probably wondering, why did we have to implement call() and build(), since
we ended up using our layer by plainly calling it, that is to say, by using its __call__()
method? It’s because we want to be able to create the state just in time. Let’s see how
that works.

AUTOMATIC SHAPE INFERENCE: BUILDING LAYERS ON THE FLY

Just like with LEGO bricks, you can only “clip” together layers that are compatible.
The notion of layer compatibility here refers specifically to the fact that every layer will
only accept input tensors of a certain shape and will return output tensors of a certain
shape. Consider the following example:

from tensorflow.keras import layers
layer = layers.Dense(32, activation="relu")

This layer will return a tensor where the first dimension has been transformed to be
32. It can only be connected to a downstream layer that expects 32-dimensional vec-
tors as its input.

 When using Keras, you don’t have to worry about size compatibility most of the
time, because the layers you add to your models are dynamically built to match the
shape of the incoming layer. For instance, suppose you write the following:

Weight creation
takes place in the
build() method.

add_weight() is a shortcut
method for creating weights.

It is also possible to create
standalone variables and assign

them as layer attributes, like self.W =
tf.Variable(tf.random.uniform(w_shape)).

We define the
forward pass
computation
in the call()

method.

Instantiate our
layer, defined
previously.Create

some test
inputs.Call the layer on

the inputs, just
like a function.

A dense layer with
32 output units

86 CHAPTER 3 Introduction to Keras and TensorFlow

from tensorflow.keras import models
from tensorflow.keras import layers
model = models.Sequential([
 layers.Dense(32, activation="relu"),
 layers.Dense(32)
])

The layers didn’t receive any information about the shape of their inputs—instead,
they automatically inferred their input shape as being the shape of the first inputs
they see.

 In the toy version of the Dense layer we implemented in chapter 2 (which we
named NaiveDense), we had to pass the layer’s input size explicitly to the constructor
in order to be able to create its weights. That’s not ideal, because it would lead to mod-
els that look like this, where each new layer needs to be made aware of the shape of
the layer before it:

model = NaiveSequential([
 NaiveDense(input_size=784, output_size=32, activation="relu"),
 NaiveDense(input_size=32, output_size=64, activation="relu"),
 NaiveDense(input_size=64, output_size=32, activation="relu"),
 NaiveDense(input_size=32, output_size=10, activation="softmax")
])

It would be even worse if the rules used by a layer to produce its output shape are
complex. For instance, what if our layer returned outputs of shape (batch, input_
size * 2 if input_size % 2 == 0 else input_size * 3)?

 If we were to reimplement our NaiveDense layer as a Keras layer capable of auto-
matic shape inference, it would look like the previous SimpleDense layer (see listing
3.22), with its build() and call() methods.

 In SimpleDense, we no longer create weights in the constructor like in the Naive-
Dense example; instead, we create them in a dedicated state-creation method,
build(), which receives as an argument the first input shape seen by the layer. The
build() method is called automatically the first time the layer is called (via its
__call__() method). In fact, that’s why we defined the computation in a separate
call() method rather than in the __call__() method directly. The __call__() method
of the base layer schematically looks like this:

def __call__(self, inputs):
 if not self.built:
 self.build(inputs.shape)
 self.built = True
 return self.call(inputs)

With automatic shape inference, our previous example becomes simple and neat:

model = keras.Sequential([
 SimpleDense(32, activation="relu"),
 SimpleDense(64, activation="relu"),

87Anatomy of a neural network: Understanding core Keras APIs

 SimpleDense(32, activation="relu"),
 SimpleDense(10, activation="softmax")
])

Note that automatic shape inference is not the only thing that the Layer class’s
__call__() method handles. It takes care of many more things, in particular routing
between eager and graph execution (a concept you’ll learn about in chapter 7), and
input masking (which we’ll cover in chapter 11). For now, just remember: when
implementing your own layers, put the forward pass in the call() method.

3.6.2 From layers to models

A deep learning model is a graph of layers. In Keras, that’s the Model class. Until
now, you’ve only seen Sequential models (a subclass of Model), which are simple
stacks of layers, mapping a single input to a single output. But as you move forward,
you’ll be exposed to a much broader variety of network topologies. These are some
common ones:

� Two-branch networks
� Multihead networks
� Residual connections

Network topology can get quite involved. For instance, figure 3.9 shows the topology
of the graph of layers of a Transformer, a common architecture designed to process
text data.

 There are generally two ways of building such models in Keras: you could directly
subclass the Model class, or you could use the Functional API, which lets you do more
with less code. We’ll cover both approaches in chapter 7.

 The topology of a model defines a hypothesis space. You may remember that in chap-
ter 1 we described machine learning as searching for useful representations of some
input data, within a predefined space of possibilities, using guidance from a feedback sig-
nal. By choosing a network topology, you constrain your space of possibilities (hypoth-
esis space) to a specific series of tensor operations, mapping input data to output data.
What you’ll then be searching for is a good set of values for the weight tensors
involved in these tensor operations.

 To learn from data, you have to make assumptions about it. These assumptions
define what can be learned. As such, the structure of your hypothesis space—the
architecture of your model—is extremely important. It encodes the assumptions you
make about your problem, the prior knowledge that the model starts with. For
instance, if you’re working on a two-class classification problem with a model made of
a single Dense layer with no activation (a pure affine transformation), you are assum-
ing that your two classes are linearly separable.

 Picking the right network architecture is more an art than a science, and although
there are some best practices and principles you can rely on, only practice can help
you become a proper neural-network architect. The next few chapters will both teach

88 CHAPTER 3 Introduction to Keras and TensorFlow

you explicit principles for building neural networks and help you develop intuition as
to what works or doesn’t work for specific problems. You’ll build a solid intuition
about what type of model architectures work for different kinds of problems, how to
build these networks in practice, how to pick the right learning configuration, and
how to tweak a model until it yields the results you want to see.

3.6.3 The “compile” step: Configuring the learning process

Once the model architecture is defined, you still have to choose three more things:

� Loss function (objective function)—The quantity that will be minimized during
training. It represents a measure of success for the task at hand.

LayerNormalization

Dense

+

Dense

LayerNormalization

+

MultiHeadAttention

LayerNormalization

Dense

+

Dense

LayerNormalization

+

MultiHeadAttention

LayerNormalization

+

MultiHeadAttention

Figure 3.9 The Transformer architecture (covered in chapter 11). There’s a lot going on
here. Throughout the next few chapters, you’ll climb your way up to understanding it.

89Anatomy of a neural network: Understanding core Keras APIs

� Optimizer—Determines how the network will be updated based on the loss func-
tion. It implements a specific variant of stochastic gradient descent (SGD).

� Metrics—The measures of success you want to monitor during training and vali-
dation, such as classification accuracy. Unlike the loss, training will not optimize
directly for these metrics. As such, metrics don’t need to be differentiable.

Once you’ve picked your loss, optimizer, and metrics, you can use the built-in compile()
and fit() methods to start training your model. Alternatively, you could also write
your own custom training loops—we’ll cover how to do this in chapter 7. It’s a lot
more work! For now, let’s take a look at compile() and fit().

 The compile() method configures the training process—you’ve already been intro-
duced to it in your very first neural network example in chapter 2. It takes the argu-
ments optimizer, loss, and metrics (a list):

model = keras.Sequential([keras.layers.Dense(1)])
model.compile(optimizer="rmsprop",
 loss="mean_squared_error",
 metrics=["accuracy"])

In the preceding call to compile(), we passed the optimizer, loss, and metrics as
strings (such as "rmsprop"). These strings are actually shortcuts that get converted to
Python objects. For instance, "rmsprop" becomes keras.optimizers.RMSprop().
Importantly, it’s also possible to specify these arguments as object instances, like this:

model.compile(optimizer=keras.optimizers.RMSprop(),
 loss=keras.losses.MeanSquaredError(),
 metrics=[keras.metrics.BinaryAccuracy()])

This is useful if you want to pass your own custom losses or metrics, or if you want to
further configure the objects you’re using—for instance, by passing a learning_rate
argument to the optimizer:

model.compile(optimizer=keras.optimizers.RMSprop(learning_rate=1e-4),
 loss=my_custom_loss,
 metrics=[my_custom_metric_1, my_custom_metric_2])

In chapter 7, we’ll cover how to create custom losses and metrics. In general, you
won’t have to create your own losses, metrics, or optimizers from scratch, because
Keras offers a wide range of built-in options that is likely to include what you need:

 Optimizers:

� SGD (with or without momentum)
� RMSprop
� Adam

Define a linear classifier. Specify the optimizer
by name: RMSprop
(it’s case-insensitive).

Specify the loss
by name: mean
squared error.Specify a list of metrics: in

this case, only accuracy.

90 CHAPTER 3 Introduction to Keras and TensorFlow

� Adagrad
� Etc.

Losses:

� CategoricalCrossentropy
� SparseCategoricalCrossentropy
� BinaryCrossentropy
� MeanSquaredError
� KLDivergence
� CosineSimilarity
� Etc.

Metrics:

� CategoricalAccuracy
� SparseCategoricalAccuracy
� BinaryAccuracy
� AUC
� Precision
� Recall
� Etc.

Throughout this book, you’ll see concrete applications of many of these options.

3.6.4 Picking a loss function

Choosing the right loss function for the right problem is extremely important: your
network will take any shortcut it can to minimize the loss, so if the objective doesn’t
fully correlate with success for the task at hand, your network will end up doing
things you may not have wanted. Imagine a stupid, omnipotent AI trained via SGD
with this poorly chosen objective function: “maximizing the average well-being of all
humans alive.” To make its job easier, this AI might choose to kill all humans except a
few and focus on the well-being of the remaining ones—because average well-being
isn’t affected by how many humans are left. That might not be what you intended!
Just remember that all neural networks you build will be just as ruthless in lowering
their loss function—so choose the objective wisely, or you’ll have to face unintended
side effects.

 Fortunately, when it comes to common problems such as classification, regression,
and sequence prediction, there are simple guidelines you can follow to choose the
correct loss. For instance, you’ll use binary crossentropy for a two-class classification
problem, categorical crossentropy for a many-class classification problem, and so on.
Only when you’re working on truly new research problems will you have to develop
your own loss functions. In the next few chapters, we’ll detail explicitly which loss
functions to choose for a wide range of common tasks.

91Anatomy of a neural network: Understanding core Keras APIs

3.6.5 Understanding the fit() method

After compile() comes fit(). The fit() method implements the training loop itself.
These are its key arguments:

� The data (inputs and targets) to train on. It will typically be passed either in the
form of NumPy arrays or a TensorFlow Dataset object. You’ll learn more about
the Dataset API in the next chapters.

� The number of epochs to train for: how many times the training loop should iter-
ate over the data passed.

� The batch size to use within each epoch of mini-batch gradient descent: the
number of training examples considered to compute the gradients for one
weight update step.

history = model.fit(
 inputs,
 targets,
 epochs=5,
 batch_size=128
)

The call to fit() returns a History object. This object contains a history field, which
is a dict mapping keys such as "loss" or specific metric names to the list of their per-
epoch values.

>>> history.history
{"binary_accuracy": [0.855, 0.9565, 0.9555, 0.95, 0.951],
 "loss": [0.6573270302042366,
 0.07434618508815766,
 0.07687718723714351,
 0.07412414988875389,
 0.07617757616937161]}

3.6.6 Monitoring loss and metrics on validation data

The goal of machine learning is not to obtain models that perform well on the train-
ing data, which is easy—all you have to do is follow the gradient. The goal is to obtain
models that perform well in general, and particularly on data points that the model
has never encountered before. Just because a model performs well on its training data
doesn’t mean it will perform well on data it has never seen! For instance, it’s possible
that your model could end up merely memorizing a mapping between your training
samples and their targets, which would be useless for the task of predicting targets for
data the model has never seen before. We’ll go over this point in much more detail in
chapter 5.

Listing 3.23 Calling fit() with NumPy data

The input examples,
as a NumPy array

The corresponding
training targets, as
a NumPy array

The training loop
will iterate over the
data 5 times.

The training loop will
iterate over the data in

batches of 128 examples.

92 CHAPTER 3 Introduction to Keras and TensorFlow

 To keep an eye on how the model does on new data, it’s standard practice to
reserve a subset of the training data as validation data: you won’t be training the model
on this data, but you will use it to compute a loss value and metrics value. You do this
by using the validation_data argument in fit(). Like the training data, the valida-
tion data could be passed as NumPy arrays or as a TensorFlow Dataset object.

model = keras.Sequential([keras.layers.Dense(1)])
model.compile(optimizer=keras.optimizers.RMSprop(learning_rate=0.1),
 loss=keras.losses.MeanSquaredError(),
 metrics=[keras.metrics.BinaryAccuracy()])

indices_permutation = np.random.permutation(len(inputs))
shuffled_inputs = inputs[indices_permutation]
shuffled_targets = targets[indices_permutation]

num_validation_samples = int(0.3 * len(inputs))
val_inputs = shuffled_inputs[:num_validation_samples]
val_targets = shuffled_targets[:num_validation_samples]
training_inputs = shuffled_inputs[num_validation_samples:]
training_targets = shuffled_targets[num_validation_samples:]
model.fit(
 training_inputs,
 training_targets,
 epochs=5,
 batch_size=16,
 validation_data=(val_inputs, val_targets)
)

The value of the loss on the validation data is called the “validation loss,” to distin-
guish it from the “training loss.” Note that it’s essential to keep the training data and
validation data strictly separate: the purpose of validation is to monitor whether
what the model is learning is actually useful on new data. If any of the validation
data has been seen by the model during training, your validation loss and metrics
will be flawed.

 Note that if you want to compute the validation loss and metrics after the training
is complete, you can call the evaluate() method:

loss_and_metrics = model.evaluate(val_inputs, val_targets, batch_size=128)

evaluate() will iterate in batches (of size batch_size) over the data passed and
return a list of scalars, where the first entry is the validation loss and the following
entries are the validation metrics. If the model has no metrics, only the validation loss
is returned (rather than a list).

Listing 3.24 Using the validation_data argument

To avoid having samples
from only one class in
the validation data,
shuffle the inputs and
targets using a random
indices permutation.

Reserve 30% of the
training inputs and
targets for validation
(we’ll exclude these
samples from training
and reserve them to
compute the validation
loss and metrics).

Training data, used to update
the weights of the model

Validation data, used only
to monitor the validation
loss and metrics

93Summary

3.6.7 Inference: Using a model after training

Once you’ve trained your model, you’re going to want to use it to make predictions
on new data. This is called inference. To do this, a naive approach would simply be to
__call__() the model:

predictions = model(new_inputs)

However, this will process all inputs in new_inputs at once, which may not be feasible
if you’re looking at a lot of data (in particular, it may require more memory than your
GPU has).

 A better way to do inference is to use the predict() method. It will iterate over the
data in small batches and return a NumPy array of predictions. And unlike
__call__(), it can also process TensorFlow Dataset objects.

predictions = model.predict(new_inputs, batch_size=128)

For instance, if we use predict() on some of our validation data with the linear
model we trained earlier, we get scalar scores that correspond to the model’s predic-
tion for each input sample:

>>> predictions = model.predict(val_inputs, batch_size=128)
>>> print(predictions[:10])
[[0.3590725]
 [0.82706255]
 [0.74428225]
 [0.682058]
 [0.7312616]
 [0.6059811]
 [0.78046083]
 [0.025846]
 [0.16594526]
 [0.72068727]]

For now, this is all you need to know about Keras models. You are ready to move on to
solving real-world machine learning problems with Keras in the next chapter.

Summary
� TensorFlow is an industry-strength numerical computing framework that can

run on CPU, GPU, or TPU. It can automatically compute the gradient of any
differentiable expression, it can be distributed to many devices, and it can
export programs to various external runtimes—even JavaScript.

� Keras is the standard API for doing deep learning with TensorFlow. It’s what
we’ll use throughout this book.

� Key TensorFlow objects include tensors, variables, tensor operations, and the
gradient tape.

Takes a NumPy array or
TensorFlow tensor and returns
a TensorFlow tensor

Takes a NumPy array or
a Dataset and returns
a NumPy array

94 CHAPTER 3 Introduction to Keras and TensorFlow

� The central class of Keras is the Layer. A layer encapsulates some weights and
some computation. Layers are assembled into models.

� Before you start training a model, you need to pick an optimizer, a loss, and some
metrics, which you specify via the model.compile() method.

� To train a model, you can use the fit() method, which runs mini-batch gradi-
ent descent for you. You can also use it to monitor your loss and metrics on val-
idation data, a set of inputs that the model doesn’t see during training.

� Once your model is trained, you use the model.predict() method to generate
predictions on new inputs.

95

Getting started
with neural networks:

Classification and regression

This chapter is designed to get you started using neural networks to solve real prob-
lems. You’ll consolidate the knowledge you gained from chapters 2 and 3, and
you’ll apply what you’ve learned to three new tasks covering the three most com-
mon use cases of neural networks—binary classification, multiclass classification,
and scalar regression:

� Classifying movie reviews as positive or negative (binary classification)
� Classifying news wires by topic (multiclass classification)
� Estimating the price of a house, given real-estate data (scalar regression)

These examples will be your first contact with end-to-end machine learning work-
flows: you’ll get introduced to data preprocessing, basic model architecture princi-
ples, and model evaluation.

This chapter covers
� Your first examples of real-world machine learning

workflows
� Handling classification problems over vector data
� Handling continuous regression problems over

vector data

96 CHAPTER 4 Getting started with neural networks: Classification and regression

By the end of this chapter, you’ll be able to use neural networks to handle simple clas-
sification and regression tasks over vector data. You’ll then be ready to start building a
more principled, theory-driven understanding of machine learning in chapter 5.

Classification and regression glossary
Classification and regression involve many specialized terms. You’ve come across
some of them in earlier examples, and you’ll see more of them in future chapters.
They have precise, machine learning–specific definitions, and you should be famil-
iar with them:

� Sample or input—One data point that goes into your model.
� Prediction or output—What comes out of your model.
� Target—The truth. What your model should ideally have predicted, according

to an external source of data.
� Prediction error or loss value—A measure of the distance between your

model’s prediction and the target.
� Classes—A set of possible labels to choose from in a classification problem.

For example, when classifying cat and dog pictures, “dog” and “cat” are the
two classes.

� Label —A specific instance of a class annotation in a classification problem.
For instance, if picture #1234 is annotated as containing the class “dog,”
then “dog” is a label of picture #1234.

� Ground-truth or annotations—All targets for a dataset, typically collected by
humans.

� Binary classification—A classification task where each input sample should
be categorized into two exclusive categories.

� Multiclass classification—A classification task where each input sample
should be categorized into more than two categories: for instance, classifying
handwritten digits.

� Multilabel classification—A classification task where each input sample can
be assigned multiple labels. For instance, a given image may contain both a
cat and a dog and should be annotated both with the “cat” label and the
“dog” label. The number of labels per image is usually variable.

� Scalar regression—A task where the target is a continuous scalar value. Pre-
dicting house prices is a good example: the different target prices form a con-
tinuous space.

� Vector regression—A task where the target is a set of continuous values: for
example, a continuous vector. If you’re doing regression against multiple val-
ues (such as the coordinates of a bounding box in an image), then you’re
doing vector regression.

� Mini-batch or batch—A small set of samples (typically between 8 and 128)
that are processed simultaneously by the model. The number of samples is
often a power of 2, to facilitate memory allocation on GPU. When training, a
mini-batch is used to compute a single gradient-descent update applied to
the weights of the model.

97Classifying movie reviews: A binary classification example

4.1 Classifying movie reviews: A binary classification
example
Two-class classification, or binary classification, is one of the most common kinds of
machine learning problems. In this example, you’ll learn to classify movie reviews as
positive or negative, based on the text content of the reviews.

4.1.1 The IMDB dataset

You’ll work with the IMDB dataset: a set of 50,000 highly polarized reviews from the
Internet Movie Database. They’re split into 25,000 reviews for training and 25,000
reviews for testing, each set consisting of 50% negative and 50% positive reviews.

 Just like the MNIST dataset, the IMDB dataset comes packaged with Keras. It has
already been preprocessed: the reviews (sequences of words) have been turned into
sequences of integers, where each integer stands for a specific word in a dictionary.
This enables us to focus on model building, training, and evaluation. In chapter 11,
you’ll learn how to process raw text input from scratch.

 The following code will load the dataset (when you run it the first time, about 80
MB of data will be downloaded to your machine).

from tensorflow.keras.datasets import imdb
(train_data, train_labels), (test_data, test_labels) = imdb.load_data(
 num_words=10000)

The argument num_words=10000 means you’ll only keep the top 10,000 most fre-
quently occurring words in the training data. Rare words will be discarded. This allows
us to work with vector data of manageable size. If we didn’t set this limit, we’d be work-
ing with 88,585 unique words in the training data, which is unnecessarily large. Many
of these words only occur in a single sample, and thus can’t be meaningfully used for
classification.

 The variables train_data and test_data are lists of reviews; each review is a list of
word indices (encoding a sequence of words). train_labels and test_labels are
lists of 0s and 1s, where 0 stands for negative and 1 stands for positive :

>>> train_data[0]
[1, 14, 22, 16, ... 178, 32]
>>> train_labels[0]
1

Because we’re restricting ourselves to the top 10,000 most frequent words, no word
index will exceed 10,000:

>>> max([max(sequence) for sequence in train_data])
9999

For kicks, here’s how you can quickly decode one of these reviews back to English words.

Listing 4.1 Loading the IMDB dataset

98 CHAPTER 4 Getting started with neural networks: Classification and regression

word_index = imdb.get_word_index()
reverse_word_index = dict(
 [(value, key) for (key, value) in word_index.items()])
decoded_review = " ".join(
 [reverse_word_index.get(i - 3, "?") for i in train_data[0]])

4.1.2 Preparing the data

You can’t directly feed lists of integers into a neural network. They all have different
lengths, but a neural network expects to process contiguous batches of data. You have
to turn your lists into tensors. There are two ways to do that:

� Pad your lists so that they all have the same length, turn them into an integer
tensor of shape (samples, max_length), and start your model with a layer capa-
ble of handling such integer tensors (the Embedding layer, which we’ll cover in
detail later in the book).

� Multi-hot encode your lists to turn them into vectors of 0s and 1s. This would
mean, for instance, turning the sequence [8, 5] into a 10,000-dimensional vec-
tor that would be all 0s except for indices 8 and 5, which would be 1s. Then you
could use a Dense layer, capable of handling floating-point vector data, as the
first layer in your model.

Let’s go with the latter solution to vectorize the data, which you’ll do manually for
maximum clarity.

import numpy as np
def vectorize_sequences(sequences, dimension=10000):
 results = np.zeros((len(sequences), dimension))
 for i, sequence in enumerate(sequences):
 for j in sequence:
 results[i, j] = 1.
 return results
x_train = vectorize_sequences(train_data)
x_test = vectorize_sequences(test_data)

Here’s what the samples look like now:

>>> x_train[0]
array([0., 1., 1., ..., 0., 0., 0.])

Listing 4.2 Decoding reviews back to text

Listing 4.3 Encoding the integer sequences via multi-hot encoding

word_index is a dictionary mapping
words to an integer index.

Reverses it,
mapping
integer indices
to wordsDecodes the review. Note that the indices are offset by 3

because 0, 1, and 2 are reserved indices for “padding,”
“start of sequence,” and “unknown.”

Creates an all-zero matrix
of shape (len(sequences),
dimension)

Sets specific indices
of results[i] to 1s

Vectorized
training data

Vectorized test data

99Classifying movie reviews: A binary classification example

You should also vectorize your labels, which is straightforward:

y_train = np.asarray(train_labels).astype("float32")
y_test = np.asarray(test_labels).astype("float32")

Now the data is ready to be fed into a neural network.

4.1.3 Building your model

The input data is vectors, and the labels are scalars (1s and 0s): this is one of the simplest
problem setups you’ll ever encounter. A type of model that performs well on such a prob-
lem is a plain stack of densely connected (Dense) layers with relu activations.

 There are two key architecture decisions to be made about such a stack of Dense
layers:

� How many layers to use
� How many units to choose for each layer

In chapter 5, you’ll learn formal principles to guide
you in making these choices. For the time being,
you’ll have to trust me with the following architecture
choices:

� Two intermediate layers with 16 units each
� A third layer that will output the scalar predic-

tion regarding the sentiment of the current
review

Figure 4.1 shows what the model looks like. And the
following listing shows the Keras implementation,
similar to the MNIST example you saw previously.

from tensorflow import keras
from tensorflow.keras import layers

model = keras.Sequential([
 layers.Dense(16, activation="relu"),
 layers.Dense(16, activation="relu"),
 layers.Dense(1, activation="sigmoid")
])

The first argument being passed to each Dense layer is the number of units in the
layer: the dimensionality of representation space of the layer. You remember from
chapters 2 and 3 that each such Dense layer with a relu activation implements the fol-
lowing chain of tensor operations:

output = relu(dot(input, W) + b)

Listing 4.4 Model definition

Dense (units=16)

Input
(vectorized text)

Output
(probability)

Dense (units=16)

Dense (units=1)

Figure 4.1 The three-layer model

100 CHAPTER 4 Getting started with neural networks: Classification and regression

Having 16 units means the weight matrix W will have shape (input_dimension, 16):
the dot product with W will project the input data onto a 16-dimensional representa-
tion space (and then you’ll add the bias vector b and apply the relu operation). You
can intuitively understand the dimensionality of your representation space as “how
much freedom you’re allowing the model to have when learning internal representa-
tions.” Having more units (a higher-dimensional representation space) allows your
model to learn more-complex representations, but it makes the model more computa-
tionally expensive and may lead to learning unwanted patterns (patterns that will
improve performance on the training data but not on the test data).

 The intermediate layers use relu as their activation function, and the final layer
uses a sigmoid activation so as to output a probability (a score between 0 and 1 indicat-
ing how likely the sample is to have the target “1”: how likely the review is to be posi-
tive). A relu (rectified linear unit) is a function meant to zero out negative values (see
figure 4.2), whereas a sigmoid “squashes” arbitrary values into the [0, 1] interval (see fig-
ure 4.3), outputting something that can be interpreted as a probability.

Finally, you need to choose a loss function and an optimizer. Because you’re facing a
binary classification problem and the output of your model is a probability (you end
your model with a single-unit layer with a sigmoid activation), it’s best to use the
binary_crossentropy loss. It isn’t the only viable choice: for instance, you could use
mean_squared_error. But crossentropy is usually the best choice when you’re dealing

Figure 4.2 The rectified linear unit function

101Classifying movie reviews: A binary classification example

with models that output probabilities. Crossentropy is a quantity from the field of infor-
mation theory that measures the distance between probability distributions or, in this
case, between the ground-truth distribution and your predictions.

 As for the choice of the optimizer, we’ll go with rmsprop, which is a usually a good
default choice for virtually any problem.

What are activation functions, and why are they necessary?
Without an activation function like relu (also called a non-linearity), the Dense layer
would consist of two linear operations—a dot product and an addition:

output = dot(input, W) + b

The layer could only learn linear transformations (affine transformations) of the input
data: the hypothesis space of the layer would be the set of all possible linear trans-
formations of the input data into a 16-dimensional space. Such a hypothesis space
is too restricted and wouldn’t benefit from multiple layers of representations,
because a deep stack of linear layers would still implement a linear operation: adding
more layers wouldn’t extend the hypothesis space (as you saw in chapter 2).

In order to get access to a much richer hypothesis space that will benefit from deep
representations, you need a non-linearity, or activation function. relu is the most
popular activation function in deep learning, but there are many other candidates,
which all come with similarly strange names: prelu, elu, and so on.

Figure 4.3 The sigmoid function

102 CHAPTER 4 Getting started with neural networks: Classification and regression

 Here’s the step where we configure the model with the rmsprop optimizer and
the binary_crossentropy loss function. Note that we’ll also monitor accuracy during
training.

model.compile(optimizer="rmsprop",
 loss="binary_crossentropy",
 metrics=["accuracy"])

4.1.4 Validating your approach

As you learned in chapter 3, a deep learning model should never be evaluated on its
training data—it’s standard practice to use a validation set to monitor the accuracy of
the model during training. Here, we’ll create a validation set by setting apart 10,000
samples from the original training data.

x_val = x_train[:10000]
partial_x_train = x_train[10000:]
y_val = y_train[:10000]
partial_y_train = y_train[10000:]

We will now train the model for 20 epochs (20 iterations over all samples in the train-
ing data) in mini-batches of 512 samples. At the same time, we will monitor loss and
accuracy on the 10,000 samples that we set apart. We do so by passing the validation
data as the validation_data argument.

history = model.fit(partial_x_train,
 partial_y_train,
 epochs=20,
 batch_size=512,
 validation_data=(x_val, y_val))

On CPU, this will take less than 2 seconds per epoch—training is over in 20 seconds.
At the end of every epoch, there is a slight pause as the model computes its loss and
accuracy on the 10,000 samples of the validation data.

 Note that the call to model.fit() returns a History object, as you saw in chapter 3.
This object has a member history, which is a dictionary containing data about every-
thing that happened during training. Let’s look at it:

>>> history_dict = history.history
>>> history_dict.keys()
[u"accuracy", u"loss", u"val_accuracy", u"val_loss"]

Listing 4.5 Compiling the model

Listing 4.6 Setting aside a validation set

Listing 4.7 Training your model

103Classifying movie reviews: A binary classification example

The dictionary contains four entries: one per metric that was being monitored during
training and during validation. In the following two listings, let’s use Matplotlib to plot
the training and validation loss side by side (see figure 4.4), as well as the training and
validation accuracy (see figure 4.5). Note that your own results may vary slightly due to
a different random initialization of your model.

Figure 4.4 Training and validation loss

Figure 4.5 Training and validation accuracy

104 CHAPTER 4 Getting started with neural networks: Classification and regression

import matplotlib.pyplot as plt
history_dict = history.history
loss_values = history_dict["loss"]
val_loss_values = history_dict["val_loss"]
epochs = range(1, len(loss_values) + 1)
plt.plot(epochs, loss_values, "bo", label="Training loss")
plt.plot(epochs, val_loss_values, "b", label="Validation loss")
plt.title("Training and validation loss")
plt.xlabel("Epochs")
plt.ylabel("Loss")
plt.legend()
plt.show()

plt.clf()
acc = history_dict["accuracy"]
val_acc = history_dict["val_accuracy"]
plt.plot(epochs, acc, "bo", label="Training acc")
plt.plot(epochs, val_acc, "b", label="Validation acc")
plt.title("Training and validation accuracy")
plt.xlabel("Epochs")
plt.ylabel("Accuracy")
plt.legend()
plt.show()

As you can see, the training loss decreases with every epoch, and the training accuracy
increases with every epoch. That’s what you would expect when running gradient-
descent optimization—the quantity you’re trying to minimize should be less with
every iteration. But that isn’t the case for the validation loss and accuracy: they seem to
peak at the fourth epoch. This is an example of what we warned against earlier: a
model that performs better on the training data isn’t necessarily a model that will
do better on data it has never seen before. In precise terms, what you’re seeing is
overfitting: after the fourth epoch, you’re overoptimizing on the training data, and you
end up learning representations that are specific to the training data and don’t gener-
alize to data outside of the training set.

 In this case, to prevent overfitting, you could stop training after four epochs. In
general, you can use a range of techniques to mitigate overfitting, which we’ll cover
in chapter 5.

 Let’s train a new model from scratch for four epochs and then evaluate it on the
test data.

model = keras.Sequential([
 layers.Dense(16, activation="relu"),
 layers.Dense(16, activation="relu"),

Listing 4.8 Plotting the training and validation loss

Listing 4.9 Plotting the training and validation accuracy

Listing 4.10 Retraining a model from scratch

"bo" is for
"blue dot."

"b" is for
"solid blue line."

Clears the figure

105Classifying movie reviews: A binary classification example

 layers.Dense(1, activation="sigmoid")
])
model.compile(optimizer="rmsprop",
 loss="binary_crossentropy",
 metrics=["accuracy"])
model.fit(x_train, y_train, epochs=4, batch_size=512)
results = model.evaluate(x_test, y_test)

The final results are as follows:

>>> results
[0.2929924130630493, 0.88327999999999995]

This fairly naive approach achieves an accuracy of 88%. With state-of-the-art
approaches, you should be able to get close to 95%.

4.1.5 Using a trained model to generate predictions on new data

After having trained a model, you’ll want to use it in a practical setting. You can gener-
ate the likelihood of reviews being positive by using the predict method, as you’ve
learned in chapter 3:

>>> model.predict(x_test)
array([[0.98006207]
 [0.99758697]
 [0.99975556]
 ...,
 [0.82167041]
 [0.02885115]
 [0.65371346]], dtype=float32)

As you can see, the model is confident for some samples (0.99 or more, or 0.01 or
less) but less confident for others (0.6, 0.4).

4.1.6 Further experiments

The following experiments will help convince you that the architecture choices you’ve
made are all fairly reasonable, although there’s still room for improvement:

� You used two representation layers before the final classification layer. Try using
one or three representation layers, and see how doing so affects validation and
test accuracy.

� Try using layers with more units or fewer units: 32 units, 64 units, and so on.
� Try using the mse loss function instead of binary_crossentropy.
� Try using the tanh activation (an activation that was popular in the early days of

neural networks) instead of relu.

The first number, 0.29, is the test
loss, and the second number,
0.88, is the test accuracy.

106 CHAPTER 4 Getting started with neural networks: Classification and regression

4.1.7 Wrapping up

Here’s what you should take away from this example:

� You usually need to do quite a bit of preprocessing on your raw data in order to
be able to feed it—as tensors—into a neural network. Sequences of words can
be encoded as binary vectors, but there are other encoding options too.

� Stacks of Dense layers with relu activations can solve a wide range of problems
(including sentiment classification), and you’ll likely use them frequently.

� In a binary classification problem (two output classes), your model should end
with a Dense layer with one unit and a sigmoid activation: the output of your
model should be a scalar between 0 and 1, encoding a probability.

� With such a scalar sigmoid output on a binary classification problem, the loss
function you should use is binary_crossentropy.

� The rmsprop optimizer is generally a good enough choice, whatever your prob-
lem. That’s one less thing for you to worry about.

� As they get better on their training data, neural networks eventually start over-
fitting and end up obtaining increasingly worse results on data they’ve never
seen before. Be sure to always monitor performance on data that is outside of
the training set.

4.2 Classifying newswires: A multiclass classification example
In the previous section, you saw how to classify vector inputs into two mutually exclu-
sive classes using a densely connected neural network. But what happens when you
have more than two classes?

 In this section, we’ll build a model to classify Reuters newswires into 46 mutually
exclusive topics. Because we have many classes, this problem is an instance of multi-
class classification, and because each data point should be classified into only one cate-
gory, the problem is more specifically an instance of single-label multiclass classification.
If each data point could belong to multiple categories (in this case, topics), we’d be
facing a multilabel multiclass classification problem.

4.2.1 The Reuters dataset

You’ll work with the Reuters dataset, a set of short newswires and their topics, published
by Reuters in 1986. It’s a simple, widely used toy dataset for text classification. There
are 46 different topics; some topics are more represented than others, but each topic
has at least 10 examples in the training set.

 Like IMDB and MNIST, the Reuters dataset comes packaged as part of Keras. Let’s
take a look.

from tensorflow.keras.datasets import reuters
(train_data, train_labels), (test_data, test_labels) = reuters.load_data(
 num_words=10000)

Listing 4.11 Loading the Reuters dataset

107Classifying newswires: A multiclass classification example

As with the IMDB dataset, the argument num_words=10000 restricts the data to the
10,000 most frequently occurring words found in the data.

 You have 8,982 training examples and 2,246 test examples:

>>> len(train_data)
8982
>>> len(test_data)
2246

As with the IMDB reviews, each example is a list of integers (word indices):

>>> train_data[10]
[1, 245, 273, 207, 156, 53, 74, 160, 26, 14, 46, 296, 26, 39, 74, 2979,
3554, 14, 46, 4689, 4329, 86, 61, 3499, 4795, 14, 61, 451, 4329, 17, 12]

Here’s how you can decode it back to words, in case you’re curious.

word_index = reuters.get_word_index()
reverse_word_index = dict(
 [(value, key) for (key, value) in word_index.items()])
decoded_newswire = " ".join(
 [reverse_word_index.get(i - 3, "?") for i in train_data[0]])

 The label associated with an example is an integer between 0 and 45—a topic index:

>>> train_labels[10]
3

4.2.2 Preparing the data

You can vectorize the data with the exact same code as in the previous example.

x_train = vectorize_sequences(train_data)
x_test = vectorize_sequences(test_data)

To vectorize the labels, there are two possibilities: you can cast the label list as an inte-
ger tensor, or you can use one-hot encoding. One-hot encoding is a widely used format
for categorical data, also called categorical encoding. In this case, one-hot encoding of
the labels consists of embedding each label as an all-zero vector with a 1 in the place of
the label index. The following listing shows an example.

def to_one_hot(labels, dimension=46):
 results = np.zeros((len(labels), dimension))

Listing 4.12 Decoding newswires back to text

Listing 4.13 Encoding the input data

Listing 4.14 Encoding the labels

Note that the indices are offset by 3 because 0, 1, and 2 are reserved
indices for “padding,” “start of sequence,” and “unknown.”

Vectorized training data

Vectorized test data

108 CHAPTER 4 Getting started with neural networks: Classification and regression

 for i, label in enumerate(labels):
 results[i, label] = 1.
 return results
y_train = to_one_hot(train_labels)
y_test = to_one_hot(test_labels)

Note that there is a built-in way to do this in Keras:

from tensorflow.keras.utils import to_categorical
y_train = to_categorical(train_labels)
y_test = to_categorical(test_labels)

4.2.3 Building your model

This topic-classification problem looks similar to the previous movie-review classifica-
tion problem: in both cases, we’re trying to classify short snippets of text. But there is
a new constraint here: the number of output classes has gone from 2 to 46. The
dimensionality of the output space is much larger.

 In a stack of Dense layers like those we’ve been using, each layer can only access
information present in the output of the previous layer. If one layer drops some
information relevant to the classification problem, this information can never be
recovered by later layers: each layer can potentially become an information bottle-
neck. In the previous example, we used 16-dimensional intermediate layers, but a
16-dimensional space may be too limited to learn to separate 46 different classes:
such small layers may act as information bottlenecks, permanently dropping rele-
vant information.

 For this reason we’ll use larger layers. Let’s go with 64 units.

model = keras.Sequential([
 layers.Dense(64, activation="relu"),
 layers.Dense(64, activation="relu"),
 layers.Dense(46, activation="softmax")
])

There are two other things you should note about this architecture.
 First, we end the model with a Dense layer of size 46. This means for each input

sample, the network will output a 46-dimensional vector. Each entry in this vector
(each dimension) will encode a different output class.

 Second, the last layer uses a softmax activation. You saw this pattern in the MNIST
example. It means the model will output a probability distribution over the 46 different
output classes—for every input sample, the model will produce a 46-dimensional out-
put vector, where output[i] is the probability that the sample belongs to class i. The
46 scores will sum to 1.

 The best loss function to use in this case is categorical_crossentropy. It mea-
sures the distance between two probability distributions: here, between the probability

Listing 4.15 Model definition

Vectorized training labels

Vectorized test labels

109Classifying newswires: A multiclass classification example

distribution output by the model and the true distribution of the labels. By minimiz-
ing the distance between these two distributions, you train the model to output some-
thing as close as possible to the true labels.

model.compile(optimizer="rmsprop",
 loss="categorical_crossentropy",
 metrics=["accuracy"])

4.2.4 Validating your approach

Let’s set apart 1,000 samples in the training data to use as a validation set.

x_val = x_train[:1000]
partial_x_train = x_train[1000:]
y_val = y_train[:1000]
partial_y_train = y_train[1000:]

Now, let’s train the model for 20 epochs.

history = model.fit(partial_x_train,
partial_y_train,
epochs=20,
batch_size=512,
validation_data=(x_val, y_val))

And finally, let’s display its loss and accuracy curves (see figures 4.6 and 4.7).

Listing 4.16 Compiling the model

Listing 4.17 Setting aside a validation set

Listing 4.18 Training the model

Figure 4.6 Training
and validation loss

110 CHAPTER 4 Getting started with neural networks: Classification and regression

loss = history.history["loss"]
val_loss = history.history["val_loss"]
epochs = range(1, len(loss) + 1)
plt.plot(epochs, loss, "bo", label="Training loss")
plt.plot(epochs, val_loss, "b", label="Validation loss")
plt.title("Training and validation loss")
plt.xlabel("Epochs")
plt.ylabel("Loss")
plt.legend()
plt.show()

plt.clf()
acc = history.history["accuracy"]
val_acc = history.history["val_accuracy"]
plt.plot(epochs, acc, "bo", label="Training accuracy")
plt.plot(epochs, val_acc, "b", label="Validation accuracy")
plt.title("Training and validation accuracy")
plt.xlabel("Epochs")
plt.ylabel("Accuracy")
plt.legend()
plt.show()

The model begins to overfit after nine epochs. Let’s train a new model from scratch
for nine epochs and then evaluate it on the test set.

model = keras.Sequential([
 layers.Dense(64, activation="relu"),

Listing 4.19 Plotting the training and validation loss

Listing 4.20 Plotting the training and validation accuracy

Listing 4.21 Retraining a model from scratch

Figure 4.7 Training
and validation accuracy

Clears the figure

111Classifying newswires: A multiclass classification example

 layers.Dense(64, activation="relu"),
 layers.Dense(46, activation="softmax")
])
model.compile(optimizer="rmsprop",
 loss="categorical_crossentropy",
 metrics=["accuracy"])
model.fit(x_train,
 y_train,
 epochs=9,
 batch_size=512)
results = model.evaluate(x_test, y_test)

Here are the final results:

>>> results
[0.9565213431445807, 0.79697239536954589]

This approach reaches an accuracy of ~80%. With a balanced binary classification
problem, the accuracy reached by a purely random classifier would be 50%. But in
this case, we have 46 classes, and they may not be equally represented. What would be
the accuracy of a random baseline? We could try quickly implementing one to check
this empirically:

>>> import copy
>>> test_labels_copy = copy.copy(test_labels)
>>> np.random.shuffle(test_labels_copy)
>>> hits_array = np.array(test_labels) == np.array(test_labels_copy)
>>> hits_array.mean()
0.18655387355298308

As you can see, a random classifier would score around 19% classification accuracy, so
the results of our model seem pretty good in that light.

4.2.5 Generating predictions on new data

Calling the model’s predict method on new samples returns a class probability distri-
bution over all 46 topics for each sample. Let’s generate topic predictions for all of the
test data:

predictions = model.predict(x_test)

Each entry in “predictions” is a vector of length 46:

>>> predictions[0].shape
(46,)

The coefficients in this vector sum to 1, as they form a probability distribution:

>>> np.sum(predictions[0])
1.0

112 CHAPTER 4 Getting started with neural networks: Classification and regression

The largest entry is the predicted class—the class with the highest probability:

>>> np.argmax(predictions[0])
4

4.2.6 A different way to handle the labels and the loss

We mentioned earlier that another way to encode the labels would be to cast them as
an integer tensor, like this:

y_train = np.array(train_labels)
y_test = np.array(test_labels)

The only thing this approach would change is the choice of the loss function. The loss
function used in listing 4.21, categorical_crossentropy, expects the labels to follow
a categorical encoding. With integer labels, you should use sparse_categorical_
crossentropy:

model.compile(optimizer="rmsprop",
 loss="sparse_categorical_crossentropy",
 metrics=["accuracy"])

This new loss function is still mathematically the same as categorical_crossentropy;
it just has a different interface.

4.2.7 The importance of having sufficiently large intermediate layers

We mentioned earlier that because the final outputs are 46-dimensional, you should
avoid intermediate layers with many fewer than 46 units. Now let’s see what happens
when we introduce an information bottleneck by having intermediate layers that are
significantly less than 46-dimensional: for example, 4-dimensional.

model = keras.Sequential([
 layers.Dense(64, activation="relu"),
 layers.Dense(4, activation="relu"),
 layers.Dense(46, activation="softmax")
])
model.compile(optimizer="rmsprop",
 loss="categorical_crossentropy",
 metrics=["accuracy"])
model.fit(partial_x_train,
 partial_y_train,
 epochs=20,
 batch_size=128,
 validation_data=(x_val, y_val))

The model now peaks at ~71% validation accuracy, an 8% absolute drop. This drop is
mostly due to the fact that we’re trying to compress a lot of information (enough

Listing 4.22 A model with an information bottleneck

113Predicting house prices: A regression example

information to recover the separation hyperplanes of 46 classes) into an intermediate
space that is too low-dimensional. The model is able to cram most of the necessary
information into these four-dimensional representations, but not all of it.

4.2.8 Further experiments

Like in the previous example, I encourage you to try out the following experiments to
train your intuition about the kind of configuration decisions you have to make with
such models:

� Try using larger or smaller layers: 32 units, 128 units, and so on.
� You used two intermediate layers before the final softmax classification layer.

Now try using a single intermediate layer, or three intermediate layers.

4.2.9 Wrapping up

Here’s what you should take away from this example:

� If you’re trying to classify data points among N classes, your model should end
with a Dense layer of size N.

� In a single-label, multiclass classification problem, your model should end with
a softmax activation so that it will output a probability distribution over the N
output classes.

� Categorical crossentropy is almost always the loss function you should use for
such problems. It minimizes the distance between the probability distributions
output by the model and the true distribution of the targets.

� There are two ways to handle labels in multiclass classification:
– Encoding the labels via categorical encoding (also known as one-hot encod-

ing) and using categorical_crossentropy as a loss function
– Encoding the labels as integers and using the sparse_categorical_cross-

entropy loss function
� If you need to classify data into a large number of categories, you should avoid

creating information bottlenecks in your model due to intermediate layers that
are too small.

4.3 Predicting house prices: A regression example
The two previous examples were considered classification problems, where the goal
was to predict a single discrete label of an input data point. Another common type of
machine learning problem is regression, which consists of predicting a continuous
value instead of a discrete label: for instance, predicting the temperature tomorrow,
given meteorological data or predicting the time that a software project will take to
complete, given its specifications.

NOTE Don’t confuse regression and the logistic regression algorithm. Confusingly,
logistic regression isn’t a regression algorithm—it’s a classification algorithm.

114 CHAPTER 4 Getting started with neural networks: Classification and regression

4.3.1 The Boston housing price dataset

In this section, we’ll attempt to predict the median price of homes in a given Boston
suburb in the mid-1970s, given data points about the suburb at the time, such as the
crime rate, the local property tax rate, and so on. The dataset we’ll use has an interest-
ing difference from the two previous examples. It has relatively few data points: only
506, split between 404 training samples and 102 test samples. And each feature in the
input data (for example, the crime rate) has a different scale. For instance, some val-
ues are proportions, which take values between 0 and 1, others take values between 1
and 12, others between 0 and 100, and so on.

from tensorflow.keras.datasets import boston_housing
(train_data, train_targets), (test_data, test_targets) = (
 boston_housing.load_data())

Let’s look at the data:

>>> train_data.shape
(404, 13)
>>> test_data.shape
(102, 13)

As you can see, we have 404 training samples and 102 test samples, each with 13
numerical features, such as per capita crime rate, average number of rooms per dwell-
ing, accessibility to highways, and so on.

 The targets are the median values of owner-occupied homes, in thousands of dollars:

>>> train_targets
[15.2, 42.3, 50. ... 19.4, 19.4, 29.1]

The prices are typically between $10,000 and $50,000. If that sounds cheap, remem-
ber that this was the mid-1970s, and these prices aren’t adjusted for inflation.

4.3.2 Preparing the data

It would be problematic to feed into a neural network values that all take wildly differ-
ent ranges. The model might be able to automatically adapt to such heterogeneous
data, but it would definitely make learning more difficult. A widespread best practice
for dealing with such data is to do feature-wise normalization: for each feature in the
input data (a column in the input data matrix), we subtract the mean of the feature
and divide by the standard deviation, so that the feature is centered around 0 and has
a unit standard deviation. This is easily done in NumPy.

mean = train_data.mean(axis=0)
train_data -= mean

Listing 4.23 Loading the Boston housing dataset

Listing 4.24 Normalizing the data

115Predicting house prices: A regression example

std = train_data.std(axis=0)
train_data /= std
test_data -= mean
test_data /= std

Note that the quantities used for normalizing the test data are computed using the
training data. You should never use any quantity computed on the test data in your
workflow, even for something as simple as data normalization.

4.3.3 Building your model

Because so few samples are available, we’ll use a very small model with two intermedi-
ate layers, each with 64 units. In general, the less training data you have, the worse
overfitting will be, and using a small model is one way to mitigate overfitting.

def build_model():
 model = keras.Sequential([
 layers.Dense(64, activation="relu"),
 layers.Dense(64, activation="relu"),
 layers.Dense(1)
])
 model.compile(optimizer="rmsprop", loss="mse", metrics=["mae"])
 return model

The model ends with a single unit and no activation (it will be a linear layer). This is a
typical setup for scalar regression (a regression where you’re trying to predict a single
continuous value). Applying an activation function would constrain the range the out-
put can take; for instance, if you applied a sigmoid activation function to the last layer,
the model could only learn to predict values between 0 and 1. Here, because the last
layer is purely linear, the model is free to learn to predict values in any range.

 Note that we compile the model with the mse loss function—mean squared error, the
square of the difference between the predictions and the targets. This is a widely used
loss function for regression problems.

 We’re also monitoring a new metric during training: mean absolute error (MAE). It’s the
absolute value of the difference between the predictions and the targets. For instance, an
MAE of 0.5 on this problem would mean your predictions are off by $500 on average.

4.3.4 Validating your approach using K-fold validation

To evaluate our model while we keep adjusting its parameters (such as the number of
epochs used for training), we could split the data into a training set and a validation
set, as we did in the previous examples. But because we have so few data points, the
validation set would end up being very small (for instance, about 100 examples). As a
consequence, the validation scores might change a lot depending on which data
points we chose for validation and which we chose for training: the validation scores

Listing 4.25 Model definition

Because we need to instantiate
the same model multiple times,
we use a function to construct it.

116 CHAPTER 4 Getting started with neural networks: Classification and regression

might have a high variance with regard to the validation split. This would prevent us
from reliably evaluating our model.

 The best practice in such situations is to use K-fold cross-validation (see figure 4.8).

It consists of splitting the available data into K partitions (typically K = 4 or 5), instanti-
ating K identical models, and training each one on K – 1 partitions while evaluating
on the remaining partition. The validation score for the model used is then the aver-
age of the K validation scores obtained. In terms of code, this is straightforward.

k = 4
num_val_samples = len(train_data) // k
num_epochs = 100
all_scores = []
for i in range(k):
 print(f"Processing fold #{i}")
 val_data = train_data[i * num_val_samples: (i + 1) * num_val_samples]
 val_targets = train_targets[i * num_val_samples: (i + 1) * num_val_samples]
 partial_train_data = np.concatenate(
 [train_data[:i * num_val_samples],
 train_data[(i + 1) * num_val_samples:]],
 axis=0)
 partial_train_targets = np.concatenate(
 [train_targets[:i * num_val_samples],
 train_targets[(i + 1) * num_val_samples:]],
 axis=0)
 model = build_model()

model.fit(partial_train_data, partial_train_targets,
 epochs=num_epochs, batch_size=16, verbose=0)
 val_mse, val_mae = model.evaluate(val_data, val_targets, verbose=0)

all_scores.append(val_mae)

Listing 4.26 K-fold validation

Data split into 3 partitions

Validation Training Training
Validation
score #1

Fold 1

Training Validation Training
Validation
score #2

Final score:
average

Fold 2

Training Training Validation
Validation
score #3

Fold 3

Figure 4.8 K-fold cross-validation with K=3

Prepares the
validation data: data

from partition #k

Prepares the training data:
data from all other partitions

Builds the Keras model
(already compiled)

Trains the model
(in silent mode,
verbose = 0)

Evaluates the model on
the validation data

117Predicting house prices: A regression example

Running this with num_epochs = 100 yields the following results:

>>> all_scores
[2.112449, 3.0801501, 2.6483836, 2.4275346]
>>> np.mean(all_scores)
2.5671294

The different runs do indeed show rather different validation scores, from 2.1 to 3.1.
The average (2.6) is a much more reliable metric than any single score—that’s the
entire point of K-fold cross-validation. In this case, we’re off by $2,600 on average,
which is significant considering that the prices range from $10,000 to $50,000.

 Let’s try training the model a bit longer: 500 epochs. To keep a record of how well
the model does at each epoch, we’ll modify the training loop to save the per-epoch
validation score log for each fold.

num_epochs = 500
all_mae_histories = []
for i in range(k):
 print(f"Processing fold #{i}")
 val_data = train_data[i * num_val_samples: (i + 1) * num_val_samples]
 val_targets = train_targets[i * num_val_samples: (i + 1) * num_val_samples]
 partial_train_data = np.concatenate(
 [train_data[:i * num_val_samples],
 train_data[(i + 1) * num_val_samples:]],
 axis=0)
 partial_train_targets = np.concatenate(
 [train_targets[:i * num_val_samples],
 train_targets[(i + 1) * num_val_samples:]],
 axis=0)
 model = build_model()
 history = model.fit(partial_train_data, partial_train_targets,
 validation_data=(val_data, val_targets),
 epochs=num_epochs, batch_size=16, verbose=0)
 mae_history = history.history["val_mae"]
 all_mae_histories.append(mae_history)

We can then compute the average of the per-epoch MAE scores for all folds.

average_mae_history = [
 np.mean([x[i] for x in all_mae_histories]) for i in range(num_epochs)]

Let’s plot this; see figure 4.9.

plt.plot(range(1, len(average_mae_history) + 1), average_mae_history)
plt.xlabel("Epochs")
plt.ylabel("Validation MAE")
plt.show()

Listing 4.27 Saving the validation logs at each fold

Listing 4.28 Building the history of successive mean K-fold validation scores

Listing 4.29 Plotting validation scores

Prepares the
validation data: data

from partition #k

Prepares the training
data: data from all
other partitions

Builds the Keras
model (already
compiled)

Trains the
model (in
silent mode,
verbose=0)

118 CHAPTER 4 Getting started with neural networks: Classification and regression

It may be a little difficult to read the plot, due to a scaling issue: the validation MAE
for the first few epochs is dramatically higher than the values that follow. Let’s omit
the first 10 data points, which are on a different scale than the rest of the curve.

truncated_mae_history = average_mae_history[10:]
plt.plot(range(1, len(truncated_mae_history) + 1), truncated_mae_history)
plt.xlabel("Epochs")
plt.ylabel("Validation MAE")
plt.show()

As you can see in figure 4.10, validation MAE stops improving significantly after
120–140 epochs (this number includes the 10 epochs we omitted). Past that point,
we start overfitting.

 Once you’re finished tuning other parameters of the model (in addition to the
number of epochs, you could also adjust the size of the intermediate layers), you can
train a final production model on all of the training data, with the best parameters,
and then look at its performance on the test data.

model = build_model()
model.fit(train_data, train_targets,

epochs=130, batch_size=16, verbose=0)
test_mse_score, test_mae_score = model.evaluate(test_data, test_targets)

Listing 4.30 Plotting validation scores, excluding the first 10 data points

Listing 4.31 Training the final model

Figure 4.9 Validation MAE by epoch

Gets a fresh,
compiled model Trains it on the

entirety of the data

119Predicting house prices: A regression example

Here’s the final result:

>>> test_mae_score
2.4642276763916016

We’re still off by a bit under $2,500. It’s an improvement! Just like with the two previ-
ous tasks, you can try varying the number of layers in the model, or the number of
units per layer, to see if you can squeeze out a lower test error.

4.3.5 Generating predictions on new data

When calling predict() on our binary classification model, we retrieved a scalar score
between 0 and 1 for each input sample. With our multiclass classification model, we
retrieved a probability distribution over all classes for each sample. Now, with this sca-
lar regression model, predict() returns the model’s guess for the sample’s price in
thousands of dollars:

>>> predictions = model.predict(test_data)
>>> predictions[0]
array([9.990133], dtype=float32)

The first house in the test set is predicted to have a price of about $10,000.

4.3.6 Wrapping up

Here’s what you should take away from this scalar regression example:

� Regression is done using different loss functions than we used for classification.
Mean squared error (MSE) is a loss function commonly used for regression.

Figure 4.10 Validation MAE by epoch, excluding the first 10 data points

120 CHAPTER 4 Getting started with neural networks: Classification and regression

� Similarly, evaluation metrics to be used for regression differ from those used for
classification; naturally, the concept of accuracy doesn’t apply for regression. A
common regression metric is mean absolute error (MAE).

� When features in the input data have values in different ranges, each feature
should be scaled independently as a preprocessing step.

� When there is little data available, using K-fold validation is a great way to reli-
ably evaluate a model.

� When little training data is available, it’s preferable to use a small model with few
intermediate layers (typically only one or two), in order to avoid severe overfitting.

Summary
� The three most common kinds of machine learning tasks on vector data are

binary classification, multiclass classification, and scalar regression.
– The “Wrapping up” sections earlier in the chapter summarize the important

points you’ve learned regarding each task.
– Regression uses different loss functions and different evaluation metrics

than classification.
� You’ll usually need to preprocess raw data before feeding it into a neural network.
� When your data has features with different ranges, scale each feature inde-

pendently as part of preprocessing.
� As training progresses, neural networks eventually begin to overfit and obtain

worse results on never-before-seen data.
� If you don’t have much training data, use a small model with only one or two

intermediate layers, to avoid severe overfitting.
� If your data is divided into many categories, you may cause information bottle-

necks if you make the intermediate layers too small.
� When you’re working with little data, K-fold validation can help reliably evalu-

ate your model.

121

Fundamentals
of machine learning

After the three practical examples in chapter 4, you should be starting to feel famil-
iar with how to approach classification and regression problems using neural net-
works, and you’ve witnessed the central problem of machine learning: overfitting.
This chapter will formalize some of your new intuition about machine learning into
a solid conceptual framework, highlighting the importance of accurate model eval-
uation and the balance between training and generalization.

5.1 Generalization: The goal of machine learning
In the three examples presented in chapter 4—predicting movie reviews, topic clas-
sification, and house-price regression—we split the data into a training set, a valida-
tion set, and a test set. The reason not to evaluate the models on the same data they

This chapter covers
� Understanding the tension between

generalization and optimization, the fundamental
issue in machine learning

� Evaluation methods for machine learning models
� Best practices to improve model fitting
� Best practices to achieve better generalization

122 CHAPTER 5 Fundamentals of machine learning

were trained on quickly became evident: after just a few epochs, performance on
never-before-seen data started diverging from performance on the training data,
which always improves as training progresses. The models started to overfit. Overfitting
happens in every machine learning problem.

 The fundamental issue in machine learning is the tension between optimization
and generalization. Optimization refers to the process of adjusting a model to get the
best performance possible on the training data (the learning in machine learning),
whereas generalization refers to how well the trained model performs on data it has
never seen before. The goal of the game is to get good generalization, of course, but
you don’t control generalization; you can only fit the model to its training data. If you
do that too well, overfitting kicks in and generalization suffers.

 But what causes overfitting? How can we achieve good generalization?

5.1.1 Underfitting and overfitting

For the models you saw in the previous chapter, performance on the held-out valida-
tion data started improving as training went on and then inevitably peaked after a
while. This pattern (illustrated in figure 5.1) is universal. You’ll see it with any model
type and any dataset.

At the beginning of training, optimization and generalization are correlated: the
lower the loss on training data, the lower the loss on test data. While this is happening,
your model is said to be underfit: there is still progress to be made; the network hasn’t
yet modeled all relevant patterns in the training data. But after a certain number of
iterations on the training data, generalization stops improving, validation metrics stall
and then begin to degrade: the model is starting to overfit. That is, it’s beginning to
learn patterns that are specific to the training data but that are misleading or irrele-
vant when it comes to new data.

Loss
value

Training time

Underfitting

Overfitting

Robust fit

Training curve

Validation curve

Figure 5.1 Canonical overfitting behavior

123Generalization: The goal of machine learning

 Overfitting is particularly likely to occur when your data is noisy, if it involves
uncertainty, or if it includes rare features. Let’s look at concrete examples.

NOISY TRAINING DATA

In real-world datasets, it’s fairly common for some inputs to be invalid. Perhaps a
MNIST digit could be an all-black image, for instance, or something like figure 5.2.

What are these? I don’t know either. But they’re all part of the MNIST training set.
What’s even worse, however, is having perfectly valid inputs that end up mislabeled,
like those in figure 5.3.

If a model goes out of its way to incorporate such outliers, its generalization perfor-
mance will degrade, as shown in figure 5.4. For instance, a 4 that looks very close to
the mislabeled 4 in figure 5.3 may end up getting classified as a 9.

Figure 5.2 Some pretty weird
MNIST training samples

Figure 5.3 Mislabeled MNIST training samples

124 CHAPTER 5 Fundamentals of machine learning

AMBIGUOUS FEATURES

Not all data noise comes from inaccuracies—even perfectly clean and neatly labeled
data can be noisy when the problem involves uncertainty and ambiguity. In classifica-
tion tasks, it is often the case that some regions of the input feature space are associ-
ated with multiple classes at the same time. Let’s say you’re developing a model that
takes an image of a banana and predicts whether the banana is unripe, ripe, or rotten.
These categories have no objective boundaries, so the same picture might be classified
as either unripe or ripe by different human labelers. Similarly, many problems involve
randomness. You could use atmospheric pressure data to predict whether it will rain
tomorrow, but the exact same measurements may be followed sometimes by rain and
sometimes by a clear sky, with some probability.

 A model could overfit to such probabilistic data by being too confident about
ambiguous regions of the feature space, like in figure 5.5. A more robust fit would
ignore individual data points and look at the bigger picture.

Figure 5.4 Dealing with outliers: robust fit vs. overfitting

Area of uncertainty

Figure 5.5 Robust fit vs. overfitting giving an ambiguous area of the feature space

125Generalization: The goal of machine learning

RARE FEATURES AND SPURIOUS CORRELATIONS

If you’ve only ever seen two orange tabby cats in your life, and they both happened to
be terribly antisocial, you might infer that orange tabby cats are generally likely to be
antisocial. That’s overfitting: if you had been exposed to a wider variety of cats, includ-
ing more orange ones, you’d have learned that cat color is not well correlated with
character.

 Likewise, machine learning models trained on datasets that include rare feature
values are highly susceptible to overfitting. In a sentiment classification task, if the
word “cherimoya” (a fruit native to the Andes) only appears in one text in the train-
ing data, and this text happens to be negative in sentiment, a poorly regularized
model might put a very high weight on this word and always classify new texts that
mention cherimoyas as negative, whereas, objectively, there’s nothing negative about
the cherimoya.1

 Importantly, a feature value doesn’t need to occur only a couple of times to lead to
spurious correlations. Consider a word that occurs in 100 samples in your training
data and that’s associated with a positive sentiment 54% of the time and with a nega-
tive sentiment 46% of the time. That difference may well be a complete statistical
fluke, yet your model is likely to learn to leverage that feature for its classification task.
This is one of the most common sources of overfitting.

 Here’s a striking example. Take MNIST. Create a new training set by concatenating
784 white noise dimensions to the existing 784 dimensions of the data, so half of the
data is now noise. For comparison, also create an equivalent dataset by concatenating
784 all-zeros dimensions. Our concatenation of meaningless features does not at all
affect the information content of the data: we’re only adding something. Human clas-
sification accuracy wouldn’t be affected by these transformations at all.

from tensorflow.keras.datasets import mnist
import numpy as np

(train_images, train_labels), _ = mnist.load_data()
train_images = train_images.reshape((60000, 28 * 28))
train_images = train_images.astype("float32") / 255

train_images_with_noise_channels = np.concatenate(
 [train_images, np.random.random((len(train_images), 784))], axis=1)

train_images_with_zeros_channels = np.concatenate(
 [train_images, np.zeros((len(train_images), 784))], axis=1)

Now, let’s train the model from chapter 2 on both of these training sets.

1 Mark Twain even called it “the most delicious fruit known to men.”

Listing 5.1 Adding white noise channels or all-zeros channels to MNIST

126 CHAPTER 5 Fundamentals of machine learning

from tensorflow import keras
from tensorflow.keras import layers

def get_model():
 model = keras.Sequential([
 layers.Dense(512, activation="relu"),
 layers.Dense(10, activation="softmax")
])
 model.compile(optimizer="rmsprop",
 loss="sparse_categorical_crossentropy",
 metrics=["accuracy"])
 return model

model = get_model()
history_noise = model.fit(
 train_images_with_noise_channels, train_labels,
 epochs=10,
 batch_size=128,
 validation_split=0.2)

model = get_model()
history_zeros = model.fit(
 train_images_with_zeros_channels, train_labels,
 epochs=10,
 batch_size=128,
 validation_split=0.2)

Let’s compare how the validation accuracy of each model evolves over time.

import matplotlib.pyplot as plt
val_acc_noise = history_noise.history["val_accuracy"]
val_acc_zeros = history_zeros.history["val_accuracy"]
epochs = range(1, 11)
plt.plot(epochs, val_acc_noise, "b-",
 label="Validation accuracy with noise channels")
plt.plot(epochs, val_acc_zeros, "b--",
 label="Validation accuracy with zeros channels")
plt.title("Effect of noise channels on validation accuracy")
plt.xlabel("Epochs")
plt.ylabel("Accuracy")
plt.legend()

Despite the data holding the same information in both cases, the validation accuracy
of the model trained with noise channels ends up about one percentage point lower
(see figure 5.6)—purely through the influence of spurious correlations. The more
noise channels you add, the further accuracy will degrade.

 Noisy features inevitably lead to overfitting. As such, in cases where you aren’t sure
whether the features you have are informative or distracting, it’s common to do feature

Listing 5.2 Training the same model on MNIST data with noise channels or all-zero channels

Listing 5.3 Plotting a validation accuracy comparison

127Generalization: The goal of machine learning

selection before training. Restricting the IMDB data to the top 10,000 most common
words was a crude form of feature selection, for instance. The typical way to do fea-
ture selection is to compute some usefulness score for each feature available—a
measure of how informative the feature is with respect to the task, such as the
mutual information between the feature and the labels—and only keep features that
are above some threshold. Doing this would filter out the white noise channels in
the preceding example.

5.1.2 The nature of generalization in deep learning

A remarkable fact about deep learning models is that they can be trained to fit any-
thing, as long as they have enough representational power.

 Don’t believe me? Try shuffling the MNIST labels and train a model on that. Even
though there is no relationship whatsoever between the inputs and the shuffled
labels, the training loss goes down just fine, even with a relatively small model. Natu-
rally, the validation loss does not improve at all over time, since there is no possibility
of generalization in this setting.

(train_images, train_labels), _ = mnist.load_data()
train_images = train_images.reshape((60000, 28 * 28))
train_images = train_images.astype("float32") / 255

random_train_labels = train_labels[:]
np.random.shuffle(random_train_labels)

model = keras.Sequential([
 layers.Dense(512, activation="relu"),

Listing 5.4 Fitting an MNIST model with randomly shuffled labels

Figure 5.6 Effect of noise channels on validation accuracy

128 CHAPTER 5 Fundamentals of machine learning

 layers.Dense(10, activation="softmax")
])
model.compile(optimizer="rmsprop",
 loss="sparse_categorical_crossentropy",
 metrics=["accuracy"])
model.fit(train_images, random_train_labels,
 epochs=100,
 batch_size=128,
 validation_split=0.2)

In fact, you don’t even need to do this with MNIST data—you could just generate
white noise inputs and random labels. You could fit a model on that, too, as long as it
has enough parameters. It would just end up memorizing specific inputs, much like a
Python dictionary.

 If this is the case, then how come deep learning models generalize at all? Shouldn’t
they just learn an ad hoc mapping between training inputs and targets, like a fancy
dict? What expectation can we have that this mapping will work for new inputs?

 As it turns out, the nature of generalization in deep learning has rather little to do
with deep learning models themselves, and much to do with the structure of informa-
tion in the real world. Let’s take a look at what’s really going on here.

THE MANIFOLD HYPOTHESIS

The input to an MNIST classifier (before preprocessing) is a 28 × 28 array of integers
between 0 and 255. The total number of possible input values is thus 256 to the power
of 784—much greater than the number of atoms in the universe. However, very few of
these inputs would look like valid MNIST samples: actual handwritten digits only
occupy a tiny subspace of the parent space of all possible 28 × 28 uint8 arrays. What’s
more, this subspace isn’t just a set of points sprinkled at random in the parent space: it
is highly structured.

 First, the subspace of valid handwritten digits is continuous : if you take a sample
and modify it a little, it will still be recognizable as the same handwritten digit. Fur-
ther, all samples in the valid subspace are connected by smooth paths that run through
the subspace. This means that if you take two random MNIST digits A and B, there
exists a sequence of “intermediate” images that morph A into B, such that two consec-
utive digits are very close to each other (see figure 5.7). Perhaps there will be a few
ambiguous shapes close to the boundary between two classes, but even these shapes
would still look very digit-like.

 In technical terms, you would say that handwritten digits form a manifold within
the space of possible 28 × 28 uint8 arrays. That’s a big word, but the concept is pretty
intuitive. A “manifold” is a lower-dimensional subspace of some parent space that is
locally similar to a linear (Euclidian) space. For instance, a smooth curve in the plane
is a 1D manifold within a 2D space, because for every point of the curve, you can draw
a tangent (the curve can be approximated by a line at every point). A smooth surface
within a 3D space is a 2D manifold. And so on.

129Generalization: The goal of machine learning

More generally, the manifold hypothesis posits that all natural data lies on a low-dimen-
sional manifold within the high-dimensional space where it is encoded. That’s a pretty
strong statement about the structure of information in the universe. As far as we know,
it’s accurate, and it’s the reason why deep learning works. It’s true for MNIST digits,
but also for human faces, tree morphology, the sounds of the human voice, and even
natural language.

 The manifold hypothesis implies that

� Machine learning models only have to fit relatively simple, low-dimensional,
highly structured subspaces within their potential input space (latent mani-
folds).

� Within one of these manifolds, it’s always possible to interpolate between two
inputs, that is to say, morph one into another via a continuous path along which
all points fall on the manifold.

The ability to interpolate between samples is the key to understanding generalization
in deep learning.

INTERPOLATION AS A SOURCE OF GENERALIZATION

If you work with data points that can be interpolated, you can start making sense of
points you’ve never seen before by relating them to other points that lie close on the
manifold. In other words, you can make sense of the totality of the space using only a
sample of the space. You can use interpolation to fill in the blanks.

 Note that interpolation on the latent manifold is different from linear interpola-
tion in the parent space, as illustrated in figure 5.8. For instance, the average of pixels
between two MNIST digits is usually not a valid digit.

 Crucially, while deep learning achieves generalization via interpolation on a
learned approximation of the data manifold, it would be a mistake to assume that
interpolation is all there is to generalization. It’s the tip of the iceberg. Interpolation
can only help you make sense of things that are very close to what you’ve seen before:

Figure 5.7 Different MNIST digits gradually morphing into one another, showing that the space of
handwritten digits forms a “manifold.” This image was generated using code from chapter 12.

130 CHAPTER 5 Fundamentals of machine learning

it enables local generalization. But remarkably, humans deal with extreme novelty all the
time, and they do just fine. You don’t need to be trained in advance on countless
examples of every situation you’ll ever have to encounter. Every single one of your
days is different from any day you’ve experienced before, and different from any day
experienced by anyone since the dawn of humanity. You can switch between spending
a week in NYC, a week in Shanghai, and a week in Bangalore without requiring thou-
sands of lifetimes of learning and rehearsal for each city.

 Humans are capable of extreme generalization, which is enabled by cognitive mecha-
nisms other than interpolation: abstraction, symbolic models of the world, reasoning,
logic, common sense, innate priors about the world—what we generally call reason, as
opposed to intuition and pattern recognition. The latter are largely interpolative in
nature, but the former isn’t. Both are essential to intelligence. We’ll talk more about
this in chapter 14.

WHY DEEP LEARNING WORKS

Remember the crumpled paper ball metaphor from chapter 2? A sheet of paper rep-
resents a 2D manifold within 3D space (see figure 5.9). A deep learning model is a
tool for uncrumpling paper balls, that is, for disentangling latent manifolds.

A deep learning model is basically a very high-dimensional curve—a curve that is
smooth and continuous (with additional constraints on its structure, originating from
model architecture priors), since it needs to be differentiable. And that curve is fitted
to data points via gradient descent, smoothly and incrementally. By its very nature,
deep learning is about taking a big, complex curve—a manifold—and incrementally
adjusting its parameters until it fits some training data points.

Manifold interpolation
(intermediate point
on the latent manifold)

Linear interpolation
(average in the encoding space)

Figure 5.8 Difference between
linear interpolation and interpolation
on the latent manifold. Every point on
the latent manifold of digits is a valid
digit, but the average of two digits
usually isn’t.

Figure 5.9 Uncrumpling a
complicated manifold of data

131Generalization: The goal of machine learning

 The curve involves enough parameters that it could fit anything—indeed, if you let
your model train for long enough, it will effectively end up purely memorizing its
training data and won’t generalize at all. However, the data you’re fitting to isn’t made
of isolated points sparsely distributed across the underlying space. Your data forms a
highly structured, low-dimensional manifold within the input space—that’s the mani-
fold hypothesis. And because fitting your model curve to this data happens gradually
and smoothly over time as gradient descent progresses, there will be an intermediate
point during training at which the model roughly approximates the natural manifold
of the data, as you can see in figure 5.10.

Moving along the curve learned by the model at that point will come close to moving
along the actual latent manifold of the data—as such, the model will be capable of
making sense of never-before-seen inputs via interpolation between training inputs.

 Besides the trivial fact that they have sufficient representational power, there are a
few properties of deep learning models that make them particularly well-suited to
learning latent manifolds:

� Deep learning models implement a smooth, continuous mapping from their
inputs to their outputs. It has to be smooth and continuous because it must
be differentiable, by necessity (you couldn’t do gradient descent otherwise).

Before training:
the model starts

with a random initial state.

Final state: the model
overfits the training data,

reaching perfect training loss.

Beginning of training:
the model gradually

moves toward a better fit.

Test time: performance
of robustly fit model
on new data points

Further training: a robust
fit is achieved, transitively,
in the process of morphing

the model from its initial
state to its final state.

Test time: performance
of overfit model

on new data points

Figure 5.10 Going from a random model to an overfit model, and achieving a robust fit as an intermediate state

132 CHAPTER 5 Fundamentals of machine learning

This smoothness helps approximate latent manifolds, which follow the same
properties.

� Deep learning models tend to be structured in a way that mirrors the “shape” of
the information in their training data (via architecture priors). This is particu-
larly the case for image-processing models (discussed in chapters 8 and 9) and
sequence-processing models (chapter 10). More generally, deep neural net-
works structure their learned representations in a hierarchical and modular
way, which echoes the way natural data is organized.

TRAINING DATA IS PARAMOUNT

While deep learning is indeed well suited to manifold learning, the power to general-
ize is more a consequence of the natural structure of your data than a consequence of
any property of your model. You’ll only be able to generalize if your data forms a man-
ifold where points can be interpolated. The more informative and the less noisy your
features are, the better you will be able to generalize, since your input space will be
simpler and better structured. Data curation and feature engineering are essential to
generalization.

 Further, because deep learning is curve fitting, for a model to perform well it needs
to be trained on a dense sampling of its input space. A “dense sampling” in this context
means that the training data should densely cover the entirety of the input data
manifold (see figure 5.11). This is especially true near decision boundaries. With a
sufficiently dense sampling, it becomes possible to make sense of new inputs by inter-
polating between past training inputs without having to use common sense, abstract
reasoning, or external knowledge about the world—all things that machine learning
models have no access to.

Original latent space

Sparse sampling: the
model learned doesn’t
match the latent
space and leads to
incorrect interpolation.

Dense sampling:
the model learned
approximates the
latent space well,
and interpolation
leads to generalization.

Figure 5.11 A dense sampling of the input space is necessary in order to learn a model
capable of accurate generalization.

133Evaluating machine learning models

As such, you should always keep in mind that the best way to improve a deep learning
model is to train it on more data or better data (of course, adding overly noisy or inac-
curate data will harm generalization). A denser coverage of the input data manifold
will yield a model that generalizes better. You should never expect a deep learning
model to perform anything more than crude interpolation between its training sam-
ples, and thus you should do everything you can to make interpolation as easy as pos-
sible. The only thing you will find in a deep learning model is what you put into it: the
priors encoded in its architecture and the data it was trained on.

 When getting more data isn’t possible, the next best solution is to modulate the
quantity of information that your model is allowed to store, or to add constraints on
the smoothness of the model curve. If a network can only afford to memorize a small
number of patterns, or very regular patterns, the optimization process will force it to
focus on the most prominent patterns, which have a better chance of generalizing
well. The process of fighting overfitting this way is called regularization. We’ll review
regularization techniques in depth in section 5.4.4.

 Before you can start tweaking your model to help it generalize better, you’ll need a
way to assess how your model is currently doing. In the following section, you’ll learn
how you can monitor generalization during model development: model evaluation.

5.2 Evaluating machine learning models
You can only control what you can observe. Since your goal is to develop models that
can successfully generalize to new data, it’s essential to be able to reliably measure the
generalization power of your model. In this section, I’ll formally introduce the differ-
ent ways you can evaluate machine learning models. You’ve already seen most of them
in action in the previous chapter.

5.2.1 Training, validation, and test sets

Evaluating a model always boils down to splitting the available data into three sets:
training, validation, and test. You train on the training data and evaluate your model
on the validation data. Once your model is ready for prime time, you test it one final
time on the test data, which is meant to be as similar as possible to production data.
Then you can deploy the model in production.

 You may ask, why not have two sets: a training set and a test set? You’d train on the
training data and evaluate on the test data. Much simpler!

 The reason is that developing a model always involves tuning its configuration: for
example, choosing the number of layers or the size of the layers (called the hyperpa-
rameters of the model, to distinguish them from the parameters, which are the network’s
weights). You do this tuning by using as a feedback signal the performance of the
model on the validation data. In essence, this tuning is a form of learning: a search for
a good configuration in some parameter space. As a result, tuning the configuration
of the model based on its performance on the validation set can quickly result in over-
fitting to the validation set, even though your model is never directly trained on it.

134 CHAPTER 5 Fundamentals of machine learning

 Central to this phenomenon is the notion of information leaks. Every time you tune
a hyperparameter of your model based on the model’s performance on the validation
set, some information about the validation data leaks into the model. If you do this
only once, for one parameter, then very few bits of information will leak, and your val-
idation set will remain reliable for evaluating the model. But if you repeat this many
times—running one experiment, evaluating on the validation set, and modifying your
model as a result—then you’ll leak an increasingly significant amount of information
about the validation set into the model.

 At the end of the day, you’ll end up with a model that performs artificially well on
the validation data, because that’s what you optimized it for. You care about perfor-
mance on completely new data, not on the validation data, so you need to use a com-
pletely different, never-before-seen dataset to evaluate the model: the test dataset.
Your model shouldn’t have had access to any information about the test set, even indi-
rectly. If anything about the model has been tuned based on test set performance,
then your measure of generalization will be flawed.

 Splitting your data into training, validation, and test sets may seem straightforward,
but there are a few advanced ways to do it that can come in handy when little data is
available. Let’s review three classic evaluation recipes: simple holdout validation, K-fold
validation, and iterated K-fold validation with shuffling. We’ll also talk about the use
of common-sense baselines to check that your training is going somewhere.

SIMPLE HOLDOUT VALIDATION

Set apart some fraction of your data as your test set. Train on the remaining data, and
evaluate on the test set. As you saw in the previous sections, in order to prevent infor-
mation leaks, you shouldn’t tune your model based on the test set, and therefore you
should also reserve a validation set.

 Schematically, holdout validation looks like figure 5.12. Listing 5.5 shows a simple
implementation.

num_validation_samples = 10000
np.random.shuffle(data)

Listing 5.5 Holdout validation (note that labels are omitted for simplicity)

Training set

Total available labeled data

Train on this Evaluate
on this

Held-out
validation

set

Figure 5.12 Simple
holdout validation split

Shuffling the data is
usually appropriate.

135Evaluating machine learning models

validation_data = data[:num_validation_samples]
training_data = data[num_validation_samples:]
model = get_model()
model.fit(training_data, ...)
validation_score = model.evaluate(validation_data, ...)

...

model = get_model()
model.fit(np.concatenate([training_data,

validation_data]), ...)
test_score = model.evaluate(test_data, ...)

This is the simplest evaluation protocol, and it suffers from one flaw: if little data is
available, then your validation and test sets may contain too few samples to be statisti-
cally representative of the data at hand. This is easy to recognize: if different random
shuffling rounds of the data before splitting end up yielding very different measures
of model performance, then you’re having this issue. K-fold validation and iterated
K-fold validation are two ways to address this, as discussed next.

K-FOLD VALIDATION

With this approach, you split your data into K partitions of equal size. For each parti-
tion i, train a model on the remaining K - 1 partitions, and evaluate it on partition i.
Your final score is then the averages of the K scores obtained. This method is helpful
when the performance of your model shows significant variance based on your train-
test split. Like holdout validation, this method doesn’t exempt you from using a dis-
tinct validation set for model calibration.

 Schematically, K-fold cross-validation looks like figure 5.13. Listing 5.6 shows a sim-
ple implementation.

Defines the
validation

set

Defines the training set

Trains a model on the
training data, and evaluates
it on the validation data

At this point you can tune your model,
retrain it, evaluate it, tune it again.

Once you’ve tuned your
hyperparameters, it’s common to
train your final model from scratch
on all non-test data available.

Data split into 3 partitions

Validation Training Training
Validation
score #1

Fold 1

Training Validation Training
Validation
score #2

Final score:
average

Fold 2

Training Training Validation
Validation
score #3

Fold 3

Figure 5.13 K-fold cross-validation with K=3

136 CHAPTER 5 Fundamentals of machine learning

k = 3
num_validation_samples = len(data) // k
np.random.shuffle(data)
validation_scores = []
for fold in range(k):

validation_data = data[num_validation_samples * fold:
 num_validation_samples * (fold + 1)]

training_data = np.concatenate(
data[:num_validation_samples * fold],

 data[num_validation_samples * (fold + 1):])
model = get_model()
model.fit(training_data, ...)
validation_score = model.evaluate(validation_data, ...)
validation_scores.append(validation_score)

validation_score = np.average(validation_scores)
model = get_model()
model.fit(data, ...)
test_score = model.evaluate(test_data, ...)

ITERATED K-FOLD VALIDATION WITH SHUFFLING

This one is for situations in which you have relatively little data available and you need
to evaluate your model as precisely as possible. I’ve found it to be extremely helpful in
Kaggle competitions. It consists of applying K-fold validation multiple times, shuffling
the data every time before splitting it K ways. The final score is the average of the
scores obtained at each run of K-fold validation. Note that you end up training and
evaluating P * K models (where P is the number of iterations you use), which can be
very expensive.

5.2.2 Beating a common-sense baseline

Besides the different evaluation protocols you have available, one last thing you
should know about is the use of common-sense baselines.

 Training a deep learning model is a bit like pressing a button that launches a
rocket in a parallel world. You can’t hear it or see it. You can’t observe the manifold
learning process—it’s happening in a space with thousands of dimensions, and even if
you projected it to 3D, you couldn’t interpret it. The only feedback you have is your
validation metrics—like an altitude meter on your invisible rocket.

 It’s particularly important to be able to tell whether you’re getting off the ground
at all. What was the altitude you started at? Your model seems to have an accuracy of
15%—is that any good? Before you start working with a dataset, you should always pick
a trivial baseline that you’ll try to beat. If you cross that threshold, you’ll know you’re
doing something right: your model is actually using the information in the input data
to make predictions that generalize, and you can keep going. This baseline could be

Listing 5.6 K-fold cross-validation (note that labels are omitted for simplicity)

Selects the
validation-
data partition

Uses the remainder of the data as training
data. Note that the + operator represents
list concatenation, not summation.

Creates a brand-new
instance of the model
(untrained)

Validation score:
average of the validation
scores of the k folds

Trains the final
model on all non-
test data available

137Evaluating machine learning models

the performance of a random classifier, or the performance of the simplest non-
machine learning technique you can imagine.

 For instance, in the MNIST digit-classification example, a simple baseline would be
a validation accuracy greater than 0.1 (random classifier); in the IMDB example, it
would be a validation accuracy greater than 0.5. In the Reuters example, it would be
around 0.18-0.19, due to class imbalance. If you have a binary classification problem
where 90% of samples belong to class A and 10% belong to class B, then a classifier
that always predicts A already achieves 0.9 in validation accuracy, and you’ll need to do
better than that.

 Having a common-sense baseline you can refer to is essential when you’re getting
started on a problem no one has solved before. If you can’t beat a trivial solution, your
model is worthless—perhaps you’re using the wrong model, or perhaps the problem
you’re tackling can’t even be approached with machine learning in the first place.
Time to go back to the drawing board.

5.2.3 Things to keep in mind about model evaluation

Keep an eye out for the following when you’re choosing an evaluation protocol:

� Data representativeness—You want both your training set and test set to be rep-
resentative of the data at hand. For instance, if you’re trying to classify images
of digits, and you’re starting from an array of samples where the samples are
ordered by their class, taking the first 80% of the array as your training set
and the remaining 20% as your test set will result in your training set contain-
ing only classes 0–7, whereas your test set will contain only classes 8–9. This
seems like a ridiculous mistake, but it’s surprisingly common. For this reason,
you usually should randomly shuffle your data before splitting it into training
and test sets.

� The arrow of time—If you’re trying to predict the future given the past (for exam-
ple, tomorrow’s weather, stock movements, and so on), you should not ran-
domly shuffle your data before splitting it, because doing so will create a
temporal leak : your model will effectively be trained on data from the future. In
such situations, you should always make sure all data in your test set is posterior
to the data in the training set.

� Redundancy in your data—If some data points in your data appear twice (fairly
common with real-world data), then shuffling the data and splitting it into a
training set and a validation set will result in redundancy between the training
and validation sets. In effect, you’ll be testing on part of your training data,
which is the worst thing you can do! Make sure your training set and validation
set are disjoint.

Having a reliable way to evaluate the performance of your model is how you’ll be able
to monitor the tension at the heart of machine learning—between optimization and
generalization, underfitting and overfitting.

138 CHAPTER 5 Fundamentals of machine learning

5.3 Improving model fit
To achieve the perfect fit, you must first overfit. Since you don’t know in advance
where the boundary lies, you must cross it to find it. Thus, your initial goal as you start
working on a problem is to achieve a model that shows some generalization power
and that is able to overfit. Once you have such a model, you’ll focus on refining gener-
alization by fighting overfitting.

 There are three common problems you’ll encounter at this stage:

� Training doesn’t get started: your training loss doesn’t go down over time.
� Training gets started just fine, but your model doesn’t meaningfully generalize:

you can’t beat the common-sense baseline you set.
� Training and validation loss both go down over time, and you can beat your

baseline, but you don’t seem to be able to overfit, which indicates you’re still
underfitting.

Let’s see how you can address these issues to achieve the first big milestone of a
machine learning project: getting a model that has some generalization power (it can
beat a trivial baseline) and that is able to overfit.

5.3.1 Tuning key gradient descent parameters

Sometimes training doesn’t get started, or it stalls too early. Your loss is stuck. This is
always something you can overcome: remember that you can fit a model to random
data. Even if nothing about your problem makes sense, you should still be able to train
something—if only by memorizing the training data.

 When this happens, it’s always a problem with the configuration of the gradient
descent process: your choice of optimizer, the distribution of initial values in the
weights of your model, your learning rate, or your batch size. All these parameters are
interdependent, and as such it is usually sufficient to tune the learning rate and the
batch size while keeping the rest of the parameters constant.

 Let’s look at a concrete example: let’s train the MNIST model from chapter 2 with
an inappropriately large learning rate of value 1.

(train_images, train_labels), _ = mnist.load_data()
train_images = train_images.reshape((60000, 28 * 28))
train_images = train_images.astype("float32") / 255

model = keras.Sequential([
 layers.Dense(512, activation="relu"),
 layers.Dense(10, activation="softmax")
])
model.compile(optimizer=keras.optimizers.RMSprop(1.),
 loss="sparse_categorical_crossentropy",
 metrics=["accuracy"])
model.fit(train_images, train_labels,
 epochs=10,

Listing 5.7 Training an MNIST model with an incorrectly high learning rate

139Improving model fit

 batch_size=128,
 validation_split=0.2)

The model quickly reaches a training and validation accuracy in the 30%–40% range,
but cannot get past that. Let’s try to lower the learning rate to a more reasonable value
of 1e-2.

model = keras.Sequential([
 layers.Dense(512, activation="relu"),
 layers.Dense(10, activation="softmax")
])
model.compile(optimizer=keras.optimizers.RMSprop(1e-2),
 loss="sparse_categorical_crossentropy",
 metrics=["accuracy"])
model.fit(train_images, train_labels,
 epochs=10,
 batch_size=128,
 validation_split=0.2)

The model is now able to train.
 If you find yourself in a similar situation, try

� Lowering or increasing the learning rate. A learning rate that is too high may
lead to updates that vastly overshoot a proper fit, like in the preceding example,
and a learning rate that is too low may make training so slow that it appears
to stall.

� Increasing the batch size. A batch with more samples will lead to gradients that
are more informative and less noisy (lower variance).

You will, eventually, find a configuration that gets training started.

5.3.2 Leveraging better architecture priors

You have a model that fits, but for some reason your validation metrics aren’t improv-
ing at all. They remain no better than what a random classifier would achieve: your
model trains but doesn’t generalize. What’s going on?

 This is perhaps the worst machine learning situation you can find yourself in. It
indicates that something is fundamentally wrong with your approach, and it may not be easy
to tell what. Here are some tips.

 First, it may be that the input data you’re using simply doesn’t contain sufficient
information to predict your targets: the problem as formulated is not solvable. This is
what happened earlier when we tried to fit an MNIST model where the labels were
shuffled: the model would train just fine, but validation accuracy would stay stuck at
10%, because it was plainly impossible to generalize with such a dataset.

 It may also be that the kind of model you’re using is not suited for the problem at
hand. For instance, in chapter 10, you’ll see an example of a timeseries prediction

Listing 5.8 The same model with a more appropriate learning rate

140 CHAPTER 5 Fundamentals of machine learning

problem where a densely connected architecture isn’t able to beat a trivial baseline,
whereas a more appropriate recurrent architecture does manage to generalize well.
Using a model that makes the right assumptions about the problem is essential to
achieve generalization: you should leverage the right architecture priors.

 In the following chapters, you’ll learn about the best architectures to use for a vari-
ety of data modalities—images, text, timeseries, and so on. In general, you should
always make sure to read up on architecture best practices for the kind of task you’re
attacking—chances are you’re not the first person to attempt it.

5.3.3 Increasing model capacity

If you manage to get to a model that fits, where validation metrics are going down,
and that seems to achieve at least some level of generalization power, congratulations:
you’re almost there. Next, you need to get your model to start overfitting.

 Consider the following small model—a simple logistic regression—trained on MNIST
pixels.

model = keras.Sequential([layers.Dense(10, activation="softmax")])
model.compile(optimizer="rmsprop",
 loss="sparse_categorical_crossentropy",
 metrics=["accuracy"])
history_small_model = model.fit(
 train_images, train_labels,
 epochs=20,
 batch_size=128,
 validation_split=0.2)

You get loss curves that look like figure 5.14:

import matplotlib.pyplot as plt
val_loss = history_small_model.history["val_loss"]
epochs = range(1, 21)
plt.plot(epochs, val_loss, "b--",
 label="Validation loss")
plt.title("Effect of insufficient model capacity on validation loss")
plt.xlabel("Epochs")
plt.ylabel("Loss")
plt.legend()

Validation metrics seem to stall, or to improve very slowly, instead of peaking and
reversing course. The validation loss goes to 0.26 and just stays there. You can fit, but
you can’t clearly overfit, even after many iterations over the training data. You’re likely
to encounter similar curves often in your career.

 Remember that it should always be possible to overfit. Much like the problem
where the training loss doesn’t go down, this is an issue that can always be solved. If

Listing 5.9 A simple logistic regression on MNIST

141Improving model fit

you can’t seem to be able to overfit, it’s likely a problem with the representational
power of your model: you’re going to need a bigger model, one with more capacity,
that is to say, one able to store more information. You can increase representational
power by adding more layers, using bigger layers (layers with more parameters), or
using kinds of layers that are more appropriate for the problem at hand (better
architecture priors).

 Let’s try training a bigger model, one with two intermediate layers with 96 units
each:

model = keras.Sequential([
 layers.Dense(96, activation="relu"),
 layers.Dense(96, activation="relu"),
 layers.Dense(10, activation="softmax"),
])
model.compile(optimizer="rmsprop",
 loss="sparse_categorical_crossentropy",
 metrics=["accuracy"])
history_large_model = model.fit(
 train_images, train_labels,
 epochs=20,
 batch_size=128,
 validation_split=0.2)

The validation curve now looks exactly like it should: the model fits fast and starts
overfitting after 8 epochs (see figure 5.15).

Figure 5.14 Effect of insufficient model capacity on loss curves

142 CHAPTER 5 Fundamentals of machine learning

5.4 Improving generalization
Once your model has shown itself to have some generalization power and to be able
to overfit, it’s time to switch your focus to maximizing generalization.

5.4.1 Dataset curation

You’ve already learned that generalization in deep learning originates from the latent
structure of your data. If your data makes it possible to smoothly interpolate between
samples, you will be able to train a deep learning model that generalizes. If your prob-
lem is overly noisy or fundamentally discrete, like, say, list sorting, deep learning will
not help you. Deep learning is curve fitting, not magic.

 As such, it is essential that you make sure that you’re working with an appropriate
dataset. Spending more effort and money on data collection almost always yields a much
greater return on investment than spending the same on developing a better model.

� Make sure you have enough data. Remember that you need a dense sampling of
the input-cross-output space. More data will yield a better model. Sometimes,
problems that seem impossible at first become solvable with a larger dataset.

� Minimize labeling errors—visualize your inputs to check for anomalies, and
proofread your labels.

� Clean your data and deal with missing values (we’ll cover this in the next chapter).
� If you have many features and you aren’t sure which ones are actually useful, do

feature selection.

A particularly important way to improve the generalization potential of your data is
feature engineering. For most machine learning problems, feature engineering is a key
ingredient for success. Let’s take a look.

Figure 5.15 Validation loss for a model with appropriate capacity

143Improving generalization

5.4.2 Feature engineering

Feature engineering is the process of using your own knowledge about the data and about
the machine learning algorithm at hand (in this case, a neural network) to make the
algorithm work better by applying hardcoded (non-learned) transformations to the
data before it goes into the model. In many cases, it isn’t reasonable to expect a
machine learning model to be able to learn from completely arbitrary data. The data
needs to be presented to the model in a way that will make the model’s job easier.

 Let’s look at an intuitive example. Suppose you’re trying to develop a model that
can take as input an image of a clock and can output the time of day (see figure 5.16).

If you choose to use the raw pixels of the image as input data, you have a difficult
machine learning problem on your hands. You’ll need a convolutional neural net-
work to solve it, and you’ll have to expend quite a bit of computational resources to
train the network.

 But if you already understand the problem at a high level (you understand how
humans read time on a clock face), you can come up with much better input features
for a machine learning algorithm: for instance, it’s easy to write a five-line Python
script to follow the black pixels of the clock hands and output the (x, y) coordinates
of the tip of each hand. Then a simple machine learning algorithm can learn to asso-
ciate these coordinates with the appropriate time of day.

 You can go even further: do a coordinate change, and express the (x, y) coordi-
nates as polar coordinates with regard to the center of the image. Your input will
become the angle theta of each clock hand. At this point, your features are making
the problem so easy that no machine learning is required; a simple rounding opera-
tion and dictionary lookup are enough to recover the approximate time of day.

 That’s the essence of feature engineering: making a problem easier by expressing
it in a simpler way. Make the latent manifold smoother, simpler, better organized.
Doing so usually requires understanding the problem in depth.

Raw data:
pixel grid

Better
features:
clock hands’
coordinates

{x1: 0.7,
y1: 0.7}
{x2: 0.5,
y2: 0.0}

{x1: 0.0,
y2: 1.0}

{x2: -0.38,
y2: 0.32}

Even better
features:
angles of
clock hands

theta1: 45
theta2: 0

theta1: 90
theta2: 140

Figure 5.16 Feature engineering
for reading the time on a clock

144 CHAPTER 5 Fundamentals of machine learning

 Before deep learning, feature engineering used to be the most important part of
the machine learning workflow, because classical shallow algorithms didn’t have
hypothesis spaces rich enough to learn useful features by themselves. The way you pre-
sented the data to the algorithm was absolutely critical to its success. For instance,
before convolutional neural networks became successful on the MNIST digit-classifi-
cation problem, solutions were typically based on hardcoded features such as the
number of loops in a digit image, the height of each digit in an image, a histogram of
pixel values, and so on.

 Fortunately, modern deep learning removes the need for most feature engineer-
ing, because neural networks are capable of automatically extracting useful features
from raw data. Does this mean you don’t have to worry about feature engineering as
long as you’re using deep neural networks? No, for two reasons:

� Good features still allow you to solve problems more elegantly while using fewer
resources. For instance, it would be ridiculous to solve the problem of reading a
clock face using a convolutional neural network.

� Good features let you solve a problem with far less data. The ability of deep
learning models to learn features on their own relies on having lots of training
data available; if you have only a few samples, the information value in their fea-
tures becomes critical.

5.4.3 Using early stopping

In deep learning, we always use models that are vastly overparameterized: they have
way more degrees of freedom than the minimum necessary to fit to the latent mani-
fold of the data. This overparameterization is not an issue, because you never fully fit a
deep learning model. Such a fit wouldn’t generalize at all. You will always interrupt train-
ing long before you’ve reached the minimum possible training loss.

 Finding the exact point during training where you’ve reached the most generaliz-
able fit—the exact boundary between an underfit curve and an overfit curve—is one
of the most effective things you can do to improve generalization.

 In the examples in the previous chapter, we would start by training our models for
longer than needed to figure out the number of epochs that yielded the best valida-
tion metrics, and then we would retrain a new model for exactly that number of
epochs. This is pretty standard, but it requires you to do redundant work, which can
sometimes be expensive. Naturally, you could just save your model at the end of each
epoch, and once you’ve found the best epoch, reuse the closest saved model you have.
In Keras, it’s typical to do this with an EarlyStopping callback, which will interrupt
training as soon as validation metrics have stopped improving, while remembering the
best known model state. You’ll learn to use callbacks in chapter 7.

145Improving generalization

5.4.4 Regularizing your model

Regularization techniques are a set of best practices that actively impede the model’s abil-
ity to fit perfectly to the training data, with the goal of making the model perform bet-
ter during validation. This is called “regularizing” the model, because it tends to make
the model simpler, more “regular,” its curve smoother, more “generic”; thus it is less
specific to the training set and better able to generalize by more closely approximat-
ing the latent manifold of the data.

 Keep in mind that regularizing a model is a process that should always be guided
by an accurate evaluation procedure. You will only achieve generalization if you can
measure it.

 Let’s review some of the most common regularization techniques and apply them
in practice to improve the movie-classification model from chapter 4.

REDUCING THE NETWORK’S SIZE

You’ve already learned that a model that is too small will not overfit. The simplest way
to mitigate overfitting is to reduce the size of the model (the number of learnable
parameters in the model, determined by the number of layers and the number of
units per layer). If the model has limited memorization resources, it won’t be able to
simply memorize its training data; thus, in order to minimize its loss, it will have to
resort to learning compressed representations that have predictive power regarding
the targets—precisely the type of representations we’re interested in. At the same
time, keep in mind that you should use models that have enough parameters that they
don’t underfit: your model shouldn’t be starved for memorization resources. There is
a compromise to be found between too much capacity and not enough capacity.

 Unfortunately, there is no magical formula to determine the right number of layers
or the right size for each layer. You must evaluate an array of different architectures (on
your validation set, not on your test set, of course) in order to find the correct model
size for your data. The general workflow for finding an appropriate model size is to start
with relatively few layers and parameters, and increase the size of the layers or add new
layers until you see diminishing returns with regard to validation loss.

 Let’s try this on the movie-review classification model. The following listing shows
our original model.

from tensorflow.keras.datasets import imdb
(train_data, train_labels), _ = imdb.load_data(num_words=10000)

def vectorize_sequences(sequences, dimension=10000):
 results = np.zeros((len(sequences), dimension))
 for i, sequence in enumerate(sequences):
 results[i, sequence] = 1.
 return results
train_data = vectorize_sequences(train_data)

Listing 5.10 Original model

146 CHAPTER 5 Fundamentals of machine learning

model = keras.Sequential([
 layers.Dense(16, activation="relu"),
 layers.Dense(16, activation="relu"),
 layers.Dense(1, activation="sigmoid")
])
model.compile(optimizer="rmsprop",
 loss="binary_crossentropy",
 metrics=["accuracy"])
history_original = model.fit(train_data, train_labels,
 epochs=20, batch_size=512, validation_split=0.4)

Now let’s try to replace it with this smaller model.

model = keras.Sequential([
 layers.Dense(4, activation="relu"),
 layers.Dense(4, activation="relu"),
 layers.Dense(1, activation="sigmoid")
])
model.compile(optimizer="rmsprop",
 loss="binary_crossentropy",
 metrics=["accuracy"])
history_smaller_model = model.fit(
 train_data, train_labels,
 epochs=20, batch_size=512, validation_split=0.4)

Figure 5.17 shows a comparison of the validation losses of the original model and the
smaller model.

Listing 5.11 Version of the model with lower capacity

Figure 5.17 Original model vs. smaller model on IMDB review classification

147Improving generalization

As you can see, the smaller model starts overfitting later than the reference model
(after six epochs rather than four), and its performance degrades more slowly once it
starts overfitting.

 Now, let’s add to our benchmark a model that has much more capacity—far more
than the problem warrants. While it is standard to work with models that are signifi-
cantly overparameterized for what they’re trying to learn, there can definitely be such
a thing as too much memorization capacity. You’ll know your model is too large if it
starts overfitting right away and if its validation loss curve looks choppy with high-
variance (although choppy validation metrics could also be a symptom of using an
unreliable validation process, such as a validation split that’s too small).

model = keras.Sequential([
 layers.Dense(512, activation="relu"),
 layers.Dense(512, activation="relu"),
 layers.Dense(1, activation="sigmoid")
])
model.compile(optimizer="rmsprop",
 loss="binary_crossentropy",
 metrics=["accuracy"])
history_larger_model = model.fit(
 train_data, train_labels,
 epochs=20, batch_size=512, validation_split=0.4)

Figure 5.18 shows how the bigger model fares compared with the reference model.

Listing 5.12 Version of the model with higher capacity

Figure 5.18 Original model vs. much larger model on IMDB review
classification

148 CHAPTER 5 Fundamentals of machine learning

The bigger model starts overfitting almost immediately, after just one epoch, and it
overfits much more severely. Its validation loss is also noisier. It gets training loss near
zero very quickly. The more capacity the model has, the more quickly it can model the
training data (resulting in a low training loss), but the more susceptible it is to overfit-
ting (resulting in a large difference between the training and validation loss).

ADDING WEIGHT REGULARIZATION

You may be familiar with the principle of Occam’s razor : given two explanations for
something, the explanation most likely to be correct is the simplest one—the one that
makes fewer assumptions. This idea also applies to the models learned by neural net-
works: given some training data and a network architecture, multiple sets of weight
values (multiple models) could explain the data. Simpler models are less likely to over-
fit than complex ones.

 A simple model in this context is a model where the distribution of parameter values
has less entropy (or a model with fewer parameters, as you saw in the previous sec-
tion). Thus, a common way to mitigate overfitting is to put constraints on the com-
plexity of a model by forcing its weights to take only small values, which makes the
distribution of weight values more regular. This is called weight regularization, and it’s
done by adding to the loss function of the model a cost associated with having large
weights. This cost comes in two flavors:

� L1 regularization—The cost added is proportional to the absolute value of the
weight coefficients (the L1 norm of the weights).

� L2 regularization—The cost added is proportional to the square of the value of the
weight coefficients (the L2 norm of the weights). L2 regularization is also called
weight decay in the context of neural networks. Don’t let the different name con-
fuse you: weight decay is mathematically the same as L2 regularization.

In Keras, weight regularization is added by passing weight regularizer instances to layers
as keyword arguments. Let’s add L2 weight regularization to our initial movie-review
classification model.

from tensorflow.keras import regularizers
model = keras.Sequential([
 layers.Dense(16,
 kernel_regularizer=regularizers.l2(0.002),
 activation="relu"),
 layers.Dense(16,
 kernel_regularizer=regularizers.l2(0.002),
 activation="relu"),
 layers.Dense(1, activation="sigmoid")
])
model.compile(optimizer="rmsprop",
 loss="binary_crossentropy",
 metrics=["accuracy"])

Listing 5.13 Adding L2 weight regularization to the model

149Improving generalization

history_l2_reg = model.fit(
 train_data, train_labels,
 epochs=20, batch_size=512, validation_split=0.4)

In the preceding listing, l2(0.002) means every coefficient in the weight matrix of
the layer will add 0.002 * weight_coefficient_value ** 2 to the total loss of the
model. Note that because this penalty is only added at training time, the loss for this
model will be much higher at training than at test time.

 Figure 5.19 shows the impact of the L2 regularization penalty. As you can see, the
model with L2 regularization has become much more resistant to overfitting than the
reference model, even though both models have the same number of parameters.

As an alternative to L2 regularization, you can use one of the following Keras weight
regularizers.

from tensorflow.keras import regularizers
regularizers.l1(0.001)
regularizers.l1_l2(l1=0.001, l2=0.001)

Note that weight regularization is more typically used for smaller deep learning mod-
els. Large deep learning models tend to be so overparameterized that imposing con-
straints on weight values hasn’t much impact on model capacity and generalization. In
these cases, a different regularization technique is preferred: dropout.

Listing 5.14 Different weight regularizers available in Keras

Figure 5.19 Effect of L2 weight regularization on validation loss

L1 regularization

Simultaneous L1 and
L2 regularization

150 CHAPTER 5 Fundamentals of machine learning

ADDING DROPOUT

Dropout is one of the most effective and most commonly used regularization tech-
niques for neural networks; it was developed by Geoff Hinton and his students at the
University of Toronto. Dropout, applied to a layer, consists of randomly dropping out
(setting to zero) a number of output features of the layer during training. Let’s say a
given layer would normally return a vector [0.2, 0.5, 1.3, 0.8, 1.1] for a given
input sample during training. After applying dropout, this vector will have a few zero
entries distributed at random: for example, [0, 0.5, 1.3, 0, 1.1]. The dropout rate
is the fraction of the features that are zeroed out; it’s usually set between 0.2 and 0.5.
At test time, no units are dropped out; instead, the layer’s output values are scaled
down by a factor equal to the dropout rate, to balance for the fact that more units are
active than at training time.

 Consider a NumPy matrix containing the output of a layer, layer_output, of
shape (batch_size, features). At training time, we zero out at random a fraction of
the values in the matrix:

layer_output *= np.random.randint(0, high=2, size=layer_output.shape)

At test time, we scale down the output by the dropout rate. Here, we scale by 0.5
(because we previously dropped half the units):

layer_output *= 0.5

Note that this process can be implemented by doing both operations at training time
and leaving the output unchanged at test time, which is often the way it’s imple-
mented in practice (see figure 5.20):

layer_output *= np.random.randint(0, high=2, size=layer_output.shape)
layer_output /= 0.5

This technique may seem strange and arbitrary. Why would this help reduce overfit-
ting? Hinton says he was inspired by, among other things, a fraud-prevention mecha-
nism used by banks. In his own words, “I went to my bank. The tellers kept changing
and I asked one of them why. He said he didn’t know but they got moved around a lot.

At training time, drops out 50% of the units in the output

At test time

At training time

Note that we’re scaling up rather
than scaling down in this case.

0.3

* 2

0.6

0.2

0.7

0.2

0.1

1.9

0.5

1.5

0.0

0.3

1.0

0.0

0.3

1.2

0.0

0.0

50%
dropout 0.6

0.0

0.7

0.2

0.1

1.9

0.0

1.5

0.0

0.3

0.0

0.0

0.3

0.0

0.0

Figure 5.20 Dropout applied to
an activation matrix at training
time, with rescaling happening
during training. At test time the
activation matrix is unchanged.

151Improving generalization

I figured it must be because it would require cooperation between employees to suc-
cessfully defraud the bank. This made me realize that randomly removing a different
subset of neurons on each example would prevent conspiracies and thus reduce over-
fitting.” The core idea is that introducing noise in the output values of a layer can
break up happenstance patterns that aren’t significant (what Hinton refers to as con-
spiracies), which the model will start memorizing if no noise is present.

 In Keras, you can introduce dropout in a model via the Dropout layer, which is
applied to the output of the layer right before it. Let’s add two Dropout layers in the
IMDB model to see how well they do at reducing overfitting.

model = keras.Sequential([
 layers.Dense(16, activation="relu"),
 layers.Dropout(0.5),
 layers.Dense(16, activation="relu"),
 layers.Dropout(0.5),
 layers.Dense(1, activation="sigmoid")
])
model.compile(optimizer="rmsprop",
 loss="binary_crossentropy",
 metrics=["accuracy"])
history_dropout = model.fit(
 train_data, train_labels,
 epochs=20, batch_size=512, validation_split=0.4)

Figure 5.21 shows a plot of the results. This is a clear improvement over the reference
model—it also seems to be working much better than L2 regularization, since the low-
est validation loss reached has improved.

Listing 5.15 Adding dropout to the IMDB model

Figure 5.21 Effect of dropout on validation loss

152 CHAPTER 5 Fundamentals of machine learning

To recap, these are the most common ways to maximize generalization and prevent
overfitting in neural networks:

� Get more training data, or better training data.
� Develop better features.
� Reduce the capacity of the model.
� Add weight regularization (for smaller models).
� Add dropout.

Summary
� The purpose of a machine learning model is to generalize: to perform accurately

on never-before-seen inputs. It’s harder than it seems.
� A deep neural network achieves generalization by learning a parametric model

that can successfully interpolate between training samples—such a model can be
said to have learned the “latent manifold” of the training data. This is why deep
learning models can only make sense of inputs that are very close to what
they’ve seen during training.

� The fundamental problem in machine learning is the tension between optimization
and generalization: to attain generalization, you must first achieve a good fit to
the training data, but improving your model’s fit to the training data will inevi-
tably start hurting generalization after a while. Every single deep learning best
practice deals with managing this tension.

� The ability of deep learning models to generalize comes from the fact that they
manage to learn to approximate the latent manifold of their data, and can thus
make sense of new inputs via interpolation.

� It’s essential to be able to accurately evaluate the generalization power of your
model while you’re developing it. You have at your disposal an array of evalua-
tion methods, from simple holdout validation to K-fold cross-validation and
iterated K-fold cross-validation with shuffling. Remember to always keep a com-
pletely separate test set for final model evaluation, since information leaks from
your validation data to your model may have occurred.

� When you start working on a model, your goal is first to achieve a model that
has some generalization power and that can overfit. Best practices for doing
this include tuning your learning rate and batch size, leveraging better architec-
ture priors, increasing model capacity, or simply training longer.

� As your model starts overfitting, your goal switches to improving generalization
through model regularization. You can reduce your model’s capacity, add dropout
or weight regularization, and use early stopping. And naturally, a larger or bet-
ter dataset is always the number one way to help a model generalize.

153

The universal workflow
of machine learning

Our previous examples have assumed that we already had a labeled dataset to start
from, and that we could immediately start training a model. In the real world, this
is often not the case. You don’t start from a dataset, you start from a problem.

 Imagine that you’re starting your own machine learning consulting shop. You
incorporate, you put up a fancy website, you notify your network. The projects start
rolling in:

� A personalized photo search engine for a picture-sharing social network—
type in “wedding” and retrieve all the pictures you took at weddings, without
any manual tagging needed.

� Flagging spam and offensive text content among the posts of a budding
chat app.

� Building a music recommendation system for users of an online radio.
� Detecting credit card fraud for an e-commerce website.

This chapter covers
� Steps for framing a machine learning problem
� Steps for developing a working model
� Steps for deploying your model in production and

maintaining it

154 CHAPTER 6 The universal workflow of machine learning

� Predicting display ad click-through rate to decide which ad to serve to a given
user at a given time.

� Flagging anomalous cookies on the conveyor belt of a cookie-manufacturing line.
� Using satellite images to predict the location of as-yet unknown archeological sites.

It would be very convenient if you could import the correct dataset from keras.data-
sets and start fitting some deep learning models. Unfortunately, in the real world
you’ll have to start from scratch.

 In this chapter, you’ll learn about a universal step-by-step blueprint that you can
use to approach and solve any machine learning problem, like those in the previous
list. This template will bring together and consolidate everything you’ve learned in
chapters 4 and 5, and will give you the wider context that should anchor what you’ll
learn in the next chapters.

 The universal workflow of machine learning is broadly structured in three parts:

1 Define the task—Understand the problem domain and the business logic under-
lying what the customer asked for. Collect a dataset, understand what the data
represents, and choose how you will measure success on the task.

2 Develop a model—Prepare your data so that it can be processed by a machine
learning model, select a model evaluation protocol and a simple baseline to
beat, train a first model that has generalization power and that can overfit, and
then regularize and tune your model until you achieve the best possible gener-
alization performance.

3 Deploy the model—Present your work to stakeholders, ship the model to a web
server, a mobile app, a web page, or an embedded device, monitor the model’s

Note on ethics
You may sometimes be offered ethically dubious projects, such as “building an AI
that rates the trustworthiness of someone from a picture of their face.” First of all,
the validity of the project is in doubt: it isn’t clear why trustworthiness would be
reflected on someone’s face. Second, such a task opens the door to all kinds of eth-
ical problems. Collecting a dataset for this task would amount to recording the biases
and prejudices of the people who label the pictures. The models you would train on
such data would merely encode these same biases into a black-box algorithm that
would give them a thin veneer of legitimacy. In a largely tech-illiterate society like
ours, “the AI algorithm said this person cannot be trusted” strangely appears to carry
more weight and objectivity than “John Smith said this person cannot be trusted,”
despite the former being a learned approximation of the latter. Your model would be
laundering and operationalizing at scale the worst aspects of human judgement, with
negative effects on the lives of real people.

Technology is never neutral. If your work has any impact on the world, this impact has
a moral direction: technical choices are also ethical choices. Always be deliberate
about the values you want your work to support.

155Define the task

performance in the wild, and start collecting the data you’ll need to build the
next-generation model.

Let’s dive in.

6.1 Define the task
You can’t do good work without a deep understanding of the context of what you’re
doing. Why is your customer trying to solve this particular problem? What value will
they derive from the solution—how will your model be used, and how will it fit into
your customer’s business processes? What kind of data is available, or could be col-
lected? What kind of machine learning task can be mapped to the business problem?

6.1.1 Frame the problem

Framing a machine learning problem usually involves many detailed discussions with
stakeholders. Here are the questions that should be on the top of your mind:

� What will your input data be? What are you trying to predict? You can only
learn to predict something if you have training data available: for example,
you can only learn to classify the sentiment of movie reviews if you have both
movie reviews and sentiment annotations available. As such, data availability
is usually the limiting factor at this stage. In many cases, you will have to
resort to collecting and annotating new datasets yourself (which we’ll cover
in the next section).

� What type of machine learning task are you facing? Is it binary classification?
Multiclass classification? Scalar regression? Vector regression? Multiclass, multi-
label classification? Image segmentation? Ranking? Something else, like cluster-
ing, generation, or reinforcement learning? In some cases, it may be that
machine learning isn’t even the best way to make sense of the data, and you
should use something else, such as plain old-school statistical analysis.
– The photo search engine project is a multiclass, multilabel classification task.
– The spam detection project is a binary classification task. If you set “offensive

content” as a separate class, it’s a three-way classification task.
– The music recommendation engine turns out to be better handled not via

deep learning, but via matrix factorization (collaborative filtering).
– The credit card fraud detection project is a binary classification task.
– The click-through-rate prediction project is a scalar regression task.
– Anomalous cookie detection is a binary classification task, but it will also

require an object detection model as a first stage in order to correctly crop
out the cookies in raw images. Note that the set of machine learning tech-
niques known as “anomaly detection” would not be a good fit in this setting!

– The project for finding new archeological sites from satellite images is an
image-similarity ranking task: you need to retrieve new images that look the
most like known archeological sites.

156 CHAPTER 6 The universal workflow of machine learning

� What do existing solutions look like? Perhaps your customer already has a
handcrafted algorithm that handles spam filtering or credit card fraud detec-
tion, with lots of nested if statements. Perhaps a human is currently in charge
of manually handling the process under consideration—monitoring the con-
veyor belt at the cookie plant and manually removing the bad cookies, or craft-
ing playlists of song recommendations to be sent out to users who liked a
specific artist. You should make sure you understand what systems are already in
place and how they work.

� Are there particular constraints you will need to deal with? For example, you
could find out that the app for which you’re building a spam detection system is
strictly end-to-end encrypted, so that the spam detection model will have to live
on the end user’s phone and must be trained on an external dataset. Perhaps
the cookie-filtering model has such latency constraints that it will need to run
on an embedded device at the factory rather than on a remote server. You
should understand the full context in which your work will fit.

Once you’ve done your research, you should know what your inputs will be, what your
targets will be, and what broad type of machine learning task the problem maps to. Be
aware of the hypotheses you’re making at this stage:

� You hypothesize that your targets can be predicted given your inputs.
� You hypothesize that the data that’s available (or that you will soon collect) is

sufficiently informative to learn the relationship between inputs and targets.

Until you have a working model, these are merely hypotheses, waiting to be validated
or invalidated. Not all problems can be solved with machine learning; just because
you’ve assembled examples of inputs X and targets Y doesn’t mean X contains enough
information to predict Y. For instance, if you’re trying to predict the movements of a
stock on the stock market given its recent price history, you’re unlikely to succeed,
because price history doesn’t contain much predictive information.

6.1.2 Collect a dataset

Once you understand the nature of the task and you know what your inputs and tar-
gets are going to be, it’s time for data collection—the most arduous, time-consuming,
and costly part of most machine learning projects.

� The photo search engine project requires you to first select the set of labels you
want to classify—you settle on 10,000 common image categories. Then you
need to manually tag hundreds of thousands of your past user-uploaded images
with labels from this set.

� For the chat app’s spam detection project, because user chats are end-to-end
encrypted, you cannot use their contents for training a model. You need to gain
access to a separate dataset of tens of thousands of unfiltered social media
posts, and manually tag them as spam, offensive, or acceptable.

157Define the task

� For the music recommendation engine, you can just use the “likes” of your
users. No new data needs to be collected. Likewise for the click-through-rate
prediction project: you have an extensive record of click-through rate for your
past ads, going back years.

� For the cookie-flagging model, you will need to install cameras above the con-
veyor belts to collect tens of thousands of images, and then someone will need
to manually label these images. The people who know how to do this currently
work at the cookie factory, but it doesn’t seem too difficult. You should be able
to train people to do it.

� The satellite imagery project will require a team of archeologists to collect a
database of existing sites of interest, and for each site you will need to find exist-
ing satellite images taken in different weather conditions. To get a good model,
you’re going to need thousands of different sites.

You learned in chapter 5 that a model’s ability to generalize comes almost entirely
from the properties of the data it is trained on—the number of data points you have,
the reliability of your labels, the quality of your features. A good dataset is an asset wor-
thy of care and investment. If you get an extra 50 hours to spend on a project, chances
are that the most effective way to allocate them is to collect more data rather than
search for incremental modeling improvements.

 The point that data matters more than algorithms was most famously made in a
2009 paper by Google researchers titled “The Unreasonable Effectiveness of Data”
(the title is a riff on the well-known 1960 article “The Unreasonable Effectiveness of
Mathematics in the Natural Sciences” by Eugene Wigner). This was before deep learn-
ing was popular, but, remarkably, the rise of deep learning has only made the impor-
tance of data greater.

 If you’re doing supervised learning, then once you’ve collected inputs (such as
images) you’re going to need annotations for them (such as tags for those images)—
the targets you will train your model to predict. Sometimes, annotations can be retrieved
automatically, such as those for the music recommendation task or the click-through-
rate prediction task. But often you have to annotate your data by hand. This is a labor-
heavy process.

INVESTING IN DATA ANNOTATION INFRASTRUCTURE

Your data annotation process will determine the quality of your targets, which in turn
determine the quality of your model. Carefully consider the options you have available:

� Should you annotate the data yourself?
� Should you use a crowdsourcing platform like Mechanical Turk to collect labels?
� Should you use the services of a specialized data-labeling company?

Outsourcing can potentially save you time and money, but it takes away control. Using
something like Mechanical Turk is likely to be inexpensive and to scale well, but your
annotations may end up being quite noisy.

158 CHAPTER 6 The universal workflow of machine learning

 To pick the best option, consider the constraints you’re working with:

� Do the data labelers need to be subject matter experts, or could anyone anno-
tate the data? The labels for a cat-versus-dog image classification problem can
be selected by anyone, but those for a dog breed classification task require spe-
cialized knowledge. Meanwhile, annotating CT scans of bone fractures pretty
much requires a medical degree.

� If annotating the data requires specialized knowledge, can you train people to
do it? If not, how can you get access to relevant experts?

� Do you, yourself, understand the way experts come up with the annotations? If
you don’t, you will have to treat your dataset as a black box, and you won’t be able
to perform manual feature engineering—this isn’t critical, but it can be limiting.

If you decide to label your data in-house, ask yourself what software you will use to record
annotations. You may well need to develop that software yourself. Productive data anno-
tation software will save you a lot of time, so it’s worth investing in it early in a project.

BEWARE OF NON-REPRESENTATIVE DATA

Machine learning models can only make sense of inputs that are similar to what
they’ve seen before. As such, it’s critical that the data used for training should be repre-
sentative of the production data. This concern should be the foundation of all your
data collection work.

 Suppose you’re developing an app where users can take pictures of a plate of food to
find out the name of the dish. You train a model using pictures from an image-sharing
social network that’s popular with foodies. Come deployment time, feedback from
angry users starts rolling in: your app gets the answer wrong 8 times out of 10. What’s
going on? Your accuracy on the test set was well over 90%! A quick look at user-uploaded
data reveals that mobile picture uploads of random dishes from random restaurants
taken with random smartphones look nothing like the professional-quality, well-lit,
appetizing pictures you trained the model on: your training data wasn’t representative of the
production data. That’s a cardinal sin—welcome to machine learning hell.

 If possible, collect data directly from the environment where your model will be
used. A movie review sentiment classification model should be used on new IMDB
reviews, not on Yelp restaurant reviews, nor on Twitter status updates. If you want to
rate the sentiment of a tweet, start by collecting and annotating actual tweets from a
similar set of users as those you’re expecting in production. If it’s not possible to train
on production data, then make sure you fully understand how your training and pro-
duction data differ, and that you are actively correcting for these differences.

 A related phenomenon you should be aware of is concept drift. You’ll encounter
concept drift in almost all real-world problems, especially those that deal with user-
generated data. Concept drift occurs when the properties of the production data
change over time, causing model accuracy to gradually decay. A music recommenda-
tion engine trained in the year 2013 may not be very effective today. Likewise, the
IMDB dataset you worked with was collected in 2011, and a model trained on it would

159Define the task

likely not perform as well on reviews from 2020 compared to reviews from 2012, as
vocabulary, expressions, and movie genres evolve over time. Concept drift is particu-
larly acute in adversarial contexts like credit card fraud detection, where fraud pat-
terns change practically every day. Dealing with fast concept drift requires constant
data collection, annotation, and model retraining.

 Keep in mind that machine learning can only be used to memorize patterns that
are present in your training data. You can only recognize what you’ve seen before.
Using machine learning trained on past data to predict the future is making the
assumption that the future will behave like the past. That often isn’t the case.

The problem of sampling bias
A particularly insidious and common case of non-representative data is sampling
bias. Sampling bias occurs when your data collection process interacts with what
you are trying to predict, resulting in biased measurements. A famous historical
example occurred in the 1948 US presidential election. On election night, the Chi-
cago Tribune printed the headline “DEWEY DEFEATS TRUMAN.” The next morning,
Truman emerged as the winner. The editor of the Tribune had trusted the results of
a phone survey—but phone users in 1948 were not a random, representative sam-
ple of the voting population. They were more likely to be richer, conservative, and
to vote for Dewey, the Republican candidate.

Nowadays, every phone survey takes sampling bias into account. That doesn’t mean
that sampling bias is a thing of the past in political polling—far from it. But unlike in
1948, pollsters are aware of it and take steps to correct it.

“DEWEY DEFEATS TRUMAN”: A famous example of sampling bias

160 CHAPTER 6 The universal workflow of machine learning

6.1.3 Understand your data

It’s pretty bad practice to treat a dataset as a black box. Before you start training mod-
els, you should explore and visualize your data to gain insights about what makes it
predictive, which will inform feature engineering and screen for potential issues.

� If your data includes images or natural language text, take a look at a few sam-
ples (and their labels) directly.

� If your data contains numerical features, it’s a good idea to plot the histogram
of feature values to get a feel for the range of values taken and the frequency of
different values.

� If your data includes location information, plot it on a map. Do any clear pat-
terns emerge?

� Are some samples missing values for some features? If so, you’ll need to deal
with this when you prepare the data (we’ll cover how to do this in the next
section).

� If your task is a classification problem, print the number of instances of each
class in your data. Are the classes roughly equally represented? If not, you will
need to account for this imbalance.

� Check for target leaking : the presence of features in your data that provide infor-
mation about the targets and which may not be available in production. If
you’re training a model on medical records to predict whether someone will be
treated for cancer in the future, and the records include the feature “this per-
son has been diagnosed with cancer,” then your targets are being artificially
leaked into your data. Always ask yourself, is every feature in your data some-
thing that will be available in the same form in production?

6.1.4 Choose a measure of success

To control something, you need to be able to observe it. To achieve success on a proj-
ect, you must first define what you mean by success. Accuracy? Precision and recall?
Customer retention rate? Your metric for success will guide all of the technical choices
you make throughout the project. It should directly align with your higher-level goals,
such as the business success of your customer.

 For balanced classification problems, where every class is equally likely, accuracy
and the area under a receiver operating characteristic (ROC) curve, abbreviated as ROC
AUC, are common metrics. For class-imbalanced problems, ranking problems, or
multilabel classification, you can use precision and recall, as well as a weighted form of
accuracy or ROC AUC. And it isn’t uncommon to have to define your own custom
metric by which to measure success. To get a sense of the diversity of machine learning
success metrics and how they relate to different problem domains, it’s helpful to
browse the data science competitions on Kaggle (https://kaggle.com); they showcase a
wide range of problems and evaluation metrics.

161Develop a model

6.2 Develop a model
Once you know how you will measure your progress, you can get started with model
development. Most tutorials and research projects assume that this is the only step—
skipping problem definition and dataset collection, which are assumed already done,
and skipping model deployment and maintenance, which are assumed to be handled
by someone else. In fact, model development is only one step in the machine learning
workflow, and if you ask me, it’s not the most difficult one. The hardest things in
machine learning are framing problems and collecting, annotating, and cleaning
data. So cheer up—what comes next will be easy in comparison!

6.2.1 Prepare the data

As you’ve learned before, deep learning models typically don’t ingest raw data. Data
preprocessing aims at making the raw data at hand more amenable to neural net-
works. This includes vectorization, normalization, or handling missing values. Many
preprocessing techniques are domain-specific (for example, specific to text data or
image data); we’ll cover those in the following chapters as we encounter them in
practical examples. For now, we’ll review the basics that are common to all data
domains.

VECTORIZATION

All inputs and targets in a neural network must typically be tensors of floating-point
data (or, in specific cases, tensors of integers or strings). Whatever data you need to
process—sound, images, text—you must first turn into tensors, a step called data vec-
torization. For instance, in the two previous text-classification examples in chapter 4,
we started with text represented as lists of integers (standing for sequences of words),
and we used one-hot encoding to turn them into a tensor of float32 data. In the
examples of classifying digits and predicting house prices, the data came in vectorized
form, so we were able to skip this step.

VALUE NORMALIZATION

In the MNIST digit-classification example from chapter 2, we started with image data
encoded as integers in the 0–255 range, encoding grayscale values. Before we fed this
data into our network, we had to cast it to float32 and divide by 255 so we’d end up
with floating-point values in the 0–1 range. Similarly, when predicting house prices, we
started with features that took a variety of ranges—some features had small floating-
point values, and others had fairly large integer values. Before we fed this data into
our network, we had to normalize each feature independently so that it had a stan-
dard deviation of 1 and a mean of 0.

 In general, it isn’t safe to feed into a neural network data that takes relatively
large values (for example, multi-digit integers, which are much larger than the ini-
tial values taken by the weights of a network) or data that is heterogeneous (for
example, data where one feature is in the range 0–1 and another is in the range
100–200). Doing so can trigger large gradient updates that will prevent the network

162 CHAPTER 6 The universal workflow of machine learning

from converging. To make learning easier for your network, your data should have
the following characteristics:

� Take small values—Typically, most values should be in the 0–1 range.
� Be homogenous—All features should take values in roughly the same range.

Additionally, the following stricter normalization practice is common and can help,
although it isn’t always necessary (for example, we didn’t do this in the digit-classifica-
tion example):

� Normalize each feature independently to have a mean of 0.
� Normalize each feature independently to have a standard deviation of 1.

This is easy to do with NumPy arrays:

x -= x.mean(axis=0)
x /= x.std(axis=0)

HANDLING MISSING VALUES

You may sometimes have missing values in your data. For instance, in the house-price
example, the first feature (the column of index 0 in the data) was the per capita crime
rate. What if this feature wasn’t available for all samples? You’d then have missing val-
ues in the training or test data.

 You could just discard the feature entirely, but you don’t necessarily have to.

� If the feature is categorical, it’s safe to create a new category that means “the
value is missing.” The model will automatically learn what this implies with
respect to the targets.

� If the feature is numerical, avoid inputting an arbitrary value like "0", because
it may create a discontinuity in the latent space formed by your features, mak-
ing it harder for a model trained on it to generalize. Instead, consider replac-
ing the missing value with the average or median value for the feature in the
dataset. You could also train a model to predict the feature value given the val-
ues of other features.

Note that if you’re expecting missing categorial features in the test data, but the network
was trained on data without any missing values, the network won’t have learned to
ignore missing values! In this situation, you should artificially generate training samples
with missing entries: copy some training samples several times, and drop some of the
categorical features that you expect are likely to be missing in the test data.

6.2.2 Choose an evaluation protocol

As you learned in the previous chapter, the purpose of a model is to achieve general-
ization, and every modeling decision you will make throughout the model develop-
ment process will be guided by validation metrics that seek to measure generalization
performance. The goal of your validation protocol is to accurately estimate what your

Assuming x is a 2D data matrix
of shape (samples, features)

163Develop a model

success metric of choice (such as accuracy) will be on actual production data. The reli-
ability of that process is critical to building a useful model.

 In chapter 5, we reviewed three common evaluation protocols:

� Maintaining a holdout validation set—This is the way to go when you have plenty
of data.

� Doing K-fold cross-validation—This is the right choice when you have too few sam-
ples for holdout validation to be reliable.

� Doing iterated K-fold validation—This is for performing highly accurate model
evaluation when little data is available.

Pick one of these. In most cases, the first will work well enough. As you learned,
though, always be mindful of the representativity of your validation set, and be careful
not to have redundant samples between your training set and your validation set.

6.2.3 Beat a baseline

As you start working on the model itself, your initial goal is to achieve statistical power,
as you saw in chapter 5: that is, to develop a small model that is capable of beating a
simple baseline.

 At this stage, these are the three most important things you should focus on:

� Feature engineering—Filter out uninformative features (feature selection) and use
your knowledge of the problem to develop new features that are likely to be useful.

� Selecting the correct architecture priors—What type of model architecture will you
use? A densely connected network, a convnet, a recurrent neural network, a
Transformer? Is deep learning even a good approach for the task, or should you
use something else?

� Selecting a good-enough training configuration—What loss function should you use?
What batch size and learning rate?

Picking the right loss function
It’s often not possible to directly optimize for the metric that measures success on
a problem. Sometimes there is no easy way to turn a metric into a loss function; loss
functions, after all, need to be computable given only a mini-batch of data (ideally, a
loss function should be computable for as little as a single data point) and must be
differentiable (otherwise, you can’t use backpropagation to train your network). For
instance, the widely used classification metric ROC AUC can’t be directly optimized.
Hence, in classification tasks, it’s common to optimize for a proxy metric of ROC AUC,
such as crossentropy. In general, you can hope that the lower the crossentropy gets,
the higher the ROC AUC will be.

The following table can help you choose a last-layer activation and a loss function for
a few common problem types.

164 CHAPTER 6 The universal workflow of machine learning

For most problems, there are existing templates you can start from. You’re not the
first person to try to build a spam detector, a music recommendation engine, or an
image classifier. Make sure you research prior art to identify the feature engineering
techniques and model architectures that are most likely to perform well on your task.

 Note that it’s not always possible to achieve statistical power. If you can’t beat a sim-
ple baseline after trying multiple reasonable architectures, it may be that the answer
to the question you’re asking isn’t present in the input data. Remember that you’re
making two hypotheses:

� You hypothesize that your outputs can be predicted given your inputs.
� You hypothesize that the available data is sufficiently informative to learn the

relationship between inputs and outputs.

It may well be that these hypotheses are false, in which case you must go back to the
drawing board.

6.2.4 Scale up: Develop a model that overfits

Once you’ve obtained a model that has statistical power, the question becomes, is your
model sufficiently powerful? Does it have enough layers and parameters to properly
model the problem at hand? For instance, a logistic regression model has statistical
power on MNIST but wouldn’t be sufficient to solve the problem well. Remember that
the universal tension in machine learning is between optimization and generalization.
The ideal model is one that stands right at the border between underfitting and over-
fitting, between undercapacity and overcapacity. To figure out where this border lies,
first you must cross it.

 To figure out how big a model you’ll need, you must develop a model that overfits.
This is fairly easy, as you learned in chapter 5:

1 Add layers.
2 Make the layers bigger.
3 Train for more epochs.

Always monitor the training loss and validation loss, as well as the training and valida-
tion values for any metrics you care about. When you see that the model’s perfor-
mance on the validation data begins to degrade, you’ve achieved overfitting.

(continued)
Choosing the right last-layer activation and loss function for your model

Problem type Last-layer activation Loss function

Binary classification sigmoid binary_crossentropy

Multiclass, single-label classification softmax categorical_crossentropy

Multiclass, multilabel classification sigmoid binary_crossentropy

165Deploy the model

6.2.5 Regularize and tune your model

Once you’ve achieved statistical power and you’re able to overfit, you know you’re on the
right path. At this point, your goal becomes to maximize generalization performance.

 This phase will take the most time: you’ll repeatedly modify your model, train it,
evaluate on your validation data (not the test data at this point), modify it again, and
repeat, until the model is as good as it can get. Here are some things you should try:

� Try different architectures; add or remove layers.
� Add dropout.
� If your model is small, add L1 or L2 regularization.
� Try different hyperparameters (such as the number of units per layer or the

learning rate of the optimizer) to find the optimal configuration.
� Optionally, iterate on data curation or feature engineering: collect and anno-

tate more data, develop better features, or remove features that don’t seem to
be informative.

It’s possible to automate a large chunk of this work by using automated hyperparameter
tuning software, such as KerasTuner. We’ll cover this in chapter 13.

 Be mindful of the following: Every time you use feedback from your validation pro-
cess to tune your model, you leak information about the validation process into the
model. Repeated just a few times, this is innocuous; done systematically over many
iterations, it will eventually cause your model to overfit to the validation process (even
though no model is directly trained on any of the validation data). This makes the
evaluation process less reliable.

 Once you’ve developed a satisfactory model configuration, you can train your
final production model on all the available data (training and validation) and evalu-
ate it one last time on the test set. If it turns out that performance on the test set is
significantly worse than the performance measured on the validation data, this may
mean either that your validation procedure wasn’t reliable after all, or that you
began overfitting to the validation data while tuning the parameters of the model.
In this case, you may want to switch to a more reliable evaluation protocol (such as
iterated K-fold validation).

6.3 Deploy the model
Your model has successfully cleared its final evaluation on the test set—it’s ready to be
deployed and to begin its productive life.

6.3.1 Explain your work to stakeholders and set expectations

Success and customer trust are about consistently meeting or exceeding people’s
expectations. The actual system you deliver is only half of that picture; the other half
is setting appropriate expectations before launch.

 The expectations of non-specialists towards AI systems are often unrealistic. For
example, they might expect that the system “understands” its task and is capable of

166 CHAPTER 6 The universal workflow of machine learning

exercising human-like common sense in the context of the task. To address this, you
should consider showing some examples of the failure modes of your model (for
instance, show what incorrectly classified samples look like, especially those for which
the misclassification seems surprising).

 They might also expect human-level performance, especially for processes that were
previously handled by people. Most machine learning models, because they are (imper-
fectly) trained to approximate human-generated labels, do not nearly get there. You
should clearly convey model performance expectations. Avoid using abstract statements
like “The model has 98% accuracy” (which most people mentally round up to 100%),
and prefer talking, for instance, about false negative rates and false positive rates. You
could say, “With these settings, the fraud detection model would have a 5% false nega-
tive rate and a 2.5% false positive rate. Every day, an average of 200 valid transactions
would be flagged as fraudulent and sent for manual review, and an average of 14 fraudu-
lent transactions would be missed. An average of 266 fraudulent transactions would be
correctly caught.” Clearly relate the model’s performance metrics to business goals.

 You should also make sure to discuss with stakeholders the choice of key launch
parameters—for instance, the probability threshold at which a transaction should be
flagged (different thresholds will produce different false negative and false positive
rates). Such decisions involve trade-offs that can only be handled with a deep under-
standing of the business context.

6.3.2 Ship an inference model

A machine learning project doesn’t end when you arrive at a Colab notebook that can
save a trained model. You rarely put in production the exact same Python model
object that you manipulated during training.

 First, you may want to export your model to something other than Python:

� Your production environment may not support Python at all—for instance, if
it’s a mobile app or an embedded system.

� If the rest of the app isn’t in Python (it could be in JavaScript, C++, etc.), the use
of Python to serve a model may induce significant overhead.

Second, since your production model will only be used to output predictions (a phase
called inference), rather than for training, you have room to perform various optimiza-
tions that can make the model faster and reduce its memory footprint.

 Let’s take a quick look at the different model deployment options you have available.

DEPLOYING A MODEL AS A REST API
This is perhaps the common way to turn a model into a product: install TensorFlow on
a server or cloud instance, and query the model’s predictions via a REST API. You
could build your own serving app using something like Flask (or any other Python
web development library), or use TensorFlow’s own library for shipping models as
APIs, called TensorFlow Serving (www.tensorflow.org/tfx/guide/serving). With Tensor-
Flow Serving, you can deploy a Keras model in minutes.

167Deploy the model

 You should use this deployment setup when

� The application that will consume the model’s prediction will have reliable
access to the internet (obviously). For instance, if your application is a mobile
app, serving predictions from a remote API means that the application won’t be
usable in airplane mode or in a low-connectivity environment.

� The application does not have strict latency requirements: the request, infer-
ence, and answer round trip will typically take around 500 ms.

� The input data sent for inference is not highly sensitive: the data will need to
be available on the server in a decrypted form, since it will need to be seen by
the model (but note that you should use SSL encryption for the HTTP request
and answer).

For instance, the image search engine project, the music recommender system, the
credit card fraud detection project, and the satellite imagery project are all good fits
for serving via a REST API.

 An important question when deploying a model as a REST API is whether you
want to host the code on your own, or whether you want to use a fully managed third-
party cloud service. For instance, Cloud AI Platform, a Google product, lets you simply
upload your TensorFlow model to Google Cloud Storage (GCS), and it gives you an
API endpoint to query it. It takes care of many practical details such as batching pre-
dictions, load balancing, and scaling.

DEPLOYING A MODEL ON A DEVICE

Sometimes, you may need your model to live on the same device that runs the applica-
tion that uses it—maybe a smartphone, an embedded ARM CPU on a robot, or a
microcontroller on a tiny device. You may have seen a camera capable of automati-
cally detecting people and faces in the scenes you pointed it at: that was probably a
small deep learning model running directly on the camera.

 You should use this setup when

� Your model has strict latency constraints or needs to run in a low-connectivity
environment. If you’re building an immersive augmented reality application,
querying a remote server is not a viable option.

� Your model can be made sufficiently small that it can run under the memory and
power constraints of the target device. You can use the TensorFlow Model Opti-
mization Toolkit to help with this (www.tensorflow.org/model_optimization).

� Getting the highest possible accuracy isn’t mission critical for your task. There
is always a trade-off between runtime efficiency and accuracy, so memory and
power constraints often require you to ship a model that isn’t quite as good as
the best model you could run on a large GPU.

� The input data is strictly sensitive and thus shouldn’t be decryptable on a
remote server.

168 CHAPTER 6 The universal workflow of machine learning

Our spam detection model will need to run on the end user’s smartphone as part of
the chat app, because messages are end-to-end encrypted and thus cannot be read by
a remotely hosted model. Likewise, the bad-cookie detection model has strict latency
constraints and will need to run at the factory. Thankfully, in this case, we don’t have
any power or space constraints, so we can actually run the model on a GPU.

 To deploy a Keras model on a smartphone or embedded device, your go-to solution
is TensorFlow Lite (www.tensorflow.org/lite). It’s a framework for efficient on-device
deep learning inference that runs on Android and iOS smartphones, as well as ARM64-
based computers, Raspberry Pi, or certain microcontrollers. It includes a converter that
can straightforwardly turn your Keras model into the TensorFlow Lite format.

DEPLOYING A MODEL IN THE BROWSER

Deep learning is often used in browser-based or desktop-based JavaScript applications.
While it is usually possible to have the application query a remote model via a REST
API, there can be key advantages in having the model run directly in the browser, on
the user’s computer (utilizing GPU resources if they’re available).

 Use this setup when

� You want to offload compute to the end user, which can dramatically reduce
server costs.

� The input data needs to stay on the end user’s computer or phone. For
instance, in our spam detection project, the web version and the desktop ver-
sion of the chat app (implemented as a cross-platform app written in Java-
Script) should use a locally run model.

� Your application has strict latency constraints. While a model running on the end
user’s laptop or smartphone is likely to be slower than one running on a large
GPU on your own server, you don’t have the extra 100 ms of network round trip.

� You need your app to keep working without connectivity, after the model has
been downloaded and cached.

You should only go with this option if your model is small enough that it won’t hog the
CPU, GPU, or RAM of your user’s laptop or smartphone. In addition, since the entire
model will be downloaded to the user’s device, you should make sure that nothing
about the model needs to stay confidential. Be mindful of the fact that, given a trained
deep learning model, it is usually possible to recover some information about the train-
ing data: better not to make your trained model public if it was trained on sensitive data.

 To deploy a model in JavaScript, the TensorFlow ecosystem includes TensorFlow.js
(www.tensorflow.org/js), a JavaScript library for deep learning that implements
almost all of the Keras API (originally developed under the working name WebKeras)
as well as many lower-level TensorFlow APIs. You can easily import a saved Keras
model into TensorFlow.js to query it as part of your browser-based JavaScript app or
your desktop Electron app.

169Deploy the model

INFERENCE MODEL OPTIMIZATION

Optimizing your model for inference is especially important when deploying in an
environment with strict constraints on available power and memory (smartphones
and embedded devices) or for applications with low latency requirements. You should
always seek to optimize your model before importing into TensorFlow.js or exporting
it to TensorFlow Lite.

 There are two popular optimization techniques you can apply:

� Weight pruning—Not every coefficient in a weight tensor contributes equally to
the predictions. It’s possible to considerably lower the number of parameters
in the layers of your model by only keeping the most significant ones. This
reduces the memory and compute footprint of your model, at a small cost in
performance metrics. By deciding how much pruning you want to apply, you
are in control of the trade-off between size and accuracy.

� Weight quantization—Deep learning models are trained with single-precision
floating-point (float32) weights. However, it’s possible to quantize weights to
8-bit signed integers (int8) to get an inference-only model that’s a quarter the
size but remains near the accuracy of the original model.

The TensorFlow ecosystem includes a weight pruning and quantization toolkit (www
.tensorflow.org/model_optimization) that is deeply integrated with the Keras API.

6.3.3 Monitor your model in the wild

You’ve exported an inference model, you’ve integrated it into your application, and
you’ve done a dry run on production data—the model behaved exactly as you expected.
You’ve written unit tests as well as logging and status-monitoring code—perfect. Now it’s
time to press the big red button and deploy to production.

 Even this is not the end. Once you’ve deployed a model, you need to keep moni-
toring its behavior, its performance on new data, its interaction with the rest of the
application, and its eventual impact on business metrics.

� Is user engagement in your online radio up or down after deploying the new
music recommender system? Has the average ad click-through rate increased
after switching to the new click-through-rate prediction model? Consider using
randomized A/B testing to isolate the impact of the model itself from other
changes: a subset of cases should go through the new model, while another
control subset should stick to the old process. Once sufficiently many cases have
been processed, the difference in outcomes between the two is likely attribut-
able to the model.

� If possible, do a regular manual audit of the model’s predictions on production
data. It’s generally possible to reuse the same infrastructure as for data annotation:
send some fraction of the production data to be manually annotated, and com-
pare the model’s predictions to the new annotations. For instance, you should
definitely do this for the image search engine and the bad-cookie flagging system.

170 CHAPTER 6 The universal workflow of machine learning

� When manual audits are impossible, consider alternative evaluation avenues
such as user surveys (for example, in the case of the spam and offensive-content
flagging system).

6.3.4 Maintain your model

Lastly, no model lasts forever. You’ve already learned about concept drift: over time, the
characteristics of your production data will change, gradually degrading the perfor-
mance and relevance of your model. The lifespan of your music recommender system
will be counted in weeks. For the credit card fraud detection systems, it will be days. A
couple of years in the best case for the image search engine.

 As soon as your model has launched, you should be getting ready to train the next
generation that will replace it. As such,

� Watch out for changes in the production data. Are new features becoming avail-
able? Should you expand or otherwise edit the label set?

� Keep collecting and annotating data, and keep improving your annotation
pipeline over time. In particular, you should pay special attention to collecting
samples that seem to be difficult for your current model to classify—such sam-
ples are the most likely to help improve performance.

This concludes the universal workflow of machine learning—that’s a lot of things to
keep in mind. It takes time and experience to become an expert, but don’t worry,
you’re already a lot wiser than you were a few chapters ago. You are now familiar with
the big picture—the entire spectrum of what machine learning projects entail. While
most of this book will focus on model development, you’re now aware that it’s only
one part of the entire workflow. Always keep in mind the big picture!

Summary
� When you take on a new machine learning project, first define the problem at

hand:
– Understand the broader context of what you’re setting out to do—what’s the

end goal and what are the constraints?
– Collect and annotate a dataset; make sure you understand your data in depth.
– Choose how you’ll measure success for your problem—what metrics will you

monitor on your validation data?
� Once you understand the problem and you have an appropriate dataset, develop

a model:
– Prepare your data.
– Pick your evaluation protocol: holdout validation? K-fold validation? Which

portion of the data should you use for validation?
– Achieve statistical power: beat a simple baseline.
– Scale up: develop a model that can overfit.

171Summary

– Regularize your model and tune its hyperparameters, based on performance
on the validation data. A lot of machine learning research tends to focus only
on this step, but keep the big picture in mind.

� When your model is ready and yields good performance on the test data, it’s
time for deployment:
– First, make sure you set appropriate expectations with stakeholders.
– Optimize a final model for inference, and ship a model to the deployment

environment of choice—web server, mobile, browser, embedded device, etc.
– Monitor your model’s performance in production, and keep collecting data

so you can develop the next generation of the model.

172

Working with Keras:
A deep dive

You’ve now got some experience with Keras—you’re familiar with the Sequential
model, Dense layers, and built-in APIs for training, evaluation, and inference—
compile(), fit(), evaluate(), and predict(). You even learned in chapter 3 how
to inherit from the Layer class to create custom layers, and how to use the Tensor-
Flow GradientTape to implement a step-by-step training loop.

 In the coming chapters, we’ll dig into computer vision, timeseries forecast-
ing, natural language processing, and generative deep learning. These complex
applications will require much more than a Sequential architecture and the
default fit() loop. So let’s first turn you into a Keras expert! In this chapter,
you’ll get a complete overview of the key ways to work with Keras APIs: everything

This chapter covers
� Creating Keras models with the Sequential

class, the Functional API, and model subclassing
� Using built-in Keras training and evaluation loops
� Using Keras callbacks to customize training
� Using TensorBoard to monitor training and

evaluation metrics
� Writing training and evaluation loops from scratch

173Different ways to build Keras models

you’re going to need to handle the advanced deep learning use cases you’ll encoun-
ter next.

7.1 A spectrum of workflows
The design of the Keras API is guided by the principle of progressive disclosure of complex-
ity: make it easy to get started, yet make it possible to handle high-complexity use
cases, only requiring incremental learning at each step. Simple use cases should be
easy and approachable, and arbitrarily advanced workflows should be possible: no mat-
ter how niche and complex the thing you want to do, there should be a clear path to
it. A path that builds upon the various things you’ve learned from simpler workflows.
This means that you can grow from beginner to expert and still use the same tools—
only in different ways.

 As such, there’s not a single “true” way of using Keras. Rather, Keras offers a spec-
trum of workflows, from the very simple to the very flexible. There are different ways to
build Keras models, and different ways to train them, answering different needs.
Because all these workflows are based on shared APIs, such as Layer and Model, com-
ponents from any workflow can be used in any other workflow—they can all talk to
each other.

7.2 Different ways to build Keras models
There are three APIs for building models in Keras (see figure 7.1):

� The Sequential model, the most approachable API—it’s basically a Python list. As
such, it’s limited to simple stacks of layers.

� The Functional API, which focuses on graph-like model architectures. It rep-
resents a nice mid-point between usability and flexibility, and as such, it’s the
most commonly used model-building API.

� Model subclassing, a low-level option where you write everything yourself from
scratch. This is ideal if you want full control over every little thing. However, you
won’t get access to many built-in Keras features, and you will be more at risk of
making mistakes.

Sequential API
+ built-in layers

Functional API
+ built-in layers

Functional API
+ custom layers
+ custom metrics
+ custom losses
+ ...

Subclassing:
write everything

yourself from scratch

Novice users,
simple models

Engineers with
standard use

cases

Engineers with
niche use cases

requiring bespoke
solutions

Researchers

Figure 7.1 Progressive disclosure of complexity for model building

174 CHAPTER 7 Working with Keras: A deep dive

7.2.1 The Sequential model

The simplest way to build a Keras model is to use the Sequential model, which you
already know about.

from tensorflow import keras
from tensorflow.keras import layers

model = keras.Sequential([
 layers.Dense(64, activation="relu"),
 layers.Dense(10, activation="softmax")
])

Note that it’s possible to build the same model incrementally via the add() method,
which is similar to the append() method of a Python list.

model = keras.Sequential()
model.add(layers.Dense(64, activation="relu"))
model.add(layers.Dense(10, activation="softmax"))

You saw in chapter 4 that layers only get built (which is to say, create their weights) when
they are called for the first time. That’s because the shape of the layers' weights depends
on the shape of their input: until the input shape is known, they can’t be created.

 As such, the preceding Sequential model does not have any weights (listing 7.3)
until you actually call it on some data, or call its build() method with an input shape
(listing 7.4).

>>> model.weights
ValueError: Weights for model sequential_1 have not yet been created.

>>> model.build(input_shape=(None, 3))
>>> model.weights
[<tf.Variable "dense_2/kernel:0" shape=(3, 64) dtype=float32, ... >,
 <tf.Variable "dense_2/bias:0" shape=(64,) dtype=float32, ... >
 <tf.Variable "dense_3/kernel:0" shape=(64, 10) dtype=float32, ... >,
 <tf.Variable "dense_3/bias:0" shape=(10,) dtype=float32, ... >]

After the model is built, you can display its contents via the summary() method, which
comes in handy for debugging.

Listing 7.1 The Sequential class

Listing 7.2 Incrementally building a Sequential model

Listing 7.3 Models that aren’t yet built have no weights

Listing 7.4 Calling a model for the first time to build it

At that point, the
model isn’t built yet.

Builds the model—now the model will expect samples of shape (3,). The
None in the input shape signals that the batch size could be anything.

Now you can retrieve
the model’s weights.

175Different ways to build Keras models

>>> model.summary()
Model: "sequential_1"

Layer (type) Output Shape Param #
===
dense_2 (Dense) (None, 64) 256

dense_3 (Dense) (None, 10) 650
===
Total params: 906
Trainable params: 906
Non-trainable params: 0

As you can see, this model happens to be named “sequential_1.” You can give names
to everything in Keras—every model, every layer.

>>> model = keras.Sequential(name="my_example_model")
>>> model.add(layers.Dense(64, activation="relu", name="my_first_layer"))
>>> model.add(layers.Dense(10, activation="softmax", name="my_last_layer"))
>>> model.build((None, 3))
>>> model.summary()
Model: "my_example_model"

Layer (type) Output Shape Param #
===
my_first_layer (Dense) (None, 64) 256

my_last_layer (Dense) (None, 10) 650
===
Total params: 906
Trainable params: 906
Non-trainable params: 0

When building a Sequential model incrementally, it’s useful to be able to print a sum-
mary of what the current model looks like after you add each layer. But you can’t print
a summary until the model is built! There’s actually a way to have your Sequential
built on the fly: just declare the shape of the model’s inputs in advance. You can do
this via the Input class.

model = keras.Sequential()
model.add(keras.Input(shape=(3,)))
model.add(layers.Dense(64, activation="relu"))

Listing 7.5 The summary() method

Listing 7.6 Naming models and layers with the name argument

Listing 7.7 Specifying the input shape of your model in advance

Use Input to declare the shape
of the inputs. Note that the
shape argument must be the
shape of each sample, not
the shape of one batch.

176 CHAPTER 7 Working with Keras: A deep dive

Now you can use summary() to follow how the output shape of your model changes as
you add more layers:

>>> model.summary()
Model: "sequential_2"

Layer (type) Output Shape Param #
===
dense_4 (Dense) (None, 64) 256
===
Total params: 256
Trainable params: 256
Non-trainable params: 0

>>> model.add(layers.Dense(10, activation="softmax"))
>>> model.summary()
Model: "sequential_2"

Layer (type) Output Shape Param #
===
dense_4 (Dense) (None, 64) 256

dense_5 (Dense) (None, 10) 650
===
Total params: 906
Trainable params: 906
Non-trainable params: 0

This is a pretty common debugging workflow when dealing with layers that transform
their inputs in complex ways, such as the convolutional layers you’ll learn about in
chapter 8.

7.2.2 The Functional API

The Sequential model is easy to use, but its applicability is extremely limited: it can
only express models with a single input and a single output, applying one layer after
the other in a sequential fashion. In practice, it’s pretty common to encounter models
with multiple inputs (say, an image and its metadata), multiple outputs (different
things you want to predict about the data), or a nonlinear topology.

 In such cases, you’d build your model using the Functional API. This is what most
Keras models you’ll encounter in the wild use. It’s fun and powerful—it feels like play-
ing with LEGO bricks.

A SIMPLE EXAMPLE

Let’s start with something simple: the stack of two layers we used in the previous sec-
tion. Its Functional API version looks like the following listing.

177Different ways to build Keras models

inputs = keras.Input(shape=(3,), name="my_input")
features = layers.Dense(64, activation="relu")(inputs)
outputs = layers.Dense(10, activation="softmax")(features)
model = keras.Model(inputs=inputs, outputs=outputs)

Let’s go over this step by step.
 We started by declaring an Input (note that you can also give names to these input

objects, like everything else):

inputs = keras.Input(shape=(3,), name="my_input")

This inputs object holds information about the shape and dtype of the data that the
model will process:

>>> inputs.shape
(None, 3)
>>> inputs.dtype
float32

We call such an object a symbolic tensor. It doesn’t contain any actual data, but it
encodes the specifications of the actual tensors of data that the model will see when
you use it. It stands for future tensors of data.

 Next, we created a layer and called it on the input:

features = layers.Dense(64, activation="relu")(inputs)

All Keras layers can be called both on real tensors of data and on these symbolic ten-
sors. In the latter case, they return a new symbolic tensor, with updated shape and
dtype information:

>>> features.shape
(None, 64)

After obtaining the final outputs, we instantiated the model by specifying its inputs
and outputs in the Model constructor:

outputs = layers.Dense(10, activation="softmax")(features)
model = keras.Model(inputs=inputs, outputs=outputs)

Here’s the summary of our model:

>>> model.summary()
Model: "functional_1"

Layer (type) Output Shape Param #
===
my_input (InputLayer) [(None, 3)] 0

Listing 7.8 A simple Functional model with two Dense layers

The model will process batches where each sample
has shape (3,). The number of samples per batch is
variable (indicated by the None batch size).

These batches will have
dtype float32.

178 CHAPTER 7 Working with Keras: A deep dive

dense_6 (Dense) (None, 64) 256

dense_7 (Dense) (None, 10) 650
===
Total params: 906
Trainable params: 906
Non-trainable params: 0

MULTI-INPUT, MULTI-OUTPUT MODELS

Unlike this toy model, most deep learning models don’t look like lists—they look like
graphs. They may, for instance, have multiple inputs or multiple outputs. It’s for this
kind of model that the Functional API really shines.

 Let’s say you’re building a system to rank customer support tickets by priority and
route them to the appropriate department. Your model has three inputs:

� The title of the ticket (text input)
� The text body of the ticket (text input)
� Any tags added by the user (categorical input, assumed here to be one-hot

encoded)

We can encode the text inputs as arrays of ones and zeros of size vocabulary_size
(see chapter 11 for detailed information about text encoding techniques).

 Your model also has two outputs:

� The priority score of the ticket, a scalar between 0 and 1 (sigmoid output)
� The department that should handle the ticket (a softmax over the set of depart-

ments)

You can build this model in a few lines with the Functional API.

vocabulary_size = 10000
num_tags = 100
num_departments = 4

title = keras.Input(shape=(vocabulary_size,), name="title")
text_body = keras.Input(shape=(vocabulary_size,), name="text_body")
tags = keras.Input(shape=(num_tags,), name="tags")

features = layers.Concatenate()([title, text_body, tags])
features = layers.Dense(64, activation="relu")(features)

priority = layers.Dense(1, activation="sigmoid", name="priority")(features)
department = layers.Dense(
 num_departments, activation="softmax", name="department")(features)

model = keras.Model(inputs=[title, text_body, tags],
 outputs=[priority, department])

Listing 7.9 A multi-input, multi-output Functional model

Define
model

inputs.

Combine input features into
a single tensor, features, by

concatenating them.

Apply an intermediate
layer to recombine input

features into richer
representations.

Define
model

outputs.

Create the model by specifying its inputs and outputs.

179Different ways to build Keras models

The Functional API is a simple, LEGO-like, yet very flexible way to define arbitrary
graphs of layers like these.

TRAINING A MULTI-INPUT, MULTI-OUTPUT MODEL

You can train your model in much the same way as you would train a Sequential
model, by calling fit() with lists of input and output data. These lists of data should
be in the same order as the inputs you passed to the Model constructor.

import numpy as np

num_samples = 1280

title_data = np.random.randint(0, 2, size=(num_samples, vocabulary_size))
text_body_data = np.random.randint(0, 2, size=(num_samples, vocabulary_size))
tags_data = np.random.randint(0, 2, size=(num_samples, num_tags))

priority_data = np.random.random(size=(num_samples, 1))
department_data = np.random.randint(0, 2, size=(num_samples, num_departments))

model.compile(optimizer="rmsprop",
 loss=["mean_squared_error", "categorical_crossentropy"],
 metrics=[["mean_absolute_error"], ["accuracy"]])
model.fit([title_data, text_body_data, tags_data],
 [priority_data, department_data],
 epochs=1)
model.evaluate([title_data, text_body_data, tags_data],
 [priority_data, department_data])
priority_preds, department_preds = model.predict(
 [title_data, text_body_data, tags_data])

If you don’t want to rely on input order (for instance, because you have many inputs
or outputs), you can also leverage the names you gave to the Input objects and the
output layers, and pass data via dictionaries.

model.compile(optimizer="rmsprop",
 loss={"priority": "mean_squared_error", "department":
 "categorical_crossentropy"},
 metrics={"priority": ["mean_absolute_error"], "department":
 ["accuracy"]})
model.fit({"title": title_data, "text_body": text_body_data,
 "tags": tags_data},
 {"priority": priority_data, "department": department_data},
 epochs=1)
model.evaluate({"title": title_data, "text_body": text_body_data,
 "tags": tags_data},
 {"priority": priority_data, "department": department_data})
priority_preds, department_preds = model.predict(
 {"title": title_data, "text_body": text_body_data, "tags": tags_data})

Listing 7.10 Training a model by providing lists of input and target arrays

Listing 7.11 Training a model by providing dicts of input and target arrays

Dummy
input
data

Dummy
target data

180 CHAPTER 7 Working with Keras: A deep dive

THE POWER OF THE FUNCTIONAL API: ACCESS TO LAYER CONNECTIVITY

A Functional model is an explicit graph data structure. This makes it possible to
inspect how layers are connected and reuse previous graph nodes (which are layer
outputs) as part of new models. It also nicely fits the “mental model” that most research-
ers use when thinking about a deep neural network: a graph of layers. This enables
two important use cases: model visualization and feature extraction.

 Let’s visualize the connectivity of the model we just defined (the topology of the
model). You can plot a Functional model as a graph with the plot_model() utility (see
figure 7.2).

keras.utils.plot_model(model, "ticket_classifier.png")

You can add to this plot the input and output shapes of each layer in the model, which
can be helpful during debugging (see figure 7.3).

keras.utils.plot_model(
 model, "ticket_classifier_with_shape_info.png", show_shapes=True)

Figure 7.2 Plot generated by
plot_model() on our ticket
classifier model

Figure 7.3 Model plot with shape information added

181Different ways to build Keras models

The “None” in the tensor shapes represents the batch size: this model allows batches
of any size.

 Access to layer connectivity also means that you can inspect and reuse individual
nodes (layer calls) in the graph. The model.layers model property provides the list
of layers that make up the model, and for each layer you can query layer.input and
layer.output.

>>> model.layers
[<tensorflow.python.keras.engine.input_layer.InputLayer at 0x7fa963f9d358>,
 <tensorflow.python.keras.engine.input_layer.InputLayer at 0x7fa963f9d2e8>,
 <tensorflow.python.keras.engine.input_layer.InputLayer at 0x7fa963f9d470>,
 <tensorflow.python.keras.layers.merge.Concatenate at 0x7fa963f9d860>,
 <tensorflow.python.keras.layers.core.Dense at 0x7fa964074390>,
 <tensorflow.python.keras.layers.core.Dense at 0x7fa963f9d898>,
 <tensorflow.python.keras.layers.core.Dense at 0x7fa963f95470>]
>>> model.layers[3].input
[<tf.Tensor "title:0" shape=(None, 10000) dtype=float32>,
 <tf.Tensor "text_body:0" shape=(None, 10000) dtype=float32>,
 <tf.Tensor "tags:0" shape=(None, 100) dtype=float32>]
>>> model.layers[3].output
<tf.Tensor "concatenate/concat:0" shape=(None, 20100) dtype=float32>

This enables you to do feature extraction, creating models that reuse intermediate fea-
tures from another model.

 Let’s say you want to add another output to the previous model—you want to esti-
mate how long a given issue ticket will take to resolve, a kind of difficulty rating. You
could do this via a classification layer over three categories: “quick,” “medium,” and
“difficult.” You don’t need to recreate and retrain a model from scratch. You can start
from the intermediate features of your previous model, since you have access to them,
like this.

features = model.layers[4].output
difficulty = layers.Dense(3, activation="softmax", name="difficulty")(features)

new_model = keras.Model(
 inputs=[title, text_body, tags],
 outputs=[priority, department, difficulty])

Let’s plot our new model (see figure 7.4):

keras.utils.plot_model(
 new_model, "updated_ticket_classifier.png", show_shapes=True)

Listing 7.12 Retrieving the inputs or outputs of a layer in a Functional model

Listing 7.13 Creating a new model by reusing intermediate layer outputs

layers[4] is our intermediate
Dense layer

182 CHAPTER 7 Working with Keras: A deep dive

7.2.3 Subclassing the Model class

The last model-building pattern you should know about is the most advanced one:
Model subclassing. You learned in chapter 3 how to subclass the Layer class to create
custom layers. Subclassing Model is pretty similar:

� In the __init__() method, define the layers the model will use.
� In the call() method, define the forward pass of the model, reusing the layers

previously created.
� Instantiate your subclass, and call it on data to create its weights.

REWRITING OUR PREVIOUS EXAMPLE AS A SUBCLASSED MODEL

Let’s take a look at a simple example: we will reimplement the customer support ticket
management model using a Model subclass.

class CustomerTicketModel(keras.Model):

 def __init__(self, num_departments):
 super().__init__()
 self.concat_layer = layers.Concatenate()
 self.mixing_layer = layers.Dense(64, activation="relu")
 self.priority_scorer = layers.Dense(1, activation="sigmoid")
 self.department_classifier = layers.Dense(
 num_departments, activation="softmax")

 def call(self, inputs):
 title = inputs["title"]
 text_body = inputs["text_body"]
 tags = inputs["tags"]

 features = self.concat_layer([title, text_body, tags])
 features = self.mixing_layer(features)

Listing 7.14 A simple subclassed model

Figure 7.4 Plot of our new model

Don’t forget to
call the super()
constructor!

Define
sublayers
in the
constructor.

Define the forward
pass in the call()
method.

183Different ways to build Keras models

 priority = self.priority_scorer(features)
 department = self.department_classifier(features)
 return priority, department

Once you’ve defined the model, you can instantiate it. Note that it will only create its
weights the first time you call it on some data, much like Layer subclasses:

model = CustomerTicketModel(num_departments=4)

priority, department = model(
 {"title": title_data, "text_body": text_body_data, "tags": tags_data})

So far, everything looks very similar to Layer subclassing, a workflow you encountered
in chapter 3. What, then, is the difference between a Layer subclass and a Model sub-
class? It’s simple: a “layer” is a building block you use to create models, and a “model”
is the top-level object that you will actually train, export for inference, etc. In short, a
Model has fit(), evaluate(), and predict() methods. Layers don’t. Other than that,
the two classes are virtually identical. (Another difference is that you can save a model
to a file on disk, which we will cover in a few sections.)

 You can compile and train a Model subclass just like a Sequential or Functional
model:

model.compile(optimizer="rmsprop",
 loss=["mean_squared_error", "categorical_crossentropy"],
 metrics=[["mean_absolute_error"], ["accuracy"]])
model.fit({"title": title_data,
 "text_body": text_body_data,
 "tags": tags_data},
 [priority_data, department_data],
 epochs=1)
model.evaluate({"title": title_data,
 "text_body": text_body_data,
 "tags": tags_data},
 [priority_data, department_data])
priority_preds, department_preds = model.predict({"title": title_data,
 "text_body": text_body_data,
 "tags": tags_data})

The Model subclassing workflow is the most flexible way to build a model. It enables
you to build models that cannot be expressed as directed acyclic graphs of layers—
imagine, for instance, a model where the call() method uses layers inside a for loop,
or even calls them recursively. Anything is possible—you’re in charge.

BEWARE: WHAT SUBCLASSED MODELS DON’T SUPPORT

This freedom comes at a cost: with subclassed models, you are responsible for more of
the model logic, which means your potential error surface is much larger. As a result,
you will have more debugging work to do. You are developing a new Python object,
not just snapping together LEGO bricks.

The structure of what you pass as the loss and
metrics arguments must match exactly what gets

returned by call()—here, a list of two elements.

The structure of the input data must match
exactly what is expected by the call() method—
here, a dict with keys title, text_body, and tags.

The structure of the target
data must match exactly what is
returned by the call() method—
here, a list of two elements.

184 CHAPTER 7 Working with Keras: A deep dive

 Functional and subclassed models are also substantially different in nature. A Func-
tional model is an explicit data structure—a graph of layers, which you can view, inspect,
and modify. A subclassed model is a piece of bytecode—a Python class with a call()
method that contains raw code. This is the source of the subclassing workflow’s flexibil-
ity—you can code up whatever functionality you like—but it introduces new limitations.

 For instance, because the way layers are connected to each other is hidden inside
the body of the call() method, you cannot access that information. Calling sum-
mary() will not display layer connectivity, and you cannot plot the model topology via
plot_model(). Likewise, if you have a subclassed model, you cannot access the nodes
of the graph of layers to do feature extraction because there is simply no graph. Once
the model is instantiated, its forward pass becomes a complete black box.

7.2.4 Mixing and matching different components

Crucially, choosing one of these patterns—the Sequential model, the Functional API,
or Model subclassing—does not lock you out of the others. All models in the Keras API
can smoothly interoperate with each other, whether they’re Sequential models, Func-
tional models, or subclassed models written from scratch. They’re all part of the same
spectrum of workflows.

 For instance, you can use a subclassed layer or model in a Functional model.

class Classifier(keras.Model):

 def __init__(self, num_classes=2):
 super().__init__()
 if num_classes == 2:
 num_units = 1
 activation = "sigmoid"
 else:
 num_units = num_classes
 activation = "softmax"
 self.dense = layers.Dense(num_units, activation=activation)

 def call(self, inputs):
 return self.dense(inputs)

inputs = keras.Input(shape=(3,))
features = layers.Dense(64, activation="relu")(inputs)
outputs = Classifier(num_classes=10)(features)
model = keras.Model(inputs=inputs, outputs=outputs)

Inversely, you can use a Functional model as part of a subclassed layer or model.

inputs = keras.Input(shape=(64,))
outputs = layers.Dense(1, activation="sigmoid")(inputs)
binary_classifier = keras.Model(inputs=inputs, outputs=outputs)

Listing 7.15 Creating a Functional model that includes a subclassed model

Listing 7.16 Creating a subclassed model that includes a Functional model

185Using built-in training and evaluation loops

class MyModel(keras.Model):

 def __init__(self, num_classes=2):
 super().__init__()
 self.dense = layers.Dense(64, activation="relu")
 self.classifier = binary_classifier

 def call(self, inputs):
 features = self.dense(inputs)
 return self.classifier(features)

model = MyModel()

7.2.5 Remember: Use the right tool for the job

You’ve learned about the spectrum of workflows for building Keras models, from the
simplest workflow, the Sequential model, to the most advanced one, model subclass-
ing. When should you use one over the other? Each one has its pros and cons—pick
the one most suitable for the job at hand.

 In general, the Functional API provides you with a pretty good trade-off between
ease of use and flexibility. It also gives you direct access to layer connectivity, which is
very powerful for use cases such as model plotting or feature extraction. If you can use
the Functional API—that is, if your model can be expressed as a directed acyclic graph
of layers—I recommend using it over model subclassing.

 Going forward, all examples in this book will use the Functional API, simply
because all the models we will work with are expressible as graphs of layers. We will,
however, make frequent use of subclassed layers. In general, using Functional models
that include subclassed layers provides the best of both worlds: high development flex-
ibility while retaining the advantages of the Functional API.

7.3 Using built-in training and evaluation loops
The principle of progressive disclosure of complexity—access to a spectrum of work-
flows that go from dead easy to arbitrarily flexible, one step at a time—also applies to
model training. Keras provides you with different workflows for training models. They
can be as simple as calling fit() on your data, or as advanced as writing a new train-
ing algorithm from scratch.

 You are already familiar with the compile(), fit(), evaluate(), predict() work-
flow. As a reminder, take a look at the following listing.

from tensorflow.keras.datasets import mnist

def get_mnist_model():
 inputs = keras.Input(shape=(28 * 28,))
 features = layers.Dense(512, activation="relu")(inputs)
 features = layers.Dropout(0.5)(features)
 outputs = layers.Dense(10, activation="softmax")(features)

Listing 7.17 The standard workflow: compile(), fit(), evaluate(), predict()

Create a model (we factor this
into a separate function so as
to reuse it later).

186 CHAPTER 7 Working with Keras: A deep dive

 model = keras.Model(inputs, outputs)
 return model

(images, labels), (test_images, test_labels) = mnist.load_data()
images = images.reshape((60000, 28 * 28)).astype("float32") / 255
test_images = test_images.reshape((10000, 28 * 28)).astype("float32") / 255
train_images, val_images = images[10000:], images[:10000]
train_labels, val_labels = labels[10000:], labels[:10000]

model = get_mnist_model()
model.compile(optimizer="rmsprop",
 loss="sparse_categorical_crossentropy",
 metrics=["accuracy"])
model.fit(train_images, train_labels,
 epochs=3,
 validation_data=(val_images, val_labels))
test_metrics = model.evaluate(test_images, test_labels)
predictions = model.predict(test_images)

There are a couple of ways you can customize this simple workflow:

� Provide your own custom metrics.
� Pass callbacks to the fit() method to schedule actions to be taken at specific

points during training.

Let’s take a look at these.

7.3.1 Writing your own metrics

Metrics are key to measuring the performance of your model—in particular, to mea-
suring the difference between its performance on the training data and its perfor-
mance on the test data. Commonly used metrics for classification and regression are
already part of the built-in keras.metrics module, and most of the time that’s what
you will use. But if you’re doing anything out of the ordinary, you will need to be able
to write your own metrics. It’s simple!

 A Keras metric is a subclass of the keras.metrics.Metric class. Like layers, a met-
ric has an internal state stored in TensorFlow variables. Unlike layers, these variables
aren’t updated via backpropagation, so you have to write the state-update logic your-
self, which happens in the update_state() method.

 For example, here’s a simple custom metric that measures the root mean squared
error (RMSE).

import tensorflow as tf

class RootMeanSquaredError(keras.metrics.Metric):

Listing 7.18 Implementing a custom metric by subclassing the Metric class

Load your data, reserving
some for validation.

Compile the model by
specifying its optimizer, the
loss function to minimize,
and the metrics to monitor.

Use fit() to train the
model, optionally
providing validation data
to monitor performance
on unseen data.

Use evaluate() to
compute the loss and
metrics on new data.

Use predict() to compute
classification probabilities

on new data.

Subclass the
Metric class.

187Using built-in training and evaluation loops

 def __init__(self, name="rmse", **kwargs):
 super().__init__(name=name, **kwargs)
 self.mse_sum = self.add_weight(name="mse_sum", initializer="zeros")
 self.total_samples = self.add_weight(
 name="total_samples", initializer="zeros", dtype="int32")

 def update_state(self, y_true, y_pred, sample_weight=None):
 y_true = tf.one_hot(y_true, depth=tf.shape(y_pred)[1])
 mse = tf.reduce_sum(tf.square(y_true - y_pred))
 self.mse_sum.assign_add(mse)
 num_samples = tf.shape(y_pred)[0]
 self.total_samples.assign_add(num_samples)

You use the result() method to return the current value of the metric:

 def result(self):
 return tf.sqrt(self.mse_sum / tf.cast(self.total_samples, tf.float32))

Meanwhile, you also need to expose a way to reset the metric state without having to
reinstantiate it—this enables the same metric objects to be used across different
epochs of training or across both training and evaluation. You do this with the
reset_state() method:

 def reset_state(self):
 self.mse_sum.assign(0.)
 self.total_samples.assign(0)

Custom metrics can be used just like built-in ones. Let’s test-drive our own metric:

model = get_mnist_model()
model.compile(optimizer="rmsprop",
 loss="sparse_categorical_crossentropy",
 metrics=["accuracy", RootMeanSquaredError()])
model.fit(train_images, train_labels,
 epochs=3,
 validation_data=(val_images, val_labels))
test_metrics = model.evaluate(test_images, test_labels)

You can now see the fit() progress bar displaying the RMSE of your model.

7.3.2 Using callbacks

Launching a training run on a large dataset for tens of epochs using model.fit() can
be a bit like launching a paper airplane: past the initial impulse, you don’t have any
control over its trajectory or its landing spot. If you want to avoid bad outcomes (and
thus wasted paper airplanes), it’s smarter to use, not a paper plane, but a drone that
can sense its environment, send data back to its operator, and automatically make

Define the state
variables in the

constructor. Like
for layers, you
have access to

the add_weight()
method.

Implement the state update logic in update_state(). The y_true argument
is the targets (or labels) for one batch, while y_pred represents the

corresponding predictions from the model. You can ignore the
sample_weight argument—we won’t use it here.

To match our
MNIST model, we

expect categorical
predictions and

integer labels.

188 CHAPTER 7 Working with Keras: A deep dive

steering decisions based on its current state. The Keras callbacks API will help you
transform your call to model.fit() from a paper airplane into a smart, autonomous
drone that can self-introspect and dynamically take action.

 A callback is an object (a class instance implementing specific methods) that is
passed to the model in the call to fit() and that is called by the model at various
points during training. It has access to all the available data about the state of the
model and its performance, and it can take action: interrupt training, save a model,
load a different weight set, or otherwise alter the state of the model.

 Here are some examples of ways you can use callbacks:

� Model checkpointing—Saving the current state of the model at different points
during training.

� Early stopping—Interrupting training when the validation loss is no longer
improving (and of course, saving the best model obtained during training).

� Dynamically adjusting the value of certain parameters during training—Such as the
learning rate of the optimizer.

� Logging training and validation metrics during training, or visualizing the representa-
tions learned by the model as they’re updated—The fit() progress bar that you’re
familiar with is in fact a callback!

The keras.callbacks module includes a number of built-in callbacks (this is not an
exhaustive list):

keras.callbacks.ModelCheckpoint
keras.callbacks.EarlyStopping
keras.callbacks.LearningRateScheduler
keras.callbacks.ReduceLROnPlateau
keras.callbacks.CSVLogger

Let’s review two of them to give you an idea of how to use them: EarlyStopping and
ModelCheckpoint.

THE EARLYSTOPPING AND MODELCHECKPOINT CALLBACKS

When you’re training a model, there are many things you can’t predict from the start.
In particular, you can’t tell how many epochs will be needed to get to an optimal vali-
dation loss. Our examples so far have adopted the strategy of training for enough
epochs that you begin overfitting, using the first run to figure out the proper number
of epochs to train for, and then finally launching a new training run from scratch
using this optimal number. Of course, this approach is wasteful. A much better way to
handle this is to stop training when you measure that the validation loss is no longer
improving. This can be achieved using the EarlyStopping callback.

 The EarlyStopping callback interrupts training once a target metric being moni-
tored has stopped improving for a fixed number of epochs. For instance, this callback
allows you to interrupt training as soon as you start overfitting, thus avoiding having to
retrain your model for a smaller number of epochs. This callback is typically used in

189Using built-in training and evaluation loops

combination with ModelCheckpoint, which lets you continually save the model during
training (and, optionally, save only the current best model so far: the version of the
model that achieved the best performance at the end of an epoch).

callbacks_list = [
 keras.callbacks.EarlyStopping(
 monitor="val_accuracy",
 patience=2,
),
 keras.callbacks.ModelCheckpoint(
 filepath="checkpoint_path.keras",
 monitor="val_loss",
 save_best_only=True,
)
]
model = get_mnist_model()
model.compile(optimizer="rmsprop",
 loss="sparse_categorical_crossentropy",
 metrics=["accuracy"])
model.fit(train_images, train_labels,
 epochs=10,
 callbacks=callbacks_list,
 validation_data=(val_images, val_labels))

Note that you can always save models manually after training as well—just call
model.save('my_checkpoint_path'). To reload the model you’ve saved, just use

model = keras.models.load_model("checkpoint_path.keras")

7.3.3 Writing your own callbacks

If you need to take a specific action during training that isn’t covered by one of the
built-in callbacks, you can write your own callback. Callbacks are implemented by sub-
classing the keras.callbacks.Callback class. You can then implement any number
of the following transparently named methods, which are called at various points
during training:

on_epoch_begin(epoch, logs)
on_epoch_end(epoch, logs)
on_batch_begin(batch, logs)
on_batch_end(batch, logs)
on_train_begin(logs)
on_train_end(logs)

Listing 7.19 Using the callbacks argument in the fit() method

Callbacks are passed to the model via the
callbacks argument in fit(), which takes a list of

callbacks. You can pass any number of callbacks.

Interrupts training when
improvement stops

Monitors the model’s
validation accuracy

Interrupts training when
accuracy has stopped
improving for two epochs

Saves the
current

weights after
every epoch

Path to the
destination

model file
These two arguments mean you won’t
overwrite the model file unless val_loss
has improved, which allows you to keep
the best model seen during training.

You monitor accuracy,
so it should be part of
the model’s metrics.

Note that because the callback
will monitor validation loss and
validation accuracy, you need to pass
validation_data to the call to fit().

Called at the start
of every epoch

Called at the end
of every epoch

Called right before
processing each batch

Called right after
processing each batch

Called at the start
of training

Called at the end
of training

190 CHAPTER 7 Working with Keras: A deep dive

These methods are all called with a logs argument, which is a dictionary containing
information about the previous batch, epoch, or training run—training and valida-
tion metrics, and so on. The on_epoch_* and on_batch_* methods also take the
epoch or batch index as their first argument (an integer).

 Here’s a simple example that saves a list of per-batch loss values during training
and saves a graph of these values at the end of each epoch.

from matplotlib import pyplot as plt

class LossHistory(keras.callbacks.Callback):
 def on_train_begin(self, logs):
 self.per_batch_losses = []

 def on_batch_end(self, batch, logs):
 self.per_batch_losses.append(logs.get("loss"))

 def on_epoch_end(self, epoch, logs):
 plt.clf()
 plt.plot(range(len(self.per_batch_losses)), self.per_batch_losses,
 label="Training loss for each batch")
 plt.xlabel(f"Batch (epoch {epoch})")
 plt.ylabel("Loss")
 plt.legend()
 plt.savefig(f"plot_at_epoch_{epoch}")
 self.per_batch_losses = []

Let’s test-drive it:

model = get_mnist_model()
model.compile(optimizer="rmsprop",
 loss="sparse_categorical_crossentropy",
 metrics=["accuracy"])
model.fit(train_images, train_labels,
 epochs=10,
 callbacks=[LossHistory()],
 validation_data=(val_images, val_labels))

We get plots that look like figure 7.5.

7.3.4 Monitoring and visualization with TensorBoard

To do good research or develop good models, you need rich, frequent feedback about
what’s going on inside your models during your experiments. That’s the point of run-
ning experiments: to get information about how well a model performs—as much
information as possible. Making progress is an iterative process, a loop—you start with
an idea and express it as an experiment, attempting to validate or invalidate your idea.
You run this experiment and process the information it generates. This inspires your
next idea. The more iterations of this loop you’re able to run, the more refined and

Listing 7.20 Creating a custom callback by subclassing the Callback class

191Using built-in training and evaluation loops

powerful your ideas become. Keras helps you go from idea to experiment in the least
possible time, and fast GPUs can help you get from experiment to result as quickly as
possible. But what about processing the experiment’s results? That’s where Tensor-
Board comes in (see figure 7.6).

TensorBoard (www.tensorflow.org/tensorboard) is a browser-based application that
you can run locally. It’s the best way to monitor everything that goes on inside your
model during training. With TensorBoard, you can

� Visually monitor metrics during training
� Visualize your model architecture
� Visualize histograms of activations and gradients
� Explore embeddings in 3D

If you’re monitoring more information than just the model’s final loss, you can
develop a clearer vision of what the model does and doesn’t do, and you can make
progress more quickly.

Figure 7.5 The output of our custom history plotting callback

Idea

Visualization
framework:

TensorBoard

Deep learning
framework:

Keras

GPUs, TPUs

Results Experiment

Figure 7.6 The loop of progress

192 CHAPTER 7 Working with Keras: A deep dive

 The easiest way to use TensorBoard with a Keras model and the fit() method is to
use the keras.callbacks.TensorBoard callback.

 In the simplest case, just specify where you want the callback to write logs, and
you’re good to go:

model = get_mnist_model()
model.compile(optimizer="rmsprop",
 loss="sparse_categorical_crossentropy",
 metrics=["accuracy"])

tensorboard = keras.callbacks.TensorBoard(
 log_dir="/full_path_to_your_log_dir",
)
model.fit(train_images, train_labels,
 epochs=10,
 validation_data=(val_images, val_labels),
 callbacks=[tensorboard])

Once the model starts running, it will write logs at the target location. If you are run-
ning your Python script on a local machine, you can then launch the local Tensor-
Board server using the following command (note that the tensorboard executable
should be already available if you have installed TensorFlow via pip; if not, you can
install TensorBoard manually via pip install tensorboard):

tensorboard --logdir /full_path_to_your_log_dir

You can then navigate to the URL that the command returns in order to access the
TensorBoard interface.

 If you are running your script in a Colab notebook, you can run an embedded Ten-
sorBoard instance as part of your notebook, using the following commands:

%load_ext tensorboard
%tensorboard --logdir /full_path_to_your_log_dir

In the TensorBoard interface, you will be able to monitor live graphs of your training
and evaluation metrics (see figure 7.7).

7.4 Writing your own training and evaluation loops
The fit() workflow strikes a nice balance between ease of use and flexibility. It’s what
you will use most of the time. However, it isn’t meant to support everything a deep
learning researcher may want to do, even with custom metrics, custom losses, and cus-
tom callbacks.

 After all, the built-in fit() workflow is solely focused on supervised learning : a setup
where there are known targets (also called labels or annotations) associated with your
input data, and where you compute your loss as a function of these targets and the
model’s predictions. However, not every form of machine learning falls into this

193Writing your own training and evaluation loops

category. There are other setups where no explicit targets are present, such as genera-
tive learning (which we will discuss in chapter 12), self-supervised learning (where targets
are obtained from the inputs), and reinforcement learning (where learning is driven by
occasional “rewards,” much like training a dog). Even if you’re doing regular super-
vised learning, as a researcher, you may want to add some novel bells and whistles that
require low-level flexibility.

 Whenever you find yourself in a situation where the built-in fit() is not enough,
you will need to write your own custom training logic. You already saw simple exam-
ples of low-level training loops in chapters 2 and 3. As a reminder, the contents of a
typical training loop look like this:

1 Run the forward pass (compute the model’s output) inside a gradient tape to
obtain a loss value for the current batch of data.

2 Retrieve the gradients of the loss with regard to the model’s weights.
3 Update the model’s weights so as to lower the loss value on the current batch

of data.

Figure 7.7 TensorBoard can be used for easy monitoring of training and evaluation metrics.

194 CHAPTER 7 Working with Keras: A deep dive

These steps are repeated for as many batches as necessary. This is essentially what
fit() does under the hood. In this section, you will learn to reimplement fit() from
scratch, which will give you all the knowledge you need to write any training algorithm
you may come up with.

 Let’s go over the details.

7.4.1 Training versus inference

In the low-level training loop examples you’ve seen so far, step 1 (the forward pass)
was done via predictions = model(inputs), and step 2 (retrieving the gradients
computed by the gradient tape) was done via gradients = tape.gradient(loss,
model.weights). In the general case, there are actually two subtleties you need to take
into account.

 Some Keras layers, such as the Dropout layer, have different behaviors during training
and during inference (when you use them to generate predictions). Such layers expose
a training Boolean argument in their call() method. Calling dropout(inputs,
training=True) will drop some activation entries, while calling dropout(inputs,
training=False) does nothing. By extension, Functional and Sequential models also
expose this training argument in their call() methods. Remember to pass training
=True when you call a Keras model during the forward pass! Our forward pass thus
becomes predictions = model(inputs, training=True).

 In addition, note that when you retrieve the gradients of the weights of your
model, you should not use tape.gradients(loss, model.weights), but rather tape
.gradients(loss, model.trainable_weights). Indeed, layers and models own two
kinds of weights:

� Trainable weights—These are meant to be updated via backpropagation to mini-
mize the loss of the model, such as the kernel and bias of a Dense layer.

� Non-trainable weights—These are meant to be updated during the forward pass
by the layers that own them. For instance, if you wanted a custom layer to keep
a counter of how many batches it has processed so far, that information would
be stored in a non-trainable weight, and at each batch, your layer would incre-
ment the counter by one.

Among Keras built-in layers, the only layer that features non-trainable weights is the
BatchNormalization layer, which we will discuss in chapter 9. The BatchNormalization
layer needs non-trainable weights in order to track information about the mean and
standard deviation of the data that passes through it, so as to perform an online
approximation of feature normalization (a concept you learned about in chapter 6).

 Taking into account these two details, a supervised-learning training step ends up
looking like this:

def train_step(inputs, targets):
 with tf.GradientTape() as tape:
 predictions = model(inputs, training=True)
 loss = loss_fn(targets, predictions)

195Writing your own training and evaluation loops

 gradients = tape.gradients(loss, model.trainable_weights)
 optimizer.apply_gradients(zip(model.trainable_weights, gradients))

7.4.2 Low-level usage of metrics

In a low-level training loop, you will probably want to leverage Keras metrics (whether
custom ones or the built-in ones). You’ve already learned about the metrics API: sim-
ply call update_state(y_true, y_pred) for each batch of targets and predictions, and
then use result() to query the current metric value:

metric = keras.metrics.SparseCategoricalAccuracy()
targets = [0, 1, 2]
predictions = [[1, 0, 0], [0, 1, 0], [0, 0, 1]]
metric.update_state(targets, predictions)
current_result = metric.result()
print(f"result: {current_result:.2f}")

You may also need to track the average of a scalar value, such as the model’s loss. You
can do this via the keras.metrics.Mean metric:

values = [0, 1, 2, 3, 4]
mean_tracker = keras.metrics.Mean()
for value in values:
 mean_tracker.update_state(value)
print(f"Mean of values: {mean_tracker.result():.2f}")

Remember to use metric.reset_state() when you want to reset the current results
(at the start of a training epoch or at the start of evaluation).

7.4.3 A complete training and evaluation loop

Let’s combine the forward pass, backward pass, and metrics tracking into a fit()-like
training step function that takes a batch of data and targets and returns the logs that
would get displayed by the fit() progress bar.

model = get_mnist_model()

loss_fn = keras.losses.SparseCategoricalCrossentropy()
optimizer = keras.optimizers.RMSprop()
metrics = [keras.metrics.SparseCategoricalAccuracy()]
loss_tracking_metric = keras.metrics.Mean()

def train_step(inputs, targets):
 with tf.GradientTape() as tape:
 predictions = model(inputs, training=True)
 loss = loss_fn(targets, predictions)
 gradients = tape.gradient(loss, model.trainable_weights)
 optimizer.apply_gradients(zip(gradients, model.trainable_weights))

Listing 7.21 Writing a step-by-step training loop: the training step function

Prepare the loss
function.

Prepare the
optimizer.

Prepare the list of
metrics to monitor.

Prepare a Mean metric tracker to
keep track of the loss average.

Run the forward pass. Note
that we pass training=True.

Run the backward pass. Note that
we use model.trainable_weights.

196 CHAPTER 7 Working with Keras: A deep dive

 logs = {}
 for metric in metrics:
 metric.update_state(targets, predictions)
 logs[metric.name] = metric.result()

 loss_tracking_metric.update_state(loss)
 logs["loss"] = loss_tracking_metric.result()
 return logs

We will need to reset the state of our metrics at the start of each epoch and before run-
ning evaluation. Here’s a utility function to do it.

def reset_metrics():
 for metric in metrics:
 metric.reset_state()
 loss_tracking_metric.reset_state()

We can now lay out our complete training loop. Note that we use a tf.data.Dataset
object to turn our NumPy data into an iterator that iterates over the data in batches of
size 32.

training_dataset = tf.data.Dataset.from_tensor_slices(
 (train_images, train_labels))
training_dataset = training_dataset.batch(32)
epochs = 3
for epoch in range(epochs):
 reset_metrics()
 for inputs_batch, targets_batch in training_dataset:
 logs = train_step(inputs_batch, targets_batch)
 print(f"Results at the end of epoch {epoch}")
 for key, value in logs.items():
 print(f"...{key}: {value:.4f}")

And here’s the evaluation loop: a simple for loop that repeatedly calls a test_step()
function, which processes a single batch of data. The test_step() function is just a sub-
set of the logic of train_step(). It omits the code that deals with updating the weights
of the model—that is to say, everything involving the GradientTape and the optimizer.

def test_step(inputs, targets):
 predictions = model(inputs, training=False)
 loss = loss_fn(targets, predictions)

 logs = {}
 for metric in metrics:
 metric.update_state(targets, predictions)
 logs["val_" + metric.name] = metric.result()

Listing 7.22 Writing a step-by-step training loop: resetting the metrics

Listing 7.23 Writing a step-by-step training loop: the loop itself

Listing 7.24 Writing a step-by-step evaluation loop

Keep track
of metrics.

Keep track of the
loss average.

Return the current values of
the metrics and the loss.

Note that we pass
training=False.

197Writing your own training and evaluation loops

 loss_tracking_metric.update_state(loss)
 logs["val_loss"] = loss_tracking_metric.result()
 return logs

val_dataset = tf.data.Dataset.from_tensor_slices((val_images, val_labels))
val_dataset = val_dataset.batch(32)
reset_metrics()
for inputs_batch, targets_batch in val_dataset:
 logs = test_step(inputs_batch, targets_batch)
print("Evaluation results:")
for key, value in logs.items():
 print(f"...{key}: {value:.4f}")

Congrats—you’ve just reimplemented fit() and evaluate()! Or almost: fit()
and evaluate() support many more features, including large-scale distributed com-
putation, which requires a bit more work. It also includes several key performance
optimizations.

 Let’s take a look at one of these optimizations: TensorFlow function compilation.

7.4.4 Make it fast with tf.function

You may have noticed that your custom loops are running significantly slower than the
built-in fit() and evaluate(), despite implementing essentially the same logic.
That’s because, by default, TensorFlow code is executed line by line, eagerly, much like
NumPy code or regular Python code. Eager execution makes it easier to debug your
code, but it is far from optimal from a performance standpoint.

 It’s more performant to compile your TensorFlow code into a computation graph that
can be globally optimized in a way that code interpreted line by line cannot. The syn-
tax to do this is very simple: just add a @tf.function to any function you want to com-
pile before executing, as shown in the following listing.

@tf.function
def test_step(inputs, targets):
 predictions = model(inputs, training=False)
 loss = loss_fn(targets, predictions)

 logs = {}
 for metric in metrics:
 metric.update_state(targets, predictions)
 logs["val_" + metric.name] = metric.result()

 loss_tracking_metric.update_state(loss)
 logs["val_loss"] = loss_tracking_metric.result()
 return logs

val_dataset = tf.data.Dataset.from_tensor_slices((val_images, val_labels))
val_dataset = val_dataset.batch(32)
reset_metrics()

Listing 7.25 Adding a @tf.function decorator to our evaluation-step function

This is the
only line that
changed.

198 CHAPTER 7 Working with Keras: A deep dive

for inputs_batch, targets_batch in val_dataset:
 logs = test_step(inputs_batch, targets_batch)
print("Evaluation results:")
for key, value in logs.items():
 print(f"...{key}: {value:.4f}")

On the Colab CPU, we go from taking 1.80 s to run the evaluation loop to only 0.8 s.
Much faster!

 Remember, while you are debugging your code, prefer running it eagerly, without
any @tf.function decorator. It’s easier to track bugs this way. Once your code is work-
ing and you want to make it fast, add a @tf.function decorator to your training step
and your evaluation step—or any other performance-critical function.

7.4.5 Leveraging fit() with a custom training loop

In the previous sections, we were writing our own training loop entirely from scratch.
Doing so provides you with the most flexibility, but you end up writing a lot of code
while simultaneously missing out on many convenient features of fit(), such as call-
backs or built-in support for distributed training.

 What if you need a custom training algorithm, but you still want to leverage the
power of the built-in Keras training logic? There’s actually a middle ground between
fit() and a training loop written from scratch: you can provide a custom training
step function and let the framework do the rest.

 You can do this by overriding the train_step() method of the Model class. This is
the function that is called by fit() for every batch of data. You will then be able to call
fit() as usual, and it will be running your own learning algorithm under the hood.

 Here’s a simple example:

� We create a new class that subclasses keras.Model.
� We override the method train_step(self, data). Its contents are nearly iden-

tical to what we used in the previous section. It returns a dictionary mapping
metric names (including the loss) to their current values.

� We implement a metrics property that tracks the model’s Metric instances.
This enables the model to automatically call reset_state() on the model’s
metrics at the start of each epoch and at the start of a call to evaluate(), so you
don’t have to do it by hand.

loss_fn = keras.losses.SparseCategoricalCrossentropy()
loss_tracker = keras.metrics.Mean(name="loss")

class CustomModel(keras.Model):
 def train_step(self, data):
 inputs, targets = data
 with tf.GradientTape() as tape:
 predictions = self(inputs, training=True)
 loss = loss_fn(targets, predictions)

Listing 7.26 Implementing a custom training step to use with fit()

This metric object will be used to
track the average of per-batch losses
during training and evaluation.

We override the
train_step method.

We use self(inputs,
training=True) instead
of model(inputs,
training=True), since our
model is the class itself.

199Writing your own training and evaluation loops

 gradients = tape.gradient(loss, model.trainable_weights)
 optimizer.apply_gradients(zip(gradients, model.trainable_weights))

 loss_tracker.update_state(loss)
 return {"loss": loss_tracker.result()}

 @property
 def metrics(self):
 return [loss_tracker]

We can now instantiate our custom model, compile it (we only pass the optimizer, since
the loss is already defined outside of the model), and train it using fit() as usual:

inputs = keras.Input(shape=(28 * 28,))
features = layers.Dense(512, activation="relu")(inputs)
features = layers.Dropout(0.5)(features)
outputs = layers.Dense(10, activation="softmax")(features)
model = CustomModel(inputs, outputs)

model.compile(optimizer=keras.optimizers.RMSprop())
model.fit(train_images, train_labels, epochs=3)

There are a couple of points to note:

� This pattern does not prevent you from building models with the Functional
API. You can do this whether you’re building Sequential models, Functional
API models, or subclassed models.

� You don’t need to use a @tf.function decorator when you override train_
step—the framework does it for you.

Now, what about metrics, and what about configuring the loss via compile()? After
you’ve called compile(), you get access to the following:

� self.compiled_loss—The loss function you passed to compile().
� self.compiled_metrics—A wrapper for the list of metrics you passed, which

allows you to call self.compiled_metrics.update_state() to update all of
your metrics at once.

� self.metrics—The actual list of metrics you passed to compile(). Note that it
also includes a metric that tracks the loss, similar to what we did manually with
our loss_tracking_metric earlier.

We can thus write

class CustomModel(keras.Model):
 def train_step(self, data):
 inputs, targets = data
 with tf.GradientTape() as tape:
 predictions = self(inputs, training=True)
 loss = self.compiled_loss(targets, predictions)
 gradients = tape.gradient(loss, model.trainable_weights)

We update the loss
tracker metric that
tracks the average
of the loss.

We return the average loss
so far by querying the loss
tracker metric.

Any metric you
would like to reset
across epochs should
be listed here.

Compute
the loss via
self.compiled_
loss.

200 CHAPTER 7 Working with Keras: A deep dive

 optimizer.apply_gradients(zip(gradients, model.trainable_weights))
 self.compiled_metrics.update_state(targets, predictions)
 return {m.name: m.result() for m in self.metrics}

Let’s try it:

inputs = keras.Input(shape=(28 * 28,))
features = layers.Dense(512, activation="relu")(inputs)
features = layers.Dropout(0.5)(features)
outputs = layers.Dense(10, activation="softmax")(features)
model = CustomModel(inputs, outputs)

model.compile(optimizer=keras.optimizers.RMSprop(),
 loss=keras.losses.SparseCategoricalCrossentropy(),
 metrics=[keras.metrics.SparseCategoricalAccuracy()])
model.fit(train_images, train_labels, epochs=3)

That was a lot of information, but you now know enough to use Keras to do almost
anything.

Summary
� Keras offers a spectrum of different workflows, based on the principle of progres-

sive disclosure of complexity. They all smoothly inter-operate together.
� You can build models via the Sequential class, via the Functional API, or by sub-

classing the Model class. Most of the time, you’ll be using the Functional API.
� The simplest way to train and evaluate a model is via the default fit() and

evaluate() methods.
� Keras callbacks provide a simple way to monitor models during your call to

fit() and automatically take action based on the state of the model.
� You can also fully take control of what fit() does by overriding the train_

step() method.
� Beyond fit(), you can also write your own training loops entirely from scratch.

This is useful for researchers implementing brand-new training algorithms.

Update the model’s metrics
via self.compiled_metrics.

Return a dict mapping metric
names to their current value.

201

Introduction
to deep learning

for computer vision

Computer vision is the earliest and biggest success story of deep learning. Every
day, you’re interacting with deep vision models—via Google Photos, Google image
search, YouTube, video filters in camera apps, OCR software, and many more.
These models are also at the heart of cutting-edge research in autonomous driving,
robotics, AI-assisted medical diagnosis, autonomous retail checkout systems, and
even autonomous farming.

 Computer vision is the problem domain that led to the initial rise of deep learn-
ing between 2011 and 2015. A type of deep learning model called convolutional
neural networks started getting remarkably good results on image classification
competitions around that time, first with Dan Ciresan winning two niche competi-
tions (the ICDAR 2011 Chinese character recognition competition and the IJCNN

This chapter covers
� Understanding convolutional neural networks

(convnets)
� Using data augmentation to mitigate overfitting
� Using a pretrained convnet to do feature

extraction
� Fine-tuning a pretrained convnet

202 CHAPTER 8 Introduction to deep learning for computer vision

2011 German traffic signs recognition competition), and then more notably in fall
2012 with Hinton’s group winning the high-profile ImageNet large-scale visual recog-
nition challenge. Many more promising results quickly started bubbling up in other
computer vision tasks.

 Interestingly, these early successes weren’t quite enough to make deep learning
mainstream at the time—it took a few years. The computer vision research commu-
nity had spent many years investing in methods other than neural networks, and it
wasn’t quite ready to give up on them just because there was a new kid on the block.
In 2013 and 2014, deep learning still faced intense skepticism from many senior
computer vision researchers. It was only in 2016 that it finally became dominant. I
remember exhorting an ex-professor of mine, in February 2014, to pivot to deep
learning. “It’s the next big thing!” I would say. “Well, maybe it’s just a fad,” he
replied. By 2016, his entire lab was doing deep learning. There’s no stopping an
idea whose time has come.

 This chapter introduces convolutional neural networks, also known as convnets, the
type of deep learning model that is now used almost universally in computer vision
applications. You’ll learn to apply convnets to image-classification problems—in par-
ticular those involving small training datasets, which are the most common use case if
you aren’t a large tech company.

8.1 Introduction to convnets
We’re about to dive into the theory of what convnets are and why they have been so
successful at computer vision tasks. But first, let’s take a practical look at a simple conv-
net example that classifies MNIST digits, a task we performed in chapter 2 using a
densely connected network (our test accuracy then was 97.8%). Even though the
convnet will be basic, its accuracy will blow our densely connected model from chap-
ter 2 out of the water.

 The following listing shows what a basic convnet looks like. It’s a stack of Conv2D
and MaxPooling2D layers. You’ll see in a minute exactly what they do. We’ll build the
model using the Functional API, which we introduced in the previous chapter.

from tensorflow import keras
from tensorflow.keras import layers
inputs = keras.Input(shape=(28, 28, 1))
x = layers.Conv2D(filters=32, kernel_size=3, activation="relu")(inputs)
x = layers.MaxPooling2D(pool_size=2)(x)
x = layers.Conv2D(filters=64, kernel_size=3, activation="relu")(x)
x = layers.MaxPooling2D(pool_size=2)(x)
x = layers.Conv2D(filters=128, kernel_size=3, activation="relu")(x)
x = layers.Flatten()(x)
outputs = layers.Dense(10, activation="softmax")(x)
model = keras.Model(inputs=inputs, outputs=outputs)

Listing 8.1 Instantiating a small convnet

203Introduction to convnets

Importantly, a convnet takes as input tensors of shape (image_height, image_width,
image_channels), not including the batch dimension. In this case, we’ll configure the
convnet to process inputs of size (28, 28, 1), which is the format of MNIST images.

 Let’s display the architecture of our convnet.

>>> model.summary()
Model: "model"

Layer (type) Output Shape Param #
===
input_1 (InputLayer) [(None, 28, 28, 1)] 0

conv2d (Conv2D) (None, 26, 26, 32) 320

max_pooling2d (MaxPooling2D) (None, 13, 13, 32) 0

conv2d_1 (Conv2D) (None, 11, 11, 64) 18496

max_pooling2d_1 (MaxPooling2 (None, 5, 5, 64) 0

conv2d_2 (Conv2D) (None, 3, 3, 128) 73856

flatten (Flatten) (None, 1152) 0

dense (Dense) (None, 10) 11530
===
Total params: 104,202
Trainable params: 104,202
Non-trainable params: 0

You can see that the output of every Conv2D and MaxPooling2D layer is a rank-3 tensor
of shape (height, width, channels). The width and height dimensions tend to
shrink as you go deeper in the model. The number of channels is controlled by the
first argument passed to the Conv2D layers (32, 64, or 128).

 After the last Conv2D layer, we end up with an output of shape (3, 3, 128)—a 3 × 3
feature map of 128 channels. The next step is to feed this output into a densely con-
nected classifier like those you’re already familiar with: a stack of Dense layers. These
classifiers process vectors, which are 1D, whereas the current output is a rank-3 tensor.
To bridge the gap, we flatten the 3D outputs to 1D with a Flatten layer before adding
the Dense layers.

 Finally, we do 10-way classification, so our last layer has 10 outputs and a softmax
activation.

 Now, let’s train the convnet on the MNIST digits. We’ll reuse a lot of the code from
the MNIST example in chapter 2. Because we’re doing 10-way classification with a
softmax output, we’ll use the categorical crossentropy loss, and because our labels are
integers, we’ll use the sparse version, sparse_categorical_crossentropy.

Listing 8.2 Displaying the model’s summary

204 CHAPTER 8 Introduction to deep learning for computer vision

from tensorflow.keras.datasets import mnist

(train_images, train_labels), (test_images, test_labels) = mnist.load_data()
train_images = train_images.reshape((60000, 28, 28, 1))
train_images = train_images.astype("float32") / 255
test_images = test_images.reshape((10000, 28, 28, 1))
test_images = test_images.astype("float32") / 255
model.compile(optimizer="rmsprop",
 loss="sparse_categorical_crossentropy",
 metrics=["accuracy"])
model.fit(train_images, train_labels, epochs=5, batch_size=64)

Let’s evaluate the model on the test data.

>>> test_loss, test_acc = model.evaluate(test_images, test_labels)
>>> print(f"Test accuracy: {test_acc:.3f}")
Test accuracy: 0.991

Whereas the densely connected model from chapter 2 had a test accuracy of 97.8%,
the basic convnet has a test accuracy of 99.1%: we decreased the error rate by about
60% (relative). Not bad!

 But why does this simple convnet work so well, compared to a densely connected
model? To answer this, let’s dive into what the Conv2D and MaxPooling2D layers do.

8.1.1 The convolution operation

The fundamental difference between a densely connected layer and a convolution
layer is this: Dense layers learn global patterns in their input feature space (for exam-
ple, for a MNIST digit, patterns involving all pixels), whereas convolution layers learn
local patterns—in the case of images, patterns found in small 2D windows of the
inputs (see figure 8.1). In the previous example, these windows were all 3 × 3.

Listing 8.3 Training the convnet on MNIST images

Listing 8.4 Evaluating the convnet

Figure 8.1 Images can be broken
into local patterns such as edges,
textures, and so on.

205Introduction to convnets

This key characteristic gives convnets two interesting properties:

� The patterns they learn are translation-invariant. After learning a certain pattern in
the lower-right corner of a picture, a convnet can recognize it anywhere: for
example, in the upper-left corner. A densely connected model would have to
learn the pattern anew if it appeared at a new location. This makes convnets
data-efficient when processing images (because the visual world is fundamentally
translation-invariant): they need fewer training samples to learn representations
that have generalization power.

� They can learn spatial hierarchies of patterns. A first convolution layer will learn
small local patterns such as edges, a second convolution layer will learn larger
patterns made of the features of the first layers, and so on (see figure 8.2). This
allows convnets to efficiently learn increasingly complex and abstract visual con-
cepts, because the visual world is fundamentally spatially hierarchical.

Convolutions operate over rank-3 tensors called feature maps, with two spatial axes
(height and width) as well as a depth axis (also called the channels axis). For an RGB
image, the dimension of the depth axis is 3, because the image has three color chan-
nels: red, green, and blue. For a black-and-white picture, like the MNIST digits, the
depth is 1 (levels of gray). The convolution operation extracts patches from its input
feature map and applies the same transformation to all of these patches, producing
an output feature map. This output feature map is still a rank-3 tensor: it has a width and

“cat”

Figure 8.2 The visual world forms a spatial hierarchy of visual modules:
elementary lines or textures combine into simple objects such as eyes or
ears, which combine into high-level concepts such as “cat.”

206 CHAPTER 8 Introduction to deep learning for computer vision

a height. Its depth can be arbitrary, because the output depth is a parameter of the
layer, and the different channels in that depth axis no longer stand for specific colors
as in RGB input; rather, they stand for filters. Filters encode specific aspects of the
input data: at a high level, a single filter could encode the concept “presence of a face
in the input,” for instance.

 In the MNIST example, the first convolution layer takes a feature map of size (28,
28, 1) and outputs a feature map of size (26, 26, 32): it computes 32 filters over its
input. Each of these 32 output channels contains a 26 × 26 grid of values, which is a
response map of the filter over the input, indicating the response of that filter pattern at
different locations in the input (see figure 8.3).

That is what the term feature map means: every dimension in the depth axis is a feature
(or filter), and the rank-2 tensor output[:, :, n] is the 2D spatial map of the response
of this filter over the input.

 Convolutions are defined by two key parameters:

� Size of the patches extracted from the inputs—These are typically 3 × 3 or 5 × 5. In the
example, they were 3 × 3, which is a common choice.

� Depth of the output feature map—This is the number of filters computed by the con-
volution. The example started with a depth of 32 and ended with a depth of 64.

In Keras Conv2D layers, these parameters are the first arguments passed to the layer:
Conv2D(output_depth, (window_height, window_width)).

 A convolution works by sliding these windows of size 3 × 3 or 5 × 5 over the 3D
input feature map, stopping at every possible location, and extracting the 3D patch of
surrounding features (shape (window_height, window_width, input_depth)). Each
such 3D patch is then transformed into a 1D vector of shape (output_depth,), which is
done via a tensor product with a learned weight matrix, called the convolution kernel—
the same kernel is reused across every patch. All of these vectors (one per patch) are
then spatially reassembled into a 3D output map of shape (height, width, output_
depth). Every spatial location in the output feature map corresponds to the same
location in the input feature map (for example, the lower-right corner of the output
contains information about the lower-right corner of the input). For instance, with

Response map,

quantifying the presence

of the filter’s pattern at

different locationsOriginal input

Single filter

Figure 8.3 The concept of a
response map: a 2D map of the
presence of a pattern at different
locations in an input

207Introduction to convnets

3 × 3 windows, the vector output[i, j, :] comes from the 3D patch input[i-1:i+1,
j-1:j+1, :]. The full process is detailed in figure 8.4.

Note that the output width and height may differ from the input width and height for
two reasons:

� Border effects, which can be countered by padding the input feature map
� The use of strides, which I’ll define in a second

Let’s take a deeper look at these notions.

UNDERSTANDING BORDER EFFECTS AND PADDING

Consider a 5 × 5 feature map (25 tiles total). There are only 9 tiles around which you
can center a 3 × 3 window, forming a 3 × 3 grid (see figure 8.5). Hence, the output fea-
ture map will be 3 × 3. It shrinks a little: by exactly two tiles alongside each dimension,
in this case. You can see this border effect in action in the earlier example: you start
with 28 × 28 inputs, which become 26 × 26 after the first convolution layer.

 If you want to get an output feature map with the same spatial dimensions as the
input, you can use padding. Padding consists of adding an appropriate number of rows

Height

Input feature map

Output feature map

3 × 3 input patches

Transformed patches

Width

Input

depth

Dot product

with kernel

Output

depth

Output

depth

Figure 8.4 How
convolution works

208 CHAPTER 8 Introduction to deep learning for computer vision

and columns on each side of the input feature map so as to make it possible to fit cen-
ter convolution windows around every input tile. For a 3 × 3 window, you add one col-
umn on the right, one column on the left, one row at the top, and one row at the
bottom. For a 5 × 5 window, you add two rows (see figure 8.6).

In Conv2D layers, padding is configurable via the padding argument, which takes two
values: "valid", which means no padding (only valid window locations will be used),
and "same", which means “pad in such a way as to have an output with the same width
and height as the input.” The padding argument defaults to "valid".

UNDERSTANDING CONVOLUTION STRIDES

The other factor that can influence output size is the notion of strides. Our description
of convolution so far has assumed that the center tiles of the convolution windows are
all contiguous. But the distance between two successive windows is a parameter of the

Figure 8.5 Valid locations of 3 × 3 patches in a 5 × 5 input feature map

etc.

Figure 8.6 Padding a 5 × 5 input in order to be able to extract 25 3 × 3 patches

209Introduction to convnets

convolution, called its stride, which defaults to 1. It’s possible to have strided convolu-
tions: convolutions with a stride higher than 1. In figure 8.7, you can see the patches
extracted by a 3 × 3 convolution with stride 2 over a 5 × 5 input (without padding).

Using stride 2 means the width and height of the feature map are downsampled by a
factor of 2 (in addition to any changes induced by border effects). Strided convolu-
tions are rarely used in classification models, but they come in handy for some types of
models, as you will see in the next chapter.

 In classification models, instead of strides, we tend to use the max-pooling operation
to downsample feature maps, which you saw in action in our first convnet example.
Let’s look at it in more depth.

8.1.2 The max-pooling operation

In the convnet example, you may have noticed that the size of the feature maps is
halved after every MaxPooling2D layer. For instance, before the first MaxPooling2D lay-
ers, the feature map is 26 × 26, but the max-pooling operation halves it to 13 × 13.
That’s the role of max pooling: to aggressively downsample feature maps, much like
strided convolutions.

 Max pooling consists of extracting windows from the input feature maps and
outputting the max value of each channel. It’s conceptually similar to convolution,
except that instead of transforming local patches via a learned linear transforma-
tion (the convolution kernel), they’re transformed via a hardcoded max tensor
operation. A big difference from convolution is that max pooling is usually done
with 2 × 2 windows and stride 2, in order to downsample the feature maps by a fac-
tor of 2. On the other hand, convolution is typically done with 3 × 3 windows and no
stride (stride 1).

1

1 2

3 4

2

3 4

Figure 8.7 3 × 3 convolution patches with 2 × 2 strides

210 CHAPTER 8 Introduction to deep learning for computer vision

 Why downsample feature maps this way? Why not remove the max-pooling layers
and keep fairly large feature maps all the way up? Let’s look at this option. Our model
would then look like the following listing.

inputs = keras.Input(shape=(28, 28, 1))
x = layers.Conv2D(filters=32, kernel_size=3, activation="relu")(inputs)
x = layers.Conv2D(filters=64, kernel_size=3, activation="relu")(x)
x = layers.Conv2D(filters=128, kernel_size=3, activation="relu")(x)
x = layers.Flatten()(x)
outputs = layers.Dense(10, activation="softmax")(x)
model_no_max_pool = keras.Model(inputs=inputs, outputs=outputs)

Here’s a summary of the model:

>>> model_no_max_pool.summary()
Model: "model_1"

Layer (type) Output Shape Param #
===
input_2 (InputLayer) [(None, 28, 28, 1)] 0

conv2d_3 (Conv2D) (None, 26, 26, 32) 320

conv2d_4 (Conv2D) (None, 24, 24, 64) 18496

conv2d_5 (Conv2D) (None, 22, 22, 128) 73856

flatten_1 (Flatten) (None, 61952) 0

dense_1 (Dense) (None, 10) 619530
===
Total params: 712,202
Trainable params: 712,202
Non-trainable params: 0

What’s wrong with this setup? Two things:

� It isn’t conducive to learning a spatial hierarchy of features. The 3 × 3 windows
in the third layer will only contain information coming from 7 × 7 windows in
the initial input. The high-level patterns learned by the convnet will still be very
small with regard to the initial input, which may not be enough to learn to clas-
sify digits (try recognizing a digit by only looking at it through windows that are
7 × 7 pixels!). We need the features from the last convolution layer to contain
information about the totality of the input.

� The final feature map has 22 × 22 × 128 = 61,952 total coefficients per sample.
This is huge. When you flatten it to stick a Dense layer of size 10 on top, that
layer would have over half a million parameters. This is far too large for such a
small model and would result in intense overfitting.

Listing 8.5 An incorrectly structured convnet missing its max-pooling layers

211Training a convnet from scratch on a small dataset

In short, the reason to use downsampling is to reduce the number of feature-map
coefficients to process, as well as to induce spatial-filter hierarchies by making succes-
sive convolution layers look at increasingly large windows (in terms of the fraction of
the original input they cover).

 Note that max pooling isn’t the only way you can achieve such downsampling. As
you already know, you can also use strides in the prior convolution layer. And you can
use average pooling instead of max pooling, where each local input patch is trans-
formed by taking the average value of each channel over the patch, rather than the
max. But max pooling tends to work better than these alternative solutions. The rea-
son is that features tend to encode the spatial presence of some pattern or concept
over the different tiles of the feature map (hence the term feature map), and it’s more
informative to look at the maximal presence of different features than at their average
presence. The most reasonable subsampling strategy is to first produce dense maps of
features (via unstrided convolutions) and then look at the maximal activation of the
features over small patches, rather than looking at sparser windows of the inputs (via
strided convolutions) or averaging input patches, which could cause you to miss or
dilute feature-presence information.

 At this point, you should understand the basics of convnets—feature maps, convo-
lution, and max pooling—and you should know how to build a small convnet to solve
a toy problem such as MNIST digits classification. Now let’s move on to more useful,
practical applications.

8.2 Training a convnet from scratch on a small dataset
Having to train an image-classification model using very little data is a common situ-
ation, which you’ll likely encounter in practice if you ever do computer vision in a
professional context. A “few” samples can mean anywhere from a few hundred to a
few tens of thousands of images. As a practical example, we’ll focus on classifying
images as dogs or cats in a dataset containing 5,000 pictures of cats and dogs (2,500
cats, 2,500 dogs). We’ll use 2,000 pictures for training, 1,000 for validation, and
2,000 for testing.

 In this section, we’ll review one basic strategy to tackle this problem: training a new
model from scratch using what little data you have. We’ll start by naively training a
small convnet on the 2,000 training samples, without any regularization, to set a base-
line for what can be achieved. This will get us to a classification accuracy of about
70%. At that point, the main issue will be overfitting. Then we’ll introduce data aug-
mentation, a powerful technique for mitigating overfitting in computer vision. By using
data augmentation, we’ll improve the model to reach an accuracy of 80–85%.

 In the next section, we’ll review two more essential techniques for applying deep
learning to small datasets: feature extraction with a pretrained model (which will get us to
an accuracy of 97.5%) and fine-tuning a pretrained model (which will get us to a final accu-
racy of 98.5%). Together, these three strategies—training a small model from scratch,
doing feature extraction using a pretrained model, and fine-tuning a pretrained

212 CHAPTER 8 Introduction to deep learning for computer vision

model—will constitute your future toolbox for tackling the problem of performing
image classification with small datasets.

8.2.1 The relevance of deep learning for small-data problems

What qualifies as “enough samples” to train a model is relative—relative to the size
and depth of the model you’re trying to train, for starters. It isn’t possible to train a
convnet to solve a complex problem with just a few tens of samples, but a few hundred
can potentially suffice if the model is small and well regularized and the task is simple.
Because convnets learn local, translation-invariant features, they’re highly data-efficient
on perceptual problems. Training a convnet from scratch on a very small image data-
set will yield reasonable results despite a relative lack of data, without the need for any
custom feature engineering. You’ll see this in action in this section.

 What’s more, deep learning models are by nature highly repurposable: you can
take, say, an image-classification or speech-to-text model trained on a large-scale data-
set and reuse it on a significantly different problem with only minor changes. Specifi-
cally, in the case of computer vision, many pretrained models (usually trained on the
ImageNet dataset) are now publicly available for download and can be used to boot-
strap powerful vision models out of very little data. This is one of the greatest
strengths of deep learning: feature reuse. You’ll explore this in the next section.

 Let’s start by getting our hands on the data.

8.2.2 Downloading the data

The Dogs vs. Cats dataset that we will use isn’t packaged with Keras. It was made avail-
able by Kaggle as part of a computer vision competition in late 2013, back when conv-
nets weren’t mainstream. You can download the original dataset from www.kaggle
.com/c/dogs-vs-cats/data (you’ll need to create a Kaggle account if you don’t already
have one—don’t worry, the process is painless). You can also use the Kaggle API to
download the dataset in Colab (see the “Downloading a Kaggle dataset in Google
Colaboratory” sidebar).

Downloading a Kaggle dataset in Google Colaboratory
Kaggle makes available an easy-to-use API to programmatically download Kaggle-
hosted datasets. You can use it to download the Dogs vs. Cats dataset to a Colab
notebook, for instance. This API is available as the kaggle package, which is prein-
stalled on Colab. Downloading this dataset is as easy as running the following com-
mand in a Colab cell:

!kaggle competitions download -c dogs-vs-cats

However, access to the API is restricted to Kaggle users, so in order to run the pre-
ceding command, you first need to authenticate yourself. The kaggle package will
look for your login credentials in a JSON file located at ~/.kaggle/kaggle.json. Let’s
create this file.

213Training a convnet from scratch on a small dataset

The pictures in our dataset are medium-resolution color JPEGs. Figure 8.8 shows
some examples.

 Unsurprisingly, the original dogs-versus-cats Kaggle competition, all the way back
in 2013, was won by entrants who used convnets. The best entries achieved up to 95%
accuracy. In this example, we will get fairly close to this accuracy (in the next section),
even though we will train our models on less than 10% of the data that was available to
the competitors.

 This dataset contains 25,000 images of dogs and cats (12,500 from each class) and
is 543 MB (compressed). After downloading and uncompressing the data, we’ll create
a new dataset containing three subsets: a training set with 1,000 samples of each class,

First, you need to create a Kaggle API key and download it to your local machine. Just
navigate to the Kaggle website in a web browser, log in, and go to the My Account
page. In your account settings, you’ll find an API section. Clicking the Create New API
Token button will generate a kaggle.json key file and will download it to your machine.

Second, go to your Colab notebook, and upload the API’s key JSON file to your Colab
session by running the following code in a notebook cell:

from google.colab import files
files.upload()

When you run this cell, you will see a Choose Files button appear. Click it and select
the kaggle.json file you just downloaded. This uploads the file to the local Colab run-
time.

Finally, create a ~/.kaggle folder (mkdir ~/.kaggle), and copy the key file to it
(cp kaggle.json ~/.kaggle/). As a security best practice, you should also make
sure that the file is only readable by the current user, yourself (chmod 600):

!mkdir ~/.kaggle
!cp kaggle.json ~/.kaggle/
!chmod 600 ~/.kaggle/kaggle.json

You can now download the data we’re about to use:

!kaggle competitions download -c dogs-vs-cats

The first time you try to download the data, you may get a “403 Forbidden” error.
That’s because you need to accept the terms associated with the dataset before you
download it—you’ll have to go to www.kaggle.com/c/dogs-vs-cats/rules (while
logged into your Kaggle account) and click the I Understand and Accept button. You
only need to do this once.

Finally, the training data is a compressed file named train.zip. Make sure you uncom-
press it (unzip) silently (-qq):

!unzip -qq train.zip

214 CHAPTER 8 Introduction to deep learning for computer vision

a validation set with 500 samples of each class, and a test set with 1,000 samples of each
class. Why do this? Because many of the image datasets you’ll encounter in your
career only contain a few thousand samples, not tens of thousands. Having more data
available would make the problem easier, so it’s good practice to learn with a small
dataset.

 The subsampled dataset we will work with will have the following directory structure:

cats_vs_dogs_small/
...train/
......cat/
......dog/
...validation/
......cat/
......dog/
...test/
......cat/
......dog/

Let’s make it happen in a couple calls to shutil.

import os, shutil, pathlib

original_dir = pathlib.Path("train")
new_base_dir = pathlib.Path("cats_vs_dogs_small")

Listing 8.6 Copying images to training, validation, and test directories

Figure 8.8 Samples from the Dogs vs. Cats dataset. Sizes weren’t modified: the samples come in
different sizes, colors, backgrounds, etc.

Contains 1,000 cat images

Contains 1,000 dog images

Contains 500 cat images

Contains 500 dog images

Contains 1,000 cat images

Contains 1,000 dog images

Path to the directory where the
original dataset was uncompressed

Directory where we will
store our smaller dataset

215Training a convnet from scratch on a small dataset

def make_subset(subset_name, start_index, end_index):
 for category in ("cat", "dog"):
 dir = new_base_dir / subset_name / category
 os.makedirs(dir)
 fnames = [f"{category}.{i}.jpg"
 for i in range(start_index, end_index)]
 for fname in fnames:
 shutil.copyfile(src=original_dir / fname,
 dst=dir / fname)

make_subset("train", start_index=0, end_index=1000)
make_subset("validation", start_index=1000, end_index=1500)
make_subset("test", start_index=1500, end_index=2500)

We now have 2,000 training images, 1,000 validation images, and 2,000 test images.
Each split contains the same number of samples from each class: this is a balanced
binary-classification problem, which means classification accuracy will be an appropri-
ate measure of success.

8.2.3 Building the model

We will reuse the same general model structure you saw in the first example: the conv-
net will be a stack of alternated Conv2D (with relu activation) and MaxPooling2D layers.

 But because we’re dealing with bigger images and a more complex problem, we’ll
make our model larger, accordingly: it will have two more Conv2D and MaxPooling2D
stages. This serves both to augment the capacity of the model and to further reduce the
size of the feature maps so they aren’t overly large when we reach the Flatten layer.
Here, because we start from inputs of size 180 pixels × 180 pixels (a somewhat arbitrary
choice), we end up with feature maps of size 7 × 7 just before the Flatten layer.

NOTE The depth of the feature maps progressively increases in the model
(from 32 to 256), whereas the size of the feature maps decreases (from 180 ×
180 to 7 × 7). This is a pattern you’ll see in almost all convnets.

Because we’re looking at a binary-classification problem, we’ll end the model with a
single unit (a Dense layer of size 1) and a sigmoid activation. This unit will encode the
probability that the model is looking at one class or the other.

 One last small difference: we will start the model with a Rescaling layer, which will
rescale image inputs (whose values are originally in the [0, 255] range) to the [0, 1] range.

from tensorflow import keras
from tensorflow.keras import layers

Listing 8.7 Instantiating a small convnet for dogs vs. cats classification

Utility function to copy cat (and dog) images from index
start_index to index end_index to the subdirectory
new_base_dir/{subset_name}/cat (and /dog). The
"subset_name" will be either "train", "validation", or "test".

Create the training
subset with the first
1,000 images of
each category.

Create the validation
subset with the next
500 images of each
category.

Create the test subset
with the next 1,000
images of each category.

216 CHAPTER 8 Introduction to deep learning for computer vision

inputs = keras.Input(shape=(180, 180, 3))
x = layers.Rescaling(1./255)(inputs)
x = layers.Conv2D(filters=32, kernel_size=3, activation="relu")(x)
x = layers.MaxPooling2D(pool_size=2)(x)
x = layers.Conv2D(filters=64, kernel_size=3, activation="relu")(x)
x = layers.MaxPooling2D(pool_size=2)(x)
x = layers.Conv2D(filters=128, kernel_size=3, activation="relu")(x)
x = layers.MaxPooling2D(pool_size=2)(x)
x = layers.Conv2D(filters=256, kernel_size=3, activation="relu")(x)
x = layers.MaxPooling2D(pool_size=2)(x)
x = layers.Conv2D(filters=256, kernel_size=3, activation="relu")(x)
x = layers.Flatten()(x)
outputs = layers.Dense(1, activation="sigmoid")(x)
model = keras.Model(inputs=inputs, outputs=outputs)

Let’s look at how the dimensions of the feature maps change with every successive
layer:

>>> model.summary()
Model: "model_2"

Layer (type) Output Shape Param #
===
input_3 (InputLayer) [(None, 180, 180, 3)] 0

rescaling (Rescaling) (None, 180, 180, 3) 0

conv2d_6 (Conv2D) (None, 178, 178, 32) 896

max_pooling2d_2 (MaxPooling2 (None, 89, 89, 32) 0

conv2d_7 (Conv2D) (None, 87, 87, 64) 18496

max_pooling2d_3 (MaxPooling2 (None, 43, 43, 64) 0

conv2d_8 (Conv2D) (None, 41, 41, 128) 73856

max_pooling2d_4 (MaxPooling2 (None, 20, 20, 128) 0

conv2d_9 (Conv2D) (None, 18, 18, 256) 295168

max_pooling2d_5 (MaxPooling2 (None, 9, 9, 256) 0

conv2d_10 (Conv2D) (None, 7, 7, 256) 590080

flatten_2 (Flatten) (None, 12544) 0

dense_2 (Dense) (None, 1) 12545
===
Total params: 991,041
Trainable params: 991,041
Non-trainable params: 0

The model
expects

RGB images
of size

180 × 180.

Rescale
inputs to the
[0, 1] range
by dividing
them by 255.

217Training a convnet from scratch on a small dataset

For the compilation step, we’ll go with the RMSprop optimizer, as usual. Because we
ended the model with a single sigmoid unit, we’ll use binary crossentropy as the loss
(as a reminder, check out table 6.1 in chapter 6 for a cheat sheet on which loss func-
tion to use in various situations).

model.compile(loss="binary_crossentropy",
 optimizer="rmsprop",
 metrics=["accuracy"])

8.2.4 Data preprocessing

As you know by now, data should be formatted into appropriately preprocessed floating-
point tensors before being fed into the model. Currently, the data sits on a drive as
JPEG files, so the steps for getting it into the model are roughly as follows:

1 Read the picture files.
2 Decode the JPEG content to RGB grids of pixels.
3 Convert these into floating-point tensors.
4 Resize them to a shared size (we’ll use 180 × 180).
5 Pack them into batches (we’ll use batches of 32 images).

It may seem a bit daunting, but fortunately Keras has utilities to take care of these steps
automatically. In particular, Keras features the utility function image_dataset_from_
directory(), which lets you quickly set up a data pipeline that can automatically turn
image files on disk into batches of preprocessed tensors. This is what we’ll use here.

 Calling image_dataset_from_directory(directory) will first list the subdirecto-
ries of directory and assume each one contains images from one of our classes. It will
then index the image files in each subdirectory. Finally, it will create and return a
tf.data.Dataset object configured to read these files, shuffle them, decode them to
tensors, resize them to a shared size, and pack them into batches.

from tensorflow.keras.utils import image_dataset_from_directory

train_dataset = image_dataset_from_directory(
 new_base_dir / "train",
 image_size=(180, 180),
 batch_size=32)
validation_dataset = image_dataset_from_directory(
 new_base_dir / "validation",
 image_size=(180, 180),
 batch_size=32)
test_dataset = image_dataset_from_directory(
 new_base_dir / "test",
 image_size=(180, 180),
 batch_size=32)

Listing 8.8 Configuring the model for training

Listing 8.9 Using image_dataset_from_directory to read images

218 CHAPTER 8 Introduction to deep learning for computer vision

Understanding TensorFlow Dataset objects
TensorFlow makes available the tf.data API to create efficient input pipelines for
machine learning models. Its core class is tf.data.Dataset.

A Dataset object is an iterator: you can use it in a for loop. It will typically return
batches of input data and labels. You can pass a Dataset object directly to the fit()
method of a Keras model.

The Dataset class handles many key features that would otherwise be cumbersome
to implement yourself—in particular, asynchronous data prefetching (preprocessing
the next batch of data while the previous one is being handled by the model, which
keeps execution flowing without interruptions).

The Dataset class also exposes a functional-style API for modifying datasets. Here’s
a quick example: let’s create a Dataset instance from a NumPy array of random num-
bers. We’ll consider 1,000 samples, where each sample is a vector of size 16:

import numpy as np
import tensorflow as tf
random_numbers = np.random.normal(size=(1000, 16))
dataset = tf.data.Dataset.from_tensor_slices(random_numbers)

At first, our dataset just yields single samples:

>>> for i, element in enumerate(dataset):
>>> print(element.shape)
>>> if i >= 2:
>>> break
(16,)
(16,)
(16,)

We can use the .batch() method to batch the data:

>>> batched_dataset = dataset.batch(32)
>>> for i, element in enumerate(batched_dataset):
>>> print(element.shape)
>>> if i >= 2:
>>> break
(32, 16)
(32, 16)
(32, 16)

More broadly, we have access to a range of useful dataset methods, such as

� .shuffle(buffer_size)—Shuffles elements within a buffer
� .prefetch(buffer_size)—Prefetches a buffer of elements in GPU memory

to achieve better device utilization.
� .map(callable)—Applies an arbitrary transformation to each element of the

dataset (the function callable, which expects to take as input a single ele-
ment yielded by the dataset).

The from_tensor_slices() class method can be
used to create a Dataset from a NumPy array,

or a tuple or dict of NumPy arrays.

219Training a convnet from scratch on a small dataset

Let’s look at the output of one of these Dataset objects: it yields batches of 180 × 180
RGB images (shape (32, 180, 180, 3)) and integer labels (shape (32,)). There are
32 samples in each batch (the batch size).

>>> for data_batch, labels_batch in train_dataset:
>>> print("data batch shape:", data_batch.shape)
>>> print("labels batch shape:", labels_batch.shape)
>>> break
data batch shape: (32, 180, 180, 3)
labels batch shape: (32,)

Let’s fit the model on our dataset. We’ll use the validation_data argument in fit()
to monitor validation metrics on a separate Dataset object.

 Note that we’ll also use a ModelCheckpoint callback to save the model after each
epoch. We’ll configure it with the path specifying where to save the file, as well as the
arguments save_best_only=True and monitor="val_loss": they tell the callback to
only save a new file (overwriting any previous one) when the current value of the
val_loss metric is lower than at any previous time during training. This guarantees
that your saved file will always contain the state of the model corresponding to its best-
performing training epoch, in terms of its performance on the validation data. As a
result, we won’t have to retrain a new model for a lower number of epochs if we start
overfitting: we can just reload our saved file.

callbacks = [
 keras.callbacks.ModelCheckpoint(
 filepath="convnet_from_scratch.keras",
 save_best_only=True,
 monitor="val_loss")
]

The .map() method, in particular, is one that you will use often. Here’s an example.
We’ll use it to reshape the elements in our toy dataset from shape (16,) to shape
(4, 4):

>>> reshaped_dataset = dataset.map(lambda x: tf.reshape(x, (4, 4)))
>>> for i, element in enumerate(reshaped_dataset):
>>> print(element.shape)
>>> if i >= 2:
>>> break
(4, 4)
(4, 4)
(4, 4)

You’re about to see more map() action in this chapter.

Listing 8.10 Displaying the shapes of the data and labels yielded by the Dataset

Listing 8.11 Fitting the model using a Dataset

220 CHAPTER 8 Introduction to deep learning for computer vision

history = model.fit(
 train_dataset,
 epochs=30,
 validation_data=validation_dataset,
 callbacks=callbacks)

Let’s plot the loss and accuracy of the model over the training and validation data
during training (see figure 8.9).

import matplotlib.pyplot as plt
accuracy = history.history["accuracy"]
val_accuracy = history.history["val_accuracy"]
loss = history.history["loss"]
val_loss = history.history["val_loss"]
epochs = range(1, len(accuracy) + 1)
plt.plot(epochs, accuracy, "bo", label="Training accuracy")
plt.plot(epochs, val_accuracy, "b", label="Validation accuracy")
plt.title("Training and validation accuracy")
plt.legend()
plt.figure()
plt.plot(epochs, loss, "bo", label="Training loss")
plt.plot(epochs, val_loss, "b", label="Validation loss")
plt.title("Training and validation loss")
plt.legend()
plt.show()

These plots are characteristic of overfitting. The training accuracy increases linearly
over time, until it reaches nearly 100%, whereas the validation accuracy peaks at 75%.
The validation loss reaches its minimum after only ten epochs and then stalls, whereas
the training loss keeps decreasing linearly as training proceeds.

 Let’s check the test accuracy. We’ll reload the model from its saved file to evaluate
it as it was before it started overfitting.

Listing 8.12 Displaying curves of loss and accuracy during training

Figure 8.9 Training and validation metrics for a simple convnet

221Training a convnet from scratch on a small dataset

test_model = keras.models.load_model("convnet_from_scratch.keras")
test_loss, test_acc = test_model.evaluate(test_dataset)
print(f"Test accuracy: {test_acc:.3f}")

We get a test accuracy of 69.5%. (Due to the randomness of neural network initializa-
tions, you may get numbers within one percentage point of that.)

 Because we have relatively few training samples (2,000), overfitting will be our
number one concern. You already know about a number of techniques that can help
mitigate overfitting, such as dropout and weight decay (L2 regularization). We’re now
going to work with a new one, specific to computer vision and used almost universally
when processing images with deep learning models: data augmentation.

8.2.5 Using data augmentation

Overfitting is caused by having too few samples to learn from, rendering you unable
to train a model that can generalize to new data. Given infinite data, your model
would be exposed to every possible aspect of the data distribution at hand: you would
never overfit. Data augmentation takes the approach of generating more training data
from existing training samples by augmenting the samples via a number of random
transformations that yield believable-looking images. The goal is that, at training time,
your model will never see the exact same picture twice. This helps expose the model
to more aspects of the data so it can generalize better.

 In Keras, this can be done by adding a number of data augmentation layers at the
start of your model. Let’s get started with an example: the following Sequential model
chains several random image transformations. In our model, we’d include it right
before the Rescaling layer.

data_augmentation = keras.Sequential(
 [
 layers.RandomFlip("horizontal"),
 layers.RandomRotation(0.1),
 layers.RandomZoom(0.2),
]
)

These are just a few of the layers available (for more, see the Keras documentation).
Let’s quickly go over this code:

� RandomFlip("horizontal")—Applies horizontal flipping to a random 50% of
the images that go through it

� RandomRotation(0.1)—Rotates the input images by a random value in the range
[–10%, +10%] (these are fractions of a full circle—in degrees, the range would
be [–36 degrees, +36 degrees])

Listing 8.13 Evaluating the model on the test set

Listing 8.14 Define a data augmentation stage to add to an image model

222 CHAPTER 8 Introduction to deep learning for computer vision

� RandomZoom(0.2)—Zooms in or out of the image by a random factor in the
range [-20%, +20%]

Let’s look at the augmented images (see figure 8.10).

plt.figure(figsize=(10, 10))
for images, _ in train_dataset.take(1):
 for i in range(9):
 augmented_images = data_augmentation(images)
 ax = plt.subplot(3, 3, i + 1)
 plt.imshow(augmented_images[0].numpy().astype("uint8"))
 plt.axis("off")

If we train a new model using this data-augmentation configuration, the model will
never see the same input twice. But the inputs it sees are still heavily intercorrelated

Listing 8.15 Displaying some randomly augmented training images

We can use take(N) to only sample
N batches from the dataset. This is
equivalent to inserting a break in
the loop after the Nth batch.

Apply the
augmentation

stage to the
batch of
images. Display the first image in the output batch.

For each of the nine iterations, this is a
different augmentation of the same image.

Figure 8.10 Generating variations of a very good boy via random data augmentation

223Training a convnet from scratch on a small dataset

because they come from a small number of original images—we can’t produce new
information; we can only remix existing information. As such, this may not be enough
to completely get rid of overfitting. To further fight overfitting, we’ll also add a Dropout
layer to our model right before the densely connected classifier.

 One last thing you should know about random image augmentation layers: just
like Dropout, they’re inactive during inference (when we call predict() or evaluate()).
During evaluation, our model will behave just the same as when it did not include
data augmentation and dropout.

inputs = keras.Input(shape=(180, 180, 3))
x = data_augmentation(inputs)
x = layers.Rescaling(1./255)(x)
x = layers.Conv2D(filters=32, kernel_size=3, activation="relu")(x)
x = layers.MaxPooling2D(pool_size=2)(x)
x = layers.Conv2D(filters=64, kernel_size=3, activation="relu")(x)
x = layers.MaxPooling2D(pool_size=2)(x)
x = layers.Conv2D(filters=128, kernel_size=3, activation="relu")(x)
x = layers.MaxPooling2D(pool_size=2)(x)
x = layers.Conv2D(filters=256, kernel_size=3, activation="relu")(x)
x = layers.MaxPooling2D(pool_size=2)(x)
x = layers.Conv2D(filters=256, kernel_size=3, activation="relu")(x)
x = layers.Flatten()(x)
x = layers.Dropout(0.5)(x)
outputs = layers.Dense(1, activation="sigmoid")(x)
model = keras.Model(inputs=inputs, outputs=outputs)

model.compile(loss="binary_crossentropy",
 optimizer="rmsprop",
 metrics=["accuracy"])

Let’s train the model using data augmentation and dropout. Because we expect over-
fitting to occur much later during training, we will train for three times as many
epochs—one hundred.

callbacks = [
 keras.callbacks.ModelCheckpoint(
 filepath="convnet_from_scratch_with_augmentation.keras",
 save_best_only=True,
 monitor="val_loss")
]
history = model.fit(
 train_dataset,
 epochs=100,
 validation_data=validation_dataset,
 callbacks=callbacks)

Let’s plot the results again: see figure 8.11. Thanks to data augmentation and drop-
out, we start overfitting much later, around epochs 60–70 (compared to epoch 10 for

Listing 8.16 Defining a new convnet that includes image augmentation and dropout

Listing 8.17 Training the regularized convnet

224 CHAPTER 8 Introduction to deep learning for computer vision

the original model). The validation accuracy ends up consistently in the 80–85% range—
a big improvement over our first try.

 Let’s check the test accuracy.

test_model = keras.models.load_model(
 "convnet_from_scratch_with_augmentation.keras")
test_loss, test_acc = test_model.evaluate(test_dataset)
print(f"Test accuracy: {test_acc:.3f}")

We get a test accuracy of 83.5%. It’s starting to look good! If you’re using Colab, make
sure you download the saved file (convnet_from_scratch_with_augmentation.keras),
as we will use it for some experiments in the next chapter.

 By further tuning the model’s configuration (such as the number of filters per
convolution layer, or the number of layers in the model), we might be able to get an
even better accuracy, likely up to 90%. But it would prove difficult to go any higher
just by training our own convnet from scratch, because we have so little data to work
with. As a next step to improve our accuracy on this problem, we’ll have to use a pre-
trained model, which is the focus of the next two sections.

8.3 Leveraging a pretrained model
A common and highly effective approach to deep learning on small image datasets is
to use a pretrained model. A pretrained model is a model that was previously trained on
a large dataset, typically on a large-scale image-classification task. If this original data-
set is large enough and general enough, the spatial hierarchy of features learned by
the pretrained model can effectively act as a generic model of the visual world, and
hence, its features can prove useful for many different computer vision problems,
even though these new problems may involve completely different classes than those
of the original task. For instance, you might train a model on ImageNet (where classes

Listing 8.18 Evaluating the model on the test set

Figure 8.11 Training and validation metrics with data augmentation

225Leveraging a pretrained model

are mostly animals and everyday objects) and then repurpose this trained model for
something as remote as identifying furniture items in images. Such portability of
learned features across different problems is a key advantage of deep learning com-
pared to many older, shallow learning approaches, and it makes deep learning very
effective for small-data problems.

 In this case, let’s consider a large convnet trained on the ImageNet dataset (1.4
million labeled images and 1,000 different classes). ImageNet contains many animal
classes, including different species of cats and dogs, and you can thus expect it to per-
form well on the dogs-versus-cats classification problem.

 We’ll use the VGG16 architecture, developed by Karen Simonyan and Andrew
Zisserman in 2014.1 Although it’s an older model, far from the current state of the art
and somewhat heavier than many other recent models, I chose it because its architec-
ture is similar to what you’re already familiar with, and it’s easy to understand without
introducing any new concepts. This may be your first encounter with one of these
cutesy model names—VGG, ResNet, Inception, Xception, and so on; you’ll get used
to them because they will come up frequently if you keep doing deep learning for
computer vision.

 There are two ways to use a pretrained model: feature extraction and fine-tuning.
We’ll cover both of them. Let’s start with feature extraction.

8.3.1 Feature extraction with a pretrained model

Feature extraction consists of using the representations learned by a previously
trained model to extract interesting features from new samples. These features are
then run through a new classifier, which is trained from scratch.

 As you saw previously, convnets used for image classification comprise two parts:
they start with a series of pooling and convolution layers, and they end with a densely
connected classifier. The first part is called the convolutional base of the model. In the
case of convnets, feature extraction consists of taking the convolutional base of a pre-
viously trained network, running the new data through it, and training a new classifier
on top of the output (see figure 8.12).

 Why only reuse the convolutional base? Could we reuse the densely connected
classifier as well? In general, doing so should be avoided. The reason is that the repre-
sentations learned by the convolutional base are likely to be more generic and, there-
fore, more reusable: the feature maps of a convnet are presence maps of generic
concepts over a picture, which are likely to be useful regardless of the computer vision
problem at hand. But the representations learned by the classifier will necessarily be
specific to the set of classes on which the model was trained—they will only contain
information about the presence probability of this or that class in the entire picture.
Additionally, representations found in densely connected layers no longer contain any

1 Karen Simonyan and Andrew Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recogni-
tion,” arXiv (2014), https://arxiv.org/abs/1409.1556.

226 CHAPTER 8 Introduction to deep learning for computer vision

information about where objects are located in the input image; these layers get rid of
the notion of space, whereas the object location is still described by convolutional fea-
ture maps. For problems where object location matters, densely connected features
are largely useless.

 Note that the level of generality (and therefore reusability) of the representations
extracted by specific convolution layers depends on the depth of the layer in the
model. Layers that come earlier in the model extract local, highly generic feature
maps (such as visual edges, colors, and textures), whereas layers that are higher up
extract more-abstract concepts (such as “cat ear” or “dog eye”). So if your new dataset
differs a lot from the dataset on which the original model was trained, you may be bet-
ter off using only the first few layers of the model to do feature extraction, rather than
using the entire convolutional base.

 In this case, because the ImageNet class set contains multiple dog and cat
classes, it’s likely to be beneficial to reuse the information contained in the densely
connected layers of the original model. But we’ll choose not to, in order to cover
the more general case where the class set of the new problem doesn’t overlap the
class set of the original model. Let’s put this into practice by using the convolu-
tional base of the VGG16 network, trained on ImageNet, to extract interesting fea-
tures from cat and dog images, and then train a dogs-versus-cats classifier on top of
these features.

 The VGG16 model, among others, comes prepackaged with Keras. You can import
it from the keras.applications module. Many other image-classification models (all
pretrained on the ImageNet dataset) are available as part of keras.applications:

Prediction

Input

Trained

classifier

Trained

convolutional

base

Prediction

Input

Trained

classifier

Trained

convolutional

base

Prediction

Input

New classifier

(randomly initialized)

Trained

convolutional

base

(frozen)

Figure 8.12 Swapping classifiers while keeping the same convolutional base

227Leveraging a pretrained model

� Xception
� ResNet
� MobileNet
� EfficientNet
� DenseNet
� etc.

Let’s instantiate the VGG16 model.

conv_base = keras.applications.vgg16.VGG16(
 weights="imagenet",
 include_top=False,
 input_shape=(180, 180, 3))

We pass three arguments to the constructor:

� weights specifies the weight checkpoint from which to initialize the model.
� include_top refers to including (or not) the densely connected classifier on

top of the network. By default, this densely connected classifier corresponds to
the 1,000 classes from ImageNet. Because we intend to use our own densely
connected classifier (with only two classes: cat and dog), we don’t need to
include it.

� input_shape is the shape of the image tensors that we’ll feed to the network.
This argument is purely optional: if we don’t pass it, the network will be able to
process inputs of any size. Here we pass it so that we can visualize (in the follow-
ing summary) how the size of the feature maps shrinks with each new convolu-
tion and pooling layer.

Here’s the detail of the architecture of the VGG16 convolutional base. It’s similar to
the simple convnets you’re already familiar with:

>>> conv_base.summary()
Model: "vgg16"

Layer (type) Output Shape Param #
===
input_19 (InputLayer) [(None, 180, 180, 3)] 0

block1_conv1 (Conv2D) (None, 180, 180, 64) 1792

block1_conv2 (Conv2D) (None, 180, 180, 64) 36928

block1_pool (MaxPooling2D) (None, 90, 90, 64) 0

block2_conv1 (Conv2D) (None, 90, 90, 128) 73856

Listing 8.19 Instantiating the VGG16 convolutional base

228 CHAPTER 8 Introduction to deep learning for computer vision

block2_conv2 (Conv2D) (None, 90, 90, 128) 147584

block2_pool (MaxPooling2D) (None, 45, 45, 128) 0

block3_conv1 (Conv2D) (None, 45, 45, 256) 295168

block3_conv2 (Conv2D) (None, 45, 45, 256) 590080

block3_conv3 (Conv2D) (None, 45, 45, 256) 590080

block3_pool (MaxPooling2D) (None, 22, 22, 256) 0

block4_conv1 (Conv2D) (None, 22, 22, 512) 1180160

block4_conv2 (Conv2D) (None, 22, 22, 512) 2359808

block4_conv3 (Conv2D) (None, 22, 22, 512) 2359808

block4_pool (MaxPooling2D) (None, 11, 11, 512) 0

block5_conv1 (Conv2D) (None, 11, 11, 512) 2359808

block5_conv2 (Conv2D) (None, 11, 11, 512) 2359808

block5_conv3 (Conv2D) (None, 11, 11, 512) 2359808

block5_pool (MaxPooling2D) (None, 5, 5, 512) 0
===
Total params: 14,714,688
Trainable params: 14,714,688
Non-trainable params: 0

The final feature map has shape (5, 5, 512). That’s the feature map on top of which
we’ll stick a densely connected classifier.

 At this point, there are two ways we could proceed:

� Run the convolutional base over our dataset, record its output to a NumPy array
on disk, and then use this data as input to a standalone, densely connected clas-
sifier similar to those you saw in chapter 4 of this book. This solution is fast and
cheap to run, because it only requires running the convolutional base once for
every input image, and the convolutional base is by far the most expensive part
of the pipeline. But for the same reason, this technique won’t allow us to use
data augmentation.

� Extend the model we have (conv_base) by adding Dense layers on top, and run
the whole thing from end to end on the input data. This will allow us to use
data augmentation, because every input image goes through the convolutional
base every time it’s seen by the model. But for the same reason, this technique is
far more expensive than the first.

229Leveraging a pretrained model

We’ll cover both techniques. Let’s walk through the code required to set up the first
one: recording the output of conv_base on our data and using these outputs as inputs
to a new model.

FAST FEATURE EXTRACTION WITHOUT DATA AUGMENTATION

We’ll start by extracting features as NumPy arrays by calling the predict() method of
the conv_base model on our training, validation, and testing datasets.

 Let’s iterate over our datasets to extract the VGG16 features.

import numpy as np

def get_features_and_labels(dataset):
 all_features = []
 all_labels = []
 for images, labels in dataset:
 preprocessed_images = keras.applications.vgg16.preprocess_input(images)
 features = conv_base.predict(preprocessed_images)
 all_features.append(features)
 all_labels.append(labels)
 return np.concatenate(all_features), np.concatenate(all_labels)

train_features, train_labels = get_features_and_labels(train_dataset)
val_features, val_labels = get_features_and_labels(validation_dataset)
test_features, test_labels = get_features_and_labels(test_dataset)

Importantly, predict() only expects images, not labels, but our current dataset yields
batches that contain both images and their labels. Moreover, the VGG16 model expects
inputs that are preprocessed with the function keras.applications.vgg16.prepro-
cess_input, which scales pixel values to an appropriate range.

 The extracted features are currently of shape (samples, 5, 5, 512):

>>> train_features.shape
(2000, 5, 5, 512)

At this point, we can define our densely connected classifier (note the use of dropout
for regularization) and train it on the data and labels that we just recorded.

inputs = keras.Input(shape=(5, 5, 512))
x = layers.Flatten()(inputs)
x = layers.Dense(256)(x)
x = layers.Dropout(0.5)(x)
outputs = layers.Dense(1, activation="sigmoid")(x)
model = keras.Model(inputs, outputs)

Listing 8.20 Extracting the VGG16 features and corresponding labels

Listing 8.21 Defining and training the densely connected classifier

Note the use of the Flatten
layer before passing the
features to a Dense layer.

230 CHAPTER 8 Introduction to deep learning for computer vision

model.compile(loss="binary_crossentropy",
 optimizer="rmsprop",
 metrics=["accuracy"])

callbacks = [
 keras.callbacks.ModelCheckpoint(
 filepath="feature_extraction.keras",
 save_best_only=True,
 monitor="val_loss")
]
history = model.fit(
 train_features, train_labels,
 epochs=20,
 validation_data=(val_features, val_labels),
 callbacks=callbacks)

Training is very fast because we only have to deal with two Dense layers—an epoch
takes less than one second even on CPU.

 Let’s look at the loss and accuracy curves during training (see figure 8.13).

import matplotlib.pyplot as plt
acc = history.history["accuracy"]
val_acc = history.history["val_accuracy"]
loss = history.history["loss"]
val_loss = history.history["val_loss"]
epochs = range(1, len(acc) + 1)
plt.plot(epochs, acc, "bo", label="Training accuracy")
plt.plot(epochs, val_acc, "b", label="Validation accuracy")
plt.title("Training and validation accuracy")
plt.legend()
plt.figure()
plt.plot(epochs, loss, "bo", label="Training loss")

Listing 8.22 Plotting the results

Figure 8.13 Training and validation metrics for plain feature extraction

231Leveraging a pretrained model

plt.plot(epochs, val_loss, "b", label="Validation loss")
plt.title("Training and validation loss")
plt.legend()
plt.show()

We reach a validation accuracy of about 97%—much better than we achieved in the
previous section with the small model trained from scratch. This is a bit of an unfair
comparison, however, because ImageNet contains many dog and cat instances, which
means that our pretrained model already has the exact knowledge required for the
task at hand. This won’t always be the case when you use pretrained features.

 However, the plots also indicate that we’re overfitting almost from the start—
despite using dropout with a fairly large rate. That’s because this technique doesn’t
use data augmentation, which is essential for preventing overfitting with small image
datasets.

FEATURE EXTRACTION TOGETHER WITH DATA AUGMENTATION

Now let’s review the second technique I mentioned for doing feature extraction,
which is much slower and more expensive, but which allows us to use data augmenta-
tion during training: creating a model that chains the conv_base with a new dense
classifier, and training it end to end on the inputs.

 In order to do this, we will first freeze the convolutional base. Freezing a layer or set of
layers means preventing their weights from being updated during training. If we don’t
do this, the representations that were previously learned by the convolutional base will
be modified during training. Because the Dense layers on top are randomly initialized,
very large weight updates would be propagated through the network, effectively
destroying the representations previously learned.

 In Keras, we freeze a layer or model by setting its trainable attribute to False.

conv_base = keras.applications.vgg16.VGG16(
 weights="imagenet",
 include_top=False)
conv_base.trainable = False

Setting trainable to False empties the list of trainable weights of the layer or model.

>>> conv_base.trainable = True
>>> print("This is the number of trainable weights "
 "before freezing the conv base:", len(conv_base.trainable_weights))
This is the number of trainable weights before freezing the conv base: 26
>>> conv_base.trainable = False
>>> print("This is the number of trainable weights "
 "after freezing the conv base:", len(conv_base.trainable_weights))
This is the number of trainable weights after freezing the conv base: 0

Listing 8.23 Instantiating and freezing the VGG16 convolutional base

Listing 8.24 Printing the list of trainable weights before and after freezing

232 CHAPTER 8 Introduction to deep learning for computer vision

Now we can create a new model that chains together

1 A data augmentation stage
2 Our frozen convolutional base
3 A dense classifier

data_augmentation = keras.Sequential(
 [
 layers.RandomFlip("horizontal"),
 layers.RandomRotation(0.1),
 layers.RandomZoom(0.2),
]
)

inputs = keras.Input(shape=(180, 180, 3))
x = data_augmentation(inputs)
x = keras.applications.vgg16.preprocess_input(x)
x = conv_base(x)
x = layers.Flatten()(x)
x = layers.Dense(256)(x)
x = layers.Dropout(0.5)(x)
outputs = layers.Dense(1, activation="sigmoid")(x)
model = keras.Model(inputs, outputs)
model.compile(loss="binary_crossentropy",
 optimizer="rmsprop",
 metrics=["accuracy"])

With this setup, only the weights from the two Dense layers that we added will be
trained. That’s a total of four weight tensors: two per layer (the main weight matrix
and the bias vector). Note that in order for these changes to take effect, you must first
compile the model. If you ever modify weight trainability after compilation, you
should then recompile the model, or these changes will be ignored.

 Let’s train our model. Thanks to data augmentation, it will take much longer for
the model to start overfitting, so we can train for more epochs—let’s do 50.

NOTE This technique is expensive enough that you should only attempt it if
you have access to a GPU (such as the free GPU available in Colab)—it’s
intractable on CPU. If you can’t run your code on GPU, then the previous
technique is the way to go.

callbacks = [
 keras.callbacks.ModelCheckpoint(
 filepath="feature_extraction_with_data_augmentation.keras",
 save_best_only=True,
 monitor="val_loss")
]

Listing 8.25 Adding a data augmentation stage and a classifier to the convolutional base

Apply data
augmentation.

Apply input
value scaling.

233Leveraging a pretrained model

history = model.fit(
 train_dataset,
 epochs=50,
 validation_data=validation_dataset,
 callbacks=callbacks)

Let’s plot the results again (see figure 8.14). As you can see, we reach a validation
accuracy of over 98%. This is a strong improvement over the previous model.

Let’s check the test accuracy.

test_model = keras.models.load_model(
 "feature_extraction_with_data_augmentation.keras")
test_loss, test_acc = test_model.evaluate(test_dataset)
print(f"Test accuracy: {test_acc:.3f}")

We get a test accuracy of 97.5%. This is only a modest improvement compared to the
previous test accuracy, which is a bit disappointing given the strong results on the vali-
dation data. A model’s accuracy always depends on the set of samples you evaluate it
on! Some sample sets may be more difficult than others, and strong results on one set
won’t necessarily fully translate to all other sets.

Listing 8.26 Evaluating the model on the test set

Figure 8.14 Training and validation metrics for feature extraction with data augmentation

234 CHAPTER 8 Introduction to deep learning for computer vision

8.3.2 Fine-tuning a pretrained model

Another widely used technique for model reuse,
complementary to feature extraction, is fine-tuning
(see figure 8.15). Fine-tuning consists of unfreezing
a few of the top layers of a frozen model base used
for feature extraction, and jointly training both the
newly added part of the model (in this case, the
fully connected classifier) and these top layers. This
is called fine-tuning because it slightly adjusts the
more abstract representations of the model being
reused in order to make them more relevant for the
problem at hand.

 I stated earlier that it’s necessary to freeze the
convolution base of VGG16 in order to be able to
train a randomly initialized classifier on top. For the
same reason, it’s only possible to fine-tune the top
layers of the convolutional base once the classifier on
top has already been trained. If the classifier isn’t
already trained, the error signal propagating
through the network during training will be too
large, and the representations previously learned by
the layers being fine-tuned will be destroyed. Thus
the steps for fine-tuning a network are as follows:

1 Add our custom network on top of an
already-trained base network.

2 Freeze the base network.
3 Train the part we added.
4 Unfreeze some layers in the base network.

(Note that you should not unfreeze “batch
normalization” layers, which are not relevant
here since there are no such layers in VGG16.
Batch normalization and its impact on fine-
tuning is explained in the next chapter.)

5 Jointly train both these layers and the part we
added.

You already completed the first three steps when
doing feature extraction. Let’s proceed with step 4:
we’ll unfreeze our conv_base and then freeze indi-
vidual layers inside it.

Dense

Dense

Flatten

MaxPooling2D

Convolution2D

Convolution2D

Convolution2D

MaxPooling2D

Convolution2D

Convolution2D

Convolution2D

MaxPooling2D

Convolution2D

Convolution2D

Convolution2D

MaxPooling2D

Convolution2D

Convolution2D

MaxPooling2D

Convolution2D

Convolution2D

Conv block 1:
frozen

Conv block 2:
frozen

Conv block 3:
frozen

Conv block 4:
frozen

We fine-tune
conv block 5.

We fine-tune
our own fully
connected
classifier.

Figure 8.15 Fine-tuning the last
convolutional block of the VGG16
network

235Leveraging a pretrained model

 As a reminder, this is what our convolutional base looks like:

>>> conv_base.summary()
Model: "vgg16"

Layer (type) Output Shape Param #
===
input_19 (InputLayer) [(None, 180, 180, 3)] 0

block1_conv1 (Conv2D) (None, 180, 180, 64) 1792

block1_conv2 (Conv2D) (None, 180, 180, 64) 36928

block1_pool (MaxPooling2D) (None, 90, 90, 64) 0

block2_conv1 (Conv2D) (None, 90, 90, 128) 73856

block2_conv2 (Conv2D) (None, 90, 90, 128) 147584

block2_pool (MaxPooling2D) (None, 45, 45, 128) 0

block3_conv1 (Conv2D) (None, 45, 45, 256) 295168

block3_conv2 (Conv2D) (None, 45, 45, 256) 590080

block3_conv3 (Conv2D) (None, 45, 45, 256) 590080

block3_pool (MaxPooling2D) (None, 22, 22, 256) 0

block4_conv1 (Conv2D) (None, 22, 22, 512) 1180160

block4_conv2 (Conv2D) (None, 22, 22, 512) 2359808

block4_conv3 (Conv2D) (None, 22, 22, 512) 2359808

block4_pool (MaxPooling2D) (None, 11, 11, 512) 0

block5_conv1 (Conv2D) (None, 11, 11, 512) 2359808

block5_conv2 (Conv2D) (None, 11, 11, 512) 2359808

block5_conv3 (Conv2D) (None, 11, 11, 512) 2359808

block5_pool (MaxPooling2D) (None, 5, 5, 512) 0
===
Total params: 14,714,688
Trainable params: 14,714,688
Non-trainable params: 0

We’ll fine-tune the last three convolutional layers, which means all layers up to block4_
pool should be frozen, and the layers block5_conv1, block5_conv2, and block5_conv3
should be trainable.

236 CHAPTER 8 Introduction to deep learning for computer vision

 Why not fine-tune more layers? Why not fine-tune the entire convolutional base?
You could. But you need to consider the following:

� Earlier layers in the convolutional base encode more generic, reusable features,
whereas layers higher up encode more specialized features. It’s more useful to
fine-tune the more specialized features, because these are the ones that need
to be repurposed on your new problem. There would be fast-decreasing returns
in fine-tuning lower layers.

� The more parameters you’re training, the more you’re at risk of overfitting.
The convolutional base has 15 million parameters, so it would be risky to
attempt to train it on your small dataset.

Thus, in this situation, it’s a good strategy to fine-tune only the top two or three layers
in the convolutional base. Let’s set this up, starting from where we left off in the previ-
ous example.

conv_base.trainable = True
for layer in conv_base.layers[:-4]:
 layer.trainable = False

Now we can begin fine-tuning the model. We’ll do this with the RMSprop optimizer,
using a very low learning rate. The reason for using a low learning rate is that we want to
limit the magnitude of the modifications we make to the representations of the three
layers we’re fine-tuning. Updates that are too large may harm these representations.

model.compile(loss="binary_crossentropy",
 optimizer=keras.optimizers.RMSprop(learning_rate=1e-5),
 metrics=["accuracy"])

callbacks = [
 keras.callbacks.ModelCheckpoint(
 filepath="fine_tuning.keras",
 save_best_only=True,
 monitor="val_loss")
]
history = model.fit(
 train_dataset,
 epochs=30,
 validation_data=validation_dataset,
 callbacks=callbacks)

We can finally evaluate this model on the test data:

model = keras.models.load_model("fine_tuning.keras")
test_loss, test_acc = model.evaluate(test_dataset)
print(f"Test accuracy: {test_acc:.3f}")

Listing 8.27 Freezing all layers until the fourth from the last

Listing 8.28 Fine-tuning the model

237Summary

Here, we get a test accuracy of 98.5% (again, your own results may be within one per-
centage point). In the original Kaggle competition around this dataset, this would
have been one of the top results. It’s not quite a fair comparison, however, since we
used pretrained features that already contained prior knowledge about cats and dogs,
which competitors couldn’t use at the time.

 On the positive side, by leveraging modern deep learning techniques, we managed
to reach this result using only a small fraction of the training data that was available
for the competition (about 10%). There is a huge difference between being able to
train on 20,000 samples compared to 2,000 samples!

 Now you have a solid set of tools for dealing with image-classification problems—in
particular, with small datasets.

Summary
� Convnets are the best type of machine learning models for computer vision

tasks. It’s possible to train one from scratch even on a very small dataset, with
decent results.

� Convnets work by learning a hierarchy of modular patterns and concepts to
represent the visual world.

� On a small dataset, overfitting will be the main issue. Data augmentation is a
powerful way to fight overfitting when you’re working with image data.

� It’s easy to reuse an existing convnet on a new dataset via feature extraction.
This is a valuable technique for working with small image datasets.

� As a complement to feature extraction, you can use fine-tuning, which adapts to
a new problem some of the representations previously learned by an existing
model. This pushes performance a bit further.

238

Advanced deep learning
for computer vision

The previous chapter gave you a first introduction to deep learning for computer
vision via simple models (stacks of Conv2D and MaxPooling2D layers) and a simple
use case (binary image classification). But there’s more to computer vision than
image classification! This chapter dives deeper into more diverse applications and
advanced best practices.

9.1 Three essential computer vision tasks
So far, we’ve focused on image classification models: an image goes in, a label
comes out. “This image likely contains a cat; this other one likely contains a dog.”
But image classification is only one of several possible applications of deep learning

This chapter covers
� The different branches of computer vision: image

classification, image segmentation, object
detection

� Modern convnet architecture patterns: residual
connections, batch normalization, depthwise
separable convolutions

� Techniques for visualizing and interpreting what
convnets learn

239Three essential computer vision tasks

in computer vision. In general, there are three essential computer vision tasks you
need to know about:

� Image classification—Where the goal is to assign one or more labels to an image.
It may be either single-label classification (an image can only be in one cate-
gory, excluding the others), or multi-label classification (tagging all categories
that an image belongs to, as seen in figure 9.1). For example, when you search
for a keyword on the Google Photos app, behind the scenes you’re querying a
very large multilabel classification model—one with over 20,000 different classes,
trained on millions of images.

� Image segmentation—Where the goal is to “segment” or “partition” an image into
different areas, with each area usually representing a category (as seen in fig-
ure 9.1). For instance, when Zoom or Google Meet diplays a custom back-
ground behind you in a video call, it’s using an image segmentation model to
tell your face apart from what’s behind it, at pixel precision.

� Object detection—Where the goal is to draw rectangles (called bounding boxes)
around objects of interest in an image, and associate each rectangle with a class.
A self-driving car could use an object-detection model to monitor cars, pedestri-
ans, and signs in view of its cameras, for instance.

Figure 9.1 The three main computer vision tasks: classification, segmentation, detection

240 CHAPTER 9 Advanced deep learning for computer vision

Deep learning for computer vision also encompasses a number of somewhat more
niche tasks besides these three, such as image similarity scoring (estimating how visu-
ally similar two images are), keypoint detection (pinpointing attributes of interest in
an image, such as facial features), pose estimation, 3D mesh estimation, and so on.
But to start with, image classification, image segmentation, and object detection form
the foundation that every machine learning engineer should be familiar with. Most
computer vision applications boil down to one of these three.

 You’ve seen image classification in action in the previous chapter. Next, let’s dive
into image segmentation. It’s a very useful and versatile technique, and you can straight-
forwardly approach it with what you’ve already learned so far.

 Note that we won’t cover object detection, because it would be too specialized and
too complicated for an introductory book. However, you can check out the RetinaNet
example on keras.io, which shows how to build and train an object detection model
from scratch in Keras in around 450 lines of code (https://keras.io/examples/vision/
retinanet/).

9.2 An image segmentation example
Image segmentation with deep learning is about using a model to assign a class to
each pixel in an image, thus segmenting the image into different zones (such as
“background” and “foreground,” or “road,” “car,” and “sidewalk”). This general cat-
egory of techniques can be used to power a considerable variety of valuable applica-
tions in image and video editing, autonomous driving, robotics, medical imaging,
and so on.

 There are two different flavors of image segmentation that you should know about:

� Semantic segmentation, where each pixel is independently classified into a seman-
tic category, like “cat.” If there are two cats in the image, the corresponding pix-
els are all mapped to the same generic “cat” category (see figure 9.2).

� Instance segmentation, which seeks not only to classify image pixels by category,
but also to parse out individual object instances. In an image with two cats in it,
instance segmentation would treat “cat 1” and “cat 2” as two separate classes of
pixels (see figure 9.2).

In this example, we’ll focus on semantic segmentation: we’ll be looking once again at
images of cats and dogs, and this time we’ll learn how to tell apart the main subject
and its background.

 We’ll work with the Oxford-IIIT Pets dataset (www.robots.ox.ac.uk/~vgg/data/
pets/), which contains 7,390 pictures of various breeds of cats and dogs, together with
foreground-background segmentation masks for each picture. A segmentation mask is
the image-segmentation equivalent of a label: it’s an image the same size as the input
image, with a single color channel where each integer value corresponds to the class

241An image segmentation example

of the corresponding pixel in the input image. In our case, the pixels of our segmen-
tation masks can take one of three integer values:

� 1 (foreground)
� 2 (background)
� 3 (contour)

Let’s start by downloading and uncompressing our dataset, using the wget and tar
shell utilities:

!wget http:/ /www.robots.ox.ac.uk/~vgg/data/pets/data/images.tar.gz
!wget http:/ /www.robots.ox.ac.uk/~vgg/data/pets/data/annotations.tar.gz
!tar -xf images.tar.gz
!tar -xf annotations.tar.gz

The input pictures are stored as JPG files in the images/ folder (such as images/Abys-
sinian_1.jpg), and the corresponding segmentation mask is stored as a PNG file with
the same name in the annotations/trimaps/ folder (such as annotations/trimaps/
Abyssinian_1.png).

 Let’s prepare the list of input file paths, as well as the list of the corresponding
mask file paths:

import os

input_dir = "images/"
target_dir = "annotations/trimaps/"

input_img_paths = sorted(
 [os.path.join(input_dir, fname)
 for fname in os.listdir(input_dir)
 if fname.endswith(".jpg")])

Figure 9.2 Semantic segmentation vs. instance segmentation

242 CHAPTER 9 Advanced deep learning for computer vision

target_paths = sorted(
 [os.path.join(target_dir, fname)
 for fname in os.listdir(target_dir)
 if fname.endswith(".png") and not fname.startswith(".")])

Now, what does one of these inputs and its mask look like? Let’s take a quick look.
Here’s a sample image (see figure 9.3):

import matplotlib.pyplot as plt
from tensorflow.keras.utils import load_img, img_to_array

plt.axis("off")
plt.imshow(load_img(input_img_paths[9]))

And here is its corresponding target (see figure 9.4):

def display_target(target_array):
 normalized_array = (target_array.astype("uint8") - 1) * 127
 plt.axis("off")
 plt.imshow(normalized_array[:, :, 0])

img = img_to_array(load_img(target_paths[9], color_mode="grayscale"))
display_target(img)

Display input
image number 9.

Figure 9.3 An example image

The original labels are 1, 2, and 3. We subtract 1 so that the
labels range from 0 to 2, and then we multiply by 127 so that

the labels become 0 (black), 127 (gray), 254 (near-white).

We use color_mode="grayscale" so
that the image we load is treated as

having a single color channel.

243An image segmentation example

Next, let’s load our inputs and targets into two NumPy arrays, and let’s split the arrays
into a training and a validation set. Since the dataset is very small, we can just load
everything into memory:

import numpy as np
import random

img_size = (200, 200)
num_imgs = len(input_img_paths)

random.Random(1337).shuffle(input_img_paths)
random.Random(1337).shuffle(target_paths)

def path_to_input_image(path):
 return img_to_array(load_img(path, target_size=img_size))

def path_to_target(path):
 img = img_to_array(
 load_img(path, target_size=img_size, color_mode="grayscale"))
 img = img.astype("uint8") - 1
 return img

input_imgs = np.zeros((num_imgs,) + img_size + (3,), dtype="float32")
targets = np.zeros((num_imgs,) + img_size + (1,), dtype="uint8")
for i in range(num_imgs):

input_imgs[i] = path_to_input_image(input_img_paths[i])
targets[i] = path_to_target(target_paths[i])

num_val_samples = 1000
train_input_imgs = input_imgs[:-num_val_samples]
train_targets = targets[:-num_val_samples]
val_input_imgs = input_imgs[-num_val_samples:]
val_targets = targets[-num_val_samples:]

Figure 9.4 The corresponding
target mask

We resize everything
to 200 × 200.

Total number of samples
in the data

Shuffle the file paths (they were
originally sorted by breed). We use the
same seed (1337) in both statements to
ensure that the input paths and target
paths stay in the same order.

Subtract 1 so that our
labels become 0, 1, and 2.

Load all images in the input_imgs
float32 array and their masks in the

targets uint8 array (same order). The
inputs have three channels (RBG values)

and the targets have a single channel
(which contains integer labels).

Reserve
1,000

samples for
validation.

Split the
data into a

training and a
validation set.

244 CHAPTER 9 Advanced deep learning for computer vision

Now it’s time to define our model:

from tensorflow import keras
from tensorflow.keras import layers

def get_model(img_size, num_classes):
 inputs = keras.Input(shape=img_size + (3,))
 x = layers.Rescaling(1./255)(inputs)

 x = layers.Conv2D(64, 3, strides=2, activation="relu", padding="same")(x)
 x = layers.Conv2D(64, 3, activation="relu", padding="same")(x)
 x = layers.Conv2D(128, 3, strides=2, activation="relu", padding="same")(x)
 x = layers.Conv2D(128, 3, activation="relu", padding="same")(x)
 x = layers.Conv2D(256, 3, strides=2, padding="same", activation="relu")(x)
 x = layers.Conv2D(256, 3, activation="relu", padding="same")(x)

 x = layers.Conv2DTranspose(256, 3, activation="relu", padding="same")(x)
 x = layers.Conv2DTranspose(
 256, 3, activation="relu", padding="same", strides=2)(x)
 x = layers.Conv2DTranspose(128, 3, activation="relu", padding="same")(x)
 x = layers.Conv2DTranspose(
 128, 3, activation="relu", padding="same", strides=2)(x)
 x = layers.Conv2DTranspose(64, 3, activation="relu", padding="same")(x)
 x = layers.Conv2DTranspose(
 64, 3, activation="relu", padding="same", strides=2)(x)

 outputs = layers.Conv2D(num_classes, 3, activation="softmax",
padding="same")(x)

 model = keras.Model(inputs, outputs)
 return model

model = get_model(img_size=img_size, num_classes=3)
model.summary()

Here’s the output of the model.summary() call:

Model: "model"

Layer (type) Output Shape Param #
===
input_1 (InputLayer) [(None, 200, 200, 3)] 0

rescaling (Rescaling) (None, 200, 200, 3) 0

conv2d (Conv2D) (None, 100, 100, 64) 1792

conv2d_1 (Conv2D) (None, 100, 100, 64) 36928

conv2d_2 (Conv2D) (None, 50, 50, 128) 73856

conv2d_3 (Conv2D) (None, 50, 50, 128) 147584

Don’t forget to
rescale input

images to the
[0-1] range.

Note how we use
padding="same"

everywhere to avoid
the influence of border

padding on feature
map size.

We end the model
with a per-pixel three-way

softmax to classify each
output pixel into one of

our three categories.

245An image segmentation example

conv2d_4 (Conv2D) (None, 25, 25, 256) 295168

conv2d_5 (Conv2D) (None, 25, 25, 256) 590080

conv2d_transpose (Conv2DTran (None, 25, 25, 256) 590080

conv2d_transpose_1 (Conv2DTr (None, 50, 50, 256) 590080

conv2d_transpose_2 (Conv2DTr (None, 50, 50, 128) 295040

conv2d_transpose_3 (Conv2DTr (None, 100, 100, 128) 147584

conv2d_transpose_4 (Conv2DTr (None, 100, 100, 64) 73792

conv2d_transpose_5 (Conv2DTr (None, 200, 200, 64) 36928

conv2d_6 (Conv2D) (None, 200, 200, 3) 1731
===
Total params: 2,880,643
Trainable params: 2,880,643
Non-trainable params: 0

The first half of the model closely resembles the kind of convnet you’d use for image
classification: a stack of Conv2D layers, with gradually increasing filter sizes. We down-
sample our images three times by a factor of two each, ending up with activations of size
(25, 25, 256). The purpose of this first half is to encode the images into smaller feature
maps, where each spatial location (or pixel) contains information about a large spatial
chunk of the original image. You can understand it as a kind of compression.

 One important difference between the first half of this model and the classifica-
tion models you’ve seen before is the way we do downsampling: in the classification
convnets from the last chapter, we used MaxPooling2D layers to downsample feature
maps. Here, we downsample by adding strides to every other convolution layer (if you
don’t remember the details of how convolution strides work, see “Understanding con-
volution strides” in section 8.1.1). We do this because, in the case of image segmenta-
tion, we care a lot about the spatial location of information in the image, since we need
to produce per-pixel target masks as output of the model. When you do 2 × 2 max
pooling, you are completely destroying location information within each pooling win-
dow: you return one scalar value per window, with zero knowledge of which of the
four locations in the windows the value came from. So while max pooling layers per-
form well for classification tasks, they would hurt us quite a bit for a segmentation
task. Meanwhile, strided convolutions do a better job at downsampling feature maps
while retaining location information. Throughout this book, you’ll notice that we
tend to use strides instead of max pooling in any model that cares about feature loca-
tion, such as the generative models in chapter 12.

 The second half of the model is a stack of Conv2DTranspose layers. What are those?
Well, the output of the first half of the model is a feature map of shape (25, 25, 256),

246 CHAPTER 9 Advanced deep learning for computer vision

but we want our final output to have the same shape as the target masks, (200, 200,
3). Therefore, we need to apply a kind of inverse of the transformations we’ve applied
so far—something that will upsample the feature maps instead of downsampling them.
That’s the purpose of the Conv2DTranspose layer: you can think of it as a kind of convolu-
tion layer that learns to upsample. If you have an input of shape (100, 100, 64), and you
run it through the layer Conv2D(128, 3, strides=2, padding="same"), you get an
output of shape (50, 50, 128). If you run this output through the layer Conv2D-
Transpose(64, 3, strides=2, padding="same"), you get back an output of shape (100,
100, 64), the same as the original. So after compressing our inputs into feature maps of
shape (25, 25, 256) via a stack of Conv2D layers, we can simply apply the corresponding
sequence of Conv2DTranspose layers to get back to images of shape (200, 200, 3).

 We can now compile and fit our model:

model.compile(optimizer="rmsprop", loss="sparse_categorical_crossentropy")

callbacks = [
 keras.callbacks.ModelCheckpoint("oxford_segmentation.keras",
 save_best_only=True)
]

history = model.fit(train_input_imgs, train_targets,
 epochs=50,
 callbacks=callbacks,
 batch_size=64,
 validation_data=(val_input_imgs, val_targets))

Let’s display our training and validation loss (see figure 9.5):

epochs = range(1, len(history.history["loss"]) + 1)
loss = history.history["loss"]

Figure 9.5 Displaying training and validation loss curves

247An image segmentation example

val_loss = history.history["val_loss"]
plt.figure()
plt.plot(epochs, loss, "bo", label="Training loss")
plt.plot(epochs, val_loss, "b", label="Validation loss")
plt.title("Training and validation loss")
plt.legend()

You can see that we start overfitting midway, around epoch 25. Let’s reload our best
performing model according to the validation loss, and demonstrate how to use it to
predict a segmentation mask (see figure 9.6):

from tensorflow.keras.utils import array_to_img

model = keras.models.load_model("oxford_segmentation.keras")

i = 4
test_image = val_input_imgs[i]
plt.axis("off")
plt.imshow(array_to_img(test_image))

mask = model.predict(np.expand_dims(test_image, 0))[0]

def display_mask(pred):
 mask = np.argmax(pred, axis=-1)
 mask *= 127
 plt.axis("off")
 plt.imshow(mask)

display_mask(mask)

Utility to display
a model’s
prediction

Figure 9.6 A test image and its predicted segmentation mask

248 CHAPTER 9 Advanced deep learning for computer vision

There are a couple of small artifacts in our predicted mask, caused by geometric shapes
in the foreground and background. Nevertheless, our model appears to work nicely.

 By this point, throughout chapter 8 and the beginning of chapter 9, you’ve
learned the basics of how to perform image classification and image segmentation:
you can already accomplish a lot with what you know. However, the convnets that
experienced engineers develop to solve real-world problems aren’t quite as simple as
those we’ve been using in our demonstrations so far. You’re still lacking the essential
mental models and thought processes that enable experts to make quick and accurate
decisions about how to put together state-of-the-art models. To bridge that gap, you
need to learn about architecture patterns. Let’s dive in.

9.3 Modern convnet architecture patterns
A model’s “architecture” is the sum of the choices that went into creating it: which lay-
ers to use, how to configure them, and in what arrangement to connect them. These
choices define the hypothesis space of your model: the space of possible functions that
gradient descent can search over, parameterized by the model’s weights. Like feature
engineering, a good hypothesis space encodes prior knowledge that you have about the
problem at hand and its solution. For instance, using convolution layers means that you
know in advance that the relevant patterns present in your input images are translation-
invariant. In order to effectively learn from data, you need to make assumptions about
what you’re looking for.

 Model architecture is often the difference between success and failure. If you make
inappropriate architecture choices, your model may be stuck with suboptimal metrics,
and no amount of training data will save it. Inversely, a good model architecture will
accelerate learning and will enable your model to make efficient use of the training data
available, reducing the need for large datasets. A good model architecture is one that
reduces the size of the search space or otherwise makes it easier to converge to a good point of the
search space. Just like feature engineering and data curation, model architecture is all
about making the problem simpler for gradient descent to solve. And remember that gradi-
ent descent is a pretty stupid search process, so it needs all the help it can get.

 Model architecture is more an art than a science. Experienced machine learning
engineers are able to intuitively cobble together high-performing models on their first
try, while beginners often struggle to create a model that trains at all. The keyword
here is intuitively: no one can give you a clear explanation of what works and what
doesn’t. Experts rely on pattern-matching, an ability that they acquire through exten-
sive practical experience. You’ll develop your own intuition throughout this book.
However, it’s not all about intuition either—there isn’t much in the way of actual sci-
ence, but as in any engineering discipline, there are best practices.

 In the following sections, we’ll review a few essential convnet architecture best
practices: in particular, residual connections, batch normalization, and separable convolu-
tions. Once you master how to use them, you will be able to build highly effective
image models. We will apply them to our cat vs. dog classification problem.

249Modern convnet architecture patterns

 Let’s start from the bird’s-eye view: the modularity-hierarchy-reuse (MHR) formula
for system architecture.

9.3.1 Modularity, hierarchy, and reuse

If you want to make a complex system simpler, there’s a universal recipe you can
apply: just structure your amorphous soup of complexity into modules, organize the
modules into a hierarchy, and start reusing the same modules in multiple places as
appropriate (“reuse” is another word for abstraction in this context). That’s the MHR
formula (modularity-hierarchy-reuse), and it underlies system architecture across
pretty much every domain where the term “architecture” is used. It’s at the heart of
the organization of any system of meaningful complexity, whether it’s a cathedral,
your own body, the US Navy, or the Keras codebase (see figure 9.7).

If you’re a software engineer, you’re already keenly familiar with these principles: an
effective codebase is one that is modular, hierarchical, and where you don’t reimple-
ment the same thing twice, but instead rely on reusable classes and functions. If you

Figure 9.7 Complex systems follow a hierarchical structure and are organized into distinct
modules, which are reused multiple times (such as your four limbs, which are all variants of
the same blueprint, or your 20 “fingers”).

250 CHAPTER 9 Advanced deep learning for computer vision

factor your code by following these principles, you could say you’re doing “software
architecture.”

 Deep learning itself is simply the application of this recipe to continuous optimiza-
tion via gradient descent: you take a classic optimization technique (gradient descent
over a continuous function space), and you structure the search space into modules
(layers), organized into a deep hierarchy (often just a stack, the simplest kind of hier-
archy), where you reuse whatever you can (for instance, convolutions are all about
reusing the same information in different spatial locations).

 Likewise, deep learning model architecture is primarily about making clever use of
modularity, hierarchy, and reuse. You’ll notice that all popular convnet architectures
are not only structured into layers, they’re structured into repeated groups of layers
(called “blocks” or “modules”). For instance, the popular VGG16 architecture we used
in the previous chapter is structured into repeated “conv, conv, max pooling” blocks
(see figure 9.8).

 Further, most convnets often feature pyramid-like structures (feature hierarchies).
Recall, for example, the progression in the number of convolution filters we used in
the first convnet we built in the previous chapter: 32, 64, 128. The number of filters
grows with layer depth, while the size of the feature maps shrinks accordingly. You’ll
notice the same pattern in the blocks of the VGG16 model (see figure 9.8).

224 × 224 × 3

28 × 28 × 512
14 × 14 × 512

7 × 7 × 512

1 × 1 × 4096

Convolution+ReLU

Max pooling

Fully connected+ReLU

Softmax

1 × 1 × 1000

112 × 112 × 128

56 × 56 × 256

224 × 224 × 64

Figure 9.8 The VGG16 architecture: note the repeated layer blocks and the pyramid-like structure of
the feature maps

251Modern convnet architecture patterns

Deeper hierarchies are intrinsically good because they encourage feature reuse, and
therefore abstraction. In general, a deep stack of narrow layers performs better than a
shallow stack of large layers. However, there’s a limit to how deep you can stack layers,
due to the problem of vanishing gradients. This leads us to our first essential model
architecture pattern: residual connections.

9.3.2 Residual connections

You probably know about the game of Telephone, also called Chinese whispers in the
UK and téléphone arabe in France, where an initial message is whispered in the ear of a
player, who then whispers it in the ear of the next player, and so on. The final message
ends up bearing little resemblance to its original version. It’s a fun metaphor for the
cumulative errors that occur in sequential transmission over a noisy channel.

 As it happens, backpropagation in a sequential deep learning model is pretty simi-
lar to the game of Telephone. You’ve got a chain of functions, like this one:

y = f4(f3(f2(f1(x))))

On the importance of ablation studies in deep learning research
Deep learning architectures are often more evolved than designed—they were devel-
oped by repeatedly trying things and selecting what seemed to work. Much like in bio-
logical systems, if you take any complicated experimental deep learning setup,
chances are you can remove a few modules (or replace some trained features with
random ones) with no loss of performance.

This is made worse by the incentives that deep learning researchers face: by making
a system more complex than necessary, they can make it appear more interesting or
more novel, and thus increase their chances of getting a paper through the peer-
review process. If you read lots of deep learning papers, you will notice that they’re
often optimized for peer review in both style and content in ways that actively hurt
clarity of explanation and reliability of results. For instance, mathematics in deep
learning papers is rarely used for clearly formalizing concepts or deriving non-obvious
results—rather, it gets leveraged as a signal of seriousness, like an expensive suit on
a salesman.

The goal of research shouldn’t be merely to publish, but to generate reliable knowl-
edge. Crucially, understanding causality in your system is the most straightforward
way to generate reliable knowledge. And there’s a very low-effort way to look into cau-
sality: ablation studies. Ablation studies consist of systematically trying to remove
parts of a system—making it simpler—to identify where its performance actually
comes from. If you find that X + Y + Z gives you good results, also try X, Y, Z, X + Y,
X + Z, and Y + Z, and see what happens.

If you become a deep learning researcher, cut through the noise in the research pro-
cess: do ablation studies for your models. Always ask, “Could there be a simpler
explanation? Is this added complexity really necessary? Why?”

252 CHAPTER 9 Advanced deep learning for computer vision

The name of the game is to adjust the parameters of each function in the chain based
on the error recorded on the output of f4 (the loss of the model). To adjust f1, you’ll
need to percolate error information through f2, f3, and f4. However, each successive
function in the chain introduces some amount of noise. If your function chain is too
deep, this noise starts overwhelming gradient information, and backpropagation
stops working. Your model won’t train at all. This is the vanishing gradients problem.

 The fix is simple: just force each function in the chain to be nondestructive—to
retain a noiseless version of the information contained in the previous input. The eas-
iest way to implement this is to use a residual connection. It’s dead easy: just add the
input of a layer or block of layers back to its output (see figure 9.9). The residual con-
nection acts as an information shortcut around destructive or noisy blocks (such as
blocks that contain relu activations or dropout layers), enabling error gradient infor-
mation from early layers to propagate noiselessly through a deep network. This tech-
nique was introduced in 2015 with the ResNet family of models (developed by He et al.
at Microsoft).1

In practice, you’d implement a residual connection as follows.

x = ...
residual = x
x = block(x)
x = add([x, residual])

1 Kaiming He et al., “Deep Residual Learning for Image Recognition,” Conference on Computer Vision and Pat-
tern Recognition (2015), https://arxiv.org/abs/1512.03385.

Listing 9.1 A residual connection in pseudocode

Output

Residual
connection

+

Block

Input

Figure 9.9 A residual connection
around a processing block

Some input
tensor

Save a pointer to the
original input. This is
called the residual.

This computation block can
potentially be destructive or
noisy, and that’s fine.

Add the original input to the layer’s
output: the final output will thus
always preserve full information

about the original input.

253Modern convnet architecture patterns

Note that adding the input back to the output of a block implies that the output
should have the same shape as the input. However, this is not the case if your block
includes convolutional layers with an increased number of filters, or a max pooling
layer. In such cases, use a 1 × 1 Conv2D layer with no activation to linearly project the
residual to the desired output shape (see listing 9.2). You’d typically use padding=
"same" in the convolution layers in your target block so as to avoid spatial downsam-
pling due to padding, and you’d use strides in the residual projection to match any
downsampling caused by a max pooling layer (see listing 9.3).

from tensorflow import keras
from tensorflow.keras import layers

inputs = keras.Input(shape=(32, 32, 3))
x = layers.Conv2D(32, 3, activation="relu")(inputs)
residual = x
x = layers.Conv2D(64, 3, activation="relu", padding="same")(x)
residual = layers.Conv2D(64, 1)(residual)
x = layers.add([x, residual])

inputs = keras.Input(shape=(32, 32, 3))
x = layers.Conv2D(32, 3, activation="relu")(inputs)
residual = x
x = layers.Conv2D(64, 3, activation="relu", padding="same")(x)
x = layers.MaxPooling2D(2, padding="same")(x)
residual = layers.Conv2D(64, 1, strides=2)(residual)
x = layers.add([x, residual])

To make these ideas more concrete, here’s an example of a simple convnet structured
into a series of blocks, each made of two convolution layers and one optional max
pooling layer, with a residual connection around each block:

inputs = keras.Input(shape=(32, 32, 3))
x = layers.Rescaling(1./255)(inputs)

def residual_block(x, filters, pooling=False):
 residual = x
 x = layers.Conv2D(filters, 3, activation="relu", padding="same")(x)
 x = layers.Conv2D(filters, 3, activation="relu", padding="same")(x)

Listing 9.2 Residual block where the number of filters changes

Listing 9.3 Case where the target block includes a max pooling layer

Set
aside the
residual.

This is the layer around which we create
a residual connection: it increases the
number of output filers from 32 to 64.

Note that we use padding="same"
to avoid downsampling

due to padding.

The residual only had 32
filters, so we use a 1 × 1
Conv2D to project it to the
correct shape.

Now the block output and the
residual have the same shape

and can be added.

Set
aside the
residual.

This is the block of two layers around which
we create a residual connection: it includes a

2 × 2 max pooling layer. Note that we use
padding="same" in both the convolution
layer and the max pooling layer to avoid

downsampling due to padding.
We use strides=2 in the residual
projection to match the downsampling
created by the max pooling layer.

Now the block output and the residual
have the same shape and can be added.

Utility function to apply a
convolutional block with a
residual connection, with an
option to add max pooling

254 CHAPTER 9 Advanced deep learning for computer vision

 if pooling:
 x = layers.MaxPooling2D(2, padding="same")(x)
 residual = layers.Conv2D(filters, 1, strides=2)(residual)
 elif filters != residual.shape[-1]:
 residual = layers.Conv2D(filters, 1)(residual)
 x = layers.add([x, residual])
 return x

x = residual_block(x, filters=32, pooling=True)
x = residual_block(x, filters=64, pooling=True)
x = residual_block(x, filters=128, pooling=False)

x = layers.GlobalAveragePooling2D()(x)
outputs = layers.Dense(1, activation="sigmoid")(x)
model = keras.Model(inputs=inputs, outputs=outputs)
model.summary()

This is the model summary we get:

Model: "model"
__
Layer (type) Output Shape Param # Connected to
==
input_1 (InputLayer) [(None, 32, 32, 3)] 0
__
rescaling (Rescaling) (None, 32, 32, 3) 0 input_1[0][0]
__
conv2d (Conv2D) (None, 32, 32, 32) 896 rescaling[0][0]
__
conv2d_1 (Conv2D) (None, 32, 32, 32) 9248 conv2d[0][0]
__
max_pooling2d (MaxPooling2D) (None, 16, 16, 32) 0 conv2d_1[0][0]
__
conv2d_2 (Conv2D) (None, 16, 16, 32) 128 rescaling[0][0]
__
add (Add) (None, 16, 16, 32) 0 max_pooling2d[0][0]
 conv2d_2[0][0]
__
conv2d_3 (Conv2D) (None, 16, 16, 64) 18496 add[0][0]
__
conv2d_4 (Conv2D) (None, 16, 16, 64) 36928 conv2d_3[0][0]
__
max_pooling2d_1 (MaxPooling2D) (None, 8, 8, 64) 0 conv2d_4[0][0]
__
conv2d_5 (Conv2D) (None, 8, 8, 64) 2112 add[0][0]
__
add_1 (Add) (None, 8, 8, 64) 0 max_pooling2d_1[0][0]
 conv2d_5[0][0]
__
conv2d_6 (Conv2D) (None, 8, 8, 128) 73856 add_1[0][0]
__
conv2d_7 (Conv2D) (None, 8, 8, 128) 147584 conv2d_6[0][0]
__

If we use max
pooling, we
add a strided
convolution to
project the
residual to the
expected shape.

If we don’t use max
pooling, we only project
the residual if the
number of channels
has changed.

First
block

Second block; note the
increasing filter count
in each block.The last block doesn’t need a max

pooling layer, since we will apply
global average pooling right after it.

255Modern convnet architecture patterns

conv2d_8 (Conv2D) (None, 8, 8, 128) 8320 add_1[0][0]
__
add_2 (Add) (None, 8, 8, 128) 0 conv2d_7[0][0]
 conv2d_8[0][0]
__
global_average_pooling2d (Globa (None, 128) 0 add_2[0][0]
__
dense (Dense) (None, 1) 129 global_average_pooling2d[0][0]
==
Total params: 297,697
Trainable params: 297,697
Non-trainable params: 0
__

With residual connections, you can build networks of arbitrary depth, without having
to worry about vanishing gradients.

 Now let’s move on to the next essential convnet architecture pattern: batch normal-
ization.

9.3.3 Batch normalization

Normalization is a broad category of methods that seek to make different samples seen
by a machine learning model more similar to each other, which helps the model learn
and generalize well to new data. The most common form of data normalization is one
you’ve already seen several times in this book: centering the data on zero by subtract-
ing the mean from the data, and giving the data a unit standard deviation by dividing
the data by its standard deviation. In effect, this makes the assumption that the data
follows a normal (or Gaussian) distribution and makes sure this distribution is cen-
tered and scaled to unit variance:

normalized_data = (data - np.mean(data, axis=...)) / np.std(data, axis=...)

Previous examples in this book normalized data before feeding it into models. But
data normalization may be of interest after every transformation operated by the net-
work: even if the data entering a Dense or Conv2D network has a 0 mean and unit vari-
ance, there’s no reason to expect a priori that this will be the case for the data coming
out. Could normalizing intermediate activations help?

 Batch normalization does just that. It’s a type of layer (BatchNormalization in
Keras) introduced in 2015 by Ioffe and Szegedy;2 it can adaptively normalize data even
as the mean and variance change over time during training. During training, it uses
the mean and variance of the current batch of data to normalize samples, and during
inference (when a big enough batch of representative data may not be available), it
uses an exponential moving average of the batch-wise mean and variance of the data
seen during training.

2 Sergey Ioffe and Christian Szegedy, “Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift,” Proceedings of the 32nd International Conference on Machine Learning (2015), https://
arxiv.org/abs/1502.03167.

256 CHAPTER 9 Advanced deep learning for computer vision

 Although the original paper stated that batch normalization operates by “reducing
internal covariate shift,” no one really knows for sure why batch normalization helps.
There are various hypotheses, but no certitudes. You’ll find that this is true of many
things in deep learning—deep learning is not an exact science, but a set of ever-
changing, empirically derived engineering best practices, woven together by unreli-
able narratives. You will sometimes feel like the book you have in hand tells you how to
do something but doesn’t quite satisfactorily say why it works: that’s because we know
the how but we don’t know the why. Whenever a reliable explanation is available, I
make sure to mention it. Batch normalization isn’t one of those cases.

 In practice, the main effect of batch normalization appears to be that it helps with
gradient propagation—much like residual connections—and thus allows for deeper
networks. Some very deep networks can only be trained if they include multiple
BatchNormalization layers. For instance, batch normalization is used liberally in
many of the advanced convnet architectures that come packaged with Keras, such as
ResNet50, EfficientNet, and Xception.

 The BatchNormalization layer can be used after any layer—Dense, Conv2D, etc.:

x = ...
x = layers.Conv2D(32, 3, use_bias=False)(x)
x = layers.BatchNormalization()(x)

NOTE Both Dense and Conv2D involve a bias vector, a learned variable whose
purpose is to make the layer affine rather than purely linear. For instance,
Conv2D returns, schematically, y = conv(x, kernel) + bias, and Dense returns
y = dot(x, kernel) + bias. Because the normalization step will take care of
centering the layer’s output on zero, the bias vector is no longer needed
when using BatchNormalization, and the layer can be created without it via
the option use_bias=False. This makes the layer slightly leaner.

Importantly, I would generally recommend placing the previous layer’s activation after
the batch normalization layer (although this is still a subject of debate). So instead of
doing what is shown in listing 9.4, you would do what’s shown in listing 9.5.

x = layers.Conv2D(32, 3, activation="relu")(x)
x = layers.BatchNormalization()(x)

x = layers.Conv2D(32, 3, use_bias=False)(x)
x = layers.BatchNormalization()(x)
x = layers.Activation("relu")(x)

Listing 9.4 How not to use batch normalization

Listing 9.5 How to use batch normalization: the activation comes last

Because the output of the Conv2D
layer gets normalized, the layer
doesn’t need its own bias vector.

Note the lack of
activation here.

We place the activation after the
BatchNormalization layer.

257Modern convnet architecture patterns

The intuitive reason for this approach is that batch normalization will center your
inputs on zero, while your relu activation uses zero as a pivot for keeping or dropping
activated channels: doing normalization before the activation maximizes the utiliza-
tion of the relu. That said, this ordering best practice is not exactly critical, so if you
do convolution, then activation, and then batch normalization, your model will still
train, and you won’t necessarily see worse results.

Now let’s take a look at the last architecture pattern in our series: depthwise separable
convolutions.

9.3.4 Depthwise separable convolutions

What if I told you that there’s a layer you can use as a drop-in replacement for Conv2D
that will make your model smaller (fewer trainable weight parameters) and leaner
(fewer floating-point operations) and cause it to perform a few percentage points bet-
ter on its task? That is precisely what the depthwise separable convolution layer does (Sep-
arableConv2D in Keras). This layer performs a spatial convolution on each channel of
its input, independently, before mixing output channels via a pointwise convolution
(a 1 × 1 convolution), as shown in figure 9.10.

On batch normalization and fine-tuning
Batch normalization has many quirks. One of the main ones relates to fine-tuning:
when fine-tuning a model that includes BatchNormalization layers, I recommend
leaving these layers frozen (set their trainable attribute to False). Otherwise they
will keep updating their internal mean and variance, which can interfere with the very
small updates applied to the surrounding Conv2D layers.

1 × 1 conv
(pointwise conv)

Depthwise convolution:
independent spatial
convs per channel

Concatenate

Split channels

3 × 3 conv3 × 3 conv3 × 3 conv3 × 3 conv

Figure 9.10 Depthwise separable convolution: a depthwise convolution followed by a
pointwise convolution

258 CHAPTER 9 Advanced deep learning for computer vision

This is equivalent to separating the learning of spatial features and the learning of
channel-wise features. In much the same way that convolution relies on the assump-
tion that the patterns in images are not tied to specific locations, depthwise separable
convolution relies on the assumption that spatial locations in intermediate activations
are highly correlated, but different channels are highly independent. Because this assumption
is generally true for the image representations learned by deep neural networks, it
serves as a useful prior that helps the model make more efficient use of its training
data. A model with stronger priors about the structure of the information it will have
to process is a better model—as long as the priors are accurate.

 Depthwise separable convolution requires significantly fewer parameters and
involves fewer computations compared to regular convolution, while having compara-
ble representational power. It results in smaller models that converge faster and are
less prone to overfitting. These advantages become especially important when you’re
training small models from scratch on limited data.

 When it comes to larger-scale models, depthwise separable convolutions are the
basis of the Xception architecture, a high-performing convnet that comes packaged
with Keras. You can read more about the theoretical grounding for depthwise separa-
ble convolutions and Xception in the paper “Xception: Deep Learning with Depth-
wise Separable Convolutions.”3

3 François Chollet, “Xception: Deep Learning with Depthwise Separable Convolutions,” Conference on Com-
puter Vision and Pattern Recognition (2017), https://arxiv.org/abs/1610.02357.

The co-evolution of hardware, software, and algorithms
Consider a regular convolution operation with a 3 × 3 window, 64 input channels, and
64 output channels. It uses 3*3*64*64 = 36,864 trainable parameters, and when
you apply it to an image, it runs a number of floating-point operations that is propor-
tional to this parameter count. Meanwhile, consider an equivalent depthwise separa-
ble convolution: it only involves 3*3*64 + 64*64 = 4,672 trainable parameters, and
proportionally fewer floating-point operations. This efficiency improvement only
increases as the number of filters or the size of the convolution windows gets larger.

As a result, you would expect depthwise separable convolutions to be dramatically
faster, right? Hold on. This would be true if you were writing simple CUDA or C imple-
mentations of these algorithms—in fact, you do see a meaningful speedup when run-
ning on CPU, where the underlying implementation is parallelized C. But in practice,
you’re probably using a GPU, and what you’re executing on it is far from a “simple”
CUDA implementation: it’s a cuDNN kernel, a piece of code that has been extraordi-
narily optimized, down to each machine instruction. It certainly makes sense to
spend a lot of effort optimizing this code, since cuDNN convolutions on NVIDIA hard-
ware are responsible for many exaFLOPS of computation every day. But a side effect
of this extreme micro-optimization is that alternative approaches have little chance
to compete on performance—even approaches that have significant intrinsic advan-
tages, like depthwise separable convolutions.

259Modern convnet architecture patterns

9.3.5 Putting it together: A mini Xception-like model

As a reminder, here are the convnet architecture principles you’ve learned so far:

� Your model should be organized into repeated blocks of layers, usually made of
multiple convolution layers and a max pooling layer.

� The number of filters in your layers should increase as the size of the spatial fea-
ture maps decreases.

� Deep and narrow is better than broad and shallow.
� Introducing residual connections around blocks of layers helps you train

deeper networks.
� It can be beneficial to introduce batch normalization layers after your convolu-

tion layers.
� It can be beneficial to replace Conv2D layers with SeparableConv2D layers,

which are more parameter-efficient.

Let’s bring these ideas together into a single model. Its architecture will resemble a
smaller version of Xception, and we’ll apply it to the dogs vs. cats task from the last
chapter. For data loading and model training, we’ll simply reuse the setup we used in
section 8.2.5, but we’ll replace the model definition with the following convnet:

Despite repeated requests to NVIDIA, depthwise separable convolutions have not
benefited from nearly the same level of software and hardware optimization as regu-
lar convolutions, and as a result they remain only about as fast as regular convolu-
tions, even though they’re using quadratically fewer parameters and floating-point
operations. Note, though, that using depthwise separable convolutions remains a
good idea even if it does not result in a speedup: their lower parameter count means
that you are less at risk of overfitting, and their assumption that channels should be
uncorrelated leads to faster model convergence and more robust representations.

What is a slight inconvenience in this case can become an impassable wall in other
situations: because the entire hardware and software ecosystem of deep learning
has been micro-optimized for a very specific set of algorithms (in particular, convnets
trained via backpropagation), there’s an extremely high cost to steering away from the
beaten path. If you were to experiment with alternative algorithms, such as gradient-
free optimization or spiking neural networks, the first few parallel C++ or CUDA
implementations you’d come up with would be orders of magnitude slower than a
good old convnet, no matter how clever and efficient your ideas were. Convincing
other researchers to adopt your method would be a tough sell, even if it were just
plain better.

You could say that modern deep learning is the product of a co-evolution process
between hardware, software, and algorithms: the availability of NVIDIA GPUs and
CUDA led to the early success of backpropagation-trained convnets, which led NVIDIA
to optimize its hardware and software for these algorithms, which in turn led to con-
solidation of the research community behind these methods. At this point, figuring
out a different path would require a multi-year re-engineering of the entire ecosystem.

260 CHAPTER 9 Advanced deep learning for computer vision

inputs = keras.Input(shape=(180, 180, 3))
x = data_augmentation(inputs)

x = layers.Rescaling(1./255)(x)
x = layers.Conv2D(filters=32, kernel_size=5, use_bias=False)(x)

for size in [32, 64, 128, 256, 512]:
residual = x

 x = layers.BatchNormalization()(x)
 x = layers.Activation("relu")(x)
 x = layers.SeparableConv2D(size, 3, padding="same", use_bias=False)(x)

 x = layers.BatchNormalization()(x)
 x = layers.Activation("relu")(x)
 x = layers.SeparableConv2D(size, 3, padding="same", use_bias=False)(x)

 x = layers.MaxPooling2D(3, strides=2, padding="same")(x)

 residual = layers.Conv2D(
 size, 1, strides=2, padding="same", use_bias=False)(residual)
 x = layers.add([x, residual])

x = layers.GlobalAveragePooling2D()(x)
x = layers.Dropout(0.5)(x)
outputs = layers.Dense(1, activation="sigmoid")(x)
model = keras.Model(inputs=inputs, outputs=outputs)

This convnet has a trainable parameter count of 721,857, slightly lower than the
991,041 trainable parameters of the original model, but still in the same ballpark. Fig-
ure 9.11 shows its training and validation curves.

We use the same
data augmentation
configuration as before.Don’t

forget
input

rescaling!

Note that the assumption that underlies
separable convolution, “feature channels are
largely independent,” does not hold for RGB
images! Red, green, and blue color channels

are actually highly correlated in natural
images. As such, the first layer in our model
is a regular Conv2D layer. We’ll start using

SeparableConv2D afterwards.

We apply a series of convolutional blocks with
increasing feature depth. Each block consists of two
batch-normalized depthwise separable convolution
layers and a max pooling layer, with a residual
connection around the entire block.

In the original model, we used a Flatten
layer before the Dense layer. Here, we go
with a GlobalAveragePooling2D layer.

Like in the original model, we add a
dropout layer for regularization.

Figure 9.11 Training and validation metrics with an Xception-like architecture

261Interpreting what convnets learn

You’ll find that our new model achieves a test accuracy of 90.8%, compared to 83.5%
for the naive model in the last chapter. As you can see, following architecture best
practices does have an immediate, sizable impact on model performance!

 At this point, if you want to further improve performance, you should start system-
atically tuning the hyperparameters of your architecture—a topic we’ll cover in detail
in chapter 13. We haven’t gone through this step here, so the configuration of the pre-
ceding model is purely based on the best practices we discussed, plus, when it comes
to gauging model size, a small amount of intuition.

 Note that these architecture best practices are relevant to computer vision in gen-
eral, not just image classification. For example, Xception is used as the standard convo-
lutional base in DeepLabV3, a popular state-of-the-art image segmentation solution.4

 This concludes our introduction to essential convnet architecture best practices.
With these principles in hand, you’ll be able to develop higher-performing models
across a wide range of computer vision tasks. You’re now well on your way to becom-
ing a proficient computer vision practitioner. To further deepen your expertise,
there’s one last important topic we need to cover: interpreting how a model arrives at
its predictions.

9.4 Interpreting what convnets learn
A fundamental problem when building a computer vision application is that of inter-
pretability: why did your classifier think a particular image contained a fridge, when all
you can see is a truck? This is especially relevant to use cases where deep learning is
used to complement human expertise, such as in medical imaging use cases. We will
end this chapter by getting you familiar with a range of different techniques for visual-
izing what convnets learn and understanding the decisions they make.

 It’s often said that deep learning models are “black boxes”: they learn representa-
tions that are difficult to extract and present in a human-readable form. Although this
is partially true for certain types of deep learning models, it’s definitely not true for
convnets. The representations learned by convnets are highly amenable to visualiza-
tion, in large part because they’re representations of visual concepts. Since 2013, a wide
array of techniques has been developed for visualizing and interpreting these repre-
sentations. We won’t survey all of them, but we’ll cover three of the most accessible
and useful ones:

� Visualizing intermediate convnet outputs (intermediate activations)—Useful for under-
standing how successive convnet layers transform their input, and for getting a
first idea of the meaning of individual convnet filters

� Visualizing convnet filters—Useful for understanding precisely what visual pattern
or concept each filter in a convnet is receptive to

4 Liang-Chieh Chen et al., “Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmen-
tation,” ECCV (2018), https://arxiv.org/abs/1802.02611.

262 CHAPTER 9 Advanced deep learning for computer vision

� Visualizing heatmaps of class activation in an image—Useful for understanding
which parts of an image were identified as belonging to a given class, thus allow-
ing you to localize objects in images

For the first method—activation visualization—we’ll use the small convnet that we
trained from scratch on the dogs-versus-cats classification problem in section 8.2. For
the next two methods, we’ll use a pretrained Xception model.

9.4.1 Visualizing intermediate activations

Visualizing intermediate activations consists of displaying the values returned by various
convolution and pooling layers in a model, given a certain input (the output of a layer is
often called its activation, the output of the activation function). This gives a view into
how an input is decomposed into the different filters learned by the network. We want
to visualize feature maps with three dimensions: width, height, and depth (channels).
Each channel encodes relatively independent features, so the proper way to visualize
these feature maps is by independently plotting the contents of every channel as a 2D
image. Let’s start by loading the model that you saved in section 8.2:

>>> from tensorflow import keras
>>> model = keras.models.load_model(
 "convnet_from_scratch_with_augmentation.keras")
>>> model.summary()
Model: "model_1"

Layer (type) Output Shape Param #
===
input_2 (InputLayer) [(None, 180, 180, 3)] 0

sequential (Sequential) (None, 180, 180, 3) 0

rescaling_1 (Rescaling) (None, 180, 180, 3) 0

conv2d_5 (Conv2D) (None, 178, 178, 32) 896

max_pooling2d_4 (MaxPooling2 (None, 89, 89, 32) 0

conv2d_6 (Conv2D) (None, 87, 87, 64) 18496

max_pooling2d_5 (MaxPooling2 (None, 43, 43, 64) 0

conv2d_7 (Conv2D) (None, 41, 41, 128) 73856

max_pooling2d_6 (MaxPooling2 (None, 20, 20, 128) 0

conv2d_8 (Conv2D) (None, 18, 18, 256) 295168

max_pooling2d_7 (MaxPooling2 (None, 9, 9, 256) 0

263Interpreting what convnets learn

conv2d_9 (Conv2D) (None, 7, 7, 256) 590080

flatten_1 (Flatten) (None, 12544) 0

dropout (Dropout) (None, 12544) 0

dense_1 (Dense) (None, 1) 12545
===
Total params: 991,041
Trainable params: 991,041
Non-trainable params: 0

Next, we’ll get an input image—a picture of a cat, not part of the images the network
was trained on.

from tensorflow import keras
import numpy as np

img_path = keras.utils.get_file(
 fname="cat.jpg",
 origin="https://img-datasets.s3.amazonaws.com/cat.jpg")

def get_img_array(img_path, target_size):
 img = keras.utils.load_img(

img_path, target_size=target_size)
array = keras.utils.img_to_array(img)

 array = np.expand_dims(array, axis=0)
 return array

img_tensor = get_img_array(img_path, target_size=(180, 180))

Let’s display the picture (see figure 9.12).

import matplotlib.pyplot as plt
plt.axis("off")
plt.imshow(img_tensor[0].astype("uint8"))
plt.show()

In order to extract the feature maps we want to look at, we’ll create a Keras model that
takes batches of images as input, and that outputs the activations of all convolution
and pooling layers.

Listing 9.6 Preprocessing a single image

Listing 9.7 Displaying the test picture

Download a
test image.

Open the image
file and resize it.

Turn the image into a
float32 NumPy array of
shape (180, 180, 3).

Add a dimension to transform the array into
a “batch” of a single sample. Its shape is now
(1, 180, 180, 3).

264 CHAPTER 9 Advanced deep learning for computer vision

from tensorflow.keras import layers

layer_outputs = []
layer_names = []
for layer in model.layers:
 if isinstance(layer, (layers.Conv2D, layers.MaxPooling2D)):

layer_outputs.append(layer.output)
layer_names.append(layer.name)

activation_model = keras.Model(inputs=model.input, outputs=layer_outputs)

When fed an image input, this model returns the values of the layer activations in the
original model, as a list. This is the first time you’ve encountered a multi-output
model in this book in practice since you learned about them in chapter 7; until now,
the models you’ve seen have had exactly one input and one output. This one has one
input and nine outputs: one output per layer activation.

activations = activation_model.predict(img_tensor)

For instance, this is the activation of the first convolution layer for the cat image input:

>>> first_layer_activation = activations[0]
>>> print(first_layer_activation.shape)
(1, 178, 178, 32)

Listing 9.8 Instantiating a model that returns layer activations

Listing 9.9 Using the model to compute layer activations

Figure 9.12 The test cat picture

Extract the outputs of all
Conv2D and MaxPooling2D

layers and put them in a list.

Save the
layer names
for later.

Create a model that will return these
outputs, given the model input.

Return a list of nine NumPy arrays:
one array per layer activation.

265Interpreting what convnets learn

It’s a 178 × 178 feature map with 32 channels. Let’s try plotting the fifth channel of the
activation of the first layer of the original model (see figure 9.13).

import matplotlib.pyplot as plt
plt.matshow(first_layer_activation[0, :, :, 5], cmap="viridis")

This channel appears to encode a diagonal edge detector—but note that your own
channels may vary, because the specific filters learned by convolution layers aren’t
deterministic.

 Now, let’s plot a complete visualization of all the activations in the network (see fig-
ure 9.14). We’ll extract and plot every channel in each of the layer activations, and
we’ll stack the results in one big grid, with channels stacked side by side.

images_per_row = 16
for layer_name, layer_activation in zip(layer_names, activations):
 n_features = layer_activation.shape[-1]
 size = layer_activation.shape[1]
 n_cols = n_features // images_per_row
 display_grid = np.zeros(((size + 1) * n_cols - 1,
 images_per_row * (size + 1) - 1))
 for col in range(n_cols):
 for row in range(images_per_row):
 channel_index = col * images_per_row + row
 channel_image = layer_activation[0, :, :, channel_index].copy()

Listing 9.10 Visualizing the fifth channel

Listing 9.11 Visualizing every channel in every intermediate activation

Figure 9.13 Fifth channel of the
activation of the first layer on the
test cat picture

Iterate over the activations (and the
names of the corresponding layers).

The layer activation has shape
(1, size, size, n_features).

Prepare an empty
grid for displaying
all the channels in
this activation.

This is a single channel (or feature).

266 CHAPTER 9 Advanced deep learning for computer vision

if channel_image.sum() != 0:
channel_image -= channel_image.mean()
channel_image /= channel_image.std()

 channel_image *= 64
 channel_image += 128
 channel_image = np.clip(channel_image, 0, 255).astype("uint8")
 display_grid[
 col * (size + 1): (col + 1) * size + col,
 row * (size + 1) : (row + 1) * size + row] = channel_image
 scale = 1. / size
 plt.figure(figsize=(scale * display_grid.shape[1],
 scale * display_grid.shape[0]))

plt.title(layer_name)
plt.grid(False)

 plt.axis("off")
 plt.imshow(display_grid, aspect="auto", cmap="viridis")

Normalize channel
values within the

[0, 255] range. All-
zero channels are

kept at zero.

Place the
channel

matrix in the
empty grid

we prepared. Display the
grid for the
layer.

Figure 9.14 Every channel
of every layer activation on
the test cat picture

267Interpreting what convnets learn

There are a few things to note here:

� The first layer acts as a collection of various edge detectors. At that stage, the
activations retain almost all of the information present in the initial picture.

� As you go deeper, the activations become increasingly abstract and less visually
interpretable. They begin to encode higher-level concepts such as “cat ear” and
“cat eye.” Deeper presentations carry increasingly less information about the
visual contents of the image, and increasingly more information related to the
class of the image.

� The sparsity of the activations increases with the depth of the layer: in the first
layer, almost all filters are activated by the input image, but in the following lay-
ers, more and more filters are blank. This means the pattern encoded by the fil-
ter isn’t found in the input image.

We have just evidenced an important universal characteristic of the representations
learned by deep neural networks: the features extracted by a layer become increas-
ingly abstract with the depth of the layer. The activations of higher layers carry less
and less information about the specific input being seen, and more and more infor-
mation about the target (in this case, the class of the image: cat or dog). A deep neu-
ral network effectively acts as an information distillation pipeline, with raw data going in
(in this case, RGB pictures) and being repeatedly transformed so that irrelevant infor-
mation is filtered out (for example, the specific visual appearance of the image), and
useful information is magnified and refined (for example, the class of the image).

 This is analogous to the way humans and animals perceive the world: after observ-
ing a scene for a few seconds, a human can remember which abstract objects were
present in it (bicycle, tree) but can’t remember the specific appearance of these
objects. In fact, if you tried to draw a generic bicycle from memory, chances are you
couldn’t get it even remotely right, even though you’ve seen thousands of bicycles in
your lifetime (see, for example, figure 9.15). Try it right now: this effect is absolutely
real. Your brain has learned to completely abstract its visual input—to transform it

Figure 9.15 Left: attempts to draw a bicycle from memory. Right: what a
schematic bicycle should look like.

268 CHAPTER 9 Advanced deep learning for computer vision

into high-level visual concepts while filtering out irrelevant visual details—making it
tremendously difficult to remember how things around you look.

9.4.2 Visualizing convnet filters

Another easy way to inspect the filters learned by convnets is to display the visual pat-
tern that each filter is meant to respond to. This can be done with gradient ascent in
input space : applying gradient descent to the value of the input image of a convnet so as
to maximize the response of a specific filter, starting from a blank input image. The
resulting input image will be one that the chosen filter is maximally responsive to.

 Let’s try this with the filters of the Xception model, pretrained on ImageNet. The
process is simple: we’ll build a loss function that maximizes the value of a given filter
in a given convolution layer, and then we’ll use stochastic gradient descent to adjust
the values of the input image so as to maximize this activation value. This will be our
second example of a low-level gradient descent loop leveraging the GradientTape
object (the first one was in chapter 2).

 First, let’s instantiate the Xception model, loaded with weights pretrained on the
ImageNet dataset.

model = keras.applications.xception.Xception(
 weights="imagenet",
 include_top=False)

We’re interested in the convolutional layers of the model—the Conv2D and Separa-
bleConv2D layers. We’ll need to know their names so we can retrieve their outputs.
Let’s print their names, in order of depth.

for layer in model.layers:
 if isinstance(layer, (keras.layers.Conv2D, keras.layers.SeparableConv2D)):
 print(layer.name)

You’ll notice that the SeparableConv2D layers here are all named something like
block6_sepconv1, block7_sepconv2, etc. Xception is structured into blocks, each
containing several convolutional layers.

 Now, let’s create a second model that returns the output of a specific layer—a fea-
ture extractor model. Because our model is a Functional API model, it is inspectable: we
can query the output of one of its layers and reuse it in a new model. No need to copy
the entire Xception code.

Listing 9.12 Instantiating the Xception convolutional base

Listing 9.13 Printing the names of all convolutional layers in Xception

The classification layers are irrelevant
for this use case, so we don’t include
the top stage of the model.

269Interpreting what convnets learn

layer_name = "block3_sepconv1"
layer = model.get_layer(name=layer_name)
feature_extractor = keras.Model(inputs=model.input, outputs=layer.output)

To use this model, simply call it on some input data (note that Xception requires
inputs to be preprocessed via the keras.applications.xception.preprocess_input
function).

activation = feature_extractor(
keras.applications.xception.preprocess_input(img_tensor)

)

Let’s use our feature extractor model to define a function that returns a scalar value
quantifying how much a given input image “activates” a given filter in the layer. This is
the “loss function” that we’ll maximize during the gradient ascent process:

import tensorflow as tf

def compute_loss(image, filter_index):
 activation = feature_extractor(image)
 filter_activation = activation[:, 2:-2, 2:-2, filter_index]
 return tf.reduce_mean(filter_activation)

Listing 9.14 Creating a feature extractor model

Listing 9.15 Using the feature extractor

The difference between model.predict(x) and model(x)
In the previous chapter, we used predict(x) for feature extraction. Here, we’re
using model(x). What gives?

Both y = model.predict(x) and y = model(x) (where x is an array of input data)
mean “run the model on x and retrieve the output y.” Yet they aren’t exactly the
same thing.

predict() loops over the data in batches (in fact, you can specify the batch size via
predict(x, batch_size=64)), and it extracts the NumPy value of the outputs. It’s
schematically equivalent to this:

def predict(x):
 y_batches = []
 for x_batch in get_batches(x):

You could replace this with the name of any
layer in the Xception convolutional base. This is the layer

object we’re
interested in.

We use model.input and layer.output to create a model that,
given an input image, returns the output of our target layer.

The loss function takes an image
tensor and the index of the filter
we are considering (an integer).

Note that we avoid border artifacts by only involving
non-border pixels in the loss; we discard the first

two pixels along the sides of the activation.

Return the mean of the activation
values for the filter.

270 CHAPTER 9 Advanced deep learning for computer vision

Let’s set up the gradient ascent step function, using the GradientTape. Note that we’ll
use a @tf.function decorator to speed it up.

 A non-obvious trick to help the gradient descent process go smoothly is to normal-
ize the gradient tensor by dividing it by its L2 norm (the square root of the average of
the square of the values in the tensor). This ensures that the magnitude of the
updates done to the input image is always within the same range.

@tf.function
def gradient_ascent_step(image, filter_index, learning_rate):
 with tf.GradientTape() as tape:
 tape.watch(image)

loss = compute_loss(image, filter_index)
grads = tape.gradient(loss, image)
grads = tf.math.l2_normalize(grads)
image += learning_rate * grads

 return image

Now we have all the pieces. Let’s put them together into a Python function that takes
as input a layer name and a filter index, and returns a tensor representing the pattern
that maximizes the activation of the specified filter.

img_width = 200
img_height = 200

(continued)
 y_batch = model(x).numpy()
 y_batches.append(y_batch)
 return np.concatenate(y_batches)

This means that predict() calls can scale to very large arrays. Meanwhile,
model(x) happens in-memory and doesn’t scale. On the other hand, predict() is
not differentiable: you cannot retrieve its gradient if you call it in a GradientTape
scope.

You should use model(x) when you need to retrieve the gradients of the model call,
and you should use predict() if you just need the output value. In other words,
always use predict() unless you’re in the middle of writing a low-level gradient
descent loop (as we are now).

Listing 9.16 Loss maximization via stochastic gradient ascent

Listing 9.17 Function to generate filter visualizations

Explicitly watch the image tensor, since it isn’t a TensorFlow Variable
(only Variables are automatically watched in a gradient tape). Compute the loss

scalar, indicating
how much the
current image
activates the
filter.

Compute the gradients
of the loss with respect
to the image.

Apply the “gradient
normalization trick.”

Move the image a little
bit in a direction that

activates our target
filter more strongly.

Return the updated image
so we can run the step

function in a loop.

271Interpreting what convnets learn

def generate_filter_pattern(filter_index):
 iterations = 30
 learning_rate = 10.
 image = tf.random.uniform(
 minval=0.4,
 maxval=0.6,
 shape=(1, img_width, img_height, 3))
 for i in range(iterations):

image = gradient_ascent_step(image, filter_index, learning_rate)
 return image[0].numpy()

The resulting image tensor is a floating-point array of shape (200, 200, 3), with val-
ues that may not be integers within [0, 255]. Hence, we need to post-process this ten-
sor to turn it into a displayable image. We do so with the following straightforward
utility function.

def deprocess_image(image):
 image -= image.mean()
 image /= image.std()
 image *= 64
 image += 128
 image = np.clip(image, 0, 255).astype("uint8")
 image = image[25:-25, 25:-25, :]
 return image

Let’s try it (see figure 9.16):

>>> plt.axis("off")
>>> plt.imshow(deprocess_image(generate_filter_pattern(filter_index=2)))

Listing 9.18 Utility function to convert a tensor into a valid image

Number of gradient
ascent steps to applyAmplitude

of a single
step

Initialize an image tensor
with random values (the
Xception model expects
input values in the [0, 1]
range, so here we pick a
range centered on 0.5).

Repeatedly update the values of the image
tensor so as to maximize our loss function.

Normalize image
values within the
[0, 255] range.

Center crop to avoid
border artifacts.

Figure 9.16 Pattern that the second
channel in layer block3_sepconv1
responds to maximally

272 CHAPTER 9 Advanced deep learning for computer vision

It seems that filter 0 in layer block3_sepconv1 is responsive to a horizontal lines pat-
tern, somewhat water-like or fur-like.

 Now the fun part: you can start visualizing every filter in the layer, and even every
filter in every layer in the model.

all_images = []
for filter_index in range(64):
 print(f"Processing filter {filter_index}")
 image = deprocess_image(
 generate_filter_pattern(filter_index)
)
 all_images.append(image)

margin = 5
n = 8
cropped_width = img_width - 25 * 2
cropped_height = img_height - 25 * 2
width = n * cropped_width + (n - 1) * margin
height = n * cropped_height + (n - 1) * margin
stitched_filters = np.zeros((width, height, 3))

for i in range(n):
 for j in range(n):
 image = all_images[i * n + j]
 stitched_filters[
 row_start = (cropped_width + margin) * i
 row_end = (cropped_width + margin) * i + cropped_width
 column_start = (cropped_height + margin) * j
 column_end = (cropped_height + margin) * j + cropped_height

 stitched_filters[
 row_start: row_end,
 column_start: column_end, :] = image

keras.utils.save_img(
 f"filters_for_layer_{layer_name}.png", stitched_filters)

These filter visualizations (see figure 9.17) tell you a lot about how convnet layers see
the world: each layer in a convnet learns a collection of filters such that their inputs can
be expressed as a combination of the filters. This is similar to how the Fourier transform
decomposes signals onto a bank of cosine functions. The filters in these convnet filter
banks get increasingly complex and refined as you go deeper in the model:

� The filters from the first layers in the model encode simple directional edges
and colors (or colored edges, in some cases).

� The filters from layers a bit further up the stack, such as block4_sepconv1,
encode simple textures made from combinations of edges and colors.

� The filters in higher layers begin to resemble textures found in natural images:
feathers, eyes, leaves, and so on.

Listing 9.19 Generating a grid of all filter response patterns in a layer

Generate and save
visualizations for
the first 64 filters
in the layer.

Prepare a blank canvas for us to
paste filter visualizations on.

Fill the picture with
the saved filters.

Save the
canvas to disk.

273Interpreting what convnets learn

9.4.3 Visualizing heatmaps of class activation

We’ll introduce one last visualization technique—one that is useful for understanding
which parts of a given image led a convnet to its final classification decision. This is
helpful for “debugging” the decision process of a convnet, particularly in the case of a
classification mistake (a problem domain called model interpretability). It can also allow
you to locate specific objects in an image.

 This general category of techniques is called class activation map (CAM) visualiza-
tion, and it consists of producing heatmaps of class activation over input images. A

Figure 9.17 Some filter patterns for layers block2_sepconv1, block4_sepconv1,
and block8_sepconv1

274 CHAPTER 9 Advanced deep learning for computer vision

class activation heatmap is a 2D grid of scores associated with a specific output class,
computed for every location in any input image, indicating how important each loca-
tion is with respect to the class under consideration. For instance, given an image fed
into a dogs-versus-cats convnet, CAM visualization would allow you to generate a heat-
map for the class “cat,” indicating how cat-like different parts of the image are, and
also a heatmap for the class “dog,” indicating how dog-like parts of the image are.

 The specific implementation we’ll use is the one described in an article titled “Grad-
CAM: Visual Explanations from Deep Networks via Gradient-based Localization.”5

 Grad-CAM consists of taking the output feature map of a convolution layer, given
an input image, and weighing every channel in that feature map by the gradient of
the class with respect to the channel. Intuitively, one way to understand this trick is to
imagine that you’re weighting a spatial map of “how intensely the input image acti-
vates different channels” by “how important each channel is with regard to the class,”
resulting in a spatial map of “how intensely the input image activates the class.”

 Let’s demonstrate this technique using the pretrained Xception model.

model = keras.applications.xception.Xception(weights="imagenet")

Consider the image of two African elephants shown in figure 9.18, possibly a mother
and her calf, strolling on the savanna. Let’s convert this image into something the Xcep-
tion model can read: the model was trained on images of size 299 × 299, preprocessed
according to a few rules that are packaged in the keras.applications.xception
.preprocess_input utility function. So we need to load the image, resize it to 299 × 299,
convert it to a NumPy float32 tensor, and apply these preprocessing rules.

img_path = keras.utils.get_file(
 fname="elephant.jpg",
 origin="https://img-datasets.s3.amazonaws.com/elephant.jpg")

def get_img_array(img_path, target_size):
 img = keras.utils.load_img(img_path, target_size=target_size)

array = keras.utils.img_to_array(img)
 array = np.expand_dims(array, axis=0)

array = keras.applications.xception.preprocess_input(array)
 return array

img_array = get_img_array(img_path, target_size=(299, 299))

5 Ramprasaath R. Selvaraju et al., arXiv (2017), https://arxiv.org/abs/1610.02391.

Listing 9.20 Loading the Xception network with pretrained weights

Listing 9.21 Preprocessing an input image for Xception

Note that we include the densely connected classi-
fier on top; in all previous cases, we discarded it.

Download the image and store it
locally under the path img_path.

Return a Python Imaging Library
(PIL) image of size 299 × 299.

Return
a float32

NumPy array
of shape

(299, 299, 3).

Add a dimension to transform the array
into a batch of size (1, 299, 299, 3).

Preprocess the batch (this does
channel-wise color normalization).

275Interpreting what convnets learn

You can now run the pretrained network on the image and decode its prediction vec-
tor back to a human-readable format:

>>> preds = model.predict(img_array)
>>> print(keras.applications.xception.decode_predictions(preds, top=3)[0])
[("n02504458", "African_elephant", 0.8699266),
 ("n01871265", "tusker", 0.076968715),
 ("n02504013", "Indian_elephant", 0.02353728)]

The top three classes predicted for this image are as follows:

� African elephant (with 87% probability)
� Tusker (with 7% probability)
� Indian elephant (with 2% probability)

Figure 9.18 Test picture of African elephants

276 CHAPTER 9 Advanced deep learning for computer vision

The network has recognized the image as containing an undetermined quantity of
African elephants. The entry in the prediction vector that was maximally activated is
the one corresponding to the “African elephant” class, at index 386:

>>> np.argmax(preds[0])
386

To visualize which parts of the image are the most African-elephant–like, let’s set up
the Grad-CAM process.

 First, we create a model that maps the input image to the activations of the last
convolutional layer.

last_conv_layer_name = "block14_sepconv2_act"
classifier_layer_names = [
 "avg_pool",
 "predictions",
]
last_conv_layer = model.get_layer(last_conv_layer_name)
last_conv_layer_model = keras.Model(model.inputs, last_conv_layer.output)

Second, we create a model that maps the activations of the last convolutional layer to
the final class predictions.

classifier_input = keras.Input(shape=last_conv_layer.output.shape[1:])
x = classifier_input
for layer_name in classifier_layer_names:
 x = model.get_layer(layer_name)(x)
classifier_model = keras.Model(classifier_input, x)

Then we compute the gradient of the top predicted class for our input image with
respect to the activations of the last convolution layer.

import tensorflow as tf

with tf.GradientTape() as tape:
 last_conv_layer_output = last_conv_layer_model(img_array)

tape.watch(last_conv_layer_output)
preds = classifier_model(last_conv_layer_output)

 top_pred_index = tf.argmax(preds[0])
top_class_channel = preds[:, top_pred_index]

grads = tape.gradient(top_class_channel, last_conv_layer_output)

Listing 9.22 Setting up a model that returns the last convolutional output

Listing 9.23 Reapplying the classifier on top of the last convolutional output

Listing 9.24 Retrieving the gradients of the top predicted class

Compute activations of the last conv
layer and make the tape watch it.

Retrieve the activation
channel corresponding to
the top predicted class.

This is the gradient of the top predicted class with regard
to the output feature map of the last convolutional layer.

277Interpreting what convnets learn

Now we apply pooling and importance weighting to the gradient tensor to obtain our
heatmap of class activation.

pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2)).numpy()
last_conv_layer_output = last_conv_layer_output.numpy()[0]
for i in range(pooled_grads.shape[-1]):

last_conv_layer_output[:, :, i] *= pooled_grads[i]
heatmap = np.mean(last_conv_layer_output, axis=-1)

For visualization purposes, we’ll also normalize the heatmap between 0 and 1. The
result is shown in figure 9.19.

heatmap = np.maximum(heatmap, 0)
heatmap /= np.max(heatmap)
plt.matshow(heatmap)

Finally, let’s generate an image that superimposes the original image on the heatmap
we just obtained (see figure 9.20).

import matplotlib.cm as cm

img = keras.utils.load_img(img_path)
img = keras.utils.img_to_array(img)

Listing 9.25 Gradient pooling and channel-importance weighting

Listing 9.26 Heatmap post-processing

Listing 9.27 Superimposing the heatmap on the original picture

This is a vector where each entry is the mean intensity of the
gradient for a given channel. It quantifies the importance of

each channel with regard to the top predicted class.

Multiply each channel
in the output of the last
convolutional layer by
“how important this
channel is.”The channel-wise mean of the resulting feature

map is our heatmap of class activation.

Figure 9.19 Standalone class
activation heatmap

Load the
original image.

278 CHAPTER 9 Advanced deep learning for computer vision

heatmap = np.uint8(255 * heatmap)

jet = cm.get_cmap("jet")
jet_colors = jet(np.arange(256))[:, :3]
jet_heatmap = jet_colors[heatmap]

jet_heatmap = keras.utils.array_to_img(jet_heatmap)
jet_heatmap = jet_heatmap.resize((img.shape[1], img.shape[0]))
jet_heatmap = keras.utils.img_to_array(jet_heatmap)

superimposed_img = jet_heatmap * 0.4 + img
superimposed_img = keras.utils.array_to_img(superimposed_img)

save_path = "elephant_cam.jpg"
superimposed_img.save(save_path)

Rescale the
heatmap to

the range
0–255.

Use the "jet" colormap
to recolorize the
heatmap.

Create an image
that contains the
recolorized heatmap.

Superimpose the
heatmap and the
original image,
with the heatmap
at 40% opacity.

Save the superimposed
image.

Figure 9.20 African elephant class activation heatmap over the test picture

279Summary

This visualization technique answers two important questions:

� Why did the network think this image contained an African elephant?
� Where is the African elephant located in the picture?

In particular, it’s interesting to note that the ears of the elephant calf are strongly acti-
vated: this is probably how the network can tell the difference between African and
Indian elephants.

Summary
� There are three essential computer vision tasks you can do with deep learning:

image classification, image segmentation, and object detection.
� Following modern convnet architecture best practices will help you get the

most out of your models. Some of these best practices include using residual
connections, batch normalization, and depthwise separable convolutions.

� The representations that convnets learn are easy to inspect—convnets are the
opposite of black boxes!

� You can generate visualizations of the filters learned by your convnets, as well as
heatmaps of class activity.

280

Deep learning
for timeseries

10.1 Different kinds of timeseries tasks
A timeseries can be any data obtained via measurements at regular intervals, like
the daily price of a stock, the hourly electricity consumption of a city, or the
weekly sales of a store. Timeseries are everywhere, whether we’re looking at natu-
ral phenomena (like seismic activity, the evolution of fish populations in a river,
or the weather at a location) or human activity patterns (like visitors to a website,
a country’s GDP, or credit card transactions). Unlike the types of data you’ve
encountered so far, working with timeseries involves understanding the dynamics
of a system—its periodic cycles, how it trends over time, its regular regime and its
sudden spikes.

This chapter covers
� Examples of machine learning tasks that involve

timeseries data
� Understanding recurrent neural networks (RNNs)
� Applying RNNs to a temperature-forecasting

example
� Advanced RNN usage patterns

281A temperature-forecasting example

 By far, the most common timeseries-related task is forecasting : predicting what will
happen next in a series. Forecast electricity consumption a few hours in advance so
you can anticipate demand; forecast revenue a few months in advance so you can plan
your budget; forecast the weather a few days in advance so you can plan your sched-
ule. Forecasting is what this chapter focuses on. But there’s actually a wide range of
other things you can do with timeseries:

� Classification—Assign one or more categorical labels to a timeseries. For instance,
given the timeseries of the activity of a visitor on a website, classify whether the
visitor is a bot or a human.

� Event detection—Identify the occurrence of a specific expected event within a
continuous data stream. A particularly useful application is “hotword detec-
tion,” where a model monitors an audio stream and detects utterances like “Ok
Google” or “Hey Alexa.”

� Anomaly detection—Detect anything unusual happening within a continuous
datastream. Unusual activity on your corporate network? Might be an attacker.
Unusual readings on a manufacturing line? Time for a human to go take a look.
Anomaly detection is typically done via unsupervised learning, because you
often don’t know what kind of anomaly you’re looking for, so you can’t train on
specific anomaly examples.

When working with timeseries, you’ll encounter a wide range of domain-specific data-
representation techniques. For instance, you have likely already heard about the Fou-
rier transform, which consists of expressing a series of values in terms of a superposition
of waves of different frequencies. The Fourier transform can be highly valuable when
preprocessing any data that is primarily characterized by its cycles and oscillations
(like sound, the vibrations of the frame of a skyscraper, or your brain waves). In the
context of deep learning, Fourier analysis (or the related Mel-frequency analysis) and
other domain-specific representations can be useful as a form of feature engineering,
a way to prepare data before training a model on it, to make the job of the model eas-
ier. However, we won’t cover these techniques in these pages; we will instead focus on
the modeling part.

 In this chapter, you’ll learn about recurrent neural networks (RNNs) and how to
apply them to timeseries forecasting.

10.2 A temperature-forecasting example
Throughout this chapter, all of our code examples will target a single problem: pre-
dicting the temperature 24 hours in the future, given a timeseries of hourly measure-
ments of quantities such as atmospheric pressure and humidity, recorded over the
recent past by a set of sensors on the roof of a building. As you will see, it’s a fairly chal-
lenging problem!

 We’ll use this temperature-forecasting task to highlight what makes timeseries data
fundamentally different from the kinds of datasets you’ve encountered so far. You’ll

282 CHAPTER 10 Deep learning for timeseries

see that densely connected networks and convolutional networks aren’t well-equipped
to deal with this kind of dataset, while a different kind of machine learning tech-
nique—recurrent neural networks (RNNs)—really shines on this type of problem.

 We’ll work with a weather timeseries dataset recorded at the weather station at the
Max Planck Institute for Biogeochemistry in Jena, Germany.1 In this dataset, 14 differ-
ent quantities (such as temperature, pressure, humidity, wind direction, and so on)
were recorded every 10 minutes over several years. The original data goes back to
2003, but the subset of the data we’ll download is limited to 2009–2016.

 Let’s start by downloading and uncompressing the data:

!wget https://s3.amazonaws.com/keras-datasets/jena_climate_2009_2016.csv.zip
!unzip jena_climate_2009_2016.csv.zip

Now let’s look at the data.

import os
fname = os.path.join("jena_climate_2009_2016.csv")

with open(fname) as f:
 data = f.read()

lines = data.split("\n")
header = lines[0].split(",")
lines = lines[1:]
print(header)
print(len(lines))

This outputs a count of 420,551 lines of data (each line is a timestep: a record of a
date and 14 weather-related values), as well as the following header:

["Date Time",
 "p (mbar)",
 "T (degC)",
 "Tpot (K)",
 "Tdew (degC)",
 "rh (%)",
 "VPmax (mbar)",
 "VPact (mbar)",
 "VPdef (mbar)",
 "sh (g/kg)",
 "H2OC (mmol/mol)",
 "rho (g/m**3)",
 "wv (m/s)",
 "max. wv (m/s)",
 "wd (deg)"]

1 Adam Erickson and Olaf Kolle, www.bgc-jena.mpg.de/wetter.

Listing 10.1 Inspecting the data of the Jena weather dataset

283A temperature-forecasting example

Now, convert all 420,551 lines of data into NumPy arrays: one array for the tempera-
ture (in degrees Celsius), and another one for the rest of the data—the features we
will use to predict future temperatures. Note that we discard the “Date Time” column.

import numpy as np
temperature = np.zeros((len(lines),))
raw_data = np.zeros((len(lines), len(header) - 1))
for i, line in enumerate(lines):
 values = [float(x) for x in line.split(",")[1:]]
 temperature[i] = values[1]
 raw_data[i, :] = values[:]

Figure 10.1 shows the plot of temperature (in degrees Celsius) over time. On this plot,
you can clearly see the yearly periodicity of temperature—the data spans 8 years.

from matplotlib import pyplot as plt
plt.plot(range(len(temperature)), temperature)

Figure 10.2 shows a more narrow plot of the first 10 days of temperature data. Because
the data is recorded every 10 minutes, you get 24 × 6 = 144 data points per day.

plt.plot(range(1440), temperature[:1440])

Listing 10.2 Parsing the data

Listing 10.3 Plotting the temperature timeseries

Listing 10.4 Plotting the first 10 days of the temperature timeseries

We store column 1 in the
“temperature” array.

We store all columns (including the
temperature) in the “raw_data” array.

Figure 10.1 Temperature over the full temporal range of the dataset (ºC)

284 CHAPTER 10 Deep learning for timeseries

On this plot, you can see daily periodicity, especially for the last 4 days. Also note that
this 10-day period must be coming from a fairly cold winter month.

With our dataset, if you were trying to predict average temperature for the next month
given a few months of past data, the problem would be easy, due to the reliable year-
scale periodicity of the data. But looking at the data over a scale of days, the temperature
looks a lot more chaotic. Is this timeseries predictable at a daily scale? Let’s find out.

 In all our experiments, we’ll use the first 50% of the data for training, the follow-
ing 25% for validation, and the last 25% for testing. When working with timeseries
data, it’s important to use validation and test data that is more recent than the train-
ing data, because you’re trying to predict the future given the past, not the reverse,
and your validation/test splits should reflect that. Some problems happen to be con-
siderably simpler if you reverse the time axis!

>>> num_train_samples = int(0.5 * len(raw_data))
>>> num_val_samples = int(0.25 * len(raw_data))
>>> num_test_samples = len(raw_data) - num_train_samples - num_val_samples

Always look for periodicity in your data
Periodicity over multiple timescales is an important and very common property of
timeseries data. Whether you’re looking at the weather, mall parking occupancy, traf-
fic to a website, sales of a grocery store, or steps logged in a fitness tracker, you’ll
see daily cycles and yearly cycles (human-generated data also tends to feature
weekly cycles). When exploring your data, make sure to look for these patterns.

Listing 10.5 Computing the number of samples we’ll use for each data split

Figure 10.2 Temperature over the first 10 days of the dataset (ºC)

285A temperature-forecasting example

>>> print("num_train_samples:", num_train_samples)
>>> print("num_val_samples:", num_val_samples)
>>> print("num_test_samples:", num_test_samples)
num_train_samples: 210225
num_val_samples: 105112
num_test_samples: 105114

10.2.1 Preparing the data

The exact formulation of the problem will be as follows: given data covering the previ-
ous five days and sampled once per hour, can we predict the temperature in 24 hours?

 First, let’s preprocess the data to a format a neural network can ingest. This is
easy: the data is already numerical, so you don’t need to do any vectorization. But
each timeseries in the data is on a different scale (for example, atmospheric pres-
sure, measured in mbar, is around 1,000, while H2OC, measured in millimoles per
mole, is around 3). We’ll normalize each timeseries independently so that they all
take small values on a similar scale. We’re going to use the first 210,225 timesteps as
training data, so we’ll compute the mean and standard deviation only on this frac-
tion of the data.

mean = raw_data[:num_train_samples].mean(axis=0)
raw_data -= mean
std = raw_data[:num_train_samples].std(axis=0)
raw_data /= std

Next, let’s create a Dataset object that yields batches of data from the past five days
along with a target temperature 24 hours in the future. Because the samples in the
dataset are highly redundant (sample N and sample N + 1 will have most of their time-
steps in common), it would be wasteful to explicitly allocate memory for every sample.
Instead, we’ll generate the samples on the fly while only keeping in memory the origi-
nal raw_data and temperature arrays, and nothing more.

 We could easily write a Python generator to do this, but there’s a built-in dataset
utility in Keras that does just that (timeseries_dataset_from_array()), so we can
save ourselves some work by using it. You can generally use it for any kind of timeseries
forecasting task.

Listing 10.6 Normalizing the data

Understanding timeseries_dataset_from_array()
To understand what timeseries_dataset_from_array() does, let’s look at a sim-
ple example. The general idea is that you provide an array of timeseries data (the
data argument), and timeseries_dataset_from_array() gives you windows
extracted from the original timeseries (we’ll call them “sequences”).

For example, if you use data = [0 1 2 3 4 5 6] and sequence_length=3, then
timeseries_dataset_from_array() will generate the following samples: [0 1 2],
[1 2 3], [2 3 4], [3 4 5], [4 5 6].

286 CHAPTER 10 Deep learning for timeseries

We’ll use timeseries_dataset_from_array() to instantiate three datasets: one for
training, one for validation, and one for testing.

 We’ll use the following parameter values:

� sampling_rate = 6—Observations will be sampled at one data point per hour:
we will only keep one data point out of 6.

� sequence_length = 120—Observations will go back 5 days (120 hours).
� delay = sampling_rate * (sequence_length + 24 - 1)—The target for a sequence

will be the temperature 24 hours after the end of the sequence.

When making the training dataset, we’ll pass start_index = 0 and end_index =
num_train_samples to only use the first 50% of the data. For the validation dataset,
we’ll pass start_index = num_train_samples and end_index = num_train_samples +
num_val_samples to use the next 25% of the data. Finally, for the test dataset, we’ll pass
start_index = num_train_samples + num_val_samples to use the remaining samples.

(continued)
You can also pass a targets argument (an array) to timeseries_dataset_
from_array(). The first entry of the targets array should match the desired tar-
get for the first sequence that will be generated from the data array. So if you’re
doing timeseries forecasting, targets should be the same array as data, offset
by some amount.

For instance, with data = [0 1 2 3 4 5 6 …] and sequence_length=3, you could create
a dataset to predict the next step in the series by passing targets = [3 4 5 6 …]. Let’s
try it:

import numpy as np
from tensorflow import keras
int_sequence = np.arange(10)
dummy_dataset = keras.utils.timeseries_dataset_from_array(
 data=int_sequence[:-3],
 targets=int_sequence[3:],
 sequence_length=3,
 batch_size=2,
)

for inputs, targets in dummy_dataset:
 for i in range(inputs.shape[0]):
 print([int(x) for x in inputs[i]], int(targets[i]))

This bit of code prints the following results:

[0, 1, 2] 3
[1, 2, 3] 4
[2, 3, 4] 5
[3, 4, 5] 6
[4, 5, 6] 7

Generate an array
of sorted integers
from 0 to 9.

The sequences
we generate will
be sampled from
[0 1 2 3 4 5 6].

The target for the sequence that
starts at data[N] will be data[N + 3].

The sequences will
be 3 steps long.

The sequences will be
batched in batches of size 2.

287A temperature-forecasting example

sampling_rate = 6
sequence_length = 120
delay = sampling_rate * (sequence_length + 24 - 1)
batch_size = 256

train_dataset = keras.utils.timeseries_dataset_from_array(
 raw_data[:-delay],
 targets=temperature[delay:],
 sampling_rate=sampling_rate,
 sequence_length=sequence_length,
 shuffle=True,
 batch_size=batch_size,
 start_index=0,
 end_index=num_train_samples)

val_dataset = keras.utils.timeseries_dataset_from_array(
 raw_data[:-delay],
 targets=temperature[delay:],
 sampling_rate=sampling_rate,
 sequence_length=sequence_length,
 shuffle=True,
 batch_size=batch_size,
 start_index=num_train_samples,
 end_index=num_train_samples + num_val_samples)

test_dataset = keras.utils.timeseries_dataset_from_array(
 raw_data[:-delay],
 targets=temperature[delay:],
 sampling_rate=sampling_rate,
 sequence_length=sequence_length,
 shuffle=True,
 batch_size=batch_size,
 start_index=num_train_samples + num_val_samples)

Each dataset yields a tuple (samples, targets), where samples is a batch of 256 sam-
ples, each containing 120 consecutive hours of input data, and targets is the corre-
sponding array of 256 target temperatures. Note that the samples are randomly
shuffled, so two consecutive sequences in a batch (like samples[0] and samples[1])
aren’t necessarily temporally close.

>>> for samples, targets in train_dataset:
>>> print("samples shape:", samples.shape)
>>> print("targets shape:", targets.shape)
>>> break
samples shape: (256, 120, 14)
targets shape: (256,)

Listing 10.7 Instantiating datasets for training, validation, and testing

Listing 10.8 Inspecting the output of one of our datasets

288 CHAPTER 10 Deep learning for timeseries

10.2.2 A common-sense, non-machine learning baseline

Before we start using black-box deep learning models to solve the temperature-
prediction problem, let’s try a simple, common-sense approach. It will serve as a sanity
check, and it will establish a baseline that we’ll have to beat in order to demonstrate
the usefulness of more-advanced machine learning models. Such common-sense base-
lines can be useful when you’re approaching a new problem for which there is no
known solution (yet). A classic example is that of unbalanced classification tasks,
where some classes are much more common than others. If your dataset contains 90%
instances of class A and 10% instances of class B, then a common-sense approach to
the classification task is to always predict “A” when presented with a new sample. Such
a classifier is 90% accurate overall, and any learning-based approach should therefore
beat this 90% score in order to demonstrate usefulness. Sometimes, such elementary
baselines can prove surprisingly hard to beat.

 In this case, the temperature timeseries can safely be assumed to be continuous
(the temperatures tomorrow are likely to be close to the temperatures today) as
well as periodical with a daily period. Thus a common-sense approach is to always
predict that the temperature 24 hours from now will be equal to the temperature
right now. Let’s evaluate this approach, using the mean absolute error (MAE) met-
ric, defined as follows:

np.mean(np.abs(preds - targets))

Here’s the evaluation loop.

def evaluate_naive_method(dataset):
 total_abs_err = 0.
 samples_seen = 0
 for samples, targets in dataset:
 preds = samples[:, -1, 1] * std[1] + mean[1]
 total_abs_err += np.sum(np.abs(preds - targets))
 samples_seen += samples.shape[0]
 return total_abs_err / samples_seen

print(f"Validation MAE: {evaluate_naive_method(val_dataset):.2f}")
print(f"Test MAE: {evaluate_naive_method(test_dataset):.2f}")

This common-sense baseline achieves a validation MAE of 2.44 degrees Celsius and a
test MAE of 2.62 degrees Celsius. So if you always assume that the temperature 24
hours in the future will be the same as it is now, you will be off by two and a half
degrees on average. It’s not too bad, but you probably won’t launch a weather fore-
casting service based on this heuristic. Now the game is to use your knowledge of deep
learning to do better.

Listing 10.9 Computing the common-sense baseline MAE

The temperature feature is at column 1, so samples[:, -1, 1] is the last temperature measurement in the
input sequence. Recall that we normalized our features, so to retrieve a temperature in degrees Celsius,
we need to un-normalize it by multiplying it by the standard deviation and adding back the mean.

289A temperature-forecasting example

10.2.3 Let’s try a basic machine learning model

In the same way that it’s useful to establish a common-sense baseline before trying
machine learning approaches, it’s useful to try simple, cheap machine learning mod-
els (such as small, densely connected networks) before looking into complicated and
computationally expensive models such as RNNs. This is the best way to make sure any
further complexity you throw at the problem is legitimate and delivers real benefits.

 The following listing shows a fully connected model that starts by flattening the
data and then runs it through two Dense layers. Note the lack of an activation function
on the last Dense layer, which is typical for a regression problem. We use mean
squared error (MSE) as the loss, rather than MAE, because unlike MAE, it’s smooth
around zero, which is a useful property for gradient descent. We will monitor MAE by
adding it as a metric in compile().

from tensorflow import keras
from tensorflow.keras import layers

inputs = keras.Input(shape=(sequence_length, raw_data.shape[-1]))
x = layers.Flatten()(inputs)
x = layers.Dense(16, activation="relu")(x)
outputs = layers.Dense(1)(x)
model = keras.Model(inputs, outputs)

callbacks = [
 keras.callbacks.ModelCheckpoint("jena_dense.keras",
 save_best_only=True)
]
model.compile(optimizer="rmsprop", loss="mse", metrics=["mae"])
history = model.fit(train_dataset,
 epochs=10,
 validation_data=val_dataset,
 callbacks=callbacks)

model = keras.models.load_model("jena_dense.keras")
print(f"Test MAE: {model.evaluate(test_dataset)[1]:.2f}")

Let’s display the loss curves for validation and training (see figure 10.3).

import matplotlib.pyplot as plt
loss = history.history["mae"]
val_loss = history.history["val_mae"]
epochs = range(1, len(loss) + 1)
plt.figure()
plt.plot(epochs, loss, "bo", label="Training MAE")
plt.plot(epochs, val_loss, "b", label="Validation MAE")
plt.title("Training and validation MAE")
plt.legend()
plt.show()

Listing 10.10 Training and evaluating a densely connected model

Listing 10.11 Plotting results

We use a callback
to save the best-
performing model.

Reload the
best model and
evaluate it on
the test data.

290 CHAPTER 10 Deep learning for timeseries

Some of the validation losses are close to the no-learning baseline, but not reliably.
This goes to show the merit of having this baseline in the first place: it turns out to be
not easy to outperform. Your common sense contains a lot of valuable information to
which a machine learning model doesn’t have access.

 You may wonder, if a simple, well-performing model exists to go from the data to
the targets (the common-sense baseline), why doesn’t the model you’re training find it
and improve on it? Well, the space of models in which you’re searching for a solution—
that is, your hypothesis space—is the space of all possible two-layer networks with the
configuration you defined. The common-sense heuristic is just one model among mil-
lions that can be represented in this space. It’s like looking for a needle in a haystack.
Just because a good solution technically exists in your hypothesis space doesn’t mean
you’ll be able to find it via gradient descent.

 That’s a pretty significant limitation of machine learning in general: unless the
learning algorithm is hardcoded to look for a specific kind of simple model, it can
sometimes fail to find a simple solution to a simple problem. That’s why leveraging
good feature engineering and relevant architecture priors is essential: you need to
precisely tell your model what it should be looking for.

10.2.4 Let’s try a 1D convolutional model

Speaking of leveraging the right architecture priors, since our input sequences fea-
ture daily cycles, perhaps a convolutional model could work. A temporal convnet
could reuse the same representations across different days, much like a spatial conv-
net can reuse the same representations across different locations in an image.

 You already know about the Conv2D and SeparableConv2D layers, which see their
inputs through small windows that swipe across 2D grids. There are also 1D and even

Figure 10.3 Training and validation MAE on the Jena temperature-
forecasting task with a simple, densely connected network

291A temperature-forecasting example

3D versions of these layers: Conv1D, SeparableConv1D, and Conv3D.2 The Conv1D layer
relies on 1D windows that slide across input sequences, and the Conv3D layer relies on
cubic windows that slide across input volumes.

 You can thus build 1D convnets, strictly analogous to 2D convnets. They’re a great
fit for any sequence data that follows the translation invariance assumption (meaning
that if you slide a window over the sequence, the content of the window should follow
the same properties independently of the location of the window).

 Let’s try one on our temperature-forecasting problem. We’ll pick an initial window
length of 24, so that we look at 24 hours of data at a time (one cycle). As we downsam-
ple the sequences (via MaxPooling1D layers), we’ll reduce the window size accordingly:

inputs = keras.Input(shape=(sequence_length, raw_data.shape[-1]))
x = layers.Conv1D(8, 24, activation="relu")(inputs)
x = layers.MaxPooling1D(2)(x)
x = layers.Conv1D(8, 12, activation="relu")(x)
x = layers.MaxPooling1D(2)(x)
x = layers.Conv1D(8, 6, activation="relu")(x)
x = layers.GlobalAveragePooling1D()(x)
outputs = layers.Dense(1)(x)
model = keras.Model(inputs, outputs)

callbacks = [
 keras.callbacks.ModelCheckpoint("jena_conv.keras",
 save_best_only=True)
]
model.compile(optimizer="rmsprop", loss="mse", metrics=["mae"])
history = model.fit(train_dataset,
 epochs=10,
 validation_data=val_dataset,
 callbacks=callbacks)

model = keras.models.load_model("jena_conv.keras")
print(f"Test MAE: {model.evaluate(test_dataset)[1]:.2f}")

We get the training and validation curves shown in figure 10.4.
 As it turns out, this model performs even worse than the densely connected one,

only achieving a validation MAE of about 2.9 degrees, far from the common-sense
baseline. What went wrong here? Two things:

� First, weather data doesn’t quite respect the translation invariance assumption.
While the data does feature daily cycles, data from a morning follows different
properties than data from an evening or from the middle of the night. Weather
data is only translation-invariant for a very specific timescale.

� Second, order in our data matters—a lot. The recent past is far more informa-
tive for predicting the next day’s temperature than data from five days ago. A
1D convnet is not able to leverage this fact. In particular, our max pooling and
global average pooling layers are largely destroying order information.

2 Note that there isn’t a SeparableConv3D layer, not for any theoretical reason, but simply because I haven’t
implemented it.

292 CHAPTER 10 Deep learning for timeseries

10.2.5 A first recurrent baseline

Neither the fully connected approach nor the convolutional approach did well, but
that doesn’t mean machine learning isn’t applicable to this problem. The densely con-
nected approach first flattened the timeseries, which removed the notion of time
from the input data. The convolutional approach treated every segment of the data in
the same way, even applying pooling, which destroyed order information. Let’s
instead look at the data as what it is: a sequence, where causality and order matter.

 There’s a family of neural network architectures designed specifically for this use
case: recurrent neural networks. Among them, the Long Short Term Memory (LSTM)
layer has long been very popular. We’ll see in a minute how these models work, but
let’s start by giving the LSTM layer a try.

inputs = keras.Input(shape=(sequence_length, raw_data.shape[-1]))
x = layers.LSTM(16)(inputs)
outputs = layers.Dense(1)(x)
model = keras.Model(inputs, outputs)

callbacks = [
 keras.callbacks.ModelCheckpoint("jena_lstm.keras",
 save_best_only=True)
]
model.compile(optimizer="rmsprop", loss="mse", metrics=["mae"])
history = model.fit(train_dataset,
 epochs=10,
 validation_data=val_dataset,
 callbacks=callbacks)

Listing 10.12 A simple LSTM-based model

Figure 10.4 Training and validation MAE on the Jena temperature-
forecasting task with a 1D convnet

293Understanding recurrent neural networks

model = keras.models.load_model("jena_lstm.keras")
print(f"Test MAE: {model.evaluate(test_dataset)[1]:.2f}")

Figure 10.5 shows the results. Much better! We achieve a validation MAE as low as 2.36
degrees and a test MAE of 2.55 degrees. The LSTM-based model can finally beat the
common-sense baseline (albeit just by a bit, for now), demonstrating the value of
machine learning on this task.

But why did the LSTM model perform markedly better than the densely connected
one or the convnet? And how can we further refine the model? To answer this, let’s
take a closer look at recurrent neural networks.

10.3 Understanding recurrent neural networks
A major characteristic of all neural networks you’ve seen so far, such as densely con-
nected networks and convnets, is that they have no memory. Each input shown to
them is processed independently, with no state kept between inputs. With such net-
works, in order to process a sequence or a temporal series of data points, you have to
show the entire sequence to the network at once: turn it into a single data point. For
instance, this is what we did in the densely connected network example: we flattened
our five days of data into a single large vector and processed it in one go. Such net-
works are called feedforward networks.

 In contrast, as you’re reading the present sentence, you’re processing it word by
word—or rather, eye saccade by eye saccade—while keeping memories of what came
before; this gives you a fluid representation of the meaning conveyed by this sentence.

Figure 10.5 Training and validation MAE on the Jena temperature-forecasting
task with an LSTM-based model (note that we omit epoch 1 on this graph,
because the high training MAE (7.75) at epoch 1 would distort the scale)

294 CHAPTER 10 Deep learning for timeseries

Biological intelligence processes information incrementally while maintaining an
internal model of what it’s processing, built from past information and constantly
updated as new information comes in.

 A recurrent neural network (RNN) adopts the same princi-
ple, albeit in an extremely simplified version: it processes
sequences by iterating through the sequence elements and
maintaining a state that contains information relative to what
it has seen so far. In effect, an RNN is a type of neural net-
work that has an internal loop (see figure 10.6).

 The state of the RNN is reset between processing two dif-
ferent, independent sequences (such as two samples in a
batch), so you still consider one sequence to be a single data
point: a single input to the network. What changes is that this
data point is no longer processed in a single step; rather, the
network internally loops over sequence elements.

 To make these notions of loop and state clear, let’s implement the forward pass of a
toy RNN. This RNN takes as input a sequence of vectors, which we’ll encode as a rank-2
tensor of size (timesteps, input_features). It loops over timesteps, and at each time-
step, it considers its current state at t and the input at t (of shape (input_features,),
and combines them to obtain the output at t. We’ll then set the state for the next step
to be this previous output. For the first timestep, the previous output isn’t defined;
hence, there is no current state. So we’ll initialize the state as an all-zero vector called
the initial state of the network.

 In pseudocode, this is the RNN.

state_t = 0
for input_t in input_sequence:
 output_t = f(input_t, state_t)
 state_t = output_t

You can even flesh out the function f: the transformation of the input and state into an
output will be parameterized by two matrices, W and U, and a bias vector. It’s similar to
the transformation operated by a densely connected layer in a feedforward network.

state_t = 0
for input_t in input_sequence:
 output_t = activation(dot(W, input_t) + dot(U, state_t) + b)
 state_t = output_t

To make these notions absolutely unambiguous, let’s write a naive NumPy implemen-
tation of the forward pass of the simple RNN.

Listing 10.13 Pseudocode RNN

Listing 10.14 More-detailed pseudocode for the RNN

RNN

Input

Output

Recurrent

connection

Figure 10.6 A recurrent
network: a network with
a loop

The state at t
Iterates over
sequence elements

The previous output becomes the
state for the next iteration.

295Understanding recurrent neural networks

import numpy as np
timesteps = 100
input_features = 32
output_features = 64
inputs = np.random.random((timesteps, input_features))
state_t = np.zeros((output_features,))
W = np.random.random((output_features, input_features))
U = np.random.random((output_features, output_features))
b = np.random.random((output_features,))
successive_outputs = []
for input_t in inputs:

output_t = np.tanh(np.dot(W, input_t) + np.dot(U, state_t) + b)
successive_outputs.append(output_t)
state_t = output_t

final_output_sequence = np.stack(successive_outputs, axis=0)

That’s easy enough. In summary, an RNN is a for loop that reuses quantities com-
puted during the previous iteration of the loop, nothing more. Of course, there are
many different RNNs fitting this definition that you could build—this example is one
of the simplest RNN formulations. RNNs are characterized by their step function,
such as the following function in this case (see figure 10.7).

output_t = np.tanh(np.dot(W, input_t) + np.dot(U, state_t) + b)

Listing 10.15 NumPy implementation of a simple RNN

Number of timesteps
in the input sequence

Dimensionality of the
input feature space

Dimensionality
of the output
feature space

Input data: random noise
for the sake of the example

Initial state:
an all-zero
vector

Creates random
weight matrices

input_t is a vector of shape
(input_features,).

Combines the input with the current state (the previous
output) to obtain the current output. We use tanh to add
non-linearity (we could use any other activation function).

Stores this
output in
a list

Updates the state of the
network for the next timestep

The final output is a rank-2
tensor of shape (timesteps,

output_features).

...

output t-1 output t output t+1

input t-1 input t input t+1

...
State t State t+1

output_t =

activation(

Wo • input_t +

Uo • state_t +

bo)

Figure 10.7 A simple RNN, unrolled over time

296 CHAPTER 10 Deep learning for timeseries

NOTE In this example, the final output is a rank-2 tensor of shape (time-
steps, output_features), where each timestep is the output of the loop at
time t. Each timestep t in the output tensor contains information about time-
steps 0 to t in the input sequence—about the entire past. For this reason, in
many cases, you don’t need this full sequence of outputs; you just need the
last output (output_t at the end of the loop), because it already contains
information about the entire sequence.

10.3.1 A recurrent layer in Keras

The process we just naively implemented in NumPy corresponds to an actual Keras
layer—the SimpleRNN layer.

 There is one minor difference: SimpleRNN processes batches of sequences, like all
other Keras layers, not a single sequence as in the NumPy example. This means it takes
inputs of shape (batch_size, timesteps, input_features), rather than (timesteps,
input_features). When specifying the shape argument of the initial Input(), note
that you can set the timesteps entry to None, which enables your network to process
sequences of arbitrary length.

num_features = 14
inputs = keras.Input(shape=(None, num_features))
outputs = layers.SimpleRNN(16)(inputs)

This is especially useful if your model is meant to process sequences of variable length.
However, if all of your sequences have the same length, I recommend specifying a
complete input shape, since it enables model.summary() to display output length
information, which is always nice, and it can unlock some performance optimizations
(see the “Note on RNN runtime performance” sidebar a little later in this chapter).

 All recurrent layers in Keras (SimpleRNN, LSTM, and GRU) can be run in two differ-
ent modes: they can return either full sequences of successive outputs for each time-
step (a rank-3 tensor of shape (batch_size, timesteps, output_features)) or
return only the last output for each input sequence (a rank-2 tensor of shape (batch_
size, output_features)). These two modes are controlled by the return_sequences
constructor argument. Let’s look at an example that uses SimpleRNN and returns only
the output at the last timestep.

>>> num_features = 14
>>> steps = 120
>>> inputs = keras.Input(shape=(steps, num_features))
>>> outputs = layers.SimpleRNN(16, return_sequences=False)(inputs)
>>> print(outputs.shape)
(None, 16)

Listing 10.16 An RNN layer that can process sequences of any length

Listing 10.17 An RNN layer that returns only its last output step

Note that
return_sequences=False

is the default.

297Understanding recurrent neural networks

The following example returns the full state sequence.

>>> num_features = 14
>>> steps = 120
>>> inputs = keras.Input(shape=(steps, num_features))
>>> outputs = layers.SimpleRNN(16, return_sequences=True)(inputs)
>>> print(outputs.shape)
(120, 16)

It’s sometimes useful to stack several recurrent layers one after the other in order to
increase the representational power of a network. In such a setup, you have to get all
of the intermediate layers to return a full sequence of outputs.

inputs = keras.Input(shape=(steps, num_features))
x = layers.SimpleRNN(16, return_sequences=True)(inputs)
x = layers.SimpleRNN(16, return_sequences=True)(x)
outputs = layers.SimpleRNN(16)(x)

In practice, you’ll rarely work with the SimpleRNN layer. It’s generally too simplistic to be
of real use. In particular, SimpleRNN has a major issue: although it should theoretically
be able to retain at time t information about inputs seen many timesteps before, such
long-term dependencies prove impossible to learn in practice. This is due to the vanish-
ing gradient problem, an effect that is similar to what is observed with non-recurrent net-
works (feedforward networks) that are many layers deep: as you keep adding layers to a
network, the network eventually becomes untrainable. The theoretical reasons for this
effect were studied by Hochreiter, Schmidhuber, and Bengio in the early 1990s.3

 Thankfully, SimpleRNN isn’t the only recurrent layer available in Keras. There are
two others, LSTM and GRU, which were designed to address these issues.

 Let’s consider the LSTM layer. The underlying Long Short-Term Memory (LSTM)
algorithm was developed by Hochreiter and Schmidhuber in 1997;4 it was the culmi-
nation of their research on the vanishing gradient problem.

 This layer is a variant of the SimpleRNN layer you already know about; it adds a way
to carry information across many timesteps. Imagine a conveyor belt running parallel
to the sequence you’re processing. Information from the sequence can jump onto the
conveyor belt at any point, be transported to a later timestep, and jump off, intact,
when you need it. This is essentially what LSTM does: it saves information for later,
thus preventing older signals from gradually vanishing during processing. This should

Listing 10.18 An RNN layer that returns its full output sequence

Listing 10.19 Stacking RNN layers

3 See, for example, Yoshua Bengio, Patrice Simard, and Paolo Frasconi, “Learning Long-Term Dependencies
with Gradient Descent Is Difficult,” IEEE Transactions on Neural Networks 5, no. 2 (1994).

4 Sepp Hochreiter and Jürgen Schmidhuber, “Long Short-Term Memory,” Neural Computation 9, no. 8 (1997).

298 CHAPTER 10 Deep learning for timeseries

remind you of residual connections, which you learned about in chapter 9: it’s pretty
much the same idea.

 To understand this process in detail, let’s start from the SimpleRNN cell (see fig-
ure 10.8). Because you’ll have a lot of weight matrices, index the W and U matrices in
the cell, with the letter o (Wo and Uo) for output.

Let’s add to this picture an additional data flow that carries information across time-
steps. Call its values at different timesteps c_t, where C stands for carry. This informa-
tion will have the following impact on the cell: it will be combined with the input
connection and the recurrent connection (via a dense transformation: a dot product
with a weight matrix followed by a bias add and the application of an activation func-
tion), and it will affect the state being sent to the next timestep (via an activation func-
tion and a multiplication operation). Conceptually, the carry dataflow is a way to
modulate the next output and the next state (see figure 10.9). Simple so far.

...

output t-1 output t output t+1

input t-1 input t input t+1

...
State t State t+1

output_t =

activation(

Wo • input_t +

Uo • state_t +

bo)

Figure 10.8 The starting point of an LSTM layer: a SimpleRNN

...

output t-1 output t output t+1

input t-1 input t input t+1

...
State t State t+1

Carry trackc t+1c t

c t c t

c t-1

output_t =
activation(

Wo • input_t +
Uo • state_t +
Vo • c_t +
bo)

Figure 10.9 Going from a SimpleRNN to an LSTM: adding a carry track

299Understanding recurrent neural networks

Now the subtlety—the way the next value of the carry dataflow is computed. It involves
three distinct transformations. All three have the form of a SimpleRNN cell:

y = activation(dot(state_t, U) + dot(input_t, W) + b)

But all three transformations have their own weight matrices, which we’ll index with
the letters i, f, and k. Here’s what we have so far (it may seem a bit arbitrary, but
bear with me).

output_t = activation(dot(state_t, Uo) + dot(input_t, Wo) + dot(c_t, Vo) + bo)
i_t = activation(dot(state_t, Ui) + dot(input_t, Wi) + bi)
f_t = activation(dot(state_t, Uf) + dot(input_t, Wf) + bf)
k_t = activation(dot(state_t, Uk) + dot(input_t, Wk) + bk)

We obtain the new carry state (the next c_t) by combining i_t, f_t, and k_t.

c_t+1 = i_t * k_t + c_t * f_t

Add this as shown in figure 10.10, and that’s it. Not so complicated—merely a tad
complex.

If you want to get philosophical, you can interpret what each of these operations is
meant to do. For instance, you can say that multiplying c_t and f_t is a way to deliber-
ately forget irrelevant information in the carry dataflow. Meanwhile, i_t and k_t pro-
vide information about the present, updating the carry track with new information.
But at the end of the day, these interpretations don’t mean much, because what these

Listing 10.20 Pseudocode details of the LSTM architecture (1/2)

Listing 10.21 Pseudocode details of the LSTM architecture (2/2)

...

output t-1 output t output t+1

input t-1 input t input t+1

...
State t State t+1

Carry trackc t+1c t

c t c t

c t-1

output_t =
activation(

Wo•input_t +
Uo•state_t +
Vo•c_t +
bo)

Compute
new
carry

Compute
new
carry

Figure 10.10 Anatomy of an LSTM

300 CHAPTER 10 Deep learning for timeseries

operations actually do is determined by the contents of the weights parameterizing
them; and the weights are learned in an end-to-end fashion, starting over with each
training round, making it impossible to credit this or that operation with a specific
purpose. The specification of an RNN cell (as just described) determines your hypoth-
esis space—the space in which you’ll search for a good model configuration during
training—but it doesn’t determine what the cell does; that is up to the cell weights.
The same cell with different weights can be doing very different things. So the combi-
nation of operations making up an RNN cell is better interpreted as a set of constraints
on your search, not as a design in an engineering sense.

 Arguably, the choice of such constraints—the question of how to implement RNN
cells—is better left to optimization algorithms (like genetic algorithms or reinforcement-
learning processes) than to human engineers. In the future, that’s how we’ll build our
models. In summary: you don’t need to understand anything about the specific archi-
tecture of an LSTM cell; as a human, it shouldn’t be your job to understand it. Just
keep in mind what the LSTM cell is meant to do: allow past information to be rein-
jected at a later time, thus fighting the vanishing-gradient problem.

10.4 Advanced use of recurrent neural networks
So far you’ve learned

� What RNNs are and how they work
� What LSTM is, and why it works better on long sequences than a naive RNN
� How to use Keras RNN layers to process sequence data

Next, we’ll review a number of more advanced features of RNNs, which can help you
get the most out of your deep learning sequence models. By the end of the section,
you’ll know most of what there is to know about using recurrent networks with Keras.

 We’ll cover the following:

� Recurrent dropout—This is a variant of dropout, used to fight overfitting in recur-
rent layers.

� Stacking recurrent layers—This increases the representational power of the model
(at the cost of higher computational loads).

� Bidirectional recurrent layers—These present the same information to a recurrent
network in different ways, increasing accuracy and mitigating forgetting issues.

We’ll use these techniques to refine our temperature-forecasting RNN.

10.4.1 Using recurrent dropout to fight overfitting

Let’s go back to the LSTM-based model we used in section 10.2.5—our first model
able to beat the common-sense baseline. If you look at the training and validation
curves (figure 10.5), it’s evident that the model is quickly overfitting, despite only hav-
ing very few units: the training and validation losses start to diverge considerably after
a few epochs. You’re already familiar with a classic technique for fighting this phe-
nomenon: dropout, which randomly zeros out input units of a layer in order to break

301Advanced use of recurrent neural networks

happenstance correlations in the training data that the layer is exposed to. But how to
correctly apply dropout in recurrent networks isn’t a trivial question.

 It has long been known that applying dropout before a recurrent layer hinders
learning rather than helping with regularization. In 2016, Yarin Gal, as part of his PhD
thesis on Bayesian deep learning,5 determined the proper way to use dropout with a
recurrent network: the same dropout mask (the same pattern of dropped units)
should be applied at every timestep, instead of using a dropout mask that varies ran-
domly from timestep to timestep. What’s more, in order to regularize the representa-
tions formed by the recurrent gates of layers such as GRU and LSTM, a temporally
constant dropout mask should be applied to the inner recurrent activations of the
layer (a recurrent dropout mask). Using the same dropout mask at every timestep
allows the network to properly propagate its learning error through time; a tempo-
rally random dropout mask would disrupt this error signal and be harmful to the
learning process.

 Yarin Gal did his research using Keras and helped build this mechanism directly
into Keras recurrent layers. Every recurrent layer in Keras has two dropout-related
arguments: dropout, a float specifying the dropout rate for input units of the layer,
and recurrent_dropout, specifying the dropout rate of the recurrent units. Let’s add
recurrent dropout to the LSTM layer of our first LSTM example and see how doing so
impacts overfitting.

 Thanks to dropout, we won’t need to rely as much on network size for regulariza-
tion, so we’ll use an LSTM layer with twice as many units, which should, hopefully, be
more expressive (without dropout, this network would have started overfitting right
away—try it). Because networks being regularized with dropout always take much lon-
ger to fully converge, we’ll train the model for five times as many epochs.

inputs = keras.Input(shape=(sequence_length, raw_data.shape[-1]))
x = layers.LSTM(32, recurrent_dropout=0.25)(inputs)
x = layers.Dropout(0.5)(x)
outputs = layers.Dense(1)(x)
model = keras.Model(inputs, outputs)

callbacks = [
 keras.callbacks.ModelCheckpoint("jena_lstm_dropout.keras",
 save_best_only=True)
]
model.compile(optimizer="rmsprop", loss="mse", metrics=["mae"])
history = model.fit(train_dataset,
 epochs=50,
 validation_data=val_dataset,
 callbacks=callbacks)

5 See Yarin Gal, “Uncertainty in Deep Learning,” PhD thesis (2016), http://mng.bz/WBq1.

Listing 10.22 Training and evaluating a dropout-regularized LSTM

To regularize the Dense layer,
we also add a Dropout layer
after the LSTM.

302 CHAPTER 10 Deep learning for timeseries

Figure 10.11 shows the results. Success! We’re no longer overfitting during the first 20
epochs. We achieve a validation MAE as low as 2.27 degrees (7% improvement over
the no-learning baseline) and a test MAE of 2.45 degrees (6.5% improvement over the
baseline). Not too bad.

RNN runtime performance
Recurrent models with very few parameters, like the ones in this chapter, tend to
be significantly faster on a multicore CPU than on GPU, because they only involve
small matrix multiplications, and the chain of multiplications is not well paralleliz-
able due to the presence of a for loop. But larger RNNs can greatly benefit from a
GPU runtime.

When using a Keras LSTM or GRU layer on GPU with default keyword arguments, your
layer will be leveraging a cuDNN kernel, a highly optimized, low-level, NVIDIA-provided
implementation of the underlying algorithm (I mentioned these in the previous chap-
ter). As usual, cuDNN kernels are a mixed blessing: they’re fast, but inflexible—if you
try to do anything not supported by the default kernel, you will suffer a dramatic slow-
down, which more or less forces you to stick to what NVIDIA happens to provide. For
instance, recurrent dropout isn’t supported by the LSTM and GRU cuDNN kernels, so
adding it to your layers forces the runtime to fall back to the regular TensorFlow imple-
mentation, which is generally two to five times slower on GPU (even though its com-
putational cost is the same).

As a way to speed up your RNN layer when you can’t use cuDNN, you can try unrolling
it. Unrolling a for loop consists of removing the loop and simply inlining its content
N times. In the case of the for loop of an RNN, unrolling can help TensorFlow opti-
mize the underlying computation graph. However, it will also considerably increase

Figure 10.11 Training and validation loss on the Jena temperature-forecasting
task with a dropout-regularized LSTM

303Advanced use of recurrent neural networks

10.4.2 Stacking recurrent layers

Because you’re no longer overfitting but seem to have hit a performance bottleneck,
you should consider increasing the capacity and expressive power of the network. Recall
the description of the universal machine learning workflow: it’s generally a good idea to
increase the capacity of your model until overfitting becomes the primary obstacle
(assuming you’re already taking basic steps to mitigate overfitting, such as using drop-
out). As long as you aren’t overfitting too badly, you’re likely under capacity.

 Increasing network capacity is typically done by increasing the number of units in
the layers or adding more layers. Recurrent layer stacking is a classic way to build
more-powerful recurrent networks: for instance, not too long ago the Google Trans-
late algorithm was powered by a stack of seven large LSTM layers—that’s huge.

 To stack recurrent layers on top of each other in Keras, all intermediate layers should
return their full sequence of outputs (a rank-3 tensor) rather than their output at the last
timestep. As you’ve already learned, this is done by specifying return_sequences=True.

 In the following example, we’ll try a stack of two dropout-regularized recurrent lay-
ers. For a change, we’ll use Gated Recurrent Unit (GRU) layers instead of LSTM. GRU
is very similar to LSTM—you can think of it as a slightly simpler, streamlined version of
the LSTM architecture. It was introduced in 2014 by Cho et al. when recurrent networks
were just starting to gain interest anew in the then-tiny research community.6

inputs = keras.Input(shape=(sequence_length, raw_data.shape[-1]))
x = layers.GRU(32, recurrent_dropout=0.5, return_sequences=True)(inputs)
x = layers.GRU(32, recurrent_dropout=0.5)(x)
x = layers.Dropout(0.5)(x)
outputs = layers.Dense(1)(x)
model = keras.Model(inputs, outputs)

callbacks = [
 keras.callbacks.ModelCheckpoint("jena_stacked_gru_dropout.keras",
 save_best_only=True)
]

the memory consumption of your RNN—as such, it’s only viable for relatively small
sequences (around 100 steps or fewer). Also, note that you can only do this if the
number of timesteps in the data is known in advance by the model (that is to say, if
you pass a shape without any None entries to your initial Input()). It works like this:

inputs = keras.Input(shape=(sequence_length, num_features))
x = layers.LSTM(32, recurrent_dropout=0.2, unroll=True)(inputs)

Listing 10.23 Training and evaluating a dropout-regularized, stacked GRU model

6 See Cho et al., “On the Properties of Neural Machine Translation: Encoder-Decoder Approaches” (2014),
https://arxiv.org/abs/1409.1259.

sequence_length cannot be None.

Pass unroll=True to enable unrolling.

304 CHAPTER 10 Deep learning for timeseries

model.compile(optimizer="rmsprop", loss="mse", metrics=["mae"])
history = model.fit(train_dataset,
 epochs=50,
 validation_data=val_dataset,
 callbacks=callbacks)
model = keras.models.load_model("jena_stacked_gru_dropout.keras")
print(f"Test MAE: {model.evaluate(test_dataset)[1]:.2f}")

Figure 10.12 shows the results. We achieve a test MAE of 2.39 degrees (an 8.8%
improvement over the baseline). You can see that the added layer does improve the
results a bit, though not dramatically. You may be seeing diminishing returns from
increasing network capacity at this point.

10.4.3 Using bidirectional RNNs

The last technique we’ll look at in this section is the bidirectional RNN. A bidirectional
RNN is a common RNN variant that can offer greater performance than a regular
RNN on certain tasks. It’s frequently used in natural language processing—you could
call it the Swiss Army knife of deep learning for natural language processing.

 RNNs are notably order-dependent: they process the timesteps of their input
sequences in order, and shuffling or reversing the timesteps can completely change
the representations the RNN extracts from the sequence. This is precisely the reason
they perform well on problems where order is meaningful, such as the temperature-
forecasting problem. A bidirectional RNN exploits the order sensitivity of RNNs: it

Figure 10.12 Training and validation loss on the Jena temperature-forecasting
task with a stacked GRU network

305Advanced use of recurrent neural networks

uses two regular RNNs, such as the GRU and LSTM layers you’re already familiar with,
each of which processes the input sequence in one direction (chronologically and
antichronologically), and then merges their representations. By processing a sequence
both ways, a bidirectional RNN can catch patterns that may be overlooked by a unidi-
rectional RNN.

 Remarkably, the fact that the RNN layers in this section have processed sequences
in chronological order (with older timesteps first) may have been an arbitrary decision.
At least, it’s a decision we’ve made no attempt to question so far. Could the RNNs have
performed well enough if they processed input sequences in antichronological order, for
instance (with newer timesteps first)? Let’s try this and see what happens. All you need to
do is write a variant of the data generator where the input sequences are reverted along
the time dimension (replace the last line with yield samples[:, ::-1, :], targets).
Training the same LSTM-based model that you used in the first experiment in this sec-
tion, you get the results shown in figure 10.13.

The reversed-order LSTM strongly underperforms even the common-sense baseline,
indicating that in this case, chronological processing is important to the success of the
approach. This makes perfect sense: the underlying LSTM layer will typically be better
at remembering the recent past than the distant past, and naturally the more recent
weather data points are more predictive than older data points for the problem (that’s
what makes the common-sense baseline fairly strong). Thus the chronological version
of the layer is bound to outperform the reversed-order version.

Figure 10.13 Training and validation loss on the Jena temperature-forecasting
task with an LSTM trained on reversed sequences

306 CHAPTER 10 Deep learning for timeseries

 However, this isn’t true for many other problems, including natural language: intui-
tively, the importance of a word in understanding a sentence isn’t usually dependent on
its position in the sentence. On text data, reversed-order processing works just as well as
chronological processing—you can read text backwards just fine (try it!). Although
word order does matter in understanding language, which order you use isn’t crucial.

 Importantly, an RNN trained on reversed sequences will learn different repre-
sentations than one trained on the original sequences, much as you would have dif-
ferent mental models if time flowed backward in the real world—if you lived a life
where you died on your first day and were born on your last day. In machine learn-
ing, representations that are different yet useful are always worth exploiting, and the
more they differ, the better: they offer a new angle from which to look at your data,
capturing aspects of the data that were missed by other approaches, and thus they
can help boost performance on a task. This is the intuition behind ensembling, a con-
cept we’ll explore in chapter 13.

 A bidirectional RNN exploits this idea to improve on the performance of
chronological-order RNNs. It looks at its input sequence both ways (see figure 10.14),
obtaining potentially richer representations and capturing patterns that may have
been missed by the chronological-order version alone.

To instantiate a bidirectional RNN in Keras, you use the Bidirectional layer, which
takes as its first argument a recurrent layer instance. Bidirectional creates a second,
separate instance of this recurrent layer and uses one instance for processing the
input sequences in chronological order and the other instance for processing the
input sequences in reversed order. You can try it on our temperature-forecasting task.

inputs = keras.Input(shape=(sequence_length, raw_data.shape[-1]))
x = layers.Bidirectional(layers.LSTM(16))(inputs)
outputs = layers.Dense(1)(x)
model = keras.Model(inputs, outputs)

Listing 10.24 Training and evaluating a bidirectional LSTM

Merge (add,
concatenate)

Input data

a, b, c, d, e

a, b, c, d, e

e, d, c, b, a

RNN RNN

Figure 10.14 How a bidirectional
RNN layer works

307Advanced use of recurrent neural networks

model.compile(optimizer="rmsprop", loss="mse", metrics=["mae"])
history = model.fit(train_dataset,
 epochs=10,
 validation_data=val_dataset)

You’ll find that it doesn’t perform as well as the plain LSTM layer. It’s easy to under-
stand why: all the predictive capacity must come from the chronological half of the
network, because the antichronological half is known to be severely underperforming
on this task (again, because the recent past matters much more than the distant past,
in this case). At the same time, the presence of the antichronological half doubles the
network’s capacity and causes it to start overfitting much earlier.

 However, bidirectional RNNs are a great fit for text data, or any other kind of data
where order matters, yet where which order you use doesn’t matter. In fact, for a while
in 2016, bidirectional LSTMs were considered the state of the art on many natural lan-
guage processing tasks (before the rise of the Transformer architecture, which you
will learn about in the next chapter).

10.4.4 Going even further

There are many other things you could try in order to improve performance on the
temperature-forecasting problem:

� Adjust the number of units in each recurrent layer in the stacked setup, as well
as the amount of dropout. The current choices are largely arbitrary and thus
probably suboptimal.

� Adjust the learning rate used by the RMSprop optimizer, or try a different
optimizer.

� Try using a stack of Dense layers as the regressor on top of the recurrent layer,
instead of a single Dense layer.

� Improve the input to the model: try using longer or shorter sequences or a dif-
ferent sampling rate, or start doing feature engineering.

As always, deep learning is more an art than a science. We can provide guidelines that
suggest what is likely to work or not work on a given problem, but, ultimately, every
dataset is unique; you’ll have to evaluate different strategies empirically. There is cur-
rently no theory that will tell you in advance precisely what you should do to optimally
solve a problem. You must iterate.

 In my experience, improving on the no-learning baseline by about 10% is likely
the best you can do with this dataset. This isn’t so great, but these results make sense:
while near-future weather is highly predictable if you have access to data from a wide
grid of different locations, it’s not very predictable if you only have measurements
from a single location. The evolution of the weather where you are depends on cur-
rent weather patterns in surrounding locations.

308 CHAPTER 10 Deep learning for timeseries

Summary
� As you first learned in chapter 5, when approaching a new problem, it’s good to

first establish common-sense baselines for your metric of choice. If you don’t
have a baseline to beat, you can’t tell whether you’re making real progress.

� Try simple models before expensive ones, to make sure the additional expense
is justified. Sometimes a simple model will turn out to be your best option.

� When you have data where ordering matters, and in particular for timeseries
data, recurrent networks are a great fit and easily outperform models that first flat-
ten the temporal data. The two essential RNN layers available in Keras are the
LSTM layer and the GRU layer.

� To use dropout with recurrent networks, you should use a time-constant drop-
out mask and recurrent dropout mask. These are built into Keras recurrent lay-
ers, so all you have to do is use the recurrent_dropout arguments of recurrent
layers.

� Stacked RNNs provide more representational power than a single RNN layer.
They’re also much more expensive and thus not always worth it. Although they
offer clear gains on complex problems (such as machine translation), they may
not always be relevant to smaller, simpler problems.

Markets and machine learning
Some readers are bound to want to take the techniques I’ve introduced here and try
them on the problem of forecasting the future price of securities on the stock market
(or currency exchange rates, and so on). However, markets have very different statis-
tical characteristics than natural phenomena such as weather patterns. When it comes
to markets, past performance is not a good predictor of future returns—looking in the
rear-view mirror is a bad way to drive. Machine learning, on the other hand, is appli-
cable to datasets where the past is a good predictor of the future, like weather, elec-
tricity consumption, or foot traffic at a store.

Always remember that all trading is fundamentally information arbitrage: gaining an
advantage by leveraging data or insights that other market participants are missing.
Trying to use well-known machine learning techniques and publicly available data to
beat the markets is effectively a dead end, since you won’t have any information
advantage compared to everyone else. You’re likely to waste your time and resources
with nothing to show for it.

309

Deep learning for text

11.1 Natural language processing: The bird’s eye view
In computer science, we refer to human languages, like English or Mandarin, as
“natural” languages, to distinguish them from languages that were designed for
machines, like Assembly, LISP, or XML. Every machine language was designed : its
starting point was a human engineer writing down a set of formal rules to describe
what statements you could make in that language and what they meant. Rules came
first, and people only started using the language once the rule set was complete.
With human language, it’s the reverse: usage comes first, rules arise later. Natural
language was shaped by an evolution process, much like biological organisms—
that’s what makes it “natural.” Its “rules,” like the grammar of English, were formal-
ized after the fact and are often ignored or broken by its users. As a result, while

This chapter covers
� Preprocessing text data for machine learning

applications
� Bag-of-words approaches and sequence-modeling

approaches for text processing
� The Transformer architecture
� Sequence-to-sequence learning

310 CHAPTER 11 Deep learning for text

machine-readable language is highly structured and rigorous, using precise syntactic
rules to weave together exactly defined concepts from a fixed vocabulary, natural lan-
guage is messy—ambiguous, chaotic, sprawling, and constantly in flux.

 Creating algorithms that can make sense of natural language is a big deal: lan-
guage, and in particular text, underpins most of our communications and our cul-
tural production. The internet is mostly text. Language is how we store almost all of
our knowledge. Our very thoughts are largely built upon language. However, the abil-
ity to understand natural language has long eluded machines. Some people once
naively thought that you could simply write down the “rule set of English,” much like
one can write down the rule set of LISP. Early attempts to build natural language pro-
cessing (NLP) systems were thus made through the lens of “applied linguistics.” Engi-
neers and linguists would handcraft complex sets of rules to perform basic machine
translation or create simple chatbots—like the famous ELIZA program from the
1960s, which used pattern matching to sustain very basic conversation. But language is
a rebellious thing: it’s not easily pliable to formalization. After several decades of
effort, the capabilities of these systems remained disappointing.

 Handcrafted rules held out as the dominant approach well into the 1990s. But
starting in the late 1980s, faster computers and greater data availability started making
a better alternative viable. When you find yourself building systems that are big piles
of ad hoc rules, as a clever engineer, you’re likely to start asking: “Could I use a corpus
of data to automate the process of finding these rules? Could I search for the rules
within some kind of rule space, instead of having to come up with them myself?” And
just like that, you’ve graduated to doing machine learning. And so, in the late 1980s,
we started seeing machine learning approaches to natural language processing. The
earliest ones were based on decision trees—the intent was literally to automate the
development of the kind of if/then/else rules of previous systems. Then statistical
approaches started gaining speed, starting with logistic regression. Over time, learned
parametric models fully took over, and linguistics came to be seen as more of a hin-
drance than a useful tool. Frederick Jelinek, an early speech recognition researcher,
joked in the 1990s: “Every time I fire a linguist, the performance of the speech recog-
nizer goes up.”

 That’s what modern NLP is about: using machine learning and large datasets to
give computers the ability not to understand language, which is a more lofty goal, but
to ingest a piece of language as input and return something useful, like predicting the
following:

� “What’s the topic of this text?” (text classification)
� “Does this text contain abuse?” (content filtering)
� “Does this text sound positive or negative?” (sentiment analysis)
� “What should be the next word in this incomplete sentence?” (language modeling)
� “How would you say this in German?” (translation)
� “How would you summarize this article in one paragraph?” (summarization)
� etc.

311Preparing text data

Of course, keep in mind throughout this chapter that the text-processing models you
will train won’t possess a human-like understanding of language; rather, they simply
look for statistical regularities in their input data, which turns out to be sufficient to
perform well on many simple tasks. In much the same way that computer vision is pat-
tern recognition applied to pixels, NLP is pattern recognition applied to words, sen-
tences, and paragraphs.

 The toolset of NLP—decision trees, logistic regression—only saw slow evolution
from the 1990s to the early 2010s. Most of the research focus was on feature engineer-
ing. When I won my first NLP competition on Kaggle in 2013, my model was, you
guessed it, based on decision trees and logistic regression. However, around 2014–
2015, things started changing at last. Multiple researchers began to investigate the
language-understanding capabilities of recurrent neural networks, in particular LSTM—
a sequence-processing algorithm from the late 1990s that had stayed under the radar
until then.

 In early 2015, Keras made available the first open source, easy-to-use implementa-
tion of LSTM, just at the start of a massive wave of renewed interest in recurrent neu-
ral networks—until then, there had only been “research code” that couldn’t be readily
reused. Then from 2015 to 2017, recurrent neural networks dominated the booming
NLP scene. Bidirectional LSTM models, in particular, set the state of the art on many
important tasks, from summarization to question-answering to machine translation.

 Finally, around 2017–2018, a new architecture rose to replace RNNs: the Trans-
former, which you will learn about in the second half of this chapter. Transformers
unlocked considerable progress across the field in a short period of time, and today
most NLP systems are based on them.

 Let’s dive into the details. This chapter will take you from the very basics to doing
machine translation with a Transformer.

11.2 Preparing text data
Deep learning models, being differentiable functions, can only process numeric ten-
sors: they can’t take raw text as input. Vectorizing text is the process of transforming
text into numeric tensors. Text vectorization processes come in many shapes and
forms, but they all follow the same template (see figure 11.1):

� First, you standardize the text to make it easier to process, such as by converting
it to lowercase or removing punctuation.

� You split the text into units (called tokens), such as characters, words, or groups
of words. This is called tokenization.

� You convert each such token into a numerical vector. This will usually involve
first indexing all tokens present in the data.

Let’s review each of these steps.

312 CHAPTER 11 Deep learning for text

11.2.1 Text standardization

Consider these two sentences:

� “sunset came. i was staring at the Mexico sky. Isnt nature splendid??”
� “Sunset came; I stared at the México sky. Isn’t nature splendid?”

They’re very similar—in fact, they’re almost identical. Yet, if you were to convert them
to byte strings, they would end up with very different representations, because “i” and
“I” are two different characters, “Mexico” and “México” are two different words, “isnt”
isn’t “isn’t,” and so on. A machine learning model doesn’t know a priori that “i” and
“I” are the same letter, that “é” is an “e” with an accent, or that “staring” and “stared”
are two forms of the same verb.

 Text standardization is a basic form of feature engineering that aims to erase
encoding differences that you don’t want your model to have to deal with. It’s not
exclusive to machine learning, either—you’d have to do the same thing if you were
building a search engine.

 One of the simplest and most widespread standardization schemes is “convert to
lowercase and remove punctuation characters.” Our two sentences would become

� “sunset came i was staring at the mexico sky isnt nature splendid”
� “sunset came i stared at the méxico sky isnt nature splendid”

the cat sat on the mat

"the", "cat", "sat", "on", "the", "mat"

3, 26, 65, 9, 3, 133

Standardized text

Tokens

Token indices

Vector
encoding
of indices

Tokenization

The cat sat on the mat.Text

Standardization

Indexing

One-hot encoding or embedding

0
0
0
1
0
0

0
1
0
0
1
0

0
1
0
1
0
0

0
0
0
1
0
0

1
0
0
0
0
1

0
0
0
0
1
0

Figure 11.1 From raw text to vectors

313Preparing text data

Much closer already. Another common transformation is to convert special characters
to a standard form, such as replacing “é” with “e,” “æ” with “ae,” and so on. Our token
“méxico” would then become “mexico”.

 Lastly, a much more advanced standardization pattern that is more rarely used in a
machine learning context is stemming: converting variations of a term (such as differ-
ent conjugated forms of a verb) into a single shared representation, like turning
“caught” and “been catching” into “[catch]” or “cats” into “[cat]”. With stemming,
“was staring” and “stared” would become something like “[stare]”, and our two similar
sentences would finally end up with an identical encoding:

� “sunset came i [stare] at the mexico sky isnt nature splendid”

With these standardization techniques, your model will require less training data and
will generalize better—it won’t need abundant examples of both “Sunset” and “sun-
set” to learn that they mean the same thing, and it will be able to make sense of “Méx-
ico” even if it has only seen “mexico” in its training set. Of course, standardization may
also erase some amount of information, so always keep the context in mind: for
instance, if you’re writing a model that extracts questions from interview articles, it
should definitely treat “?” as a separate token instead of dropping it, because it’s a use-
ful signal for this specific task.

11.2.2 Text splitting (tokenization)

Once your text is standardized, you need to break it up into units to be vectorized
(tokens), a step called tokenization. You could do this in three different ways:

� Word-level tokenization—Where tokens are space-separated (or punctuation-
separated) substrings. A variant of this is to further split words into subwords
when applicable—for instance, treating “staring” as “star+ing” or “called” as
“call+ed.”

� N-gram tokenization—Where tokens are groups of N consecutive words. For
instance, “the cat” or “he was” would be 2-gram tokens (also called bigrams).

� Character-level tokenization—Where each character is its own token. In practice,
this scheme is rarely used, and you only really see it in specialized contexts, like
text generation or speech recognition.

In general, you’ll always use either word-level or N-gram tokenization. There are two
kinds of text-processing models: those that care about word order, called sequence mod-
els, and those that treat input words as a set, discarding their original order, called
bag-of-words models. If you’re building a sequence model, you’ll use word-level tokeni-
zation, and if you’re building a bag-of-words model, you’ll use N-gram tokenization.
N-grams are a way to artificially inject a small amount of local word order information
into the model. Throughout this chapter, you’ll learn more about each type of model
and when to use them.

314 CHAPTER 11 Deep learning for text

11.2.3 Vocabulary indexing

Once your text is split into tokens, you need to encode each token into a numerical
representation. You could potentially do this in a stateless way, such as by hashing each
token into a fixed binary vector, but in practice, the way you’d go about it is to build
an index of all terms found in the training data (the “vocabulary”), and assign a
unique integer to each entry in the vocabulary.

 Something like this:

vocabulary = {}
for text in dataset:
 text = standardize(text)
 tokens = tokenize(text)
 for token in tokens:
 if token not in vocabulary:
 vocabulary[token] = len(vocabulary)

Understanding N-grams and bag-of-words
Word N-grams are groups of N (or fewer) consecutive words that you can extract from
a sentence. The same concept may also be applied to characters instead of words.

Here’s a simple example. Consider the sentence “the cat sat on the mat.” It may be
decomposed into the following set of 2-grams:

{"the", "the cat", "cat", "cat sat", "sat",
 "sat on", "on", "on the", "the mat", "mat"}

It may also be decomposed into the following set of 3-grams:

{"the", "the cat", "cat", "cat sat", "the cat sat",
 "sat", "sat on", "on", "cat sat on", "on the",
 "sat on the", "the mat", "mat", "on the mat"}

Such a set is called a bag-of-2-grams or bag-of-3-grams, respectively. The term “bag”
here refers to the fact that you’re dealing with a set of tokens rather than a list or
sequence: the tokens have no specific order. This family of tokenization methods is
called bag-of-words (or bag-of-N-grams).

Because bag-of-words isn’t an order-preserving tokenization method (the tokens gen-
erated are understood as a set, not a sequence, and the general structure of the sen-
tences is lost), it tends to be used in shallow language-processing models rather than
in deep learning models. Extracting N-grams is a form of feature engineering, and
deep learning sequence models do away with this manual approach, replacing it with
hierarchical feature learning. One-dimensional convnets, recurrent neural networks,
and Transformers are capable of learning representations for groups of words and
characters without being explicitly told about the existence of such groups, by looking
at continuous word or character sequences.

315Preparing text data

You can then convert that integer into a vector encoding that can be processed by a
neural network, like a one-hot vector:

def one_hot_encode_token(token):
 vector = np.zeros((len(vocabulary),))
 token_index = vocabulary[token]
 vector[token_index] = 1
 return vector

Note that at this step it’s common to restrict the vocabulary to only the top 20,000 or
30,000 most common words found in the training data. Any text dataset tends to fea-
ture an extremely large number of unique terms, most of which only show up once or
twice—indexing those rare terms would result in an excessively large feature space,
where most features would have almost no information content.

 Remember when you were training your first deep learning models on the IMDB
dataset in chapters 4 and 5? The data you were using from keras.datasets.imdb was
already preprocessed into sequences of integers, where each integer stood for a given
word. Back then, we used the setting num_words=10000, in order to restrict our vocab-
ulary to the top 10,000 most common words found in the training data.

 Now, there’s an important detail here that we shouldn’t overlook: when we look
up a new token in our vocabulary index, it may not necessarily exist. Your training
data may not have contained any instance of the word “cherimoya” (or maybe you
excluded it from your index because it was too rare), so doing token_index =
vocabulary["cherimoya"] may result in a KeyError. To handle this, you should use
an “out of vocabulary” index (abbreviated as OOV index)—a catch-all for any token
that wasn’t in the index. It’s usually index 1: you’re actually doing token_index =
vocabulary.get(token, 1). When decoding a sequence of integers back into words,
you’ll replace 1 with something like “[UNK]” (which you’d call an “OOV token”).

 “Why use 1 and not 0?” you may ask. That’s because 0 is already taken. There are
two special tokens that you will commonly use: the OOV token (index 1), and the
mask token (index 0). While the OOV token means “here was a word we did not recog-
nize,” the mask token tells us “ignore me, I’m not a word.” You’d use it in particular to
pad sequence data: because data batches need to be contiguous, all sequences in a
batch of sequence data must have the same length, so shorter sequences should be
padded to the length of the longest sequence. If you want to make a batch of data with
the sequences [5, 7, 124, 4, 89] and [8, 34, 21], it would have to look like this:

[[5, 7, 124, 4, 89]
 [8, 34, 21, 0, 0]]

The batches of integer sequences for the IMDB dataset that you worked with in chap-
ters 4 and 5 were padded with zeros in this way.

316 CHAPTER 11 Deep learning for text

11.2.4 Using the TextVectorization layer

Every step I’ve introduced so far would be very easy to implement in pure Python.
Maybe you could write something like this:

import string

class Vectorizer:
 def standardize(self, text):
 text = text.lower()
 return "".join(char for char in text
 if char not in string.punctuation)

 def tokenize(self, text):
 text = self.standardize(text)
 return text.split()

 def make_vocabulary(self, dataset):
 self.vocabulary = {"": 0, "[UNK]": 1}
 for text in dataset:
 text = self.standardize(text)
 tokens = self.tokenize(text)
 for token in tokens:
 if token not in self.vocabulary:
 self.vocabulary[token] = len(self.vocabulary)
 self.inverse_vocabulary = dict(
 (v, k) for k, v in self.vocabulary.items())

 def encode(self, text):
 text = self.standardize(text)
 tokens = self.tokenize(text)
 return [self.vocabulary.get(token, 1) for token in tokens]

 def decode(self, int_sequence):
 return " ".join(
 self.inverse_vocabulary.get(i, "[UNK]") for i in int_sequence)

vectorizer = Vectorizer()
dataset = [
 "I write, erase, rewrite",
 "Erase again, and then",
 "A poppy blooms.",
]
vectorizer.make_vocabulary(dataset)

It does the job:

>>> test_sentence = "I write, rewrite, and still rewrite again"
>>> encoded_sentence = vectorizer.encode(test_sentence)
>>> print(encoded_sentence)
[2, 3, 5, 7, 1, 5, 6]
>>> decoded_sentence = vectorizer.decode(encoded_sentence)
>>> print(decoded_sentence)
"i write rewrite and [UNK] rewrite again"

Haiku
by poet
Hokushi

317Preparing text data

However, using something like this wouldn’t be very performant. In practice, you’ll
work with the Keras TextVectorization layer, which is fast and efficient and can be
dropped directly into a tf.data pipeline or a Keras model.

 This is what the TextVectorization layer looks like:

from tensorflow.keras.layers import TextVectorization
text_vectorization = TextVectorization(
 output_mode="int",
)

By default, the TextVectorization layer will use the setting “convert to lowercase and
remove punctuation” for text standardization, and “split on whitespace” for tokeniza-
tion. But importantly, you can provide custom functions for standardization and toke-
nization, which means the layer is flexible enough to handle any use case. Note that
such custom functions should operate on tf.string tensors, not regular Python
strings! For instance, the default layer behavior is equivalent to the following:

import re
import string
import tensorflow as tf

def custom_standardization_fn(string_tensor):
 lowercase_string = tf.strings.lower(string_tensor)
 return tf.strings.regex_replace(
 lowercase_string, f"[{re.escape(string.punctuation)}]", "")

def custom_split_fn(string_tensor):
 return tf.strings.split(string_tensor)

text_vectorization = TextVectorization(
 output_mode="int",
 standardize=custom_standardization_fn,
 split=custom_split_fn,
)

To index the vocabulary of a text corpus, just call the adapt() method of the layer
with a Dataset object that yields strings, or just with a list of Python strings:

dataset = [
 "I write, erase, rewrite",
 "Erase again, and then",
 "A poppy blooms.",
]
text_vectorization.adapt(dataset)

Note that you can retrieve the computed vocabulary via get_vocabulary()—this can
be useful if you need to convert text encoded as integer sequences back into words.
The first two entries in the vocabulary are the mask token (index 0) and the OOV
token (index 1). Entries in the vocabulary list are sorted by frequency, so with a real-
world dataset, very common words like “the” or “a” would come first.

Configures the layer to return sequences of words encoded
as integer indices. There are several other output modes
available, which you will see in action in a bit.

Convert
strings to

lowercase.
Replace
punctuation
characters
with the
empty string.

Split strings on
whitespace.

318 CHAPTER 11 Deep learning for text

>>> text_vectorization.get_vocabulary()
["", "[UNK]", "erase", "write", ...]

For a demonstration, let’s try to encode and then decode an example sentence:

>>> vocabulary = text_vectorization.get_vocabulary()
>>> test_sentence = "I write, rewrite, and still rewrite again"
>>> encoded_sentence = text_vectorization(test_sentence)
>>> print(encoded_sentence)
tf.Tensor([7 3 5 9 1 5 10], shape=(7,), dtype=int64)
>>> inverse_vocab = dict(enumerate(vocabulary))
>>> decoded_sentence = " ".join(inverse_vocab[int(i)] for i in encoded_sentence)
>>> print(decoded_sentence)
"i write rewrite and [UNK] rewrite again"

Listing 11.1 Displaying the vocabulary

Using the TextVectorization layer in a tf.data pipeline or as part of a model
Importantly, because TextVectorization is mostly a dictionary lookup operation, it
can’t be executed on a GPU (or TPU)—only on a CPU. So if you’re training your model
on a GPU, your TextVectorization layer will run on the CPU before sending its out-
put to the GPU. This has important performance implications.

There are two ways we could use our TextVectorization layer. The first option is
to put it in the tf.data pipeline, like this:

int_sequence_dataset = string_dataset.map(
 text_vectorization,
 num_parallel_calls=4)

The second option is to make it part of the model (after all, it’s a Keras layer), like this:

text_input = keras.Input(shape=(), dtype="string")
vectorized_text = text_vectorization(text_input)
embedded_input = keras.layers.Embedding(...)(vectorized_text)
output = ...
model = keras.Model(text_input, output)

There’s an important difference between the two: if the vectorization step is part of
the model, it will happen synchronously with the rest of the model. This means that
at each training step, the rest of the model (placed on the GPU) will have to wait for
the output of the TextVectorization layer (placed on the CPU) to be ready in order
to get to work. Meanwhile, putting the layer in the tf.data pipeline enables you to

string_dataset would
be a dataset that
yields string tensors.

The num_parallel_calls argument
is used to parallelize the map() call
across multiple CPU cores.

Create a symbolic input
that expects strings. Apply the text

vectorization
layer to it.

You can keep chaining new layers on top—
just your regular Functional API model.

319Two approaches for representing groups of words: Sets and sequences

You’ve now learned everything you need to know about text preprocessing—let’s
move on to the modeling stage.

11.3 Two approaches for representing groups of words:
Sets and sequences
How a machine learning model should represent individual words is a relatively uncon-
troversial question: they’re categorical features (values from a predefined set), and we
know how to handle those. They should be encoded as dimensions in a feature space,
or as category vectors (word vectors in this case). A much more problematic question,
however, is how to encode the way words are woven into sentences: word order.

 The problem of order in natural language is an interesting one: unlike the steps of
a timeseries, words in a sentence don’t have a natural, canonical order. Different lan-
guages order similar words in very different ways. For instance, the sentence structure
of English is quite different from that of Japanese. Even within a given language, you
can typically say the same thing in different ways by reshuffling the words a bit. Even
further, if you fully randomize the words in a short sentence, you can still largely fig-
ure out what it was saying—though in many cases significant ambiguity seems to arise.
Order is clearly important, but its relationship to meaning isn’t straightforward.

 How to represent word order is the pivotal question from which different kinds of
NLP architectures spring. The simplest thing you could do is just discard order and
treat text as an unordered set of words—this gives you bag-of-words models. You could
also decide that words should be processed strictly in the order in which they appear,
one at a time, like steps in a timeseries—you could then leverage the recurrent models
from the last chapter. Finally, a hybrid approach is also possible: the Transformer

do asynchronous preprocessing of your data on CPU: while the GPU runs the model
on one batch of vectorized data, the CPU stays busy by vectorizing the next batch of
raw strings.

So if you’re training the model on GPU or TPU, you’ll probably want to go with the first
option to get the best performance. This is what we will do in all practical examples
throughout this chapter. When training on a CPU, though, synchronous processing is
fine: you will get 100% utilization of your cores regardless of which option you go with.

Now, if you were to export our model to a production environment, you would want to
ship a model that accepts raw strings as input, like in the code snippet for the second
option above—otherwise you would have to reimplement text standardization and
tokenization in your production environment (maybe in JavaScript?), and you would
face the risk of introducing small preprocessing discrepancies that would hurt the
model’s accuracy. Thankfully, the TextVectorization layer enables you to include
text preprocessing right into your model, making it easier to deploy—even if you were
originally using the layer as part of a tf.data pipeline. In the sidebar “Exporting a
model that processes raw strings,” you’ll learn how to export an inference-only
trained model that incorporates text preprocessing.

320 CHAPTER 11 Deep learning for text

architecture is technically order-agnostic, yet it injects word-position information into
the representations it processes, which enables it to simultaneously look at different
parts of a sentence (unlike RNNs) while still being order-aware. Because they take into
account word order, both RNNs and Transformers are called sequence models.

 Historically, most early applications of machine learning to NLP just involved
bag-of-words models. Interest in sequence models only started rising in 2015, with the
rebirth of recurrent neural networks. Today, both approaches remain relevant. Let’s
see how they work, and when to leverage which.

 We’ll demonstrate each approach on a well-known text classification benchmark:
the IMDB movie review sentiment-classification dataset. In chapters 4 and 5, you
worked with a prevectorized version of the IMDB dataset; now, let’s process the raw
IMDB text data, just like you would do when approaching a new text-classification
problem in the real world.

11.3.1 Preparing the IMDB movie reviews data

Let’s start by downloading the dataset from the Stanford page of Andrew Maas and
uncompressing it:

!curl -O https:/ /ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz
!tar -xf aclImdb_v1.tar.gz

You’re left with a directory named aclImdb, with the following structure:

aclImdb/
...train/
......pos/
......neg/
...test/
......pos/
......neg/

For instance, the train/pos/ directory contains a set of 12,500 text files, each of which
contains the text body of a positive-sentiment movie review to be used as training data.
The negative-sentiment reviews live in the “neg” directories. In total, there are 25,000
text files for training and another 25,000 for testing.

 There’s also a train/unsup subdirectory in there, which we don’t need. Let’s
delete it:

!rm -r aclImdb/train/unsup

Take a look at the content of a few of these text files. Whether you’re working with
text data or image data, remember to always inspect what your data looks like before
you dive into modeling it. It will ground your intuition about what your model is actu-
ally doing:

!cat aclImdb/train/pos/4077_10.txt

321Two approaches for representing groups of words: Sets and sequences

Next, let’s prepare a validation set by setting apart 20% of the training text files in a
new directory, aclImdb/val:

import os, pathlib, shutil, random

base_dir = pathlib.Path("aclImdb")
val_dir = base_dir / "val"
train_dir = base_dir / "train"
for category in ("neg", "pos"):
 os.makedirs(val_dir / category)
 files = os.listdir(train_dir / category)
 random.Random(1337).shuffle(files)
 num_val_samples = int(0.2 * len(files))
 val_files = files[-num_val_samples:]
 for fname in val_files:

shutil.move(train_dir / category / fname,
val_dir / category / fname)

Remember how, in chapter 8, we used the image_dataset_from_directory utility to
create a batched Dataset of images and their labels for a directory structure? You can
do the exact same thing for text files using the text_dataset_from_directory utility.
Let’s create three Dataset objects for training, validation, and testing:

from tensorflow import keras
batch_size = 32

train_ds = keras.utils.text_dataset_from_directory(
 "aclImdb/train", batch_size=batch_size
)
val_ds = keras.utils.text_dataset_from_directory(
 "aclImdb/val", batch_size=batch_size
)
test_ds = keras.utils.text_dataset_from_directory(
 "aclImdb/test", batch_size=batch_size
)

These datasets yield inputs that are TensorFlow tf.string tensors and targets that are
int32 tensors encoding the value “0” or “1.”

>>> for inputs, targets in train_ds:
>>> print("inputs.shape:", inputs.shape)
>>> print("inputs.dtype:", inputs.dtype)
>>> print("targets.shape:", targets.shape)
>>> print("targets.dtype:", targets.dtype)
>>> print("inputs[0]:", inputs[0])
>>> print("targets[0]:", targets[0])
>>> break
inputs.shape: (32,)
inputs.dtype: <dtype: "string">
targets.shape: (32,)
targets.dtype: <dtype: "int32">

Listing 11.2 Displaying the shapes and dtypes of the first batch

Shuffle the list of training
files using a seed, to
ensure we get the same
validation set every time
we run the code.

Take 20% of the training
files to use for validation.

Move the files to aclImdb/val/neg
and aclImdb/val/pos.

Running this line should
output “Found 20000 files
belonging to 2 classes”;
if you see “Found 70000
files belonging to 3
classes,” it means you
forgot to delete the
aclImdb/train/unsup
directory.

322 CHAPTER 11 Deep learning for text

inputs[0]: tf.Tensor(b"This string contains the movie review.", shape=(),
dtype=string)

targets[0]: tf.Tensor(1, shape=(), dtype=int32)

All set. Now let’s try learning something from this data.

11.3.2 Processing words as a set: The bag-of-words approach

The simplest way to encode a piece of text for processing by a machine learning
model is to discard order and treat it as a set (a “bag”) of tokens. You could either look
at individual words (unigrams), or try to recover some local order information by
looking at groups of consecutive token (N-grams).

SINGLE WORDS (UNIGRAMS) WITH BINARY ENCODING

If you use a bag of single words, the sentence “the cat sat on the mat” becomes

{"cat", "mat", "on", "sat", "the"}

The main advantage of this encoding is that you can represent an entire text as a sin-
gle vector, where each entry is a presence indicator for a given word. For instance,
using binary encoding (multi-hot), you’d encode a text as a vector with as many
dimensions as there are words in your vocabulary—with 0s almost everywhere and
some 1s for dimensions that encode words present in the text. This is what we did
when we worked with text data in chapters 4 and 5. Let’s try this on our task.

 First, let’s process our raw text datasets with a TextVectorization layer so that
they yield multi-hot encoded binary word vectors. Our layer will only look at single
words (that is to say, unigrams).

text_vectorization = TextVectorization(
 max_tokens=20000,
 output_mode="multi_hot",
)
text_only_train_ds = train_ds.map(lambda x, y: x)
text_vectorization.adapt(text_only_train_ds)

binary_1gram_train_ds = train_ds.map(
 lambda x, y: (text_vectorization(x), y),
 num_parallel_calls=4)
binary_1gram_val_ds = val_ds.map(
 lambda x, y: (text_vectorization(x), y),
 num_parallel_calls=4)
binary_1gram_test_ds = test_ds.map(
 lambda x, y: (text_vectorization(x), y),
 num_parallel_calls=4)

Listing 11.3 Preprocessing our datasets with a TextVectorization layer

Limit the vocabulary to the 20,000 most frequent words.
Otherwise we’d be indexing every word in the training data—
potentially tens of thousands of terms that only occur once or

twice and thus aren’t informative. In general, 20,000 is the
right vocabulary size for text classification.

Encode the output
tokens as multi-hot
binary vectors.

Prepare a dataset that
only yields raw text
inputs (no labels).

Use that dataset to index
the dataset vocabulary via
the adapt() method.

Prepare processed
versions of our training,
validation, and test
dataset.
Make sure to specify
num_parallel_calls to
leverage multiple CPU
cores.

323Two approaches for representing groups of words: Sets and sequences

You can try to inspect the output of one of these datasets.

>>> for inputs, targets in binary_1gram_train_ds:
>>> print("inputs.shape:", inputs.shape)
>>> print("inputs.dtype:", inputs.dtype)
>>> print("targets.shape:", targets.shape)
>>> print("targets.dtype:", targets.dtype)
>>> print("inputs[0]:", inputs[0])
>>> print("targets[0]:", targets[0])
>>> break
inputs.shape: (32, 20000)
inputs.dtype: <dtype: "float32">
targets.shape: (32,)
targets.dtype: <dtype: "int32">
inputs[0]: tf.Tensor([1. 1. 1. ... 0. 0. 0.], shape=(20000,), dtype=float32)
targets[0]: tf.Tensor(1, shape=(), dtype=int32)

Next, let’s write a reusable model-building function that we’ll use in all of our experi-
ments in this section.

from tensorflow import keras
from tensorflow.keras import layers

def get_model(max_tokens=20000, hidden_dim=16):
 inputs = keras.Input(shape=(max_tokens,))
 x = layers.Dense(hidden_dim, activation="relu")(inputs)
 x = layers.Dropout(0.5)(x)
 outputs = layers.Dense(1, activation="sigmoid")(x)
 model = keras.Model(inputs, outputs)
 model.compile(optimizer="rmsprop",
 loss="binary_crossentropy",
 metrics=["accuracy"])
 return model

Finally, let’s train and test our model.

model = get_model()
model.summary()
callbacks = [
 keras.callbacks.ModelCheckpoint("binary_1gram.keras",
 save_best_only=True)
]
model.fit(binary_1gram_train_ds.cache(),

validation_data=binary_1gram_val_ds.cache(),
 epochs=10,
 callbacks=callbacks)
model = keras.models.load_model("binary_1gram.keras")
print(f"Test acc: {model.evaluate(binary_1gram_test_ds)[1]:.3f}")

Listing 11.4 Inspecting the output of our binary unigram dataset

Listing 11.5 Our model-building utility

Listing 11.6 Training and testing the binary unigram model

Inputs are batches of
20,000-dimensional
vectors.

These vectors consist
entirely of ones and zeros.

We call cache() on the
datasets to cache them in
memory: this way, we will
only do the preprocessing
once, during the first
epoch, and we’ll reuse the
preprocessed texts for the
following epochs. This can
only be done if the data
is small enough to fit in
memory.

324 CHAPTER 11 Deep learning for text

This gets us to a test accuracy of 89.2%: not bad! Note that in this case, since the data-
set is a balanced two-class classification dataset (there are as many positive samples as
negative samples), the “naive baseline” we could reach without training an actual model
would only be 50%. Meanwhile, the best score that can be achieved on this dataset
without leveraging external data is around 95% test accuracy.

BIGRAMS WITH BINARY ENCODING

Of course, discarding word order is very reductive, because even atomic concepts can
be expressed via multiple words: the term “United States” conveys a concept that is
quite distinct from the meaning of the words “states” and “united” taken separately.
For this reason, you will usually end up re-injecting local order information into your
bag-of-words representation by looking at N-grams rather than single words (most
commonly, bigrams).

 With bigrams, our sentence becomes

{"the", "the cat", "cat", "cat sat", "sat",
 "sat on", "on", "on the", "the mat", "mat"}

The TextVectorization layer can be configured to return arbitrary N-grams: bigrams,
trigrams, etc. Just pass an ngrams=N argument as in the following listing.

text_vectorization = TextVectorization(
 ngrams=2,
 max_tokens=20000,
 output_mode="multi_hot",
)

Let’s test how our model performs when trained on such binary-encoded bags of
bigrams.

text_vectorization.adapt(text_only_train_ds)
binary_2gram_train_ds = train_ds.map(
 lambda x, y: (text_vectorization(x), y),
 num_parallel_calls=4)
binary_2gram_val_ds = val_ds.map(
 lambda x, y: (text_vectorization(x), y),
 num_parallel_calls=4)
binary_2gram_test_ds = test_ds.map(
 lambda x, y: (text_vectorization(x), y),
 num_parallel_calls=4)

model = get_model()
model.summary()
callbacks = [
 keras.callbacks.ModelCheckpoint("binary_2gram.keras",
 save_best_only=True)
]

Listing 11.7 Configuring the TextVectorization layer to return bigrams

Listing 11.8 Training and testing the binary bigram model

325Two approaches for representing groups of words: Sets and sequences

model.fit(binary_2gram_train_ds.cache(),
 validation_data=binary_2gram_val_ds.cache(),
 epochs=10,
 callbacks=callbacks)
model = keras.models.load_model("binary_2gram.keras")
print(f"Test acc: {model.evaluate(binary_2gram_test_ds)[1]:.3f}")

We’re now getting 90.4% test accuracy, a marked improvement! Turns out local order
is pretty important.

BIGRAMS WITH TF-IDF ENCODING

You can also add a bit more information to this representation by counting how many
times each word or N-gram occurs, that is to say, by taking the histogram of the words
over the text:

{"the": 2, "the cat": 1, "cat": 1, "cat sat": 1, "sat": 1,
 "sat on": 1, "on": 1, "on the": 1, "the mat: 1", "mat": 1}

If you’re doing text classification, knowing how many times a word occurs in a sample
is critical: any sufficiently long movie review may contain the word “terrible” regard-
less of sentiment, but a review that contains many instances of the word “terrible” is
likely a negative one.

 Here’s how you’d count bigram occurrences with the TextVectorization layer.

text_vectorization = TextVectorization(
 ngrams=2,
 max_tokens=20000,
 output_mode="count"
)

Now, of course, some words are bound to occur more often than others no matter
what the text is about. The words “the,” “a,” “is,” and “are” will always dominate your
word count histograms, drowning out other words—despite being pretty much useless
features in a classification context. How could we address this?

 You already guessed it: via normalization. We could just normalize word counts by
subtracting the mean and dividing by the variance (computed across the entire train-
ing dataset). That would make sense. Except most vectorized sentences consist almost
entirely of zeros (our previous example features 12 non-zero entries and 19,988 zero
entries), a property called “sparsity.” That’s a great property to have, as it dramatically
reduces compute load and reduces the risk of overfitting. If we subtracted the mean
from each feature, we’d wreck sparsity. Thus, whatever normalization scheme we use
should be divide-only. What, then, should we use as the denominator? The best prac-
tice is to go with something called TF-IDF normalization—TF-IDF stands for “term fre-
quency, inverse document frequency.”

 TF-IDF is so common that it’s built into the TextVectorization layer. All you need
to do to start using it is to switch the output_mode argument to "tf_idf".

Listing 11.9 Configuring the TextVectorization layer to return token counts

326 CHAPTER 11 Deep learning for text

text_vectorization = TextVectorization(
 ngrams=2,
 max_tokens=20000,
 output_mode="tf_idf",
)

Let’s train a new model with this scheme.

text_vectorization.adapt(text_only_train_ds)

tfidf_2gram_train_ds = train_ds.map(
 lambda x, y: (text_vectorization(x), y),
 num_parallel_calls=4)
tfidf_2gram_val_ds = val_ds.map(
 lambda x, y: (text_vectorization(x), y),
 num_parallel_calls=4)
tfidf_2gram_test_ds = test_ds.map(
 lambda x, y: (text_vectorization(x), y),
 num_parallel_calls=4)

model = get_model()
model.summary()
callbacks = [
 keras.callbacks.ModelCheckpoint("tfidf_2gram.keras",
 save_best_only=True)
]
model.fit(tfidf_2gram_train_ds.cache(),
 validation_data=tfidf_2gram_val_ds.cache(),
 epochs=10,
 callbacks=callbacks)
model = keras.models.load_model("tfidf_2gram.keras")
print(f"Test acc: {model.evaluate(tfidf_2gram_test_ds)[1]:.3f}")

Understanding TF-IDF normalization
The more a given term appears in a document, the more important that term is for
understanding what the document is about. At the same time, the frequency at which
the term appears across all documents in your dataset matters too: terms that
appear in almost every document (like “the” or “a”) aren’t particularly informative,
while terms that appear only in a small subset of all texts (like “Herzog”) are very dis-
tinctive, and thus important. TF-IDF is a metric that fuses these two ideas. It weights
a given term by taking “term frequency,” how many times the term appears in the
current document, and dividing it by a measure of “document frequency,” which esti-
mates how often the term comes up across the dataset. You’d compute it as follows:

def tfidf(term, document, dataset):
 term_freq = document.count(term)
 doc_freq = math.log(sum(doc.count(term) for doc in dataset) + 1)
 return term_freq / doc_freq

Listing 11.10 Configuring TextVectorization to return TF-IDF-weighted outputs

Listing 11.11 Training and testing the TF-IDF bigram model

The adapt() call will learn the
TF-IDF weights in addition to
the vocabulary.

327Two approaches for representing groups of words: Sets and sequences

This gets us an 89.8% test accuracy on the IMDB classification task: it doesn’t seem to
be particularly helpful in this case. However, for many text-classification datasets, it
would be typical to see a one-percentage-point increase when using TF-IDF compared
to plain binary encoding.

11.3.3 Processing words as a sequence: The sequence model approach

These past few examples clearly show that word order matters: manual engineering of
order-based features, such as bigrams, yields a nice accuracy boost. Now remember: the
history of deep learning is that of a move away from manual feature engineering, toward
letting models learn their own features from exposure to data alone. What if, instead of
manually crafting order-based features, we exposed the model to raw word sequences
and let it figure out such features on its own? This is what sequence models are about.

 To implement a sequence model, you’d start by representing your input samples as
sequences of integer indices (one integer standing for one word). Then, you’d map
each integer to a vector to obtain vector sequences. Finally, you’d feed these
sequences of vectors into a stack of layers that could cross-correlate features from adja-
cent vectors, such as a 1D convnet, a RNN, or a Transformer.

 For some time around 2016–2017, bidirectional RNNs (in particular, bidirectional
LSTMs) were considered to be the state of the art for sequence modeling. Since you’re

Exporting a model that processes raw strings
In the preceding examples, we did our text standardization, splitting, and indexing as
part of the tf.data pipeline. But if we want to export a standalone model indepen-
dent of this pipeline, we should make sure that it incorporates its own text prepro-
cessing (otherwise, you’d have to reimplement in the production environment, which
can be challenging or can lead to subtle discrepancies between the training data and
the production data). Thankfully, this is easy.

Just create a new model that reuses your TextVectorization layer and adds to it
the model you just trained:

inputs = keras.Input(shape=(1,), dtype="string")
processed_inputs = text_vectorization(inputs)
outputs = model(processed_inputs)
inference_model = keras.Model(inputs, outputs)

The resulting model can process batches of raw strings:

import tensorflow as tf
raw_text_data = tf.convert_to_tensor([
 ["That was an excellent movie, I loved it."],
])
predictions = inference_model(raw_text_data)
print(f"{float(predictions[0] * 100):.2f} percent positive")

One input sample would be one string.
Apply text
preprocessing.

Apply the
previously
trained model.Instantiate the end-to-end model.

328 CHAPTER 11 Deep learning for text

already familiar with this architecture, this is what we’ll use in our first sequence model
examples. However, nowadays sequence modeling is almost universally done with Trans-
formers, which we will cover shortly. Oddly, one-dimensional convnets were never
very popular in NLP, even though, in my own experience, a residual stack of depth-
wise-separable 1D convolutions can often achieve comparable performance to a bidi-
rectional LSTM, at a greatly reduced computational cost.

A FIRST PRACTICAL EXAMPLE

Let’s try out a first sequence model in practice. First, let’s prepare datasets that return
integer sequences.

from tensorflow.keras import layers

max_length = 600
max_tokens = 20000
text_vectorization = layers.TextVectorization(
 max_tokens=max_tokens,
 output_mode="int",
 output_sequence_length=max_length,
)
text_vectorization.adapt(text_only_train_ds)

int_train_ds = train_ds.map(
 lambda x, y: (text_vectorization(x), y)),
 num_parallel_calls=4)
int_val_ds = val_ds.map(
 lambda x, y: (text_vectorization(x), y),
 num_parallel_calls=4)
int_test_ds = test_ds.map(
 lambda x, y: (text_vectorization(x), y),
 num_parallel_calls=4)

Next, let’s make a model. The simplest way to convert our integer sequences to vector
sequences is to one-hot encode the integers (each dimension would represent one
possible term in the vocabulary). On top of these one-hot vectors, we’ll add a simple
bidirectional LSTM.

import tensorflow as tf
inputs = keras.Input(shape=(None,), dtype="int64")
embedded = tf.one_hot(inputs, depth=max_tokens)
x = layers.Bidirectional(layers.LSTM(32))(embedded)
x = layers.Dropout(0.5)(x)
outputs = layers.Dense(1, activation="sigmoid")(x)
model = keras.Model(inputs, outputs)
model.compile(optimizer="rmsprop",
 loss="binary_crossentropy",
 metrics=["accuracy"])
model.summary()

Listing 11.12 Preparing integer sequence datasets

Listing 11.13 A sequence model built on one-hot encoded vector sequences

In order to keep a manageable
input size, we’ll truncate the
inputs after the first 600 words.
This is a reasonable choice, since
the average review length is 233
words, and only 5% of reviews
are longer than 600 words.

One input is a
sequence of integers.

Encode the integers
into binary 20,000-
dimensional vectors.

Add a
bidirectional
LSTM.

Finally, add a
classification

layer.

329Two approaches for representing groups of words: Sets and sequences

Now, let’s train our model.

callbacks = [
 keras.callbacks.ModelCheckpoint("one_hot_bidir_lstm.keras",
 save_best_only=True)
]
model.fit(int_train_ds, validation_data=int_val_ds, epochs=10,
 callbacks=callbacks)
model = keras.models.load_model("one_hot_bidir_lstm.keras")
print(f"Test acc: {model.evaluate(int_test_ds)[1]:.3f}")

A first observation: this model trains very slowly, especially compared to the light-
weight model of the previous section. This is because our inputs are quite large: each
input sample is encoded as a matrix of size (600, 20000) (600 words per sample,
20,000 possible words). That’s 12,000,000 floats for a single movie review. Our bidirec-
tional LSTM has a lot of work to do. Second, the model only gets to 87% test accu-
racy—it doesn’t perform nearly as well as our (very fast) binary unigram model.

 Clearly, using one-hot encoding to turn words into vectors, which was the simplest
thing we could do, wasn’t a great idea. There’s a better way: word embeddings.

UNDERSTANDING WORD EMBEDDINGS

Crucially, when you encode something via one-hot encoding, you’re making a feature-
engineering decision. You’re injecting into your model a fundamental assumption
about the structure of your feature space. That assumption is that the different tokens
you’re encoding are all independent from each other: indeed, one-hot vectors are all orthogo-
nal to one another. And in the case of words, that assumption is clearly wrong. Words
form a structured space: they share information with each other. The words “movie”
and “film” are interchangeable in most sentences, so the vector that represents
“movie” should not be orthogonal to the vector that represents “film”—they should be
the same vector, or close enough.

 To get a bit more abstract, the geometric relationship between two word vectors
should reflect the semantic relationship between these words. For instance, in a reason-
able word vector space, you would expect synonyms to be embedded into similar word
vectors, and in general, you would expect the geometric distance (such as the cosine
distance or L2 distance) between any two word vectors to relate to the “semantic dis-
tance” between the associated words. Words that mean different things should lie far
away from each other, whereas related words should be closer.

 Word embeddings are vector representations of words that achieve exactly this: they
map human language into a structured geometric space.

 Whereas the vectors obtained through one-hot encoding are binary, sparse (mostly
made of zeros), and very high-dimensional (the same dimensionality as the number of
words in the vocabulary), word embeddings are low-dimensional floating-point vectors
(that is, dense vectors, as opposed to sparse vectors); see figure 11.2. It’s common to see
word embeddings that are 256-dimensional, 512-dimensional, or 1,024-dimensional

Listing 11.14 Training a first basic sequence model

330 CHAPTER 11 Deep learning for text

when dealing with very large vocabularies. On the other hand, one-hot encoding words
generally leads to vectors that are 20,000-dimensional or greater (capturing a vocabu-
lary of 20,000 tokens, in this case). So, word embeddings pack more information into
far fewer dimensions.

Besides being dense representations, word embeddings are also structured representa-
tions, and their structure is learned from data. Similar words get embedded in close
locations, and further, specific directions in the embedding space are meaningful. To
make this clearer, let’s look at a concrete example.

 In figure 11.3, four words are embedded on a 2D plane: cat, dog, wolf, and tiger.
With the vector representations we chose here, some semantic relationships between
these words can be encoded as geometric transformations. For instance, the same
vector allows us to go from cat to tiger and from dog to wolf: this vector could be inter-
preted as the “from pet to wild animal” vector. Similarly, another vector lets us go
from dog to cat and from wolf to tiger, which could be interpreted as a “from canine
to feline” vector.

One-hot word vectors:

- Sparse

- High-dimensional

- Hardcoded

Word embeddings:

- Dense

- Lower-dimensional

- Learned from data

Figure 11.2 Word representations
obtained from one-hot encoding or
hashing are sparse, high-dimensional,
and hardcoded. Word embeddings are
dense, relatively low-dimensional, and
learned from data.

1

0
10

Wolf
Tiger

Cat
Dog

X Figure 11.3 A toy example
of a word-embedding space

331Two approaches for representing groups of words: Sets and sequences

In real-world word-embedding spaces, common examples of meaningful geometric
transformations are “gender” vectors and “plural” vectors. For instance, by adding a
“female” vector to the vector “king,” we obtain the vector “queen.” By adding a “plu-
ral” vector, we obtain “kings.” Word-embedding spaces typically feature thousands of
such interpretable and potentially useful vectors.

 Let’s look at how to use such an embedding space in practice. There are two ways
to obtain word embeddings:

� Learn word embeddings jointly with the main task you care about (such as doc-
ument classification or sentiment prediction). In this setup, you start with ran-
dom word vectors and then learn word vectors in the same way you learn the
weights of a neural network.

� Load into your model word embeddings that were precomputed using a differ-
ent machine learning task than the one you’re trying to solve. These are called
pretrained word embeddings.

Let’s review each of these approaches.

LEARNING WORD EMBEDDINGS WITH THE EMBEDDING LAYER

Is there some ideal word-embedding space that would perfectly map human language
and could be used for any natural language processing task? Possibly, but we have yet
to compute anything of the sort. Also, there is no such a thing as human language—
there are many different languages, and they aren’t isomorphic to one another,
because a language is the reflection of a specific culture and a specific context. But
more pragmatically, what makes a good word-embedding space depends heavily on
your task: the perfect word-embedding space for an English-language movie-review
sentiment-analysis model may look different from the perfect embedding space for an
English-language legal-document classification model, because the importance of cer-
tain semantic relationships varies from task to task.

 It’s thus reasonable to learn a new embedding space with every new task. Fortu-
nately, backpropagation makes this easy, and Keras makes it even easier. It’s about
learning the weights of a layer: the Embedding layer.

embedding_layer = layers.Embedding(input_dim=max_tokens, output_dim=256)

The Embedding layer is best understood as a dictionary that maps integer indices
(which stand for specific words) to dense vectors. It takes integers as input, looks up
these integers in an internal dictionary, and returns the associated vectors. It’s effec-
tively a dictionary lookup (see figure 11.4).

Listing 11.15 Instantiating an Embedding layer

The Embedding layer takes at least two arguments: the number of
possible tokens and the dimensionality of the embeddings (here, 256).

Word index Embedding layer Corresponding word vector

Figure 11.4 The Embedding layer

332 CHAPTER 11 Deep learning for text

The Embedding layer takes as input a rank-2 tensor of integers, of shape (batch_size,
sequence_length), where each entry is a sequence of integers. The layer then returns
a 3D floating-point tensor of shape (batch_size, sequence_length, embedding_
dimensionality).

 When you instantiate an Embedding layer, its weights (its internal dictionary of
token vectors) are initially random, just as with any other layer. During training, these
word vectors are gradually adjusted via backpropagation, structuring the space into
something the downstream model can exploit. Once fully trained, the embedding
space will show a lot of structure—a kind of structure specialized for the specific prob-
lem for which you’re training your model.

 Let’s build a model that includes an Embedding layer and benchmark it on our task.

inputs = keras.Input(shape=(None,), dtype="int64")
embedded = layers.Embedding(input_dim=max_tokens, output_dim=256)(inputs)
x = layers.Bidirectional(layers.LSTM(32))(embedded)
x = layers.Dropout(0.5)(x)
outputs = layers.Dense(1, activation="sigmoid")(x)
model = keras.Model(inputs, outputs)
model.compile(optimizer="rmsprop",
 loss="binary_crossentropy",
 metrics=["accuracy"])
model.summary()

callbacks = [
 keras.callbacks.ModelCheckpoint("embeddings_bidir_gru.keras",
 save_best_only=True)
]
model.fit(int_train_ds, validation_data=int_val_ds, epochs=10,
 callbacks=callbacks)
model = keras.models.load_model("embeddings_bidir_gru.keras")
print(f"Test acc: {model.evaluate(int_test_ds)[1]:.3f}")

It trains much faster than the one-hot model (since the LSTM only has to process
256-dimensional vectors instead of 20,000-dimensional), and its test accuracy is com-
parable (87%). However, we’re still some way off from the results of our basic bigram
model. Part of the reason why is simply that the model is looking at slightly less data:
the bigram model processed full reviews, while our sequence model truncates sequences
after 600 words.

UNDERSTANDING PADDING AND MASKING

One thing that’s slightly hurting model performance here is that our input sequences
are full of zeros. This comes from our use of the output_sequence_length=max_
length option in TextVectorization (with max_length equal to 600): sentences lon-
ger than 600 tokens are truncated to a length of 600 tokens, and sentences shorter
than 600 tokens are padded with zeros at the end so that they can be concatenated
together with other sequences to form contiguous batches.

Listing 11.16 Model that uses an Embedding layer trained from scratch

333Two approaches for representing groups of words: Sets and sequences

 We’re using a bidirectional RNN: two RNN layers running in parallel, with one
processing the tokens in their natural order, and the other processing the same
tokens in reverse. The RNN that looks at the tokens in their natural order will spend
its last iterations seeing only vectors that encode padding—possibly for several hun-
dreds of iterations if the original sentence was short. The information stored in the
internal state of the RNN will gradually fade out as it gets exposed to these meaning-
less inputs.

 We need some way to tell the RNN that it should skip these iterations. There’s an
API for that: masking.

 The Embedding layer is capable of generating a “mask” that corresponds to its
input data. This mask is a tensor of ones and zeros (or True/False booleans), of shape
(batch_size, sequence_length), where the entry mask[i, t] indicates where time-
step t of sample i should be skipped or not (the timestep will be skipped if mask[i, t]
is 0 or False, and processed otherwise).

 By default, this option isn’t active—you can turn it on by passing mask_zero=True
to your Embedding layer. You can retrieve the mask with the compute_mask() method:

>>> embedding_layer = Embedding(input_dim=10, output_dim=256, mask_zero=True)
>>> some_input = [
... [4, 3, 2, 1, 0, 0, 0],
... [5, 4, 3, 2, 1, 0, 0],
... [2, 1, 0, 0, 0, 0, 0]]
>>> mask = embedding_layer.compute_mask(some_input)
<tf.Tensor: shape=(3, 7), dtype=bool, numpy=
array([[True, True, True, True, False, False, False],
 [True, True, True, True, True, False, False],
 [True, True, False, False, False, False, False]])>

In practice, you will almost never have to manage masks by hand. Instead, Keras will
automatically pass on the mask to every layer that is able to process it (as a piece of
metadata attached to the sequence it represents). This mask will be used by RNN lay-
ers to skip masked steps. If your model returns an entire sequence, the mask will also
be used by the loss function to skip masked steps in the output sequence.

 Let’s try retraining our model with masking enabled.

inputs = keras.Input(shape=(None,), dtype="int64")
embedded = layers.Embedding(
 input_dim=max_tokens, output_dim=256, mask_zero=True)(inputs)
x = layers.Bidirectional(layers.LSTM(32))(embedded)
x = layers.Dropout(0.5)(x)
outputs = layers.Dense(1, activation="sigmoid")(x)
model = keras.Model(inputs, outputs)
model.compile(optimizer="rmsprop",
 loss="binary_crossentropy",
 metrics=["accuracy"])
model.summary()

Listing 11.17 Using an Embedding layer with masking enabled

334 CHAPTER 11 Deep learning for text

callbacks = [
 keras.callbacks.ModelCheckpoint("embeddings_bidir_gru_with_masking.keras",
 save_best_only=True)
]
model.fit(int_train_ds, validation_data=int_val_ds, epochs=10,
 callbacks=callbacks)
model = keras.models.load_model("embeddings_bidir_gru_with_masking.keras")
print(f"Test acc: {model.evaluate(int_test_ds)[1]:.3f}")

This time we get to 88% test accuracy—a small but noticeable improvement.

USING PRETRAINED WORD EMBEDDINGS

Sometimes you have so little training data available that you can’t use your data alone
to learn an appropriate task-specific embedding of your vocabulary. In such cases,
instead of learning word embeddings jointly with the problem you want to solve, you
can load embedding vectors from a precomputed embedding space that you know is
highly structured and exhibits useful properties—one that captures generic aspects of
language structure. The rationale behind using pretrained word embeddings in natu-
ral language processing is much the same as for using pretrained convnets in image
classification: you don’t have enough data available to learn truly powerful features on
your own, but you expect that the features you need are fairly generic—that is, com-
mon visual features or semantic features. In this case, it makes sense to reuse features
learned on a different problem.

 Such word embeddings are generally computed using word-occurrence statistics
(observations about what words co-occur in sentences or documents), using a variety
of techniques, some involving neural networks, others not. The idea of a dense, low-
dimensional embedding space for words, computed in an unsupervised way, was ini-
tially explored by Bengio et al. in the early 2000s,1 but it only started to take off in
research and industry applications after the release of one of the most famous and
successful word-embedding schemes: the Word2Vec algorithm (https://code.google
.com/archive/p/word2vec), developed by Tomas Mikolov at Google in 2013. Word2Vec
dimensions capture specific semantic properties, such as gender.

 There are various precomputed databases of word embeddings that you can down-
load and use in a Keras Embedding layer. Word2vec is one of them. Another popular
one is called Global Vectors for Word Representation (GloVe, https://nlp.stanford
.edu/projects/glove), which was developed by Stanford researchers in 2014. This
embedding technique is based on factorizing a matrix of word co-occurrence statis-
tics. Its developers have made available precomputed embeddings for millions of
English tokens, obtained from Wikipedia data and Common Crawl data.

 Let’s look at how you can get started using GloVe embeddings in a Keras model.
The same method is valid for Word2Vec embeddings or any other word-embedding
database. We’ll start by downloading the GloVe files and parse them. We’ll then load
the word vectors into a Keras Embedding layer, which we’ll use to build a new model.

1 Yoshua Bengio et al., “A Neural Probabilistic Language Model,” Journal of Machine Learning Research (2003).

335Two approaches for representing groups of words: Sets and sequences

 First, let’s download the GloVe word embeddings precomputed on the 2014
English Wikipedia dataset. It’s an 822 MB zip file containing 100-dimensional embed-
ding vectors for 400,000 words (or non-word tokens).

!wget http:/ /nlp.stanford.edu/data/glove.6B.zip
!unzip -q glove.6B.zip

Let’s parse the unzipped file (a .txt file) to build an index that maps words (as strings)
to their vector representation.

import numpy as np
path_to_glove_file = "glove.6B.100d.txt"

embeddings_index = {}
with open(path_to_glove_file) as f:
 for line in f:
 word, coefs = line.split(maxsplit=1)
 coefs = np.fromstring(coefs, "f", sep=" ")
 embeddings_index[word] = coefs

print(f"Found {len(embeddings_index)} word vectors.")

Next, let’s build an embedding matrix that you can load into an Embedding layer. It
must be a matrix of shape (max_words, embedding_dim), where each entry i contains
the embedding_dim-dimensional vector for the word of index i in the reference word
index (built during tokenization).

embedding_dim = 100

vocabulary = text_vectorization.get_vocabulary()
word_index = dict(zip(vocabulary, range(len(vocabulary))))

embedding_matrix = np.zeros((max_tokens, embedding_dim))
for word, i in word_index.items():
 if i < max_tokens:
 embedding_vector = embeddings_index.get(word)
 if embedding_vector is not None:
 embedding_matrix[i] = embedding_vector

Finally, we use a Constant initializer to load the pretrained embeddings in an Embedding
layer. So as not to disrupt the pretrained representations during training, we freeze
the layer via trainable=False:

embedding_layer = layers.Embedding(
max_tokens,
embedding_dim,
embeddings_initializer=keras.initializers.Constant(embedding_matrix),

Listing 11.18 Parsing the GloVe word-embeddings file

Listing 11.19 Preparing the GloVe word-embeddings matrix

Retrieve the vocabulary indexed by
our previous TextVectorization layer.

Use it to create a
mapping from words
to their index in the
vocabulary.

Prepare a matrix
that we’ll fill with
the GloVe vectors.

Fill entry i in the matrix with the
word vector for index i. Words
not found in the embedding
index will be all zeros.

336 CHAPTER 11 Deep learning for text

trainable=False,
mask_zero=True,

)

We’re now ready to train a new model—identical to our previous model, but leverag-
ing the 100-dimensional pretrained GloVe embeddings instead of 128-dimensional
learned embeddings.

inputs = keras.Input(shape=(None,), dtype="int64")
embedded = embedding_layer(inputs)
x = layers.Bidirectional(layers.LSTM(32))(embedded)
x = layers.Dropout(0.5)(x)
outputs = layers.Dense(1, activation="sigmoid")(x)
model = keras.Model(inputs, outputs)
model.compile(optimizer="rmsprop",
 loss="binary_crossentropy",
 metrics=["accuracy"])
model.summary()

callbacks = [
 keras.callbacks.ModelCheckpoint("glove_embeddings_sequence_model.keras",
 save_best_only=True)
]
model.fit(int_train_ds, validation_data=int_val_ds, epochs=10,
 callbacks=callbacks)
model = keras.models.load_model("glove_embeddings_sequence_model.keras")
print(f"Test acc: {model.evaluate(int_test_ds)[1]:.3f}")

You’ll find that on this particular task, pretrained embeddings aren’t very helpful,
because the dataset contains enough samples that it is possible to learn a specialized
enough embedding space from scratch. However, leveraging pretrained embeddings
can be very helpful when you’re working with a smaller dataset.

11.4 The Transformer architecture
Starting in 2017, a new model architecture started overtaking recurrent neural net-
works across most natural language processing tasks: the Transformer.

 Transformers were introduced in the seminal paper “Attention is all you need” by
Vaswani et al.2 The gist of the paper is right there in the title: as it turned out, a simple
mechanism called “neural attention” could be used to build powerful sequence mod-
els that didn’t feature any recurrent layers or convolution layers.

 This finding unleashed nothing short of a revolution in natural language process-
ing—and beyond. Neural attention has fast become one of the most influential ideas
in deep learning. In this section, you’ll get an in-depth explanation of how it works
and why it has proven so effective for sequence data. We’ll then leverage self-attention

Listing 11.20 Model that uses a pretrained Embedding layer

2 Ashish Vaswani et al., “Attention is all you need” (2017), https://arxiv.org/abs/1706.03762.

337The Transformer architecture

to create a Transformer encoder, one of the basic components of the Transformer
architecture, and we’ll apply it to the IMDB movie review classification task.

11.4.1 Understanding self-attention

As you’re going through this book, you may be skimming some parts and attentively
reading others, depending on what your goals or interests are. What if your models
did the same? It’s a simple yet powerful idea: not all input information seen by a
model is equally important to the task at hand, so models should “pay more attention”
to some features and “pay less attention” to other features.

 Does that sound familiar? You’ve already encountered a similar concept twice in
this book:

� Max pooling in convnets looks at a pool of features in a spatial region and
selects just one feature to keep. That’s an “all or nothing” form of attention:
keep the most important feature and discard the rest.

� TF-IDF normalization assigns importance scores to tokens based on how much
information different tokens are likely to carry. Important tokens get boosted
while irrelevant tokens get faded out. That’s a continuous form of attention.

There are many different forms of attention you could imagine, but they all start by com-
puting importance scores for a set of features, with higher scores for more relevant fea-
tures and lower scores for less relevant ones (see figure 11.5). How these scores should be
computed, and what you should do with them, will vary from approach to approach.

Original
representation

Attention scores

New
representation

Attention
mechanism

Figure 11.5 The general concept of “attention” in deep
learning: input features get assigned “attention scores,”
which can be used to inform the next representation of
the input.

338 CHAPTER 11 Deep learning for text

Crucially, this kind of attention mechanism can be used for more than just highlighting
or erasing certain features. It can be used to make features context-aware. You’ve just
learned about word embeddings—vector spaces that capture the “shape” of the semantic
relationships between different words. In an embedding space, a single word has a fixed
position—a fixed set of relationships with every other word in the space. But that’s not
quite how language works: the meaning of a word is usually context-specific. When you
mark the date, you’re not talking about the same “date” as when you go on a date, nor is
it the kind of date you’d buy at the market. When you say, “I’ll see you soon,” the mean-
ing of the word “see” is subtly different from the “see” in “I’ll see this project to its end” or
“I see what you mean.” And, of course, the meaning of pronouns like “he,” “it,” “in,” etc.,
is entirely sentence-specific and can even change multiple times within a single sentence.

 Clearly, a smart embedding space would provide a different vector representation
for a word depending on the other words surrounding it. That’s where self-attention
comes in. The purpose of self-attention is to modulate the representation of a token
by using the representations of related tokens in the sequence. This produces context-
aware token representations. Consider an example sentence: “The train left the sta-
tion on time.” Now, consider one word in the sentence: station. What kind of station
are we talking about? Could it be a radio station? Maybe the International Space Sta-
tion? Let’s figure it out algorithmically via self-attention (see figure 11.6).

'the', 'train', 'left', 'the', 'station', 'on', 'time'

the

train

time

left

the

s a i nt t o

on

th
e

tr
a
in

le
ft

th
e

s
ta

ti
o

n

o
n

tim
e

1.0 0.3 0.1 0.5 0.2 0.1 0.1

0.3 1.0 0.6 0.3 0.8 0.1 0.2

0.1 0.6 1.0 0.1 0.6 0.1 0.1

0.5 0.3 0.1 1.0 0.3 0.1 0.2

0.2 0.8 0.6 0.3 1.0 0.2 0.2

0.1 0.1 0.1 0.1 0.2

0.1 0.2 0.1 0.2 0.2

1.0

1.0

0.5

0.5

0.2

0.8

0.6

0.3

1.0

0.2

0.2

S ocores f r
“station”

Input
sequence

Attention scores

Token
v oect rs

Softmax,
scaling, and
multiplication

Weighted
t noke vectors

Context-aware
vector

Sum

the

t ar in

left

station

the

on

time

Figure 11.6 Self-attention: attention scores are computed between “station” and every other word in the
sequence, and they are then used to weight a sum of word vectors that becomes the new “station” vector.

339The Transformer architecture

Step 1 is to compute relevancy scores between the vector for “station” and every other
word in the sentence. These are our “attention scores.” We’re simply going to use the
dot product between two word vectors as a measure of the strength of their relation-
ship. It’s a very computationally efficient distance function, and it was already the stan-
dard way to relate two word embeddings to each other long before Transformers. In
practice, these scores will also go through a scaling function and a softmax, but for
now, that’s just an implementation detail.

 Step 2 is to compute the sum of all word vectors in the sentence, weighted by our
relevancy scores. Words closely related to “station” will contribute more to the sum
(including the word “station” itself), while irrelevant words will contribute almost
nothing. The resulting vector is our new representation for “station”: a representation
that incorporates the surrounding context. In particular, it includes part of the “train”
vector, clarifying that it is, in fact, a “train station.”

 You’d repeat this process for every word in the sentence, producing a new
sequence of vectors encoding the sentence. Let’s see it in NumPy-like pseudocode:

def self_attention(input_sequence):
 output = np.zeros(shape=input_sequence.shape)
 for i, pivot_vector in enumerate(input_sequence):
 scores = np.zeros(shape=(len(input_sequence),))
 for j, vector in enumerate(input_sequence):
 scores[j] = np.dot(pivot_vector, vector.T)
 scores /= np.sqrt(input_sequence.shape[1])
 scores = softmax(scores)
 new_pivot_representation = np.zeros(shape=pivot_vector.shape)
 for j, vector in enumerate(input_sequence):
 new_pivot_representation += vector * scores[j]
 output[i] = new_pivot_representation
 return output

Of course, in practice you’d use a vectorized implementation. Keras has a built-in
layer to handle it: the MultiHeadAttention layer. Here’s how you would use it:

num_heads = 4
embed_dim = 256
mha_layer = MultiHeadAttention(num_heads=num_heads, key_dim=embed_dim)
outputs = mha_layer(inputs, inputs, inputs)

Reading this, you’re probably wondering

� Why are we passing the inputs to the layer three times? That seems redundant.
� What are these “multiple heads” we’re referring to? That sounds intimidating—

do they also grow back if you cut them?

Both of these questions have simple answers. Let’s take a look.

Iterate over each token
in the input sequence.

Compute the dot
product (attention
score) between the
token and every
other token.

Scale by a
normalization
factor, and apply
a softmax.

Take the sum
of all tokens
weighted by the
attention scores.

That sum is
our output.

340 CHAPTER 11 Deep learning for text

GENERALIZED SELF-ATTENTION: THE QUERY-KEY-VALUE MODEL

So far, we have only considered one input sequence. However, the Transformer archi-
tecture was originally developed for machine translation, where you have to deal with
two input sequences: the source sequence you’re currently translating (such as “How’s
the weather today?”), and the target sequence you’re converting it to (such as “¿Qué
tiempo hace hoy?”). A Transformer is a sequence-to-sequence model: it was designed to
convert one sequence into another. You’ll learn about sequence-to-sequence models
in depth later in this chapter.

 Now let’s take a step back. The self-attention mechanism as we’ve introduced it
performs the following, schematically:

This means “for each token in inputs (A), compute how much the token is related to
every token in inputs (B), and use these scores to weight a sum of tokens from
inputs (C).” Crucially, there’s nothing that requires A, B, and C to refer to the same
input sequence. In the general case, you could be doing this with three different
sequences. We’ll call them “query,” “keys,” and “values.” The operation becomes “for
each element in the query, compute how much the element is related to every key,
and use these scores to weight a sum of values”:

This terminology comes from search engines and recommender systems (see figure
11.7). Imagine that you’re typing up a query to retrieve a photo from your collection—
“dogs on the beach.” Internally, each of your pictures in the database is described by a
set of keywords—“cat,” “dog,” “party,” etc. We’ll call those “keys.” The search engine will
start by comparing your query to the keys in the database. “Dog” yields a match of 1, and
“cat” yields a match of 0. It will then rank those keys by strength of match—relevance—
and it will return the pictures associated with the top N matches, in order of relevance.

 Conceptually, this is what Transformer-style attention is doing. You’ve got a refer-
ence sequence that describes something you’re looking for: the query. You’ve got a
body of knowledge that you’re trying to extract information from: the values. Each
value is assigned a key that describes the value in a format that can be readily com-
pared to a query. You simply match the query to the keys. Then you return a weighted
sum of values.

 In practice, the keys and the values are often the same sequence. In machine trans-
lation, for instance, the query would be the target sequence, and the source sequence
would play the roles of both keys and values: for each element of the target (like

C A

outputs = sum(* pairwise_scores(,))inputs inputs inputs

B

outputs = sum(* pairwise_scores(,))values query keys

341The Transformer architecture

“tiempo”), you want to go back to the source (“How’s the weather today?”) and iden-
tify the different bits that are related to it (“tiempo” and “weather” should have a
strong match). And naturally, if you’re just doing sequence classification, then query,
keys, and values are all the same: you’re comparing a sequence to itself, to enrich each
token with context from the whole sequence.

 That explains why we needed to pass inputs three times to our MultiHeadAttention
layer. But why “multi-head” attention?

11.4.2 Multi-head attention

“Multi-head attention” is an extra tweak to the self-attention mechanism, introduced
in “Attention is all you need.” The “multi-head” moniker refers to the fact that the
output space of the self-attention layer gets factored into a set of independent sub-
spaces, learned separately: the initial query, key, and value are sent through three
independent sets of dense projections, resulting in three separate vectors. Each vector
is processed via neural attention, and the three outputs are concatenated back
together into a single output sequence. Each such subspace is called a “head.” The full
picture is shown in figure 11.8.

 The presence of the learnable dense projections enables the layer to actually learn
something, as opposed to being a purely stateless transformation that would require
additional layers before or after it to be useful. In addition, having independent heads
helps the layer learn different groups of features for each token, where features within
one group are correlated with each other but are mostly independent from features
in a different group.

Query

Keys Values

“dogs on the beach”

match: 0.5

match: 1.0

match: 0.5

Beach

Tree

Boat

Beach

Dog

Tree

Dog

Figure 11.7 Retrieving images from a database: the “query” is compared
to a set of “keys,” and the match scores are used to rank “values” (images).

342 CHAPTER 11 Deep learning for text

This is similar in principle to what makes depthwise separable convolutions work: in a
depthwise separable convolution, the output space of the convolution is factored into
many subspaces (one per input channel) that get learned independently. The “Atten-
tion is all you need” paper was written at a time when the idea of factoring feature
spaces into independent subspaces had been shown to provide great benefits for com-
puter vision models—both in the case of depthwise separable convolutions, and in the
case of a closely related approach, grouped convolutions. Multi-head attention is simply
the application of the same idea to self-attention.

11.4.3 The Transformer encoder

If adding extra dense projections is so useful, why don’t we also apply one or two to
the output of the attention mechanism? Actually, that’s a great idea—let’s do that.
And our model is starting to do a lot, so we might want to add residual connections to
make sure we don’t destroy any valuable information along the way—you learned in
chapter 9 that they’re a must for any sufficiently deep architecture. And there’s
another thing you learned in chapter 9: normalization layers are supposed to help
gradients flow better during backpropagation. Let’s add those too.

 That’s roughly the thought process that I imagine unfolded in the minds of the
inventors of the Transformer architecture at the time. Factoring outputs into multiple
independent spaces, adding residual connections, adding normalization layers—all of
these are standard architecture patterns that one would be wise to leverage in any
complex model. Together, these bells and whistles form the Transformer encoder—one
of two critical parts that make up the Transformer architecture (see figure 11.9).

Dense Dense Dense

Attention

Q K V

Attention
head 1

Dense Dense Dense

Attention

Q K V

Attention
head 2

Concatenate

Query Key Value Query Key Value

Query Key Value

Output

Figure 11.8 The MultiHeadAttention layer

343The Transformer architecture

The original Transformer architecture consists of two parts: a Transformer encoder that
processes the source sequence, and a Transformer decoder that uses the source sequence
to generate a translated version. You’ll learn about about the decoder part in a minute.

 Crucially, the encoder part can be used for text classification—it’s a very generic
module that ingests a sequence and learns to turn it into a more useful representa-
tion. Let’s implement a Transformer encoder and try it on the movie review sentiment
classification task.

import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers

class TransformerEncoder(layers.Layer):
 def __init__(self, embed_dim, dense_dim, num_heads, **kwargs):
 super().__init__(**kwargs)
 self.embed_dim = embed_dim
 self.dense_dim = dense_dim
 self.num_heads = num_heads
 self.attention = layers.MultiHeadAttention(
 num_heads=num_heads, key_dim=embed_dim)
 self.dense_proj = keras.Sequential(
 [layers.Dense(dense_dim, activation="relu"),
 layers.Dense(embed_dim),]
)

Listing 11.21 Transformer encoder implemented as a subclassed Layer

D
e
n
se

 p
ro

je
ct

io
n

R
e
si

d
u
a
l c

o
n
n
e
ct

io
n

LayerNormalization

Dense

+

Dense

LayerNormalization

+

MultiHeadAttention Figure 11.9 The TransformerEncoder
chains a MultiHeadAttention layer with a
dense projection and adds normalization as
well as residual connections.

Size of the input
token vectors

Size of the inner
dense layer

Number of
attention heads

344 CHAPTER 11 Deep learning for text

 self.layernorm_1 = layers.LayerNormalization()
 self.layernorm_2 = layers.LayerNormalization()

 def call(self, inputs, mask=None):
 if mask is not None:
 mask = mask[:, tf.newaxis, :]
 attention_output = self.attention(
 inputs, inputs, attention_mask=mask)
 proj_input = self.layernorm_1(inputs + attention_output)
 proj_output = self.dense_proj(proj_input)
 return self.layernorm_2(proj_input + proj_output)

 def get_config(self):
 config = super().get_config()
 config.update({
 "embed_dim": self.embed_dim,
 "num_heads": self.num_heads,
 "dense_dim": self.dense_dim,
 })
 return config

You’ll note that the normalization layers we’re using here aren’t BatchNormalization
layers like those we’ve used before in image models. That’s because BatchNormalization
doesn’t work well for sequence data. Instead, we’re using the LayerNormalization layer,
which normalizes each sequence independently from other sequences in the batch.
Like this, in NumPy-like pseudocode:

Saving custom layers
When you write custom layers, make sure to implement the get_config method: this
enables the layer to be reinstantiated from its config dict, which is useful during
model saving and loading. The method should return a Python dict that contains the
values of the constructor arguments used to create the layer.

All Keras layers can be serialized and deserialized as follows:

config = layer.get_config()
new_layer = layer.__class__.from_config(config)

For instance:

layer = PositionalEmbedding(sequence_length, input_dim, output_dim)
config = layer.get_config()
new_layer = PositionalEmbedding.from_config(config)

When saving a model that contains custom layers, the savefile will contain these con-
fig dicts. When loading the model from the file, you should provide the custom layer
classes to the loading process, so that it can make sense of the config objects:

model = keras.models.load_model(
 filename, custom_objects={"PositionalEmbedding": PositionalEmbedding})

Computation goes in call().

The mask that will be generated by
the Embedding layer will be 2D, but
the attention layer expects to be 3D
or 4D, so we expand its rank.

Implement
serialization so
we can save the
model.

The config does not
contain weight values,
so all weights in the
layer get initialized
from scratch.

345The Transformer architecture

def layer_normalization(batch_of_sequences):
 mean = np.mean(batch_of_sequences, keepdims=True, axis=-1)
 variance = np.var(batch_of_sequences, keepdims=True, axis=-1)
 return (batch_of_sequences - mean) / variance

Compare to BatchNormalization (during training):

def batch_normalization(batch_of_images):
 mean = np.mean(batch_of_images, keepdims=True, axis=(0, 1, 2))
 variance = np.var(batch_of_images, keepdims=True, axis=(0, 1, 2))
 return (batch_of_images - mean) / variance

While BatchNormalization collects information from many samples to obtain accu-
rate statistics for the feature means and variances, LayerNormalization pools data
within each sequence separately, which is more appropriate for sequence data.

 Now that we’ve implemented our TransformerEncoder, we can use it to assemble a
text-classification model similar to the GRU-based one you’ve seen previously.

vocab_size = 20000
embed_dim = 256
num_heads = 2
dense_dim = 32

inputs = keras.Input(shape=(None,), dtype="int64")
x = layers.Embedding(vocab_size, embed_dim)(inputs)
x = TransformerEncoder(embed_dim, dense_dim, num_heads)(x)
x = layers.GlobalMaxPooling1D()(x)
x = layers.Dropout(0.5)(x)
outputs = layers.Dense(1, activation="sigmoid")(x)
model = keras.Model(inputs, outputs)
model.compile(optimizer="rmsprop",
 loss="binary_crossentropy",
 metrics=["accuracy"])
model.summary()

Let’s train it. It gets to 87.5% test accuracy—slightly worse than the GRU model.

callbacks = [
 keras.callbacks.ModelCheckpoint("transformer_encoder.keras",
 save_best_only=True)
]
model.fit(int_train_ds, validation_data=int_val_ds, epochs=20,
 callbacks=callbacks)

Listing 11.22 Using the Transformer encoder for text classification

Listing 11.23 Training and evaluating the Transformer encoder based model

Input shape: (batch_size,
sequence_length, embedding_dim)

To compute mean and
variance, we only pool data
over the last axis (axis -1).

Input shape: (batch_size,
height, width, channels)

Pool data over the batch axis
(axis 0), which creates interactions

between samples in a batch.

Since TransformerEncoder
returns full sequences,
we need to reduce each
sequence to a single
vector for classification
via a global pooling layer.

346 CHAPTER 11 Deep learning for text

model = keras.models.load_model(
 "transformer_encoder.keras",
 custom_objects={"TransformerEncoder": TransformerEncoder})
print(f"Test acc: {model.evaluate(int_test_ds)[1]:.3f}")

At this point, you should start to feel a bit uneasy. Something’s off here. Can you tell
what it is?

 This section is ostensibly about “sequence models.” I started off by highlighting
the importance of word order. I said that Transformer was a sequence-processing
architecture, originally developed for machine translation. And yet . . . the Trans-
former encoder you just saw in action wasn’t a sequence model at all. Did you
notice? It’s composed of dense layers that process sequence tokens independently
from each other, and an attention layer that looks at the tokens as a set. You could
change the order of the tokens in a sequence, and you’d get the exact same pairwise
attention scores and the exact same context-aware representations. If you were to
completely scramble the words in every movie review, the model wouldn’t notice,
and you’d still get the exact same accuracy. Self-attention is a set-processing mecha-
nism, focused on the relationships between pairs of sequence elements (see figure
11.10)—it’s blind to whether these elements occur at the beginning, at the end, or
in the middle of a sequence. So why do we say that Transformer is a sequence
model? And how could it possibly be good for machine translation if it doesn’t look
at word order?

I hinted at the solution earlier in the chapter: I mentioned in passing that Trans-
former was a hybrid approach that is technically order-agnostic, but that manually
injects order information in the representations it processes. This is the missing ingre-
dient! It’s called positional encoding. Let’s take a look.

USING POSITIONAL ENCODING TO RE-INJECT ORDER INFORMATION

The idea behind positional encoding is very simple: to give the model access to word-
order information, we’re going to add the word’s position in the sentence to each word
embedding. Our input word embeddings will have two components: the usual word

Provide the custom TransformerEncoder
class to the model-loading process.

Word order
awareness

Context
awareness

(cross-words
interactions)

Bag-of-unigrams

Bag-of-bigrams

RNN

Self-attention

Transformer

No

Very limited

Yes

No

Yes

No

No

No

Yes

Yes
Figure 11.10 Features of different
types of NLP models

347The Transformer architecture

vector, which represents the word independently of any specific context, and a posi-
tion vector, which represents the position of the word in the current sentence. Hope-
fully, the model will then figure out how to best leverage this additional information.

 The simplest scheme you could come up with would be to concatenate the word’s
position to its embedding vector. You’d add a “position” axis to the vector and fill it
with 0 for the first word in the sequence, 1 for the second, and so on.

 That may not be ideal, however, because the positions can potentially be very large
integers, which will disrupt the range of values in the embedding vector. As you know,
neural networks don’t like very large input values, or discrete input distributions.

 The original “Attention is all you need” paper used an interesting trick to encode
word positions: it added to the word embeddings a vector containing values in the
range [-1, 1] that varied cyclically depending on the position (it used cosine func-
tions to achieve this). This trick offers a way to uniquely characterize any integer in a
large range via a vector of small values. It’s clever, but it’s not what we’re going to use
in our case. We’ll do something simpler and more effective: we’ll learn position-
embedding vectors the same way we learn to embed word indices. We’ll then proceed
to add our position embeddings to the corresponding word embeddings, to obtain a
position-aware word embedding. This technique is called “positional embedding.”
Let’s implement it.

class PositionalEmbedding(layers.Layer):
 def __init__(self, sequence_length, input_dim, output_dim, **kwargs):
 super().__init__(**kwargs)
 self.token_embeddings = layers.Embedding(
 input_dim=input_dim, output_dim=output_dim)
 self.position_embeddings = layers.Embedding(
 input_dim=sequence_length, output_dim=output_dim)
 self.sequence_length = sequence_length
 self.input_dim = input_dim
 self.output_dim = output_dim

 def call(self, inputs):
 length = tf.shape(inputs)[-1]
 positions = tf.range(start=0, limit=length, delta=1)
 embedded_tokens = self.token_embeddings(inputs)
 embedded_positions = self.position_embeddings(positions)
 return embedded_tokens + embedded_positions

 def compute_mask(self, inputs, mask=None):
 return tf.math.not_equal(inputs, 0)

 def get_config(self):
 config = super().get_config()
 config.update({
 "output_dim": self.output_dim,

Listing 11.24 Implementing positional embedding as a subclassed layer

A downside of position embeddings is that the sequence
length needs to be known in advance.

Prepare an
Embedding

layer for the
token indices.

And another
one for
the token
positions

Add both
embedding

vectors
together.

Like the Embedding layer, this
layer should be able to generate a
mask so we can ignore padding 0s
in the inputs. The compute_mask
method will called automatically
by the framework, and the
mask will get propagated
to the next layer.

Implement
serialization

so we can
save the

model.

348 CHAPTER 11 Deep learning for text

 "sequence_length": self.sequence_length,
 "input_dim": self.input_dim,
 })
 return config

You would use this PositionEmbedding layer just like a regular Embedding layer. Let’s
see it in action!

PUTTING IT ALL TOGETHER: A TEXT-CLASSIFICATION TRANSFORMER

All you have to do to start taking word order into account is swap the old Embedding
layer with our position-aware version.

vocab_size = 20000
sequence_length = 600
embed_dim = 256
num_heads = 2
dense_dim = 32

inputs = keras.Input(shape=(None,), dtype="int64")
x = PositionalEmbedding(sequence_length, vocab_size, embed_dim)(inputs)
x = TransformerEncoder(embed_dim, dense_dim, num_heads)(x)
x = layers.GlobalMaxPooling1D()(x)
x = layers.Dropout(0.5)(x)
outputs = layers.Dense(1, activation="sigmoid")(x)
model = keras.Model(inputs, outputs)
model.compile(optimizer="rmsprop",
 loss="binary_crossentropy",
 metrics=["accuracy"])
model.summary()

callbacks = [
 keras.callbacks.ModelCheckpoint("full_transformer_encoder.keras",
 save_best_only=True)
]
model.fit(int_train_ds, validation_data=int_val_ds, epochs=20,

callbacks=callbacks)
model = keras.models.load_model(
 "full_transformer_encoder.keras",
 custom_objects={"TransformerEncoder": TransformerEncoder,
 "PositionalEmbedding": PositionalEmbedding})
print(f"Test acc: {model.evaluate(int_test_ds)[1]:.3f}")

We get to 88.3% test accuracy, a solid improvement that clearly demonstrates the
value of word order information for text classification. This is our best sequence
model so far! However, it’s still one notch below the bag-of-words approach.

Listing 11.25 Combining the Transformer encoder with positional embedding

Look here!

349The Transformer architecture

11.4.4 When to use sequence models over bag-of-words models

You may sometimes hear that bag-of-words methods are outdated, and that Transformer-
based sequence models are the way to go, no matter what task or dataset you’re look-
ing at. This is definitely not the case: a small stack of Dense layers on top of a bag-of-
bigrams remains a perfectly valid and relevant approach in many cases. In fact, among
the various techniques that we’ve tried on the IMDB dataset throughout this chapter,
the best performing so far was the bag-of-bigrams!

 So, when should you prefer one approach over the other?
 In 2017, my team and I ran a systematic analysis of the performance of various text-

classification techniques across many different types of text datasets, and we discov-
ered a remarkable and surprising rule of thumb for deciding whether to go with a
bag-of-words model or a sequence model (http://mng.bz/AOzK)—a golden constant
of sorts.

 It turns out that when approaching a new text-classification task, you should pay
close attention to the ratio between the number of samples in your training data and
the mean number of words per sample (see figure 11.11). If that ratio is small—less
than 1,500—then the bag-of-bigrams model will perform better (and as a bonus, it will
be much faster to train and to iterate on too). If that ratio is higher than 1,500, then
you should go with a sequence model. In other words, sequence models work best
when lots of training data is available and when each sample is relatively short.

So if you’re classifying 1,000-word long documents, and you have 100,000 of them (a
ratio of 100), you should go with a bigram model. If you’re classifying tweets that are
40 words long on average, and you have 50,000 of them (a ratio of 1,250), you should
also go with a bigram model. But if you increase your dataset size to 500,000 tweets (a
ratio of 12,500), go with a Transformer encoder. What about the IMDB movie review
classification task? We had 20,000 training samples and an average word count of 233,
so our rule of thumb points toward a bigram model, which confirms what we found
in practice.

 This intuitively makes sense: the input of a sequence model represents a richer
and more complex space, and thus it takes more data to map out that space; mean-
while, a plain set of terms is a space so simple that you can train a logistic regression
on top using just a few hundreds or thousands of samples. In addition, the shorter a
sample is, the less the model can afford to discard any of the information it contains—
in particular, word order becomes more important, and discarding it can create ambi-
guity. The sentences “this movie is the bomb” and “this movie was a bomb” have very

Number of samples

Mean sample length

> 1500

< 1500

Sequence model

Bag-of-bigrams

Figure 11.11 A simple heuristic for
selecting a text-classification model:
the ratio between the number of training
samples and the mean number of words
per sample

350 CHAPTER 11 Deep learning for text

close unigram representations, which could confuse a bag-of-words model, but a
sequence model could tell which one is negative and which one is positive. With a lon-
ger sample, word statistics would become more reliable and the topic or sentiment
would be more apparent from the word histogram alone.

 Now, keep in mind that this heuristic rule was developed specifically for text classi-
fication. It may not necessarily hold for other NLP tasks—when it comes to machine
translation, for instance, Transformer shines especially for very long sequences, com-
pared to RNNs. Our heuristic is also just a rule of thumb, rather than a scientific law,
so expect it to work most of the time, but not necessarily every time.

11.5 Beyond text classification: Sequence-to-sequence
learning
You now possess all of the tools you will need to tackle most natural language process-
ing tasks. However, you’ve only seen these tools in action on a single problem: text
classification. This is an extremely popular use case, but there’s a lot more to NLP
than classification. In this section, you’ll deepen your expertise by learning about
sequence-to-sequence models.

 A sequence-to-sequence model takes a sequence as input (often a sentence or
paragraph) and translates it into a different sequence. This is the task at the heart of
many of the most successful applications of NLP:

� Machine translation—Convert a paragraph in a source language to its equivalent
in a target language.

� Text summarization—Convert a long document to a shorter version that retains
the most important information.

� Question answering—Convert an input question into its answer.
� Chatbots—Convert a dialogue prompt into a reply to this prompt, or convert the

history of a conversation into the next reply in the conversation.
� Text generation—Convert a text prompt into a paragraph that completes the prompt.
� Etc.

The general template behind sequence-to-sequence models is described in figure 11.12.
During training,

� An encoder model turns the source sequence into an intermediate representation.
� A decoder is trained to predict the next token i in the target sequence by looking

at both previous tokens (0 to i - 1) and the encoded source sequence.

During inference, we don’t have access to the target sequence—we’re trying to pre-
dict it from scratch. We’ll have to generate it one token at a time:

1 We obtain the encoded source sequence from the encoder.
2 The decoder starts by looking at the encoded source sequence as well as an ini-

tial “seed” token (such as the string "[start]"), and uses them to predict the
first real token in the sequence.

351Beyond text classification: Sequence-to-sequence learning

3 The predicted sequence so far is fed back into the decoder, which generates the
next token, and so on, until it generates a stop token (such as the string
"[end]").

Everything you’ve learned so far can be repurposed to build this new kind of model.
Let’s dive in.

11.5.1 A machine translation example

We’ll demonstrate sequence-to-sequence modeling on a machine translation task.
Machine translation is precisely what Transformer was developed for! We’ll start with a
recurrent sequence model, and we’ll follow up with the full Transformer architecture.

 We’ll be working with an English-to-Spanish translation dataset available at
www.manythings.org/anki/. Let’s download it:

!wget http:/ /storage.googleapis.com/download.tensorflow.org/data/spa-eng.zip
!unzip -q spa-eng.zip

The text file contains one example per line: an English sentence, followed by a tab
character, followed by the corresponding Spanish sentence. Let’s parse this file.

text_file = "spa-eng/spa.txt"
with open(text_file) as f:
 lines = f.read().split("\n")[:-1]
text_pairs = []

how, is, the, weather, today

qué, tiempo, hace, hoy, [end]

[start], qué, tiempo, hace, hoy

how, is, the, weather, today

qué

[start]

Training phase

Inference phase

DecoderEncoder

DecoderEncoder

Figure 11.12 Sequence-to-sequence learning: the source sequence is processed by the
encoder and is then sent to the decoder. The decoder looks at the target sequence so far
and predicts the target sequence offset by one step in the future. During inference, we
generate one target token at a time and feed it back into the decoder.

352 CHAPTER 11 Deep learning for text

for line in lines:
 english, spanish = line.split("\t")
 spanish = "[start] " + spanish + " [end]"
 text_pairs.append((english, spanish))

Our text_pairs look like this:

>>> import random
>>> print(random.choice(text_pairs))
("Soccer is more popular than tennis.",
 "[start] El fútbol es más popular que el tenis. [end]")

Let’s shuffle them and split them into the usual training, validation, and test sets:

import random
random.shuffle(text_pairs)
num_val_samples = int(0.15 * len(text_pairs))
num_train_samples = len(text_pairs) - 2 * num_val_samples
train_pairs = text_pairs[:num_train_samples]
val_pairs = text_pairs[num_train_samples:num_train_samples + num_val_samples]
test_pairs = text_pairs[num_train_samples + num_val_samples:]

Next, let’s prepare two separate TextVectorization layers: one for English and one
for Spanish. We’re going to need to customize the way strings are preprocessed:

� We need to preserve the "[start]" and "[end]" tokens that we’ve inserted. By
default, the characters [and] would be stripped, but we want to keep them
around so we can tell apart the word “start” and the start token "[start]".

� Punctuation is different from language to language! In the Spanish Text-
Vectorization layer, if we’re going to strip punctuation characters, we need to
also strip the character ¿.

Note that for a non-toy translation model, we would treat punctuation characters as sep-
arate tokens rather than stripping them, since we would want to be able to generate cor-
rectly punctuated sentences. In our case, for simplicity, we’ll get rid of all punctuation.

import tensorflow as tf
import string
import re

strip_chars = string.punctuation + "¿"
strip_chars = strip_chars.replace("[", "")
strip_chars = strip_chars.replace("]", "")

def custom_standardization(input_string):
 lowercase = tf.strings.lower(input_string)
 return tf.strings.regex_replace(
 lowercase, f"[{re.escape(strip_chars)}]", "")

Listing 11.26 Vectorizing the English and Spanish text pairs

Iterate over the
lines in the file.

Each line contains an
English phrase and its
Spanish translation,
tab-separated.

We prepend "[start]" and append "[end]" to the Spanish
sentence, to match the template from figure 11.12.

Prepare a custom string
standardization function for the
Spanish TextVectorization layer:
it preserves [and] but strips ¿
(as well as all other characters
from strings.punctuation).

353Beyond text classification: Sequence-to-sequence learning

vocab_size = 15000
sequence_length = 20

source_vectorization = layers.TextVectorization(
 max_tokens=vocab_size,
 output_mode="int",
 output_sequence_length=sequence_length,
)
target_vectorization = layers.TextVectorization(
 max_tokens=vocab_size,
 output_mode="int",
 output_sequence_length=sequence_length + 1,
 standardize=custom_standardization,
)
train_english_texts = [pair[0] for pair in train_pairs]
train_spanish_texts = [pair[1] for pair in train_pairs]
source_vectorization.adapt(train_english_texts)
target_vectorization.adapt(train_spanish_texts)

Finally, we can turn our data into a tf.data pipeline. We want it to return a tuple
(inputs, target) where inputs is a dict with two keys, “encoder_inputs” (the English
sentence) and “decoder_inputs” (the Spanish sentence), and target is the Spanish
sentence offset by one step ahead.

batch_size = 64

def format_dataset(eng, spa):
 eng = source_vectorization(eng)
 spa = target_vectorization(spa)
 return ({
 "english": eng,
 "spanish": spa[:, :-1],
 }, spa[:, 1:])

def make_dataset(pairs):
 eng_texts, spa_texts = zip(*pairs)
 eng_texts = list(eng_texts)
 spa_texts = list(spa_texts)
 dataset = tf.data.Dataset.from_tensor_slices((eng_texts, spa_texts))
 dataset = dataset.batch(batch_size)
 dataset = dataset.map(format_dataset, num_parallel_calls=4)
 return dataset.shuffle(2048).prefetch(16).cache()

train_ds = make_dataset(train_pairs)
val_ds = make_dataset(val_pairs)

Here’s what our dataset outputs look like:

>>> for inputs, targets in train_ds.take(1):
>>> print(f"inputs['english'].shape: {inputs['english'].shape}")
>>> print(f"inputs['spanish'].shape: {inputs['spanish'].shape}")

Listing 11.27 Preparing datasets for the translation task

To keep things simple, we’ll only look at
the top 15,000 words in each language,
and we’ll restrict sentences to 20 words.

The English
layer

The Spanish
layer

Generate Spanish sentences
that have one extra token,
since we’ll need to offset
the sentence by one step
during training.

Learn the vocabulary
of each language.

The input Spanish sentence
doesn’t include the last token
to keep inputs and targets at
the same length.

The target Spanish sentence is
one step ahead. Both are still
the same length (20 words).

Use in-memory
caching to speed up
preprocessing.

354 CHAPTER 11 Deep learning for text

>>> print(f"targets.shape: {targets.shape}")
inputs["encoder_inputs"].shape: (64, 20)
inputs["decoder_inputs"].shape: (64, 20)
targets.shape: (64, 20)

The data is now ready—time to build some models. We’ll start with a recurrent
sequence-to-sequence model before moving on to a Transformer.

11.5.2 Sequence-to-sequence learning with RNNs

Recurrent neural networks dominated sequence-to-sequence learning from 2015–
2017 before being overtaken by Transformer. They were the basis for many real-
world machine-translation systems—as mentioned in chapter 10, Google Translate
circa 2017 was powered by a stack of seven large LSTM layers. It’s still worth learning
about this approach today, as it provides an easy entry point to understanding
sequence-to-sequence models.

 The simplest, naive way to use RNNs to turn a sequence into another sequence is
to keep the output of the RNN at each time step. In Keras, it would look like this:

inputs = keras.Input(shape=(sequence_length,), dtype="int64")
x = layers.Embedding(input_dim=vocab_size, output_dim=128)(inputs)
x = layers.LSTM(32, return_sequences=True)(x)
outputs = layers.Dense(vocab_size, activation="softmax")(x)
model = keras.Model(inputs, outputs)

However, there are two major issues with this approach:

� The target sequence must always be the same length as the source sequence.
In practice, this is rarely the case. Technically, this isn’t critical, as you could
always pad either the source sequence or the target sequence to make their
lengths match.

� Due to the step-by-step nature of RNNs, the model will only be looking at
tokens 0…N in the source sequence in order to predict token N in the target
sequence. This constraint makes this setup unsuitable for most tasks, and
particularly translation. Consider translating “The weather is nice today” to
French—that would be “Il fait beau aujourd’hui.” You’d need to be able
to predict “Il” from just “The,” “Il fait” from just “The weather,” etc., which is
simply impossible.

If you’re a human translator, you’d start by reading the entire source sentence before
starting to translate it. This is especially important if you’re dealing with languages
that have wildly different word ordering, like English and Japanese. And that’s exactly
what standard sequence-to-sequence models do.

 In a proper sequence-to-sequence setup (see figure 11.13), you would first use an
RNN (the encoder) to turn the entire source sequence into a single vector (or set of
vectors). This could be the last output of the RNN, or alternatively, its final internal
state vectors. Then you would use this vector (or vectors) as the initial state of another

355Beyond text classification: Sequence-to-sequence learning

RNN (the decoder), which would look at elements 0…N in the target sequence, and
try to predict step N+1 in the target sequence.

 Let’s implement this in Keras with GRU-based encoders and decoders. The choice
of GRU rather than LSTM makes things a bit simpler, since GRU only has a single
state vector, whereas LSTM has multiple. Let’s start with the encoder.

from tensorflow import keras
from tensorflow.keras import layers

embed_dim = 256
latent_dim = 1024

source = keras.Input(shape=(None,), dtype="int64", name="english")
x = layers.Embedding(vocab_size, embed_dim, mask_zero=True)(source)
encoded_source = layers.Bidirectional(
 layers.GRU(latent_dim), merge_mode="sum")(x)

Next, let’s add the decoder—a simple GRU layer that takes as its initial state the
encoded source sentence. On top of it, we add a Dense layer that produces for each
output step a probability distribution over the Spanish vocabulary.

past_target = keras.Input(shape=(None,), dtype="int64", name="spanish")
x = layers.Embedding(vocab_size, embed_dim, mask_zero=True)(past_target)
decoder_gru = layers.GRU(latent_dim, return_sequences=True)
x = decoder_gru(x, initial_state=encoded_source)
x = layers.Dropout(0.5)(x)
target_next_step = layers.Dense(vocab_size, activation="softmax")(x)
seq2seq_rnn = keras.Model([source, past_target], target_next_step)

During training, the decoder takes as input the entire target sequence, but thanks to
the step-by-step nature of RNNs, it only looks at tokens 0…N in the input to predict

Listing 11.28 GRU-based encoder

Listing 11.29 GRU-based decoder and the end-to-end model

how, is, the, weather, today

qué, tiempo, hace, hoy, [end]

[start], qué, tiempo, hace, hoy

Final output vector,
or final internal state

Initial state

Sequence output

Decoder RNNEncoder RNN

Figure 11.13 A sequence-to-
sequence RNN: an RNN encoder
is used to produce a vector that
encodes the entire source
sequence, which is used as the
initial state for an RNN decoder.

The English source sentence goes here.
Specifying the name of the input enables

us to fit() the model with a dict of inputs.

Don’t forget masking:
it’s critical in this setup.

Our encoded source
sentence is the last output
of a bidirectional GRU.

The Spanish target sentence goes here. Don’t forget masking.

The encoded source sentence
serves as the initial state of
the decoder GRU.

Predicts the
next token

End-to-end model: maps the source
sentence and the target sentence to the

target sentence one step in the future

356 CHAPTER 11 Deep learning for text

token N in the output (which corresponds to the next token in the sequence, since
the output is intended to be offset by one step). This means we only use information
from the past to predict the future, as we should; otherwise we’d be cheating, and our
model would not work at inference time.

 Let’s start training.

seq2seq_rnn.compile(
 optimizer="rmsprop",
 loss="sparse_categorical_crossentropy",
 metrics=["accuracy"])
seq2seq_rnn.fit(train_ds, epochs=15, validation_data=val_ds)

We picked accuracy as a crude way to monitor validation-set performance during
training. We get to 64% accuracy: on average, the model predicts the next word in the
Spanish sentence correctly 64% of the time. However, in practice, next-token accuracy
isn’t a great metric for machine translation models, in particular because it makes the
assumption that the correct target tokens from 0 to N are already known when pre-
dicting token N+1. In reality, during inference, you’re generating the target sentence
from scratch, and you can’t rely on previously generated tokens being 100% correct.
If you work on a real-world machine translation system, you will likely use “BLEU
scores” to evaluate your models—a metric that looks at entire generated sequences
and that seems to correlate well with human perception of translation quality.

 At last, let’s use our model for inference. We’ll pick a few sentences in the test set
and check how our model translates them. We’ll start from the seed token, "[start]",
and feed it into the decoder model, together with the encoded English source sen-
tence. We’ll retrieve a next-token prediction, and we’ll re-inject it into the decoder
repeatedly, sampling one new target token at each iteration, until we get to "[end]"
or reach the maximum sentence length.

import numpy as np
spa_vocab = target_vectorization.get_vocabulary()
spa_index_lookup = dict(zip(range(len(spa_vocab)), spa_vocab))
max_decoded_sentence_length = 20

def decode_sequence(input_sentence):
 tokenized_input_sentence = source_vectorization([input_sentence])
 decoded_sentence = "[start]"
 for i in range(max_decoded_sentence_length):
 tokenized_target_sentence = target_vectorization([decoded_sentence])
 next_token_predictions = seq2seq_rnn.predict(

[tokenized_input_sentence, tokenized_target_sentence])
sampled_token_index = np.argmax(next_token_predictions[0, i, :])

Listing 11.30 Training our recurrent sequence-to-sequence model

Listing 11.31 Translating new sentences with our RNN encoder and decoder

Prepare a dict to convert token
index predictions to string tokens.

Seed
token

Sample the
next token.

357Beyond text classification: Sequence-to-sequence learning

sampled_token = spa_index_lookup[sampled_token_index]
 decoded_sentence += " " + sampled_token
 if sampled_token == "[end]":
 break
 return decoded_sentence

test_eng_texts = [pair[0] for pair in test_pairs]
for _ in range(20):
 input_sentence = random.choice(test_eng_texts)
 print("-")
 print(input_sentence)
 print(decode_sequence(input_sentence))

Note that this inference setup, while very simple, is rather inefficient, since we repro-
cess the entire source sentence and the entire generated target sentence every time
we sample a new word. In a practical application, you’d factor the encoder and the
decoder as two separate models, and your decoder would only run a single step at
each token-sampling iteration, reusing its previous internal state.

 Here are our translation results. Our model works decently well for a toy model,
though it still makes many basic mistakes.

Who is in this room?
[start] quién está en esta habitación [end]
-
That doesn't sound too dangerous.
[start] eso no es muy difícil [end]
-
No one will stop me.
[start] nadie me va a hacer [end]
-
Tom is friendly.
[start] tom es un buen [UNK] [end]

There are many ways this toy model could be improved: We could use a deep stack of
recurrent layers for both the encoder and the decoder (note that for the decoder, this
makes state management a bit more involved). We could use an LSTM instead of a GRU.
And so on. Beyond such tweaks, however, the RNN approach to sequence-to-sequence
learning has a few fundamental limitations:

� The source sequence representation has to be held entirely in the encoder state
vector(s), which puts significant limitations on the size and complexity of the
sentences you can translate. It’s a bit as if a human were translating a sentence
entirely from memory, without looking twice at the source sentence while pro-
ducing the translation.

� RNNs have trouble dealing with very long sequences, since they tend to pro-
gressively forget about the past—by the time you’ve reached the 100th token in
either sequence, little information remains about the start of the sequence.

Listing 11.32 Some sample results from the recurrent translation model

Convert the next
token prediction to
a string and append
it to the generated
sentence.

Exit condition:
either hit max
length or sample
a stop character

358 CHAPTER 11 Deep learning for text

That means RNN-based models can’t hold onto long-term context, which can
be essential for translating long documents.

These limitations are what has led the machine learning community to embrace the
Transformer architecture for sequence-to-sequence problems. Let’s take a look.

11.5.3 Sequence-to-sequence learning with Transformer

Sequence-to-sequence learning is the task where Transformer really shines. Neural
attention enables Transformer models to successfully process sequences that are con-
siderably longer and more complex than those RNNs can handle.

 As a human translating English to Spanish, you’re not going to read the English
sentence one word at a time, keep its meaning in memory, and then generate the
Spanish sentence one word at a time. That may work for a five-word sentence, but
it’s unlikely to work for an entire paragraph. Instead, you’ll probably want to go
back and forth between the source sentence and your translation in progress, and
pay attention to different words in the source as you’re writing down different parts
of your translation.

 That’s exactly what you can achieve with neural attention and Transformers.
You’re already familiar with the Transformer encoder, which uses self-attention to pro-
duce context-aware representations of each token in an input sequence. In a
sequence-to-sequence Transformer, the Transformer encoder would naturally play the
role of the encoder, which reads the source sequence and produces an encoded rep-
resentation of it. Unlike our previous RNN encoder, though, the Transformer
encoder keeps the encoded representation in a sequence format: it’s a sequence of
context-aware embedding vectors.

 The second half of the model is the Transformer decoder. Just like the RNN decoder,
it reads tokens 0…N in the target sequence and tries to predict token N+1. Crucially,
while doing this, it uses neural attention to identify which tokens in the encoded source
sentence are most closely related to the target token it’s currently trying to predict—
perhaps not unlike what a human translator would do. Recall the query-key-value
model: in a Transformer decoder, the target sequence serves as an attention “query”
that is used to to pay closer attention to different parts of the source sequence (the
source sequence plays the roles of both keys and values).

THE TRANSFORMER DECODER

Figure 11.14 shows the full sequence-to-sequence Transformer. Look at the decoder
internals: you’ll recognize that it looks very similar to the Transformer encoder, except
that an extra attention block is inserted between the self-attention block applied to
the target sequence and the dense layers of the exit block.

 Let’s implement it. Like for the TransformerEncoder, we’ll use a Layer subclass.
Before we focus on the call(), method, where the action happens, let’s start by defin-
ing the class constructor, containing the layers we’re going to need.

359Beyond text classification: Sequence-to-sequence learning

class TransformerDecoder(layers.Layer):
 def __init__(self, embed_dim, dense_dim, num_heads, **kwargs):
 super().__init__(**kwargs)
 self.embed_dim = embed_dim
 self.dense_dim = dense_dim
 self.num_heads = num_heads
 self.attention_1 = layers.MultiHeadAttention(
 num_heads=num_heads, key_dim=embed_dim)
 self.attention_2 = layers.MultiHeadAttention(
 num_heads=num_heads, key_dim=embed_dim)
 self.dense_proj = keras.Sequential(

Listing 11.33 The TransformerDecoder

T
ra

n
s

fo
rm

e
rE

n
c

o
d

e
r

T
ra

n
s

fo
rm

e
rD

e
c

o
d

e
r

Encoded source

LayerNormalization

Dense

+

Dense

LayerNormalization

+

MultiHeadAttention

LayerNormalization

Dense

+

Dense

LayerNormalization

+

MultiHeadAttention

LayerNormalization

+

MultiHeadAttention

Source Target

Target offset by one step

Figure 11.14 The TransformerDecoder is similar to the TransformerEncoder, except it
features an additional attention block where the keys and values are the source sequence encoded by
the TransformerEncoder. Together, the encoder and the decoder form an end-to-end Transformer.

360 CHAPTER 11 Deep learning for text

 [layers.Dense(dense_dim, activation="relu"),
 layers.Dense(embed_dim),]
)
 self.layernorm_1 = layers.LayerNormalization()
 self.layernorm_2 = layers.LayerNormalization()
 self.layernorm_3 = layers.LayerNormalization()
 self.supports_masking = True

 def get_config(self):
 config = super().get_config()
 config.update({
 "embed_dim": self.embed_dim,
 "num_heads": self.num_heads,
 "dense_dim": self.dense_dim,
 })
 return config

The call() method is almost a straightforward rendering of the connectivity dia-
gram from figure 11.14. But there’s an additional detail we need to take into
account: causal padding. Causal padding is absolutely critical to successfully training
a sequence-to-sequence Transformer. Unlike an RNN, which looks at its input one
step at a time, and thus will only have access to steps 0...N to generate output step N
(which is token N+1 in the target sequence), the TransformerDecoder is order-agnos-
tic: it looks at the entire target sequence at once. If it were allowed to use its entire
input, it would simply learn to copy input step N+1 to location N in the output. The
model would thus achieve perfect training accuracy, but of course, when running
inference, it would be completely useless, since input steps beyond N aren’t available.

 The fix is simple: we’ll mask the upper half of the pairwise attention matrix to pre-
vent the model from paying any attention to information from the future—only infor-
mation from tokens 0...N in the target sequence should be used when generating
target token N+1. To do this, we’ll add a get_causal_attention_mask(self, inputs)
method to our TransformerDecoder to retrieve an attention mask that we can pass to
our MultiHeadAttention layers.

 def get_causal_attention_mask(self, inputs):
 input_shape = tf.shape(inputs)
 batch_size, sequence_length = input_shape[0], input_shape[1]
 i = tf.range(sequence_length)[:, tf.newaxis]
 j = tf.range(sequence_length)
 mask = tf.cast(i >= j, dtype="int32")
 mask = tf.reshape(mask, (1, input_shape[1], input_shape[1]))
 mult = tf.concat(
 [tf.expand_dims(batch_size, -1),
 tf.constant([1, 1], dtype=tf.int32)], axis=0)
 return tf.tile(mask, mult)

Listing 11.34 TransformerDecoder method that generates a causal mask

This attribute ensures that the layer will
propagate its input mask to its outputs;
masking in Keras is explicitly opt-in. If
you pass a mask to a layer that doesn’t
implement compute_mask() and that
doesn’t expose this supports_masking
attribute, that’s an error.

Generate matrix of shape (sequence_length, sequence_length)
with 1s in one half and 0s in the other.

Replicate it along the
batch axis to get a matrix

of shape (batch_size,
sequence_length,

sequence_length).

361Beyond text classification: Sequence-to-sequence learning

Now we can write down the full call() method implementing the forward pass of the
decoder.

 def call(self, inputs, encoder_outputs, mask=None):
 causal_mask = self.get_causal_attention_mask(inputs)
 if mask is not None:
 padding_mask = tf.cast(
 mask[:, tf.newaxis, :], dtype="int32")
 padding_mask = tf.minimum(padding_mask, causal_mask)
 attention_output_1 = self.attention_1(
 query=inputs,
 value=inputs,
 key=inputs,
 attention_mask=causal_mask)
 attention_output_1 = self.layernorm_1(inputs + attention_output_1)
 attention_output_2 = self.attention_2(
 query=attention_output_1,
 value=encoder_outputs,
 key=encoder_outputs,
 attention_mask=padding_mask,
)
 attention_output_2 = self.layernorm_2(
 attention_output_1 + attention_output_2)
 proj_output = self.dense_proj(attention_output_2)
 return self.layernorm_3(attention_output_2 + proj_output)

PUTTING IT ALL TOGETHER: A TRANSFORMER FOR MACHINE TRANSLATION

The end-to-end Transformer is the model we’ll be training. It maps the source
sequence and the target sequence to the target sequence one step in the future. It
straightforwardly combines the pieces we’ve built so far: PositionalEmbedding layers,
the TransformerEncoder, and the TransformerDecoder. Note that both the Trans-
formerEncoder and the TransformerDecoder are shape-invariant, so you could be
stacking many of them to create a more powerful encoder or decoder. In our exam-
ple, we’ll stick to a single instance of each.

embed_dim = 256
dense_dim = 2048
num_heads = 8

encoder_inputs = keras.Input(shape=(None,), dtype="int64", name="english")
x = PositionalEmbedding(sequence_length, vocab_size, embed_dim)(encoder_inputs)
encoder_outputs = TransformerEncoder(embed_dim, dense_dim, num_heads)(x)

decoder_inputs = keras.Input(shape=(None,), dtype="int64", name="spanish")
x = PositionalEmbedding(sequence_length, vocab_size, embed_dim)(decoder_inputs)
x = TransformerDecoder(embed_dim, dense_dim, num_heads)(x, encoder_outputs)
x = layers.Dropout(0.5)(x)

Listing 11.35 The forward pass of the TransformerDecoder

Listing 11.36 End-to-end Transformer

Retrieve
the causal

mask.
Prepare the input mask (that
describes padding locations
in the target sequence).

Merge the
two masks

together. Pass the causal mask to the
first attention layer, which
performs self-attention over
the target sequence.

Pass the combined mask to the
second attention layer, which
relates the source sequence to
the target sequence.

Encode the
source sentence.

Encode the target sentence and combine
it with the encoded source sentence.

362 CHAPTER 11 Deep learning for text

decoder_outputs = layers.Dense(vocab_size, activation="softmax")(x)
transformer = keras.Model([encoder_inputs, decoder_inputs], decoder_outputs)

We’re now ready to train our model—we get to 67% accuracy, a good deal above the
GRU-based model.

transformer.compile(
 optimizer="rmsprop",
 loss="sparse_categorical_crossentropy",
 metrics=["accuracy"])
transformer.fit(train_ds, epochs=30, validation_data=val_ds)

Finally, let’s try using our model to translate never-seen-before English sentences from
the test set. The setup is identical to what we used for the sequence-to-sequence RNN
model.

import numpy as np
spa_vocab = target_vectorization.get_vocabulary()
spa_index_lookup = dict(zip(range(len(spa_vocab)), spa_vocab))
max_decoded_sentence_length = 20

def decode_sequence(input_sentence):
 tokenized_input_sentence = source_vectorization([input_sentence])
 decoded_sentence = "[start]"
 for i in range(max_decoded_sentence_length):
 tokenized_target_sentence = target_vectorization(
 [decoded_sentence])[:, :-1]
 predictions = transformer(
 [tokenized_input_sentence, tokenized_target_sentence])
 sampled_token_index = np.argmax(predictions[0, i, :])
 sampled_token = spa_index_lookup[sampled_token_index]
 decoded_sentence += " " + sampled_token
 if sampled_token == "[end]":
 break
 return decoded_sentence

test_eng_texts = [pair[0] for pair in test_pairs]
for _ in range(20):
 input_sentence = random.choice(test_eng_texts)
 print("-")
 print(input_sentence)
 print(decode_sequence(input_sentence))

Subjectively, the Transformer seems to perform significantly better than the GRU-
based translation model. It’s still a toy model, but it’s a better toy model.

Listing 11.37 Training the sequence-to-sequence Transformer

Listing 11.38 Translating new sentences with our Transformer model

Predict a word for each output position.

Sample the
next token.

Convert the
next token
prediction to
a string, and
append it to
the generated
sentence.

Exit condition

363Summary

This is a song I learned when I was a kid.
[start] esta es una canción que aprendí cuando era chico [end]
-
She can play the piano.
[start] ella puede tocar piano [end]
-
I'm not who you think I am.
[start] no soy la persona que tú creo que soy [end]
-
It may have rained a little last night.
[start] puede que llueve un poco el pasado [end]

That concludes this chapter on natural language processing—you just went from the
very basics to a fully fledged Transformer that can translate from English to Spanish.
Teaching machines to make sense of language is the latest superpower you can add to
your collection.

Summary
� There are two kinds of NLP models: bag-of-words models that process sets of words

or N-grams without taking into account their order, and sequence models that pro-
cess word order. A bag-of-words model is made of Dense layers, while a sequence
model could be an RNN, a 1D convnet, or a Transformer.

� When it comes to text classification, the ratio between the number of samples
in your training data and the mean number of words per sample can help you
determine whether you should use a bag-of-words model or a sequence model.

� Word embeddings are vector spaces where semantic relationships between words are
modeled as distance relationships between vectors that represent those words.

� Sequence-to-sequence learning is a generic, powerful learning framework that can be
applied to solve many NLP problems, including machine translation. A sequence-
to-sequence model is made of an encoder, which processes a source sequence,
and a decoder, which tries to predict future tokens in target sequence by looking
at past tokens, with the help of the encoder-processed source sequence.

� Neural attention is a way to create context-aware word representations. It’s the
basis for the Transformer architecture.

� The Transformer architecture, which consists of a TransformerEncoder and a
TransformerDecoder, yields excellent results on sequence-to-sequence tasks.
The first half, the TransformerEncoder, can also be used for text classification
or any sort of single-input NLP task.

Listing 11.39 Some sample results from the Transformer translation model

While the source sentence wasn’t
gendered, this translation assumes
a male speaker. Keep in mind that
translation models will often make

unwarranted assumptions about
their input data, which leads to

algorithmic bias. In the worst
cases, a model might hallucinate
memorized information that has
nothing to do with the data it’s

currently processing.

364

Generative deep learning

The potential of artificial intelligence to emulate human thought processes goes
beyond passive tasks such as object recognition and mostly reactive tasks such as
driving a car. It extends well into creative activities. When I first made the claim that
in a not-so-distant future, most of the cultural content that we consume will be cre-
ated with substantial help from AIs, I was met with utter disbelief, even from long-
time machine learning practitioners. That was in 2014. Fast-forward a few years,
and the disbelief had receded at an incredible speed. In the summer of 2015, we
were entertained by Google’s DeepDream algorithm turning an image into a psy-
chedelic mess of dog eyes and pareidolic artifacts; in 2016, we started using smart-
phone applications to turn photos into paintings of various styles. In the summer of
2016, an experimental short movie, Sunspring, was directed using a script written by

This chapter covers
� Text generation
� DeepDream
� Neural style transfer
� Variational autoencoders
� Generative adversarial networks

365

a Long Short-Term Memory. Maybe you’ve recently listened to music that was tenta-
tively generated by a neural network.

 Granted, the artistic productions we’ve seen from AI so far have been fairly low
quality. AI isn’t anywhere close to rivaling human screenwriters, painters, and compos-
ers. But replacing humans was always beside the point: artificial intelligence isn’t
about replacing our own intelligence with something else, it’s about bringing into our
lives and work more intelligence—intelligence of a different kind. In many fields, but
especially in creative ones, AI will be used by humans as a tool to augment their own
capabilities: more augmented intelligence than artificial intelligence.

 A large part of artistic creation consists of simple pattern recognition and technical
skill. And that’s precisely the part of the process that many find less attractive or even
dispensable. That’s where AI comes in. Our perceptual modalities, our language, and
our artwork all have statistical structure. Learning this structure is what deep learning
algorithms excel at. Machine learning models can learn the statistical latent space of
images, music, and stories, and they can then sample from this space, creating new art-
works with characteristics similar to those the model has seen in its training data.
Naturally, such sampling is hardly an act of artistic creation in itself. It’s a mere mathe-
matical operation: the algorithm has no grounding in human life, human emotions,
or our experience of the world; instead, it learns from an experience that has little in
common with ours. It’s only our interpretation, as human spectators, that will give
meaning to what the model generates. But in the hands of a skilled artist, algorithmic
generation can be steered to become meaningful—and beautiful. Latent space sam-
pling can become a brush that empowers the artist, augments our creative affor-
dances, and expands the space of what we can imagine. What’s more, it can make
artistic creation more accessible by eliminating the need for technical skill and prac-
tice—setting up a new medium of pure expression, factoring art apart from craft.

 Iannis Xenakis, a visionary pioneer of electronic and algorithmic music, beauti-
fully expressed this same idea in the 1960s, in the context of the application of auto-
mation technology to music composition:1

Freed from tedious calculations, the composer is able to devote himself to the general
problems that the new musical form poses and to explore the nooks and crannies of this
form while modifying the values of the input data. For example, he may test all
instrumental combinations from soloists, to chamber orchestras, to large orchestras. With
the aid of electronic computers the composer becomes a sort of pilot: he presses the buttons,
introduces coordinates, and supervises the controls of a cosmic vessel sailing in the space
of sound, across sonic constellations and galaxies that he could formerly glimpse only as
a distant dream.

In this chapter, we’ll explore from various angles the potential of deep learning to
augment artistic creation. We’ll review sequence data generation (which can be

1 Iannis Xenakis, “Musiques formelles: nouveaux principes formels de composition musicale,” special issue of
La Revue musicale, nos. 253–254 (1963).

366 CHAPTER 12 Generative deep learning

used to generate text or music), DeepDream, and image generation using both vari-
ational autoencoders and generative adversarial networks. We’ll get your computer
to dream up content never seen before; and maybe we’ll get you to dream, too,
about the fantastic possibilities that lie at the intersection of technology and art.
Let’s get started.

12.1 Text generation
In this section, we’ll explore how recurrent neural networks can be used to generate
sequence data. We’ll use text generation as an example, but the exact same tech-
niques can be generalized to any kind of sequence data: you could apply it to
sequences of musical notes in order to generate new music, to timeseries of brush-
stroke data (perhaps recorded while an artist paints on an iPad) to generate paintings
stroke by stroke, and so on.

 Sequence data generation is in no way limited to artistic content generation. It
has been successfully applied to speech synthesis and to dialogue generation for
chatbots. The Smart Reply feature that Google released in 2016, capable of automat-
ically generating a selection of quick replies to emails or text messages, is powered
by similar techniques.

12.1.1 A brief history of generative deep learning for sequence generation

In late 2014, few people had ever seen the initials LSTM, even in the machine learn-
ing community. Successful applications of sequence data generation with recurrent
networks only began to appear in the mainstream in 2016. But these techniques have
a fairly long history, starting with the development of the LSTM algorithm in 1997
(discussed in chapter 10). This new algorithm was used early on to generate text char-
acter by character.

 In 2002, Douglas Eck, then at Schmidhuber’s lab in Switzerland, applied LSTM to
music generation for the first time, with promising results. Eck is now a researcher at
Google Brain, and in 2016 he started a new research group there, called Magenta,
focused on applying modern deep learning techniques to produce engaging music.
Sometimes good ideas take 15 years to get started.

 In the late 2000s and early 2010s, Alex Graves did important pioneering work on
using recurrent networks for sequence data generation. In particular, his 2013 work
on applying recurrent mixture density networks to generate human-like handwriting
using timeseries of pen positions is seen by some as a turning point.2 This specific
application of neural networks at that specific moment in time captured for me the
notion of machines that dream and was a significant inspiration around the time I
started developing Keras. Graves left a similar commented-out remark hidden in a
2013 LaTeX file uploaded to the preprint server arXiv: “Generating sequential data is

2 Alex Graves, “Generating Sequences With Recurrent Neural Networks,” arXiv (2013), https://arxiv.org/
abs/1308.0850.

367Text generation

the closest computers get to dreaming.” Several years later, we take a lot of these devel-
opments for granted, but at the time it was difficult to watch Graves’s demonstrations
and not walk away awe-inspired by the possibilities. Between 2015 and 2017, recurrent
neural networks were successfully used for text and dialogue generation, music gener-
ation, and speech synthesis.

 Then around 2017–2018, the Transformer architecture started taking over recur-
rent neural networks, not just for supervised natural language processing tasks, but
also for generative sequence models—in particular language modeling (word-level text
generation). The best-known example of a generative Transformer would be GPT-3, a
175 billion parameter text-generation model trained by the startup OpenAI on an
astoundingly large text corpus, including most digitally available books, Wikipedia,
and a large fraction of a crawl of the entire internet. GPT-3 made headlines in 2020
due to its capability to generate plausible-sounding text paragraphs on virtually any
topic, a prowess that has fed a short-lived hype wave worthy of the most torrid AI
summer.

12.1.2 How do you generate sequence data?

The universal way to generate sequence data in deep learning is to train a model (usu-
ally a Transformer or an RNN) to predict the next token or next few tokens in a
sequence, using the previous tokens as input. For instance, given the input “the cat is on
the,” the model is trained to predict the target “mat,” the next word. As usual when
working with text data, tokens are typically words or characters, and any network that
can model the probability of the next token given the previous ones is called a language
model. A language model captures the latent space of language: its statistical structure.

 Once you have such a trained language model, you can sample from it (generate
new sequences): you feed it an initial string of text (called conditioning data), ask it to
generate the next character or the next word (you can even generate several tokens at
once), add the generated output back to the input data, and repeat the process many
times (see figure 12.1). This loop allows you to generate sequences of arbitrary length
that reflect the structure of the data on which the model was trained: sequences that
look almost like human-written sentences.

Language
model

Initial text

Probability
distribution over

next wordInitial text
Sampled next

word

Sampling
strategy

matThe cat sat on the

Language
model

...

Sampling
strategy

whichThe cat sat on the mat

Figure 12.1 The process of word-by-word text generation using a language model

368 CHAPTER 12 Generative deep learning

12.1.3 The importance of the sampling strategy

When generating text, the way you choose the next token is crucially important. A
naive approach is greedy sampling, consisting of always choosing the most likely next
character. But such an approach results in repetitive, predictable strings that don’t
look like coherent language. A more interesting approach makes slightly more sur-
prising choices: it introduces randomness in the sampling process by sampling from
the probability distribution for the next character. This is called stochastic sampling
(recall that stochasticity is what we call randomness in this field). In such a setup, if a
word has probability 0.3 of being next in the sentence according to the model, you’ll
choose it 30% of the time. Note that greedy sampling can also be cast as sampling
from a probability distribution: one where a certain word has probability 1 and all oth-
ers have probability 0.

 Sampling probabilistically from the softmax output of the model is neat: it allows
even unlikely words to be sampled some of the time, generating more interesting-
looking sentences and sometimes showing creativity by coming up with new, realistic-
sounding sentences that didn’t occur in the training data. But there’s one issue with
this strategy: it doesn’t offer a way to control the amount of randomness in the sampling
process.

 Why would you want more or less randomness? Consider an extreme case: pure
random sampling, where you draw the next word from a uniform probability distribu-
tion, and every word is equally likely. This scheme has maximum randomness; in
other words, this probability distribution has maximum entropy. Naturally, it won’t
produce anything interesting. At the other extreme, greedy sampling doesn’t produce
anything interesting, either, and has no randomness: the corresponding probability
distribution has minimum entropy. Sampling from the “real” probability distribu-
tion—the distribution that is output by the model’s softmax function—constitutes an
intermediate point between these two extremes. But there are many other intermedi-
ate points of higher or lower entropy that you may want to explore. Less entropy will
give the generated sequences a more predictable structure (and thus they will poten-
tially be more realistic looking), whereas more entropy will result in more surprising
and creative sequences. When sampling from generative models, it’s always good to
explore different amounts of randomness in the generation process. Because we—
humans—are the ultimate judges of how interesting the generated data is, interesting-
ness is highly subjective, and there’s no telling in advance where the point of optimal
entropy lies.

 In order to control the amount of stochasticity in the sampling process, we’ll intro-
duce a parameter called the softmax temperature, which characterizes the entropy of the
probability distribution used for sampling: it characterizes how surprising or predict-
able the choice of the next word will be. Given a temperature value, a new probability
distribution is computed from the original one (the softmax output of the model) by
reweighting it in the following way.

369Text generation

import numpy as np
def reweight_distribution(original_distribution, temperature=0.5):
 distribution = np.log(original_distribution) / temperature
 distribution = np.exp(distribution)
 return distribution / np.sum(distribution)

Higher temperatures result in sampling distributions of higher entropy that will gener-
ate more surprising and unstructured generated data, whereas a lower temperature will
result in less randomness and much more predictable generated data (see figure 12.2).

12.1.4 Implementing text generation with Keras

Let’s put these ideas into practice in a Keras implementation. The first thing you need
is a lot of text data that you can use to learn a language model. You can use any suffi-
ciently large text file or set of text files—Wikipedia, The Lord of the Rings, and so on.

 In this example, we’ll keep working with the IMDB movie review dataset from the
last chapter, and we’ll learn to generate never-read-before movie reviews. As such, our
language model will be a model of the style and topics of these movie reviews specifi-
cally, rather than a general model of the English language.

Listing 12.1 Reweighting a probability distribution to a different temperature

original_distribution is a 1D NumPy array of probability
values that must sum to 1. temperature is a factor
quantifying the entropy of the output distribution.

Returns a reweighted version of the original distribution. The sum of the distribution
may no longer be 1, so you divide it by its sum to obtain the new distribution.

temperature = 0.01 temperature = 0.2 temperature = 0.4

temperature = 0.6

Elements (words)P
ro

b
a
b
ili

ty
 o

f
sa

m
p
lin

g
 e

le
m

e
n
t

temperature = 0.8 temperature = 1.0

Figure 12.2 Different reweightings of one probability distribution. Low temperature = more
deterministic, high temperature = more random.

370 CHAPTER 12 Generative deep learning

PREPARING THE DATA

Just like in the previous chapter, let’s download and uncompress the IMDB movie
reviews dataset.

!wget https:/ /ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz
!tar -xf aclImdb_v1.tar.gz

You’re already familiar with the structure of the data: we get a folder named aclImdb
containing two subfolders, one for negative-sentiment movie reviews, and one for
positive-sentiment reviews. There’s one text file per review. We’ll call text_dataset_
from_directory with label_mode=None to create a dataset that reads from these files
and yields the text content of each file.

import tensorflow as tf
from tensorflow import keras
dataset = keras.utils.text_dataset_from_directory(
 directory="aclImdb", label_mode=None, batch_size=256)
dataset = dataset.map(lambda x: tf.strings.regex_replace(x, "
", " "))

Now let’s use a TextVectorization layer to compute the vocabulary we’ll be working
with. We’ll only use the first sequence_length words of each review: our TextVector-
ization layer will cut off anything beyond that when vectorizing a text.

from tensorflow.keras.layers import TextVectorization

sequence_length = 100
vocab_size = 15000
text_vectorization = TextVectorization(
 max_tokens=vocab_size,
 output_mode="int",
 output_sequence_length=sequence_length,
)
text_vectorization.adapt(dataset)

Let’s use the layer to create a language modeling dataset where input samples are vec-
torized texts, and corresponding targets are the same texts offset by one word.

def prepare_lm_dataset(text_batch):
 vectorized_sequences = text_vectorization(text_batch)

Listing 12.2 Downloading and uncompressing the IMDB movie reviews dataset

Listing 12.3 Creating a dataset from text files (one file = one sample)

Listing 12.4 Preparing a TextVectorization layer

Listing 12.5 Setting up a language modeling dataset

Strip the
 HTML tag that occurs in many of the
reviews. This did not matter much for text classification,

but we wouldn’t want to generate

tags in this example!

We’ll only consider the top 15,000 most
common words—anything else will be treated
as the out-of-vocabulary token, "[UNK]".

We want to return integer
word index sequences.

We’ll work with inputs and targets
of length 100 (but since we’ll offset the
targets by 1, the model will actually
see sequences of length 99).

Convert a batch of texts (strings)
to a batch of integer sequences.

371Text generation

 x = vectorized_sequences[:, :-1]
 y = vectorized_sequences[:, 1:]
 return x, y

lm_dataset = dataset.map(prepare_lm_dataset, num_parallel_calls=4)

A TRANSFORMER-BASED SEQUENCE-TO-SEQUENCE MODEL

We’ll train a model to predict a probability distribution over the next word in a sen-
tence, given a number of initial words. When the model is trained, we’ll feed it with a
prompt, sample the next word, add that word back to the prompt, and repeat, until
we’ve generated a short paragraph.

 Like we did for temperature forecasting in chapter 10, we could train a model that
takes as input a sequence of N words and simply predicts word N+1. However, there
are several issues with this setup in the context of sequence generation.

 First, the model would only learn to produce predictions when N words were avail-
able, but it would be useful to be able to start predicting with fewer than N words.
Otherwise we’d be constrained to only use relatively long prompts (in our implemen-
tation, N=100 words). We didn’t have this need in chapter 10.

 Second, many of our training sequences will be mostly overlapping. Consider N = 4.
The text “A complete sentence must have, at minimum, three things: a subject, verb,
and an object” would be used to generate the following training sequences:

� “A complete sentence must”
� “complete sentence must have”
� “sentence must have at”
� and so on, until “verb and an object”

A model that treats each such sequence as an independent sample would have to do a
lot of redundant work, re-encoding multiple times subsequences that it has largely
seen before. In chapter 10, this wasn’t much of a problem, because we didn’t have that
many training samples in the first place, and we needed to benchmark dense and con-
volutional models, for which redoing the work every time is the only option. We could
try to alleviate this redundancy problem by using strides to sample our sequences—
skipping a few words between two consecutive samples. But that would reduce our
number of training samples while only providing a partial solution.

 To address these two issues, we’ll use a sequence-to-sequence model: we’ll feed sequences
of N words (indexed from 0 to N) into our model, and we’ll predict the sequence offset
by one (from 1 to N+1). We’ll use causal masking to make sure that, for any i, the model
will only be using words from 0 to i in order to predict the word i + 1. This means that
we’re simultaneously training the model to solve N mostly overlapping but different
problems: predicting the next words given a sequence of 1 <= i <= N prior words (see fig-
ure 12.3). At generation time, even if you only prompt the model with a single word, it
will be able to give you a probability distribution for the next possible words.

Create inputs by cutting
off the last word of the
sequences.

Create targets by offsetting
the sequences by 1.

372 CHAPTER 12 Generative deep learning

Note that we could have used a similar sequence-to-sequence setup on our tempera-
ture forecasting problem in chapter 10: given a sequence of 120 hourly data points,
learn to generate a sequence of 120 temperatures offset by 24 hours in the future.
You’d be not only solving the initial problem, but also solving the 119 related prob-
lems of forecasting temperature in 24 hours, given 1 <= i < 120 prior hourly data
points. If you try to retrain the RNNs from chapter 10 in a sequence-to-sequence
setup, you’ll find that you get similar but incrementally worse results, because the con-
straint of solving these additional 119 related problems with the same model inter-
feres slightly with the task we actually do care about.

 In the previous chapter, you learned about the setup you can use for sequence-to-
sequence learning in the general case: feed the source sequence into an encoder, and
then feed both the encoded sequence and the target sequence into a decoder that tries
to predict the same target sequence offset by one step. When you’re doing text genera-
tion, there is no source sequence: you’re just trying to predict the next tokens in the tar-
get sequence given past tokens, which we can do using only the decoder. And thanks to
causal padding, the decoder will only look at words 0…N to predict the word N+1.

 Let’s implement our model—we’re going to reuse the building blocks we created
in chapter 11: PositionalEmbedding and TransformerDecoder.

from tensorflow.keras import layers
embed_dim = 256
latent_dim = 2048
num_heads = 2

inputs = keras.Input(shape=(None,), dtype="int64")
x = PositionalEmbedding(sequence_length, vocab_size, embed_dim)(inputs)
x = TransformerDecoder(embed_dim, latent_dim, num_heads)(x, x)
outputs = layers.Dense(vocab_size, activation="softmax")(x)
model = keras.Model(inputs, outputs)
model.compile(loss="sparse_categorical_crossentropy", optimizer="rmsprop")

12.1.5 A text-generation callback with variable-temperature sampling

We’ll use a callback to generate text using a range of different temperatures after
every epoch. This allows you to see how the generated text evolves as the model
begins to converge, as well as the impact of temperature in the sampling strategy. To

Listing 12.6 A simple Transformer-based language model

Next word pred ct on- i i

Se uenc -t -sequenceq e o

mod li ge n

the cat sat on the mat

the cat sat on the mat

the cat sat on the mat

the cat sat on the mat

the cat sat on the mat

the cat sat on the mat

Figure 12.3 Compared to plain next-
word prediction, sequence-to-sequence
modeling simultaneously optimizes for
multiple prediction problems.

Softmax over possible
vocabulary words, com-

puted for each output
sequence timestep.

373Text generation

seed text generation, we’ll use the prompt “this movie”: all of our generated texts
will start with this.

import numpy as np

tokens_index = dict(enumerate(text_vectorization.get_vocabulary()))

def sample_next(predictions, temperature=1.0):
 predictions = np.asarray(predictions).astype("float64")
 predictions = np.log(predictions) / temperature
 exp_preds = np.exp(predictions)
 predictions = exp_preds / np.sum(exp_preds)
 probas = np.random.multinomial(1, predictions, 1)
 return np.argmax(probas)

class TextGenerator(keras.callbacks.Callback):
 def __init__(self,
 prompt,
 generate_length,
 model_input_length,
 temperatures=(1.,),
 print_freq=1):
 self.prompt = prompt
 self.generate_length = generate_length
 self.model_input_length = model_input_length
 self.temperatures = temperatures
 self.print_freq = print_freq

 def on_epoch_end(self, epoch, logs=None):
 if (epoch + 1) % self.print_freq != 0:
 return
 for temperature in self.temperatures:
 print("== Generating with temperature", temperature)
 sentence = self.prompt
 for i in range(self.generate_length):
 tokenized_sentence = text_vectorization([sentence])
 predictions = self.model(tokenized_sentence)
 next_token = sample_next(predictions[0, i, :])
 sampled_token = tokens_index[next_token]
 sentence += " " + sampled_token
 print(sentence)

prompt = "This movie"
text_gen_callback = TextGenerator(
 prompt,
 generate_length=50,
 model_input_length=sequence_length,
 temperatures=(0.2, 0.5, 0.7, 1., 1.5))

Let’s fit() this thing.

model.fit(lm_dataset, epochs=200, callbacks=[text_gen_callback])

Listing 12.7 The text-generation callback

Listing 12.8 Fitting the language model

Dict that maps word indices back to
strings, to be used for text decoding

Implements variable-
temperature
sampling from a
probability
distribution

Prompt that
we use to seed
text generation

How many words
to generate

Range of
temperatures to
use for sampling

When generating
text, we start from

our prompt.

Feed the current
sequence into our model.

Retrieve the
predictions for
the last timestep,
and use them to
sample a new
word.

Append the new word
to the current sequence

and repeat.

We’ll use a diverse range of
temperatures to sample text,
to demonstrate the effect of
temperature on text generation.

374 CHAPTER 12 Generative deep learning

Here are some cherrypicked examples of what we’re able to generate after 200 epochs
of training. Note that punctuation isn’t part of our vocabulary, so none of our gener-
ated text has any punctuation:

� With temperature=0.2
– “this movie is a [UNK] of the original movie and the first half hour of the

movie is pretty good but it is a very good movie it is a good movie for the time
period”

– “this movie is a [UNK] of the movie it is a movie that is so bad that it is a
[UNK] movie it is a movie that is so bad that it makes you laugh and cry at
the same time it is not a movie i dont think ive ever seen”

� With temperature=0.5
– “this movie is a [UNK] of the best genre movies of all time and it is not a

good movie it is the only good thing about this movie i have seen it for the
first time and i still remember it being a [UNK] movie i saw a lot of years”

– “this movie is a waste of time and money i have to say that this movie was a
complete waste of time i was surprised to see that the movie was made up of a
good movie and the movie was not very good but it was a waste of time and”

� With temperature=0.7
– “this movie is fun to watch and it is really funny to watch all the characters

are extremely hilarious also the cat is a bit like a [UNK] [UNK] and a hat
[UNK] the rules of the movie can be told in another scene saves it from
being in the back of”

– “this movie is about [UNK] and a couple of young people up on a small boat
in the middle of nowhere one might find themselves being exposed to a
[UNK] dentist they are killed by [UNK] i was a huge fan of the book and i
havent seen the original so it”

� With temperature=1.0
– “this movie was entertaining i felt the plot line was loud and touching but on

a whole watch a stark contrast to the artistic of the original we watched the
original version of england however whereas arc was a bit of a little too ordi-
nary the [UNK] were the present parent [UNK]”

– “this movie was a masterpiece away from the storyline but this movie was sim-
ply exciting and frustrating it really entertains friends like this the actors in
this movie try to go straight from the sub thats image and they make it a
really good tv show”

� With temperature=1.5
– “this movie was possibly the worst film about that 80 women its as weird

insightful actors like barker movies but in great buddies yes no decorated
shield even [UNK] land dinosaur ralph ian was must make a play happened
falls after miscast [UNK] bach not really not wrestlemania seriously sam
didnt exist”

375Text generation

– “this movie could be so unbelievably lucas himself bringing our country
wildly funny things has is for the garish serious and strong performances
colin writing more detailed dominated but before and that images gears
burning the plate patriotism we you expected dyan bosses devotion to must
do your own duty and another”

As you can see, a low temperature value results in very boring and repetitive text and
can sometimes cause the generation process to get stuck in a loop. With higher tem-
peratures, the generated text becomes more interesting, surprising, even creative.
With a very high temperature, the local structure starts to break down, and the output
looks largely random. Here, a good generation temperature would seem to be about
0.7. Always experiment with multiple sampling strategies! A clever balance between
learned structure and randomness is what makes generation interesting.

 Note that by training a bigger model, longer, on more data, you can achieve gen-
erated samples that look far more coherent and realistic than this one—the output
of a model like GPT-3 is a good example of what can be done with language models
(GPT-3 is effectively the same thing as what we trained in this example, but with a
deep stack of Transformer decoders, and a much bigger training corpus). But don’t
expect to ever generate any meaningful text, other than through random chance
and the magic of your own interpretation: all you’re doing is sampling data from a
statistical model of which words come after which words. Language models are all
form and no substance.

 Natural language is many things: a communication channel, a way to act on the
world, a social lubricant, a way to formulate, store, and retrieve your own thoughts . . .
These uses of languages are where its meaning originates. A deep learning “language
model,” despite its name, captures effectively none of these fundamental aspects of
language. It cannot communicate (it has nothing to communicate about and no one
to communicate with), it cannot act on the world (it has no agency and no intent), it
cannot be social, and it doesn’t have any thoughts to process with the help of words.
Language is the operating system of the mind, and so, for language to be meaningful,
it needs a mind to leverage it.

 What a language model does is capture the statistical structure of the observable
artifacts—books, online movie reviews, tweets—that we generate as we use language to
live our lives. The fact that these artifacts have a statistical structure at all is a side
effect of how humans implement language. Here’s a thought experiment: what if our
languages did a better job of compressing communications, much like computers do
with most digital communications? Language would be no less meaningful and could
still fulfill its many purposes, but it would lack any intrinsic statistical structure, thus
making it impossible to model as you just did.

376 CHAPTER 12 Generative deep learning

12.1.6 Wrapping up

� You can generate discrete sequence data by training a model to predict the next
token(s), given previous tokens.

� In the case of text, such a model is called a language model. It can be based on
either words or characters.

� Sampling the next token requires a balance between adhering to what the
model judges likely, and introducing randomness.

� One way to handle this is the notion of softmax temperature. Always experi-
ment with different temperatures to find the right one.

12.2 DeepDream
DeepDream is an artistic image-modification technique that uses the representations
learned by convolutional neural networks. It was first released by Google in the sum-
mer of 2015 as an implementation written using the Caffe deep learning library (this
was several months before the first public release of TensorFlow).3 It quickly became
an internet sensation thanks to the trippy pictures it could generate (see, for example,
figure 12.4), full of algorithmic pareidolia artifacts, bird feathers, and dog eyes—a
byproduct of the fact that the DeepDream convnet was trained on ImageNet, where
dog breeds and bird species are vastly overrepresented.

3 Alexander Mordvintsev, Christopher Olah, and Mike Tyka, “DeepDream: A Code Example for Visualizing
Neural Networks,” Google Research Blog, July 1, 2015, http://mng.bz/xXlM.

Figure 12.4 Example of a DeepDream output image

377DeepDream

The DeepDream algorithm is almost identical to the convnet filter-visualization tech-
nique introduced in chapter 9, consisting of running a convnet in reverse: doing gra-
dient ascent on the input to the convnet in order to maximize the activation of a
specific filter in an upper layer of the convnet. DeepDream uses this same idea, with a
few simple differences:

� With DeepDream, you try to maximize the activation of entire layers rather
than that of a specific filter, thus mixing together visualizations of large num-
bers of features at once.

� You start not from blank, slightly noisy input, but rather from an existing
image—thus the resulting effects latch on to preexisting visual patterns, distort-
ing elements of the image in a somewhat artistic fashion.

� The input images are processed at different scales (called octaves), which
improves the quality of the visualizations.

Let’s make some DeepDreams.

12.2.1 Implementing DeepDream in Keras

Let’s start by retrieving a test image to dream with. We’ll use a view of the rugged
Northern California coast in the winter (figure 12.5).

from tensorflow import keras
import matplotlib.pyplot as plt

base_image_path = keras.utils.get_file(
 "coast.jpg", origin="https:/ /img-datasets.s3.amazonaws.com/coast.jpg")

plt.axis("off")
plt.imshow(keras.utils.load_img(base_image_path))

Listing 12.9 Fetching the test image

Figure 12.5 Our test image

378 CHAPTER 12 Generative deep learning

Next, we need a pretrained convnet. In Keras, many such convnets are available:
VGG16, VGG19, Xception, ResNet50, and so on, all available with weights pretrained
on ImageNet. You can implement DeepDream with any of them, but your base model
of choice will naturally affect your visualizations, because different architectures result
in different learned features. The convnet used in the original DeepDream release
was an Inception model, and in practice, Inception is known to produce nice-looking
DeepDreams, so we’ll use the Inception V3 model that comes with Keras.

from tensorflow.keras.applications import inception_v3
model = inception_v3.InceptionV3(weights="imagenet", include_top=False)

We’ll use our pretrained convnet to create a feature exactor model that returns the
activations of the various intermediate layers, listed in the following code. For each
layer, we pick a scalar score that weights the contribution of the layer to the loss we will
seek to maximize during the gradient ascent process. If you want a complete list of
layer names that you can use to pick new layers to play with, just use model.summary().

layer_settings = {
 "mixed4": 1.0,
 "mixed5": 1.5,
 "mixed6": 2.0,
 "mixed7": 2.5,
}
outputs_dict = dict(
 [
 (layer.name, layer.output)
 for layer in [model.get_layer(name)
 for name in layer_settings.keys()]
]
)
feature_extractor = keras.Model(inputs=model.inputs, outputs=outputs_dict)

Next, we’ll compute the loss: the quantity we’ll seek to maximize during the gradient-
ascent process at each processing scale. In chapter 9, for filter visualization, we tried to
maximize the value of a specific filter in a specific layer. Here, we’ll simultaneously
maximize the activation of all filters in a number of layers. Specifically, we’ll maximize
a weighted mean of the L2 norm of the activations of a set of high-level layers. The
exact set of layers we choose (as well as their contribution to the final loss) has a major
influence on the visuals we’ll be able to produce, so we want to make these parameters
easily configurable. Lower layers result in geometric patterns, whereas higher layers
result in visuals in which you can recognize some classes from ImageNet (for example,
birds or dogs). We’ll start from a somewhat arbitrary configuration involving four lay-
ers—but you’ll definitely want to explore many different configurations later.

Listing 12.10 Instantiating a pretrained InceptionV3 model

Listing 12.11 Configuring the contribution of each layer to the DeepDream loss

Layers for which we try to maximize activation, as
well as their weight in the total loss. You can tweak
these setting to obtain new visual effects.

Symbolic outputs
of each layer

Model that returns
the activation values

for every target
layer (as a dict)

379DeepDream

def compute_loss(input_image):
 features = feature_extractor(input_image)
 loss = tf.zeros(shape=())
 for name in features.keys():
 coeff = layer_settings[name]
 activation = features[name]
 loss += coeff * tf.reduce_mean(tf.square(activation[:, 2:-2, 2:-2, :]))
 return loss

Now let’s set up the gradient ascent process that we will run at each octave. You’ll rec-
ognize that it’s the same thing as the filter-visualization technique from chapter 9! The
DeepDream algorithm is simply a multiscale form of filter visualization.

import tensorflow as tf

@tf.function
def gradient_ascent_step(image, learning_rate):
 with tf.GradientTape() as tape:
 tape.watch(image)
 loss = compute_loss(image)
 grads = tape.gradient(loss, image)
 grads = tf.math.l2_normalize(grads)
 image += learning_rate * grads
 return loss, image

def gradient_ascent_loop(image, iterations, learning_rate, max_loss=None):
 for i in range(iterations):
 loss, image = gradient_ascent_step(image, learning_rate)
 if max_loss is not None and loss > max_loss:
 break
 print(f"... Loss value at step {i}: {loss:.2f}")
 return image

Finally, the outer loop of the DeepDream algorithm. First, we’ll define a list of scales
(also called octaves) at which to process the images. We’ll process our image over
three different such “octaves.” For each successive octave, from the smallest to the
largest, we’ll run 20 gradient ascent steps via gradient_ascent_loop() to maximize
the loss we previously defined. Between each octave, we’ll upscale the image by 40%
(1.4x): we’ll start by processing a small image and then increasingly scale it up (see
figure 12.6).

 We define the parameters of this process in the following code. Tweaking these
parameters will allow you to achieve new effects!

Listing 12.12 The DeepDream loss

Listing 12.13 The DeepDream gradient ascent process

Extract
activations.

Initialize the
loss to 0.

We avoid border artifacts by
only involving non-border

pixels in the loss.

We make the training
step fast by compiling
it as a tf.function.

Compute gradients of
DeepDream loss with respect
to the current image.

Normalize gradients
(the same trick we used
in chapter 9).

This runs
gradient

ascent
for a given

image scale
(octave).

Repeatedly
update the image
in a way that
increases the
DeepDream loss.

Break out if the loss crosses a certain
threshold (over-optimizing would
create unwanted image artifacts).

380 CHAPTER 12 Generative deep learning

step = 20.
num_octave = 3
octave_scale = 1.4
iterations = 30
max_loss = 15.

We’re also going to need a couple of utility functions to load and save images.

import numpy as np

def preprocess_image(image_path):
 img = keras.utils.load_img(image_path)
 img = keras.utils.img_to_array(img)
 img = np.expand_dims(img, axis=0)
 img = keras.applications.inception_v3.preprocess_input(img)
 return img

def deprocess_image(img):
 img = img.reshape((img.shape[1], img.shape[2], 3))
 img /= 2.0
 img += 0.5
 img *= 255.
 img = np.clip(img, 0, 255).astype("uint8")
 return img

This is the outer loop. To avoid losing a lot of image detail after each successive scale-
up (resulting in increasingly blurry or pixelated images), we can use a simple trick:

Listing 12.14 Image processing utilities

Dream

Octave 1
Octave 2

Octave 3

Upscale

Detail
reinjection

Detail
reinjection

Dream Upscale Dream

Figure 12.6 The DeepDream process: successive scales of spatial processing (octaves) and detail re-injection
upon upscaling

Gradient ascent step size Number of scales at which
to run gradient ascent

Size ratio between
successive scales

Number of gradient
ascent steps per scaleWe’ll stop the gradient ascent process for

a scale if the loss gets higher than this.

Util function to open, resize,
and format pictures into
appropriate arrays

Util function to convert a
NumPy array into a valid image

Undo inception v3
preprocessing.

Convert to uint8
and clip to the valid
range [0, 255].

381DeepDream

after each scale-up, we’ll re-inject the lost details back into the image, which is possible
because we know what the original image should look like at the larger scale. Given a
small image size S and a larger image size L, we can compute the difference between
the original image resized to size L and the original resized to size S—this difference
quantifies the details lost when going from S to L.

original_img = preprocess_image(base_image_path)
original_shape = original_img.shape[1:3]

successive_shapes = [original_shape]
for i in range(1, num_octave):
 shape = tuple([int(dim / (octave_scale ** i)) for dim in original_shape])
 successive_shapes.append(shape)
successive_shapes = successive_shapes[::-1]

shrunk_original_img = tf.image.resize(original_img, successive_shapes[0])

img = tf.identity(original_img)
for i, shape in enumerate(successive_shapes):
 print(f"Processing octave {i} with shape {shape}")
 img = tf.image.resize(img, shape)
 img = gradient_ascent_loop(
 img, iterations=iterations, learning_rate=step, max_loss=max_loss
)
 upscaled_shrunk_original_img = tf.image.resize(shrunk_original_img, shape)
 same_size_original = tf.image.resize(original_img, shape)
 lost_detail = same_size_original - upscaled_shrunk_original_img
 img += lost_detail
 shrunk_original_img = tf.image.resize(original_img, shape)

keras.utils.save_img("dream.png", deprocess_image(img.numpy()))

NOTE Because the original Inception V3 network was trained to recognize con-
cepts in images of size 299 × 299, and given that the process involves scaling the
images down by a reasonable factor, the DeepDream implementation produces
much better results on images that are somewhere between 300 × 300 and 400 ×
400. Regardless, you can run the same code on images of any size and any ratio.

On a GPU, it only takes a few seconds to run the whole thing. Figure 12.7 shows the
result of our dream configuration on the test image.

 I strongly suggest that you explore what you can do by adjusting which layers you
use in your loss. Layers that are lower in the network contain more-local, less-abstract
representations and lead to dream patterns that look more geometric. Layers that are
higher up lead to more-recognizable visual patterns based on the most common objects

Listing 12.15 Running gradient ascent over multiple successive "octaves"

Load
the test
image.

Compute the target
shape of the image at

different octaves.

Make a copy of the image
(we need to keep the
original around).

Iterate
over the
different
octaves.

Scale up
the dream

image.

Run gradient ascent,
altering the dream.

Scale up the smaller version of the
original image: it will be pixellated.

Compute the high-quality version
of the original image at this size.

The difference between the two is the
detail that was lost when scaling up.

Re-inject lost detail into the dream.

Save the final result.

382 CHAPTER 12 Generative deep learning

found in ImageNet, such as dog eyes, bird feathers, and so on. You can use random gen-
eration of the parameters in the layer_settings dictionary to quickly explore many
different layer combinations. Figure 12.8 shows a range of results obtained on an image
of a delicious homemade pastry using different layer configurations.

Figure 12.7 Running
the DeepDream code on
the test image

Figure 12.8 Trying a
range of DeepDream
configurations on an
example image

383Neural style transfer

12.2.2 Wrapping up

� DeepDream consists of running a convnet in reverse to generate inputs based
on the representations learned by the network.

� The results produced are fun and somewhat similar to the visual artifacts
induced in humans by the disruption of the visual cortex via psychedelics.

� Note that the process isn’t specific to image models or even to convnets. It can
be done for speech, music, and more.

12.3 Neural style transfer
In addition to DeepDream, another major development in deep-learning-driven
image modification is neural style transfer, introduced by Leon Gatys et al. in the sum-
mer of 2015.4 The neural style transfer algorithm has undergone many refinements
and spawned many variations since its original introduction, and it has made its way
into many smartphone photo apps. For simplicity, this section focuses on the formula-
tion described in the original paper.

 Neural style transfer consists of applying the style of a reference image to a target
image while conserving the content of the target image. Figure 12.9 shows an example.

In this context, style essentially means textures, colors, and visual patterns in the
image, at various spatial scales, and the content is the higher-level macrostructure of
the image. For instance, blue-and-yellow circular brushstrokes are considered to be
the style in figure 12.9 (using Starry Night by Vincent Van Gogh), and the buildings in
the Tübingen photograph are considered to be the content.

 The idea of style transfer, which is tightly related to that of texture generation, has
had a long history in the image-processing community prior to the development of
neural style transfer in 2015. But as it turns out, the deep-learning-based implementa-
tions of style transfer offer results unparalleled by what had been previously achieved
with classical computer vision techniques, and they triggered an amazing renaissance
in creative applications of computer vision.

4 Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge, “A Neural Algorithm of Artistic Style,” arXiv (2015),
https://arxiv.org/abs/1508.06576.

Content target Combination imageStyle reference

Figure 12.9 A style transfer example

384 CHAPTER 12 Generative deep learning

 The key notion behind implementing style transfer is the same idea that’s central
to all deep learning algorithms: you define a loss function to specify what you want to
achieve, and you minimize this loss. We know what we want to achieve: conserving the
content of the original image while adopting the style of the reference image. If we
were able to mathematically define content and style, then an appropriate loss function
to minimize would be the following:

loss = (distance(style(reference_image) - style(combination_image)) +
 distance(content(original_image) - content(combination_image)))

Here, distance is a norm function such as the L2 norm, content is a function that
takes an image and computes a representation of its content, and style is a function
that takes an image and computes a representation of its style. Minimizing this loss
causes style(combination_image) to be close to style(reference_image), and
content(combination_image) is close to content(original_image), thus achieving
style transfer as we defined it.

 A fundamental observation made by Gatys et al. was that deep convolutional neu-
ral networks offer a way to mathematically define the style and content functions.
Let’s see how.

12.3.1 The content loss

As you already know, activations from earlier layers in a network contain local informa-
tion about the image, whereas activations from higher layers contain increasingly
global, abstract information. Formulated in a different way, the activations of the dif-
ferent layers of a convnet provide a decomposition of the contents of an image over
different spatial scales. Therefore, you’d expect the content of an image, which is
more global and abstract, to be captured by the representations of the upper layers in
a convnet.

 A good candidate for content loss is thus the L2 norm between the activations of
an upper layer in a pretrained convnet, computed over the target image, and the acti-
vations of the same layer computed over the generated image. This guarantees that, as
seen from the upper layer, the generated image will look similar to the original target
image. Assuming that what the upper layers of a convnet see is really the content of
their input images, this works as a way to preserve image content.

12.3.2 The style loss

The content loss only uses a single upper layer, but the style loss as defined by Gatys
et al. uses multiple layers of a convnet: you try to capture the appearance of the style-
reference image at all spatial scales extracted by the convnet, not just a single scale.
For the style loss, Gatys et al. use the Gram matrix of a layer’s activations: the inner
product of the feature maps of a given layer. This inner product can be understood
as representing a map of the correlations between the layer’s features. These feature

385Neural style transfer

correlations capture the statistics of the patterns of a particular spatial scale, which
empirically correspond to the appearance of the textures found at this scale.

 Hence, the style loss aims to preserve similar internal correlations within the activa-
tions of different layers, across the style-reference image and the generated image. In
turn, this guarantees that the textures found at different spatial scales look similar
across the style-reference image and the generated image.

 In short, you can use a pretrained convnet to define a loss that will do the following:

� Preserve content by maintaining similar high-level layer activations between the
original image and the generated image. The convnet should “see” both the
original image and the generated image as containing the same things.

� Preserve style by maintaining similar correlations within activations for both low-
level layers and high-level layers. Feature correlations capture textures: the gen-
erated image and the style-reference image should share the same textures at
different spatial scales.

Now let’s look at a Keras implementation of the original 2015 neural style transfer
algorithm. As you’ll see, it shares many similarities with the DeepDream implementa-
tion we developed in the previous section.

12.3.3 Neural style transfer in Keras

Neural style transfer can be implemented using any pretrained convnet. Here, we’ll
use the VGG19 network used by Gatys et al. VGG19 is a simple variant of the VGG16
network introduced in chapter 5, with three more convolutional layers.

 Here’s the general process:

� Set up a network that computes VGG19 layer activations for the style-reference
image, the base image, and the generated image at the same time.

� Use the layer activations computed over these three images to define the loss
function described earlier, which we’ll minimize in order to achieve style
transfer.

� Set up a gradient-descent process to minimize this loss function.

Let’s start by defining the paths to the style-reference image and the base image. To
make sure that the processed images are a similar size (widely different sizes make
style transfer more difficult), we’ll later resize them all to a shared height of 400 px.

from tensorflow import keras

base_image_path = keras.utils.get_file(
 "sf.jpg", origin="https:/ /img-datasets.s3.amazonaws.com/sf.jpg")
style_reference_image_path = keras.utils.get_file(
 "starry_night.jpg",
 origin="https:/ /img-datasets.s3.amazonaws.com/starry_night.jpg")

Listing 12.16 Getting the style and content images

Path to the image we
want to transform

Path to the
style image

386 CHAPTER 12 Generative deep learning

original_width, original_height = keras.utils.load_img(base_image_path).size
img_height = 400
img_width = round(original_width * img_height / original_height)

Our content image is shown in figure 12.10, and figure 12.11 shows our style image.

Dimensions of
the generated
picture

Figure 12.10 Content
image: San Francisco
from Nob Hill

Figure 12.11 Style
image: Starry Night
by Van Gogh

387Neural style transfer

We also need some auxiliary functions for loading, preprocessing, and postprocessing
the images that go in and out of the VGG19 convnet.

import numpy as np

def preprocess_image(image_path):
 img = keras.utils.load_img(
 image_path, target_size=(img_height, img_width))
 img = keras.utils.img_to_array(img)
 img = np.expand_dims(img, axis=0)
 img = keras.applications.vgg19.preprocess_input(img)
 return img

def deprocess_image(img):
 img = img.reshape((img_height, img_width, 3))
 img[:, :, 0] += 103.939
 img[:, :, 1] += 116.779
 img[:, :, 2] += 123.68
 img = img[:, :, ::-1]
 img = np.clip(img, 0, 255).astype("uint8")
 return img

Let’s set up the VGG19 network. Like in the DeepDream example, we’ll use the pre-
trained convnet to create a feature exactor model that returns the activations of inter-
mediate layers—all layers in the model this time.

model = keras.applications.vgg19.VGG19(weights="imagenet", include_top=False)

outputs_dict = dict([(layer.name, layer.output) for layer in model.layers])
feature_extractor = keras.Model(inputs=model.inputs, outputs=outputs_dict)

Let’s define the content loss, which will make sure the top layer of the VGG19 convnet
has a similar view of the style image and the combination image.

def content_loss(base_img, combination_img):
 return tf.reduce_sum(tf.square(combination_img - base_img))

Next is the style loss. It uses an auxiliary function to compute the Gram matrix of an
input matrix: a map of the correlations found in the original feature matrix.

Listing 12.17 Auxiliary functions

Listing 12.18 Using a pretrained VGG19 model to create a feature extractor

Listing 12.19 Content loss

Util function to open, resize,
and format pictures into
appropriate arrays

Util function to convert a NumPy
array into a valid image

Zero-centering by removing the mean pixel value
from ImageNet. This reverses a transformation
done by vgg19.preprocess_input.

Converts images from 'BGR' to 'RGB'.
This is also part of the reversal of
vgg19.preprocess_input.

Build a VGG19 model loaded with
pretrained ImageNet weights.

Model that returns the activation values for
every target layer (as a dict)

388 CHAPTER 12 Generative deep learning

def gram_matrix(x):
 x = tf.transpose(x, (2, 0, 1))
 features = tf.reshape(x, (tf.shape(x)[0], -1))
 gram = tf.matmul(features, tf.transpose(features))
 return gram

def style_loss(style_img, combination_img):
 S = gram_matrix(style_img)
 C = gram_matrix(combination_img)
 channels = 3
 size = img_height * img_width
 return tf.reduce_sum(tf.square(S - C)) / (4.0 * (channels ** 2) * (size ** 2))

To these two loss components, you add a third: the total variation loss, which operates
on the pixels of the generated combination image. It encourages spatial continuity in
the generated image, thus avoiding overly pixelated results. You can interpret it as a
regularization loss.

def total_variation_loss(x):
 a = tf.square(
 x[:, : img_height - 1, : img_width - 1, :] - x[:, 1:, : img_width - 1, :]
)
 b = tf.square(
 x[:, : img_height - 1, : img_width - 1, :] - x[:, : img_height - 1, 1:, :]
)
 return tf.reduce_sum(tf.pow(a + b, 1.25))

The loss that you minimize is a weighted average of these three losses. To compute the
content loss, you use only one upper layer—the block5_conv2 layer—whereas for the
style loss, you use a list of layers that spans both low-level and high-level layers. You add
the total variation loss at the end.

 Depending on the style-reference image and content image you’re using, you’ll
likely want to tune the content_weight coefficient (the contribution of the content
loss to the total loss). A higher content_weight means the target content will be more
recognizable in the generated image.

style_layer_names = [
 "block1_conv1",
 "block2_conv1",
 "block3_conv1",
 "block4_conv1",
 "block5_conv1",
]
content_layer_name = "block5_conv2"
total_variation_weight = 1e-6

Listing 12.20 Style loss

Listing 12.21 Total variation loss

Listing 12.22 Defining the final loss that you’ll minimize

List of layers to use
for the style loss

The layer to use for
the content loss

Contribution
weight of the total
variation loss

389Neural style transfer

style_weight = 1e-6
content_weight = 2.5e-8

def compute_loss(combination_image, base_image, style_reference_image):
 input_tensor = tf.concat(
 [base_image, style_reference_image, combination_image], axis=0)
 features = feature_extractor(input_tensor)
 loss = tf.zeros(shape=())
 layer_features = features[content_layer_name]
 base_image_features = layer_features[0, :, :, :]
 combination_features = layer_features[2, :, :, :]
 loss = loss + content_weight * content_loss(
 base_image_features, combination_features
)
 for layer_name in style_layer_names:
 layer_features = features[layer_name]
 style_reference_features = layer_features[1, :, :, :]
 combination_features = layer_features[2, :, :, :]
 style_loss_value = style_loss(
 style_reference_features, combination_features)
 loss += (style_weight / len(style_layer_names)) * style_loss_value

 loss += total_variation_weight * total_variation_loss(combination_image)
 return loss

Finally, let’s set up the gradient-descent process. In the original Gatys et al. paper, opti-
mization is performed using the L-BFGS algorithm, but that’s not available in Tensor-
Flow, so we’ll just do mini-batch gradient descent with the SGD optimizer instead. We’ll
leverage an optimizer feature you haven’t seen before: a learning-rate schedule. We’ll
use it to gradually decrease the learning rate from a very high value (100) to a much
smaller final value (about 20). That way, we’ll make fast progress in the early stages of
training and then proceed more cautiously as we get closer to the loss minimum.

import tensorflow as tf

@tf.function
def compute_loss_and_grads(
 combination_image, base_image, style_reference_image):
 with tf.GradientTape() as tape:
 loss = compute_loss(
 combination_image, base_image, style_reference_image)
 grads = tape.gradient(loss, combination_image)
 return loss, grads

optimizer = keras.optimizers.SGD(
 keras.optimizers.schedules.ExponentialDecay(
 initial_learning_rate=100.0, decay_steps=100, decay_rate=0.96
)
)

Listing 12.23 Setting up the gradient-descent process

Contribution weight
of the style lossContribution

weight of the
content loss

Initialize
the loss

to 0. Add the
content
loss.

Add the
style
loss.

Add the total
variation loss.

We make the training
step fast by compiling
it as a tf.function.

We’ll start with a
learning rate of 100
and decrease it by 4%
every 100 steps.

390 CHAPTER 12 Generative deep learning

base_image = preprocess_image(base_image_path)
style_reference_image = preprocess_image(style_reference_image_path)
combination_image = tf.Variable(preprocess_image(base_image_path))

iterations = 4000
for i in range(1, iterations + 1):
 loss, grads = compute_loss_and_grads(
 combination_image, base_image, style_reference_image
)
 optimizer.apply_gradients([(grads, combination_image)])
 if i % 100 == 0:
 print(f"Iteration {i}: loss={loss:.2f}")
 img = deprocess_image(combination_image.numpy())
 fname = f"combination_image_at_iteration_{i}.png"
 keras.utils.save_img(fname, img)

Figure 12.12 shows what you get. Keep in mind that what this technique achieves is
merely a form of image retexturing, or texture transfer. It works best with style-reference
images that are strongly textured and highly self-similar, and with content targets that
don’t require high levels of detail in order to be recognizable. It typically can’t achieve
fairly abstract feats such as transferring the style of one portrait to another. The algo-
rithm is closer to classical signal processing than to AI, so don’t expect it to work like
magic!

Additionally, note that this style-transfer algorithm is slow to run. But the transforma-
tion operated by the setup is simple enough that it can be learned by a small, fast

Use a Variable to store the
combination image since we’ll be

updating it during training.

Update the
combination
image in a
direction that
reduces the style
transfer loss.

Save the combination
image at regular intervals.

Figure 12.12 Style transfer result

391Generating images with variational autoencoders

feedforward convnet as well—as long as you have appropriate training data available.
Fast style transfer can thus be achieved by first spending a lot of compute cycles to
generate input-output training examples for a fixed style-reference image, using the
method outlined here, and then training a simple convnet to learn this style-specific
transformation. Once that’s done, stylizing a given image is instantaneous: it’s just a
forward pass of this small convnet.

12.3.4 Wrapping up

� Style transfer consists of creating a new image that preserves the contents of a
target image while also capturing the style of a reference image.

� Content can be captured by the high-level activations of a convnet.
� Style can be captured by the internal correlations of the activations of different

layers of a convnet.
� Hence, deep learning allows style transfer to be formulated as an optimization

process using a loss defined with a pretrained convnet.
� Starting from this basic idea, many variants and refinements are possible.

12.4 Generating images with variational autoencoders
The most popular and successful application of creative AI today is image generation:
learning latent visual spaces and sampling from them to create entirely new pictures
interpolated from real ones—pictures of imaginary people, imaginary places, imagi-
nary cats and dogs, and so on.

 In this section and the next, we’ll review some high-level concepts pertaining to
image generation, alongside implementation details relative to the two main tech-
niques in this domain: variational autoencoders (VAEs) and generative adversarial networks
(GANs). Note that the techniques I’ll present here aren’t specific to images—you
could develop latent spaces of sound, music, or even text, using GANs and VAEs—but
in practice, the most interesting results have been obtained with pictures, and that’s
what we’ll focus on here.

12.4.1 Sampling from latent spaces of images

The key idea of image generation is to develop a low-dimensional latent space of repre-
sentations (which, like everything else in deep learning, is a vector space), where any
point can be mapped to a “valid” image: an image that looks like the real thing. The
module capable of realizing this mapping, taking as input a latent point and output-
ting an image (a grid of pixels), is called a generator (in the case of GANs) or a decoder
(in the case of VAEs). Once such a latent space has been learned, you can sample
points from it, and, by mapping them back to image space, generate images that have
never been seen before (see figure 12.13). These new images are the in-betweens of
the training images.

 GANs and VAEs are two different strategies for learning such latent spaces of
image representations, each with its own characteristics. VAEs are great for learning

392 CHAPTER 12 Generative deep learning

latent spaces that are well structured, where specific directions encode a meaningful
axis of variation in the data (see figure 12.14). GANs generate images that can poten-
tially be highly realistic, but the latent space they come from may not have as much
structure and continuity.

Generator / Decoder

Training data

Latent space
of images

(a vector space)

Latent space
vector

Artificial
image

Learning
process

?

Figure 12.13 Learning a latent vector space of images and using it to sample new
images

Figure 12.14 A continuous space of faces generated by Tom White using VAEs

393Generating images with variational autoencoders

12.4.2 Concept vectors for image editing

We already hinted at the idea of a concept vector when we covered word embeddings in
chapter 11. The idea is still the same: given a latent space of representations, or an
embedding space, certain directions in the space may encode interesting axes of vari-
ation in the original data. In a latent space of images of faces, for instance, there may
be a smile vector, such that if latent point z is the embedded representation of a certain
face, then latent point z + s is the embedded representation of the same face, smiling.
Once you’ve identified such a vector, it then becomes possible to edit images by pro-
jecting them into the latent space, moving their representation in a meaningful way,
and then decoding them back to image space. There are concept vectors for essen-
tially any independent dimension of variation in image space—in the case of faces,
you may discover vectors for adding sunglasses to a face, removing glasses, turning a
male face into a female face, and so on. Figure 12.15 is an example of a smile vector, a
concept vector discovered by Tom White, from the Victoria University School of
Design in New Zealand, using VAEs trained on a dataset of faces of celebrities (the
CelebA dataset).

12.4.3 Variational autoencoders

Variational autoencoders, simultaneously discovered by Kingma and Welling in
December 20135 and Rezende, Mohamed, and Wierstra in January 2014,6 are a kind
of generative model that’s especially appropriate for the task of image editing via con-
cept vectors. They’re a modern take on autoencoders (a type of network that aims to
encode an input to a low-dimensional latent space and then decode it back) that
mixes ideas from deep learning with Bayesian inference.

5 Diederik P. Kingma and Max Welling, “Auto-Encoding Variational Bayes,” arXiv (2013), https://arxiv.org/
abs/1312.6114.

6 Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra, “Stochastic Backpropagation and Approxi-
mate Inference in Deep Generative Models,” arXiv (2014), https://arxiv.org/abs/1401.4082.

Figure 12.15 The smile vector

394 CHAPTER 12 Generative deep learning

 A classical image autoencoder takes an image, maps it to a latent vector space via
an encoder module, and then decodes it back to an output with the same dimensions
as the original image, via a decoder module (see figure 12.16). It’s then trained by
using as target data the same images as the input images, meaning the autoencoder
learns to reconstruct the original inputs. By imposing various constraints on the
code (the output of the encoder), you can get the autoencoder to learn more- or
less-interesting latent representations of the data. Most commonly, you’ll constrain
the code to be low-dimensional and sparse (mostly zeros), in which case the encoder
acts as a way to compress the input data into fewer bits of information.

In practice, such classical autoencoders don’t lead to particularly useful or nicely
structured latent spaces. They’re not much good at compression, either. For these rea-
sons, they have largely fallen out of fashion. VAEs, however, augment autoencoders
with a little bit of statistical magic that forces them to learn continuous, highly struc-
tured latent spaces. They have turned out to be a powerful tool for image generation.

 A VAE, instead of compressing its input image into a fixed code in the latent
space, turns the image into the parameters of a statistical distribution: a mean and a
variance. Essentially, this means we’re assuming the input image has been generated
by a statistical process, and that the randomness of this process should be taken into
account during encoding and decoding. The VAE then uses the mean and variance
parameters to randomly sample one element of the distribution, and decodes that
element back to the original input (see figure 12.17). The stochasticity of this pro-
cess improves robustness and forces the latent space to encode meaningful repre-
sentations everywhere: every point sampled in the latent space is decoded to a valid
output.

 In technical terms, here’s how a VAE works:

1 An encoder module turns the input sample, input_img, into two parameters in
a latent space of representations, z_mean and z_log_variance.

2 You randomly sample a point z from the latent normal distribution that’s
assumed to generate the input image, via z = z_mean + exp(z_log_variance) *
epsilon, where epsilon is a random tensor of small values.

3 A decoder module maps this point in the latent space back to the original
input image.

Original
input

Compressed
representation

Reconstructed
input

Encoder Decoder

Figure 12.16 An autoencoder mapping an input x to a compressed representation
and then decoding it back as x'

395Generating images with variational autoencoders

Because epsilon is random, the process ensures that every point that’s close to the
latent location where you encoded input_img (z-mean) can be decoded to something
similar to input_img, thus forcing the latent space to be continuously meaningful. Any
two close points in the latent space will decode to highly similar images. Continuity,
combined with the low dimensionality of the latent space, forces every direction in the
latent space to encode a meaningful axis of variation of the data, making the latent
space very structured and thus highly suitable to manipulation via concept vectors.

 The parameters of a VAE are trained via two loss functions: a reconstruction loss that
forces the decoded samples to match the initial inputs, and a regularization loss that
helps learn well-rounded latent distributions and reduces overfitting to the training
data. Schematically, the process looks like this:

z_mean, z_log_variance = encoder(input_img)
z = z_mean + exp(z_log_variance) * epsilon
reconstructed_img = decoder(z)
model = Model(input_img, reconstructed_img)

You can then train the model using the reconstruction loss and the regularization loss.
For the regularization loss, we typically use an expression (the Kullback–Leibler diver-
gence) meant to nudge the distribution of the encoder output toward a well-rounded
normal distribution centered around 0. This provides the encoder with a sensible
assumption about the structure of the latent space it’s modeling.

 Now let’s see what implementing a VAE looks like in practice!

Input image

Reconstructed
image

Distribution over latent
space defined by z_mean

and z_log_var

Point randomly
sampled from
the distribution

Encoder

Decoder

Figure 12.17 A VAE maps an image to two vectors, z_mean and z_log_sigma, which
define a probability distribution over the latent space, used to sample a latent point to decode.

Encodes the input into mean
and variance parameters

Draws a latent
point using a small
random epsilon

Decodes z
back to an
imageInstantiates the autoencoder model, which

maps an input image to its reconstruction

396 CHAPTER 12 Generative deep learning

12.4.4 Implementing a VAE with Keras

We’re going to be implementing a VAE that can generate MNIST digits. It’s going to
have three parts:

� An encoder network that turns a real image into a mean and a variance in the
latent space

� A sampling layer that takes such a mean and variance, and uses them to sample
a random point from the latent space

� A decoder network that turns points from the latent space back into images

The following listing shows the encoder network we’ll use, mapping images to the
parameters of a probability distribution over the latent space. It’s a simple convnet
that maps the input image x to two vectors, z_mean and z_log_var. One important
detail is that we use strides for downsampling feature maps instead of max pooling.
The last time we did this was in the image segmentation example in chapter 9. Recall
that, in general, strides are preferable to max pooling for any model that cares about
information location—that is to say, where stuff is in the image—and this one does, since
it will have to produce an image encoding that can be used to reconstruct a valid
image.

from tensorflow import keras
from tensorflow.keras import layers

latent_dim = 2

encoder_inputs = keras.Input(shape=(28, 28, 1))
x = layers.Conv2D(
 32, 3, activation="relu", strides=2, padding="same")(encoder_inputs)
x = layers.Conv2D(64, 3, activation="relu", strides=2, padding="same")(x)
x = layers.Flatten()(x)
x = layers.Dense(16, activation="relu")(x)
z_mean = layers.Dense(latent_dim, name="z_mean")(x)
z_log_var = layers.Dense(latent_dim, name="z_log_var")(x)
encoder = keras.Model(encoder_inputs, [z_mean, z_log_var], name="encoder")

Its summary looks like this:

>>> encoder.summary()
Model: "encoder"
__
Layer (type) Output Shape Param # Connected to
==
input_1 (InputLayer) [(None, 28, 28, 1)] 0
__
conv2d (Conv2D) (None, 14, 14, 32) 320 input_1[0][0]
__
conv2d_1 (Conv2D) (None, 7, 7, 64) 18496 conv2d[0][0]
__

Listing 12.24 VAE encoder network

Dimensionality of
the latent space: a
2D plane

The input image ends up
being encoded into these
two parameters.

397Generating images with variational autoencoders

flatten (Flatten) (None, 3136) 0 conv2d_1[0][0]
__
dense (Dense) (None, 16) 50192 flatten[0][0]
__
z_mean (Dense) (None, 2) 34 dense[0][0]
__
z_log_var (Dense) (None, 2) 34 dense[0][0]
==
Total params: 69,076
Trainable params: 69,076
Non-trainable params: 0
__

Next is the code for using z_mean and z_log_var, the parameters of the statistical dis-
tribution assumed to have produced input_img, to generate a latent space point z.

import tensorflow as tf

class Sampler(layers.Layer):
 def call(self, z_mean, z_log_var):
 batch_size = tf.shape(z_mean)[0]
 z_size = tf.shape(z_mean)[1]
 epsilon = tf.random.normal(shape=(batch_size, z_size))
 return z_mean + tf.exp(0.5 * z_log_var) * epsilon

The following listing shows the decoder implementation. We reshape the vector z to
the dimensions of an image and then use a few convolution layers to obtain a final
image output that has the same dimensions as the original input_img.

latent_inputs = keras.Input(shape=(latent_dim,))
x = layers.Dense(7 * 7 * 64, activation="relu")(latent_inputs)
x = layers.Reshape((7, 7, 64))(x)
x = layers.Conv2DTranspose(64, 3, activation="relu", strides=2, padding="same")(x)
x = layers.Conv2DTranspose(32, 3, activation="relu", strides=2, padding="same")(x)
decoder_outputs = layers.Conv2D(1, 3, activation="sigmoid", padding="same")(x)
decoder = keras.Model(latent_inputs, decoder_outputs, name="decoder")

Its summary looks like this:

>>> decoder.summary()
Model: "decoder"

Layer (type) Output Shape Param #
===
input_2 (InputLayer) [(None, 2)] 0

dense_1 (Dense) (None, 3136) 9408

Listing 12.25 Latent-space-sampling layer

Listing 12.26 VAE decoder network, mapping latent space points to images

Draw a batch of
random normal

vectors.Apply the VAE
sampling
formula.

Input where
we’ll feed z

Produce the same number of coefficients that we
had at the level of the Flatten layer in the encoder.

Revert the
Flatten layer
of the encoder.

Revert the
Conv2D layers

of the encoder.

The output ends up with shape (28, 28, 1).

398 CHAPTER 12 Generative deep learning

reshape (Reshape) (None, 7, 7, 64) 0

conv2d_transpose (Conv2DTran (None, 14, 14, 64) 36928

conv2d_transpose_1 (Conv2DTr (None, 28, 28, 32) 18464

conv2d_2 (Conv2D) (None, 28, 28, 1) 289
===
Total params: 65,089
Trainable params: 65,089
Non-trainable params: 0

Now let’s create the VAE model itself. This is your first example of a model that isn’t
doing supervised learning (an autoencoder is an example of self-supervised learning,
because it uses its inputs as targets). Whenever you depart from classic supervised
learning, it’s common to subclass the Model class and implement a custom train_
step() to specify the new training logic, a workflow you learned about in chapter 7.
That’s what we’ll do here.

class VAE(keras.Model):
 def __init__(self, encoder, decoder, **kwargs):
 super().__init__(**kwargs)
 self.encoder = encoder
 self.decoder = decoder
 self.sampler = Sampler()
 self.total_loss_tracker = keras.metrics.Mean(name="total_loss")
 self.reconstruction_loss_tracker = keras.metrics.Mean(
 name="reconstruction_loss")
 self.kl_loss_tracker = keras.metrics.Mean(name="kl_loss")

 @property
 def metrics(self):
 return [self.total_loss_tracker,
 self.reconstruction_loss_tracker,
 self.kl_loss_tracker]

 def train_step(self, data):
 with tf.GradientTape() as tape:
 z_mean, z_log_var = self.encoder(data)
 z = self.sampler(z_mean, z_log_var)
 reconstruction = decoder(z)
 reconstruction_loss = tf.reduce_mean(
 tf.reduce_sum(
 keras.losses.binary_crossentropy(data, reconstruction),
 axis=(1, 2)
)
)
 kl_loss = -0.5 * (1 + z_log_var - tf.square(z_mean) -

tf.exp(z_log_var))
 total_loss = reconstruction_loss + tf.reduce_mean(kl_loss)

Listing 12.27 VAE model with custom train_step()

We use these metrics to keep
track of the loss averages

over each epoch.

We list the metrics in the metrics
property to enable the model to reset
them after each epoch (or between
multiple calls to fit()/evaluate()).

We sum the reconstruction
loss over the spatial
dimensions (axes 1 and 2)
and take its mean over the
batch dimension.

Add the regularization
term (Kullback–Leibler

divergence).

399Generating images with variational autoencoders

 grads = tape.gradient(total_loss, self.trainable_weights)
 self.optimizer.apply_gradients(zip(grads, self.trainable_weights))
 self.total_loss_tracker.update_state(total_loss)
 self.reconstruction_loss_tracker.update_state(reconstruction_loss)
 self.kl_loss_tracker.update_state(kl_loss)
 return {
 "total_loss": self.total_loss_tracker.result(),
 "reconstruction_loss": self.reconstruction_loss_tracker.result(),
 "kl_loss": self.kl_loss_tracker.result(),
 }

Finally, we’re ready to instantiate and train the model on MNIST digits. Because the
loss is taken care of in the custom layer, we don’t specify an external loss at compile
time (loss=None), which in turn means we won’t pass target data during training (as
you can see, we only pass x_train to the model in fit()).

import numpy as np

(x_train, _), (x_test, _) = keras.datasets.mnist.load_data()
mnist_digits = np.concatenate([x_train, x_test], axis=0)
mnist_digits = np.expand_dims(mnist_digits, -1).astype("float32") / 255

vae = VAE(encoder, decoder)
vae.compile(optimizer=keras.optimizers.Adam(), run_eagerly=True)
vae.fit(mnist_digits, epochs=30, batch_size=128)

Once the model is trained, we can use the decoder network to turn arbitrary latent
space vectors into images.

import matplotlib.pyplot as plt

n = 30
digit_size = 28
figure = np.zeros((digit_size * n, digit_size * n))

grid_x = np.linspace(-1, 1, n)
grid_y = np.linspace(-1, 1, n)[::-1]

for i, yi in enumerate(grid_y):
 for j, xi in enumerate(grid_x):
 z_sample = np.array([[xi, yi]])
 x_decoded = vae.decoder.predict(z_sample)
 digit = x_decoded[0].reshape(digit_size, digit_size)
 figure[
 i * digit_size : (i + 1) * digit_size,

Listing 12.28 Training the VAE

Listing 12.29 Sampling a grid of images from the 2D latent space

We train on all MNIST
digits, so we concatenate
the training and test
samples.

Note that we don’t pass a loss
argument in compile(), since the loss

is already part of the train_step().

Note that we don’t pass targets
in fit(), since train_step()
doesn’t expect any.

We’ll display a grid of 30 × 30
digits (900 digits total).

Sample points
linearly on a 2D grid.

Iterate over
grid locations.

For each location,
sample a digit and
add it to our figure.

400 CHAPTER 12 Generative deep learning

 j * digit_size : (j + 1) * digit_size,
] = digit

plt.figure(figsize=(15, 15))
start_range = digit_size // 2
end_range = n * digit_size + start_range
pixel_range = np.arange(start_range, end_range, digit_size)
sample_range_x = np.round(grid_x, 1)
sample_range_y = np.round(grid_y, 1)
plt.xticks(pixel_range, sample_range_x)
plt.yticks(pixel_range, sample_range_y)
plt.xlabel("z[0]")
plt.ylabel("z[1]")
plt.axis("off")
plt.imshow(figure, cmap="Greys_r")

The grid of sampled digits (see figure 12.18) shows a completely continuous distribu-
tion of the different digit classes, with one digit morphing into another as you follow a
path through latent space. Specific directions in this space have a meaning: for exam-
ple, there are directions for “five-ness,” “one-ness,” and so on.

Figure 12.18 Grid of digits decoded from the latent space

401Introduction to generative adversarial networks

In the next section, we’ll cover in detail the other major tool for generating artificial
images: generative adversarial networks (GANs).

12.4.5 Wrapping up

� Image generation with deep learning is done by learning latent spaces that cap-
ture statistical information about a dataset of images. By sampling and decod-
ing points from the latent space, you can generate never-before-seen images.
There are two major tools to do this: VAEs and GANs.

� VAEs result in highly structured, continuous latent representations. For this rea-
son, they work well for doing all sorts of image editing in latent space: face
swapping, turning a frowning face into a smiling face, and so on. They also work
nicely for doing latent-space-based animations, such as animating a walk along a
cross section of the latent space or showing a starting image slowly morphing
into different images in a continuous way.

� GANs enable the generation of realistic single-frame images but may not induce
latent spaces with solid structure and high continuity.

Most successful practical applications I have seen with images rely on VAEs, but GANs
have enjoyed enduring popularity in the world of academic research. You’ll find out
how they work and how to implement one in the next section.

12.5 Introduction to generative adversarial networks
Generative adversarial networks (GANs), introduced in 2014 by Goodfellow et al.,7 are
an alternative to VAEs for learning latent spaces of images. They enable the genera-
tion of fairly realistic synthetic images by forcing the generated images to be statisti-
cally almost indistinguishable from real ones.

 An intuitive way to understand GANs is to imagine a forger trying to create a fake
Picasso painting. At first, the forger is pretty bad at the task. He mixes some of his
fakes with authentic Picassos and shows them all to an art dealer. The art dealer makes
an authenticity assessment for each painting and gives the forger feedback about what
makes a Picasso look like a Picasso. The forger goes back to his studio to prepare some
new fakes. As time goes on, the forger becomes increasingly competent at imitating
the style of Picasso, and the art dealer becomes increasingly expert at spotting fakes.
In the end, they have on their hands some excellent fake Picassos.

 That’s what a GAN is: a forger network and an expert network, each being trained
to best the other. As such, a GAN is made of two parts:

� Generator network—Takes as input a random vector (a random point in the
latent space), and decodes it into a synthetic image

� Discriminator network (or adversary)—Takes as input an image (real or synthetic),
and predicts whether the image came from the training set or was created by
the generator network

7 Ian Goodfellow et al., “Generative Adversarial Networks,” arXiv (2014), https://arxiv.org/abs/1406.2661.

402 CHAPTER 12 Generative deep learning

The generator network is trained to be able to fool the discriminator network, and
thus it evolves toward generating increasingly realistic images as training goes on: arti-
ficial images that look indistinguishable from real ones, to the extent that it’s impossi-
ble for the discriminator network to tell the two apart (see figure 12.19). Meanwhile,
the discriminator is constantly adapting to the gradually improving capabilities of the
generator, setting a high bar of realism for the generated images. Once training is
over, the generator is capable of turning any point in its input space into a believable
image. Unlike VAEs, this latent space has fewer explicit guarantees of meaningful
structure; in particular, it isn’t continuous.

Remarkably, a GAN is a system where the optimization minimum isn’t fixed, unlike in
any other training setup you’ve encountered in this book. Normally, gradient descent
consists of rolling down hills in a static loss landscape. But with a GAN, every step
taken down the hill changes the entire landscape a little. It’s a dynamic system where
the optimization process is seeking not a minimum, but an equilibrium between two
forces. For this reason, GANs are notoriously difficult to train—getting a GAN to work
requires lots of careful tuning of the model architecture and training parameters.

12.5.1 A schematic GAN implementation

In this section, we’ll explain how to implement a GAN in Keras in its barest form.
GANs are advanced, so diving deeply into the technical details of architectures like
that of the StyleGAN2 that generated the images in figure 12.20 would be out of scope
for this book. The specific implementation we’ll use in this demonstration is a deep
convolutional GAN (DCGAN): a very basic GAN where the generator and discriminator
are deep convnets.

Generator (decoder)

Discriminator “Real”, “Fake”

Random
latent space

vector

Generated
(decoded)

image

Mix of real
and fake images

Training
feedback

Figure 12.19 A generator transforms random latent vectors into images, and a discriminator
seeks to tell real images from generated ones. The generator is trained to fool the discriminator.

403Introduction to generative adversarial networks

We’ll train our GAN on images from the Large-scale CelebFaces Attributes dataset
(known as CelebA), a dataset of 200,000 faces of celebrities (http://mmlab.ie.cuhk
.edu.hk/projects/CelebA.html) To speed up training, we’ll resize the images to 64 × 64,
so we’ll be learning to generate 64 × 64 images of human faces.

 Schematically, the GAN looks like this:

� A generator network maps vectors of shape (latent_dim,) to images of shape
(64, 64, 3).

� A discriminator network maps images of shape (64, 64, 3) to a binary score
estimating the probability that the image is real.

� A gan network chains the generator and the discriminator together: gan(x) =
discriminator(generator(x)). Thus, this gan network maps latent space vec-
tors to the discriminator’s assessment of the realism of these latent vectors as
decoded by the generator.

� We train the discriminator using examples of real and fake images along with
“real”/“fake” labels, just as we train any regular image-classification model.

� To train the generator, we use the gradients of the generator’s weights with
regard to the loss of the gan model. This means that at every step, we move the
weights of the generator in a direction that makes the discriminator more likely
to classify as “real” the images decoded by the generator. In other words, we
train the generator to fool the discriminator.

12.5.2 A bag of tricks

The process of training GANs and tuning GAN implementations is notoriously diffi-
cult. There are a number of known tricks you should keep in mind. Like most things
in deep learning, it’s more alchemy than science: these tricks are heuristics, not theory-
backed guidelines. They’re supported by a level of intuitive understanding of the phe-
nomenon at hand, and they’re known to work well empirically, although not necessar-
ily in every context.

Figure 12.20 Latent space dwellers. Images generated by https://thispersondoesnotexist.com
using a StyleGAN2 model. (Image credit: Phillip Wang is the website author. The model used is the
StyleGAN2 model from Karras et al., https://arxiv.org/abs/1912.04958.)

404 CHAPTER 12 Generative deep learning

 Here are a few of the tricks used in the implementation of the GAN generator and
discriminator in this section. It isn’t an exhaustive list of GAN-related tips; you’ll find
many more across the GAN literature:

� We use strides instead of pooling for downsampling feature maps in the dis-
criminator, just like we did in our VAE encoder.

� We sample points from the latent space using a normal distribution (Gaussian dis-
tribution), not a uniform distribution.

� Stochasticity is good for inducing robustness. Because GAN training results in a
dynamic equilibrium, GANs are likely to get stuck in all sorts of ways. Introduc-
ing randomness during training helps prevent this. We introduce randomness
by adding random noise to the labels for the discriminator.

� Sparse gradients can hinder GAN training. In deep learning, sparsity is often
a desirable property, but not in GANs. Two things can induce gradient spar-
sity: max pooling operations and relu activations. Instead of max pooling,
we recommend using strided convolutions for downsampling, and we recom-
mend using a LeakyReLU layer instead of a relu activation. It’s similar to
relu, but it relaxes sparsity constraints by allowing small negative activation
values.

� In generated images, it’s common to see checkerboard artifacts caused by
unequal coverage of the pixel space in the generator (see figure 12.21). To fix
this, we use a kernel size that’s divisible by the stride size whenever we use a
strided Conv2DTranspose or Conv2D in both the generator and the discriminator.

12.5.3 Getting our hands on the CelebA dataset

You can download the dataset manually from the website: http://mmlab.ie.cuhk.edu
.hk/projects/CelebA.html. If you’re using Colab, you can run the following to down-
load the data from Google Drive and uncompress it.

Figure 12.21 Checkerboard artifacts caused by mismatching strides and kernel
sizes, resulting in unequal pixel-space coverage: one of the many gotchas of GANs

405Introduction to generative adversarial networks

!mkdir celeba_gan
!gdown --id 1O7m1010EJjLE5QxLZiM9Fpjs7Oj6e684 -O celeba_gan/data.zip
!unzip -qq celeba_gan/data.zip -d celeba_gan

Once you’ve got the uncompressed images in a directory, you can use image_data-
set_from_directory to turn it into a dataset. Since we just need the images—there
are no labels—we’ll specify label_mode=None.

from tensorflow import keras
dataset = keras.utils_dataset_from_directory(
 "celeba_gan",
 label_mode=None,
 image_size=(64, 64),
 batch_size=32,
 smart_resize=True)

Finally, let’s rescale the images to the [0-1] range.

dataset = dataset.map(lambda x: x / 255.)

You can use the following code to display a sample image.

import matplotlib.pyplot as plt
for x in dataset:
 plt.axis("off")
 plt.imshow((x.numpy() * 255).astype("int32")[0])
 break

12.5.4 The discriminator

First, we’ll develop a discriminator model that takes as input a candidate image
(real or synthetic) and classifies it into one of two classes: “generated image” or “real
image that comes from the training set.” One of the many issues that commonly
arise with GANs is that the generator gets stuck with generated images that look like
noise. A possible solution is to use dropout in the discriminator, so that’s what we
will do here.

Listing 12.30 Getting the CelebA data

Listing 12.31 Creating a dataset from a directory of images

Listing 12.32 Rescaling the images

Listing 12.33 Displaying the first image

Create a working directory.

Download the compressed data
using gdown (available by default

in Colab; install it otherwise).
Uncompress
the data.

Only the images will be
returned—no labels.

We will resize the images to 64 × 64 by using a smart
combination of cropping and resizing to preserve aspect
ratio. We don’t want face proportions to get distorted!

406 CHAPTER 12 Generative deep learning

from tensorflow.keras import layers

discriminator = keras.Sequential(
 [
 keras.Input(shape=(64, 64, 3)),
 layers.Conv2D(64, kernel_size=4, strides=2, padding="same"),
 layers.LeakyReLU(alpha=0.2),
 layers.Conv2D(128, kernel_size=4, strides=2, padding="same"),
 layers.LeakyReLU(alpha=0.2),
 layers.Conv2D(128, kernel_size=4, strides=2, padding="same"),
 layers.LeakyReLU(alpha=0.2),
 layers.Flatten(),
 layers.Dropout(0.2),
 layers.Dense(1, activation="sigmoid"),
],
 name="discriminator",
)

Here’s the discriminator model summary:

>>> discriminator.summary()
Model: "discriminator"

Layer (type) Output Shape Param #
===
conv2d (Conv2D) (None, 32, 32, 64) 3136

leaky_re_lu (LeakyReLU) (None, 32, 32, 64) 0

conv2d_1 (Conv2D) (None, 16, 16, 128) 131200

leaky_re_lu_1 (LeakyReLU) (None, 16, 16, 128) 0

conv2d_2 (Conv2D) (None, 8, 8, 128) 262272

leaky_re_lu_2 (LeakyReLU) (None, 8, 8, 128) 0

flatten (Flatten) (None, 8192) 0

dropout (Dropout) (None, 8192) 0

dense (Dense) (None, 1) 8193
===
Total params: 404,801
Trainable params: 404,801
Non-trainable params: 0

Listing 12.34 The GAN discriminator network

One dropout layer:
an important trick!

407Introduction to generative adversarial networks

12.5.5 The generator

Next, let’s develop a generator model that turns a vector (from the latent space—
during training it will be sampled at random) into a candidate image.

latent_dim = 128

generator = keras.Sequential(
 [
 keras.Input(shape=(latent_dim,)),
 layers.Dense(8 * 8 * 128),
 layers.Reshape((8, 8, 128)),
 layers.Conv2DTranspose(128, kernel_size=4, strides=2, padding="same"),
 layers.LeakyReLU(alpha=0.2),
 layers.Conv2DTranspose(256, kernel_size=4, strides=2, padding="same"),
 layers.LeakyReLU(alpha=0.2),
 layers.Conv2DTranspose(512, kernel_size=4, strides=2, padding="same"),
 layers.LeakyReLU(alpha=0.2),
 layers.Conv2D(3, kernel_size=5, padding="same", activation="sigmoid"),
],
 name="generator",
)

This is the generator model summary:

>>> generator.summary()
Model: "generator"

Layer (type) Output Shape Param #
===
dense_1 (Dense) (None, 8192) 1056768

reshape (Reshape) (None, 8, 8, 128) 0

conv2d_transpose (Conv2DTran (None, 16, 16, 128) 262272

leaky_re_lu_3 (LeakyReLU) (None, 16, 16, 128) 0

conv2d_transpose_1 (Conv2DTr (None, 32, 32, 256) 524544

leaky_re_lu_4 (LeakyReLU) (None, 32, 32, 256) 0

conv2d_transpose_2 (Conv2DTr (None, 64, 64, 512) 2097664

leaky_re_lu_5 (LeakyReLU) (None, 64, 64, 512) 0

conv2d_3 (Conv2D) (None, 64, 64, 3) 38403
===
Total params: 3,979,651
Trainable params: 3,979,651
Non-trainable params: 0

Listing 12.35 GAN generator network

The latent space
will be made of 128-
dimensional vectors. Produce the same number

of coefficients we had at
the level of the Flatten
layer in the encoder.

Revert the
Flatten layer of

the encoder.

Revert the
Conv2D layers

of the encoder.

We use LeakyReLU
as our activation.

The output ends
up with shape

(28, 28, 1).

408 CHAPTER 12 Generative deep learning

12.5.6 The adversarial network

Finally, we’ll set up the GAN, which chains the generator and the discriminator.
When trained, this model will move the generator in a direction that improves its
ability to fool the discriminator. This model turns latent-space points into a classifi-
cation decision—“fake” or “real”—and it’s meant to be trained with labels that are
always “these are real images.” So training gan will update the weights of generator
in a way that makes discriminator more likely to predict “real” when looking at
fake images.

 To recapitulate, this is what the training loop looks like schematically. For each
epoch, you do the following:

1 Draw random points in the latent space (random noise).
2 Generate images with generator using this random noise.
3 Mix the generated images with real ones.
4 Train discriminator using these mixed images, with corresponding targets:

either “real” (for the real images) or “fake” (for the generated images).
5 Draw new random points in the latent space.
6 Train generator using these random vectors, with targets that all say “these are

real images.” This updates the weights of the generator to move them toward
getting the discriminator to predict “these are real images” for generated
images: this trains the generator to fool the discriminator.

Let’s implement it. Like in our VAE example, we’ll use a Model subclass with a cus-
tom train_step(). Note that we’ll use two optimizers (one for the generator and
one for the discriminator), so we will also override compile() to allow for passing
two optimizers.

import tensorflow as tf
class GAN(keras.Model):
 def __init__(self, discriminator, generator, latent_dim):
 super().__init__()
 self.discriminator = discriminator
 self.generator = generator
 self.latent_dim = latent_dim
 self.d_loss_metric = keras.metrics.Mean(name="d_loss")
 self.g_loss_metric = keras.metrics.Mean(name="g_loss")

 def compile(self, d_optimizer, g_optimizer, loss_fn):
 super(GAN, self).compile()
 self.d_optimizer = d_optimizer
 self.g_optimizer = g_optimizer
 self.loss_fn = loss_fn

 @property
 def metrics(self):
 return [self.d_loss_metric, self.g_loss_metric]

Listing 12.36 The GAN Model

Sets up metrics
to track the two
losses over each
training epoch

409Introduction to generative adversarial networks

 def train_step(self, real_images):
 batch_size = tf.shape(real_images)[0]
 random_latent_vectors = tf.random.normal(
 shape=(batch_size, self.latent_dim))
 generated_images = self.generator(random_latent_vectors)
 combined_images = tf.concat([generated_images, real_images], axis=0)
 labels = tf.concat(
 [tf.ones((batch_size, 1)), tf.zeros((batch_size, 1))],
 axis=0
)
 labels += 0.05 * tf.random.uniform(tf.shape(labels))

 with tf.GradientTape() as tape:
 predictions = self.discriminator(combined_images)
 d_loss = self.loss_fn(labels, predictions)
 grads = tape.gradient(d_loss, self.discriminator.trainable_weights)
 self.d_optimizer.apply_gradients(
 zip(grads, self.discriminator.trainable_weights)
)

 random_latent_vectors = tf.random.normal(
 shape=(batch_size, self.latent_dim))

 misleading_labels = tf.zeros((batch_size, 1))

 with tf.GradientTape() as tape:
 predictions = self.discriminator(
 self.generator(random_latent_vectors))
 g_loss = self.loss_fn(misleading_labels, predictions)
 grads = tape.gradient(g_loss, self.generator.trainable_weights)
 self.g_optimizer.apply_gradients(
 zip(grads, self.generator.trainable_weights))

 self.d_loss_metric.update_state(d_loss)
 self.g_loss_metric.update_state(g_loss)
 return {"d_loss": self.d_loss_metric.result(),
 "g_loss": self.g_loss_metric.result()}

Before we start training, let’s also set up a callback to monitor our results: it will use
the generator to create and save a number of fake images at the end of each epoch.

class GANMonitor(keras.callbacks.Callback):
 def __init__(self, num_img=3, latent_dim=128):
 self.num_img = num_img
 self.latent_dim = latent_dim

 def on_epoch_end(self, epoch, logs=None):
 random_latent_vectors = tf.random.normal(
 shape=(self.num_img, self.latent_dim))
 generated_images = self.model.generator(random_latent_vectors)
 generated_images *= 255
 generated_images.numpy()

Listing 12.37 A callback that samples generated images during training

Samples random points
in the latent space

Decodes
them to

fake images

Combines
them with

real images
Assembles labels,
discriminating real
from fake images

Adds random
noise to the
labels—an
important trick!

Trains the
discriminator

Samples
random

points in the
latent space

Assembles labels that
say “these are all real
images” (it’s a lie!)

Trains the
generator

410 CHAPTER 12 Generative deep learning

 for i in range(self.num_img):
 img = keras.utils.array_to_img(generated_images[i])
 img.save(f"generated_img_{epoch:03d}_{i}.png")

Finally, we can start training.

epochs = 100

gan = GAN(discriminator=discriminator, generator=generator,
 latent_dim=latent_dim)
gan.compile(
 d_optimizer=keras.optimizers.Adam(learning_rate=0.0001),
 g_optimizer=keras.optimizers.Adam(learning_rate=0.0001),
 loss_fn=keras.losses.BinaryCrossentropy(),
)

gan.fit(
 dataset, epochs=epochs,
 callbacks=[GANMonitor(num_img=10, latent_dim=latent_dim)]
)

When training, you may see the adversarial loss begin to increase considerably, while
the discriminative loss tends to zero—the discriminator may end up dominating the
generator. If that’s the case, try reducing the discriminator learning rate, and increase
the dropout rate of the discriminator.

 Figure 12.22 shows what our GAN is capable of generating after 30 epochs of training.

12.5.7 Wrapping up

� A GAN consists of a generator network coupled with a discriminator network.
The discriminator is trained to differentiate between the output of the genera-
tor and real images from a training dataset, and the generator is trained to fool

Listing 12.38 Compiling and training the GAN

You’ll start getting
interesting results
after epoch 20.

Figure 12.22 Some generated images around epoch 30

411Summary

the discriminator. Remarkably, the generator never sees images from the training
set directly; the information it has about the data comes from the discriminator.

� GANs are difficult to train, because training a GAN is a dynamic process rather
than a simple gradient descent process with a fixed loss landscape. Getting a
GAN to train correctly requires using a number of heuristic tricks, as well as
extensive tuning.

� GANs can potentially produce highly realistic images. But unlike VAEs, the
latent space they learn doesn’t have a neat continuous structure and thus may
not be suited for certain practical applications, such as image editing via latent-
space concept vectors.

These few techniques cover only the basics of this fast-expanding field. There’s a lot
more to discover out there—generative deep learning is deserving of an entire book
of its own.

Summary
� You can use a sequence-to-sequence model to generate sequence data, one step

at a time. This is applicable to text generation, but also to note-by-note music
generation or any other type of timeseries data.

� DeepDream works by maximizing convnet layer activations through gradient
ascent in input space.

� In the style-transfer algorithm, a content image and a style image are combined
together via gradient descent to produce an image with the high-level features
of the content image and the local characteristics of the style image.

� VAEs and GANs are models that learn a latent space of images and can then
dream up entirely new images by sampling from the latent space. Concept vectors
in the latent space can even be used for image editing.

412

Best practices
for the real world

You’ve come far since the beginning of this book. You can now train image classifi-
cation models, image segmentation models, models for classification or regression
on vector data, timeseries forecasting models, text-classification models, sequence-
to-sequence models, and even generative models for text and images. You’ve got all
the bases covered.

 However, your models so far have all been trained at a small scale—on small
datasets, with a single GPU—and they generally haven’t reached the best achiev-
able performance on each dataset we looked at. This book is, after all, an introduc-
tory book. If you are to go out in the real world and achieve state-of-the-art results
on brand new problems, there’s still a bit of a chasm that you’ll need to cross.

 This penultimate chapter is about bridging that gap and giving you the best
practices you’ll need as you go from machine learning student to fully fledged

This chapter covers
� Hyperparameter tuning
� Model ensembling
� Mixed-precision training
� Training Keras models on multiple GPUs or

on a TPU

413Getting the most out of your models

machine learning engineer. We’ll review essential techniques for systematically improv-
ing model performance: hyperparameter tuning and model ensembling. Then we’ll
look at how you can speed up and scale up model training, with multi-GPU and TPU
training, mixed precision, and leveraging remote computing resources in the cloud.

13.1 Getting the most out of your models
Blindly trying out different architecture configurations works well enough if you
just need something that works okay. In this section, we’ll go beyond “works okay” to
“works great and wins machine learning competitions” via a set of must-know tech-
niques for building state-of-the-art deep learning models.

13.1.1 Hyperparameter optimization

When building a deep learning model, you have to make many seemingly arbitrary
decisions: How many layers should you stack? How many units or filters should go in
each layer? Should you use relu as activation, or a different function? Should you use
BatchNormalization after a given layer? How much dropout should you use? And so
on. These architecture-level parameters are called hyperparameters to distinguish them
from the parameters of a model, which are trained via backpropagation.

 In practice, experienced machine learning engineers and researchers build intu-
ition over time as to what works and what doesn’t when it comes to these choices—
they develop hyperparameter-tuning skills. But there are no formal rules. If you want
to get to the very limit of what can be achieved on a given task, you can’t be content
with such arbitrary choices. Your initial decisions are almost always suboptimal, even if
you have very good intuition. You can refine your choices by tweaking them by hand
and retraining the model repeatedly—that’s what machine learning engineers and
researchers spend most of their time doing. But it shouldn’t be your job as a human to
fiddle with hyperparameters all day—that is better left to a machine.

 Thus you need to explore the space of possible decisions automatically, systemati-
cally, in a principled way. You need to search the architecture space and find the best-
performing architectures empirically. That’s what the field of automatic hyperparame-
ter optimization is about: it’s an entire field of research, and an important one.

 The process of optimizing hyperparameters typically looks like this:

1 Choose a set of hyperparameters (automatically).
2 Build the corresponding model.
3 Fit it to your training data, and measure performance on the validation data.
4 Choose the next set of hyperparameters to try (automatically).
5 Repeat.
6 Eventually, measure performance on your test data.

The key to this process is the algorithm that analyzes the relationship between vali-
dation performance and various hyperparameter values to choose the next set of

414 CHAPTER 13 Best practices for the real world

hyperparameters to evaluate. Many different techniques are possible: Bayesian optimi-
zation, genetic algorithms, simple random search, and so on.

 Training the weights of a model is relatively easy: you compute a loss function on a
mini-batch of data and then use backpropagation to move the weights in the right
direction. Updating hyperparameters, on the other hand, presents unique challenges.
Consider these points:

� The hyperparameter space is typically made up of discrete decisions and thus
isn’t continuous or differentiable. Hence, you typically can’t do gradient descent
in hyperparameter space. Instead, you must rely on gradient-free optimization
techniques, which naturally are far less efficient than gradient descent.

� Computing the feedback signal of this optimization process (does this set of
hyperparameters lead to a high-performing model on this task?) can be extremely
expensive: it requires creating and training a new model from scratch on your
dataset.

� The feedback signal may be noisy: if a training run performs 0.2% better, is that
because of a better model configuration, or because you got lucky with the ini-
tial weight values?

Thankfully, there’s a tool that makes hyperparameter tuning simpler: KerasTuner.
Let’s check it out.

USING KERASTUNER

Let’s start by installing KerasTuner:

!pip install keras-tuner -q

KerasTuner lets you replace hard-coded hyperparameter values, such as units=32,
with a range of possible choices, such as Int(name="units", min_value=16,
max_value=64, step=16). This set of choices in a given model is called the search space
of the hyperparameter tuning process.

 To specify a search space, define a model-building function (see the next listing).
It takes an hp argument, from which you can sample hyperparameter ranges, and it
returns a compiled Keras model.

from tensorflow import keras
from tensorflow.keras import layers

def build_model(hp):
 units = hp.Int(name="units", min_value=16, max_value=64, step=16)
 model = keras.Sequential([
 layers.Dense(units, activation="relu"),
 layers.Dense(10, activation="softmax")
])
 optimizer = hp.Choice(name="optimizer", values=["rmsprop", "adam"])
 model.compile(

Listing 13.1 A KerasTuner model-building function

Sample hyperparameter values from the
hp object. After sampling, these values
(such as the "units" variable here) are

just regular Python constants.

Different kinds of hyperpa-
rameters are available: Int,

Float, Boolean, Choice.

415Getting the most out of your models

 optimizer=optimizer,
 loss="sparse_categorical_crossentropy",
 metrics=["accuracy"])
 return model

If you want to adopt a more modular and configurable approach to model-building,
you can also subclass the HyperModel class and define a build method, as follows.

import kerastuner as kt

class SimpleMLP(kt.HyperModel):
 def __init__(self, num_classes):
 self.num_classes = num_classes

 def build(self, hp):
 units = hp.Int(name="units", min_value=16, max_value=64, step=16)
 model = keras.Sequential([
 layers.Dense(units, activation="relu"),
 layers.Dense(self.num_classes, activation="softmax")
])
 optimizer = hp.Choice(name="optimizer", values=["rmsprop", "adam"])
 model.compile(
 optimizer=optimizer,
 loss="sparse_categorical_crossentropy",
 metrics=["accuracy"])
 return model

hypermodel = SimpleMLP(num_classes=10)

The next step is to define a “tuner.” Schematically, you can think of a tuner as a for
loop that will repeatedly

� Pick a set of hyperparameter values
� Call the model-building function with these values to create a model
� Train the model and record its metrics

KerasTuner has several built-in tuners available—RandomSearch, BayesianOptimiza-
tion, and Hyperband. Let’s try BayesianOptimization, a tuner that attempts to make
smart predictions for which new hyperparameter values are likely to perform best
given the outcomes of previous choices:

tuner = kt.BayesianOptimization(
 build_model,
 objective="val_accuracy",
 max_trials=100,

Listing 13.2 A KerasTuner HyperModel

The function returns
a compiled model.

Thanks to the object-
oriented approach, we can
configure model constants
as constructor arguments

(instead of hardcoding them
in the model-building

function).

The build()
method is
identical to
our prior
build_model()
standalone
function.

Specify the model-build-
ing function (or hyper-
model instance).

Specify the metric that the tuner will seek to
optimize. Always specify validation metrics,
since the goal of the search process is to
find models that generalize!

Maximum number of different
model configurations (“trials”)
to try before ending the search.

416 CHAPTER 13 Best practices for the real world

 executions_per_trial=2,
 directory="mnist_kt_test",
 overwrite=True,
)

You can display an overview of the search space via search_space_summary():

>>> tuner.search_space_summary()
Search space summary
Default search space size: 2
units (Int)
{"default": None,
 "conditions": [],
 "min_value": 128,
 "max_value": 1024,
 "step": 128,
 "sampling": None}
optimizer (Choice)
{"default": "rmsprop",
 "conditions": [],
 "values": ["rmsprop", "adam"],
 "ordered": False}

Finally, let’s launch the search. Don’t forget to pass validation data, and make sure not
to use your test set as validation data—otherwise you’d quickly start overfitting to your
test data, and you wouldn’t be able to trust your test metrics anymore:

(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
x_train = x_train.reshape((-1, 28 * 28)).astype("float32") / 255
x_test = x_test.reshape((-1, 28 * 28)).astype("float32") / 255
x_train_full = x_train[:]
y_train_full = y_train[:]

Objective maximization and minimization
For built-in metrics (like accuracy, in our case), the direction of the metric (accuracy
should be maximized, but a loss should be minimized) is inferred by KerasTuner.
However, for a custom metric, you should specify it yourself, like this:

objective = kt.Objective(
 name="val_accuracy",
 direction="max")
tuner = kt.BayesianOptimization(
 build_model,
 objective=objective,
 ...
)

To reduce metrics variance, you can train the
same model multiple times and average the results.
executions_per_trial is how many training rounds
(executions) to run for each model configuration (trial).

Where
to store
search logs

Whether to overwrite data in directory to start a new search. Set this to
True if you’ve modified the model-building function, or to False to resume
a previously started search with the same model-building function.

The metric’s name, as
found in epoch logs

The metric’s
desired direction:
"min" or "max"

Reserve these for later.

417Getting the most out of your models

num_val_samples = 10000
x_train, x_val = x_train[:-num_val_samples], x_train[-num_val_samples:]
y_train, y_val = y_train[:-num_val_samples], y_train[-num_val_samples:]
callbacks = [
 keras.callbacks.EarlyStopping(monitor="val_loss", patience=5),
]
tuner.search(
 x_train, y_train,
 batch_size=128,
 epochs=100,
 validation_data=(x_val, y_val),
 callbacks=callbacks,
 verbose=2,
)

The preceding example will run in just a few minutes, since we’re only looking at a
few possible choices and we’re training on MNIST. However, with a typical search
space and dataset, you’ll often find yourself letting the hyperparameter search run
overnight or even over several days. If your search process crashes, you can always
restart it—just specify overwrite=False in the tuner so that it can resume from the
trial logs stored on disk.

 Once the search is complete, you can query the best hyperparameter configura-
tions, which you can use to create high-performing models that you can then retrain.

top_n = 4
best_hps = tuner.get_best_hyperparameters(top_n)

Usually, when retraining these models, you may want to include the validation data as
part of the training data, since you won’t be making any further hyperparameter
changes, and thus you will no longer be evaluating performance on the validation
data. In our example, we’d train these final models on the totality of the original
MNIST training data, without reserving a validation set.

 Before we can train on the full training data, though, there’s one last parameter we
need to settle: the optimal number of epochs to train for. Typically, you’ll want to train
the new models for longer than you did during the search: using an aggressive
patience value in the EarlyStopping callback saves time during the search, but it may
lead to under-fit models. Just use the validation set to find the best epoch:

def get_best_epoch(hp):
 model = build_model(hp)
 callbacks=[
 keras.callbacks.EarlyStopping(
 monitor="val_loss", mode="min", patience=10)
]

Listing 13.3 Querying the best hyperparameter configurations

Set these
aside as a

validation set.

Use a large number of epochs (you don’t know in advance how
many epochs each model will need), and use an EarlyStopping
callback to stop training when you start overfitting.

This takes the same
arguments as fit()
(it simply passes them
down to fit() for each
new model).

Returns a list of HyperParameter
objects, which you can pass to the
model-building function

Note the very
high patience
value.

418 CHAPTER 13 Best practices for the real world

 history = model.fit(
 x_train, y_train,
 validation_data=(x_val, y_val),
 epochs=100,
 batch_size=128,
 callbacks=callbacks)
 val_loss_per_epoch = history.history["val_loss"]
 best_epoch = val_loss_per_epoch.index(min(val_loss_per_epoch)) + 1
 print(f"Best epoch: {best_epoch}")
 return best_epoch

Finally, train on the full dataset for just a bit longer than this epoch count, since
you’re training on more data; 20% more in this case:

def get_best_trained_model(hp):
 best_epoch = get_best_epoch(hp)
 model.fit(
 x_train_full, y_train_full,
 batch_size=128, epochs=int(best_epoch * 1.2))
 return model

best_models = []
for hp in best_hps:
 model = get_best_trained_model(hp)
 model.evaluate(x_test, y_test)
 best_models.append(model)

Note that if you’re not worried about slightly underperforming, there’s a shortcut you
can take: just use the tuner to reload the top-performing models with the best weights
saved during the hyperparameter search, without retraining new models from scratch:

best_models = tuner.get_best_models(top_n)

NOTE One important issue to think about when doing automatic hyper-
parameter optimization at scale is validation-set overfitting. Because you’re
updating hyperparameters based on a signal that is computed using your vali-
dation data, you’re effectively training them on the validation data, and thus
they will quickly overfit to the validation data. Always keep this in mind.

THE ART OF CRAFTING THE RIGHT SEARCH SPACE

Overall, hyperparameter optimization is a powerful technique that is an absolute
requirement for getting to state-of-the-art models on any task or to win machine learn-
ing competitions. Think about it: once upon a time, people handcrafted the features
that went into shallow machine learning models. That was very much suboptimal.
Now, deep learning automates the task of hierarchical feature engineering—features
are learned using a feedback signal, not hand-tuned, and that’s the way it should be.
In the same way, you shouldn’t handcraft your model architectures; you should opti-
mize them in a principled way.

 However, doing hyperparameter tuning is not a replacement for being familiar
with model architecture best practices. Search spaces grow combinatorially with the

419Getting the most out of your models

number of choices, so it would be far too expensive to turn everything into a hyper-
parameter and let the tuner sort it out. You need to be smart about designing the
right search space. Hyperparameter tuning is automation, not magic: you use it to
automate experiments that you would otherwise have run by hand, but you still
need to handpick experiment configurations that have the potential to yield good
metrics.

 The good news is that by leveraging hyperparameter tuning, the configuration
decisions you have to make graduate from micro-decisions (what number of units do I
pick for this layer?) to higher-level architecture decisions (should I use residual con-
nections throughout this model?). And while micro-decisions are specific to a certain
model and a certain dataset, higher-level decisions generalize better across different
tasks and datasets. For instance, pretty much every image classification problem can
be solved via the same sort of search-space template.

 Following this logic, KerasTuner attempts to provide premade search spaces that are
relevant to broad categories of problems, such as image classification. Just add data,
run the search, and get a pretty good model. You can try the hypermodels kt.appli-
cations.HyperXception and kt.applications.HyperResNet, which are effectively
tunable versions of Keras Applications models.

THE FUTURE OF HYPERPARAMETER TUNING: AUTOMATED MACHINE LEARNING

Currently, most of your job as a deep learning engineer consists of munging data with
Python scripts and then tuning the architecture and hyperparameters of a deep net-
work at length to get a working model, or even to get a state-of-the-art model, if you
are that ambitious. Needless to say, that isn’t an optimal setup. But automation can
help, and it won’t stop merely at hyperparameter tuning.

 Searching over a set of possible learning rates or possible layer sizes is just the first
step. We can also be far more ambitious and attempt to generate the model architecture
itself from scratch, with as few constraints as possible, such as via reinforcement learn-
ing or genetic algorithms. In the future, entire end-to-end machine learning pipelines
will be automatically generated, rather than be handcrafted by engineer-artisans. This
is called automated machine learning, or AutoML. You can already leverage libraries
like AutoKeras (https://github.com/keras-team/autokeras) to solve basic machine
learning problems with very little involvement on your part.

 Today, AutoML is still in its early days, and it doesn’t scale to large problems. But
when AutoML becomes mature enough for widespread adoption, the jobs of machine
learning engineers won’t disappear—rather, engineers will move up the value-creation
chain. They will begin to put much more effort into data curation, crafting complex loss
functions that truly reflect business goals, as well as understanding how their models
impact the digital ecosystems in which they’re deployed (such as the users who consume
the model’s predictions and generate the model’s training data). These are problems
that only the largest companies can afford to consider at present.

 Always look at the big picture, focus on understanding the fundamentals, and keep
in mind that the highly specialized tedium will eventually be automated away. See it as

420 CHAPTER 13 Best practices for the real world

a gift—greater productivity for your workflows—and not as a threat to your own rele-
vance. It shouldn’t be your job to tune knobs endlessly.

13.1.2 Model ensembling

Another powerful technique for obtaining the best possible results on a task is model
ensembling. Ensembling consists of pooling together the predictions of a set of differ-
ent models to produce better predictions. If you look at machine learning competi-
tions, in particular on Kaggle, you’ll see that the winners use very large ensembles of
models that inevitably beat any single model, no matter how good.

 Ensembling relies on the assumption that different well-performing models
trained independently are likely to be good for different reasons : each model looks at
slightly different aspects of the data to make its predictions, getting part of the “truth”
but not all of it. You may be familiar with the ancient parable of the blind men and the
elephant: a group of blind men come across an elephant for the first time and try to
understand what the elephant is by touching it. Each man touches a different part of
the elephant’s body—just one part, such as the trunk or a leg. Then the men describe
to each other what an elephant is: “It’s like a snake,” “Like a pillar or a tree,” and so
on. The blind men are essentially machine learning models trying to understand the
manifold of the training data, each from their own perspective, using their own
assumptions (provided by the unique architecture of the model and the unique ran-
dom weight initialization). Each of them gets part of the truth of the data, but not the
whole truth. By pooling their perspectives together, you can get a far more accurate
description of the data. The elephant is a combination of parts: not any single blind
man gets it quite right, but, interviewed together, they can tell a fairly accurate story.

 Let’s use classification as an example. The easiest way to pool the predictions of a set
of classifiers (to ensemble the classifiers) is to average their predictions at inference time:

preds_a = model_a.predict(x_val)
preds_b = model_b.predict(x_val)
preds_c = model_c.predict(x_val)
preds_d = model_d.predict(x_val)
final_preds = 0.25 * (preds_a + preds_b + preds_c + preds_d)

However, this will work only if the classifiers are more or less equally good. If one of
them is significantly worse than the others, the final predictions may not be as good as
the best classifier of the group.

 A smarter way to ensemble classifiers is to do a weighted average, where the
weights are learned on the validation data—typically, the better classifiers are given a
higher weight, and the worse classifiers are given a lower weight. To search for a good
set of ensembling weights, you can use random search or a simple optimization algo-
rithm, such as the Nelder-Mead algorithm:

preds_a = model_a.predict(x_val)
preds_b = model_b.predict(x_val)
preds_c = model_c.predict(x_val)

Use four different
models to compute
initial predictions.

This new prediction
array should be more
accurate than any of
the initial ones.

421Scaling-up model training

preds_d = model_d.predict(x_val)
final_preds = 0.5 * preds_a + 0.25 * preds_b + 0.1 * preds_c + 0.15 * preds_d

There are many possible variants: you can do an average of an exponential of the pre-
dictions, for instance. In general, a simple weighted average with weights optimized
on the validation data provides a very strong baseline.

 The key to making ensembling work is the diversity of the set of classifiers. Diversity
is strength. If all the blind men only touched the elephant’s trunk, they would agree
that elephants are like snakes, and they would forever stay ignorant of the truth of the
elephant. Diversity is what makes ensembling work. In machine learning terms, if all
of your models are biased in the same way, your ensemble will retain this same bias. If
your models are biased in different ways, the biases will cancel each other out, and the
ensemble will be more robust and more accurate.

 For this reason, you should ensemble models that are as good as possible while being
as different as possible. This typically means using very different architectures or even
different brands of machine learning approaches. One thing that is largely not worth
doing is ensembling the same network trained several times independently, from dif-
ferent random initializations. If the only difference between your models is their ran-
dom initialization and the order in which they were exposed to the training data, then
your ensemble will be low-diversity and will provide only a tiny improvement over any
single model.

 One thing I have found to work well in practice—but that doesn’t generalize to
every problem domain—is using an ensemble of tree-based methods (such as random
forests or gradient-boosted trees) and deep neural networks. In 2014, Andrey Kolev
and I took fourth place in the Higgs Boson decay detection challenge on Kaggle
(www.kaggle.com/c/higgs-boson) using an ensemble of various tree models and deep
neural networks. Remarkably, one of the models in the ensemble originated from a
different method than the others (it was a regularized greedy forest), and it had a sig-
nificantly worse score than the others. Unsurprisingly, it was assigned a small weight in
the ensemble. But to our surprise, it turned out to improve the overall ensemble by a
large factor, because it was so different from every other model: it provided informa-
tion that the other models didn’t have access to. That’s precisely the point of ensem-
bling. It’s not so much about how good your best model is; it’s about the diversity of
your set of candidate models.

13.2 Scaling-up model training
Recall the “loop of progress” concept we introduced in chapter 7: the quality of your
ideas is a function of how many refinement cycles they’ve been through (see figure 13.1).
And the speed at which you can iterate on an idea is a function of how fast you can set
up an experiment, how fast you can run that experiment, and finally, how well you can
analyze the resulting data.

These weights (0.5, 0.25, 0.1, 0.15) are
assumed to be learned empirically.

422 CHAPTER 13 Best practices for the real world

As you develop your expertise with the Keras API, how fast you can code up your deep
learning experiments will cease to be the bottleneck of this progress cycle. The next
bottleneck will become the speed at which you can train your models. Fast training
infrastructure means that you can get your results back in 10–15 minutes, and hence,
that you can go through dozens of iterations every day. Faster training directly improves
the quality of your deep learning solutions.

 In this section, you’ll learn about three ways you can train your models faster:

� Mixed-precision training, which you can use even with a single GPU
� Training on multiple GPUs
� Training on TPUs

Let’s go.

13.2.1 Speeding up training on GPU with mixed precision

What if I told you there’s a simple technique you can use to speed up the training of
almost any model by up to 3X, basically for free? It seems too good to but true, and
yet, such a trick does exist. That’s mixed-precision training. To understand how it works,
we first need to take a look at the notion of “precision” in computer science.

UNDERSTANDING FLOATING-POINT PRECISION

Precision is to numbers what resolution is to images. Because computers can only pro-
cess ones and zeros, any number seen by a computer has to be encoded as a binary
string. For instance, you may be familiar with uint8 integers, which are integers
encoded on eight bits: 00000000 represents 0 in uint8, and 11111111 represents 255.
To represent integers beyond 255, you’d need to add more bits—eight isn’t enough.
Most integers are stored on 32 bits, with which you can represent signed integers rang-
ing from –2147483648 to 2147483647.

 Floating-point numbers are the same. In mathematics, real numbers form a con-
tinuous axis: there’s an infinite number of points in between any two numbers. You
can always zoom in on the axis of reals. In computer science, this isn’t true: there’s a
finite number of intermediate points between 3 and 4, for instance. How many? Well,
it depends on the precision you’re working with—the number of bits you’re using to
store a number. You can only zoom up to a certain resolution.

Idea

Visualization
framework:

TensorBoard

Deep learning
framework:

Keras

GPUs, TPUs

Results Experiment

Figure 13.1 The loop of progress

423Scaling-up model training

 There are three of levels of precision you’d typically use:

� Half precision, or float16, where numbers are stored on 16 bits
� Single precision, or float32, where numbers are stored on 32 bits
� Double precision, or float64, where numbers are stored on 64 bits

The way to think about the resolution of floating-point numbers is in terms of the
smallest distance between two arbitrary numbers that you’ll be able to safely process.
In single precision, that’s around 1e-7. In double precision, that’s around 1e-16. And
in half precision, it’s only 1e-3.

 Every model you’ve seen in this book so far used single-precision numbers: it
stored its state as float32 weight variables and ran its computations on float32
inputs. That’s enough precision to run the forward and backwards pass of a model
without losing any information—particularly when it comes to small gradient updates

A note on floating-point encoding
A counterintuitive fact about floating-point numbers is that representable numbers
are not uniformly distributed. Larger numbers have lower precision: there are the
same number of representable values between 2 ** N and 2 ** (N + 1) as there are
between 1 and 2, for any N.

That’s because floating-point numbers are encoded in three parts—the sign, the sig-
nificant value (called the "mantissa"), and the exponent, in the form

{sign} * (2 ** ({exponent} - 127)) * 1.{mantissa}

For example, here’s how you would encode the closest float32 value approximating Pi:

For this reason, the numerical error incurred when converting a number to its floating-
point representation can vary wildly depending on the exact value considered, and the
error tends to get larger for numbers with a large absolute value.

0 10000000 10010010000111111011011

Sign Exponent Mantissa

+1 128 5707963705062866

1 bit 8 bits 23 bits

value = +1 * (2 ** (128 - 127)) * 1.5707963705062866
value = 3.1415927410125732

The number Pi encoded in single precision via a sign bit, an integer
exponent, and an integer mantissa

424 CHAPTER 13 Best practices for the real world

(recall that the typical learning rate is 1e-3, and it’s pretty common to see weight
updates on the order of 1e-6).

 You could also use float64, though that would be wasteful—operations like matrix
multiplication or addition are much more expensive in double precision, so you’d be
doing twice as much work for no clear benefits. But you could not do the same with
float16 weights and computation; the gradient descent process wouldn’t run
smoothly, since you couldn’t represent small gradient updates of around 1e-5 or 1e-6.

 You can, however, use a hybrid approach: that’s what mixed precision is about. The
idea is to leverage 16-bit computations in places where precision isn’t an issue, and to
work with 32-bit values in other places to maintain numerical stability. Modern GPUs
and TPUs feature specialized hardware that can run 16-bit operations much faster and
use less memory than equivalent 32-bits operations. By using these lower-precision
operations whenever possible, you can speed up training on those devices by a signifi-
cant factor. Meanwhile, by maintaining the precision-sensitive parts of the model in
single precision, you can get these benefits without meaningfully impacting model
quality.

 And those benefits are considerable: on modern NVIDIA GPUs, mixed precision
can speed up training by up to 3X. It’s also beneficial when training on a TPU (a sub-
ject we’ll get to in a bit), where it can speed up training by up to 60%.

Beware of dtype defaults
Single precision is the default floating-point type throughout Keras and TensorFlow:
any tensor or variable you create will be in float32 unless you specify otherwise. For
NumPy arrays, however, the default is float64!

Converting a default NumPy array to a TensorFlow tensor will result in a float64 ten-
sor, which may not be what you want:

>>> import tensorflow as tf
>>> import numpy as np
>>> np_array = np.zeros((2, 2))
>>> tf_tensor = tf.convert_to_tensor(np_array)
>>> tf_tensor.dtype
tf.float64

Remember to be explicit about data types when converting NumPy arrays:

>>> np_array = np.zeros((2, 2))
>>> tf_tensor = tf.convert_to_tensor(np_array, dtype="float32")
>>> tf_tensor.dtype
tf.float32

Note that when you call the Keras fit() method with NumPy data, it will do this con-
version for you.

Specify the dtype explicitly.

425Scaling-up model training

MIXED-PRECISION TRAINING IN PRACTICE

When training on a GPU, you can turn on mixed precision like this:

from tensorflow import keras
keras.mixed_precision.set_global_policy("mixed_float16")

Typically, most of the forward pass of the model will be done in float16 (with the
exception of numerically unstable operations like softmax), while the weights of the
model will be stored and updated in float32.

 Keras layers have a variable_dtype and a compute_dtype attribute. By default, both
of these are set to float32. When you turn on mixed precision, the compute_dtype of
most layers switches to float16, and those layers will cast their inputs to float16 and will
perform their computations in float16 (using half-precision copies of the weights).
However, since their variable_dtype is still float32, their weights will be able to receive
accurate float32 updates from the optimizer, as opposed to half-precision updates.

 Note that some operations may be numerically unstable in float16 (in particular,
softmax and crossentropy). If you need to opt out of mixed precision for a specific
layer, just pass the argument dtype="float32" to the constructor of this layer.

13.2.2 Multi-GPU training

While GPUs are getting more powerful every year, deep learning models are getting
increasingly larger, requiring ever more computational resources. Training on a single
GPU puts a hard bound on how fast you can move. The solution? You could simply
add more GPUs and start doing multi-GPU distributed training.

 There are two ways to distribute computation across multiple devices: data parallel-
ism and model parallelism.

 With data parallelism, a single model is replicated on multiple devices or multiple
machines. Each of the model replicas processes different batches of data, and then
they merge their results.

 With model parallelism, different parts of a single model run on different devices,
processing a single batch of data together at the same time. This works best with models
that have a naturally parallel architecture, such as models that feature multiple branches.

 In practice, model parallelism is only used for models that are too large to fit on
any single device: it isn’t used as a way to speed up training of regular models, but as a
way to train larger models. We won’t cover model parallelism in these pages; instead
we’ll focus on what you’ll be using most of the time: data parallelism. Let’s take a look
at how it works.

GETTING YOUR HANDS ON TWO OR MORE GPUS

First, you need to get access to several GPUs. As of now, Google Colab only lets you use
a single GPU, so you will need to do one of two things:

� Acquire 2–4 GPUs, mount them on a single machine (it will require a beefy
power supply), and install CUDA drivers, cuDNN, etc. For most people, this
isn’t the best option.

426 CHAPTER 13 Best practices for the real world

� Rent a multi-GPU Virtual Machine (VM) on Google Cloud, Azure, or AWS.
You’ll be able to use VM images with preinstalled drivers and software, and
you’ll have very little setup overhead. This is likely the best option for anyone
who isn’t training models 24/7.

We won’t cover the details of how to spin up multi-GPU cloud VMs, because such instruc-
tions would be relatively short-lived, and this information is readily available online.

 And if you don’t want to deal with the overhead of managing your own VM
instances, you can use TensorFlow Cloud (https://github.com/tensorflow/cloud), a
package that my team and I have recently released—it enables you to start training on
multiple GPUs by just adding one line of code at the start of a Colab notebook. If
you’re looking for a seamless transition from debugging your model in Colab to train-
ing it as fast as possible on as many GPUs as you want, check it out.

SINGLE-HOST, MULTI-DEVICE SYNCHRONOUS TRAINING

Once you’re able to import tensorflow on a machine with multiple GPUs, you’re sec-
onds away from training a distributed model. It works like this:

strategy = tf.distribute.MirroredStrategy()
print(f"Number of devices: {strategy.num_replicas_in_sync}")
with strategy.scope():
 model = get_compiled_model()
model.fit(
 train_dataset,
 epochs=100,
 validation_data=val_dataset,
 callbacks=callbacks)

These few lines implement the most common training setup: single-host, multi-device
synchronous training, also known in TensorFlow as the “mirrored distribution strategy.”
“Single host” means that the different GPUs considered are all on a single machine
(as opposed to a cluster of many machines, each with its own GPU, communicating
over a network). “Synchronous training” means that the state of the per-GPU model
replicas stays the same at all times—there are variants of distributed training where
this isn’t the case.

 When you open a MirroredStrategy scope and build your model within it, the
MirroredStrategy object will create one model copy (replica) on each available GPU.
Then, each step of training unfolds in the following way (see figure 13.2):

1 A batch of data (called global batch) is drawn from the dataset.
2 It gets split into four different sub-batches (called local batches). For instance, if

the global batch has 512 samples, each of the four local batches will have 128
samples. Because you want local batches to be large enough to keep the GPU
busy, the global batch size typically needs to be very large.

Create a “distribution strategy”
object. MirroredStrategy should
be your go-to solution.

Use it to open a “strategy scope.”

Everything that creates variables
should be under the strategy scope.
In general, this is only model
construction and compile().

Train the model on
all available devices.

427Scaling-up model training

3 Each of the four replicas processes one local batch, independently, on its own
device: they run a forward pass, and then a backward pass. Each replica outputs
a “weight delta” describing by how much to update each weight variable in the
model, given the gradient of the previous weights with respect to the loss of the
model on the local batch.

4 The weight deltas originating from local gradients are efficiently merged across
the four replicas to obtain a global delta, which is applied to all replicas. Because
this is done at the end of every step, the replicas always stay in sync: their
weights are always equal.

In an ideal world, training on N GPUs would result in a speedup of factor N. In prac-
tice, however, distribution introduces some overhead—in particular, merging the
weight deltas originating from different devices takes some time. The effective
speedup you get is a function of the number of GPUs used:

� With two GPUs, the speedup stays close to 2x.
� With four, the speedup is around 3.8x.
� With eight, it’s around 7.3x.

This assumes that you’re using a large enough global batch size to keep each GPU uti-
lized at full capacity. If your batch size is too small, the local batch size won’t be
enough to keep your GPUs busy.

tf.data performance tips
When doing distributed training, always provide your data as a tf.data.Dataset
object to guarantee best performance. (Passing your data as NumPy arrays also
works, since those get converted to Dataset objects by fit()). You should also
make sure you leverage data prefetching: before passing the dataset to fit(), call
dataset.prefetch(buffer_size). If you aren’t sure what buffer size to pick, try the
dataset.prefetch(tf.data.AUTOTUNE) option, which will pick a buffer size for you.

Model
replica 0

Local
batch

Global
batch

Local
weight

updates

Averaged
weight

updates

Dataset

Model
replica 1

Figure 13.2 One step of
MirroredStrategy training:
each model replica computes local
weight updates, which are then
merged and used to update the
state of all replicas.

428 CHAPTER 13 Best practices for the real world

13.2.3 TPU training

Beyond just GPUs, there is a trend in the deep learning world toward moving work-
flows to increasingly specialized hardware designed specifically for deep learning
workflows (such single-purpose chips are known as ASICs, application-specific inte-
grated circuits). Various companies big and small are working on new chips, but today
the most prominent effort along these lines is Google’s Tensor Processing Unit
(TPU), which is available on Google Cloud and via Google Colab.

 Training on a TPU does involve jumping through some hoops, but it’s worth the
extra work: TPUs are really, really fast. Training on a TPU V2 will typically be 15x
faster than training an NVIDIA P100 GPU. For most models, TPU training ends up
being 3x more cost-effective than GPU training on average.

USING A TPU VIA GOOGLE COLAB

You can actually use an 8-core TPU for free in Colab. In the Colab menu, under the
Runtime tab, in the Change Runtime Type option, you’ll notice that you have access
to a TPU runtime in addition to the GPU runtime.

 When you’re using the GPU runtime, your models have direct access to the GPU
without you needing to do anything special. This isn’t true for the TPU runtime;
there’s an extra step you need to take before you can start building a model: you need
to connect to the TPU cluster.

 It works like this:

import tensorflow as tf
tpu = tf.distribute.cluster_resolver.TPUClusterResolver.connect()
print("Device:", tpu.master())

You don’t have to worry too much about what this does—it’s just a little incantation
that connects your notebook runtime to the device. Open Sesame.

 Much like in the case of multi-GPU training, using the TPU requires you to open a
distribution strategy scope—in this case, a TPUStrategy scope. TPUStrategy follows
the same distribution template as MirroredStrategy—the model is replicated once
per TPU core, and the replicas are kept in sync.

 Here’s a simple example.

from tensorflow import keras
from tensorflow.keras import layers

strategy = tf.distribute.TPUStrategy(tpu)
print(f"Number of replicas: {strategy.num_replicas_in_sync}")

def build_model(input_size):
 inputs = keras.Input((input_size, input_size, 3))
 x = keras.applications.resnet.preprocess_input(inputs)
 x = keras.applications.resnet.ResNet50(
 weights=None, include_top=False, pooling="max")(x)

Listing 13.4 Building a model in a TPUStrategy scope

429Scaling-up model training

 outputs = layers.Dense(10, activation="softmax")(x)
 model = keras.Model(inputs, outputs)
 model.compile(optimizer="rmsprop",
 loss="sparse_categorical_crossentropy",
 metrics=["accuracy"])
 return model

with strategy.scope():
 model = build_model(input_size=32)

We’re almost ready to start training. But there’s something a bit curious about TPUs
in Colab: it’s a two-VM setup, meaning that the VM that hosts your notebook runtime
isn’t the same VM that the TPU lives in. Because of this, you won’t be able to train
from files stored on the local disk (that is to say, on the disk linked to the VM that
hosts the notebook). The TPU runtime can’t read from there. You have two options
for data loading:

� Train from data that lives in the memory of the VM (not on disk). If your data is
in a NumPy array, this is what you’re already doing.

� Store the data in a Google Cloud Storage (GCS) bucket, and create a dataset
that reads the data directly from the bucket, without downloading locally. The
TPU runtime can read data from GCS. This is your only option for datasets that
are too large to live entirely in memory.

In our case, let’s train from NumPy arrays in memory—the CIFAR10 dataset:

(x_train, y_train), (x_test, y_test) = keras.datasets.cifar10.load_data()
model.fit(x_train, y_train, batch_size=1024)

You’ll notice that the first epoch takes a while to start—that’s because your model is
getting compiled to something that the TPU can execute. Once that step is done, the
training itself is blazing fast.

Beware of I/O bottlenecks
Because TPUs can process batches of data extremely quickly, the speed at which you
can read data from GCS can easily become a bottleneck.

� If your dataset is small enough, you should keep it in the memory of the VM.
You can do so by calling dataset.cache() on your dataset. That way, the
data will only be read from GCS once.

� If your dataset is too large to fit in memory, make sure to store it as TFRecord
files—an efficient binary storage format that can be loaded very quickly. On
keras.io, you’ll find a code example demonstrating how to format your data as
TFRecord files (https://keras.io/examples/keras_recipes/creating_tfrecords/).

Note that TPU training, much like multi-
GPU training, requires large batch sizes to
make sure the device stays well-utilized.

430 CHAPTER 13 Best practices for the real world

LEVERAGING STEP FUSING TO IMPROVE TPU UTILIZATION

Because a TPU has a lot of compute power available, you need to train with very large
batches to keep the TPU cores busy. For small models, the batch size required can get
extraordinarily large—upwards of 10,000 samples per batch. When working with enor-
mous batches, you should make sure to increase your optimizer learning rate accord-
ingly; you’re going to be making fewer updates to your weights, but each update will
be more accurate (since the gradients are computed using more data points), so you
should move the weights by a greater magnitude with each update.

 There is, however, a simple trick you can leverage to keep reasonably sized batches
while maintaining full TPU utilization: step fusing. The idea is to run multiple steps of
training during each TPU execution step. Basically, do more work in between two
round trips from the VM memory to the TPU. To do this, simply specify the steps_
per_execution argument in compile()—for instance, steps_per_execution=8 to
run eight steps of training during each TPU execution. For small models that are
underutilizing the TPU, this can result in a dramatic speedup.

Summary
� You can leverage hyperparameter tuning and KerasTuner to automate the

tedium out of finding the best model configuration. But be mindful of validation-
set overfitting!

� An ensemble of diverse models can often significantly improve the quality of
your predictions.

� You can speed up model training on GPU by turning on mixed precision—
you’ll generally get a nice speed boost at virtually no cost.

� To further scale your workflows, you can use the tf.distribute.Mirrored-
Strategy API to train models on multiple GPUs.

� You can even train on Google’s TPUs (available on Colab) by using the TPU-
Strategy API. If your model is small, make sure to leverage step fusing (via
the compile(…, steps_per_execution=N) argument) in order to fully utilize
the TPU cores.

431

Conclusions

You’ve almost reached the end of this book. This last chapter will summarize and
review core concepts while also expanding your horizons beyond what you’ve
learned so far. Becoming an effective AI practitioner is a journey, and finishing this
book is merely your first step on it. I want to make sure you realize this and are
properly equipped to take the next steps of this journey on your own.

 We’ll start with a bird’s-eye view of what you should take away from this book.
This should refresh your memory regarding some of the concepts you’ve learned.
Next, I’ll present an overview of some key limitations of deep learning. To use a
tool appropriately, you should not only understand what it can do but also be
aware of what it can’t do. Finally, I’ll offer some speculative thoughts about the
future evolution of deep learning, machine learning, and AI. This should be

This chapter covers
� Important takeaways from this book
� The limitations of deep learning
� Possible future directions for deep learning,

machine learning, and AI
� Resources for further learning and applying your

skills in practice

432 CHAPTER 14 Conclusions

especially interesting to you if you’d like to get into fundamental research. The chap-
ter ends with a short list of resources and strategies for further learning about
machine learning and staying up to date with new advances.

14.1 Key concepts in review
This section briefly synthesizes key takeaways from this book. If you ever need a quick
refresher to help you recall what you’ve learned, you can read these few pages.

14.1.1 Various approaches to AI

First of all, deep learning isn’t synonymous with AI, or even with machine learning:

� Artificial intelligence (AI) is an ancient, broad field that can generally be under-
stood as “all attempts to automate human cognitive processes.” This can range
from the very basic, such as an Excel spreadsheet, to the very advanced, like a
humanoid robot that can walk and talk.

� Machine learning is a specific subfield of AI that aims at automatically developing
programs (called models) purely from exposure to training data. This process of
turning data into a program is called learning. Although machine learning has
been around for a long time, it only started to take off in the 1990s, before
becoming the dominant form of AI in the 2000s.

� Deep learning is one of many branches of machine learning, where the models
are long chains of geometric transformations, applied one after the other.
These operations are structured into modules called layers: deep learning mod-
els are typically stacks of layers—or, more generally, graphs of layers. These lay-
ers are parameterized by weights, which are the parameters learned during
training. The knowledge of a model is stored in its weights, and the process of
learning consists of finding “good values” for these weights—values that mini-
mize a loss function. Because the chain of geometric transformations considered
is differentiable, updating the weights to minimize the loss function is done effi-
ciently via gradient descent.

Even though deep learning is just one among many approaches to machine learn-
ing, it isn’t on an equal footing with the others. Deep learning is a breakout success.
Here’s why.

14.1.2 What makes deep learning special within the field
of machine learning

In the span of only a few years, deep learning has achieved tremendous breakthroughs
across a wide range of tasks that have been historically perceived as extremely difficult
for computers, especially in the area of machine perception: extracting useful infor-
mation from images, videos, sound, and more. Given sufficient training data (in par-
ticular, training data appropriately labeled by humans), deep learning makes it
possible to extract from perceptual data almost anything a human could. Hence, it’s

433Key concepts in review

sometimes said that deep learning has “solved perception”—although that’s true only
for a fairly narrow definition of perception.

 Due to its unprecedented technical successes, deep learning has singlehandedly
brought about the third and by far the largest AI summer: a period of intense interest,
investment, and hype in the field of AI. As this book is being written, we’re in the mid-
dle of it. Whether this period will end in the near future, and what happens after it
ends, are topics of debate. One thing is certain: in stark contrast with previous AI sum-
mers, deep learning has provided enormous business value to both large and small
technology companies, enabling human-level speech recognition, smart assistants,
human-level image classification, vastly improved machine translation, and more. The
hype may (and likely will) recede, but the sustained economic and technological
impact of deep learning will remain. In that sense, deep learning could be analogous
to the internet: it may be overly hyped up for a few years, but in the longer term it will
still be a major revolution that will transform our economy and our lives.

 I’m particularly optimistic about deep learning, because even if we were to make
no further technological progress in the next decade, deploying existing algorithms
to every applicable problem would be a game changer for most industries. Deep
learning is nothing short of a revolution, and progress is currently happening at an
incredibly fast rate, due to an exponential investment in resources and headcount.
From where I stand, the future looks bright, although short-term expectations are
somewhat overoptimistic; deploying deep learning to the full extent of its potential
will likely take multiple decades.

14.1.3 How to think about deep learning

The most surprising thing about deep learning is how simple it is. Ten years ago, no
one expected that we would achieve such amazing results on machine-perception
problems by using simple parametric models trained with gradient descent. Now, it
turns out that all you need is sufficiently large parametric models trained with gradi-
ent descent on sufficiently many examples. As Feynman once said about the universe,
“It’s not complicated, it’s just a lot of it.”1

 In deep learning, everything is a vector—that is to say, everything is a point in a geo-
metric space. Model inputs (text, images, and so on) and targets are first vectorized—
turned into an initial input vector space and target vector space. Each layer in a deep
learning model operates one simple geometric transformation on the data that goes
through it. Together, the chain of layers in the model forms one complex geometric
transformation, broken down into a series of simple ones. This complex transforma-
tion attempts to map the input space to the target space, one point at a time. This
transformation is parameterized by the weights of the layers, which are iteratively
updated based on how well the model is currently performing. A key characteristic of
this geometric transformation is that it must be differentiable, which is required in order

1 Richard Feynman, interview, “The World from Another Point of View,” Yorkshire Television, 1972.

434 CHAPTER 14 Conclusions

for us to be able to learn its parameters via gradient descent. Intuitively, this means
the geometric morphing from inputs to outputs must be smooth and continuous—a
significant constraint.

 The entire process of applying this complex geometric transformation to the
input data can be visualized in 3D by imagining a person trying to uncrumple a
paper ball: the crumpled paper ball is the manifold of the input data that the model
starts with. Each movement operated by the person on the paper ball is similar to a
simple geometric transformation operated by one layer. The full uncrumpling ges-
ture sequence is the complex transformation of the entire model. Deep learning
models are mathematical machines for uncrumpling complicated manifolds of high-
dimensional data.

 That’s the magic of deep learning: turning meaning into vectors, then into geo-
metric spaces, and then incrementally learning complex geometric transformations
that map one space to another. All you need are spaces of sufficiently high dimension-
ality in order to capture the full scope of the relationships found in the original data.

 The whole process hinges on a single core idea: that meaning is derived from the pair-
wise relationship between things (between words in a language, between pixels in an image,
and so on) and that these relationships can be captured by a distance function. But note that
whether the brain also implements meaning via geometric spaces is an entirely separate
question. Vector spaces are efficient to work with from a computational standpoint, but
different data structures for intelligence can easily be envisioned—in particular, graphs.
Neural networks initially emerged from the idea of using graphs as a way to encode
meaning, which is why they’re named neural networks; the surrounding field of
research used to be called connectionism. Nowadays the name “neural network” exists
purely for historical reasons—it’s an extremely misleading name because they’re nei-
ther neural nor networks. In particular, neural networks have hardly anything to do
with the brain. A more appropriate name would have been layered representations learn-
ing or hierarchical representations learning, or maybe even deep differentiable models or
chained geometric transforms, to emphasize the fact that continuous geometric space
manipulation is at their core.

14.1.4 Key enabling technologies

The technological revolution that’s currently unfolding didn’t start with any single
breakthrough invention. Rather, like any other revolution, it’s the product of a vast
accumulation of enabling factors—gradual at first, and then sudden. In the case of
deep learning, we can point out the following key factors:

� Incremental algorithmic innovations—These first began appearing slowly over the
span of two decades (starting with backpropagation), and then were devel-
oped increasingly faster as more research effort was poured into deep learn-
ing after 2012.

� The availability of large amounts of perceptual data—This was a requirement in
order to realize that sufficiently large models trained on sufficiently large data

435Key concepts in review

are all we need. This is, in turn, a byproduct of the rise of the consumer inter-
net and Moore’s law applied to storage media.

� The availability of fast, highly parallel computation hardware at a low price—Especially
the GPUs produced by NVIDIA—first gaming GPUs and then chips designed
from the ground up for deep learning. Early on, NVIDIA CEO Jensen Huang
took note of the deep learning boom and decided to bet the company’s future
on it, which paid off in a big way.

� A complex stack of software layers that makes this computational power available to
humans—The CUDA language, frameworks like TensorFlow that do auto-
matic differentiation, and Keras, which makes deep learning accessible to
most people.

In the future, deep learning will not be used only by specialists—researchers, graduate
students, and engineers with an academic profile—it will be a tool in the toolbox of
every developer, much like web technology today. Everyone needs to build intelligent
apps: just as every business today needs a website, every product will need to intelli-
gently make sense of user-generated data. Bringing about this future will require us to
build tools that make deep learning radically easy to use and accessible to anyone with
basic coding abilities. Keras has been the first major step in that direction.

14.1.5 The universal machine learning workflow

Having access to an extremely powerful tool for creating models that map any input
space to any target space is great, but the difficult part of the machine learning work-
flow is often everything that comes before designing and training such models (and,
for production models, what comes after, as well). Understanding the problem domain
so as to be able to determine what to attempt to predict, given what data, and how to
measure success, is a prerequisite for any successful application of machine learning,
and it isn’t something that advanced tools like Keras and TensorFlow can help you
with. As a reminder, here’s a quick summary of the typical machine learning workflow
as described in chapter 6:

1 Define the problem: What data is available, and what are you trying to predict?
Will you need to collect more data or hire people to manually label a dataset?

2 Identify a way to reliably measure success on your goal. For simple tasks this may
be prediction accuracy, but in many cases it will require sophisticated, domain-
specific metrics.

3 Prepare the validation process that you’ll use to evaluate your models. In partic-
ular, you should define a training set, a validation set, and a test set. The valida-
tion- and test-set labels shouldn’t leak into the training data: for instance, with
temporal prediction, the validation and test data should be posterior to the
training data.

4 Vectorize the data by turning it into vectors and preprocessing it in a way that
makes it more easily approachable by a neural network (normalization and so on).

436 CHAPTER 14 Conclusions

5 Develop a first model that beats a trivial common-sense baseline, thus demon-
strating that machine learning can work on your problem. This may not always
be the case!

6 Gradually refine your model architecture by tuning hyperparameters and add-
ing regularization. Make changes based on performance on the validation data
only, not the test data or the training data. Remember that you should get your
model to overfit (thus identifying a model capacity level that’s greater than you
need) and only then begin to add regularization or downsize your model.
Beware of validation-set overfitting when tuning hyperparameters—the fact
that your hyperparameters may end up being overspecialized to the validation
set. Avoiding this is the purpose of having a separate test set.

7 Deploy your final model in production—as a web API, as part of a JavaScript or
C++ application, on an embedded device, etc. Keep monitoring its perfor-
mance on real-world data, and use your findings to refine the next iteration of
the model!

14.1.6 Key network architectures

The four families of network architectures that you should be familiar with are densely
connected networks, convolutional networks, recurrent networks, and Transformers. Each type
of model is meant for a specific input modality. A network architecture encodes
assumptions about the structure of the data: a hypothesis space within which the search
for a good model will proceed. Whether a given architecture will work on a given
problem depends entirely on the match between the structure of the data and the
assumptions of the network architecture.

 These different network types can easily be combined to achieve larger multi-
modal models, much as you combine LEGO bricks. In a way, deep learning layers are
LEGO bricks for information processing. Here’s a quick overview of the mapping
between input modalities and appropriate network architectures:

� Vector data—Densely connected models (Dense layers).
� Image data—2D convnets.
� Sequence data—RNNs for timeseries, or Transformers for discrete sequences

(such as sequences of words). 1D convnets can also be used for translation-
invariant, continuous sequence data, such as birdsong waveforms.

� Video data—Either 3D convnets (if you need to capture motion effects), or a
combination of a frame-level 2D convnet for feature extraction followed by a
sequence-processing model.

� Volumetric data—3D convnets.

Now, let’s quickly review the specificities of each network architecture.

437Key concepts in review

DENSELY CONNECTED NETWORKS

A densely connected network is a stack of Dense layers meant to process vector data
(where each sample is a vector of numerical or categorical attributes). Such networks
assume no specific structure in the input features: they’re called densely connected
because the units of a Dense layer are connected to every other unit. The layer
attempts to map relationships between any two input features; this is unlike a 2D con-
volution layer, for instance, which only looks at local relationships.

 Densely connected networks are most commonly used for categorical data (for
example, where the input features are lists of attributes), such as the Boston Housing
Price dataset used in chapter 4. They’re also used as the final classification or regres-
sion stage of most networks. For instance, the convnets covered in chapter 8 typically
end with one or two Dense layers, and so do the recurrent networks in chapter 10.

 Remember, to perform binary classification, end your stack of layers with a Dense
layer with a single unit and a sigmoid activation, and use binary_crossentropy as the
loss. Your targets should be either 0 or 1:

from tensorflow import keras
from tensorflow.keras import layers
inputs = keras.Input(shape=(num_input_features,))
x = layers.Dense(32, activation="relu")(inputs)
x = layers.Dense(32, activation="relu")(x)
outputs = layers.Dense(1, activation="sigmoid")(x)
model = keras.Model(inputs, outputs)
model.compile(optimizer="rmsprop", loss="binary_crossentropy")

To perform single-label categorical classification (where each sample has exactly one class,
no more), end your stack of layers with a Dense layer with a number of units equal to the
number of classes, and a softmax activation. If your targets are one-hot encoded, use
categorical_crossentropy as the loss; if they’re integers, use sparse_categorical_
crossentropy:

inputs = keras.Input(shape=(num_input_features,))
x = layers.Dense(32, activation="relu")(inputs)
x = layers.Dense(32, activation="relu")(x)
outputs = layers.Dense(num_classes, activation="softmax")(x)
model = keras.Model(inputs, outputs)
model.compile(optimizer="rmsprop", loss="categorical_crossentropy")

To perform multilabel categorical classification (where each sample can have several
classes), end your stack of layers with a Dense layer with a number of units equal to the
number of classes, and a sigmoid activation, and use binary_crossentropy as the
loss. Your targets should be multi-hot encoded:

inputs = keras.Input(shape=(num_input_features,))
x = layers.Dense(32, activation="relu")(inputs)
x = layers.Dense(32, activation="relu")(x)
outputs = layers.Dense(num_classes, activation="sigmoid")(x)
model = keras.Model(inputs, outputs)
model.compile(optimizer="rmsprop", loss="binary_crossentropy")

438 CHAPTER 14 Conclusions

To perform regression toward a vector of continuous values, end your stack of layers
with a Dense layer with a number of units equal to the number of values you’re trying
to predict (often a single one, such as the price of a house), and no activation. Various
losses can be used for regression—most commonly mean_squared_error (MSE):

inputs = keras.Input(shape=(num_input_features,))
x = layers.Dense(32, activation="relu")(inputs)
x = layers.Dense(32, activation="relu")(x)
outputs layers.Dense(num_values)(x)
model = keras.Model(inputs, outputs)
model.compile(optimizer="rmsprop", loss="mse")

CONVNETS

Convolution layers look at spatially local patterns by applying the same geometric
transformation to different spatial locations (patches) in an input tensor. This results
in representations that are translation invariant, making convolution layers highly data
efficient and modular. This idea is applicable to spaces of any dimensionality: 1D
(continuous sequences), 2D (images), 3D (volumes), and so on. You can use the
Conv1D layer to process sequences, the Conv2D layer to process images, and the Conv3D
layers to process volumes. As a leaner, more efficient alternative to convolution layers,
you can also use depthwise separable convolution layers, such as SeparableConv2D.

 Convnets, or convolutional networks, consist of stacks of convolution and max-pooling
layers. The pooling layers let you spatially downsample the data, which is required to
keep feature maps to a reasonable size as the number of features grows, and to allow sub-
sequent convolution layers to “see” a greater spatial extent of the inputs. Convnets are
often ended with either a Flatten operation or a global pooling layer, turning spatial fea-
ture maps into vectors, followed by Dense layers to achieve classification or regression.

 Here’s a typical image-classification network (categorical classification, in this
case), leveraging SeparableConv2D layers:

inputs = keras.Input(shape=(height, width, channels))
x = layers.SeparableConv2D(32, 3, activation="relu")(inputs)
x = layers.SeparableConv2D(64, 3, activation="relu")(x)
x = layers.MaxPooling2D(2)(x)
x = layers.SeparableConv2D(64, 3, activation="relu")(x)
x = layers.SeparableConv2D(128, 3, activation="relu")(x)
x = layers.MaxPooling2D(2)(x)
x = layers.SeparableConv2D(64, 3, activation="relu")(x)
x = layers.SeparableConv2D(128, 3, activation="relu")(x)
x = layers.GlobalAveragePooling2D()(x)
x = layers.Dense(32, activation="relu")(x)
outputs = layers.Dense(num_classes, activation="softmax")(x)
model = keras.Model(inputs, outputs)
model.compile(optimizer="rmsprop", loss="categorical_crossentropy")

When building a very deep convnet, it’s common to add batch normalization layers as
well as residual connections—two architecture patterns that help gradient information
flow smoothly through the network.

439Key concepts in review

RNNS

Recurrent neural networks (RNNs) work by processing sequences of inputs one timestep
at a time, and maintaining a state throughout (a state is typically a vector or set of vec-
tors). They should be used preferentially over 1D convnets in the case of sequences
where patterns of interest aren’t invariant by temporal translation (for instance,
timeseries data where the recent past is more important than the distant past).

 Three RNN layers are available in Keras: SimpleRNN, GRU, and LSTM. For most practi-
cal purposes, you should use either GRU or LSTM. LSTM is the more powerful of the two
but is also more expensive; you can think of GRU as a simpler, cheaper alternative to it.

 In order to stack multiple RNN layers on top of each other, each layer prior to the
last layer in the stack should return the full sequence of its outputs (each input time-
step will correspond to an output timestep). If you aren’t stacking any further RNN
layers, it’s common to return only the last output, which contains information about
the entire sequence.

 Following is a single RNN layer for binary classification of vector sequences:

inputs = keras.Input(shape=(num_timesteps, num_features))
x = layers.LSTM(32)(inputs)
outputs = layers.Dense(num_classes, activation="sigmoid")(x)
model = keras.Model(inputs, outputs)
model.compile(optimizer="rmsprop", loss="binary_crossentropy")

And this is a stacked RNN for binary classification of vector sequences:

inputs = keras.Input(shape=(num_timesteps, num_features))
x = layers.LSTM(32, return_sequences=True)(inputs)
x = layers.LSTM(32, return_sequences=True)(x)
x = layers.LSTM(32)(x)
outputs = layers.Dense(num_classes, activation="sigmoid")(x)
model = keras.Model(inputs, outputs)
model.compile(optimizer="rmsprop", loss="binary_crossentropy")

TRANSFORMERS

A Transformer looks at a set of vectors (such as word vectors), and leverages neural
attention to transform each vector into a representation that is aware of the context pro-
vided by the other vectors in the set. When the set in question is an ordered sequence,
you can also leverage positional encoding to create Transformers that can take into
account both global context and word order, capable of processing long text para-
graphs much more effectively than RNNs or 1D convnets.

 Transformers can be used for any set-processing or sequence-processing task,
including text classification, but they excel especially at sequence-to-sequence learning,
such as translating paragraphs in a source language into a target language.

 A sequence-to-sequence Transformer is made up of two parts:

� A TransformerEncoder that turns an input vector sequence into a context-
aware, order-aware output vector sequence

440 CHAPTER 14 Conclusions

� A TransformerDecoder that takes the output of the TransformerEncoder, as well
as a target sequence, and predicts what should come next in the target sequence

If you’re only processing a single sequence (or set) of vectors, you’d be only using the
TransformerEncoder.

 Following is a sequence-to-sequence Transformer for mapping a source sequence
to a target sequence (this setup could be used for machine translation or question
answering, for instance):

encoder_inputs = keras.Input(shape=(sequence_length,), dtype="int64")
x = PositionalEmbedding(
 sequence_length, vocab_size, embed_dim)(encoder_inputs)
encoder_outputs = TransformerEncoder(embed_dim, dense_dim, num_heads)(x)
decoder_inputs = keras.Input(shape=(None,), dtype="int64")
x = PositionalEmbedding(
 sequence_length, vocab_size, embed_dim)(decoder_inputs)
x = TransformerDecoder(embed_dim, dense_dim, num_heads)(x, encoder_outputs)
decoder_outputs = layers.Dense(vocab_size, activation="softmax")(x)
transformer = keras.Model([encoder_inputs, decoder_inputs], decoder_outputs)
transformer.compile(optimizer="rmsprop", loss="categorical_crossentropy")

And this is a lone TransformerEncoder for binary classification of integer sequences:

inputs = keras.Input(shape=(sequence_length,), dtype="int64")
x = PositionalEmbedding(sequence_length, vocab_size, embed_dim)(inputs)
x = TransformerEncoder(embed_dim, dense_dim, num_heads)(x)
x = layers.GlobalMaxPooling1D()(x)
outputs = layers.Dense(1, activation="sigmoid")(x)
model = keras.Model(inputs, outputs)
model.compile(optimizer="rmsprop", loss="binary_crossentropy")

Full implementations of the TransformerEncoder, the TransformerDecoder, and the
PositionalEmbedding layer are provided in chapter 11.

14.1.7 The space of possibilities

What will you build with these techniques? Remember, building deep learning models
is like playing with LEGO bricks: layers can be plugged together to map essentially
anything to anything, given that you have appropriate training data available and that
the mapping is achievable via a continuous geometric transformation of reasonable
complexity. The space of possibilities is infinite. This section offers a few examples to
inspire you to think beyond the basic classification and regression tasks that have tra-
ditionally been the bread and butter of machine learning.

 I’ve sorted my suggested applications by input and output modalities in the follow-
ing list. Note that quite a few of them stretch the limits of what is possible—although a
model could be trained on all of these tasks, in some cases such a model probably
wouldn’t generalize far from its training data. Sections 14.2 through 14.4 will address
how these limitations could be lifted in the future:

Source sequence

Target
sequence

so far

Target sequence one step in the future

441Key concepts in review

� Mapping vector data to vector data:
– Predictive healthcare—Mapping patient medical records to predictions of

patient outcomes
– Behavioral targeting—Mapping a set of website attributes with data on how

long a user will spend on the website
– Product quality control—Mapping a set of attributes relative to an instance of

a manufactured product with the probability that the product will fail by
next year

� Mapping image data to vector data:
– Medical assistant—Mapping slides of medical images to a prediction about

the presence of a tumor
– Self-driving vehicle—Mapping car dashcam video frames to steering wheel

angle commands and gas and braking commands
– Board game AI—Mapping Go or chess boards to the next player move
– Diet helper—Mapping pictures of a dish to its calorie count
– Age prediction—Mapping selfies to the age of the person

� Mapping timeseries data to vector data:
– Weather prediction—Mapping timeseries of weather data in a grid of locations

to the temperature in a specific place one week later
– Brain-computer interfaces—Mapping timeseries of magnetoencephalogram

(MEG) data to computer commands
– Behavioral targeting—Mapping timeseries of user interactions on a website to

the probability that a user will buy something
� Mapping text to text:

– Machine translation— Mapping a paragraph in one language to a translated
version in a different language

– Smart reply—Mapping emails to possible one-line replies
– Question answering—Mapping general-knowledge questions to answers
– Summarization—Mapping a long article to a short summary of the article

� Mapping images to text:
– Text transcription— Mapping images that contain a text element to the corre-

sponding text string
– Captioning—Mapping images to short captions describing the contents of

the images
� Mapping text to images:

– Conditioned image generation—Mapping a short text description to images
matching the description

– Logo generation/selection—Mapping the name and description of a company
to a logo suggestion

442 CHAPTER 14 Conclusions

� Mapping images to images:
– Super-resolution—Mapping downsized images to higher-resolution versions of

the same images
– Visual depth sensing—Mapping images of indoor environments to maps of

depth predictions
� Mapping images and text to text:

– Visual QA—Mapping images and natural language questions about the con-
tents of images to natural language answers

� Mapping video and text to text:
– Video QA—Mapping short videos and natural language questions about the

contents of videos to natural language answers

Almost anything is possible, but not quite anything. You’ll see in the next section what
we can’t do with deep learning.

14.2 The limitations of deep learning
The space of applications that can be implemented with deep learning is infinite. And
yet, many applications remain completely out of reach for current deep learning tech-
niques—even given vast amounts of human-annotated data. Say, for instance, that you
could assemble a dataset of hundreds of thousands—even millions—of English-language
descriptions of the features of a software product, written by a product manager, as well
as the corresponding source code developed by a team of engineers to meet these
requirements. Even with this data, you could not train a deep learning model to read a
product description and generate the appropriate codebase. That’s just one example
among many. In general, anything that requires reasoning—like programming or apply-
ing the scientific method—long-term planning, and algorithmic data manipulation is out
of reach for deep learning models, no matter how much data you throw at them. Even
learning a simple sorting algorithm with a deep neural network is tremendously difficult.

 This is because a deep learning model is just a chain of simple, continuous geometric
transformations mapping one vector space into another. All it can do is map one data
manifold X into another manifold Y, assuming the existence of a learnable continu-
ous transform from X to Y. A deep learning model can be interpreted as a kind of
program, but, inversely, most programs can’t be expressed as deep learning models. For
most tasks, either there exists no corresponding neural network of reasonable size
that solves the task or, even if one exists, it may not be learnable : the corresponding
geometric transform may be far too complex, or there may not be appropriate data
available to learn it.

 Scaling up current deep learning techniques by stacking more layers and using
more training data can only superficially palliate some of these issues. It won’t solve
the more fundamental problems that deep learning models are limited in what they
can represent and that most of the programs you may wish to learn can’t be expressed
as a continuous geometric morphing of a data manifold.

443The limitations of deep learning

14.2.1 The risk of anthropomorphizing machine learning models

One real risk with contemporary AI is misinterpreting what deep learning models
do and overestimating their abilities. A fundamental feature of humans is our theory
of mind: our tendency to project intentions, beliefs, and knowledge on the things
around us. Drawing a smiley face on a rock suddenly makes it “happy” in our minds.
Applied to deep learning, this means that, for instance, when we’re able to some-
what successfully train a model to generate captions to describe pictures, we’re led
to believe that the model “understands” the contents of the pictures and the cap-
tions it generates. Then we’re surprised when any slight departure from the sort of
images present in the training data causes the model to generate completely absurd
captions (see figure 14.1).

In particular, this is highlighted by adversarial examples, which are samples fed to a
deep learning network that are designed to trick the model into misclassifying them.
You’re already aware that, for instance, it’s possible to do gradient ascent in input
space to generate inputs that maximize the activation of some convnet filter—this is
the basis of the filter-visualization technique introduced in chapter 9, as well as the
DeepDream algorithm from chapter 12. Similarly, through gradient ascent, you can
slightly modify an image in order to maximize the class prediction for a given class. By
taking a picture of a panda and adding to it a gibbon gradient, we can get a neural
network to classify the panda as a gibbon (see figure 14.2). This evidences both the
brittleness of these models and the deep difference between their input-to-output
mapping and our human perception.

 In short, deep learning models don’t have any understanding of their input—at
least, not in a human sense. Our own understanding of images, sounds, and language
is grounded in our sensorimotor experience as humans. Machine learning models
have no access to such experiences and thus can’t understand their inputs in a
human-relatable way. By annotating large numbers of training examples to feed into
our models, we get them to learn a geometric transform that maps data to human
concepts on a specific set of examples, but this mapping is a simplistic sketch of the

The boy is holding a baseball bat.

Figure 14.1 Failure of an image-captioning
system based on deep learning

444 CHAPTER 14 Conclusions

original model in our minds—the one developed from our experience as embodied
agents. It’s like a dim image in a mirror (see figure 14.3). The models you create will
take any shortcut available to fit their training data. For instance, image models tend
to rely more on local textures than on a global understanding of the input images—a
model trained on a dataset that features both leopards and sofas is likely to classify a
leopard-pattern sofa as an actual leopard.

Gibbon
class gradient

Panda

Panda

f(x)

Adversarial example

Gibbon!

f(x)

Figure 14.2 An adversarial example: imperceptible changes in an
image can upend a model’s classification of an image.

Real world
Embodied

human experience
Abstract concepts

in human mind

Labeled data
exemplifying

these concepts

May not always
transfer well to
the real world

Doesn’t match the
human mental model

it came from

Matches the
training data

Machine learning
model

f(x)

Figure 14.3 Current machine learning models: like a dim image in a mirror

445The limitations of deep learning

As a machine learning practitioner, always be mindful of this, and never fall into the
trap of believing that neural networks understand the tasks they perform—they don’t,
at least not in a way that would make sense to us. They were trained on a different, far
narrower task than the one we wanted to teach them: that of mapping training inputs
to training targets, point by point. Show them anything that deviates from their train-
ing data, and they will break in absurd ways.

14.2.2 Automatons vs. intelligent agents

There are fundamental differences between the straightforward geometric morphing
from input to output that deep learning models do and the way humans think and
learn. It isn’t just the fact that humans learn by themselves from embodied experience
instead of being presented with explicit training examples. The human brain is an
entirely different beast compared to a differentiable parametric function.

 Let’s zoom out a little bit and ask, “what’s the purpose of intelligence?” Why did it
arise in the first place? We can only speculate, but we can make fairly informed specu-
lations. We can start by looking at brains—the organ that produces intelligence.
Brains are an evolutionary adaption—a mechanism developed incrementally over hun-
dreds of millions of years, via random trial-and-error guided by natural selection—that
dramatically expanded the ability of organisms to adapt to their environment. Brains
originally appeared more than half a billion years ago as a way to store and execute behav-
ioral programs. “Behavioral programs” are just sets of instructions that make an organ-
ism reactive to its environment: “if this happens, then do that.” They link the
organism’s sensory inputs to its motor controls. In the beginning, brains would have
served to hardcode behavioral programs (as neural connectivity patterns), which
would allow an organism to react appropriately to its sensory input. This is the way
insect brains still work—flies, ants, C. elegans (see figure 14.4), etc. Because the origi-
nal “source code” of these programs was DNA, which would get decoded as neural
connectivity patterns, evolution was suddenly able to search over behavior space in a
largely unbounded way—a major evolutionary shift.

Evolution was the programmer, and brains were computers carefully executing the
code evolution gave them. Because neural connectivity is a very general computing
substrate, the sensorimotor space of all brain-enabled species could suddenly start
undergoing a dramatic expansion. Eyes, ears, mandibles, 4 legs, 24 legs—as long as
you have a brain, evolution will kindly figure out for you behavioral programs that
make good use of these. Brains can handle any modality—or combination of modali-
ties—you throw at them.

 Now, mind you, these early brains weren’t exactly intelligent per se. They were very
much automatons: they would merely execute behavioral programs hardcoded in the
organism’s DNA. They could only be described as intelligent in the same sense that a
thermostat is “intelligent.” Or a list-sorting program. Or . . . a trained deep neural net-
work (of the artificial kind). This is an important distinction, so let’s look at it care-
fully: what’s the difference between automatons and actual intelligent agents?

446 CHAPTER 14 Conclusions

14.2.3 Local generalization vs. extreme generalization

Seventeenth century French philosopher and scientist René Descartes wrote in 1637
an illuminating comment that perfectly captures this distinction—long before the rise
of AI, and in fact, before the first mechanical computer (which his colleague Pascal
would create five years later). Descartes tells us, in reference to automatons,

Even though such machines might do some things as well as we do them, or perhaps even
better, they would inevitably fail in others, which would reveal they were acting not
through understanding, but only from the disposition of their organs.

—René Descartes, Discourse on the Method (1637)

There it is. Intelligence is characterized by understanding, and understanding is evi-
denced by generalization—the ability to handle whatever novel situation may arise.
How do you tell the difference between a student that has memorized the past three
years of exam questions but has no understanding of the subject, and a student that

Figure 14.4 The brain network of the C. elegans worm: a behavioral automaton “programmed”
by natural evolution. Figure created by Emma Towlson (from Yan et al., “Network control principles
predict neuron function in the Caenorhabditis elegans connectome,” Nature, Oct. 2017).

447The limitations of deep learning

actually understands the material? You give them a brand new problem. An automa-
ton is static, crafted to accomplish specific things in a specific context—“if this, then
that”—while an intelligent agent can adapt on the fly to novel, unexpected situations.
When an automaton is exposed to something that doesn’t match what it is “pro-
grammed” to do (whether we’re talking about human-written programs, evolution-
generated programs, or the implicit programming process of fitting a model on a
training data set), it will fail. Meanwhile, intelligent agents, like humans, will use their
understanding to find a way forward.

 Humans are capable of far more than mapping immediate stimuli to immediate
responses, as a deep net, or an insect, would. We maintain complex, abstract models
of our current situation, of ourselves, and of other people, and we can use these mod-
els to anticipate different possible futures and perform long-term planning. You can
merge together known concepts to represent something you’ve never experienced
before—like imagining what you’d do if you won the lottery, or picturing how your
friend would react if you discreetly replaced her keys with exact copies made of elastic
rubber. This ability to handle novelty and what-ifs, to expand our mental model space
far beyond what we can experience directly—to leverage abstraction and reasoning—
is the defining characteristic of human cognition. I call it extreme generalization: an
ability to adapt to novel, never-before-experienced situations using little data or
even no new data at all. This capability is key to the intelligence displayed by
humans and advanced animals.

 This stands in sharp contrast with what automaton-like systems do. A very rigid
automaton wouldn’t feature any generalization at all—it would be incapable of han-
dling anything that it wasn’t precisely told about in advance. A Python dict or a basic
question-answering program implemented as hardcoded if-then-else statements
would fall into this category. Deep nets do slightly better: they can successfully process
inputs that deviate a bit from what they’re familiar with—which is precisely what
makes them useful. Our cats vs. dogs model from chapter 8 could classify cat or dog
pictures it had not seen before, as long as they were close enough to what it was
trained on. However, deep nets are limited to what I call local generalization (see fig-
ure 14.5): the mapping from inputs to outputs performed by a deep net quickly
stops making sense as inputs start deviating from what the net saw at training time.
Deep nets can only generalize to known unknowns—to factors of variation that were
anticipated during model development and that are extensively featured in the
training data, such as different camera angles or lighting conditions for pet pic-
tures. That’s because deep nets generalize via interpolation on a manifold (remem-
ber chapter 5): any factor of variation in their input space needs to be captured by
the manifold they learn. That’s why basic data augmentation is so helpful in improv-
ing deep net generalization. Unlike humans, these models have no ability to impro-
vise in the face of situations for which little or no data is available (like winning the
lottery or being handed rubber keys) that only share abstract commonalities with
past situations.

448 CHAPTER 14 Conclusions

Consider, for instance, the problem of learning the appropriate launch parameters to
get a rocket to land on the moon. If you used a deep net for this task and trained it
using supervised learning or reinforcement learning, you’d have to feed it tens of
thousands or even millions of launch trials: you’d need to expose it to a dense sampling
of the input space, in order for it to learn a reliable mapping from input space to out-
put space. In contrast, as humans, we can use our power of abstraction to come up
with physical models—rocket science—and derive an exact solution that will land the
rocket on the moon in one or a few trials. Similarly, if you developed a deep net con-
trolling a human body, and you wanted it to learn to safely navigate a city without
getting hit by cars, the net would have to die many thousands of times in various situa-
tions until it could infer that cars are dangerous and develop appropriate avoidance
behaviors. Dropped into a new city, the net would have to relearn most of what it
knows. On the other hand, humans are able to learn safe behaviors without having to
die even once—again, thanks to our power of abstract modeling of novel situations.

14.2.4 The purpose of intelligence

This distinction between highly adaptable intelligent agents and rigid automatons
leads us back to brain evolution. Why did brains—originally a mere medium for natu-
ral evolution to develop behavioral automatons—eventually turn intelligent? Like
every significant evolutionary milestone, it happened because natural selection con-
straints encouraged it to happen.

 Brains are responsible for behavior generation. If the set of situations an organism
had to face was mostly static and known in advance, behavior generation would be an
easy problem: evolution would just figure out the correct behaviors via random trial
and error and hardcode them into the organism’s DNA. This first stage of brain evo-
lution—brains as automatons—would already be optimal. However, crucially, as
organism complexity—and alongside it, environmental complexity—kept increas-
ing, the situations that animals had to deal with became much more dynamic and

Known
situations

Situations space

Operational
area

Lower-intelligence system:
lower information
conversion ratio

Higher-intelligence system:
higher information
conversion ratio

Figure 14.5 Local generalization vs. extreme generalization

449The limitations of deep learning

more unpredictable. A day in your life, if you look closely, is unlike any day you’ve
ever experienced, and unlike any day ever experienced by any of your evolutionary
ancestors. You need to be able to face unknown and surprising situations—constantly.
There is no way for evolution to find and hardcode as DNA the sequence of behaviors
you’ve been executing to successfully navigate your day since you woke up a few hours
ago. It has to be generated on the fly—every day.

 The brain, as a good behavior-generation engine, simply adapted to fit this need. It
optimized for adaptability and generality, rather than merely optimizing for fitness to
a fixed set of situations. This shift likely occurred multiple times throughout evolu-
tionary history, resulting in highly intelligent animals in very distant evolutionary
branches—apes, octopuses, ravens, and more. Intelligence is an answer to challenges
presented by complex, dynamic ecosystems.

 That’s the nature of intelligence: it is the ability to efficiently leverage the informa-
tion at your disposal in order to produce successful behavior in the face of an uncer-
tain, ever-changing future. What Descartes calls “understanding” is the key to this
remarkable capability: the power to mine your past experience to develop modular,
reusable abstractions that can be quickly repurposed to handle novel situations and
achieve extreme generalization.

14.2.5 Climbing the spectrum of generalization

As a crude caricature, you could summarize the evolutionary history of biological
intelligence as a slow climb up the spectrum of generalization. It started with automaton-
like brains that could only perform local generalization. Over time, evolution started
producing organisms capable of increasingly broader generalization that could thrive
in ever-more complex and variable environments. Eventually, in the past few millions
of years—an instant in evolutionary terms—certain hominin species started trending
toward an implementation of biological intelligence capable of extreme generaliza-
tion, precipitating the start of the Anthropocene and forever changing the history of
life on earth.

 The progress of AI over the past 70 years bears striking similarities to this evolu-
tion. Early AI systems were pure automatons, like the ELIZA chat program from the
1960s, or SHRDLU,2 a 1970 AI capable of manipulating simple objects from natural
language commands. In the 1990s and 2000s, we saw the rise of machine learning sys-
tems capable of local generalization, which could deal with some level of uncertainty
and novelty. In the 2010s, deep learning further expanded the local-generalization
power of these systems by enabling engineers to leverage much larger datasets and
much more expressive models.

 Today, we may be on the cusp of the next evolutionary step. There is increasing
interest in systems that could achieve broad generalization, which I define as the ability

2 Terry Winograd, “Procedures as a Representation for Data in a Computer Program for Understanding Natural
Language” (1971).

450 CHAPTER 14 Conclusions

to deal with unknown unknowns within a single broad domain of tasks (including situa-
tions the system was not trained to handle and that its creators could not have antici-
pated). For instance, a self-driving car capable of safely dealing with any situation you
throw at it, or a domestic robot that could pass the “Woz test of intelligence”—enter-
ing a random kitchen and making a cup of coffee.3 By combining deep learning and
painstakingly handcrafted abstract models of the world, we’re already making visible
progress toward these goals.

 However, for the time being, AI remains limited to cognitive automation: the “intel-
ligence” label in “Artificial Intelligence” is a category error. It would be more accurate to
call our field “Artificial Cognition,” with “Cognitive Automation” and “Artificial Intelli-
gence” being two nearly independent subfields within it. In this subdivision, “Artifi-
cial Intelligence” would be a greenfield where almost everything remains to be
discovered.

 Now, I don’t mean to diminish the achievements of deep learning. Cognitive auto-
mation is incredibly useful, and the way deep learning models are capable of automat-
ing tasks from exposure to data alone represents an especially powerful form of
cognitive automation, far more practical and versatile than explicit programming.
Doing this well is a game-changer for essentially every industry. But it’s still a long way
from human (or animal) intelligence. Our models, so far, can only perform local gen-
eralization: they map space X to space Y via a smooth geometric transform learned
from a dense sampling of X-to-Y data points, and any disruption within spaces X or Y
invalidates this mapping. They can only generalize to new situations that stay similar
to past data, whereas human cognition is capable of extreme generalization, quickly
adapting to radically novel situations and planning for long-term future situations.

14.3 Setting the course toward greater generality in AI
To lift some of the limitations we have discussed and create AI that can compete with
human brains, we need to move away from straightforward input-to-output mappings
and on to reasoning and abstraction. In the following couple of sections, we’ll take a
look at what the road ahead may look like.

14.3.1 On the importance of setting the right objective: The shortcut rule

Biological intelligence was the answer to a question asked by nature. Likewise, if we want
to develop true artificial intelligence, first, we need to be asking the right questions.

 An effect you see constantly in systems design is the shortcut rule: if you focus on
optimizing one success metric, you will achieve your goal, but at the expense of every-
thing in the system that wasn’t covered by your success metric. You end up taking
every available shortcut toward the goal. Your creations are shaped by the incentives
you give yourself.

3 Fast Company, “Wozniak: Could a Computer Make a Cup of Coffee?” (March 2010), http://mng.bz/pJMP.

451Setting the course toward greater generality in AI

 You see this often in machine learning competitions. In 2009, Netflix ran a challenge
that promised a $1 million prize to the team that achieved the highest score on a movie
recommendation task. It ended up never using the system created by the winning team,
because it was way too complex and compute-intensive. The winners had optimized for
prediction accuracy alone—what they were incentivized to achieve—at the expense of
every other desirable characteristic of the system: inference cost, maintainability, and
explainability. The shortcut rule holds true in most Kaggle competitions as well—the
models produced by Kaggle winners can rarely, if ever, be used in production.

 The shortcut rule has been everywhere in AI over the past few decades. In the
1970s, psychologist and computer science pioneer Allen Newell, concerned that his
field wasn’t making any meaningful progress toward a proper theory of cognition,
proposed a new grand goal for AI: chess-playing. The rationale was that playing chess,
in humans, seemed to involve—perhaps even require—capabilities such as percep-
tion, reasoning and analysis, memory, study from books, and so on. Surely, if we could
build a chess-playing machine, it would have to feature these attributes as well. Right?

 Over two decades later, the dream came true: in 1997, IBM’s Deep Blue beat Gary
Kasparov, the best chess player in the world. Researchers had then to contend with the
fact that creating a chess-champion AI had taught them little about human intelli-
gence. The Alpha–Beta algorithm at the heart of Deep Blue wasn’t a model of the
human brain and couldn’t generalize to tasks other than similar board games. It
turned out it was easier to build an AI that could only play chess than to build an arti-
ficial mind—so that’s the shortcut researchers took.

 So far, the driving success metric of the field of AI has been to solve specific
tasks, from chess to Go, from MNIST classification to ImageNet, from Atari Arcade
games to StarCraft and DotA 2. Consequently, the history of the field has been
defined by a series of “successes” where we figured out how to solve these tasks with-
out featuring any intelligence.

 If that sounds like a surprising statement, keep in mind that human-like intelli-
gence isn’t characterized by skill at any particular task—rather, it is the ability to adapt
to novelty, to efficiently acquire new skills and master never-seen-before tasks. By fix-
ing the task, you make it possible to provide an arbitrarily precise description of what
needs to be done—either via hardcoding human-provided knowledge or by supplying
humongous amounts of data. You make it possible for engineers to “buy” more skill
for their AI by just adding data or adding hardcoded knowledge, without increasing
the generalization power of the AI (see figure 14.6). If you have near-infinite training
data, even a very crude algorithm like nearest-neighbor search can play video games
with superhuman skill. Likewise if you have a near-infinite amount of human-written
if-then-else statements. That is, until you make a small change to the rules of the game—
the kind a human could adapt to instantly—that will require the non-intelligent system
to be retrained or rebuilt from scratch.

 In short, by fixing the task, you remove the need to handle uncertainty and novelty,
and since the nature of intelligence is the ability to handle uncertainty and novelty,

452 CHAPTER 14 Conclusions

you’re effectively removing the need for intelligence. And because it’s always easier to
find a non-intelligent solution to a specific task than to solve the general problem of
intelligence, that’s the shortcut you will take 100% of the time. Humans can use their
general intelligence to acquire skills at any new task, but in reverse, there is no path
from a collection of task-specific skills to general intelligence.

14.3.2 A new target

To make artificial intelligence actually intelligent, and give it the ability to deal with the
incredible variability and ever-changing nature of the real world, we first need to move
away from seeking to achieve task-specific skill, and instead, start targeting generalization
power itself. We need new metrics of progress that will help us develop increasingly
intelligent systems. Metrics that will point in the right direction and that will give us an
actionable feedback signal. As long as we set our goal to be “create a model that solves
task X,” the shortcut rule will apply, and we’ll end up with a model that does X, period.

 In my view, intelligence can be precisely quantified as an efficiency ratio: the conver-
sion ratio between the amount of relevant information you have available about the world
(which could be either past experience or innate prior knowledge) and your future operating
area, the set of novel situations where you will be able to produce appropriate behav-
ior (you can view this as your skillset). A more intelligent agent will be able to handle a
broader set of future tasks and situations using a smaller amount of past experience.
To measure such a ratio, you just need to fix the information available to your system—
its experience and its prior knowledge—and measure its performance on a set of ref-
erence situations or tasks that are known to be sufficiently different from what the sys-
tem has had access to. Trying to maximize this ratio should lead you toward
intelligence. Crucially, to avoid cheating, you’re going to need to make sure you test
the system only on tasks it wasn’t programmed or trained to handle—in fact, you need
tasks that the creators of the system could not have anticipated.

Figure 14.6 A low-generalization system can achieve arbitrary skill at a fixed task given unlimited task-
specific information.

453Setting the course toward greater generality in AI

 In 2018 and 2019, I developed a benchmark dataset called the Abstraction and Rea-
soning Corpus (ARC)4 that seeks to capture this definition of intelligence. ARC is meant
to be approachable by both machines and humans, and it looks very similar to human
IQ tests, such as Raven’s progressive matrices. At test time, you’ll see a series of “tasks.”
Each task is explained via three or four “examples” that take the form of an input grid
and a corresponding output grid (see figure 14.7). You’ll then be given a brand new
input grid, and you’ll have three tries to produce the correct output grid before mov-
ing on to the next task.

Compared to IQ tests, two things are unique about ARC. First, ARC seeks to measure
generalization power, by only testing you on tasks you’ve never seen before. That
means that ARC is a game you can’t practice for, at least in theory: the tasks you will get
tested on will have their own unique logic that you will have to understand on the fly.
You can’t just memorize specific strategies from past tasks.

 In addition, ARC tries to control for the prior knowledge that you bring to the test.
You never approach a new problem entirely from scratch—you bring to it preexisting
skills and information. ARC makes the assumption that all test takers should start
from the set of knowledge priors, called “Core Knowledge priors,” that represent the
“knowledge systems” that humans are born with. Unlike an IQ test, ARC tasks will
never involve acquired knowledge, like English sentences, for instance.

 Unsurprisingly, deep-learning-based methods (including models trained on
extremely large amounts of external data, like GPT-3) have proven entirely unable to
solve ARC tasks, because these tasks are non-interpolative, and thus are a poor fit for
curve-fitting. Meanwhile, average humans have no issue solving these tasks on the first
try, without any practice. When you see a situation like this, where humans as young as

4 François Chollet, “On the Measure of Intelligence” (2019), https://arxiv.org/abs/1911.01547.

Figure 14.7 An ARC task: the nature of the task is demonstrated by a couple of input-output pair
examples. Provided with a new input, you must construct the corresponding output.

454 CHAPTER 14 Conclusions

five are able to naturally perform something that seems to be completely out of reach
for modern AI technology, that’s a clear signal that something interesting is going
on—that we’re missing something.

 What would it take to solve ARC? Hopefully, this challenge will get you thinking.
That’s the entire point of ARC: to give you a goal of a different kind that will nudge
you in a new direction—hopefully a productive direction. Now, let’s take a quick look
at the key ingredients you’re going to need if you want to answer the call.

14.4 Implementing intelligence: The missing ingredients
So far, you’ve learned that there’s a lot more to intelligence than the sort of latent
manifold interpolation that deep learning does. But what, then, do we need to start
building real intelligence? What are the core pieces that are currently eluding us?

14.4.1 Intelligence as sensitivity to abstract analogies

Intelligence is the ability to use your past experience (and innate prior knowledge) to
face novel, unexpected future situations. Now, if the future you had to face was truly
novel—sharing no common ground with anything you’ve seen before—you’d be
unable to react to it, no matter how intelligent you were.

 Intelligence works because nothing is ever truly without precedent. When we
encounter something new, we’re able to make sense of it by drawing analogies to our
past experience, by articulating it in terms of the abstract concepts we’ve collected
over time. A person from the 17th century seeing a jet plane for the first time might
describe it as a large, loud metal bird that doesn’t flap its wings. A car? That’s a horse-
less carriage. If you’re trying to teach physics to a grade schooler, you can explain how
electricity is like water in a pipe, or how space-time is like a rubber sheet getting dis-
torted by heavy objects.

 Besides such clear-cut, explicit analogies, we’re constantly making smaller, implicit
analogies—every second, with every thought. Analogies are how we navigate life.
Going to a new supermarket? You’ll find your way by relating it to similar stores you’ve
been to. Talking to someone new? They’ll remind you of a few people you’ve met
before. Even seemingly random patterns, like the shape of clouds, instantly evoke in
us vivid images—an elephant, a ship, a fish.

 These analogies aren’t just in our minds, either: physical reality itself is full of isomor-
phisms. Electromagnetism is analogous to gravity. Animals are all structurally similar to
each other, due to shared origins. Silica crystals are similar to ice crystals. And so on.

 I call this the kaleidoscope hypothesis: our experience of the world seems to feature
incredible complexity and never-ending novelty, but everything in this sea of complex-
ity is similar to everything else. The number of unique atoms of meaning that you need
to describe the universe you live in is relatively small, and everything around you is a
recombination of these atoms. A few seeds, endless variation—much like what goes on
inside a kaleidoscope, where a few glass beads are reflected by a system of mirrors to
produce rich, seemingly ever-changing patterns (see figure 14.8).

455Implementing intelligence: The missing ingredients

Generalization power—intelligence—is the ability to mine your experience to identify
these atoms of meaning that can seemingly be reused across many different situations.
Once extracted, they’re called abstractions. Whenever you encounter a new situation,
you make sense of it via your accumulated collection of abstractions. How do you
identify reusable atoms of meaning? Simply by noticing when two things are similar—
by noticing analogies. If something is repeated twice, then both instances must have a
single origin, like in a kaleidoscope. Abstraction is the engine of intelligence, and
analogy-making is the engine that produces abstraction.

 In short, intelligence is literally sensitivity to abstract analogies, and that’s in fact all
there is to it. If you have a high sensitivity to analogies, you will extract powerful
abstractions from little experience, and you will be able to use these abstractions to
operate in a maximally large area of future experience space. You will be maximally
efficient in converting past experience into the ability to handle future novelty.

14.4.2 The two poles of abstraction

If intelligence is sensitivity to analogies, then developing artificial intelligence should
start with spelling out a step-by-step algorithm for analogy-making. Analogy-making
starts with comparing things to one other. Crucially, there are two distinct ways to compare
things, from which arise two different kinds of abstraction, two modes of thinking,
each better suited to a different kind of problem. Together, these two poles of abstrac-
tion form the basis for all of our thoughts.

 The first way to relate things to each other is similarity comparison, which gives rise
to value-centric analogies. The second way is exact structural match, which gives rise to
program-centric analogies (or structure-centric analogies). In both cases, you start from
instances of a thing, and you merge together related instances to produce an abstraction
that captures the common elements of the underlying instances. What varies is how

Figure 14.8 A kaleidoscope produces rich (yet repetitive) patterns from just a few
beads of colored glass.

456 CHAPTER 14 Conclusions

you tell that two instances are related, and how you merge instances into abstractions.
Let’s take a close look at each type.

VALUE-CENTRIC ANALOGY

Let’s say you come across a number of different beetles in your backyard, belonging to
multiple species. You’ll notice similarities between them. Some will be more similar to
one another, and some will be less similar: the notion of similarity is implicitly a
smooth, continuous distance function that defines a latent manifold where your
instances live. Once you’ve seen enough beetles, you can start clustering more similar
instances together and merging them into a set of prototypes that captures the shared
visual features of each cluster (see figure 14.9). This prototype is abstract: it doesn’t
look like any specific instance you’ve seen, though it encodes properties that are com-
mon across all of them. When you encounter a new beetle, you won’t need to compare
it to every single beetle you’ve seen before in order to know what to do with it. You can
simply compare it to your handful of prototypes, so as to find the closest prototype—the
beetle’s category—and use it to make useful predictions: is the beetle likely to bite you?
Will it eat your apples?

Does this sound familiar? It’s pretty much a description of what unsupervised machine
learning (such as the K-means clustering algorithm) does. In general, all of modern
machine learning, unsupervised or not, works by learning latent manifolds that describe
a space of instances encoded via prototypes. (Remember the convnet features you visu-
alized in chapter 9? They were visual prototypes.) Value-centric analogy is the kind of
analogy-making that enables deep learning models to perform local generalization.

 It’s also what many of your own cognitive abilities run on. As a human, you per-
form value-centric analogies all the time. It’s the type of abstraction that underlies
pattern recognition, perception, and intuition. If you can do a task without thinking about it,

Instances in the wild Similarity clustering Abstract prototypes

Figure 14.9 Value-centric analogy relates instances via a continuous notion of similarity to obtain
abstract prototypes.

457Implementing intelligence: The missing ingredients

you’re relying heavily on value-centric analogies. If you’re watching a movie and you
start subconsciously categorizing the different characters into “types,” that’s value-
centric abstraction.

PROGRAM-CENTRIC ANALOGY

Crucially, there’s more to cognition than the kind of immediate, approximative,
intuitive categorization that value-centric analogy enables. There’s another type of
abstraction-generation mechanism that’s slower, exact, deliberate: program-centric
(or structure-centric) analogy.

 In software engineering, you often write different functions or classes that seem to
have a lot in common. When you notice these redundancies, you start asking, “could
there be a more abstract function that performs the same job, that could be reused
twice? Could there be an abstract base class that both of my classes could inherit from?”
The definition of abstraction you’re using here corresponds to program-centric anal-
ogy. You’re not trying to compare your classes and functions by how similar they look,
the way you’d compare two human faces, via an implicit distance function. Rather,
you’re interested in whether there are parts of them that have exactly the same structure.
You’re looking for what is called a subgraph isomorphism (see figure 14.10): programs
can be represented as graphs of operators, and you’re trying to find subgraphs (pro-
gram subsets) that are exactly shared across your different programs.

This kind of analogy-making via exact structural match within different discrete struc-
tures isn’t at all exclusive to specialized fields like computer science or mathematics—
you’re constantly using it without noticing. It underlies reasoning, planning, and the

Instance Instance

Shared abstraction

Instance Instance

Shared ab tr c ions a t

def compute_mean(ls):
total = 0
num_elems = 0
for e in ls:
if e is not None:

total += e
num_elems += 1

return total / num_elems

ls = obj.as_list()
ls_sum = 0
ls_entries = 0
for n in ls:
if n is not None:

ls_sum += n
ls_entries += 1

avg = ls sum / ls entries
print('avg:', avg)

my_list = get_data()
total = 0
num_elems = 0
for e in my_list:
if e is not None:
total += e
num_elems += 1

mean = total / num_elems
update_mean(mean)

Figure 14.10 Program-centric analogy identifies and isolates isomorphic substructures across different
instances

458 CHAPTER 14 Conclusions

general concept of rigor (as opposed to intuition). Any time you’re thinking about
objects connected to each other by a discrete network of relationships (rather than a
continuous similarity function), you’re leveraging program-centric analogies.

COGNITION AS A COMBINATION OF BOTH KINDS OF ABSTRACTION

Let’s compare these two poles of abstraction side by side (see table 14.1).

Everything we do, everything we think, is a combination of these two types of abstrac-
tion. You’d be hard-pressed to find tasks that only involve one of the two. Even a seem-
ingly “pure perception” task, like recognizing objects in a scene, involves a fair
amount of implicit reasoning about the relationships between the objects you’re look-
ing at. And even a seemingly “pure reasoning” task, like finding the proof of a mathe-
matical theorem, involves a good amount of intuition. When a mathematician puts
their pen to the paper, they’ve already got a fuzzy vision of the direction in which
they’re going. The discrete reasoning steps they take to get to the destination are
guided by high-level intuition.

 These two poles are complementary, and it’s their interleaving that enables
extreme generalization. No mind could be complete without both of them.

14.4.3 The missing half of the picture

By this point, you should start seeing what’s missing from modern deep learning: it’s
very good at encoding value-centric abstraction, but it has basically no ability to generate
program-centric abstraction. Human-like intelligence is a tight interleaving of both
types, so we’re literally missing half of what we need—arguably the most important half.

 Now, here’s a caveat. So far, I’ve presented each type of abstraction as entirely sep-
arate from the other—opposite, even. In practice, however, they’re more of a spec-
trum: to an extent, you could do reasoning by embedding discrete programs in
continuous manifolds—just like you may fit a polynomial function through any set of
discrete points, as long as you have enough coefficients. And inversely, you could use
discrete programs to emulate continuous distance functions—after all, when you’re

Table 14.1 The two poles of abstraction

Value-centric abstraction Program-centric abstraction

Relates things by distance Relates things by exact structural match

Continuous, grounded in geometry Discrete, grounded in topology

Produces abstractions by “averaging” instances
into “prototypes”

Produces abstractions by isolating isomorphic
substructures across instances

Underlies perception and intuition Underlies reasoning and planning

Immediate, fuzzy, approximative Slow, exact, rigorous

Requires a lot of experience to produce reliable
results

Experience-efficient, can operate on as few as
two instances

459The future of deep learning

doing linear algebra on a computer, you’re working with continuous spaces, entirely
via discrete programs that operate on ones and zeros.

 However, there are clearly types of problems that are better suited to one or the
other. Try to train a deep learning model to sort a list of five numbers, for instance.
With the right architecture, it’s not impossible, but it’s an exercise in frustration.
You’ll need a massive amount of training data to make it happen—and even then, the
model will still make occasional mistakes when presented with new numbers. And if
you want to start sorting lists of 10 numbers instead, you’ll need to completely retrain
the model on even more data. Meanwhile, writing a sorting algorithm in Python takes
just a few lines—and the resulting program, once validated on a couple more exam-
ples, will work every time on lists of any size. That’s pretty strong generalization: going
from a couple of demonstration examples and test examples to a program that can
successfully process literally any list of numbers.

 In reverse, perception problems are a terrible fit for discrete reasoning processes.
Try to write a pure-Python program to classify MNIST digits without using any
machine learning technique: you’re in for a ride. You’ll find yourself painstakingly
coding functions that can detect the number of closed loops in a digit, the coordi-
nates of the center of mass of a digit, and so on. After thousands of lines of code, you
might achieve . . . 90% test accuracy. In this case, fitting a parametric model is much
simpler; it can better utilize the large amount of data that’s available, and it achieves
much more robust results. If you have lots of data and you’re faced with a problem
where the manifold hypothesis applies, go with deep learning.

 For this reason, it’s unlikely that we’ll see the rise of an approach that would
reduce reasoning problems to manifold interpolation, or that would reduce percep-
tion problems to discrete reasoning. The way forward in AI is to develop a unified
framework that incorporates both types of abstract analogy-making. Let’s examine
what that might look like.

14.5 The future of deep learning
Given what we know of how deep nets work, their limitations, and what they’re cur-
rently missing, can we predict where things are headed in the medium term? Follow-
ing are some purely personal thoughts. Note that I don’t have a crystal ball, so a lot of
what I anticipate may fail to become reality. I’m sharing these predictions not because
I expect them to be proven completely right in the future, but because they’re inter-
esting and actionable in the present.

 At a high level, these are the main directions in which I see promise:

� Models closer to general-purpose computer programs, built on top of far richer primitives
than the current differentiable layers. This is how we’ll get to reasoning and
abstraction, the lack of which is the fundamental weakness of current models.

� A fusion between deep learning and discrete search over program spaces, with the former
providing perception and intuition capabilities, and the latter providing reason-
ing and planning capabilities.

460 CHAPTER 14 Conclusions

� Greater, systematic reuse of previously learned features and architectures, such as meta-
learning systems using reusable and modular program subroutines.

Additionally, note that these considerations aren’t specific to the sort of supervised
learning that has been the bread and butter of deep learning so far—rather, they’re
applicable to any form of machine learning, including unsupervised, self-supervised,
and reinforcement learning. It isn’t fundamentally important where your labels come
from or what your training loop looks like; these different branches of machine learn-
ing are different facets of the same construct. Let’s dive in.

14.5.1 Models as programs

As noted in the previous section, a necessary transformational development that we
can expect in the field of machine learning is a move away from models that perform
purely pattern recognition and can only achieve local generalization, toward models capa-
ble of abstraction and reasoning that can achieve extreme generalization. Current AI pro-
grams that are capable of basic forms of reasoning are all hardcoded by human
programmers: for instance, software that relies on search algorithms, graph manipula-
tion, and formal logic.

 That may be about to change, thanks to program synthesis—a field that is very niche
today, but I expect to take off in a big way over the next few decades. Program synthesis
consists of automatically generating simple programs by using a search algorithm (possi-
bly genetic search, as in genetic programming) to explore a large space of possible pro-
grams (see figure 14.11). The search stops when a program is found that matches the
required specifications, often provided as a set of input-output pairs. This is highly rem-
iniscent of machine learning: given training data provided as input-output pairs, we find
a program that matches inputs to outputs and can generalize to new inputs. The differ-
ence is that instead of learning parameter values in a hardcoded program (a neural net-
work), we generate source code via a discrete search process (see table 14.2).

Input: [3, 5, 1, 2, 7]
Output: [1, 2, 3, 5, 7]

Input: [8, 5, 2, 9, 1, 13]
Output: [1, 2, 5, 8, 9, 13]

+ = if ==
fo - elser
* += - *==

S c sear h proce s

Vocabulary of
building blocks

Program
specification

Candidate
programs

Figure 14.11 A schematic view of program
synthesis: given a program specification
and a set of building blocks, a search
process assembles the building blocks into
candidate programs, which are then tested
against the specification. The search
continues until a valid program is found.

461The future of deep learning

Program synthesis is how we’re going to add program-centric abstraction capabilities
to our AI systems. It’s the missing piece of the puzzle. I mentioned earlier that deep
learning techniques were entirely unusable on ARC, a reasoning-focused intelligence
test. Meanwhile, very crude program-synthesis approaches are already producing very
promising results on this benchmark.

14.5.2 Blending together deep learning and program synthesis

Of course, deep learning isn’t going anywhere. Program synthesis isn’t its replace-
ment; it is its complement. It’s the hemisphere that has been so far missing from our
artificial brains. We’re going to be leveraging both, in combination. There are two
major ways this will take place:

1 Developing systems that integrate both deep learning modules and discrete
algorithmic modules

2 Using deep learning to make the program search process itself more efficient

Let’s review each of these possible avenues.

INTEGRATING DEEP LEARNING MODULES AND ALGORITHMIC MODULES INTO HYBRID SYSTEMS

Today, the most powerful AI systems are hybrid: they leverage both deep learning
models and handcrafted symbol-manipulation programs. In DeepMind’s AlphaGo,
for example, most of the intelligence on display is designed and hardcoded by human
programmers (such as Monte Carlo Tree Search). Learning from data happens only
in specialized submodules (value networks and policy networks). Or consider autono-
mous vehicles: a self-driving car is able to handle a large variety of situations because it
maintains a model of the world around it—a literal 3D model—full of assumptions
hardcoded by human engineers. This model is constantly updated via deep learning
perception modules that interface it with the surroundings of the car.

 For both of these systems—AlphaGo and self-driving vehicles—the combination of
human-created discrete programs and learned continuous models is what unlocks a
level of performance that would be impossible with either approach in isolation, such
as an end-to-end deep net or a piece of software without ML elements. So far, the dis-
crete algorithmic elements of such hybrid systems are painstakingly hardcoded by
human engineers. But in the future, such systems may be fully learned, with no
human involvement.

Table 14.2 Machine learning vs. program synthesis

Machine learning Program synthesis

Model: differentiable parametric function Model: graph of operators from a programming
language

Engine: gradient descent Engine: discrete search (such as genetic search)

Requires a lot of data to produce reliable results Data-efficient, can work with a couple of training
examples

462 CHAPTER 14 Conclusions

 What will this look like? Consider a well-known type of network: RNNs. It’s import-
ant to note that RNNs have slightly fewer limitations than feedforward networks.
That’s because RNNs are a bit more than mere geometric transformations: they’re
geometric transformations repeatedly applied inside a for loop. The temporal for loop is
itself hardcoded by human developers: it’s a built-in assumption of the network. Nat-
urally, RNNs are still extremely limited in what they can represent, primarily
because each step they perform is a differentiable geometric transformation, and
they carry information from step to step via points in a continuous geometric space
(state vectors). Now imagine a neural network that’s augmented in a similar way
with programming primitives, but instead of a single hardcoded for loop with hard-
coded continuous-space memory, the network includes a large set of programming
primitives that the model is free to manipulate to expand its processing function, such
as if branches, while statements, variable creation, disk storage for long-term mem-
ory, sorting operators, advanced data structures (such as lists, graphs, and hash
tables), and many more. The space of programs that such a network could represent
would be far broader than what can be represented with current deep learning mod-
els, and some of these programs could achieve superior generalization power. Impor-
tantly, such programs will not be differentiable end-to-end, though specific modules
will remain differentiable and thus will need to be generated via a combination of dis-
crete program search and gradient descent.

 We’ll move away from having, on one hand, hardcoded algorithmic intelligence
(handcrafted software) and, on the other hand, learned geometric intelligence (deep
learning). Instead, we’ll have a blend of formal algorithmic modules that provide rea-
soning and abstraction capabilities, and geometric modules that provide informal
intuition and pattern-recognition capabilities (see figure 14.12). The entire system
will be learned with little or no human involvement. This should dramatically expand
the scope of problems that can be solved with machine learning—the space of pro-
grams that we can generate automatically, given appropriate training data. Systems
like AlphaGo—or even RNNs—can be seen as a prehistoric ancestor of such hybrid
algorithmic-geometric models.

Modular task-level program
learned on the fly to solve

a specific task Data and
feedback

Actions

Geometric
subroutine

Algorithmic
subroutine

Geometric
subroutine

Algorithmic
subroutine

Task #002456 Figure 14.12 A learned program
relying on both geometric primitives
(pattern recognition, intuition) and
algorithmic primitives (reasoning,
search, memory)

463The future of deep learning

USING DEEP LEARNING TO GUIDE PROGRAM SEARCH

Today, program synthesis faces a major obstacle: it’s tremendously inefficient. To cari-
cature, program synthesis works by trying every possible program in a search space
until it finds one that matches the specification provided. As the complexity of the
program specification increases, or as the vocabulary of primitives used to write pro-
grams expands, the program search process runs into what’s known as combinatorial
explosion, where the set of possible programs to consider grows very fast; in fact, much
faster than merely exponentially fast. As a result, today, program synthesis can only be
used to generate very short programs. You’re not going to be generating a new OS for
your computer anytime soon.

 To move forward, we’re going to need to make program synthesis efficient by
bringing it closer to the way humans write software. When you open your editor to
code up a script, you’re not thinking about every possible program you could poten-
tially write. You only have in mind a handful of possible approaches: you can use your
understanding of the problem and your past experience to drastically cut through the
space of possible options to consider.

 Deep learning can help program synthesis do the same: although each specific
program we’d like to generate might be a fundamentally discrete object that performs
non-interpolative data manipulation, evidence so far indicates that the space of all useful
programs may look a lot like a continuous manifold. That means that a deep learning
model that has been trained on millions of successful program-generation episodes
might start to develop solid intuition about the path through program space that the
search process should take to go from a specification to the corresponding program—
just like a software engineer might have immediate intuition about the overall archi-
tecture of the script they’re about to write, about the intermediate functions and
classes they should use as stepping stones on the way to the goal.

 Remember that human reasoning is heavily guided by value-centric abstraction,
that is to say, by pattern recognition and intuition. Program synthesis should be too. I
expect the general approach of guiding program search via learned heuristics to see
increasing research interest over the next ten to twenty years.

14.5.3 Lifelong learning and modular subroutine reuse

If models become more complex and are built on top of richer algorithmic primitives,
this increased complexity will require higher reuse between tasks, rather than training a
new model from scratch every time we have a new task or a new dataset. Many datasets
don’t contain enough information for us to develop a new, complex model from scratch,
and it will be necessary to use information from previously encountered datasets (much
as you don’t learn English from scratch every time you open a new book—that would be
impossible). Training models from scratch on every new task is also inefficient due to the
large overlap between the current tasks and previously encountered tasks.

 A remarkable observation has been made repeatedly in recent years: training the
same model to do several loosely connected tasks at the same time results in a model

464 CHAPTER 14 Conclusions

that’s better at each task. For instance, training the same neural machine-translation
model to perform both English-to-German translation and French-to-Italian transla-
tion will result in a model that’s better at each language pair. Similarly, training an
image-classification model jointly with an image-segmentation model, sharing the
same convolutional base, results in a model that’s better at both tasks. This is fairly
intuitive: there’s always some information overlap between seemingly disconnected
tasks, and a joint model has access to a greater amount of information about each
individual task than a model trained on that specific task only.

 Currently, when it comes to model reuse across tasks, we use pretrained weights for
models that perform common functions, such as visual feature extraction. You saw
this in action in chapter 9. In the future, I expect a generalized version of this to be
commonplace: we’ll use not only previously learned features (submodel weights) but
also model architectures and training procedures. As models become more like pro-
grams, we’ll begin to reuse program subroutines like the functions and classes found in
human programming languages.

 Think of the process of software development today: once an engineer solves a spe-
cific problem (HTTP queries in Python, for instance), they package it as an abstract,
reusable library. Engineers who face a similar problem in the future will be able to
search for existing libraries, download one, and use it in their own project. In a similar
way, in the future, meta-learning systems will be able to assemble new programs by sift-
ing through a global library of high-level reusable blocks. When the system finds itself
developing similar program subroutines for several different tasks, it can come up
with an abstract, reusable version of the subroutine and store it in the global library
(see figure 14.13). These subroutines can be either geometric (deep learning modules

Modular task-level program
learned on the fly to solve

a specific task Data and
feedback

Actions

Geometric
subroutine

Algorithmic
subroutine

Geometric
subroutine

Algorithmic
subroutine

Global library of
abstract subroutines

Geometric
subroutine

Algorithmic
subroutine

Algorithmic
subroutine

Geometric
subroutine

Algorithmic
subroutine

Algorithmic
subroutine

Geometric
subroutine

Algorithmic
subroutine

Algorithmic
subroutine

Perpetual meta-learner
capable of quickly growing

a task-level model
across a variety of tasks

Push
reusable

subroutines

Data and
feedback

Design
choices

Fetch
relevant

subroutines

Task #002456

Task #002455

Task #002454

Task #002453

Figure 14.13 A meta-learner capable of quickly developing task-specific models using reusable primitives
(both algorithmic and geometric), thus achieving extreme generalization

465The future of deep learning

with pretrained representations) or algorithmic (closer to the libraries that contem-
porary software engineers manipulate).

14.5.4 The long-term vision

In short, here’s my long-term vision for machine learning:

� Models will be more like programs and will have capabilities that go far beyond
the continuous geometric transformations of the input data we currently work
with. These programs will arguably be much closer to the abstract mental mod-
els that humans maintain about their surroundings and themselves, and they
will be capable of stronger generalization due to their rich algorithmic nature.

� In particular, models will blend algorithmic modules providing formal reasoning,
search, and abstraction capabilities with geometric modules providing informal
intuition and pattern-recognition capabilities. This will achieve a blend of
value-centric and program-centric abstraction. AlphaGo or self-driving cars (sys-
tems that required a lot of manual software engineering and human-made
design decisions) provide an early example of what such a blend of symbolic
and geometric AI could look like.

� Such models will be grown automatically rather than hardcoded by human engi-
neers, using modular parts stored in a global library of reusable subroutines—a
library evolved by learning high-performing models on thousands of previous
tasks and datasets. As frequent problem-solving patterns are identified by the
meta-learning system, they will be turned into reusable subroutines—much like
functions and classes in software engineering—and added to the global library.

� The process that searches over possible combinations of subroutines to grow
new models will be a discrete search process (program synthesis), but it will be
heavily guided by a form of program-space intuition provided by deep learning.

� This global subroutine library and associated model-growing system will be able
to achieve some form of human-like extreme generalization: given a new task or sit-
uation, the system will be able to assemble a new working model appropriate
for the task using very little data, thanks to rich program-like primitives that
generalize well and extensive experience with similar tasks. In the same way,
humans can quickly learn to play a complex new video game if they have expe-
rience with many previous games, because the models derived from this previ-
ous experience are abstract and program-like, rather than a basic mapping
between stimuli and action.

� As such, this perpetually learning model-growing system can be interpreted as
an artificial general intelligence (AGI). But don’t expect any singularitarian robot
apocalypse to ensue: that’s pure fantasy, coming from a long series of profound
misunderstandings of both intelligence and technology. Such a critique, how-
ever, doesn’t belong in this book.

466 CHAPTER 14 Conclusions

14.6 Staying up to date in a fast-moving field
As final parting words, I want to give you some pointers about how to keep learning
and updating your knowledge and skills after you’ve turned the last page of this book.
The field of modern deep learning, as we know it today, is only a few years old, despite
a long, slow prehistory stretching back decades. With an exponential increase in
financial resources and research headcount since 2013, the field as a whole is now
moving at a frenetic pace. What you’ve learned in this book won’t stay relevant for-
ever, and it isn’t all you’ll need for the rest of your career.

 Fortunately, there are plenty of free online resources that you can use to stay up to
date and expand your horizons. Here are a few.

14.6.1 Practice on real-world problems using Kaggle

An effective way to acquire real-world experience is to try your hand at machine learning
competitions on Kaggle (https://kaggle.com). The only real way to learn is through prac-
tice and actual coding—that’s the philosophy of this book, and Kaggle competitions are
the natural continuation of this. On Kaggle, you’ll find an array of constantly renewed
data science competitions, many of which involve deep learning, prepared by companies
interested in obtaining novel solutions to some of their most challenging machine learn-
ing problems. Fairly large monetary prizes are offered to top entrants.

 Most competitions are won using either the XGBoost library (for shallow machine
learning) or Keras (for deep learning). So you’ll fit right in! By participating in a few
competitions, maybe as part of a team, you’ll become more familiar with the practical
side of some of the advanced best practices described in this book, especially hyperpa-
rameter tuning, avoiding validation-set overfitting, and model ensembling.

14.6.2 Read about the latest developments on arXiv

Deep learning research, in contrast with some other scientific fields, takes places com-
pletely in the open. Papers are made publicly and freely accessible as soon as they’re
finalized, and a lot of related software is open source. arXiv (https://arxiv.org)—pro-
nounced “archive” (the X stands for the Greek chi)—is an open-access preprint server
for physics, mathematics, and computer science research papers. It has become the
de facto way to stay up to date on the bleeding edge of machine learning and deep
learning. The large majority of deep learning researchers upload any paper they write
to arXiv shortly after completion. This allows them to plant a flag and claim a specific
finding without waiting for a conference acceptance (which takes months), which is
necessary given the fast pace of research and the intense competition in the field. It
also allows the field to move extremely fast: all new findings are immediately available
for all to see and to build on.

 An important downside is that the sheer quantity of new papers posted every day
on arXiv makes it impossible to even skim them all, and the fact that they aren’t
peer-reviewed makes it difficult to identify those that are both important and high
quality. It’s challenging, and becoming increasingly more so, to find the signal in

467Final words

the noise. But some tools can help: in particular, you can use Google Scholar
(https://scholar.google.com) to keep track of publications by your favorite authors.

14.6.3 Explore the Keras ecosystem

With over one million users as of late 2021 and still growing, Keras has a large ecosys-
tem of tutorials, guides, and related open source projects:

� Your main reference for working with Keras is the online documentation at
https://keras.io. In particular, you’ll find extensive developer guides at
https://keras.io/guides, and you’ll find dozens of high-quality Keras code exam-
ples at https://keras.io/examples. Make sure to check them out!

� The Keras source code can be found at https://github.com/keras-team/keras.
� You can ask for help and join deep learning discussions on the Keras mailing

list: keras-users@googlegroups.com.
� You can follow me on Twitter: @fchollet.

Final words
This is the end of Deep Learning with Python, second edition. I hope you’ve learned a
thing or two about machine learning, deep learning, Keras, and maybe even cognition
in general. Learning is a lifelong journey, especially in the field of AI, where we have far
more unknowns on our hands than certitudes. So please go on learning, question-
ing, and researching. Never stop! Because even given the progress made so far, most
of the fundamental questions in AI remain unanswered. Many haven’t even been
properly asked yet.

469

index

Symbols

@tf.function decorator 198, 270

A

ablation studies 251
abstraction, poles of 455–458

cognition as combination of
both kinds of
abstraction 458

program-centric analogy
457–458

value-centric analogy 456–457
activation function 63
adapt() method of preprocess-

ing layers 317
add() method of Sequential

class 174
adversarial examples 443
affine transform 46
AGI (artificial general

intelligence) 465
AI (artificial intelligence) 1, 432

greater generality in 450–454
new target for 452–454
shortcut rule 450–452

overview of 2–3
promise of 12–13
various approaches to 432
See also deep learning

AI summer 433
AI winter 12
algorithmic modules 465
Analytical Engine 3
annotations 96

anomaly detection 281
anthropomorphizing

machine-learning
models 443–445

ARC (Abstraction & Reasoning
Corpus) dataset 453

arrow of time 137
arXiv 466–467
assign() method of Variable

class 77
automated hyperparameter tun-

ing software 165
automatic differentiation 60
automatic shape inference

85–87
automatons 445
AutoML (automated machine

learning) 419–420
average presence 211

B

Backpropagation algorithm 10,
56

backward pass 57
bag-of-2-grams/bag-of-3-

grams 314
bag-of-words models 313
batch() method of Dataset

class 218
batch axis 35
batch dimension 35
batches 96
batch gradient descent 53
batch normalization 255–257,

438

BatchNormalization layer 194,
256, 344

batch training 82
BayesianOptimization

tuner 415
bias vector 256
Bidirectional layer 306
bidirectional recurrent

layers 300
bidirectional RNNs 304–307
bigrams

with binary encoding
324–325

with TF-IDF encoding
325–327

binary classification 97–106,
437

building model 99–102
generating predictions on

new data 105
IMDB dataset 97
preparing data 98–99
validating approach 102–105

binary_crossentropy 102, 437
binary encoding

bigrams with 324–325
single words (unigrams)

with 322–324
BLAS (Basic Linear Algebra

Subprograms) 39
Boston Housing Price

dataset 114
broadcasting 40–41
broad generalization 449
build() method of Layer

class 84, 174, 415

INDEX470

C

cache() method of Dataset
class 429

__call__() method of Layer
class 63, 86

call() method of Layer class 84,
182, 358

callbacks 187–189
EarlyStopping and Model-

Checkpoint callbacks
188–189

text generation 372–375
writing 189–190

CAM (class activation map)
visualization 273

categorical_crossentropy 108,
437

categorical encoding 107
categories 27
causal padding 360
CelebA dataset 404–405
chain rule 55–56
channels-first convention 37
channels-last convention 37
character-level tokenization 313
chatbots 350
classes 27, 96
classification 281

binary classification 97–106
building model 99–102
generating predictions on

new data 105
preparing data 98–99
validating approach

102–105
multiclass classification

106–113
building model 108–109
generating predictions on

new data 111–112
handling labels and

loss 112
preparing data 107–108
sufficiently large intermedi-

ate layers 112–113
validating approach

109–111
cognitive automation 450
Colaboratory 73–75

first steps with 73
installing packages with

pip 74
using GPU runtime 75

columns 32

combinatorial explosion 463
compilation step 29
compile() method of Model

class 89, 185, 408, 430
computation graphs 56–60, 197
compute_dtype attribute of

Layer class 425
compute_mask() method of

Layer class 333
computer vision

convnets 202–211
convolution

operation 204–209
interpreting what convnets

learn 261–279
max-pooling

operation 209–211
modern architecture

patterns 248–261
training from scratch on

small datasets 211–224
essential tasks 238–240
image segmentation

example 240–248
pretrained models 224–237

feature extraction 225–233
fine-tuning 234–237

concept drift 158
concept vectors, for image

editing 393
Constant initializer 335
content function 384
Conv1D (1D convolution)

layer 84, 291, 438
Conv2D (2D convolution)

layer 84, 202, 245, 290, 438
Conv3D (3D convolution)

layer 291, 438
convnets 202–211, 438

convolution operation
204–209

border effects and
padding 207–208

convolution strides
208–209

interpreting what convnets
learn 261–279

visualizing convnet
filters 268–272

visualizing heatmaps of class
activation 273–279

visualizing intermediate
activations 262–268

max-pooling operation
209–211

modern architecture
patterns 248–261

batch normalization
255–257

depthwise separable
convolutions 257–259

mini Xception-like
model 259–261

modularity, hierarchy, and
reuse 249–251

residual connections
251–255

training from scratch on small
datasets 211–224

data augmentation
221–224

data preprocessing
217–221

downloading data 212–215
model building 215–217
relevance of deep learning

for small-data
problems 212

convolutional base 225
convolutional networks 201,

436
convolution kernel 206
convolution operation 204–209

border effects and
padding 207–208

convolution strides 208–209
correlations 385
cost function 9
cuDNN kernel 258, 302

D

data-annotation
infrastructure 157–158

data augmentation 211
feature extraction with

231–233
feature extraction

without 229–231
training convnets from scratch

on small datasets
221–224

data distillation 28
data parallelism 425
data preparation

classification
binary classification 98–99
multiclass

classification 107–108
model development 161–162

INDEX 471

data preparation (continued)
natural language

processing 311–319
text splitting

(tokenization) 313–314
text standardization

312–313
TextVectorization

layer 316–319
vocabulary indexing

314–315
regression 114–115
text generation 370–371
timeseries 285–287

data representativeness 137
Dataset class 92, 218, 285, 317
dataset curation 142
data type 33
DCGAN (deep convolutional

GAN) 402
decision trees 15–16
decoders 350, 399
DeepDream 376–383
define task 154
Dense layer 28, 63, 76, 99, 203,

289, 355, 437
densely connected layers 84
densely connected

networks 437–438
dense representations 330
dense sampling 142, 448
deploy model 154
depth axis (channels axis) 205
depthwise separable convolution

layer 438
depthwise separable

convolutions 257–259
derivatives

chaining 55–61
automatic differentiation

with computation
graphs 56–60

chain rule 55–56
gradient tape in

TensorFlow 60–61
defined 49–50
of tensor operations 51–52

develop model 154
dimensionality 31
dimensions 31
discriminator model 405–406
discriminator network 401
distance function 384, 456
dot operation 55
dot product 41

dropout
recurrent, to fight

overfitting 300
regularizing models 150–152

Dropout layer 151, 194, 223
dtype attribute of Layer class 33

E

eager execution 78
early stopping 144
EarlyStopping callback 144,

188–189, 417
efficiency ratio 452
element-wise operations 38–40
Embedding layer 331–332
encoder 350
evaluate() method of Model

class 92, 183
event detection 281
exact structural match 455
expert systems 3
extreme generalization 130, 447

F

failure modes 166
feature engineering 17,

143–144
feature extraction 181, 225–233

with data augmentation
231–233

without data
augmentation 229–231

feature extractor model 268
feature maps 205
feature normalization 194
features axis 35
feature selection 126
feedforward networks 293
filters 206
fit() method of Model class 29,

62, 76, 183, 218, 424
core Keras APIs 91
leveraging with custom train-

ing loops 198–200
Flatten layer 203, 438
floating-point precision

422–424
forecasting 281
for loops 183, 218, 302, 415, 462
forward pass 57
Fourier transform 281
freezing layers 231
fully connected layers 84

Functional API 173
access to layer

connectivity 180–181
example of 176–177
multi-input, multi-output

models
overview of 178–179
training 179

G

gan model 403
GANs (generative adversarial

networks) 391, 401–411
adversarial network 408–410
CelebA dataset 404–405
discriminator model 405–406
generator model 407
implementation tricks

403–404
schematic implementation

402–403
generalization 122, 142–152,

446
dataset curation 142
early stopping 144
feature engineering 143–144
local vs. extreme 446–448
nature of in deep

learning 127–133
interpolation 129–130
manifold hypothesis

128–129
training data 132–133
why deep learning

works 130–132
regularizing models 145–152

adding dropout 150–152
adding weight

regularization 148–149
reducing network size

145–148
spectrum of 449–450
underfitting and

overfitting 122–127
ambiguous features 124
noisy training data 123
rare features and spurious

correlations 125–127
generative deep learning

DeepDream 376–383
generative adversarial

networks 401–411
adversarial network 408–410
bag of tricks 403–404

INDEX472

generative deep learning
(continued)
CelebA dataset 404–405
discriminator 405–406
generator 407
schematic GAN

implementation
402–403

image generation with varia-
tional autoencoders
391–401

concept vectors for image
editing 393

overview of 393–395
sampling from latent spaces

of images 391–392
with Keras 396–401

neural style transfer 383–391
content loss 384
style loss 384–385
with Keras 385–391

text generation 366–376
callback with variable-

temperature sampling
372–375

generating sequence
data 367

history of 366–367
sampling strategy 368–369
with Keras 369–372

generative learning 193
generator model 407
generator networks 401, 403
geometric interpretation

of deep learning 47–48
of tensor operations 44–47

geometric modules 465
geometric relationships 329
get_config() method of Layer

class 344
get_vocabulary() method of

TextVectorization layer 317
Google Colab 428–429
GPUs

GPU runtime 75
multi-GPU training 425–427

acquiring two or more
GPUs 425–426

single-host, multi-device
synchronous training
426–427

with mixed precision 422–425
floating-point

precision 422–424
mixed-precision training 425

gradient-based optimization
48–61

Backpropagation
algorithm 55–61

automatic differentiation
with computation
graphs 56–60

chain rule 55–56
gradient tape in

TensorFlow 60–61
derivatives

defined 49–50
of tensor operations 51–52

stochastic gradient
descent 52–55

gradient boosting machines
15–16

gradient descent 49, 268, 432
gradient descent

parameters 138–139
gradient propagation 22
GradientTape class 60–61, 65,

76, 78–79, 196, 268
GradientTape.gradient()

method 79
GradientTape.watch()

method 79
Gram matrix 384
greedy sampling 368
ground-truth 96
grouped convolutions 342
GRU (Gated Recurrent

Unit) 303
GRU layer 297, 439

H

hierarchical representations
learning 7

History class 91
hold-out validation 134–135
house price prediction

example 113–120
Boston Housing Price

dataset 114
building model 115
generating predictions on

new data 119
preparing data 114–115
validating approach using

K-fold validation 115–119
HSV (hue-saturation-value)

format 5
Hyperband tuner 415
HyperModel class 415

hyperparameter
optimization 413–420

automated machine
learning 419–420

crafting the right search
space 418–419

KerasTuner 414–418
hypothesis space 7, 87, 101, 248,

436

I

if branches 462
if statements 156
image classification 239
image data 37
image_dataset_from_directory

utility function 217, 321
image segmentation 239–248
IMDB dataset 97, 320–322
import tensorflow 426
inference

core Keras APIs 93
training vs. 194

information arbitrage 308
information-distillation 8
information distillation

pipeline 267
information leaks 134
information location 396
information shortcut 252
initial state 355
Input class 175
instance segmentation 240
interpolation 129–130
iterated K-fold validation with

shuffling 136

J

JavaScript library 168
Jupyter notebooks 72–73

K

Kaggle 466
kaggle package 212
kaleidoscope hypothesis 454
Keras

core APIs 84–93
configuring learning

process 88–90
inference 93
layers 84–87
loss functions 90

INDEX 473

Keras (continued)
models 87–88
monitoring loss and met-

rics on validation
data 91–92

DeepDream with 377–382
deep-learning workspaces

71–75
Colaboratory 73–75
Jupyter notebooks 72–73

exploring ecosystem 467
history of 71
image generation with varia-

tional autoencoders
396–401

model building APIs 173–185
choosing 185
Functional API 176–181
mixing and matching differ-

ent components 184
model subclassing 182–184
Sequential model 174–176

neural style transfer with
385–391

overview of 69–71
recurrent layers in 296–300
text generation with 369–372

preparing data 370–371
Transformer-based

sequence-to-sequence
model 371–372

training and evaluation loops
built-in 185–192
callbacks 187–189
complete 195–197
fit() method 198–200
low-level usage of

metrics 195
monitoring and visualiza-

tion with
TensorBoard 190–192

tf.function 197–198
training vs. inference 194
writing 192–200
writing metrics 186–187

workflows 173
keras.applications module 226
keras.applications.xception.pre-

process_input function 274
keras.callbacks.Callback

class 189
keras.callbacks module 188
keras.callbacks.TensorBoard

callback 192
keras.datasets 154

keras.datasets.imdb 315
keras.metrics.Mean metric 195
keras.metrics.Metric class 186
keras.metrics module 186
KerasTuner 414–418
kernel function 15
kernel methods 14–15
kernel trick 15
key attributes 32–34
K-fold validation

iterated with shuffling 136
model evaluation 135–136
regression 115–119

L

L1 regularization 148
L2 regularization 148
labels 27, 96
language modeling 367
latent space 367
Layer class 84–85, 87, 173
layer compatibility 85
layered representations

learning 7
LayerNormalization layer 344
layers 28, 84–87, 432

access to layer
connectivity 180–181

automatic shape
inference 85–87

base Layer class 84–85
Embedding layer 331–332
recurrent layers in Keras

296–300
stacking recurrent layers

303–304
sufficiently large intermediate

layers 112–113
TextVectorization layer

316–319
Layer subclass 183, 358
LeakyReLU layer 404
learning 5, 133
learning rate 53
LeNet 14
lifelong learning 463–465
LightGBM library 19
linear classifiers 79–84
linear transformations 46, 101
local generalization 130, 447
local slope 51
logistic regression 13, 113
loss functions 9, 29, 88, 90, 432
loss value 96

LSTM (Long Short Term Mem-
ory) algorithm 20, 292

LSTM layer 84, 297, 439

M

machine learning 13–20, 432
automated 419–420
decision trees 15–16
generalization 121–133,

142–152
dataset curation 142
early stopping 144
feature engineering

143–144
nature of in deep learning

127–133
regularizing models

145–152
underfitting and

overfitting 122–127
gradient boosting machines

15–16
improving model fit 138–141

increasing model capacity
140–141

leveraging better architec-
ture priors 139–140

tuning key gradient descent
parameters 138–139

kernel methods 14–15
learning rules and representa-

tions from data 4–7
model evaluation 133–137

common-sense baseline
136–137

training, validation, and test
sets 133–136

modern landscape of 18–20
neural networks 14, 16–17
overview of 3–4
probabilistic modeling 13–14
random forests 15–16
See also deep learning

machine learning workflow
model deployment 165–170

deploying model as REST
API 166–167

deploying model in
browsers 168

deploying model on
devices 167–168

explaining work to stake-
holders and setting
expectations 165–166

INDEX474

machine learning workflow
(continued)
maintaining model 170
monitoring model 169–170
optimization 169
shipping inference

model 166–169
model development 161–165

beating baselines 163–164
choosing evaluation

protocol 162–163
developing model that

overfits 164
preparing data 161–162
regularizing and tuning

model 165
task definition 155–160

choosing measure of
success 160

collecting dataset 156–159
framing problem 155–156
understanding data 160

universal workflow 435–436
machine translation 350
MAE (mean absolute

error) 115, 288
manifold hypothesis 128–129
manifolds 47
map() method of Dataset

class 218–219
masking 332–334
mask token 315
matmul operation 76
matrices 32
maximal presence 211
maximizing margin 15
MaxPooling2D layer 202, 245
max-pooling operation 209–211
meaningfully transform data 5
mean squared error 115
metrics 89

low-level usage of 195
monitoring loss and metrics

on validation data 91–92
writing 186–187

metrics property 198
MHR (modularity-hierarchy-

reuse) formula 249
mini-batches 96
mini-batch SGD (mini-batch sto-

chastic gradient
descent) 53

MirroredStrategy object 426
missing values 162
Model() constructor 179

model architecture 419
ModelCheckpoint callback

188–189, 219
Model class 87, 398
model ensembling 420–421
model evaluation 133–137

common-sense baseline
136–137

Keras training and evaluation
loops

built-in 185–192
callbacks 187–189
complete 195–197
fit() method 198–200
low-level usage of

metrics 195
monitoring and visualiza-

tion with
TensorBoard 190–192

tf.function 197–198
training vs. inference 194
writing 192–200
writing metrics 186–187

training, validation, and test
sets 133–136

hold-out validation 134–135
iterated K-fold validation

with shuffling 136
K-fold validation 135–136

Model.fit() method 102, 187
Model.layers property 181
model parallelism 425
Model.save() method 189
Model subclass 182, 408
model subclassing 182–184

example of 182–183
responsibility for model

logic 183–184
Model.summary() method 244,

296, 378
model training 421–430

GPU with mixed
precision 422–425

floating-point
precision 422–424

mixed-precision
training 425

importance of training
data 132–133

Keras training and evaluation
loops

built-in 185–192
callbacks 187–189
complete 195–197
fit() method 198–200

low-level usage of
metrics 195

monitoring and visualiza-
tion with
TensorBoard 190–192

tf.function 197–198
training vs. inference 194
writing 192–200
writing metrics 186–187

multi-GPU training 425–427
acquiring two or more

GPUs 425–426
single-host, multi-device

synchronous
training 426–427

multi-input, multi-output
models 179

noisy training data 123
pretrained models for com-

puter vision 224–237
feature extraction 225–233
fine-tuning 234–237

TPU training 428–430
Google Colab 428–429
step fusing 430

training convnets from scratch
on small datasets
211–224

data augmentation
221–224

data preprocessing
217–221

downloading data 212–215
model building 215–217
relevance of deep learning

for small-data
problems 212

modular subroutine reuse
463–465

momentum 54
monitoring

loss and metrics on validation
data 91–92

model deployment 169–170
with TensorBoard 190–192

movie review classification
example 97–106

building model 99–102
generating predictions on

new data 105
IMDB dataset 97
preparing data 98–99
validating approach 102–105

MSE (mean squared error) 119,
289, 438

INDEX 475

mse function 105
multiclass classification 96,

106–113
building model 108–109
generating predictions on

new data 111–112
handling labels and loss 112
preparing data 107–108
sufficiently large intermediate

layers 112–113
validating approach 109–111

multi-head attention 341–342
MultiHeadAttention layer 339
multi-hot encode 98
multi-input, multi-output mod-

els
overview of 178–179
training 179

multilabel categorical
classification 437

multilabel classification 96
multilabel multiclass

classification 106

N

NaiveDense class 63, 84
NaiveDense layer 86
NaiveSequential class 63
ndim attribute 31, 33
neural networks 7, 16–17, 434

early 14
example of 27–30, 61–66

evaluating model 66
full training loop 65–66
reimplementing 63–64
running one training

step 64–65
gradient-based

optimization 48–61
Backpropagation

algorithm 55–61
derivatives 49–52
stochastic gradient

descent 52–55
tensor operations 38–48

broadcasting 40–41
element-wise

operations 38–40
geometric interpretation

of 44–47
geometric interpretation of

deep learning 47–48
tensor product 41–43
tensor reshaping 43–44

tensors 31–38
data batches 35
higher-rank tensors 32
image data 37
key attributes 32–34
manipulating in NumPy 34
matrices 32
real-world examples of 35
scalars 31
timeseries data 36
vector data 35–36
vectors 31
video data 37–38

neural style transfer 383–391
content loss 384
style loss 384–385
with Keras 385–391

newswire classification
example 106–113

building model 108–109
generating predictions on

new data 111–112
handling labels and loss 112
preparing data 107–108
Reuters dataset 106–107
sufficiently large intermediate

layers 112–113
validating approach 109–111

N-gram tokenization 313
NLP (natural language

processing) 310
IMDB dataset 320–322
overview of 309–311
preparing data 311–319

text splitting (tokenization)
313–314

text standardization
312–313

TextVectorization
layer 316–319

vocabulary indexing
314–315

sequences 327–336
example of 328–329
padding and masking

332–334
when to use 349–350
word embeddings 329–332,

334–336
sequence-to-sequence

learning 350–363
machine translation

example 351–354
with RNNs 354–358
with Transformer 358–363

sets 322–327
bigrams with binary

encoding 324–325
bigrams with TF-IDF

encoding 325–327
single words (unigrams)

with binary encoding
322–324

when to use 349–350
Transformer architecture

336–350
multi-head attention

341–342
self-attention 337–341
Transformer encoder

342–348
non-representative data 158–159
non-trainable weights 194
notebooks 72
number of axes 32
NumPy, manipulating tensors

in 34
numpy.dot() function 41
NumPy library 32

O

object detection 239
objective function 9
Occam’s razor principle 148
on_batch_* methods of Callback

class 190
one-hot encoding 107
on_epoch_* methods of Call-

back class 190
optimization 50, 54, 122
optimizer 10, 29, 89
output feature map 205
overfitting 30, 104, 122–127

ambiguous features 124
noisy training data 123
rare features and spurious

correlations 125–127
using recurrent dropout to

fight 300

P

padding
convolution operation

207–208
sequences 332–334

pattern recognition 456
pip, installing packages with 74
plot_model() utility 180

INDEX476

PositionalEmbedding layer 361,
440

positional encoding 344,
346–348, 439

predict() method of Model
class 93, 111, 119, 183, 229,
269–270

prediction 96
prefetch() method of Dataset

class 218
pretrained word

embeddings 331
probabilistic modeling 13–14
probability distribution 108
program-centric analogies 455
program-space intuition 465
program subroutines 464
program synthesis 460–463

integrating deep-learning
modules and algorithmic
modules into hybrid
systems 461–462

using deep learning to guide
program search 463

progressive disclosure of
complexity 173

prototypes 456

Q

query-key-value model 340–341

R

random forests 15–16
randomized A/B testing 169
RandomSearch tuner 415
reconstruction loss 395
recurrent dropout 300
recurrent layer 84
recurrent networks 436
redundancy in data 137
regression 113–120, 438

building model 115
generating predictions on

new data 119
preparing data 114–115
validating approach 115–119

regularization 133
regularization loss 395
regularizing models 145–152

adding dropout 150–152
adding weight regularization

148–149
reducing network size 145–148

reinforcement learning 193
ReLU activation 99, 404
relu function 100
representativity 163
Rescaling layer 215
reset_state() method of Metric

class 187
reset_state() method of Model

class 195
residual connections 251–255,

298, 438
response map 206
result() method of Metric

class 187
Reuters dataset 106–107
RGB (red-green-blue) format 5
rmsprop optimizer 62
RNNs (recurrent neural

networks) 281, 293–300,
439

bidirectional 304–307
recurrent layers in Keras

296–300
stacking recurrent layers

303–304
using recurrent dropout to

fight overfitting 300
ROC AUC (receiver operating

characteristic curve) 160
rows 32
rules 4

S

samples 27, 96
samples axis 35
scalar regression 96
scalars 31
scales 379
scaling 46
scaling-up model training

421–430
GPU with mixed

precision 422–425
multi-GPU training 425–427
TPU training 428–430

Scikit-learn library 19
search space 414
search_space_summary()

method of Tuner class 416
second-order gradients 79
segmentation masks 240
self-attention 337–341
self-supervised learning 193,

398

semantic relationships 329
semantic segmentation 240
SeparableConv1D layer 291
SeparableConv2D layer 259,

290, 438
sequence data 35
sequence models 320
sequences 327–336

example of 328–329
padding and masking 332–334
when to use 349–350
word embeddings 329–331

learning with Embedding
layer 331–332

pretrained 334–336
sequence-to-sequence

learning 439
sequence-to-sequence

model 340, 350–363, 371
machine translation

example 351–354
text generation 371–372
with RNNs 354–358
with Transformer 358–363

Sequential model 63–64, 76,
173–176, 221

sets 322–327
bigrams with binary

encoding 324–325
bigrams with TF-IDF

encoding 325–327
single words (unigrams) with

binary encoding 322–324
when to use 349–350

SGD optimizer 389
shallow learning 7
shortcut rule 450–452
shuffle() method of Dataset

class 218
sigmoid activation 106, 215, 437
similarity comparison 455
simple model 148
SimpleRNN layer 296, 439
single-label categorical

classification 437
single-label multiclass

classification 106
single words (unigrams)

322–324
smile vector 393
softmax activation 108, 437
softmax classification layer 28
softmax operation 55
softmax temperature

parameter 368

INDEX 477

sparse_categorical_crossentropy
function 112, 203

spatial location 245
stacking recurrent layers 300
step fusing 430
stochastic gradient descent

52–55
stochastic sampling 368
structured representations 330
style function 384
subgraph isomorphism 457
summary() method of Model

class 174
supervised learning 192
SVM (Support Vector

Machine) 14
symbolic AI 3
symbolic tensor 177

T

tape.gradient() function 79
tape.watch() function 79
target leaking 160
targets 96, 192
targets array 286
temperature-forecasting

example 281–293
1D convolutional model

290–291
basic machine-learning

model 289–290
first recurrent baseline

292–293
non-machine-learning

baseline 288
preparing data 285–287

TensorBoard, monitoring and
visualization with 190–192

TensorFlow
deep-learning workspaces

71–75
Colaboratory 73–75
Jupyter notebooks 72–73

first steps with 75–84
constant tensors and

variables 76–78
GradientTape API 78–79
linear classifier in

TensorFlow 79–84
tensor operations 78

gradient tape in 60–61
history of 71
overview of 69

TensorFlow Serving 166

tensor operations 26, 38–48, 78
broadcasting 40–41
derivatives of 51–52
element-wise operations

38–40
geometric interpretation

of 44–47
geometric interpretation of

deep learning 47–48
tensor product 41–43
tensor reshaping 43–44

tensor product 41–43
tensor reshaping 43–44
tensors 31–38

constant 76–78
data batches 35
higher-rank tensors 32
key attributes 32–34
manipulating in NumPy 34
matrices 32
real-world examples of 35

image data 37
timeseries data 36
vector data 35–36
video data 37–38

scalars 31
vectors 31

tensor slicing 34
test_step() method of Model

class 196
text_dataset_from_directory

function 321, 370
text generation 350, 366–376

callback with variable-
temperature sampling
372–375

generating sequence data 367
history of 366–367
sampling strategy 368–369
with Keras 369–372

preparing data 370–371
Transformer-based

sequence-to-sequence
model 371–372

text splitting
(tokenization) 313–314

text standardization 312–313
text summarization 350
textures 385
TextVectorization layer

316–319, 370
tf.data.Dataset class 196, 217, 427
tf.function 197–198
TF-IDF encoding, bigrams

with 325–327

TF-IDF normalization 325
tf.string tensors 317
tf.Variable class 60, 77
theory of mind 443
timeseries

kinds of tasks 280–281
recurrent neural

networks 293–300
bidirectional 304–307
recurrent layers in

Keras 296–300
stacking recurrent

layers 303–304
using recurrent dropout to

fight overfitting 300
temperature-forecasting

example 281–293
1D convolutional

model 290–291
basic machine-learning

model 289–290
first recurrent

baseline 292–293
non-machine-learning

baseline 288
preparing data 285–287

timeseries data (sequence
data) 36

timeseries data 35
tokenization 311
total variation loss 388
TPU (Tensor Processing

Unit) 21, 428
TPUStrategy scope 428
TPU training 428–430

Google Colab 428–429
step fusing 430

trainable parameters 48
trainable variables 79
trainable weights 194
training loop 10, 48
train_step() method of Model

class 198, 398
Transformer architecture

336–350, 439–440
multi-head attention 341–342
self-attention 337–341
sequence-to-sequence

learning 358–363
sequence-to-sequence

model 371–372
Transformer decoder 358–361
Transformer encoder 342–348

TransformerDecoder 440
TransformerEncoder 439

INDEX478

Transformers 436
translating a vector 45
Turing test 3

U

underfitting 122–127
ambiguous features 124
noisy training data 123
rare features and spurious

correlations 125–127
update_state() method of Metric

class 186

V

VAEs (variational autoencod-
ers), image generation
with 391–401

concept vectors for image
editing 393

overview of 393–395
sampling from latent spaces of

images 391–392
with Keras 396–401

validation
binary classification

102–105
hold-out validation 134–135
K-fold validation 115–119,

135–136
monitoring loss and metrics

on validation data
91–92

multiclass classification
109–111

validation data 92
validation metrics 162
value-centric analogies 455
value normalization 161
vanishing gradients 251, 297
Variable class 76
variable_dtype attribute of Layer

class 425
variable-temperature

sampling 372–375
vector data 35
vectorized targets 433
vectorizing text 311
vector regression 96

vectors 31
concept vectors for image

editing 393
TextVectorization layer 316–319
vector data 35–36
vectorization 161

video data 37–38
vocabulary indexing 314–315

W

weight decay 148
weight pruning 169
weight quantization 169
weight regularization 148–149
weights 9, 48, 84, 432
word embeddings 329–331

learning with Embedding
layer 331–332

pretrained 334–336
word-level tokenization 313

X

XGBoost library 19, 466

François Chollet

ISBN: 978-1-61729-686-4

R ecent innovations in deep learning unlock exciting new
software capabilities like automated language translation,
image recognition, and more. Deep learning is quickly

becoming essential knowledge for every software developer,
and modern tools like Keras and TensorFlow put it within
your reach—even if you have no background in mathematics
or data science. ! is book shows you how to get started.

Deep Learning with Python, Second Edition introduces the " eld
of deep learning using Python and the powerful Keras library.
In this revised and expanded new edition, Keras creator
François Chollet o# ers insights for both novice and experi-
enced machine learning practitioners. As you move through
this book, you’ll build your understanding through intuitive
explanations, crisp illustrations, and clear examples. You’ll
quickly pick up the skills you need to start developing deep-
learning applications.

What’s Inside
● Deep learning from " rst principles
● Image classi" cation and image segmentation
● Time series forecasting
● Text classi" cation and machine translation
● Text generation, neural style transfer, and image
 generation

For readers with intermediate Python skills. No previous
experience with Keras, TensorFlow, or machine learning is
required.

François Chollet is a software engineer at Google and creator of
the Keras deep-learning library.

Register this print book to get free access to all ebook formats.
Visit https://www.manning.com/freebook

$59.99 / Can $79.99 [INCLUDING eBOOK]

Deep Learning with Python Second Edition

PYTHON/DEEP LEARNING

M A N N I N G

“Chollet is a master of
pedagogy and explains
complex concepts with

minimal fuss, cutting through
the math with practical

Python code. He is also an
experienced ML researcher
and his insights on various

model architectures or training
tips are a joy to read.”
—Martin Görner, Google

“Immerse yourself into this
exciting introduction to the
topic with lots of real-world

examples. A must read for every
deep learning practitioner.”

—Sayak Paul, Carted

“! e modern classic just
 got better.”
—Edmon Begoli

Oak Ridge National Laboratory

“Truly the bible
 of deep learning.”—Yiannis Paraskevopoulos
University of West Attica

See first page

