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Preface

This book introduces the fundamental notions of contemporary software engineer-
ing. From the large body of knowledge and experience that software engineering 
has accumulated, it selects a very small subset. The purpose is to introduce the 
software engineering field to students who want to learn basic software engineering 
skills and to help practitioners who want to refresh their knowledge and learn about 
the recent developments in the field.

The field of software engineering has accumulated a great deal of knowledge 
since the first appearance of software in the 1950s. There have also been two revo-
lutions in the field, each substantially changing the views and the emphasis within 
the field. In the 1970s, the first revolution established software engineering as an 
academic discipline, and in the 2000s, the second revolution identified the broadly 
understood software evolution as the central software engineering process. This 
second revolution is still in progress, with holdouts and unfinished battles. This 
book unashamedly subscribes to the results of both revolutions and emphasizes 
the software evolution; the remnant of the formerly formidable waterfall model is 
relegated to a single chapter in the latter part of the book (Chapter 14) under the 
title of “Initial Development.”

In order to explain the style of the book, let me share a little bit of my back-
ground. In my studies, I majored in mechanical engineering and mathematics. I 
studied from the well-organized textbooks that are common in these two classic 
fields. After my schooling was finished, I changed direction and embarked on a 
career in software engineering. It has been an exciting and rewarding adventure. 
However, I have to admit that I am still nostalgic for the well-organized textbooks 
in the fields of mechanical engineering and mathematics. They served as an inspi-
ration for this book, and I am trying to emulate their purposefulness, brevity, and 
gradual increase in the complexity of the topics covered.

Software engineering processes are the core of this book; they cannot be taught 
without references to the software technologies that support them. However, the 
technologies are changing at a different pace, and they respond to the imperatives 
of the marketplace. This book uses very few proven technologies as a context for 
explanation of the software engineering processes.
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Finally, I have to confess that as a hot-headed young software manager of the 
1970s, I convinced and coerced my best team into a then-novel and highly hyped 
waterfall software development process. Doing that, I created what was later called 
a “death march project.” The programmers spent most of their time in endless 
requirements elicitation; there was always one more very important requirement to 
be added to the list, a classic demonstration of the infamous “requirements creep.” 
After the schedule slipped, the programmers were trying to meet impossible imple-
mentation deadlines and spent nights in sleeping bags on the floor of the lab; they 
did not have time to go home to take a decent rest or a shower. This book is a partial 
and belated atonement for that unfortunate experience.

***

This book addresses both the professionals and the students of software engineering.

Use of this Book by Professionals

Programmers and software managers can use this book to acquire a unified view 
of the contemporary practice of software engineering. This book will give them an 
overview of how various recent developments fit together and fit into the contem-
porary software engineering mosaic. The knowledge gained from this book may 
allow them to evaluate and improve the software engineering processes they are 
employing in their projects.

Use of this Book by Students and Instructors

Prerequisites

The prerequisite of the course is the knowledge of object-oriented programming 
accompanied by a moderate programming maturity and experience. A typical 
computer science student usually achieves that maturity after passing satisfacto-
rily the second programming course, often called “Data Structures.” Some of the 
prerequisite material is briefly surveyed in sections 3.1, 3.2, 4.1, and 4.2, but the 
sole purpose of these sections is to unify the terminology for the rest of the book 
and to define the absolute minimum that is necessary for understanding the rest of 
the book. These four brief sections cannot substitute for prerequisite courses that 
cover these topics in greater depth. Our experience shows that the students who do 
not have this background cannot do well in this software engineering course.

If the prerequisite courses did not cover some of these topics in sufficient depth, 
for example, missing the advanced use of object-oriented technology or more com-
plete coverage of UML (Unified Modeling Language), the instructors should care-
fully balance the “remedial” work against the core message of this course. There is 
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a real danger that the whole course could turn into a remedial instruction in the 
software technologies, and the whole software engineering point can be missed.

Lectures

The topics can be covered roughly at a pace of two chapters per week in a three-
credit course. In a well-prepared class, sections 3.1, 3.2, 4.1, and 4.2 can be skipped 
entirely, or covered very quickly. On the other hand, Chapters 10, 13, and 14 usu-
ally take a full week or more. At this pace, the textbook presents about 11–12 weeks 
of material and leaves ample time for midterms, reviews, projects, or presentation 
of additional material that delves more deeply into the topics listed at the end of the 
chapters as the “Further Reading and Topics.”

The order of the presentations should follow the graph of dependencies among 
the chapters and project phases; project phases are explained in the next section.

                17   18
                ↑    ↑

1→2→3→4→5→6→ 7→8→9→10→ 11→12→ 13→14→15→16
                    ↓      ↓
         Project   Project
         phase 1   phase 2

The standard order (traversal) of the chapters roughly follows the order of the 
chapters in the book, with the exception of Chapters 17 and 18, which contain 
examples; Chapter 17 can be presented immediately after Chapter 10, and Chapter 
18 immediately after Chapter 12. The resulting order is:

1 → 2 → 3 → 4 → 5 → 6 → “Project phase 1” → 7 → 8 → 9 → 10 → “Project phase 
2” → 17 → 11 → 12 → 18 → 13 → 14 → 15 → 16

If there is pressure to speed up the lectures in the beginning so that the students 
can start on the projects earlier, the following may be the alternative “fast start”:

3 → 4 → 5 → 6 → “Project phase 1” → 7 → 8 → 9 → 10 → “Project phase 2” → 17 → 
11 → 1 → 2 → 12 → 18 → 13 → 14 → 15 → 16.

This sequence allows getting through Chapter 6 by the second week and through 
Chapter 10 by the fifth week. The pace of the lectures then can slow down, and 
Chapters 1, 2, and the rest of the book can be presented at a more leisurely pace.
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Projects

In traditional software engineering projects, the students develop small, low-qual-
ity programs from scratch; in contrast, the industry programmers typically evolve 
much larger and already-existing systems that contain many features and a high 
code quality. Traditional software engineering projects organize students into an 
unstructured team, and the whole team often receives the same grade; such an 
organization promotes abuse of the system in which a few motivated students carry 
the workload on behalf of the less-motivated students, who contribute little to the 
success of the project.

The projects proposed here avoid both problems: They give the students an 
experience with software of the size and quality comparable to that of industrial 
software. While students still work in teams, they have individual assignments and 
individual visibility, as is the case in the industry.

The projects run in parallel with lectures, and they complement the learning 
experience by giving the students the opportunity to practice the new knowledge. 
In terms of the processes explained in the book, the students work in the role of 
developers in a classroom-tailored directed iterative process (DIP) of Chapter 13; 
the instructor supplies all other roles of the process.

Project Selection

The following are the criteria when selecting the projects:

Technology of the projects: The best projects use only the technology that stu-
dents are already familiar with. If the projects use any unfamiliar technology, 
it should be possible to avoid problems by the appropriate selection of the 
assigned software changes. Our preferred projects use pure Java or pure C++ 
with some localized graphical user interface technologies that can be avoided.

Size of the projects: In order to give students a realistic experience of software 
change, the projects should not be too small, which make the concept loca-
tion trivial. They also should not be so large that handling the code and the 
recompilation becomes an issue. The best project sizes range between 50 and 
500 kLOC (thousand lines of code).

Domain of the project: The best domains are the ones that the students are already 
familiar with, or that are easy to learn. There is not enough time in the semes-
ter to delve into complicated or unfamiliar domains. Based on this criterion, 
the best domains are various drawing, editing, and file managing programs 
that are grasped by the students immediately.

We select our projects from open sources because of their availability and pre-
dictable quality, but industry projects or local academic projects—if they are cho-
sen carefully and follow the project selection criteria—also could serve as valuable 
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classroom projects. Examples of the project selections from the SourceForge.net 
open-source website are presented in Table 1.

Project Phase 0

This is an introductory phase where the students become familiar with the software 
environment (Visual Studio, Eclipse), version control system (Subversion, CVS), 
and message board (Blackboard, Wiki). They receive individual accounts, decide 
what hardware resources they are going to use for their version-control client (their 
own laptop or a university lab computer), form the teams, and become familiar 
with the software projects provided by the instructor. This typically takes 2 weeks 
at the beginning of the semester.

Project Phase 1

This phase consists of the first primitive change in the system. Each student does 
an individual concept location and a minimal code modification. The purpose 
of the modification is just to prove that a correct location was found; typically, 
the modification does not have any impact on any other modules. Examples of 
the first change requests are: Display the name of the student in the “about” 
window; allow the user to enter a numeric value for the zoom rate; print a word 
count for the selected text; and so forth. Chapters 3–6 are the prerequisite for 
Phase 1.

Project Phase 2

This phase consists of a sequence of software changes of increasing complexity and 
increasing code conflicts among the team members that force them to collaborate 
in conflict resolution.

The change requests can be taken from the official backlog of the selected proj-
ects; however, sometimes these change requests have to be clarified and described 
in more detail. Change requests can be decomposed into several related tasks and 
distributed among the team members, giving them a cooperative experience. At the 

Table 1 Projects Used in the Class

Project Size Years When Used

NotePad++ 333 kLOC 2009–2010

A Note  20 kLOC 2008

JEdit 316 kLOC 2006, 2008

WinMerge  63 kLOC 2002–2005, 2007, 2010
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end of the project phase, the best solutions can be committed to the official open-
source project repository. For these changes, Chapters 3–10 are a prerequisite.

Other Processes and Roles

As mentioned previously, these projects emphasize the role of developers in a class-
room-tailored version of DIP software evolution. In our opinion, this is the best 
gateway into the world of software engineering suitable for a one-semester course. 
If a more complete project experience with other software engineering roles in 
other software engineering processes is desired, it should be taught in follow-up 
courses. In these courses, the students can learn and experience additional roles, 
such as testers or project managers; they can learn additional evolutionary pro-
cesses, such as the agile process or experience initial development or late life-span 
processes.
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Four introductory chapters present the basic notions and prerequisites. They are the 
properties of software, and, in particular, the essential difficulties of software that 
have shaped the history of software engineering. This is followed by an account of 
the history of software engineering, with the emphasis on the two paradigm shifts: 
from ad hoc paradigm to waterfall, and then from waterfall to iterative paradigm. 
The next chapter contains the models of software life span, consisting of stages 
through which software passes, followed by a brief survey of technologies that are 
used in this book to explain the software engineering principles. The last chapter of 
this part surveys software models that are frequently used in the software engineer-
ing tasks.
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Chapter 1

History of Software 
Engineering

Objectives

In this chapter, you will learn about the software accomplishments. You will also 
learn about software properties and, in particular, about the contrast between 
accidental and essential properties. Among them, the essential difficulties of 
software are the biggest challenge for software engineers, and they shape the 
nature of the software engineering profession. After you have read this chapter, 
you will know:

 ◾ The essential difficulties of software
 ◾ Three software engineering paradigms and their history
 ◾ The origins of software and ad hoc techniques of software creation
 ◾ The reasons why software engineering became an established discipline
 ◾ The waterfall model of software life span and its limits
 ◾ Software evolution and its role in software life span

***

Software is everywhere. While buying bread, driving a car, riding the bus, or wash-
ing clothes, you may be interacting with software running somewhere on a com-
puter or on a computer chip. Software has penetrated the most unlikely venues; 
even cars now run tens of millions of lines of code that control everything from 
windshield wipers to engine ignition (Charette, 2009).
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Software has changed the way we interact with each other; the Internet is 
changing the way we communicate, shop, and even relate to one another (Leiner et 
al., 2009), and sociologists are still trying to sort out the full impact of this unprec-
edented change.

Software has also changed the way we view ourselves. Chess playing has always 
been considered a pinnacle of human intelligence, but that perception was drasti-
cally adjusted when a computer (and software) defeated the reigning human world 
chess champion (Hsu, 2002). The software that runs nowadays on a standard PC is 
more powerful than any human chess player.

People who accomplished these feats and bring the software to the computers 
or the computer chips near you are called software engineers; sometimes they are 
also called programmers. They participate in these challenging projects and pos-
sess skills and tools that allow them to develop and evolve software so that it can 
continue to serve you in the ever-changing world. This book is an introductory 
exposition of their trade.

Software is a product, but it is very different from other products and other 
things in the world. It has certain properties that make it different; properties of 
this kind are called essential properties. The other properties that software may or 
may not have are called accidental properties. The next section deals with essential 
properties first, and then with accidental properties.

1.1 Software Properties

Software is sometimes called a program; software that is interacting with a human 
user is often called an application. Software controls computers or computer chips, 
implements algorithms, processes data, and so forth. These properties are essential 
because only software has these properties.

Among the essential properties, certain properties make the work of software 
engineers challenging, and therefore, they are especially worthy of our attention. 
They have been called essential difficulties of software. They are complexity, invisi-
bility, changeability, conformity, and discontinuity. Fred Brooks (1987) introduced 
the first four of these.

1.1.1 Complexity

Software is complex, and software applications often contain millions of lines of 
code. Software ranks among the most complex systems ever created by mankind, 
including large cities, country governments, large armies, large corporations, and 
so forth. When dealing with this complexity, the programmers are equipped with 
a very small short-term memory (Miller, 1956); hence, they have to employ various 
strategies to handle this complexity. There are several well-known strategies that 
deal with complexity, and they have been adopted by software engineers.
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One of the strategies that has been proposed and used in software engineering is 
the creation of simplified models that ignore various details. Without these details, 
the models are simpler and easier to understand than the original, and that helps 
when dealing with the complexity. Software models are explored in chapter 4. The 
quality of the model depends on whether the distinction between important and 
unimportant was done correctly; if a model ignores important things, it is an incor-
rect model that hinders rather than helps understanding.

Another strategy is based on decomposition of large software into smaller parts. 
This decomposition helps software engineers to orient themselves in the software. 
The same strategy is used when dealing with complex organizations like universi-
ties; they are divided into colleges and departments that help orientation within 
these organizations.

Another approach is the as-needed approach, where people concentrate only on 
the part of the software that they need to understand to do the required task, and 
ignore all the rest. Tourists who visit a large city like Prague instinctively adopt this 
approach. They learn how to reach their hotel and how to get to the historical sites 
they want to see, and pay no attention to the rest of the city and all its complexity.

Abstraction is an approach where a complex or messy object is recognized 
as belonging to a certain category in which all things have the same properties. 
Understanding this category helps in understanding the original object. For exam-
ple, when dealing with Fido, it helps to understand that he belongs to the category of 
dogs, which all share certain behaviors, require certain types of food, and so forth.

Despite the successful use of these strategies by software engineers, software 
complexity is still a problem, and much of the software engineer’s effort is spent in 
coping with it.

1.1.2 Invisibility

Software is invisible, and neither sight nor the other senses can be employed when 
trying to comprehend it. Our comprehension is closely tied to our senses, and it is 
much easier for us to comprehend what we can sense. For example, we can easily 
comprehend small things that we can see in their entirety, or things that we can 
hear or touch. Abstract concepts like mathematical formulas or abstract philosoph-
ical accounts are much harder to understand. Software belongs to the category of 
abstract things, and that demands that software engineers deal with it like math-
ematicians and philosophers do.

Some software tools visualize certain aspects of software; for example, a display 
of a graph that depicts software components and their relation allows programmers 
to use their vision when they deal with some properties of software. Other tools 
employ sonification, which allows programmers to hear certain aspects of their 
software. These tools lessen the impact of invisibility, but they offer only a very lim-
ited solution, and there is still a long way to go before these tools will fully employ 
human senses in the understanding of software.
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1.1.3 Changeability

Software is easy to change: It is not necessary to tear down massive walls, to drill, or 
do anything of that magnitude; all that is needed is to sit at the keyboard and make 
a couple of key strokes. It is this ease of change that allows software engineers to 
modify software quickly in response to changing needs, and this is the foundation 
for the iterative processes that this book emphasizes.

However, the ease of changeability has its dark side, as it can act as an encour-
agement to introduce ill-prepared or hasty changes that will be regretted later. 
Although software is easy to change, it is much harder to change it correctly, to 
produce the desired outcome, and to have the new code fit with the old. This is par-
ticularly true for programs that have accumulated a large amount of work that each 
change must respect. As the programs grow more complex, the correct changes 
become increasingly difficult. Another aspect of the dark side of changeability is 
the fact that rapid changes make the knowledge of old software obsolete, and they 
require a continuous effort just to keep up.

1.1.4 Conformity

Software is always a part of a larger system that consists of the hardware, the users 
that interact with it, other stakeholders or customers affected by it, other inter-
acting software like operating systems, and so forth. Software integrates all these 
parts into one system, and it is the glue that holds this system together as a whole. 
This larger system that software interconnects is called a domain. For example, if 
the application is related to banking, the software domain consists of the bank-
ing customers, clerks, accounts, transactions, and all relevant banking rules. If the 
application deals with taxes, it must contain complete and accurate tax rules, and 
so forth.

Software must communicate with disparate components that constitute the 
domain. Consequently, there is no clear boundary between software and the 
domain, and the properties of the domain seep into software; software has to con-
form to its domain. As a result of conformity, the changes anywhere in the domain 
force software to change also. For example, a change in banking law or a court 
decision that changes tax rules results in immediate changes in software.

Conformity adds to the complexity of the work with software. The domain 
knowledge is an essential tool in the software engineer’s tool chest; without it, the 
software engineer would be unable to implement the proposed system.

1.1.5 Discontinuity

Software is discontinuous, while people easily understand only continuous semilin-
ear systems. An example of such a semilinear system is the shower with two knobs: 
one for hot water, the other one for cold water. If the shower is too cold, then the 
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knob for hot water has to be turned up or the knob for cold water must be turned 
down, or both; the small motion of the knobs will cause small change in the shower 
temperature. The semilinear nature of the shower system makes it easy to use.

Discontinuous systems have counterintuitive properties; a small change of the 
input can cause an unexpected and huge change of the output. An example of the 
large discontinuity is the use of passwords: If the user wants to use an application 
and uses a correct password, the application will open and all its functionality will 
be available to the user. On the other hand, mistyping a single letter of the pass-
word will keep the application closed and none of its functionality will be available; 
the difference of the input is small, but the difference of the outcome is huge. The 
same is true for changes in the system; in some situations, the repercussions of what 
appears to be a very small change can be huge.

1.1.6 Some Accidental Properties

While essential properties of software are always present, accidental properties dif-
fer from one application to another and are dependent on the time and place where 
these applications have been developed.

Software technology is one such accidental property. The software technology 
includes programming languages, their compilers, editors, libraries, frameworks, 
and so forth. There are many programming languages currently used, and many 
other languages that were employed in the past but are no longer used. The same 
is true about various software tools that are or were used in software development.

Software engineers of different schools may use different processes to develop 
software. These processes depend on a particular time and place, and therefore, 
they also belong to the category of accidental properties.

Another accidental software property is the role that software plays in the life 
of the organization that uses it. Mission-critical software is the software that per-
mits the organization to fulfill its role. For example, the software that calculates 
insurance premiums is mission critical for insurance companies; if that software 
is unavailable or down, the company is unable to function. Noncritical software 
enhances the functioning of the organization but it is not critical; unavailability of 
such software may be an inconvenience, but it does not stop the organization from 
functioning. The same software can be mission critical for some organizations and 
noncritical for others.

Software engineering deals with software and all its properties, both essential 
and accidental. It offers solutions to the problems that some of these properties 
cause. The problems caused by essential properties are particularly important for 
the software engineering discipline to solve, because these properties and their 
accompanying problems are going to be present in all software—past, present, and 
future—while accidental properties come and go. Essential properties are the main 
driving force in the history of software engineering.
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1.2 Origins of Software

In the context of the ubiquity of software in today’s world, it can come as a surprise 
how new software technology is. The newness of software can be illustrated by a 
bit of historical trivia: The term software appeared in print for the first time only 
in 1958 in an article written by the statistician John Wilder Tukey, as reported by 
Leonhardt (2000). Before that, software was so rare that there was no need for a 
special word. In a short time after 1958, the term software became widespread, and 
software became pervasive. Contemporary economy and our way of life depend on 
software, and without software, most of our economy and a large part of our daily 
routine would grind to a halt.

When the first software applications appeared in the 1950s, they were writ-
ten by teams of electrical engineers, mathematicians, and people of similar back-
grounds. At that time, software managers believed that no special knowledge or 
special sets of skills were necessary for writing software. The programmers of that 
time used ad hoc techniques and likened software production to an art. Using their 
artlike techniques, they implemented software applications that included compil-
ers, operating systems, early business applications, and so forth.

To describe what happened next, we have to visit the philosophy of science 
and the development of scientific and technical disciplines. Thomas Kuhn coined 
the word paradigm that, according to him, is a “coherent tradition of scientific 
research” (Kuhn, 1996). In the case of software engineering and other engineering 
disciplines, paradigm means a “coherent tradition of engineering research and prac-
tice.” In both cases, it includes theory, applications, instrumentation, terminology, 
research agenda, norms, curricula, culture of the field, and so forth. It also involves 
investments in tools, textbooks, training, careers, and funding.

A naïve view of the development of scientific and technical discipline assumes 
that a discipline steadily and continuously accumulates knowledge, within the 
framework of the same paradigm. However, this naïve view is incorrect: The study 
of the history of the scientific and technical disciplines shows that they pass from 
time to time through serious upheavals or revolutions, where the old paradigm 
is abandoned and a new paradigm is adopted. The revolution is triggered by an 
anomaly. According to Thomas Kuhn, “Anomaly is an important fact that directly 
contradicts the old paradigm.” When that happens, the scientific or technical 
community faces a choice: to change the paradigm, or to disregard the anomaly. 
Because changing paradigm means abandoning a large part of the accumulated 
knowledge and devaluing past investment in the discipline, the anomaly must be 
compelling; otherwise, the community will simply ignore it. Even if the anomaly 
is compelling, the paradigm shift is usually accompanied by acrimony and strife, 
where people who invested heavily into the old paradigm try to defend it as long as 
they can to protect their investment.
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History of Phlogiston

A historical example of the paradigm shift is the introduction of the notion of oxygen in the 
1770s, often considered to be the beginning of modern chemistry. Before that, chemists used a 
notion of phlogiston that was supposed to be a substance that escapes from the burning material 
during a fire, and it was probably inspired by the smoke that escapes from burning wood. The 
anomaly arose when new and more accurate scales became available and chemists burned other 
substances than wood; it turned out that the ashes of some burned substances weighed more 
than the original material, and the theory of phlogiston was unable to explain this fact. The expla-
nation was found in the notion of oxygen, which does exactly the opposite of what it was sup-
posed that phlogiston did: It joins the material during the fire. This new explanation and transition 
from phlogiston to oxygen triggered a massive crisis in the discipline of chemistry that required 
an overhaul of all knowledge accumulated up to that point; hence, it was a genuine revolution, 
a paradigm shift. There were some people who never accepted oxygen as an explanation and 
persisted in the use of phlogiston to the very end.

Without understanding paradigm shifts, it is impossible to understand the his-
tory of software engineering and some of the controversies that are still raging 
today in the software engineering community. The first paradigm shift was the 
birth of the software engineering discipline in the 1970s.

1.3 Birth of Software Engineering

The ad hoc, artlike techniques used to create the earliest software functioned rela-
tively well until about the mid 1960s. The anomaly that caused the paradigm shift 
at that time was software complexity, one of the essential difficulties of software. 
With the success of the early software, an appetite for larger and more complex 
software began to grow, and in the 1960s, software requirements outgrew the capa-
bilities of the ad hoc approach. For the implementation of new software, it was 
no longer possible to rely on a handful of ingenious programmers recruited from 
other fields. Software development at that time required a fundamentally different 
approach. The situation is well described by Brooks (1982).

Fred Brooks was a manager of a software project that was developing a new oper-
ating system, OS/360, for the IBM Corporation. IBM was a leader in the computer 
field and decided to develop a new series of computers. The OS/360 operating system 
was expected to utilize resources of these computers more effectively than what was 
customary at the time and to take over some computer operations that were previ-
ously done by human computer operators. However, the operating system turned 
out to be large and complex, and its implementation taxed the limits of the partici-
pating programmers, project managers, and the resources of the IBM Corporation.

Some experience drawn from that large software project was surprising and 
very counterintuitive. An example is the famous observation that adding new peo-
ple to a large software project that is already underway will slow it down rather 
than speed it up. It was discovered later that the reason for this paradox is that the 
new people first have to learn everything that was already accomplished by the 
project; otherwise they would be unable to contribute. The experienced people have 
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to teach them all this knowledge and help them to catch up. The teaching process 
is a new additional task for them, so they have to redirect some of their energy from 
the software implementation toward teaching the latecomers, and this slows the 
project’s progress.

The increased complexity of the software was an anomaly that led to the para-
digm shift of the 1970s. The community developed awareness that software requires 
people with special training, and that dealing with the software complexity requires 
specialized skills. This awareness gave birth to the new discipline of software engi-
neering. The beginning of software engineering is usually associated with the years 
1968 and 1969, when the first international conferences on software engineering 
met and attempted to define the new field. This attempt to define the field generated 
controversies. The controversies were so acrimonious that the original organizers 
gave up, and there were no software engineering conferences between 1969 and 
1974. Only in 1974 did a completely new group of people start a new software engi-
neering conference that defined the new discipline of software engineering.

The need for a new discipline became recognized, and software engineering 
grew from then on. Today, there are teachers, employers, and software managers, 
and they all agree that for work on large software projects, a special set of skills and 
specialized training is required. Software engineering as a discipline is now firmly 
established and has its own curricula, textbooks, conferences, and so forth.

1.3.1 Waterfall

After the paradigm shift of the 1970s, the new discipline of software engineering 
explored the software life span models that describe the stages through which soft-
ware passes during its useful life. The life span models are important for software 
engineers because different processes take place in each stage. To study these pro-
cesses, the first step is to find out what the stages are.

The new software engineering community quickly reached a broad consensus 
about the software life span model that is called the software waterfall. A schema of 
the software waterfall is given in Figure 1.1. In the first stage of the waterfall model, 
software requirements are elicited from the future users; these requirements describe 
the software functionality from the point of view of future users. Software require-
ments may also cover nonfunctional properties like expected speed, reliability, and 
so forth. Based on the requirements, designers of software complete the design, 
which consists of the software modules, their interactions, and the algorithms and 
data structures that the software is going to use. The implementation follows the 
design and consists of writing the actual code and verification that it is doing what 
it is expected to do. Once the implementation is done, software is transferred to 
the users, and if any problems appear later, they are taken care of during the main-
tenance phase.

The name “waterfall” originates from the one-directional flow of information, 
from requirements to design to implementation to maintenance. No information 
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flows backwards, similar to a natural waterfall, where water flows in only one 
direction and no water flows backwards. The waterfall model exercised enormous 
influence on both the research and practice of the software engineering com-
munity for many years. For example, the U.S. Department of Defense required 
all contractors to follow the waterfall model and defined it in Department of 
Defense Standard 2167A. This standard basically follows Figure 1.1, but it con-
tains more details and exact definitions of what is to be delivered for require-
ments, design, and so forth. Many other software customers followed suit and 
required their software vendors to follow the waterfall as defined in DOD-Std-
2167A or similar documents.

The waterfall model promised the following: If requirements and design are 
done up-front and if they are done well, the implementation that follows them will 
avoid many unnecessary and expensive late changes that are the result of require-
ments omissions and misunderstandings. Late changes are much more expensive 
than early changes; hence, the reasoning was that the waterfall approach lowers 
software costs.

The waterfall model is accepted in other engineering fields, and it is not surpris-
ing that it was also accepted by software engineers, perhaps based on the experience 
from these other fields. An example of a field where the waterfall approach is widely 
and successfully used is house construction.

When Ann and Michael Novak want to build a house, they hire an architect 
who will ask them what is the price range; how do they want the house to be built; 
how many people are going to live in the house; how many visitors are they plan-
ning; do they want to have an office, entertain large parties, maintain a wine cellar, 
play ping pong with the children; and so forth. These are the requirements that the 
architect collects. Based on these, the architect produces the blueprint that contains 
the layout of the house, all utilities, and materials to be used.

Requirements

Design

Maintenance

Implementation

Transfer to the user

Figure 1.1 Waterfall model of software lifespan.
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Using the blueprints, the construction crew builds the house and, when done, 
it transfers the house to the Novaks. If any problems with plumbing or other house 
details appear after the transfer, the maintenance crew fixes them; the waterfall 
works perfectly in this setting. Not surprisingly, software engineers assumed it 
would work similarly well for building complex software applications. Historians 
still argue how the consensus behind the waterfall was reached, but there is no 
doubt that it dominated the thinking of the software engineering community for 
many years.

1.4 Third Paradigm: Iterative Approach

While the waterfall model works well in home construction, in the context of soft-
ware engineering it is plagued by the problem of the volatility of requirements, which 
is a direct result of software conformity, one of the essential difficulties of software. 
As explained in section 1.1.4, software conformity requires that software reflect 
the properties of its application domain. If there is any change anywhere in the 
domain, that change is likely to trigger a corresponding change in the software. 
For example, consider a software application that calculates insurance premiums: 
Any changes in laws governing insurance, all relevant court decisions, changing 
demographics of the insured population, and everything else that has an impact on 
the calculation of premiums must be immediately reflected in the software.

Different domains have different levels of volatility. Table 1.1 is from Jones 
(1996) and shows how swiftly requirements can change. According to this table, 
“Commercial software” has a staggering monthly 3.5% of requirements change, 
which translates to approximately half of the requirements change in a year! Also, 
about 30% of the requirements for Microsoft projects change during an average 
project (Cusumano & Selby, 1997).

Table 1.1 Monthly Requirements Change

Software Type Monthly Rate of Requirements Change

Contract or outsource software 1.0%

Information systems 1.5%

Systems software 2.0%

Military software 2.0%

Commercial software 3.5%

Note: From “Strategies for Managing Requirements Creep,” by C. Jones, 1996, IEEE 
Computer, 29(6), pp. 92–94. Copyright 1996 by IEEE. Reprinted with permission.
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The volatility of the requirements is an anomaly that cannot be accommodated 
by the waterfall; if the requirements keep changing at these high rates, the design 
that is based on them must keep changing also, and all advantages of the waterfall 
disappear. It is like building a family home for mad customers who keep changing 
their mind; no blueprint lasts, walls that have been recently built have to be torn 
down and have to be erected in a different place. Unfortunately, this is the way of 
life in most software projects.

The volatility plays exactly the same role as the previously discussed anomaly of 
burning substances in early chemistry. In its consequences, it means an overhaul of 
most of the software engineering knowledge and practice. Instead of concentrat-
ing all attention on the techniques of a perfect up-front design, software engineers 
must pay attention to the techniques that allow them to keep up with the volatile 
requirements. Instead of concentrating on how to avoid software changes, they 
have to concentrate on how to live with them and how to make them less expensive 
and more manageable. Because of requirements volatility, the late software changes 
are going to happen no matter what, and software engineers have to find out how 
to deal with them.

Besides the volatility of requirements, there are other sources of volatility that 
plague software projects. There is the volatility of the technology that is used in the 
project: New computer hardware is used; a new version of the operating system or 
compiler is released; or a new version of a library becomes available. These changes 
also mean changes in the project plan, sometimes substantial.

There is also the volatility of knowledge; software engineers learn as they progress 
with the projects. They learn new things about the domain, about the algorithms 
and techniques to be used, about the technology. On the other hand, experienced 
project members leave the project, and their knowledge is lost to the project team. 
This knowledge volatility also requires adjustment of the plans.

The waterfall bears an uncomfortable resemblance to the rigid five-year plans 
of the late and ossified Soviet Union. The Soviet planners tried to stop time and 
freeze the economic plan for five years, but life went on and quickly made those 
plans obsolete. Software engineers should not emulate old Soviets; they need to 
react swiftly to changing circumstances and plan as small successful companies do. 
They must find a compromise between long-term plans and a quick reaction to the 
constantly changing circumstances in which they operate.

Iterative and evolutionary software development is the software engineers’ response 
to the volatility. Requirements constantly change, but software engineers cannot 
operate in complete chaos and cannot constantly change the marching orders. They 
have to plan. However, they have to accept the fact that their plans are temporary 
and will have to be revised when they get out of date. Instead of planning the whole 
life span, they plan for a limited amount of time, called iteration.

During iteration, the programmers take the current version of the requirements 
and prepare a plan for a limited time; then they work on the basis of that plan. After 
a certain time, they revisit the requirements, see how much they have changed in 
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the meantime, and update the plan. Iterative software development is a process that 
consists of such repeated iterations.

Software engineering is not the only human activity that needs to strike the 
balance between plan and flexibility. We have already mentioned the type of plan-
ning that occurs in small companies, where a balance between the long-term plan 
and changing outside circumstances must be found. Another example is college 
education. College studies also cannot be fully planned in all detail in advance; 
they must be divided into iterations that are called semesters. The students create 
semester plans and register for the appropriate courses. After the semester is over 
and the results—the grades—are in, students prepare the plan for the next semes-
ter. If students experience unexpected problems and setbacks, or if some courses 
were cancelled or new courses were introduced, they may take a different path than 
the path that they originally planned. This system is based on long academic expe-
rience, and it combines a very specific plan for each semester with the flexibility to 
adjust long-term direction.

The iterative approach to software engineering is based on a similar idea. This 
approach is also called an evolutionary approach, because it is capable of responding to 
the changing external circumstances, and that is a characteristic of an evolution.

1.4.1 Software Engineering Paradigms Today

In this chapter, we explained three basic paradigms of software engineering—ad 
hoc, waterfall, and iterative—and explained the revolutions that introduced them. 
During the revolutions, there have been huge and sometimes acrimonious debates 
among the adherents of competing paradigms. After all the ink has dried and all 
the arguments have been made, all three paradigms still coexist in the software 
engineering practice.

The iterative paradigm is the mainstream of today’s industrial practice, which 
could not ignore the fact of requirements volatility and had to find a way to cope 
with it, no matter what was being said in various debates, books, and papers. It 
embraced the iterative paradigm as the only workable solution. In particular, infor-
mation systems and web applications experience large volatility, and the success of 
these systems depends on how well and how fast they respond to this volatility. This 
book reflects the prevalence of the iterative paradigm in the practice, and therefore, 
most of the discussion is devoted to the techniques and tools that support it.

The waterfall paradigm still exists, but it has been relegated to the status of a 
small player; according to a recent survey, approximately 18% of managers and 
software engineers use the waterfall approach (SoftServe, 2009). We speculate that 
the waterfall is still useful in situations where there is no volatility, for example, in 
especially stable domains of some small embedded systems where software controls 
a specific mechanical device and that device is not changing. At the same time, the 
small size of the program guarantees that the volatility of the knowledge also does 
not play any role. An example of this is a washing machine that has several different 
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washing cycles, and the washing cycles are controlled by software. As long as the 
washing machine is used, the hardware and the washing cycles are the same, and 
therefore, there is no volatility of the requirements. The control program is small, 
and therefore, there is no volatility of knowledge either. The waterfall paradigm 
works in this situation as intended, and it is the most likely life-span model to be 
used. The waterfall is also used in small throwaway projects, which are discarded 
when requirements change.

The ad hoc techniques were predominant at the very beginning of software 
engineering and they never truly disappeared; they are still used today, mostly 
by solitary programmers who see themselves more as artists than engineers and 
who do not see any need for constraints that the disciplined engineering approach 
imposes on the other two paradigms. However, there are serious limits to what can 
be accomplished in this way; it would be reckless to try a large software project 
today using ad hoc techniques. The ad hoc paradigm still can be found in the areas 
of computer art or small computer games, where creativity is the highest value and 
software quality is of a lesser value.

Summary

Software is a product that has been in existence since the 1950s. Software engi-
neering is a discipline that deals with developing and evolving this product. In 
their work, software engineers face essential difficulties of complexity, invisibility, 
changeability, conformity, and discontinuity of software. In their history, they have 
worked with three different paradigms: First was the ad hoc paradigm, then the 
waterfall paradigm, and recently the iterative paradigm. The latter is the prevail-
ing paradigm of today; it is based on iterations, which are based on specific time 
periods where programmers work according to an iteration plan. The iterations end 
with an evaluation of the project progress and preparation of the plan for the next 
iteration. The other two paradigms (ad hoc, waterfall) are used today in special 
circumstances only.

Further Reading and Topics

The origin of the waterfall paradigm, which played such an important role in the 
history of software engineering, is shrouded in mystery. Some authors trace the 
beginning of waterfall to a paper by Royce (1970) but that is, strictly speaking, a 
historical mistake. Royce criticized the waterfall as something that already existed 
and was widely used in software projects, but had serious shortcomings. Royce 
proposed various improvements, but his paper cannot be presented as an origin of 
the waterfall method. It would be an interesting task for historians to trace how the 
waterfall approach started in software engineering, and how and why it became so 
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prevalent for so long. The inability of software managers to adequately plan water-
fall software projects and the social consequences of that failure are described by 
Yourdon (1999).

The history of the second software engineering revolution that introduced the 
iterative and evolutionary paradigm is discussed in a historical survey (Larman 
& Basili, 2003) that is a very useful resource for anyone who is interested in this 
particular story. The iterative paradigm was known and practiced sporadically from 
the very beginning of software engineering; it was already being used successfully 
in Project Mercury in the 1960s (Randell & Zurcher, 1968). Several high-visibility 
software projects successfully used iterative evolutionary development in the 1970s, 
among them space shuttle software that was developed from 1977 to 1980 in 17 
iterations (Madden & Rone, 1984). The first systematic expositions of the itera-
tive and evolutionary paradigm were also published in the 1970s (Basili & Turner, 
1975; Gilb, 1977). However, all these efforts faced a high level of skepticism on the 
part of the mainstream software engineering community, until the data on require-
ments volatility proved beyond a doubt the superiority of the iterative evolutionary 
paradigm in the late 1990s (Jones, 1996; Cusumano & Selby, 1997).

Some authors use the word paradigm for what we call in this book technology. 
For example, they talk about an “object-oriented paradigm,” while this book talks 
about an “object-oriented technology.” In this book, the word paradigm retains its 
original meaning as used by Thomas Kuhn (1996), as a “coherent tradition of sci-
entific (engineering) research and practice.” We make this distinction because each 
paradigm may be supported by many technologies, and a change in paradigms does 
not necessitate a change in technologies. As in the example citing the history of 
early chemistry, the technology responsible for the paradigm shift from phlogiston 
to oxygen was an increase in the accuracy of scales. Scales were introduced under 
the old paradigm and continued to be used under the new paradigm, and the para-
digm shift did not impact the use of this particular technology. The same thing is 
happening with software technologies like programming languages. They can be 
used in the context of different paradigms, and a change in the paradigm does not 
mean that old programming languages must be replaced by new ones. Although 
technologies and paradigms interact, it is a complex interaction, and they both have 
an independent history.

A history of software engineering that is characterized by two revolutions was 
published by Rajlich (2006).

Exercises

 1.1 What are the essential difficulties of software?
 1.2 Approximately when did the first software product appear?
 1.3 What was the background of the first software developers?
 1.4 Why was the discipline of software engineering established?
 1.5 Explain the stages of the waterfall and the rationale for its adoption.



History of Software Engineering ◾ 17

 1.6  Why does the waterfall work for construction and for manufacturing 
but not for software engineering?

 1.7  How long did the waterfall dominate the discipline of software 
engineering?

 1.8  How high is the approximate yearly volatility in the requirements of 
commercial software?

 1.9  When implementing a control program for a dishwasher that has fewer 
than 10 different washing cycles, what paradigm would you use? Why?

 1.10  When implementing a website with 10 different pages for a medium-size 
business, what paradigm would you use? Why?
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Chapter 2

Software Life 
Span Models

Objectives

This chapter explains the staged model of software life span. After you have read 
this chapter, you will know:

 ◾ The staged model of software life span
 ◾ The initial development stage and its role
 ◾ The software evolution stage
 ◾ The end-of-evolution stage
 ◾ Servicing, phaseout, and closedown of software
 ◾ The versioned model of staged life span
 ◾ Other life span models, including prototyping model, V-Model, and spiral 

model

***

The software life span consists of several distinct stages. In each stage, software 
needs a different kind of software engineering work, and the life span models offer 
a bird’s-eye summary of the whole software engineering discipline.

In the previous chapter, we discussed the waterfall model, which had an enor-
mous influence on the discipline of software engineering, although it did not deal 
with requirements volatility and did not fit well with the practical experience of 
most software projects. This chapter explains another model, called the staged 
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model, that reflects the iterative paradigm and fits better with the actual experi-
ence of software engineers. The “Further Reading and Topics” section lists several 
additional models.

2.1 Staged Model

Figure 2.1 presents the staged model of software life span. It consists of several 
stages that differ substantially from each other.

2.1.1 Initial Development

Initial development is the first stage that produces the first version of the software. 
During the initial development, the developers start from scratch. While imple-
menting the first version, they make several fundamental decisions. They select the 
programming languages, libraries, software tools, and other technologies that the 
project uses. These technologies will accompany software through the rest of the 
life span and will support all work in the future stages.

Another fundamental choice during the initial development is the system 
architecture, which consists of the modules of the system and their interactions. 
These modules and their interactions also accompany software throughout its life 
span, and they either facilitate or hinder the inevitable changes that occur in later 
stages. The fundamental choices of the initial development set the course for the 
whole software life span. The reversal of these initial decisions later is very expen-
sive, and often it is practically impossible. Chapter 14 contains more information 
on initial development.

Closedown

Initial 

First running

version 

Servicing 

Servicing discontinued 

Servicing patches 

Switchoff

Evolution 

Evolution changes 

End of evolution

Phaseout

Figure 2.1 Staged model of software life span.
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The resulting first version may have incomplete functionality and may not 
be ready for release to the users. If that happens, software developers postpone 
the first release and add the missing functionality during the next stage, the 
evolution.

2.1.2 Evolution

In software evolution, programmers add new capabilities and functionalities, and 
correct previous mistakes and misunderstandings. Software changes are the basic 
building blocks of software evolution, and each change introduces a new function-
ality or some other new property into software. Software evolution is an iterative 
process that consists of repeated software changes.

Software evolution requires highly skilled software engineers. They have to 
understand both the software domain and the current state of the software; with-
out this knowledge, they could not evolve the software. The software they evolve 
usually grows in both complexity and size, because this additional functionality 
requires it. It also grows in value because the new functionality better satisfies the 
customer needs.

The customers receive the results of software evolution in form of software 
releases that differ from each other in the extent of their functionality. The managers 
decide when to release, taking into account various conflicting criteria, for example, 
timeliness of the release (“time to market”), and completeness of the desired soft-
ware functionality.

Software engineers spend most of their time in software evolution, therefore, 
it is the most important topic of this book. Chapters 5–11 describe the phases 
of software change that form the foundation of software evolution; chapter 12 
describes processes of software evolution as practiced by a solo programmer; and 
chapter 13 describes processes of software evolution as practiced by programming 
teams.

2.1.3 Final Stages of Software Life Span

Software stops evolving and enters the final stages of its life span for several differ-
ent reasons. One is that software achieves stability, where there are no longer any 
large evolutionary changes requested, although infrequent minor corrections still 
may occur. Stability occurs in domains that do not have volatility, for example, 
embedded software that controls a mechanical device. The only volatility in this 
context is the volatility of the stakeholder knowledge, and once that problem is 
resolved, no further evolution is necessary.

Other domains never achieve such stability, and the volatility and the evolution 
can go on indefinitely. However, for business reasons, the managers sometimes 
decide to stop the expensive evolution, transfer software into servicing, and limit 
changes to a bare minimum.
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The software evolution may also end involuntarily, when the complexity of the 
code gets out of hand or when the software team loses the skills necessary for 
evolution. In this situation, the programmers often resort to quick and superficial 
changes that confuse and complicate software structure even further. The resulting 
confused and complicated software code is called decayed code, and it makes further 
evolution harder and harder, eventually becoming impossible.

During software servicing, the programmers no longer make major changes 
to the software, but they still make small repairs that keep the software usable. 
Software in the servicing stage has been called legacy software, aging software, or 
software in maintenance. Once software is in the servicing stage, it is very difficult 
and expensive to reverse the situation and return it back into the evolution stage. 
Reengineering is a process that reverses code decay and returns software to the stage 
of evolution, but it is an expensive and risky process. Hence, there is a large asym-
metry between the code decay that can happen unnoticed and the reengineering 
effort that tries to reverse it.

When software is not worthy of any further repairs, it enters the phaseout stage. 
Help may still be available to assist the remaining users who are still using the sys-
tem, but change requests are no longer accepted, and the users must work around 
any remaining defects.

Sometime later, the managers completely withdraw the system from produc-
tion, and this is called closedown. The data indicate that the average life span of 
large and successful software is somewhere between 10 and 20 years.

Chapter 15 describes the final stages of software life span in more detail.

2.2 Variants of Staged Model

Figure 2.1 contains the basic staged model of software life span. However, some 
software projects do not pass through all stages, but skip some of them. For 
example, unsuccessful projects terminate prematurely; some terminate even dur-
ing initial development, and they never enter evolution and the following stages. 
Other projects terminate after several iterations of evolution, but they never enter 
the servicing stage.

Pure evolutionary projects start as an extension of an existing software and evolve 
it into a new and different one; these projects skip the initial development stage and 
start directly with evolution. Small and short-lived projects may skip software evolu-
tion and go directly into servicing and consequent stages, because there is no need 
to add new functionality through evolution.

Versioned projects deal with a large customer base. Some users receive new ver-
sions as soon as they become available, but other users choose to retain their older 
versions. The older versions no longer evolve, because it would be very complicated 
and wasteful to evolve several versions in parallel. However, these old versions are 
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still serviced for some time. When bugs surface and need a fix, servicing patches are 
distributed to the users of older versions. These servicing patches fix the bugs, but 
they very rarely implement a substantial new functionality. If the users want this 
substantial new functionality, they have to buy the new version. The corresponding 
variant of the staged life span is in Figure 2.2.

Mozilla Firefox Releases

An example of software with a large customer base is the Mozilla Firefox web browser 
(Mozilla, 2011). The versions released in 2008 and 2009 are in Table 2.1 Each row represents 
a new release of the browser with security updates, bugs fixed, and other new features; the 
three columns on the right emphasize the updates of versions 2, 3, and 3.5. Versions 2 and 3 
were serviced in parallel until 12/18/2008, as highlighted in Table 2.1; on that date, version 2 
moved into phaseout stage. On 4/24/2009, version 3.5 was introduced, while version 3 was 
still being serviced.
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Figure 2.2 Versioned model of software life span.
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Table 2.1 Mozilla Firefox Releases

Date Version # 2 3 3.5

2/7/2008 2.0.0.12/ x  

2/13/2008 3.0b3/   x

3/11/2008 3.0b4/   x

3/25/2008 2.0.0.13/ x  

4/9/2008 3.0b5/   x

4/15/2008 2.0.0.14/ x  

5/15/2008 3.0rc1/   x

6/4/2008 3.0rc2/   x

6/11/2008 3.0rc3/   x

6/19/2008 3.0/   x

6/23/2008 2.0.0.15/ x  

7/11/2008 2.0.0.16/ x  

7/16/2008 3.0.1/   x

9/17/2008 2.0.0.17/ x  

9/22/2008 3.0.2/   x

10/7/2008 3.0.3/   x

11/11/2008 2.0.0.18/ x  

11/11/2008 3.0.4/   x

12/15/2008 2.0.0.19/ x  

12/15/2008 3.0.5/   x

12/18/2008 2.0.0.20/ x  

2/2/2009 3.0.6/   x

3/3/2009 3.0.7/   x

3/27/2009 3.0.8/   x

4/9/2009 3.0.9/   x

(continued)
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Summary

Life span models offer a simplified and comprehensive view of the entire software 
engineering discipline. The models differ from each other and fit more or less 
accurately with the actual software life span. The staged model consists of the 
stages of initial development that produces the first version of software, followed 
by a stage of evolution, where additional functionality is added. Software evolu-
tion stops by code stabilization, management decision, or by code decay, and the 
stage after that is called servicing, where only minor deficiencies are fixed. The 
next stage is phaseout, where even this limited servicing is discontinued, although 
some users may continue to use the software. Finally, closedown terminates the 
software life span.

Table 2.1 Mozilla Firefox Releases (continued)

Date Version # 2 3 3.5

4/24/2009 3.5b4/     x

4/27/2009 3.0.10/   x

6/7/2009 3.5b99/     x

6/10/2009 3.0.11/   x

6/16/2009 3.5rc1/     x

6/17/2009 3.5rc2/     x

6/24/2009 3.5rc3/     x

7/1/2009 3.5/     x

7/17/2009 3.5.1/     x

7/20/2009 3.0.12/   x

7/30/2009 3.5.2/     x

7/31/2009 3.0.13/   x

8/24/2009 3.5.3/     x

9/8/2009 3.0.14/   x

10/19/2009 3.5.4/     x

10/26/2009 3.0.15/   x
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Further Reading and Topics

Life span models are often called life cycle in the literature, although paradoxically 
there is no cycle in the life cycle. Perhaps an unspoken assumption is that when a 
life span of one program ends, another program will emerge and replace it. This 
assumption is, of course, very often untrue because many programs run their course 
and nothing replaces them. For example, when a software company goes out of 
business and all its products are withdrawn from the market, then there is no cycle; 
the same is true for projects that terminate prematurely during initial development. 
The term life cycle also understates the fact that it is a model, and each model is a 
simplification of the reality and may or may not correspond to what the reality truly 
is. Nevertheless, the word life cycle became prevalent, and an overwhelming number 
of authors nowadays call life span models a life cycle. Every reader of the relevant 
literature should be aware of this fact.

Belady and Lehman (1976) have documented the existence of software evo-
lution of a large software system. Later, Sneed (1989) classified software systems 
into three categories. Throwaway systems typically have a lifetime of less than two 
years and are neither evolved nor serviced. Then there are static systems that work in 
special stable domains, and their rate of change is less than 10% in a year. The rest 
are evolutionary systems that undergo substantial changes and last many years.

Using Sneed’s model, Lehner (1991) surveyed the life span of 13 business sys-
tems from Upper Austria. He found that some systems belong to the category of 
static systems with a very short evolution after the initial development and dramati-
cally decreasing servicing work, while other systems consume substantial effort over 
many years. Lehner confirmed a clear distinction between what he called “growth” 
and “saturation” that corresponds to the stages of evolution and servicing, respec-
tively. Thus, he refuted earlier opinions that the evolution and growth of software 
continues indefinitely and empirically confirmed the difference between evolution 
and servicing. These empirical observations later led to the staged model presented 
in this chapter (Rajlich & Bennett, 2000; Bennett & Rajlich, 2000).

Code decay is an important fact of software management, and there is a need 
for early warning that such decay is taking place so that the managers can take a 
timely remedial action (Eick, Graves, Karr, Marron, & Mockus, 2001). One of the 
indicators of code decay is the prevalence of replicated code, the so-called clones 
(Burd & Munro, 1997). Besides problems in the code, there could be other deeper 
reasons for code decay, such as use of obsolete technologies, or obsolete program-
ming techniques, or obsolete ways and views of how to implement the software. 
This aspect of code decay was investigated by Rajlich, Wilde, Buckellew, and Page 
(2001). The code decay makes software more and more expensive to evolve or ser-
vice, and it leads to the phaseout and closedown that ends the software life span. 
Data from Japan indicate the average life span of large software systems in various 
domains to be about 12 years (Tamai & Torimitsu, 1992).
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The literature contains many additional models of software life span. Chapter 1 
introduced the waterfall model, which has several variants that improve some of its 
aspects. The V-model is a variant of the waterfall model that is particularly popular 
in Germany and places a large emphasis on testing (Bröhl & Dröschel, 1993). It has 
two branches in the shape of the letter V: The left branch follows the waterfall from 
requirements through design and implementation; the design is divided into two 
steps: system design and unit design. When the implementation is complete, the 
testing retraces this process backwards: First, the unit tests verify the unit design; 
then system tests verify the system design; and functional tests verify the require-
ments. When testing is complete, the system is delivered to users and maintained 
as in the original waterfall (see Figure 2.3).

Another popular variant of the waterfall model is the prototyping model 
(Naumann & Jenkins, 1982), which addresses the issue of requirements elicitation. 
Often it is difficult to elicit from the future users what they really want. When the 
users see the first version of software, they often say, “But we wanted something 
different!” A software prototype is a fast and tentative implementation whose sole 
purpose is to verify the requirements and present them to the user as a provisional 
first version. After that, the prototype is thrown away and the real implementation 
starts. A picture of the prototyping life span is in Figure 2.4.

The prototyping model offers a partial answer to the problem of requirements 
volatility. It takes into account all volatility that occurred during requirements elic-
itation and prototyping, but unfortunately, volatility continues and the prototyp-
ing does not deal with this late volatility.

The spiral model emphasizes the risky nature of software projects (Boehm, 
1988). Each phase of the spiral model is preceded by a risk analysis, and a strategy is 
devised to mitigate the most serious risks. For example, if during the requirements 
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Figure 2.3 V-model of software life span.
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phase the most serious risk is the misunderstanding with the customers, a strategy 
is devised to lessen that risk, for example, by a fast production of the user interface 
prototype that can be presented to the user. If during design the most serious risk is 
the possibility of the slow response time from the system, then a strategy is devised 
to lessen that particular risk, for example, by speedy implementation of the algo-
rithms that affect the response time. Spiral life cycle focuses the attention of soft-
ware developers on the most risky part of their job, and the purpose is to increase 
the likelihood of the project’s success.

Exercises

 2.1 What are the five stages of the staged model of software life span?
 2.2  What important software properties does the initial development estab-

lish? Why are they important?
 2.3 How is software evolution different from servicing?
 2.4 How can code decay if it is not physical?
 2.5 How long on average does large software last?
 2.6  In what situation is it better to skip initial development and start soft-

ware by evolution of an already existing software?
 2.7 What are the issues that have to be addressed during software closedown?
 2.8  Why is the term life cycle misleading? Which term is more commonly 

used: life span model or life cycle?
 2.9 In what situation can the V-model of the software life span be used?
 2.10 What are the advantages and disadvantages of the prototyping model?

Prototype

Design

Corrected requirements

Requirement

Implementation

Maintenance 

Figure 2.4 Prototyping model of software life span.
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Chapter 3

Software Technologies

Objectives

In this chapter, you will review the common technologies that form the foundation 
for the rest of the book. After you have read this chapter, you will know:

 ◾ The role of programming languages and compilers in software engineering
 ◾ The role of object-oriented technology in the current software engineer-

ing practice
 ◾ The foundations of object-oriented technology: objects, classes, relationships 

of part-of and is-a, and polymorphism
 ◾ The principles of version control system

***

The prefix techno- of the word technology originates from old Greek and means 
art, skill, or craft, while the suffix -logy means method, system, or science. The 
combination of the two, hence, means a “system of an art” or a “science of a skill” 
or a similar combination. Software technologies are a mixture of skills, tools, and 
processes that programmers use while working with software.

As already mentioned in chapter 1, a technology used in a specific software 
project is an accidental property of the software. There is usually a selection of avail-
able technologies, each with its own advantages and disadvantages. The choice of 
a particular technology for a particular project depends on unique project circum-
stances. For example, people who are involved in the project have experience with 
a specific technology; therefore, this technology becomes the technology of the 
project by default. In other situations, a new technology offers superior productivity 
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and superior product quality that makes retraining of everybody on the project 
team cost effective. Programmers and managers weigh the pros and cons of various 
technologies before the software project starts.

Software technologies include programming languages in which software engi-
neers write software; the current programming languages are very often object ori-
ented, and object orientation is briefly explained in this chapter. Other examples 
of technologies that are used in software projects include the compilers, version 
control systems, libraries of reusable software parts, software tools and environ-
ments that help in software project tasks, and so forth. There are proven software 
technologies of the present, dead but historically important technologies of the 
past, and promising technologies of the future.

Software technologies are a wide topic, and this chapter presents only a very 
small subset, the bare minimum that is necessary to illustrate the later topics of this 
book. These select technologies can be considered just an illuminating example or 
accidental property of this book. Sections 3.1 and 3.2 are a survey of the prerequi-
sites of this book.

The rest of the book is applicable to other technologies that lie outside of the scope of 
this brief chapter. These other technologies still display the same fundamental proper-
ties, and that makes the rest of the book applicable to these other technologies as well.

3.1 Programming Languages and Compilers

As one of the first project decisions, programmers and their managers select the 
programming languages that are used in the software project. Programming lan-
guages are a bridge between the programmers and the computer, because they are 
understandable to programmers and, at the same time, they are executable by the 
computer. Some software projects use one programming language, while others use 
a combination of several.

Over the course of software history, a large number of programming languages 
have been created and used. Some of them were used only very briefly or within 
a small group of users, while others became widely popular and have been used 
worldwide for a long time. COBOL is the most successful programming language 
of all time and has been used in data-processing applications that handle large 
amounts of data; examples are company payrolls, banking systems, and so forth. 
Java is a programming language that is popular with academics and in web applica-
tions in recent years. C++ has been a workhorse for the projects where the software 
engineers desire a particularly close control over the computer and its resources, for 
example, in real-time applications.

Software engineers must invest a considerable effort to become proficient in a 
particular programming language. They have to learn various language subtleties 
and quirks; therefore, programming language training and retraining represents 
a significant investment. In many instances, programming teams specialize in a 
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specific programming language, and when the managers choose a team for a soft-
ware project, they choose the team’s programming language as well.

Software engineers write source code in a programming language, and comput-
ers then process and execute this source code. For the compiled languages like C++, 
the source code is divided into source files and the translation is done in two steps: 
In the first step, the compiler translates individual source code files into object files. 
In the second step, the linker links all object files into one executable file for the 
whole program. Please note that the notion object file is used just as an accident of 
history and does not have anything in common with the objects of the real world 
or the object-oriented technology that is explained later in this chapter. Other tech-
nologies, for example, interpreters, do the processing of the source code differently; 
the compiler produces bytecode that is then executed by an interpreter.

Compilers are the tools that cover the first step of translation. For the popular 
languages and popular hardware, there are usually several compilers available, and 
software engineers can choose the most appropriate one. The issue that they some-
times face is the issue of compatibility, which arises when software was written and 
translated by one compiler, but now it must be transferred to a different one. That 
happens with long-living projects where the original compilers are no longer avail-
able, or where compiler vendors produce a new compiler version.

Incompatibilities among compilers exist despite the fact that the popular pro-
gramming languages are standardized. The standards do not cover everything, and 
different compiler writers make different choices for the items that are missing in the 
standard. The other source of incompatibility is the deviation from the standards; 
the compiler writers sometimes implement subsets or supersets of the standard lan-
guage, and these omissions or extensions are also a source of incompatibility. When 
software engineers move from one version of compiler to another, they must make 
sure that the differences between the compilers do not introduce bugs; they have 
to retest the whole software thoroughly. It is a good software engineering practice 
to know which features of the programming language are likely to cause problems 
when compilers are changed, and as a precaution, to avoid using these features.

Programming languages are accompanied by reusable libraries, which are col-
lections of frequently used modules, and they usually are bundled with the com-
piler. The libraries contain ready-made functions like sine and cosine, or frequently 
used data structures like queue and stack, or elements of user interfaces like buttons 
and menus, and so forth. Programmers incorporate these modules into their source 
code, and these libraries save them a substantial effort.

The linker takes object files produced by the compiler and creates a single exe-
cutable program. The reusable libraries are usually a collection of object files, and 
they are linked into the executable file by the linker.

Each version of the project consists of the complete set of source files, object 
files, and the executable file, as depicted in Figure 3.1.
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3.2 Object-Oriented Technology

Object-oriented technology is a mainstream software technology of today, and the 
most popular current programming languages are object oriented. It uses abstrac-
tion as a technique to deal with the complexity of the programs. This abstraction is 
done in two steps: First, there are software objects that share the select properties 
with their counterparts in the real world, and then there are classes that share the 
properties of similar objects.

3.2.1 Objects

Objects in software represent the objects of the real world. For example, in banking 
programs, the application domain contains customers and their accounts; there-
fore, the program will also contain customers and accounts as objects. Objects 
of the domain have properties: An account has a balance, and a customer has a 
name; therefore, the corresponding software objects have the same properties. 
These properties are called the attributes of the object. Also, the domain objects 
perform certain actions, like customers depositing and withdrawing money from 
their accounts, and the corresponding software objects perform the same actions; 
they are called object functions or object methods.

There are advantages in using objects as an organizing principle of programs. 
Everybody who understands the domain and its objects can understand the soft-
ware objects; therefore, they can understand how the object-oriented program 
is organized.

Another advantage of objects is in the fact that objects present themselves to the 
outside as being simpler than they truly are. This property is called information hid-

ing. The objects hide complicated and messy details inside, while to the outside they 
present a clean and simple interface. As a result, the interactions between objects are 
simpler, helping again with the comprehension of software.

Linker

…Source file 1 Source file 2 Source file N

Object file 1 Object file 2 Object file N…

Compiler

Libraries

Executable file

Figure 3.1 Code of a version of a software project that uses compiled language.
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A real-life example of information hiding is a cook, who takes several neatly 
wrapped ingredients like meat, flour, spice, and salt, and then disappears behind 
the kitchen door. After a while, the cook emerges from the kitchen with an ele-
gantly arranged plate of a tasty meal. The kitchen with its table, stove, sink, refrig-
erator, grinder, mixer, garbage can, and other devices is hidden from sight, and the 
customers only see neatly wrapped ingredients going in and tasty meals going out.

A more software-oriented example is an object that stores phone numbers. 
When it receives a name or nickname, it returns the phone number. The func-
tionality visible from the outside is simple: Name goes in, phone number goes out. 
However, there is a complicated functionality inside that deals with ambiguous or 
misspelled names, converts cleaned-up names into a key, searches the databases for 
the key and retrieves the record, extracts the phone number from the record, and 
then returns it.

3.2.2 Classes

Classes are modules of the source code that define the properties of several objects. 
For example, there may be banking customers Jacob and Joseph, and each of them 
owns one account at a bank, and they deposit and withdraw money from the 
account. They both also have a name and an address. In the banking application, 
there will be two objects, jacob and joseph, and they both will belong to the 
same class Customer. The class Customer implements all attributes and func-
tions that jacob and joseph share. The functions implemented by classes are 
sometimes called class methods; both class attributes and class methods are called 
class members.

In a generic object-oriented language, a declaration of class Customer gener-
ally looks like this:

class Customer

 {

 // methods

 public:

  open_account();

  deposit(int deposit_amount);

  withdraw(int withdrawal_amount);

 // attributes

 private:

  String name;

  String address;

  int account_number;

  int balance = 0;

 };
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The attribute name contains the customer’s name, address contains the cus-
tomer’s address, account _ number contains the identification number of the 
customer’s account, and balance contains the balance in the account; when the 
account is created, the balance is originally set to $0. The method deposit(int 
deposit _ amount) deposits the specified amount to the customer’s account, 
and the method withdraw(int withdrawal _ amount) withdraws the 
amount specified from the customer’s account. Opening the account is handled by 
the method open _ account(). The keyword public means that the follow-
ing class members are visible from outside of the class, while the keyword pri-
vate means that the class members are invisible from the outside and can be used 
only inside of the class. This control over the visibility of the class members imple-
ments information hiding that provides a simpler interface to the outside and keeps 
the complex details inside.

In the program, objects are declared in the following way:

 Customer jacob, joseph;

Once objects jacob and joseph exist, they can perform various methods that 
class Customer provides. For example, consider the following code segment:

 jacob.open_account();
 jacob.deposit(100);
 jacob.withdraw(10);

In this code segment, customer Jacob first opens an account, then depos-
its $100 to this account, and finally withdraws $10 from the account. This 
code segment uses only the public data members. It is easy to comprehend and 
illustrates that a well-written object-oriented code with well-chosen names has 
self-documenting properties that help the programmers to write, read, and com-
prehend it.

Coding conventions facilitate this understanding. Traditionally, class names 
are nouns and start with an uppercase letter, while object and attribute names are 
nouns that start with a lowercase letter. Method names are usually verbs. It is very 
important to choose meaningful names for classes, class members, and objects. 
Whenever classes and objects correspond to classes and objects of the program 
domain, the names from the program domain should be used. Ambiguous names 
or names that are too general should be avoided. For example, if the class represents 
a banking customer, its name should be Customer rather than the less specific 
Person, in order to help the understanding.

If there is a need to use more than one word in naming a class or object or class 
member, composite names are used; the composites either capitalize second and 
following words, the so-called camelCase, as in

 firstCustomerWithdrawal
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or separate the words by underscore, as in

 first_customer_withdrawal

Consistent rules on how names are created is an important early project deci-
sion that should be made before the project starts and should be used consistently 
by all programmers through the whole duration of the project. This will make the 
reading of the code easier and it will help future software evolution.

3.2.3 Part-Of Relationship

In the real world, some objects are made of other objects. For example, a car con-
sists of wheels, engine, hood, and so forth. We say that the car is a composite, and 
the wheels, engine, and hood are the components. The relationship of a car and a 
hood is called a part-of relationship because, in our everyday language, we can say: 
“a hood is part of a car.”

In object-oriented technology, composite classes have attributes that are of the 
type of component classes. Consider, for example, a small store where inventory is 
part of the store:

class Store

 {

 private:

  Inventory inv;

 };

Thus we say that class Store has a component Inventory, or that Inventory is 
a part of Store.

3.2.4 Is-A Relationship

In the real world, some classes are more general than other classes. For example, 
class “Person” is a more general class than class “Bank customer” because each bank 
customer is a person, while there are persons who are not bank customers. The rela-
tionship of a bank customer and person is called an is-a relationship because, in our 
everyday language, we say, “A bank customer is a person.”

The same is-a relation is also a part of object-oriented technology and is called a rela-
tionship of inheritance. It is based on the observation that some classes share common 
members. For example, both the banking customers and banking tellers share a name 
and an address. When such situations appear, the programmers use inheritance.

Inheritance is a relation between two classes: one called base class or superclass 
that defines the base type and the other called derived class or subclass that defines the 
derived type. The base class defines class members that are shared among all derived 
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classes, while derived classes contain members that are specific to that particular 
class. An example of base class and derived class is the following:

class Person
 {
 private:
  String name;
  String address;
 };
class Customer: public Person
 {
 public:
  open_account(int account_number);
  deposit(int deposit_amount);
  withdraw(int withdrawal_amount);
 private:
  int account_number;
 };

Another example of inheritance is geometric two-dimensional shapes, like a 
rectangle, triangle, circle, and so forth. The data that all shapes share is a location 
of the shape in the drawing canvas, given by two coordinates (see Figure 3.2). The 
shape can be moved to a different location in the canvas by a method that changes 
this location. These shared data and methods are a part of the base class Shape:

class Shape
 {
 public:
  move(int new_x, new_y);
 private:
  int x,y;
 };

(1, 4)

(2, 2)

(10, 4)

Figure 3.2 Figures in a drawing canvas.



Software Technologies ◾ 39

The figures then inherit both the coordinates x and y, and the method move. 
An example is a rectangle of the following definition:

class Rectangle: public Shape
 {
 public:
  draw(int x, int y, int width, int height);
 private:
  int width,height;
 };

In this example, class Rectangle inherits from class Shape the variables 
x and y, that determine the position of the lower left corner of the rectangle on 
the canvas, and the method move that moves the rectangle to a different location 
with a different location of the lower left corner. Moreover, the class contains two 
additional data parameters, width and height, that determine the size of the 
rectangle, and the method draw that draws a rectangle of the specified width and 
height at the location given by coordinates x and y.

3.2.5 Polymorphism

Polymorphism is a construct of object-oriented technology that allows the use of 
a derived type in the place of the base type, for example, in a variable declaration, 
function parameter, and so forth. A way to view polymorphism is to see it as an 
implicit switch statement. The programmers write the code where the base type 
appears in the source code, but the implicit switch checks which actual derived 
object is being invoked, and based on that, it takes the appropriate action that 
belongs to the derived type. This implicit switch works during run time, since the 
compiler usually cannot decide which derived type will be used. The derived type 
will be decided during run time, and the mechanism that supports it is called late 
binding or dynamic binding.

In C++, the polymorphism is expressed with the help of pointers and virtual 
methods. Virtual methods are present in the base class, but when virtual methods 
are called and the object that calls it is of the derived type, then the derived type’s 
method is called instead of the base type’s method.

The following example deals with farm animals (base type) and cows and sheep 
(derived types). The base class has a virtual method makeSound(), but when that 
method is called, cows and sheep make different sounds:

class FarmAnimal
 {
 public:
  virtual void makeSound() {}
 };
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class Cow : public FarmAnimal
 {
 public:
  void makeSound() {cout<<” Moo-oo-oo”;}
 };
class Sheep : public FarmAnimal
 {
 public:
  void makeSound() {cout<<” Be-e-e”;}
 };

The classes are used in the following code fragment, which describes a farm 
with three animals:

 FarmAnimal* ourAnimal[3];
 ourAnimal[0] = new Cow;
 ourAnimal[1] = new Sheep;
 ourAnimal[2] = new Cow;
 for(int i = 0; i < 3; i++)
 {
  ourAnimal[i] -> makeSound();
 };

This code fragment will print out Moo-oo-oo Be-e-e Moo-oo-oo; in the 
loop body, when a cow is the animal, cow’s makeSound() is called, while when 
a sheep is the animal, sheep’s makeSound() is called.

3.3 Version Control System

A version control system is a tool that supports project versions and collaboration in 
the programming team. Each project consists of multiple source files, object files, 
and executable files. Each of these files has multiple versions that differ from each 
other by the changes that the programmers made during the stages of software 
evolution or servicing. Keeping the order among these files while the programmers 
work on them is a challenge. A version control system helps programmers to keep 
up with that challenge by maintaining the repository in which all project files are 
stored and can be retrieved on demand.

The most important project version is the baseline: It is the current version 
of the project, and it is the center of the activities of the team. The baseline 
consists of a specific version of all source files, object files, and the version’s 
executable file. The software engineers are making parallel changes in the vari-
ous files of the baseline, and when these changes have been completed, the 
new version will be produced by a build process that compiles, links, and tests 
these newest versions and produces the new baseline. This process requires a 
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considerable level of cooperation so that the team members do not hinder each 
other’s progress or destroy each other’s work, and a version control system sup-
ports such cooperation.

While the repository is stored on a central server for the whole team, individual 
team members have a private workspace: the disc space on their computer. They can 
download the files of the current baseline and modify them. After the modifica-
tions, they test them in their private workspace, and if everything is all right, they 
return them back to the repository, as shown in Figure 3.3. Then the team performs 
a build and creates a new baseline that consists of the newly updated files and also 
contains the old files of the previous baseline that have not been updated.

3.3.1 Commit

Version control systems help programmers prevent conflicts where two program-
mers update the same code in two different ways at the same time. This is accom-
plished in two different ways. An older way is based on the ideas of checkout. The 
programmer can copy any file from the repository in two different ways: as read 
only, or as a file that will be updated. If the programmer copies a file from the 
repository in order to update it, nobody else will be able to do the same until the 
programmer returns the file back to the repository; returning an updated file is 

Checkout

Commit

Server

Version control system repository

Checkout

Checkout

Commit

Commit

Figure 3.3 Version control system.
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called a commit. It is analogous to checking a book out of the library; a customer 
checks out a book and that book is not available to anybody else until the program-
mer returns the book. Only then can it be checked out by a different customer. 
Of course, if the book is already checked out, the customer has to wait until it is 
returned. The idea of file checkouts protects the programmers from the situation 
where two of them update the same file in two different ways.

The disadvantage of checkouts is that, very often, programmers have to wait 
for each other to complete their tasks; laggards who keep the files checked out for 
a long time are a particular annoyance to the others, exactly like library customers 
who keep the books for an excessively long time. For that reason, new version con-
trol systems are based on a different idea: They allow several programmers to work 
on the same file, then identify what the programmers actually changed, and then 
produce a new file that has the changes from all programmers in it.

There are two software tools that support that process: The tool diff identifies 
differences between two files and produces a patch file that contains a list of changes 
that are needed to turn the first file into the second one. The other tool is tool merge 
that takes an original file and a corresponding patch file and makes all the changes 
that the patch files requests.

In the simplest process, the commit works in the following way: A programmer 
checks out the latest version of file X, edits it and makes all necessary changes, and then 
commits the modified file X to the repository. The commit is usually done with a help of 
the diff tool. It produces a patch that identifies what changes the programmer made in 
the file by comparing the modified file X against the original file in the repository. After 
that, the merge tool merges the changes into the old file and thus creates the new file.

If two programmers, programmer A and programmer B, update the same file 
X in parallel and each of them changes a different part of the file X, then both 
changes are committed without a problem. However if the second programmer 
B changes something in the file X that the first programmer A also changed, the 
version control system does not allow the second programmer B to commit. If that 
happens, the second programmer B has several options. The easiest one is to undo 
some changes to stay away from the areas that the first programmer A changed, 
and then to commit. If that is not possible, then another more arduous option is to 
restart with the file that was modified by programmer A and redo the changes in 
this modified file again, and then commit.

Finally, the last option is to convince programmer A to undo the changes that 
stand in the way of the changes done by programmer B. This last option is taken 
usually when changes by programmer A are smaller or less significant than the 
changes made by programmer B. This last option, of course, requires collaboration 
and the good will of both programmers; the programmers must avoid misunder-
standings and hard feelings that can arise during this process. Fortunately, this last 
option is relatively rarely used, and that allows this process to be used successfully 
by most teams.
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3.3.2 Build

After the programmers of the team have committed their updated files, it is time 
to create the new baseline by the build process. During the build, the programmers 
compile all files, link them together, and then create and test the new version. If 
everything goes smoothly, the build creates a new baseline that will be used from 
then on.

For large systems, the build can take a long time and may require overnight 
work. The programmers have a deadline by which they must commit, and if they 
miss the deadline, the build process starts without their updates. The updates have 
to wait until the new deadline and the next baseline.

This process sometimes produces infamous broken builds; if a programmer, 
Fred, committed buggy code and the new baseline cannot be created by the 
build, then this situation creates an emergency because the progress of the project 
is now threatened. If the team identifies Fred’s commit early in the build process 
as a culprit, it may reject Fred’s commit and restart the build. However, in the 
worst case, the whole build process has to be abandoned and the team has to 
return to the old baseline because the new baseline was not created or is unus-
able. For large teams and projects, this can be a considerable expense. Needless 
to say, breaking a build does not enhance Fred’s reputation within the team or 
with the management.

If a project does such builds rarely, there is a larger accumulation of work to 
be processed by the build, and that makes the expense of a broken build larger. 
Moreover, it increases the risk that something will go wrong and result in a broken 
build. Because of this, some authors advocate frequent builds, even several times 
a day.

Even when a build is successful, it still may represent a step in the wrong direc-
tion, where the software before the changes was better than the software after. In 
this situation, the repository allows retrieving older baselines and restarting the 
project from one of them. Hence, the repository provides the option of a large proj-
ect “undo” where it is possible to roll back to some earlier baseline.

Summary

Software technologies are accidental properties of the software projects. Very often, 
the projects can choose from several competing technologies. Programming lan-
guages, their compilers, and libraries are one class of such technologies, and they 
support the coding on the project. Object-oriented technology presently occupies a 
central stage among software technologies. It gives programmers effective tools to 
express their intent, and many current programming languages use object orienta-
tion as a conceptual foundation. It deals with software objects that simulate objects 
of the real world. It also deals with classes and relationships among the classes that 
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include part-of and is-a relationships. Polymorphism is a special feature of object 
orientation that allows substituting a derived type for the base type in situations 
where this action is appropriate.

Version control system tools are another class of technologies that support col-
laboration on the project. They support a central repository of project files and 
commits of updated files by the programmers. Version control system tools also 
support resolution of the conflicts created when two programmers update the same 
file in contradictory ways.

Further Reading and Topics

The software projects of today use a wide range of diverse technologies, and this 
brief survey addresses only a very few of them. Interested readers can find more 
about programming languages in the work of Sebesta (2009) and about compil-
ers in a work by Wilhelm and Maurer (1995). Numerous books deal with object-
oriented technology. The part-of relation that we used in this chapter is a special 
case of a more general has-a relation that is discussed, for example, by Booch et 
al. (2007). A more sophisticated use of class relationships than the ones presented 
in this chapter is explored in Design Patterns by Gamma, Helm, Johnson, and 
Vlissides (1995).

One popular approach divides programs into tiers, where each tier plays a dif-
ferent specialized role. Three tiers in particular stand out, and the corresponding 
program organization is called three-tier architecture. A presentation tier implements 
the communication of the program with the environment. In interactive programs, 
the user interacts with the program through the presentation tier, which is called 
a graphical user interface, or GUI. The next tier is the algorithmic or business logic 
tier, where the program does all its computations. Finally, there is the data tier that 
stores all relevant data. For example, in a point-of-sale program, the GUI supports 
the menus that the cashier or store manager can use to select the particular program 
features, the algorithmic tier supports calculations of sales tax and other similar 
algorithms, and the data tier keeps the inventory, cashier records, and so forth.

Programmers often use different technology for each of the three tiers. The 
mainstream programming languages like C++ or Java support the algorithmic tier. 
GUI technologies support the creation of the presentation tier (Dix, Finlay, Abowd, 
& Beale, 2004; Shneiderman, Plaisant, Cohen, & Jacobs, 2009). Databases also 
have a selection of available technologies (Teorey, Lightstone, Nadeau, & Jagadish, 
2005). For historical reasons, these technologies are considered separate academic 
disciplines, covered in separate textbooks and taught in separate courses. However, 
all tiers are parts of the same software projects, and the programmers have to be 
fluent with the technologies for all tiers.

Version control system systems are described by Tichy (1995) and by Pilato, 
Collins-Sussman, and Fitzpatrick (2008).
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The Hype Cycle

Innovators are the first people to adopt a brand-new technology, sometimes at a considerable 
risk. Some observers noticed a fickle behavior of the innovators and described it by the so-called 
hype cycle (Fenn and Linden 2005).

The hype cycle starts with a technology trigger when a new technology appears on the scene. 
The technology trigger is often accompanied by hyped up publicity in mass media that extols 
the advantages of the new technology and glosses over the drawbacks and unfinished issues. 
Some naïve innovators buy into these excessive expectations, and the popularity of the technol-
ogy soars until it reaches a peak of inflated expectations. However, at this point, many innova-
tors realize that the path to maturity of the technology is much more arduous than originally 
expected, and they become disillusioned and abandon the technology. The popularity of the 
technology sinks to what is called a trough of disillusionment. Only the hardiest of the innovators 
are willing to stick with the technology through this time. However, if the technology has a true 
potential and is more than empty hype, it starts a steady growth from this point and ultimately 
delivers on its promise.

As noted by Fenn and Linden (2005), the peak of inflated expectations in 2005 was occu-
pied by Intelligent Agents, while the trough of disillusionment was occupied by Handwriting 
Recognition. Object-oriented technology was beyond these ups and downs and occupied a spot 
with the steady growth in popularity.

New technologies continually appear in software engineering, but the 
introduction of new technologies into practice is a protracted process (Rogers, 
1995; Pfleeger & Menezes, 2000). At the very beginning, the technology is 
unproven, and very few people can use it effectively; the innovators are the 
first group of users who are willing to assume the risks and use an unproven 
technology in their projects. Early adopters are the next group that draws on 
innovators’ experience. Majority adopters accept the new technology when its 
advantages are proven and well understood. Late adopters accept the technol-
ogy when there is no longer any significant doubt about the technology’s supe-
riority. Finally, laggards join in when they have no other option, when not 
using the now well-established technology is risky and can leave them behind. 
An important milestone in this process is the moment when the technology 
reaches majority adopters. There can be a substantial time lag before a tech-
nology reaches that point; in some instances, it may take more than 10 years 
(Redwine Jr. & Riddle, 1985).

Exercises

 3.1  In compiled languages, what are the steps programmers have to make to 
create an executable file?

 3.2 Are program libraries used in the form of source file or object file? Why?
 3.3 What is the role of version control system in software projects?
 3.4 Explain what a baseline is.
 3.5  How does the program version in the private workspace differ from the 

baseline?
 3.6 Let there be two files that contain the following code:
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  foo()
   {
   j = 1;
   k = 2;
   }

   and

  foo()
   {
   j = 1;
   k = 3;
   }

  What information does diff tool produce after reading these two files?
 3.7 What does merge tool do?
 3.8  What is the conf lict between two updates of a file? How does it arise 

and how is it resolved?
 3.9 What is the build and what is the result of a build?
 3.10  Write a class that supports course grading; it contains an array where 

each student is identified by an integer and has a course grade. There 
is also a method that can change the student grade and a method that 
computes the grade point average for the class.

 3.11 What is three-tier architecture?
 3.12 How long does it typically take a technology to reach majority adopters?
 3.13 What is inheritance in object-oriented technology? Give an example.
 3.14 What is the difference between an object and a class in OO technology?
 3.15  Describe the role of polymorphism in object-oriented technology. Give 

an example.
 3.16 Describe the role of “information hiding” in program comprehension.
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Chapter 4

Software Models

Objectives

In this chapter, you will learn about software models. Software models present a 
simplified view of software that concentrates on the important issues and omits 
the clutter that complicates our understanding; they are useful tools that help pro-
grammers to deal with software complexity. After you have read this chapter, you 
will know:

 ◾ The software models that are used in the context of software design, analysis, 
and architecture

 ◾ UML class and activity diagrams
 ◾ Class dependency graphs
 ◾ Contracts among suppliers and clients, preconditions, and postconditions

***

Software engineers create models in different contexts. One class of models is cre-
ated up-front, before the software implementation starts. The up-front models are 
called designs, and they capture the main characteristics of the future program. 
They give software engineers a first glimpse of what is to be done, identify the 
potential risks and the hurdles of the project, and suggest how to plan the time and 
resources of the project.

Another class of models is extracted models, which are used when software 
already exists and software engineers need to analyze its properties. To simplify 
the analysis, the models ignore the details that are not needed in the given context. 
Different questions about the same system may require different extracted models.
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Finally, there are prescriptive models that also correspond to the existing 
program and its code, and they are equivalent to a set of rules that have to 
be observed during the software evolution. Software engineers must guarantee 
that the model remains valid even after they make changes in the code. These 
prescriptive models define constraints that have to be preserved during the evolu-
tion; an example is a constraint that allows only several special classes to have 
access to the database. No other class may gain this access through an inadver-
tent update.

Models can be useful if they reflect correctly the important properties of the 
software, but they can also be misleading. The key to successful modeling is always 
to understand which details are essential and which ones are insignificant. The 
essential details have to be retained by the model, otherwise the model loses its 
validity and gives the wrong answer to the question asked by the modeler. For 
example, some up-front designs may miss features that are crucial for the success 
of the project, thereby presenting a simplistic view of the system that sweeps some 
significant problems under the rug, and will not help the developers. This danger is 
common to all modeling efforts in all technical or scientific fields, and led statisti-
cian George Box to quip, “All models are wrong, but some are useful.”

4.1 UML Class Diagrams

One of the most popular modeling tools for software systems is the Unified 

Modeling Language (UML). UML is a visual modeling language that describes vari-
ous aspects of the software system; the visual aspect helps in the comprehension of 
the models. The current version, UML 2, consists of 13 different types of diagrams 
that belong to two groups: structure diagrams that model the static structure of the 
software system and behavior diagrams that model system behavior or the behavior 
of software users. An example of a structure diagram is a class diagram, and an 
example of a behavior diagram is an activity diagram. Small subsets of these two 
diagrams are explained in this chapter. However, because of the huge popularity 
and impact of UML, it is recommended that the readers not limit their knowledge 
to just this subset, but instead acquire a more complete knowledge of UML beyond 
what is used in this book.

UML class diagrams model the classes of the system and their relations. They 
can be used on different levels of precision and completeness. They are so general 
that they can be used in the modeling of systems that use widely different technolo-
gies, ranging from object-oriented programs to relational databases. This book uses 
UML class diagrams as a graphical representation of object-oriented programs.
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4.1.1 Class Diagram Basics

Each class is represented as a rectangle with three compartments. In the left 
part of Figure 4.1, only the name of the class is filled in. If more details about 
the class are desired, all three compartments can be filled in, as shown in 
the right part of Figure 4.1. The top compartment contains the class name 
Inventory, the middle compartment contains the class attributes, which are 
implemented in object-oriented languages as class data members. In Figure 4.1, 
there is one data member i of the type int. The bottom compartment contains 
the operations, which are implemented in object-oriented languages as methods. 
In Figure 4.1, there is one method update(). The sign “−” means that the 
class member is private and invisible from the outside, while the sign “+” means 
that the class member is public. Class Inventory of Figure 4.1 represents the 
following class:

class Inventory

 {

 public:

  void update();

  ...

 private

  int i;

  ...

 };

Classes relate to each other by associations that are graphically represented 
by lines. In Figure 4.2, there is an association between classes Store and 
Inventory. The presence of an association between two classes means that 
there is some relationship between them. There is also a more specific association 
between classes Item and Price, with one-way navigation symbolized by an 
arrow; it means that class Item has access to the public members of class Price, 
but not the other way around.

Some class diagrams describe the relationship between two classes more spe-
cifically. Figure 4.3 contains two classes and an association between them that is 
adorned by a black diamond. This represents a part-of or composite-component 
relationship that was discussed in section 3.2.3 and was described by the following 
code fragment:

+update()

Inventory

–i : int

Store

Figure 4.1 UML representations of a class.
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class Store
 {
 ...
 Private:
  Inventory inv;
 ...
 };

Similarly, the is-a relationship (or inheritance) that was discussed in section 
3.2.4 is denoted by an empty triangle that points from the more specific to the more 
general class, as depicted in Figure 4.4. The corresponding code fragment is

+update()

–i : int

InventoryStore

Item Price

Figure 4.2 Association

Store Inventory

Figure 4.3 Part-of relationship between classes.

Person

Customer

Figure 4.4 Is-a relationship between classes.
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class Customer: public Person
 {
 ...
 };

UML class diagrams do not make a distinction between an is-a relationship with 
or without polymorphism. Figure 4.5 contains an example that can be described by 
the following code from chapter 3:

class FarmAnimal
 {
 ...
 };
class Cow : public FarmAnimal
 {
 ...
 };
class Sheep : public FarmAnimal
 {
 ...
 };

UML class diagrams may have a number of additional properties, but this 
subset is sufficient for the models that are used in this book. An example of a 
class diagram of a small application is in Figure 4.6. It omits class attributes 
and methods and represents only classes of the program and their is-a and part-
of associations.

Figure 4.7 presents an even more abstract UML class model of the same pro-
gram that omits composite-component adornments, and the inheritance is the only 
adornment that the figure retains. The reader must guess that the associations in 
Figure 4.7 are in reality part-of and that the composite-component associations 
are mostly top down or from the center out, but there can be exceptions. This 

FarmAnimal

Cow Sheep

Figure 4.5 Is-a relationship of multiple classes.
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figure illustrates a general rule that UML class diagrams are allowed to miss some 
information: Such a diagram is not incorrect; it is only more abstract. However, for 
many tasks, the missing information is of crucial importance, and the practice of 
ignoring the composite-component adornments is not recommended.

UML class diagrams have an advantage in that both programmers and the users 
easily understand them, and they can serve as a means of communication between 
these two stakeholder groups. They are widely used and serve as a default modeling 
tool whenever there is a need to capture the static relations among the modules of 
the software.

4.2 UML Activity Diagrams

Activity diagrams are another widely used type of UML diagrams. Activity dia-
grams model dynamic aspects of programs; they model the activities and decom-
pose them into smaller units called actions. The activities describe the work of 
computers, human users, human-computer combinations, controlled systems, and 
so forth.

InventoryStoreCashiers

CashierRecord

Session Sale Item

Payment SaleLineItem Price

PromoPriceChargeCheckCash

Figure 4.6 UML class diagram of point-of-sale application.
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Activity diagrams contain several different types of nodes. Among them, action 
nodes represent atomic units of work. Actions follow each other in a certain order, and 
that order is defined by control flow. The control flow starts at the initial node, which is 
denoted by a black circle, and ends at the final node that has the shape of a target, which 
is a white circle with a black concentric circle inside (see an example in Figure 4.8).

Another part of activity diagrams are decisions. Decisions have several output 
edges, and only one of them is traversed after the decision is reached and evaluated. 
The different branches are then merged in merge nodes. An example is shown in 
Figure 4.9.

Sometimes the actions take place in parallel. This is described by a combination 
of a fork and join, both represented by a fat horizontal line (see Figure 4.10). Actions 
that follow fork run in parallel, and join means that when all previous parallel 
actions have finished, the action that follows join takes place.

Activity diagrams can also contain swim lanes. Swim lanes are used when there 
are several actors present that jointly perform the activity. The actions of each actor 
are grouped into a single swim lane. Figure 4.11 is an example of an activity dia-
gram with swim lanes.

StoreCashiers

CashierRecord

Session

Inventory

Item

Price

Promo Price

Sale

Sale LineItemPayment

Cash Check Charge

Figure 4.7 UML class diagram of point-of-sale application with missing compos-
ite-component adornments.
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Find key

Unlock door

Enter

Figure 4.8 Example of an activity diagram.

Toss coin

You loseYou win

[Head]

Check result

[Tail]

Figure 4.9 Decision and merge nodes.
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Announce midterm

Prepare midterm questions Study for midterm

Take midterm

Figure 4.10 Fork and join activities representing parallel actions.

Create midterm

Grade midterm

Read graded midterm

Take midterm

Instructor Student

Figure 4.11 Midterm process: example of swim lanes.
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4.3 Class Dependency Graphs and Contracts

Besides UML class diagrams, there are other class models that differ from class 
diagrams in seemingly small but significant details. Class dependency graphs are 
one such model.

An important notion in the context of software modules and especially object-
oriented classes is the notion of responsibility (sometimes called functionality). 
Each module (class) in the program plays a certain unique role, or in other words, 
assumes a certain responsibility. For example, the class Item in the point-of-sale 
program is responsible for items sold in the store. It implements their properties and 
everything that may change these properties, like additions of new kinds of items to 
the store, selling and ordering the items, a track record of the customer complaints 
about the item, and so forth.

Sometimes a class cannot handle all expected responsibility, and it asks other 
classes, the suppliers, for help. For example, class Item has a supplier class Price 
that assumes the responsibility for price of the item, including price changes and 
sale prices on certain dates, and so forth. Class Item asks this supplier class Price 
for help whenever the issue of the price comes up. The opposite of suppliers is cli-
ents; for example, clients of class Item are all the classes that depend on Item for 
help with their responsibilities. In general, class A depends on class B if class B is a 
supplier of class A (and that means that class A is a client of class B). We call it a 
dependency between A and B and denote it by a couple, <A,B>.

A class dependency graph is a directed graph where nodes are all classes of the 
program and edges are all dependencies. Figure 4.12 contains a graphical notation 
for a dependency graph of the same program that is represented by a UML class 
diagram in Figure 4.6. The notation uses the same symbols for classes as the UML 
class diagram and uses broken arrows for dependencies. Examples of dependencies 
are the following: If there is a part-of relation between classes A and B, there is also 
a dependency <A,B>. If there is a nonpolymorphic inheritance of X from Y, then 
<X,Y> is a dependency. If there is a polymorphic inheritance between X and Y, 
then both <X,Y> and <Y,X> are dependencies. Additional dependencies among the 
classes are discussed in the literature that is listed in the “Further Reading” section.

Since both UML class diagrams and dependency graphs are similar, software 
engineers sometimes use the more popular UML class diagrams in the style of 
Figure 4.6, or an even less accurate UML class diagram in the style of Figure 4.7, 
in situations where class dependency graphs are more appropriate. However, in 
that case, they should make sure that they correctly translate the associations of 
Figure 4.6 or Figure 4.7 into the dependencies.

The concept of suppliers and clients extends to their respective transitive clo-
sures. The supplier slice is the set of all suppliers, suppliers of suppliers, and so forth. 
As an example, for class Item in Figure 4.12, the supplier slice is S(Item) = 
{Item, Price, PromoPrice, SaleLineItem} (see Figure 4.13). The cli-
ent slice is complementary to the supplier slice, and it is the set of all clients, clients 
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StoreCashiers

CashierRecord

Session

Inventory

Item

Price

PromoPrice

Sale

SaleLineItemPayment

Cash Check Charge

Figure 4.12 Dependency graph of point-of-sale application.

StoreCashiers

CashierRecord

Session

Inventory

Item

Price

PromoPrice

Sale

SaleLineItemPayment

Cash Check Charge

Figure 4.13 Supplier slice of class Item.
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of clients, and so forth. As an example, for a program represented by the depen-
dency graph of Figure 4.14, the client slice is C(Item) = {Item, Inventory, 
Store}.

For the readers who like the formal definitions, let G = (C,D) be a dependency 
graph, that is, a directed graph where C is the set of classes and D is a set of depen-
dencies. For class A ∈ C, the supplier slice is S(A) = {X | X = A or there is a depen-
dency <Y, X> ∈ D such that Y ∈ S(A)}. The client slice is C(A) = {X | X = A or there 
is a dependency <X,Y> ∈ D such that Y ∈ C(A)}.

Bottom classes of the program are classes that do not have any suppliers, and top 
classes are the classes that do not have any clients. The program code that a cus-
tomer uses always has just one top class where the execution of the program starts. 
However, programmers working on a project sometimes develop a code that has 
several top classes, each supporting a different variant of the program; some of them 
are the variants that are used for testing.

A class assumes two separate responsibilities. Alone and unaided, the class 
assumes the local responsibility, while the whole supplier slice assumes the combined 
responsibility. As mentioned earlier, the class itself may be unable to implement 
everything that is expected from it by the clients. In that case, it delegates some 
of the responsibilities to the suppliers. In the example of Figure 4.13, class Item 
assumes some responsibility on its own, but it delegates some of it to classes Price, 

StoreCashiers

CashierRecord

Session

Inventory

Item

Price

PromoPrice

Sale

SaleLineItemPayment

Cash Check Charge

Figure 4.14 Client slice of class Item.
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PromoPrice, and SaleLineItem; the client Inventory receives all this 
combined responsibility without distinguishing what class Item does on its own 
and what it delegates to the classes of the supplier slice.

Combined responsibilities are sometimes expressed by contracts between a class 
and its clients. If clients request something, then they have to make the request 
within reasonable bounds; for example, they cannot request properties of items 
that the store does not sell. These bounds are described by the precondition that the 
clients must guarantee. If the precondition is satisfied, the class fulfills its respon-
sibility and takes the expected action; the results of the action are described by the 
postcondition. The following are examples of contracts:

Precondition: A nonempty list of student names and grades; postcondition: the 
grade point average

Precondition: A valid checking account number, the amount A to be withdrawn, 
and the current balance in the account is greater than A; postcondition: the 
printed check, the new balance in the account

Precondition: A nonempty list of the festival events and their descriptions, ordered 
by the time of their beginning; postcondition: printout of the last event

Depending on the circumstances, the contracts are described with different lev-
els of formality and precision. The highest precision is achieved when the contracts 
are described by formal logic or special assertion language. An informal descrip-
tion of the contracts is done in plain English, as in the previous examples. A com-
mon, although not recommended, practice is that the contracts are only tacit, not 
recorded anywhere, and all programmers who deal with the class must rediscover 
them on their own; this situation may lead to misunderstandings and errors.

Ariane 5 Disaster

Ariane is a series of rockets that were developed as a part of the European space program. On 
June 4, 1996, Ariane 5 crashed shortly after launch, causing a loss of approximately a half billion 
dollars. Because of the large loss, a special international board conducted an inquiry into the 
causes of the disaster.

The board found that the cause of the disaster was a software error in a subsystem called the 
Inertial Reference System (IRS). The IRS is a supplier to the rest of the software control system and 
deals with “horizontal bias.” The precondition for the correct functioning of the IRS was that the 
value of the horizontal bias must fit within a 16-bit integer. The IRS was used in the earlier ver-
sions of Ariane without any problems.

However, the clients of IRS in the control software in Ariane 5 violated this precondition and 
sent IRS a value that was larger than what can fit into a 16-bit integer. The IRS could not handle 
this large value and malfunctioned. This malfunction crashed the whole Ariane 5 control soft-
ware and caused the half billion dollar loss.

The experience of Ariane teaches the lesson about the contracts between software suppli-
ers and clients. These contracts are an important ingredient of the correct functioning of the 
software, and their violations can be expensive. The programmers have to understand them well 

to avoid bugs similar to the one that doomed Ariane 5 (Jézéquel & Meyer, 1997).
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Summary

Software models help to deal with software complexity; the models omit details 
and are simpler than the software they reflect. Programmers use the models 
in several contexts: Models serve as designs that precede and guide software 
coding, or programmers extract models from the already existing software to 
better understand important properties, or they use them as a prescriptive set 
of rules that have to be followed during software evolution. The most popular 
models are based on the Unified Modeling Language (UML), which models 
either static structure (for example, with class diagrams) or dynamic properties 
(for example, with activity diagrams). Software evolution uses dependency dia-
grams that reflect delegation of responsibilities among the classes. The contracts 
are a description of these delegations of responsibilities and they consist of pre-
conditions and postconditions; they can be either formal or informal.

Further Reading and Topics

The role of models in software engineering is discussed by Seidewitz (2003). Besides 
the models described in this chapter, there are several other models used in this 
book, and they are introduced in the context of the problem that they address.

UML is an extensive modeling language, and besides class and activity dia-
grams, it has numerous additional diagrams. Moreover, both class diagrams and 
activity diagrams have additional features beyond the ones covered in this chapter. 
Classes also can be represented by a simple rectangle with just the name of the class 
in it. An interested reader can find more about UML in the works of Rumbaugh, 
Jacobson, and Booch (1999), and Arlow and Neustadt (2005), and many other 
publications. When reading this additional literature, please note that the term 
dependency in UML class diagrams has a different meaning than the meaning that 
is presented in section 3.3 in relation to class dependency graphs.

Class dependency graphs are extracted from the code through program analysis 
that is either static or dynamic (Binkley, 2007; Ernst, 2003; Gallagher & Lyle, 
1991). The static analysis explores the source code, while dynamic analysis deals 
with the execution traces of the programs. Program analysis is a large field that 
presents numerous analysis algorithms that result in a wide variety of models. Some 
of these models are suitable for software evolution, while others are more suitable 
for compiler construction. An example of a model that is closely related to a class 
dependency graph is an object relation diagram (Milanova, Rountev, & Ryder, 
2002). A different kind of model that is also used in software evolution is the class 
interaction graph, which is explained in chapter 7.

Software modeling is done on a certain granularity. This book deals mostly 
with the granularity of classes, where a class is the smallest unit of the code that 
the model deals with. However, in some tasks, a finer granularity than the class 
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level is necessary. In that case, a finer granularity level of class members or program 
language statements has to be considered (Petrenko & Rajlich, 2009).

Contracts and responsibilities are covered in detail by Meyer (1988) in conjunc-
tion with an object-oriented programming language, Eiffel, that has special language 
constructs for the description and enforcement of the contracts. Preconditions and 
postconditions are special cases of invariants, which are statements related to cer-
tain points in the code, and they should always be true when computation reaches 
that point (Floyd, 1967). Dynamically generated invariants are described by Ernst, 
Cockrell, Griswold, and Notkin (2001).

Prescriptive software models are often a part of software architectures, and there 
is a sizeable amount of literature that deals with architectures (Shaw & Garlan, 
1996; Bass, Clements, & Kazman, 2003; Perry & Wolf, 1992). Some architectures 
consist of tiers, where each tier plays a specialized role. As mentioned in chapter 3, 
many applications have three tiers: The presentation tier supports interaction with 
the user; the logic tier does all calculations that the application requires; and the 
data tier stores data (Ramirez, 2000).

Model driven architecture (MDA) relies on the fact that software models consist of 
a subset of the source code information. That offers an opportunity to reorganize the 
source code in such a way that the software model will be one explicit part of it, and 
the remaining information will be the other part (Kleppe, Warmer, & Bast, 2003).

Exercises

 4.1  Draw a class diagram of a small banking system showing the associa-
tions between three classes: the bank, customer, and the account.

 4.2  Draw a class diagram of a library lending books using the following 
classes: Librarian, Lending Session, Overdue Fine, Book Inventory, 
Book, Library, Checkout System, and Library Card.

 4.3  Draw an activity diagram of pumping gas and paying by credit card at 
the pump. Include at least five activities, such as “Select fuel grade” and 
at least two decisions, such as “Get receipt?”

 4.4 Draw a class dependency graph of a software for a library lending books.
 4.5  Explain how a class dependency graph differs from a UML class 

diagram.
 4.6  Suppose that you have two classes: class A that is responsible for read-

ing an address provided by a user, and its supplier class B that verifies 
whether a user-provided ZIP code is located within the user-provided 
state. Write the contract between classes A and B in plain English.

 4.7  For a program represented by the class dependency graph of Figure 4.12, 
write a contract between classes Sale and Payment in plain English.

 4.8 Why does each contract have to specify preconditions?
 4.9 Explain the meaning of the activity diagram in Figure 4.15.
 4.10  In the class dependency graph of Figure 4.16, define both supplier slices 

and client slices of classes B, C, D.
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Checkout

Edit changes

Update
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[Yes]

[Yes]
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Are you working in a team?
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Figure 4.15 An activity diagram.
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Figure 4.16 A class dependency graph.
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Contents

 5. Introduction to Software Change
 6. Concepts and Concept Location
 7. Impact Analysis
 8. Actualization
 9. Refactoring
 10. Verification
 11. Conclusion of Software Change

This part of the book deals with software change, which is a foundation of most 
of the software engineering processes. The book first explains the classification of 
changes, followed by the explanation of the requirements, their analysis, and the 
product backlog. Software change consists of several phases, and the first one is the 
selection of a specific change request from the product backlog. This is followed by 
the phase of concept location, where the programmers find what specific software 
module needs to be changed. Then impact analysis decides on the strategy and 
extent of the change. Actualization implements the new functionality and incor-
porates it into the old code. Refactoring reorganizes software so that the change is 
easier (prefactoring) or cleans up the mess that the change may have created (post-
factoring). Verification validates the correctness of the change. Change conclusion 
creates a new baseline, prepares software for the next change, and possibly releases 
the latest version to the users. This part of the book establishes a foundation on 
which the next part, software processes, builds.
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Chapter 5

Introduction to 
Software Change

Objectives

A change in existing software is an important software engineering process. After 
you have read this chapter, you will know:

 ◾ The characteristics of software change
 ◾ The phases of a typical software change
 ◾ The product backlog
 ◾ The requirements analysis and prioritization
 ◾ The change initiation

***

Software changes are by far the most common software engineering tasks. The key 
stages of software life span, software evolution, and servicing consist of repeated 
software changes. There is a wide variety of software changes, and their character-
istics and phases are explained in this chapter.

5.1 Characteristics of Software Change

Software changes differ from each other by their purpose, their impact on software 
functionality, their impact on the code, their strategy, the form of the modified 
code, and so forth.
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5.1.1 Purpose

Software changes are characterized by their purpose and, from this point of view, 
perfective changes are the most common. They introduce new functionality and 
increase the value of software. An example is the introduction of a credit card pay-
ment to the point-of-sale system that had only cash payment before; such a change 
extends the functionality of the program and increases its value.

The surveys found that perfective changes constitute approximately two-thirds 
of all software changes. The large share of perfective changes is not surprising, 
because they are the response to volatility of the requirements. This volatility drives 
software evolution and, as a result, most of the evolution changes are perfective. 
Note that products other than software rarely experience perfective changes and, 
once delivered to the users, their functionality usually remains stable. It is very rare 
to do perfective changes on cars, appliances, shoes, or similar products.

Another category of changes are adaptive changes that adapt software to new cir-
cumstances within which the software operates. An example of such circumstances 
is a new version of the operating system or a new compiler used in the project, 
and so forth. The Y2K change that is discussed in the sidebar is an example of an 
adaptive change. The purpose of adaptive changes is to protect the existing value of 
the program. If nothing was done in the changed circumstances, the value would 
greatly decrease or completely disappear.

Y2K Software Change

Perhaps the most famous software change in history was the so-called Y2K change. Y2K is an 
abbreviation of the “Year 2000,” and it became a commonly known acronym. The Y2K change 
was caused by the fact that programmers in the last century represented years by the last two 
digits; for example, the year 1997 was represented by “97.” The computer assumed that the two 
digits representing the year are always preceded by an additional two digits: “19.”

There was a reason why programmers made this choice. During the early years of software, 
computer memory was very expensive, and using the extra two digits for a year seemed like a 
waste of this expensive resource. Later, when memory became more affordable and there was no 
longer an economic imperative behind this choice, the programmers continued with this practice 
partially out of inertia and partially out of the belief that the life span of software would be short. 
They did not believe that their software would still be used in the year 2000.

The two-digit year representation worked fine through most of the 1900s, but as January 1, 
2000, was approaching, many people realized that the software systems would interpret the 
date represented by the combination “01, 01, 00” as January 1, 1900, instead of January 1, 2000, 
resulting in some potentially serious complications. As the fateful date approached, many specu-
lators in mass media wondered what was going to happen if software malfunctioned on a mas-
sive scale. There were even suggestions that civilization might collapse because of the possible 
malfunctions of finance, trading, transportation, electrical grids, and other essential components 
of the economy that are supported by software. Because of this widespread fear, the effort to fix 
the Y2K bug was coordinated at the highest levels by the President’s Council on Year 2000 and 
through the International Y2K Cooperation Center (IY2KCC).

Note that the required change belonged to the category of adaptive changes. There was no 
need for any new functionality; there was only a need to extend the current software function-
ality beyond January 1, 2000. Also note that, in isolation, to change the year representation 
from two digits to four digits is a relatively minor exercise; the hardest part of this exercise is to 
look up the additional quirks of the Gregorian calendar that are not covered by the two-digit 
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representation. This change, when handled in isolation, is presented as Exercise 5.11 of this 
chapter, and it is not harder than other exercises in this book. Then why did Y2K turn into such 
a gigantic task?

The answer is that the date has been handled in the old software in various obscure places 
and contexts. The code supporting the dates was interleaved with code that was doing something 
else, and when the code was changed it had to be revalidated to make sure that no bugs were 
introduced. In the context of the old code, this relatively simple exercise became a formidable 
task. This is often the case with software changes where functionally simple tasks are made 
complex by the context of the old code. Therefore, we have to study various phases of software 
change like concept location, impact analysis, and so forth.

In the end, the Y2K change was done on time; there was no collapse of civilization, but the 
cost was considerable. It was estimated that worldwide, 45% of all software applications were 
modified, and 20% were completely replaced, at a total cost ranging somewhere between $375 
and $750 billion (Kappelman, 2000).

There are also corrective changes that correct software bugs and malfunctions. 
These bugs and malfunctions are deviations from the intended functionality and 
impact the users in often unexpected ways. An example from a point-of-sale system 
may be that, under a certain configuration of sold merchandise, the total on the 
receipt is incorrect.

Another category of changes are protective changes that are invisible to the user, 
and they shield the software and its value in a proactive way. Examples of such 
changes are changes that improve the structure of software to make the future 
changes easier, and hence, they represent an investment that will pay off over time. 
Other changes in this category are transfers to a new technology that promises a lon-
ger life span of the software, or proactive improvements in the security of software.

Note that the purposes of a change are not mutually exclusive, and there are no 
sharp boundaries. Some changes can be categorized in different ways; for example, 
what some programmers may consider to be a bug, other programmers may con-
sider an adaptation, and so forth.

5.1.2 Impact on Functionality

From the point of view of functionality, incremental changes add new functionality 
to software. An example of incremental change in a point-of-sale system is add-
ing support for credit card payments, which was missing in the previous versions. 
Incremental changes increase the business value of software because they provide a 
new functionality that was not available before.

The opposite of incremental changes are contraction changes or code pruning, 
where some obsolete functionality is removed from software. However, very often, 
programmers are reluctant to remove this obsolete functionality, arguing that this 
removal may inadvertently damage some useful parts of the code. To guarantee 
that code pruning does not introduce bugs requires substantial work and thorough 
verification of the software afterwards.

The programmers often argue that this obsolete functionality should stay in 
the code because its removal does not increase business value, while requiring 
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substantial extra work. However, unwanted obsolete functionality left in the code 
clutters the code and makes the code unnecessarily large and complex. The pro-
grammers must remember that there are parts that are no longer active, and they 
must treat these parts with caution; these parts can become a source of problems if 
somebody inadvertently activates them. Thus, a bloated code can become a long-
term problem and should be pruned from time to time.

There are replacement changes that replace an existing functionality with another 
one. This is very common in debugging, where an unwanted functionality, a bug, 
must be replaced by a correct one. In reality, very often, incremental change is also 
a replacement change, where a sophisticated functionality replaces an old primi-
tive one.

Refactoring is a type of change that substitutes the obsolete structure of the 
program by a better one, without changing program behavior. Refactoring does not 
increase the business value of software, and there may be a reluctance to invest too 
much effort into it; nonetheless, it is essential for the long-term health of the code.

Although incremental changes may be the main goal of software evolution, 
refactoring plays an important supporting role that keeps the system in shape for 
future incremental changes. Incremental changes often contain refactoring phases 
that prepare the code for the specific change in the functionality, or clean up the 
residual problems in the code after the change.

5.1.3 Impact of the Change

The smallest changes are localized; they impact only one module of the code or a 
handful of closely related modules. These changes are relatively easy to implement, 
and the consequences of such changes are likely to be predictable.

Advanced software technologies support logical structuring of software that 
limits the consequences of the changes. For example, object-oriented technolo-
gies allow programmers to construct software from objects that correspond to the 
objects of the domain. Hence, when a change is related to just one domain object, 
chances are that the corresponding change will also affect just one software object 
or a small group of closely related objects.

Unfortunately, not all changes are localized. There are massively delocalized 
changes that, when undertaken, mean a review and update of a substantial part of 
the code. Changes in technologies, operating systems, user interfaces, and other 
delocalized software properties belong to this category. These changes are expensive 
and risky because every single code file that is changed can introduce bugs into the 
software; therefore, there is a potential that these changes will create large prob-
lems. These changes must be undertaken with caution. Fortunately, these massive 
changes are relatively rare.

In the middle of the scale, there are changes that affect a medium but signifi-
cant number of classes. Typically, these changes introduce a new and substantial 
functionality into software. Although they are rarer than small changes, medium 



Introduction to Software Change ◾ 73

changes still are frequent enough that every software engineer should know how 
to deal with them. This knowledge is an important part of a software engineer’s 
skills. There may be several viable strategies to implement these changes, and the 
programmers should be able to identify the appropriate strategies, identify their 
impact, and select the most appropriate ones.

Software changes impact not only the code, but other artifacts as well; for 
example, they impact software models, manuals, documentation, and so forth. If 
the documentation or software models are to remain valid and useful, they have to 
be updated whenever changes in the code are made.

5.1.4 Strategy

Software change can be done as an emergency quick fix or as a long-term invest-
ment in software quality. In the former case, it is sometimes possible to find various 
shortcuts, but software may carry the scars of these hasty actions. The only accept-
able circumstance for a quick fix during the evolution stage is in the situation of an 
emergency, where human life or a substantial value is at stake; thus, the fix has to 
be done quickly, and the speed outweighs every other consideration.

The quick fix is a common strategy of change during the servicing stage; the 
software value at that point is low; there are no plans for future evolution; and the 
fixes just keep it afloat. In this situation, there is no reason for any gold plating, and 
the change is done as cheaply as possible. The patchwork left in the wake of quick 
fixes does not matter because the value of the software is low anyway, and any addi-
tional lowering of the software value is inconsequential.

These exceptional circumstances have one common characteristic: The long-term 
cost of the resulting patchwork is lower than the benefit of the fast change. In all other 
circumstances, software change should be done with the highest professional work-
manship. The change should be well designed, executed well, and add value to software 
in all respects. Everything that the change touches should end up upgraded rather than 
degraded, whether it is the quality of the code at the center of the change, quality of the 
distant code that was touched by the change, software documentation, and so forth.

5.1.5 Forms of the Changing Code

Changes in the source code are much easier than changes in the executable code; 
therefore, an overwhelming number of changes are done in the source code. The 
programmers use code editors to make these changes and then recompile the code. 
This is how software engineers work most of the time.

Changes in other code forms, for example, in executable code or bytecode, are 
done only under unusual circumstances. They happen mostly when source code is 
not accessible and executable code is the only available form. Occasionally they also 
are made in emergencies when the compilation is too long and programmers do not 
have the time to wait, or when the compiler produces unacceptable code.
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When software engineers do these changes, they are giving up all human-ori-
ented aspects of the source code like meaningful names, comments, and so forth, 
and are dealing only with binaries, and that makes the changes much harder. These 
changes also lead to differences between source and executable code, and the source 
code is no longer the basic document that reflects the system behavior. Therefore, 
the value of the source code is substantially diminished, and any subsequent changes 
also may have to be done on the executable code. Because of all these problems, this 
kind of change should be done only in very exceptional circumstances.

5.2 Phases of Software Change

There are a wide variety of software changes, and the software change process 
resembles a kit with building blocks; each specific change is assembled from these 
blocks. The building blocks are called phases, and a specific software change con-
sists of some combination of these phases. Figure 5.1 describes the phases of a typi-
cal midsized software change. The next chapters of the book describe these phases 
in more detail.

Software change starts with initiation, where the programmers decide to imple-
ment the change in the software. The next phase is concept location that finds in 
the software the code snippet that must be changed or the module that must be 
updated. This module is the place where the new functionality or the bug correc-
tion will reside. Concept location may be a small task in small programs, but it can 
be a very difficult task in very large programs.

Concept Location

Impact Analysis

Prefactoring

Actualization

Postfactoring

Conclusion

V
e
r
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c
a
ti
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Initiation

Figure 5.1 Phases of a mid-sized software change.
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Very often, software change is not localized in a single program module, but 
it affects other parts of the software. Impact analysis is a phase that determines all 
these other parts. It starts where concept location stopped, that is, it starts with 
the modules identified by concept location as the places where the change should 
be made. Then, it looks at the related modules and decides to what degree they are 
also affected. Impact analysis together with concept location constitute the design 
of software change, where the strategy and extent of the change is determined, and 
precede the phases where the code is actually modified.

The real code modifications consist of phases of prefactoring, actualization, post-
factoring, and verification. These phases are the core of software change. Actualization 
is the phase that implements the new functionality. The new functionality is imple-
mented either directly in the old code, or it is implemented and tested separately and 
then integrated with the old code. In either case, the change can have repercussions 
in other parts of software. Change propagation identifies these other parts, making 
the secondary modifications. Methodologically, change propagation is similar to 
impact analysis because the same process of identifying the other affected parts is 
made; only this time, the actual code modifications are implemented.

Refactoring, as mentioned previously, changes the structure of software 
without changing the functionality. During the typical software change, refac-
toring can be done as two different phases: before the actualization and after. 
When it is done before the actualization, it is called prefactoring. Prefactoring 
prepares the old code for the actualization and gives it a structure that will 
make the actualization easier. For example, it gathers all the bits and pieces of 
the functionality that is going to change and makes the actualization localized, 
so that it affects fewer software modules. This makes the actualization simpler 
and easier. The other refactoring phase is called postfactoring, and it is a cleanup 
after the actualization; the actualization can make a mess, and postfactoring 
cleans it up.

Verification is the phase that aims to guarantee the quality of the work, and it 
interleaves with the phases of prefactoring, actualization, postfactoring, and con-
clusion. Although no amount of verification can give a 100% guarantee of software 
correctness, numerous bugs and problems can be identified and removed through 
the systematic verification. The verification uses various strategies and techniques.

Conclusion is the last phase of software change. After the new source code is 
completed and verified, the programmers commit it into the version control system 
repository. This can be an opportunity to create the new baseline, update the docu-
mentation, prepare a new release, and so forth.

If there is a team that works on a software project and the change is done by a 
programmer within that team, then both the change initiation and conclusion are 
team activities, and they may differ, depending on the team process. Because they 
involve an interaction of the whole team, they are highlighted in Figure 5.1. We will 
revisit them when the software processes are discussed. The remaining phases are 
usually done by an individual programmer.
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A variant of the software change process is depicted in Figure 5.2. The phases of 
initiation, concept location, and change conclusion are the same as in the process of 
Figure 5.1. However, the middle phases of the software change process are special-
ized variants, and these are shaded in Figure 5.2.

In this process, the verification is divided into two parts: one that precedes the 
actualization and one that follows it. The tests for the future code are written first, 
and they are based on the contract with the new code. During the actualization, the 
new code is written and immediately tested, and the actualization is complete when 
the newly written code passes the tests. After that, regression testing guarantees 
that those parts of the code that were not touched by the change still work.

The rest of this chapter deals with change requirements in general and change 
initiation in particular.

5.3 Requirements and Their Elicitation

The requirements describe the desired software functionality. They request a perfec-
tive change in existing software; or they propose an adaptation of software to new 
circumstances; or they propose a protective change. These requirements typically 
take the form of a sentence or a paragraph, written in plain English. An example of 
such a requirement is: “Implement a price variation of an item in a store. There can 
be a price increase or decrease on a specific date.”

In other situations, they report a bug in the software. An example of such a bug 
report is, “An error appears when attempting to get credit card authorization.” The 

Initiation
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Test-First

Actualization

Conclusion

Regression Testing

Figure 5.2 Process of localized software change with test-driven development 
strategy.
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bug report usually describes the symptoms of the bug, a sample of the input and 
output data that demonstrates the bug, the software configuration within which 
the bug is demonstrated, and so forth. This description will help the programmers 
to reproduce the bug and decide how to fix it.

Requirements originate from the users, who may desire a new functionality or 
an improvement in the current functionality, or they can originate from the pro-
grammers who thought of an improvement or found a bug, or managers who want 
to meet a competitor’s new functionality, and so forth.

Larger requirements are sometimes called user stories. A user story describes new 
functionality from the point of view of the prospective users. Because a user story is 
the communication between users and programmers, it must be easy to understand 
and simple. To limit the complexity of the story and potential for misunderstand-
ing, it is frequently required that the user story fit into a previously specified space, 
for example, a 3-in. × 5-in. card. If a new functionality cannot be described in such 
a small place, it has to be divided into several user stories. User stories written on the 
cards constitute a deck that can be reshuffled; new stories can be added or deleted, 
and old user stories can be rewritten when additional knowledge is acquired by the 
users, or when additional clarification is needed by the programmers.

There is rarely only one change requirement present; usually there is a whole 
set of requirements that programmers have to manage. The set of requirements is 
stored in a product backlog. The product backlog is also called a requirements data-
base, and in other contexts it is called a project wish list because it lists desired future 
product properties and functions.

The product backlog describes a shared vision of the project stakeholders for 
the future of the product. Figure 5.3 depicts the product backlog that corresponds 
to the desired future code. The code, the product backlog, the software models 
that programmers may use, and the documentation that is discussed in chapter 
11 belong to the category of software work products, and as the project progresses, 
programmers repeatedly update all these work products.

The product backlog is created and incremented in a process of requirements 
elicitation that is depicted in Figure 5.4. Some of the requirements are contributed 
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Figure 5.3 Relation of product backlog and the code.
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by the stakeholders on their own initiative. However, if that initiative fails, the pro-
grammers must go out of their way to get the requirements from the stakeholders.

Some elicitation techniques originate from other fields, and they include the 
use of questionnaires, interviews, surveys, and so forth. Focus groups, which are 
commonly used in the social sciences, are also used for requirements elicitation, and 
they prompt the users to express their desires for the product.

5.4 Requirements Analysis and Change Initiation

The raw requirements often require additional work, and that work is called require-
ments analysis. Resolving inconsistencies and prioritization are the important issues 
of requirements analysis.

5.4.1 Resolving Inconsistencies

The requirements come from different sources of variable reliability, and therefore, 
it is not surprising that they are often burdened by inconsistencies. The following 
are examples of inconsistencies:

Contradiction is the most glaring inconsistency; there may be requirements in 
the product backlog that directly contradict each other. An example is two 
different formulas for how to calculate an insurance premium, where each 
formula comes from a different stakeholder. The contradicting requirements 
have to be reconciled, possibly by a negotiation with the stakeholders until a 
consensus is reached, or by managerial decision.

Inadequacy is another inconsistency; some requirements can be too terse, 
and the programmers are left guessing what is really required. These 
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Figure 5.4 Requirements elicitation.



Introduction to Software Change ◾ 79

requirements need to be expanded so that the programmers are sure what 
functionality is expected. The opposite is overspecification, where the 
requirements contain things that should be decided by programmers dur-
ing the implementation, for example, what data structures, algorithms, or 
elements of the user interface should be used, and so forth. These require-
ments need to be pruned, and the parts that cause the overspecification 
need to be deleted.

Ambiguity describes requirements that can be interpreted in more than one way. 
These requirements need to be reconsidered and clarified. The requirements 
can even be unintelligible, and in that case, they have to be replaced by better-
formulated ones.

Noise is an irrelevant requirement that is not related to the system’s purpose. The 
stakeholders who provided this requirement may not understand the purpose 
of the system. These requirements are deleted from the product backlog.

Unfeasibility describes requirements that cannot be done with current technol-
ogy or by the current project team, or they do not fit within the constraints 
of the budget. These requirements also should be dropped.

5.4.2 Prioritization

The programmers choose the requirements for their changes from the product 
backlog. Their selection is greatly simplified if that product backlog is sorted by 
priority. Both programmers and project managers cooperate in determining the 
priority of requirements. There are several—sometimes synergistic but sometimes 
conflicting—criteria to prioritize the requirements.

In the case of bug reports, the severity of the reported bug drives the prioritization. 
Very often, industrial firms develop their own standards to help the stakeholders in 
assigning the bug severity. For example, an industrial company in Cleveland, OH, 
uses four severity ranks for each bug (White, Jaber, Robinson, & Rajlich, 2008):

 1. Fatal application error
 2. Application is severely impaired (no workaround can be found)
 3. Some functionality is impaired (but workaround can be found)
 4. Minor problem not involving primary functionality

Severity rank 1 requires immediate attention and, if necessary, all ongoing work 
has to be stopped and the bug has to be fixed immediately. There may be some 
breathing space with bugs of severity rank 2, and their fix may be postponed if it 
would be too costly to do it immediately; but these bugs impair the application seri-
ously, and they will rank either at the top or close to the top on the priority list. The 
bug ranks 3 and 4 are a subject of further analysis, where the cost of fixing the bug 
is compared to the inconvenience of having the bug in the project. In this analysis, 
the bugs compete with other requirements for the priority rankings.
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Another criterion is the business value of the requirement. Some requirements 
are essential to the users, while other requirements are of only a marginal interest. 
Using the same scale of four priority values, the following are the four priorities 
from the point of view of business value:

 1. An essential functionality without which the application is useless
 2. An important functionality that users rely on
 3. A functionality that users need but the program is useful without it
 4. A minor enhancement

Another criterion is the risk reduction. Every project faces numerous risks that 
threaten its success. They range across the wide spectrum that includes technical, 
personal, business, or even political issues. An example of a technical issue is an 
untried technology that is to be used in the project, and there is no guarantee that 
the technology will work as intended for this particular project. An example of a 
personal issue is a key team member who may leave. Without that member, the 
project may be in jeopardy. An example of a business issue is the time to market; 
if the product is not out in the market before a competing product, the market 
may shrink and the project may be cancelled. An example of a political issue is the 
venture funding; if the venture capitalists do not “see something” by a certain date, 
they will withdraw their support. The requirements in the product can be rated 
from the point of view of how they resolve these risk issues. Again on a scale of 1 to 
4, the following are the ratings of the risk that the requirements represent:

 1. A serious threat, the so-called showstopper; if unresolved, the project is in 
serious trouble

 2. An important threat that cannot be ignored
 3. A distant threat that merits attention
 4. A minor inconvenience

Another priority is the process needs. Some requirements must be implemented 
before the others; otherwise, the rework that the future changes require would 
be too large. For example, an application stores information in a database. The 
requirements that emphasize the database may have higher process priority than 
other requirements that define some other features. On a scale of 1 to 4, the process 
priority requirements are rated as follows:

 1. A key requirement; if not implemented in advance, practically all code that 
was implemented up to that point will have to be redone

 2. An important requirement that, if postponed, will lead to large rework
 3. A nontrivial rework will be required if this requirement is postponed
 4. A minor rework will be triggered
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There are also lesser criteria that usually come into play after the highest pri-
orities, according to the previous criteria, have been resolved. Some requirements 
cause analysis problems; for example, there can be requirements that contradict 
each other. Until the analysis problems are resolved, it does not make sense to 
prioritize these requirements, and it is better to postpone them. There are also easy 

requirements that can be implemented quickly. There is a certain cost of keeping 
requirements in the product backlog, reprioritizing them, and so forth. Some 
requirements are so simple that they can be implemented at the same or even 
lesser cost than keeping them in the product backlog, and they should be given a 
high priority.

The factors that affect prioritization often contradict each other, and it is the 
judgment of the project programmers and managers to decide on the final pri-
oritization. Some projects assign specific weights to the individual factors and use 
formulas that compute the prioritization.

The processes of requirements analysis and prioritization can be done on the 
whole product backlog, and with large product backlogs it can be a formidable 
task. However some requirements have an obviously low priority, and their analysis 
can be postponed. In that situation, the analysis and prioritization are intermingled 
and done on an as-needed basis. The process then consists of the repetition of the 
following steps:

 ◾ Estimate the highest-priority requirements
 ◾ Analyze these requirements
 ◾ Prioritize the analyzed requirements

5.4.3 Change Initiation

The change initiation is the selection of a specific requirement from the product 
backlog for implementation. This requirement is also called the change request. If 
the product backlog is analyzed and prioritized, it means to select the highest-prior-
ity requirement. Sometimes the product backlog is neither analyzed nor prioritized, 
and in that case all relevant analysis and prioritization must be done as a part of 
change initiation.

After the change initiation, the selected requirement is deleted from the product 
backlog and, during the subsequent change, implemented as new code, as shown 
in Figure 5.5. In the meantime, new requirements may come in, forwarded by the 
project customers or other stakeholders. Hence, the product backlog is undergoing 
constant alteration.

The product backlog is often supported by software tools that add/delete/mod-
ify requirements, re-sort the priority queue based on the priorities provided by the 
programmers, and so forth.
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Summary

Software change is the foundation of software evolution and servicing, and it is the 
most common task that programmers do. Software changes are classified by their 
purpose (perfective, adaptive, corrective, and protective), their impact on function-
ality (incremental, contraction, replacement, and refactoring), their impact on the 
code (from small to massive), their strategy (from quick fix to high workmanship), 
and the impacted code form (source code or compiled code).

Software changes typically consist of several phases (initiation, concept loca-
tion, impact analysis, prefactoring, actualization, postfactoring, verification, and 
conclusion). They deal not only with the code, but also with the product backlog 
that consists of the requirements that have been elicited from the stakeholders 
and then analyzed. They are prioritized by various criteria that include severity for 
bugs, business value for enhancements, risk, process needs, and other criteria. A 
highest-priority requirement is selected as a change request, and that initiates the 
software change.

Further Reading and Topics

The importance of software change is confirmed by surveys that indicate that up to 
80% of all software engineering work is spent in software changes (Carroll 1988). 
A classical survey from the 1980s introduced the classification of software changes 
by purpose (Lientz & Swanson 1980). A more recent taxonomy of the changes 
appeared in a paper by Buckley, Mens, Zenger, Rashid, and Kniesel (2004).

The remaining phases of software change are described in chapters 6 through 
11, and an example is presented in chapter 17. Software changes are a part of the 
software processes that are described in chapters 12 through 15, and an example is 
presented in chapter 18. This change-process model was also published by Buchta 
and by Petrenko, Poshyvanyk, Rajlich, & Buchta (2007). An alternative model of 

Product Backlog Desired Code

Existing Code

Change Initiation
New Code

Change

Request

Change

Stakeholders

Figure 5.5 Change initiation.
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software changes is presented by Yau, Nicholl, Tsai, and Liu (1988) and by Aldrich, 
Chambers, and Notkin (2002).

Requirements analysis and prioritization are parts of the field of requirements 
engineering. Numerous publications deal with that, for example, Robertson and 
Robertson (1999) and Van Lamsweerde (2009). Examples of highest priority bugs 
are presented by Neumann (1995, p. 169). The risk criterion for prioritization is 
discussed by Boehm (1991).

Changes are also initiated by user stories (Cohn 2006), use cases (Cockburn 
2000), scenarios (Carroll 1995), and several other notations or techniques.

Exercises

 5.1  How are software changes classified by their purpose? What is the most 
common purpose of the change?

 5.2  How do software changes impact functionality of software? What is the 
classification from this point of view?

 5.3 When is it permissible to do quick-fix changes?
 5.4 Name and give the order of at least five phases of software change.
 5.5 What is a product backlog?
 5.6  What is prioritization of requirements in a backlog? What are the 

changes with the highest priority?
 5.7 Explain the severity ranks of the bugs.
 5.8  Consider a class DateToDay that contains a method char* 

convert(int,int,int). It converts the date into day, and the pre-
condition is that all three integers of the date are two-digit integers, 
representing the month, day of the month, and a year (see the enclosed 
code). Change the precondition of convert in such a way that the 
year is a four-digit integer, like 2010. Take into account the correspond-
ing quirks of the Gregorian calendar.

class DateToDay {
public:
 char* convert(int dd,int mm,int yy){
  if (!(dd > 0 && dd <= lengthOfMonth(mm,yy) && mm >0 &&
   mm < 13))
   throw;

  int dayNumber = dd%7;
  for (int y = 0; y <yy; y++)
   dayNumber = (dayNumber + 365 + isLeapYear(y)) %7;
  for (int m = 1; m < mm; m++)
   dayNumber = (dayNumber +lengthOfMonth(m,yy)) %7;

  switch(dayNumber) {
   case 0:
    return(“Sunday”);
    break;
   case 1:
    return(“Monday”);
    break;
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   case 2:
    return(“Tuesday”);
    break;
   case 3:
    return(“Wednesday”);
    break;
   case 4:
    return(“Thursday”);
    break;
   case 5:
    return(“Friday”);
    break;
   case 6:
    return (“Saturday”);
    break;
   default: throw;
  }
 }

private:
 int lengthOfMonth(int mm, int yy) {
  switch(mm) {
   case 4: case 6: case 9: case 11:
    return(30);
   case 2:
    if (isLeapYear(yy) )
     return(29);
    else
     return(28);
   default:
    return(31);
  }
 }
 int isLeapYear(int yy){
  return ((yy%4 == 0) && (yy != 0));
  }
};

 5.9  You are the manager of a business software; you distribute 3-in. × 5-in. 
cards to your users and encourage them to write requests for new func-
tionality to your software. A user of your software calls one day and 
says, “I can’t fit my user story on these small cards. I’m going to submit 
a 10-page user story.” What should you tell this user? Why?

 5.10  In the point-of-sale software, two types of payment are accepted: check 
and charge. Write three new user stories for three additional types of 
payment.
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Chapter 6

Concepts and 
Concept Location

Objectives

When programmers decide to implement a specific software change, the first step 
is to find which part of the code needs to be modified. Concept location is the 
technique that allows one to identify the code that needs to change. After you have 
read this chapter, you will know:

 ◾ The concepts and their importance in software change
 ◾ The concept name, intension, and extension
 ◾ Significant concepts of a change request
 ◾ Concept location by grep and by dependency search

***

To find what to change in small and familiar programs is easy, but it can be a formi-
dable task in large software systems, which sometimes consist of millions of lines of 
code. Concept location is the phase that finds a code snippet that the programmers 
will modify; it follows the change initiation (see Figure 6.1).

To explain concept location, we have to understand that in this phase, the pro-
grammers deal with two separate systems: One is the program, and the other is the 
discourse about the program. This discourse consists of everything that stakeholders 
say or write about the program, and change requests belong to this discourse. The 
stakeholders are programmers, users, managers, investors, and other interested 
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parties. The bridge between these two worlds, the program on one hand and the 
discourse on the other hand, consists of concepts.

6.1 Concepts

The notion of a concept is used in linguistics, mathematics, education, philosophy, 
and other fields; it applies to the discourse about the software as well. Each concept 
has three facets, depicted symbolically by a triangle in Figure 6.2. One facet is a 
name, represented by the top vertex of the concept triangle; some concepts may 
have a single-word name like “payment,” and other concepts have a more complex 
name that consists of several words, like “credit card payment.” The use of concept 
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Figure 6.1 Concept location as part of software change.
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names allows people to communicate about the concepts of the world, of the pro-
gram, or of the program domain.

The lower left vertex of the concept triangle represents the intension of the con-
cept; it is the list of the concept properties and relations. For example, the inten-
sion of the concept named “dog” is, according to a Merriam-Webster dictionary, 
“a highly variable domestic mammal (Canis familiaris) closely related to the gray 
wolf.”1 Another name sometimes used for intension is “definition” or “account.”

Spelling, Watchmaker Anecdote

The word “intension” is not misspelled; according to the Merriam-Webster dictionary:

Intension \in-’ten(t)-shən\ synonym CONNOTATION, (a) the suggesting of a meaning by a 
word apart from the thing it explicitly names or describes, (b) something suggested by a word 
or thing — W. R. Inge> an essential property or group of properties of a thing named by a 
term in logic.1

The more common word with the same pronunciation but slightly different spelling has a dif-
ferent, although overlapping meaning:

Intention \in-’ten(t)-shən\ synonyms INTENT, PURPOSE, DESIGN, AIM, END, OBJECT, 
OBJECTIVE, GOAL mean what one intends to accomplish or attain. INTENTION implies little 
more than what one has in mind to do or bring about <announced his intention to marry>. 
INTENT suggests clearer formulation or greater deliberateness <the clear intent of the statute>. 
PURPOSE suggests a more settled determination.1

Concept location is shorthand for “location of a significant concept extension in the code.” 
The following anecdote illustrates the importance of concept location in a different setting that 
also deals with complexity:

A customer asks a watchmaker to fix a watch. The watchmaker opens the watch, looks 
at the tiny wheels and screws with magnifying glass, then takes one of the small screwdrivers, 
tightens one of the tiny screws, and hands back the repaired watch. The customer asks: “How 
much is that going to cost?” The watchmaker answers: “$20.” The customer starts complain-
ing that to tighten one small screw cannot cost that much, to which the watchmaker answers: 
“To tighten the screw costs $1, but to know which screw to tighten costs an additional $19!”

Many software changes are similar to the repair of the watch in this anecdote, and con-
cept location is their most important part.

The extensions of a concept are things in the real world that fit the concept inten-
sion. Examples of an extension of a dog are real dogs like Fido, the pictures of dogs 
in family photos, Lassie from the TV series and movies, Buck in Jack London’s 
book Call of the Wild, and so forth.

The relations among the vertices of the concept triangle are many-to-many. A 
name can mean several different intensions (homonyms), or the same intension can 
be named by several names (synonyms). Each intension or concept name can have 
several extensions, and each thing in the world may fit several intensions or several 
concept names.

The software code also contains the concept extensions; these extensions sim-
ulate the concepts of the domain. For example, the concept named “payment” 

1 With permission. From Merriam-Webster’s Collegiate® Dictionary, 11th Edition ©2011 by 
Merriam-Webster, Inc. (www.merriam-webster.com).
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belongs to the domain of point-of-sale; in the software system, it has an extension 
in the form of a statement int paymt. This variable paymt contains the amount 
a customer pays for the merchandise, and it is an extension of the concept “pay-
ment” the same way as a photograph of Fido is an extension of the concept “dog.”

Figure 6.2 depicts not only the three facets of the concept, but also six compre-
hension processes. They are:

 ◾ Location: intension → extension
 ◾ Recognition: extension → intension
 ◾ Naming: intension → name
 ◾ Definition (or account): name → intension
 ◾ Annotation: extension → name
 ◾ Indexing: name → extension

Location is one of these six processes, and the purpose of the concept location is 
for a given concept intension to find the corresponding extension in the code. It is a 
phase of the software change; the modification of this extension will be the start of 
the change. Concept location is a prerequisite for the rest of the software change.

The other comprehension processes also may occasionally appear in a software 
engineering context. Recognition is the opposite of location, and it recognizes an 
extension in the code (“this code does credit card payment!”) and finds the cor-
responding intension. Naming gives a name to an intension. The opposite process 
is definition that, for a given name, finds the corresponding intension. The rela-
tion between names and intensions is many-to-many; therefore, the naming and 
definition have to deal with homonyms and synonyms. Next, there is annotation 
that recognizes an extension and gives it a name. The opposite is indexing that for a 
given name finds corresponding extensions. All of these six processes are important 
when a programmer tries to understand the code, but concept location is the most 
important of them when dealing with the software change.

6.2 Concept Location Is a Search

The concept extensions in the program appear as variables, classes, methods, parts 
of a method body, or other code fragments. The programmers must find these code 
fragments. It can be easy in small programs or in the programs that the program-
mer knows well, or in special situations when the concept extension is obvious in 
the code, for example, when a concept extension is implemented as a whole class 
and the class has a name that corresponds to the name of the concept. However it 
can be hard when the program is large, the programmers are not familiar with it, 
or the concept extensions are implemented in an obscure way. For some software 
changes, it can be the hardest part of the change, a proverbial search for a “needle 
in a haystack.”
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There are several concept-location techniques, and they share a common 
characteristic: The concept location is an interactive search process in which the 
search target is the code snippet that the programmers will modify in response to 
the change request. It is an interactive process, in which the programmers make 
decisions about how to conduct the search, and the tools play a supportive role. 
Searching for concepts in the source code is in many ways similar to searching for 
information on the Internet. The process of the search consists of the actions of 
Figure 6.3. The actions are:

Understanding the problem

Selecting a search strategy

Formulating a query

Executing the search

Analysis of results

Figure 6.3 Search for concept location. From Rajlich, V. (2009). Intensions are a 
key to program comprehension. In Proceedings of IEEE International Conference 
on Program Comprehension (pp. 1–9). Washington, DC:  IEEE Computer Society 
Press. Copyright 2009 IEEE. Reprinted with permission.
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 ◾ Understanding the problem. The programmers must understand the terminol-
ogy used in the change request.

 ◾ Selecting a search strategy. The programmers choose the appropriate search 
strategy from the available assortment.

 ◾ Formulating a query. Each search requires a query that uses names of the 
concepts related to the change request.

 ◾ Executing the search. Programmers conduct the search with the help of sup-
porting tools.

 ◾ Analysis of results. If the programmers find the concept location, the search 
ends successfully. However, if the search was unsuccessful, the programmers 
analyze the results and learn additional facts about the software system they 
are searching. They will use this new understanding to choose a better search 
strategy or to formulate a better query.

The programmers rarely find the significant concept extension with a single search; 
they often have to repeat the search several times.

The search starts with the concept intensions and ends with the correspond-
ing concept extensions in the program. Figure 6.2 suggests two possible strategies 
of the search: Some strategies go directly from intensions to extensions, and the 
programmers use their understanding of concept intensions; others take a detour 
and identify the concept names first, and then look for these names in the code. 
The search space also may differ. The strategies search the static code, or external 
documentation, or preprocessed code, or execution traces.

The concept extensions that the programmers search for are either explicit or 
implicit. Explicit concept extensions directly appear in the code as fields, methods, 
code snippets, or classes. For example, the page count of a word processing docu-
ment is explicitly present in the code as an integer, and the concept location is a 
search for this integer.

Implicit concept extensions, on the other hand, are only implied by the code, 
but there is no specific code snippet that implements them. Using the same word 
processor example, most word processors authorize any user to access any word 
processor file. The authorization to open files is an implicit concept extension 
that the source code does not explicitly implement; it is present in the code as an 
assumption that underlies the part of the code that is opening word processing 
files. To locate such implicit concept extensions, programmers must find related 
explicit concepts extensions that are close to these desired implicit concept exten-
sions, or they have to find the code snippet that makes that implicit assumption. 
Some concept-location strategies are suitable for finding implicit concept exten-
sions, while others are not.
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6.3 Extraction of Significant Concepts (ESC)

A gateway to the search process is to formulate the query that will lead to the loca-
tion of the concept. When programmers receive a change request, they analyze the 
change request and identify the appropriate concepts and their names. Concept 
names may appear in the change requests as nouns, verbs, or clauses. The change 
request can have many such nouns, verbs, or clauses. The programmers extract 
significant concepts (ESC) through the following steps:

 ◾ Extract the set of concepts used in the change request.
 ◾ Delete the irrelevant concepts that are intended for the communication with 

the programmers and do not deal with the requested functionality.
 ◾ Delete the external concepts that are unlikely to be implemented in the code, 

like concepts related to the things that are outside of the scope of the program 
or concepts that are to be implemented from scratch.

 ◾ Rank the remaining concepts—the relevant concepts—by the likelihood that they 
can be located in the code. The highest ranked concept is the significant concept.

As an example, suppose that the programmers deal with the point-of-sale sys-
tem, and the change request is, “Implement a credit card payment.” We can identify 
the following concepts: “Implement,” “Credit card,” “Payment.”

The concept “Implement” is the communication with the programmers, unre-
lated to the code; therefore, it is not relevant. The concept “Credit card” is the new 
concept to be implemented from scratch; therefore, it is unlikely to be present in the 
current code. The relevant concept is the concept “Payment”; it is likely that some 
form of payment already exists in the old program, and this implementation is to 
be found in the program. It is the only relevant concept and, therefore, it is also 
a significant concept; its extension in the code is where the change will start. The 
software change will expand this extension to also include payment by credit card. 
The ESC process is presented in Figure 6.4.

Irrelevant, communication 

with the programmer

Implement a 
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payment. 

Implement

Credit Card

Payment

External concept, yet to

be implemented

Significant concept to be
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Figure 6.4 Extraction of significant concepts.
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The process sometimes has to be expanded by the consideration of homonyms 
and synonyms. For example, the concept “Payment” can be called in the code by a 
synonym “Expense,” “Imbursement,” or various abbreviations like “Pmt” or “Paymt,” 
and the query formulation must consider this. The “Payment” can also be a homonym 
for several intensions; the programmers look for the intension “Payment as an expense 
for goods or services” rather than “Payment as a punishment for a misdeed.”

6.4 Concept Location by Grep

A popular concept location technique uses the tool “grep.” It assumes that the con-
cept extensions in the code are labeled by concept names; the concept name may 
be used as an identifier, or as a part of an identifier, or as a part of a code comment. 
The tool grep finds this concept name in the code, so in terms of Figure 6.2, the 
grep process follows the path intension → name → extension, and combines naming 
of the concept with the indexing of the name in the code.

The word “grep” is originally an acronym of the original “global/regular expres-
sion/print.” The word “grep” outgrew its acronym status and programmers widely 
use it now both as a noun and as a verb.

Using grep, programmers formulate queries (i.e., regular expressions or “pat-
terns”), then query the source code of a software system and investigate the results. 
If a line of code contains the specified pattern, it is called a “match.” For example, 
when looking for the concept “payment,” programmers may choose as a pattern to 
look for the original word (“payment”) or various abbreviations and variants (pmt, 
paymt, pay_1, and so forth).

The grep tool produces a list of the code lines and the files where the specified 
pattern appears. There may be several matches; the programmers read the code that 
surrounds these matches and look for evidence of the presence of the concept exten-
sion. Based on this reading, they determine where the concept is located.

The query can fail in several different ways. One possible failure is that the set 
of matches is empty, and this indicates that the sought word is not used in the code. 
In another situation, the word is used in the code with a different meaning (as a 
homonym), and its occurrence does not indicate the significant concept location. 
In both of these cases, the programmers have to use a different query and repeat the 
search. In formulating such a query, they often use the new knowledge they learned 
while they inspected the results of the previous unsuccessful queries.

Sometimes the query produces too many matches, and it is not practical to go 
through all of them. In this situation, the programmers can formulate an additional 
query and do another search, this time searching only the set of the earlier matches. 
In this way, they get a set-theoretical intersection of the results of the two queries, 
and this resulting set of matches is smaller than the earlier large set.

The grep tool is quick and easy to use and, as such, it is very often used as the 
first strategy for concept location. However, a grep search often fails, and if the 
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query does not produce a result, it may not be clear how to continue. In addition, 
grep often fails in a search for implicit concepts; their names usually do not appear 
in the code because there is no code, identifier, or comment that indicates the pres-
ence of the concept extension. In the situations where grep does not work, program-
mers must use other concept location techniques.

The programmers, when writing the code, can make the life of future program-
mers easier by selecting good identifiers and comments in the code that will lead 
to the concept extensions; the naming conventions can greatly enhance or hinder 
the grep search. Selection of the appropriate naming conventions is one of the most 
important early decisions of the project team.

6.5 Concept Location by Dependency Search

Dependency search is another technique of concept location. It uses local and com-
bined responsibility of program modules to guide the search. Section 4.3 explained 
the local and combined responsibility, and we will revisit them briefly here.

Program modules implement concept extensions, for example, the class Pay 
implements concept “pay by cash” and possibly some other concept extensions. All 
concept extensions that the class Pay implements are part of the local responsibility 
of class Pay. When the programmers search for the concept “pay by cash,” they 
want to find the class that is responsible for its extension.

The direction of the search is guided by combined responsibility. Combined 
responsibility is the complete responsibility that the module assumes on behalf of 
its clients, and it includes not only the concept extensions implemented locally by 
class Pay, but also all concept extensions implemented in the classes of the sup-
plier slice. Figure 6.5 shows the concepts that are a part of the local and combined 
responsibility of module X. In the figure, the extension of concept A is present in 
both local and combined responsibility of X, while the extension of concept B is 
present only in the combined responsibility. Still, the module X delivers both exten-
sions of concept A and concept B to its clients.

The top module of the program has the whole program as its supplier slice. The 
client of the top module is the user, and all modules of the program are supplying 
various responsibilities to the top module. Hence, the top module is responsible 
for all concepts of the whole program, and they are part of its combined responsi-
bility. However, the top module does not implement all these concepts, but rather 
delegates most of them to its suppliers. These suppliers in turn delegate them fur-
ther to other suppliers deeper down in the class dependency graph, and so forth.

The programmer who searches for a significant concept needs to recognize 
the presence of the concept extensions in both local and combined responsibility. 
Figure 6.6 contains the activity diagram of the concept location by dependency 
search.
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Figure 6.6 Concept location by dependency search. From Rajlich, V. (2009). 
Intensions are a key to program comprehension. In Proceedings of IEEE 
International Conference on Program Comprehension (pp. 1–9). Washington, DC:  
IEEE Computer Society Press. Copyright 2009 IEEE. Reprinted with permission.
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The search starts with a set of possible starting modules. This could be the single 
top module, but in some situations, there are several top modules in the program, 
and the programmer selects the most relevant one.

Then the programmer decides whether the selected module implements the sig-
nificant concept as its local responsibility. If this is the case, this class is the location 
of the concept, and the search ends successfully.

If the concept is not a part of the local responsibility, the programmer has to 
determine whether the concept is implemented in the combined responsibility. For 
that, the programmer uses various clues like the identifiers, comments, relations to 
other concepts, and so forth. Usually, there is no need to read the details of the code 
of the whole supplier slice; it is sufficient to make a rough guess. If the guess turns 
out to be wrong, it will lead to a later backtrack. This backtrack does not invalidate 
the search; it only makes it a little bit longer.

If the programmer concludes that the concept is implemented in the combined 
responsibility of the module, then the programmer selects the most likely sup-
plier module and checks whether it contains the concept, and the search continues 
through the supplier slice of this module. However, if the programmer concludes 
that the concept is not present in the combined responsibility, it means that a wrong 
turn has been taken sometime before. The programmer then must backtrack to a 
previously visited client and take a different direction. If the programmer concludes 
that the search is leading nowhere, the search terminates unsuccessfully. The search 
must restart with another significant concept or another search technique.

Concept location by dependency search uses class dependency graphs; however, 
programmers often use the Unified Modeling Language (UML) class diagrams as 
a substitute. Strictly speaking, UML class diagrams contain ambiguities that can 
complicate the search. Nevertheless, because the search techniques allow the possi-
bilities of backtracks that correct various errors, UML class diagrams often provide 
a sufficient support for dependency search. The next example of Violet illustrates a 
dependency search. An additional example appears in chapter 17.

6.5.1 Example Violet

Violet is an open-source UML editor that supports drawing several UML diagrams, 
including class diagrams. It contains approximately 60 classes and 10,000 lines of 
code (Horstmann, 2010). An example of the user interface of Violet is shown in 
Figure 6.7.

The change request is: “Record the author for each class symbol in the class dia-
grams.” After this change, Violet will provide information about the authors who 
created a class symbol to everyone who needs it.

The change request contains the concepts “record,” “author,” “class symbol,” 
and “class diagram.” Of these concepts, “record” is a communication with the pro-
grammer and is therefore, irrelevant; “author” is an implicit concept that is to be 
implemented from scratch and is unlikely to be present in the current code; “class 
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diagram” is a background concept, but it is not the specific concept that needs to 
be changed. The “class symbol” is the significant concept the programmers will try 
to locate. A dependency graph of the top modules (classes) of the Violet code is in 
Figure 6.8.

The search starts at the top module UMLEditor. The inspection of this module 
revealed that it does not contain the significant concept within the local responsibility. 

Figure 6.7 User interface of Violet.
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Figure 6.8 Partial class dependency graph of Violet.
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There are several suppliers of this module, including SequenceDiagramGraph, 
UseCaseDiagramGraph, ClassDiagramGraph, and so forth. Of them, 
ClassDiagramGraph is an obvious choice for the inspection because it is most 
likely that the concept “class symbol” is in its combined responsibility.

The suppliers of ClassDiagramGraph are ClassRelationshipEdge, 
PackageNode, ClassNode, and several additional modules, some of them rep-
resented in Figure 6.8. The programmers inspected the module PackageNode 
but determined that the concept is not in its combined responsibility. Figure 6.9 
shows the current state of the dependency search: Inspected modules where the 
programmer believes that the concept is in combined responsibility are gray; the 
module where the concept is not in combined responsibility is hatched.

The next step in the search is a backtrack to a previously inspected client that has 
the concept in its combined responsibility, in this case ClassDiagramGraph, 
and select a different supplier for the continuation of the search. The programmers 
selected ClassNode as the next supplier and determined that the concept is in 
both its combined and local responsibility; hence, the concept location has been 
found (see Figure 6.10). In it, the concept location is ClassNode, and previously 
inspected modules are filled with gray; an unsuccessful visit and inspection is rep-
resented by a hatched rectangle.

At this point, the search is complete and can stop. The significant concept has 
been located, and the change can be completed by adding the properties of an 
author to the module ClassNode. However, the class ClassNode inherits from 
class RectangularNode, which further inherits from AbstractNode. If the 
concept “author” is implemented there, the authorship of not only class symbols, 
but also package symbols, interface symbols, and so forth, will be recorded. This 
exceeds the change request and makes the change even more powerful and useful 
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Figure 6.9 Wrong turn in dependency search.
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than the original change request. The final figure for this search with three options 
for the concept location is in Figure 6.11.

6.5.2 An Interactive Tool Supporting Dependency Search

An interactive tool takes over a part of this process. The UML activity diagram in 
Figure 6.12 contains two swim lanes: one for the tool (computer) and one for the 
programmer. It represents the cooperation of the computer and the programmer 
and captures their complementary roles. The computer finds all top modules of 
the program, finds the set of supplier modules, and keeps track of all previously 
inspected modules for a possible backtrack. The programmer decides the direction 
of the search.
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Figure 6.11 Alternative locations of the more abstract concept.
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Summary

Concepts are bridges between discourse about the program (that includes a change 
request) and the program itself. Concepts have three facets: name, intension, and 
extension. When a change request arrives, the programmers must find the signifi-
cant concept and then its extension in the code; that is where the code modifica-
tion will start. This process is called concept location. Different search strategies 
are available for concept location. The grep search strategy seeks the name of the 
concept in the identifiers and comments of the code and considers them as an indi-
cation of the presence of the concept extension. Dependency search utilizes local 
and combined responsibilities of the program modules and searches the code based 
on these responsibilities.

Further Reading and Topics

Classic literature that deals with concepts includes the work of Wittgenstein (1953), 
de Saussure (2006), and Frege (1964). The notions of extensions and intension used 
in this chapter were coined by Frege. How concepts apply to the issues of program 
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Figure 6.12 Concept location by dependency search using analysis tool.
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comprehension and concept location are discussed by Rajlich (2009) and by Rajlich 
and Wilde (2002).

Searches in an electronic environment have been discussed by Marchionini 
(1997). A grep search is described by Petrenko, Rajlich, and Vanciu (2008), and the 
original description of the dependency search was provided by Chen and Rajlich 
(2000). These two concept-location techniques, described in this chapter, do not 
require any special preprocessing of the code; therefore, they are easy to use, even 
when the code is incomplete. There is a large set of other techniques that do require 
code preprocessing; see, for example, information retrieval techniques similar to the 
ones that are used to search in a natural language text or on the Internet (Marcus, 
Sergeyev, Rajlich, & Maletic, 2004).

In the software engineering literature, some authors replace the word concept 
with the word feature and use these two words as synonyms. However, there is 
a subtle difference that was discussed by Rajlich and Wilde (2002): Features 
are special concepts that are controlled by the software users, who can choose 
whether or not to execute them. An example of a feature is “cut and paste” in 
a word processor. The users can choose to use it but do not have to; it is their 
decision whether this feature is executed. On the other hand, an example of 
a concept that is not a feature is the opening window of the word processor. 
Whenever the users run the word processor, the windows appears, so the users 
do not have control over this, and hence, it is not a feature. The difference 
between concepts and features is an important consideration when using the 
dynamic concept location that uses execution traces to locate a concept (Wilde 
& Scully, 1995).

Indexing links play a similar role as an index in a book (Antoniol, Canfora, 
Casazza, De Lucia, and Merlo, 2002): They list the concept names, and for each 
name, they have an address of the corresponding concept extension in the code. 
When indexing links are available, they make the process of concept location much 
easier. In the literature, indexing is often called traceability.

Information about the extraction of significant concepts from the requirements 
appears in the literature in many contexts. Abbott (1983) wrote an early paper on 
the topic about the use of extraction in a context of software specifications and 
design. However, for some changes, concepts related but not actually present in 
the change request must be used in the query, and hence, a broader context of the 
change request must be considered (Petrenko et al., 2008).

Note that the concept location does not have to identify complete concept 
extension in the code; it is sufficient to identify only a part. The rest of the concept 
extension and possible secondary code modifications are found by impact analy-
sis, which is described in the next chapter. Also note that some authors deal with 
“concerns” that have a substantial overlap with notion of “concept” (Robillard & 
Murphy, 2002).
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Exercises

 6.1  Find a significant concept in the following change request: “To the color 
palette in your application, add ‘amber.’”

 6.2  For the concept named “color amber,” find intension and some real-
world extensions.

 6.3  What are the basic steps of the search for concept location? Draw the 
diagram.

 6.4  Extract the significant concepts from the following change request: 
“The application allows the users to draw only two figures: circles and 
rectangles. Allow the user to draw triangles.” Justify your answer.

 6.5  What is the difference between grep and dependency search in con-
cept location? What are the advantages and disadvantages of the two 
techniques?

 6.6  Describe a situation when a grep search fails. What would you do if 
this happened to you?

 6.7 Explain the difference between local and combined responsibility.
 6.8  Which parts of the concept location by dependency search are done by 

the programmer, and which parts are done by the computer?
 6.9  Suppose that your program has the class dependency graph of Figure 6.13. 

What is the first class you have to inspect during concept location by depen-
dency search? Suppose that after inspecting a class, you always decide cor-
rectly which is the next inspected class. What is the maximum number of 
classes to be inspected?
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Chapter 7

Impact Analysis

Objectives

This chapter introduces impact analysis—a phase that predicts the full extent of the 
required modifications and selects between different strategies of the change. It is 
the phase that immediately follows concept location.

The chapter explains the process of iterative impact analysis. After you have 
read this chapter, you will know:

 ◾ Initial and estimated impact sets of a change
 ◾ Interaction graphs and their support for impact analysis
 ◾ An iterative process of impact analysis that uses interaction graphs
 ◾ Marks used in the iterative impact analysis
 ◾ The alternatives in software change implementation
 ◾ The role of the supporting tools

***

In the process of software change, impact analysis starts where concept location lets 
off. The division of labor between concept location and impact analysis is depicted 
in Figures 7.1 and 7.2. While concept location finds the location of the relevant 
concept extension in the code, the impact analysis goes beyond that and determines 
the full effect of the change to the software system, including secondary changes 
in distant modules. The first notion that is covered in this chapter is the notion of 
the impact set.
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7.1 Impact Set

Concept location gives the programmers a foothold in the code, the modules where 
the primary code modifications will appear. The modules that are identified during 
concept location constitute the initial impact set. If the modifications are small, the 
initial impact set contains all modules that will be impacted by the change.

However, there are large software changes that are not limited to the mod-
ules of the initial impact set. Code modifications that spread to other modules 
are called secondary modifications. The task for the impact analysis is to find these 
other changing modules and create the estimated impact set. The initial impact set 
and its relation to the estimated impact set is depicted in Figure 7.2. Later, when 
the change is implemented, the changed set is the set of modules that the program-
mers actually modify. The success of impact analysis is measured by how closely the 
estimated impact set matches the changed set.

There is a reason why concept location and impact analysis are separate phases 
during software change, although they work very closely together. These two phases 
are methodically very different. As an example of the differences, concept location 
finds a specific location, and the programmers repeat it until a correct location is 
found. On the other hand, impact analysis methodically visits the neighboring 
modules, but it is more difficult to know whether the entire estimated impact set 
has been found. Hasty programmers can miss some impacted modules, and there 
is no warning that would prompt them to repeat impact analysis.

The progress of the impact analysis is based on the module interactions, and some 
authors call this process the “ripple effect” of a change. A stone thrown into a pond 

Concept Location

Impact Analysis

Prefactoring

Actualization

Postfactoring

Conclusion
V
e
r
ifi
c
a
ti
o
n

Initiation

Figure 7.1 Impact analysis in the software change process.
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causes a ripple effect that spreads further and further; similarly, a large software change 
also causes a ripple effect that spreads further and further through the interactions 
among the modules. We illustrate the impact analysis process in the following example.

Interacting People and Their Schedules

There are two close friends, Jacob and Henry, who meet regularly every Tuesday night at 7 p.m. 
for a glass of beer and gossip. They have been doing it for several years, and they look forward to 
this Tuesday night meeting; it has become a fixed part of their lives.

However, there is a sudden change in Jacob’s life: He becomes engaged to Emma, and 
Emma’s parents, John and Mary, invite him to their home for dinner every Tuesday, an invitation 
that is impossible to refuse. Therefore, he has to change his schedule. This change in Jacob’s 
schedule is the initial impact set of this case. Jacob wants to keep meeting with Henry, and after 
some discussion, Henry agrees that they will switch the regular meetings to Thursday night; 
hence, the change now propagates from Jacob’s to Henry’s schedule.

Further, Henry has been regularly meeting with another friend, Chuck, on every Thursday 
evening for a tennis game. Now, that has to be rescheduled. Chuck agrees to move the tennis 
game to Tuesday night, so the change now propagates to Chuck’s schedule also. Figure 7.3 keeps 
track of all these interactions that are taking place.

Chuck promised his nephew Bobby that he would take him to a movie on Tuesday two weeks 
from now, and Bobby is looking forward to this event. Chuck and Bobby agree that they will go 
to the movies on Saturday afternoon instead, but this is the time when Bobby regularly cleans 
his room under the supervision of his mom, Jane, so the cleaning has to be rescheduled to Friday 
afternoon. Bobby also meets his friends James and Pat on Saturday mornings at 10 a.m., and this 
meeting is not impacted by the modification in the schedule.

The primary change originated in Jacob’s schedule, and secondary changes impacted a num-
ber of other people; the estimated impact set includes the schedules of Jacob, Henry, Chuck, his 
nephew Bobby, and Bobby’s mom Jane. It does not matter that Jane has never heard of Jacob or 
his engagement; her schedule is still impacted by this change. The initial impact set is highlighted 
in dark grey in Figure 7.3, and the estimated impact set is highlighted in both dark and light gray. 
The schedules of James and Pat are not impacted and are left blank.
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Figure 7.2 Concept location and impact analysis. From Rajlich, V. (2006). 
“Changing the paradigm of software engineering.” Communications of ACM, 49, 
67–70. Copyright 2006 by ACM. Reprinted with permission.
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7.1.1 Example: Point-of-Sale Software Program

Software systems consist of tightly interdependent software classes. When a change 
appears in one of the classes, it may trigger secondary changes in interacting classes. 
An example is a variant of a point-of-sale program that supports a small store and 
keeps track of an inventory of items by item name, price, tax, available quantity, 
cashiers who are authorized to sell in the store, and so forth. The Unified Modeling 
Language (UML) class diagram for this program is in Figure 7.4.

The classes in the program are Store, which is the top class of the applica-
tion; class Cashiers, which contains a list of cashiers; class Inventory, which 
supports the inventory for the store; class Item, which contains data of a specific 
item that is being sold in the store; and class Price, which contains the price of 
an item. The code of class Price assumes that there is only a single price for every 
item, and as a result, class Price is very simple; it contains just one integer for the 
price and getPrice() and putPrice() methods that return and set the price 
of the item, respectively.

A software change to be done is described by the following change request: 
“Support price fluctuations; the users of the program should be able to set prices 
of items in advance and be able to change the item prices on selected dates. For 
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Figure 7.3 Impact on people’s schedules.
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Figure 7.4 Small point-of-sale program.
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example, there can be sales periods where on certain dates the price is lower, while 
after these dates it returns to the previous level.”

This change requires an overhaul of the class Price that adds a new function-
ality that deals with the price changes on specific dates. As a result, getPrice() 
and putPrice() methods will have an extra parameter “date” that the cli-
ents of class Price have to use when calling these methods. Classes Item and 
Inventory will be affected and become members of the estimated impact set. 
Figure 7.5 contains the dark-shaded class Price, where the change starts and 
which constitutes the initial impact set, and the light-shaded estimated impact set.

7.2 Class Interaction Graphs

The previous example illustrates the processes that find the estimated impact set. 
This section describes a graph-theoretical model that underlies the example and 
that is used in impact analysis. It is another software model, slightly different from 
the models that are explained in chapter 4. It is based on two kinds of class interac-
tions: dependencies and coordinations.

7.2.1 Interactions Caused by Dependencies

The dependencies and accompanying contracts among the classes were previously 
described in section 4.3. As a reminder, class A is a client of class B, and class B is a 
supplier of class A if some of the responsibility of class A is delegated to B. In such 
a situation, classes A and B interact through a contract, and a modification in one 
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Figure 7.5 The initial and estimated impact set of the price fluctuations.
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of them that changes the contract may propagate to the other one. The interactions 
are symmetric because the supplier can change the contract and cause secondary 
modifications in the client, and vice versa.

An example of such a situation is the class Price, which is a supplier to class 
Item and supplies the price of a store item. If class Price changes and now sup-
plies the price on a specific date, this change causes secondary modifications in class 
Item. Figure 7.6 models the relation of two classes as a dependency on the left and 
as interaction on the right.

7.2.2 Interactions Caused by Coordinations

There is also another kind of interaction that is called coordinations. Even if two 
classes do not have a contract between them, they still may interact in a way that 
is similar to the people coordinating their schedules in this chapter’s sidebar. If one 
party changes the agreed-upon meeting time, the other party is affected.

Another example of coordination in software is the classes that coordinate the 
coding of colors, where 0 is the code for red, 1 is the code for yellow, and 2 is the 
code for green. Because of the coordination, the classes send these codes to the 
other classes and are sure that each class interprets them the same way. As a more 
complete example, suppose class A contains the member function int A::get() 
that receives a choice of a color from the user and converts it into the code. Class B 
contains member function void B::paint(int) that receives the color code as 
an argument, decodes it, and paints the screen with the corresponding color. Class 
C is a client of both classes A and B, and it contains the following code fragment 
that establishes how the color code gets from A to B:

  class C { …
   A a;
   B b; …
   void foo() { …
    b.paint(a.get());

Item

Price

Item

Price

Dependency Interaction

Figure 7.6 Each dependency (left) is also an interaction (right).
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    …
    }
  };1

The interaction graph that represents the classes of this code is in the right part 
of Figure 7.7. The interaction between A and B in Figure 7.7 is caused by the coor-
dination of the color code. Note that if the color code changes in A, it must also 
change in B, while class C does not change at all. The interactions of classes C with 
A and C with B are dependencies, and for comparison, the dependency graph is in 
the left part of Figure 7.7.

7.2.3 Definition of Class Interaction Graph

A class interaction graph captures these class interactions, whether the interac-
tions are based on dependencies or coordinations. Formally, a class interaction 
graph is an undirected graph G = (X,I), where X is a set of classes, and for two 
classes A ∈ X, B ∈ X, if class A interacts with class B, then there is an edge (A,B) 
∈ I.

When comparing class interaction graphs with UML class diagrams, contracts 
typically are depicted in UML class diagrams as associations, but some of the inter-
actions, particularly the coordinations among classes, are often missing. In spite of 
that, the programmers often substitute UML class diagrams for interaction graphs, 
but they should be aware that the missing interactions pose a risk that some second-
ary modifications will also be missed. Figure 7.8 uses a UML class diagram that 
substitutes for the interaction graph.

An important notion in the interaction graphs is the notion of neighborhood. 
The neighborhood of class A is a set of all classes that interact with it: N(A) = {B  (A,B) 
∈ I}. In Figure 7.8, neighborhood of class Item is N(Item) = {Inventory, 
Price}. Classes Inventory,Price are also called neighbors of class Item.

C

A B

C

A B

Dependencies Interactions

Figure 7.7 Dependencies (left) and interactions (right) among the classes of the 
color example.
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7.3 Process of Impact Analysis

Impact analysis is the process that finds the estimated impact set. Large estimated 
impact sets cannot be determined in a single step. The programmers work step by 
step and trace how the code modifications propagate through class interactions.

To facilitate impact analysis, programmers use marks that indicate the status of 
the individual classes. Table 7.1 contains the five basic marks that the classes can 
receive. Figure 7.9 contains the activity diagram of the impact analysis with these 
marks.

Initially, all classes of the program receive the Blank status. The class identi-
fied during concept location receives the Changed status, and after that, all Blank 
neighbors are marked Next.

Then, the programmers select one of the Next classes, inspect it, and decide on 
its mark. If the programmers conclude that the selected class is going to change, 
they mark it Changed and then mark all its Blank neighbors as Next. If the pro-
grammers conclude that the selected class is not going to change, they mark it 
Unchanged and they select another Next class for inspection. If there are no Next 
classes to select from, the process of impact analysis is completed; all classes marked 
Changed constitute the estimated impact set.

Figure 7.10 presents a simple example of impact analysis. In the figure, Blank 
classes are left blank; Changed classes are shaded black; Next classes are diagonally 
shaded; and Unchanged classes are indicated by the letter U. The mark Propagates 
is described in the next section and is not used in this figure.

The process of impact analysis starts with the snapshot at the top of Figure 7.10, 
with all classes having the mark Blank. The fat top-down arrows of Figure 7.10 
indicate the progress from one snapshot to the next one.

InventoryStoreCashiers

Item

Price

Figure 7.8 Neighborhood of class Item.
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Figure 7.9 Activity diagram of impact analysis.

Table 7.1 Status of Classes in Impact Analysis Process

Mark Meaning

Blank Unknown status of the class; the class was never inspected 

and is not currently scheduled for an inspection.

Changed The programmers inspected the class and found that it is 

impacted by the change and thus belongs to the estimated 

impact set. All formerly Blank neighbors of the Changed 

class will be marked Next.

Unchanged The programmers inspected the class and found that it is not 

impacted by the change. It also does not propagate the 

change to any of its neighbors.

Next The class is scheduled for inspection.

Propagating The programmers inspected the class and found that it is not 

impacted by the change, but the neighbors of this class may 

still change; the class propagates the change although it does 

not change itself. All formerly Blank neighbors of the 

Propagating class will be marked Next (see the explanation 

in section 7.4).
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The class identified during concept location receives the Changed mark (denoted 
by black shading), indicating that it will change. After Step 1, all its neighbors will 
receive the Next mark (see diagonal shading in Figure 7.10). In Step 2, program-
mers inspect one of the Next classes and mark it as Unchanged, as indicated by the 
letter U.
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Figure 7.10 Steps of the impact analysis.
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During Step 3, the second Next class is inspected and marked as Changed; con-
sequently, in Step 4, its two Blank neighbors are marked as Next. In Steps 5 and 6, 
the programmers inspect these two classes and mark both of them as Unchanged. 
At this point, there are no remaining classes marked Next, and the impact analysis 
is complete. The estimated impact set contains two classes.

7.4 Propagating Classes

Table 7.1 and Figure 7.9 contain one additional mark for Propagating classes. This is 
a mark for classes that do not change themselves, but propagate the change to their 
neighbors; therefore, their neighbors have to be inspected by the programmers.

The propagating classes, for example, can be the classes that just deliver a mes-
sage from one class to another, and although they are in the middle of the propa-
gating change, they do not need to change themselves. For the programmers, it 
is important to remember the existence of the propagating classes and take the 
appropriate precautions.

Propagating Class Analogy: The Mail Carrier

A real-life counterpart of a propagating class is a mail carrier. John loaned a small amount of 
money to Paul, but now he needs the money back. He writes a letter to Paul requesting the 
money; a mail carrier takes the letter from John to Paul. Now, Paul must get a part-time job to pay 
back the loan, so there is a big change that propagated from John to Paul.

In this example, there are two interactions: John interacts with the mail carrier, and the mail 
carrier interacts with Paul. The change originated with John and propagates through the mail 
carrier to Paul. The mail carrier is in the middle of the propagation but does not have to change 
anything; just keeps delivering the letters from one person to another. Figure 7.11 contains the 
interaction graph; the shaded rectangles represent the people who modify their activities (John 
and Paul), while the mail carrier in the middle does not need to modify anything and delivers 
letters like before.

Figure 7.12 is an example that includes a Propagating class that is labeled by the 
letter P. The example starts again with concept location that identifies the first class 
labeled Changed. In Step 1, the programmers inspect the Next class, and they con-
clude that it is propagating; therefore, they label it by P. After that, all its currently 
Blank neighbors have to be re-marked Next, as done in Step 2 of Figure 7.12. In the 
Step 3, the programmers inspected one of the Next classes, decided that it changes, 
and marked it Changed. In the final step, Step 4, they inspected the last remaining 
Next class and concluded that it does not change and also that it does not propagate 
the change and thus marked it Unchanged. This concludes the impact analysis, 
since there are no longer any classes marked Next; the classes shaded black are the 
estimated impact set.

John Mail Carrier Paul

Figure 7.11 Interactions between John, mail carrier, and Paul.
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7.5 Alternatives in Software Change

Programmers often can implement changes in several different ways. An example is 
a program that is displaying a temperature in Fahrenheit, and the required change 
is to display it in Celsius instead. In the program, two separate locations deal with 
the temperature: one where the temperature is calculated from the sensor data and 
the other one where it is displayed to the user. One way to make the change is to 
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Figure 7.12 Impact analysis with propagating class.



Impact Analysis ◾ 117

change the logic, that is, to change the temperature calculation. The other one is 
to keep the calculation intact and adjust only the display of the temperature in the 
user interface by a conversion formula there. Impact analysis weights these alterna-
tives and decides which strategy of the change is better.

The criteria that help to decide what is a better strategy are the required effort 
and the clarity of the resulting code. Very often, these two criteria contradict each 
other; the easier change may negatively impact the clarity of code and vice versa. In 
the previous example, it is easier to adjust the temperature by employing a simple 
conversion formula in the user interface. However, for the future clarity of the code, 
it is better to have all calculations of the temperature in one place and therefore, 
do the conversion in the place where the temperature is calculated from the sen-
sor data. The first approach makes the future evolution more difficult, because the 
future programmers will have to identify two locations in the code that participate 
in the temperature calculations rather than just one.

It is tempting to choose the change strategy that completes the change quickly 
and ignores the consequences. This is a classic conflict between short-term and 
long-term goals. The true professionals should resist temptations to solve today’s 
problems at the expense of the future. In the end, project managers who are trained 
in the evaluation of such trade-offs should evaluate the existing options.

Impact analysis is carried out not only in the source code, but other artifacts 
may also be involved, like the tests, external documentation, and so forth. These 
auxiliary documents also need to be updated during the change, as the change 
propagates to them through their interactions with the source code.

The estimated impact set can be prepared for a single software change, for a 
sequence of several changes, or for a completely new release that consists of a large 
number of changes. The size of the estimated impact set is one of the criteria that 
lead to a selection of the appropriate change strategy.

7.6 Tool Support for Impact Analysis

Tools have been developed to support the impact analysis process, and the program-
mers can delegate some actions to these tools. These actions include the extraction 
of the class interaction graph from the code, and keeping the marks of the various 
classes that are involved in the impact analysis process.

The activity diagram of Figure 7.13 represents the division of labor between the 
tool and the programmer. This activity diagram contains the same actions as the 
earlier activity diagram of Figure 7.9; however, there is an addition of two swim 
lanes, one for the computer and one for the programmer. The computer swim lane 
contains all actions that the tool/computer performs. These actions are easy for 
the tool and difficult or onerous for the programmer, such as keeping track of 
the classes, their interactions, and their marks during the iterative impact analysis 
process. The tool automatically creates a class interaction graph and assigns the 
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original Blank mark to all classes. Furthermore, the tool assigns the mark Next to 
the neighbors of the Changed and Propagating classes, and detects the situation 
where there are no longer any Next marks, which signals that the process of the 
impact analysis is finished.

The programmer swim lane contains all actions that are hard for the tool; hence, 
they still have to be done by the human programmers. The programmers conduct 
the inspections of the classes marked Next and, based on the results of these inspec-
tions, they assign marks Changed, Unchanged, and Propagating.

Summary

Impact analysis starts with the result of the concept location—that is, with the 
initial impact set—and produces an estimated impact set that consists of classes 
that will be modified due to secondary modifications. It uses class interaction 
graphs that represent all class interactions that include dependencies and coor-
dinations between the classes. The programmers trace the change using these 
interaction graphs and use the marks to remember the status of the classes in this 
process. The neighbors that interact with a changed class have to be inspected 
by the programmer, who decides whether they will also change. There are also 
propagating classes that do not change themselves but propagate the change to 

ProgrammerComputer

Create interaction diagram and mark all classes as BLANK

Mark the class located during concept location as CHANGED

[Yes]

Mark the class as CHANGED

Mark the class as PROPAGATES

Mark the class as UNCHANGED

Select one of the
classes marked
NEXT. What is the
new mark for this
class?

Are there any classes in the

interaction diagram marked as NEXT?
[No]

[UNCHANGED]

Mark all BLANK neighbors as NEXT

[PROPAGATES]

[CHANGED]

Figure 7.13 Activity diagram of interactive impact analysis. From Petrenko, M., 
& Rajlich, V. (2009). Variable granularity for improving precision of impact analy-
sis. In Proceedings of IEEE International Conference on Program Comprehension 
(pp. 10–19). Washington, DC: IEEE Computer Society Press. Copyright 2009 IEEE. 
Reprinted with permission.
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their neighbors. The impact analysis also decides on the strategy of the change. A 
supporting tool for impact analysis constructs an interaction graph, keeps marks 
of the classes in the process, and prompts the user to inspect classes marked for 
the inspection.

Further Reading and Topics

Early papers on impact analysis include works by Haney (1972) and Yau, Collofello, 
and McGregor (1978); a thorough survey of the early work is provided by Bohner 
and Arnold (1996). An interactive impact analysis and a preliminary set of marks 
and rules is described by Queille, Voidrot, Wilde, and Munro (1994). This model 
was further formalized and expanded by additional propagation rules and marks 
in works by Rajlich (1997, 2000). Further expansion of the model by Petrenko 
and Rajlich (2009) takes into account different granularities that the programmers 
may want to use. These granularities include the granularity of the classes, which 
is emphasized in this chapter, as well as additional finer granularities of methods 
and code segments. A tool based on these models of interactive impact analysis was 
described by Chen and Rajlich (2001), and later it was refined and implemented 
as a tool called JRipples (Petrenko, 2010). The JRipples tool implements the activi-
ties of the “computer” swim lane of Figure 7.13, and its user interface supports the 
activities in the “programmer” swim lane. In particular, it supports the presenta-
tion of the modules and their marks, and prompts the programmers to inspect the 
modules that are marked for inspection.

UML class diagrams were used in an impact analysis as a substitute for the 
interaction graphs by Rajlich and Gosavi (2004). Briand, Labiche, Yan, and Di 
Penta (2004) presented the results of an experiment that showed that the use of the 
Object Constraint Language (Warmer & Kleppe, 2003) can significantly increase 
the quality of impact analysis performed on UML models. The quality of impact 
analysis and change planning can increase if software maintainers are supplied 
with the design rationale for each module in the system (Abbattista, Lanubile, 
Mastelloni, & Visaggio, 1994).

Classification of class interactions into different categories can improve impact 
analysis (Kung, Gao, Hsia, & Wen, 1994). A classification that considers the effects 
of object-oriented dependencies such as inheritance and polymorphism on impact 
analysis was explored by Li and Offutt (1996). Coupling metrics were used to esti-
mate the likelihood that a change would propagate through an interaction (Briand, 
Wuest, & Lounis, 1999). Dynamic analysis, which uses program execution traces 
to find the estimated impact set, has been explored in works by Law and Rothermel 
(2003) and Orso, Apiwattanapong, and Harrold (2003).

While the analysis of dependencies is fairly advanced, the analysis of coordina-
tions among the classes still has very many open research problems. A certain class 
of coordinations called “hidden dependencies” is based on the data flows among 
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the objects. These data flows carry encoded information from the generator to the 
recipients, and they both have to use the same encoding formula. If one changes, so 
must the other (Yu & Rajlich, 2001; de Leon & Alves-Foss, 2006).

Impact analysis often deals with code that uses various software technologies. 
Impact analysis in distributed databases was performed by Deruelle, Bouneffa, 
Melab, and Basson (2001). Impact analysis can also use only module interface 
information and does not necessarily consider the modules’ content (Muller, Hood, 
& Kennedy, 1987).

Data-mining approaches for the software repository rely on the project’s 
historical data for impact analysis (Ying, Murphy, Ng, & Chu-Carroll, 2004; 
Zimmermann, Weisgerber, Diehl, & Zeller, 2005). A common heuristic for this 
type of approach is that if two artifacts frequently changed together in the past, 
then there is a high probability that these two artifacts are interacting and will 
change together in the future. Information retrieval techniques that are combined 
with data mining proved to be particularly effective (Canfora & Cerulo, 2005).

Exercises

 7.1  Section 7.1.1 discusses the impact analysis in the point-of-sale system. 
For each of the following software changes, determine the estimated 
impact set:

  a. Keep detailed sale records such as item sold and date/time of sale.
  b. Support multiple items per transaction.
  c. Expand cash payment to include cash tendered and return change.
  d. Implement payment by a check.
 7.2  Describe at least two different diagrams or graphs that could be used in 

impact analysis and discuss their benefits and limitations.
 7.3  What is the difference between initial impact set and estimated impact 

set?
 7.4  Explain the difference between dependencies and coordinations. Give an 

example of each.
 7.5 What is a propagating class? Give an example.
 7.6  Consider the class interaction graph of a program in Figure 7.14. If the 

concept is located in A, and the change set is {A, E}, what components 
need to be inspected by the programmers during impact analysis? Justify 
your answer.

 7.7  In the class interaction graph of Figure 7.15, the Propagating and 
Unchanged classes are denoted by P and U, respectively. Among the 
classes that are currently left blank, denote by C all classes that are 
Changed so that the process of impact analysis also produces the classes 
currently labeled by P and U.

 7.8  In Figure 7.5, a UML class diagram is used for impact analysis; all class 
associations are, in fact, class dependencies. Create the corresponding 
interaction graph.

 7.9  Change the activity diagram of Figure 7.13 in such a way that the classes 
marked Unchanged are inspected again if a class marked Changed becomes 
their neighbor.
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Chapter 8

Actualization

Objectives

During the actualization phase, programmers modify the software and add the 
new functionality that the stakeholders requested. While previous phases planned 
the change, the actualization follows this plan and modifies the code and the pro-
gram’s functionality. After you have read this chapter, you will know:

 ◾ Differences between small and large changes
 ◾ Incorporation of a new responsibility through polymorphism
 ◾ Incorporation of a new supplier
 ◾ Incorporation of a new client
 ◾ Incorporation of a new responsibility through replacement
 ◾ Change propagation through the old code

***

Previous chapters explained the preparatory phases of change initiation, concept 
location, and impact analysis (see Figure 8.1). The actualization differs from these 
preparatory phases by the fact that it actually modifies the code and implements the 
new functionality. It may also be preceded by a phase of prefactoring that, together 
with postfactoring, is explained in the next chapter. It also overlaps and interleaves 
with verification, which is also presented in future chapters.

The actualization phase consists of the implementation of the new functional-
ity, its incorporation into the old code, and change propagation that seeks out and 
updates all places in the old code that require secondary modifications. The size of 
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the changes determines the process and the small changes are handled differently 
than the large ones.

8.1 Small Changes

For small changes, programmers add the new responsibility by modifying the 
appropriate code segment. As an example, consider a change where a five-digit zip 
code is replaced by a nine-digit zip code in a class Address. The old code is:

class Address
 {
 public:
  move();
 private:
  String name, streetAddress, String city;
  char state[2], zip[5];
 };

After the modification, the new code requires a nine-character array for the zip 
code; the modified code is in bold:

class Address
 {
 public:
  move();

Concept Location

Impact Analysis

Prefactoring

Actualization

Postfactoring

Conclusion
V
e
r
ifi
c
a
ti
o
n

Initiation

Figure 8.1 Actualization in the software change process.



Actualization ◾ 127

 private:

  String name, streetAddress, String city;

  char state[2], zip[9];

 };

The change from a five-digit zip code to a nine-digit zip code also impacts the 
method move(), which is responsible for a person moving from an old address to 
a new one. This method is modified so that it can deal with a nine-digit zip code, 
while its old version dealt with a five-digit zip code only. The variable zip and 
method move() are members of the same class, and this change is completely 
contained within this class.

8.2 Changes Requiring New Classes

Larger changes may require new classes that are plugged into the old code by estab-
lishing associations between these new classes and the old code. The examples in 
this section include polymorphism, new suppliers, new clients, and replacement of 
old classes by the new ones. The subsections also explain when each of the tech-
niques is applicable.

8.2.1 Incorporating New Classes Through Polymorphism

Polymorphism is a part of object-oriented technology that provides a convenient 
help to incorporate the medium-sized changes. An example of polymorphism is in 
section 3.4.5, and it is repeated here for the convenience of the reader:

class FarmAnimal

 {

 public:

 virtual void makeSound() {};

 };

class Cow : public FarmAnimal

 {

 public:

 void makeSound() {cout<<” Moo-oo-oo”;}

 };

class Sheep : public FarmAnimal

 {

 public:

 void makeSound() {cout<<” Be-e-e”;}

 };
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The change request is the following: Add a new farm animal Pig that makes the 
sound “Oink.” The polymorphism makes this change easy; the programmers just 
add the following class:

class Pig : public FarmAnimal
 {
 public:
 void makeSound() {cout<<” Oink”;}
 };

After this change, class Farm can declare objects of the type Cow, Sheep, or 
Pig; hence, the combined responsibility of Farm was extended by the concept 
Pig. The corresponding UML class diagram is in Figure 8.2, where the left part 
contains the old code and the right part contains the new class that is incorporated 
into the old code through polymorphism.

The incorporation of new functionality through polymorphism usually leads 
to small change propagation. This kind of incorporation should be used whenever 
polymorphism is available and the new responsibility meshes with it, as in the farm 
animal example.

8.2.2 Incorporating New Suppliers

If new responsibilities have no counterpart in the old code, then a viable way of 
implementing them is through new supplier classes. These new classes are devel-
oped as stand-alone classes (see Figure 8.3).

New CodeOld Code

Farm

Sheep

FarmAnimal

PigCow

Figure 8.2 Addition of new class through polymorphism.
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They are plugged in (incorporated) as new components into the appropriate 
place of the existing code through a declaration of a new object of the new class, 
as represented by Figure 8.4. Implicit concepts that were described in chapter 6 
often must be incorporated as brand new component classes during actualization. 
The location that hosts the new objects is discovered by using concept location as 
described in chapter 6.

Old Code New Code

Figure 8.3 New responsibility implemented as the local functionality of the new 
module.

Old Code New Code

Figure 8.4 New supplier incorporated as a component.
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An example is an introduction of the cashier authorization into a point-of-sale. 
The old point-of-sale did not require authorization, and anyone was able to launch 
the application and use all of its functionality (see the classes in the right part of 
Figure 8.5 with blank fillings). The change request is to “create a cashier login that 
will control the user log in with a username and password.”

A new class Cashier is created separately from the old code, and contains 
the new authorization responsibility. The new class has the fields cashierId and 
password and the methods login() and logout(). The integration of the new 
code with the old is based on the concept location that finds the best place in the old 
software for the new concept of Cashier, which is in the class Store.

After the creation of the object of type Cashier in the class Store, the relevant 
methods of class Store have to be updated. For example, the method that starts the 
application must be modified, because it has to invoke the method login(). The 
change in this example does not propagate to any additional classes (see Figure 8.6).

In other changes, incorporating new component classes often starts a large 
change propagation that propagates to other, sometimes distant classes. Chapter 17 
contains a more complete example of incorporation of new component classes that 
triggers a large change propagation.

8.2.3 Incorporating New Clients

If the pieces of the new required responsibility already exist in the old code, then 
these pieces have to be collected and glued together. This leads to the implementa-
tion of the new responsibility as a new client (see Figure 8.7).

This new client is then plugged into the old code by the creation of a new object 
(see Figure 8.8). The location of this new object is again identified by a concept 
location. Sometimes a whole new application is created in this way, and the new 
client is the top module of this new application.

InventoryStoreCashiers

Item

Price

Figure 8.5 Class diagram of the existing point-of-sale; new class Cashier.
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An example is a point-of-sale program whose UML class diagram is in 
Figure 8.6. The new responsibility to be added is a daily report that summarizes 
what happened that day in the store. The report shows the state of the inventory 
at the end of the day and lists the cashiers who worked in the store on that day. 
The report is implemented by a new client DailyReport that uses the already 
existing suppliers Cashiers and Inventory. It is then plugged into the class 
Store as its component (see Figure 8.9).

8.2.4 Incorporation Through a Replacement

If an obsolete version of the required responsibility already exists in the old code and 
is being replaced by a new one, then the old module with obsolete responsibility is 

InventoryStoreCashiers

Item

Price

Figure 8.6 Implementation of a new client class.

Old Code New Code

Figure 8.7 New responsibility incorporated as a new client.
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replaced by a new module (see Figure 8.10). The replacement usually starts change 
propagation in all directions, because interactions with other modules have to be 
updated as well.

As an example, the point-of-sale program in Figure 8.6 contains the class 
Price that implements the price of an item. The old code assumes that there is 
only a single price for every item and, as a result, the class Price is very simple; 
it contains just one integer for the price along with methods getPrice() and 
setPrice() that return and set the price of the item, respectively. The change 
request is to support price fluctuations; the users of the program should be able to 
set prices of items in advance and be able to adjust the item prices on selected dates. 
For example, there can be sales periods where, on certain dates, the price is lower, 
while after these dates it returns to the previous level.

Old Code New Code

Figure 8.8 Class diagram of point-of-sale after incorporation of class Cashier.

InventoryStoreCashiers

Item

Price

DailyReport

Figure 8.9 New responsibility incorporated as a new client.
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This change requires a complete overhaul of the class Price. It adds new 
responsibility that deals with the successive dates and price adjustments and 
includes an algorithm that erases old prices on the dates past. This new class then 
replaces the old one.

8.3 Change Propagation

The code modifications, whether small or large in terms of the code size, often break 
the interactions among the classes. These broken interactions have to be repaired 
one by one, in a process that is similar to the process of impact analysis, but this 
time, the programmers do the actual code modifications. The secondary modifica-
tions are usually smaller than the primary modifications, and they are done directly 
in the old code. The set of all classes that are modified during the change are called 
the changed set.

In the previous example in Figure 8.6 and section 7.1.1, the constant price was 
replaced by a more complicated changing price that varies from day to day. The 
method getPrice() now has to have a new parameter that indicates the date on 
which the price is valid. That extra parameter causes modifications in the code of 
the classes Item and Inventory (see Figure 8.11).

Old Code New Code

Figure 8.10 Obsolete composite/component class replaced by a new one.
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Deletion of obsolete responsibility also causes change propagation. Every loca-
tion in the code that references the deleted responsibility must be inspected, and 
the reference to it must be removed.

How Programmers at Ericsson Radio Underestimated the Impact Set

Impact analysis and change propagation go hand in hand; impact analysis estimates which 
classes have to be modified, and change propagation modifies the code of the impacted classes. 
Change propagation is the moment of truth for impact analysis; it confirms or refutes the predic-
tions that impact analysis has made. As with all predictions, impact analysis is frequently less 
then perfect.

The accuracy of impact analysis is important for software managers; they use the size of 
the estimated impact set in their planning. Researchers at the Swedish company Ericsson Radio 
Systems asked themselves how accurate the predictions of impact analysis are (Lindvall & 
Sandahl, 1998). The data for both the estimated impact set and the actual changed set for a new 
version of their project are presented in Table 8.1.

The data should be read in the following way: The total number of the classes in the system is 
the sum of all numbers in the table, that is, the total = 42 + 0 + 64 + 30 = 136 classes. Of these 
classes, 30 belong to the category of the classes that the programmers predicted would be modi-
fied, and, indeed, they actually were modified (lower right cell of the table). These classes are 

InventoryStoreCashiers

Item

Price

Figure 8.11 Change propagation for the sales price.

Table 8.1 Accuracy of Impact Analysis Predictions

  Estimated

Unmodified Modified

Actual
Unmodified 42  0

Modified 64 30

Source: From Lindvall, M., & Sandahl, K. (1998). How well do experienced software 
developers predict software change? Journal of Systems and Software, 
43(1), 19–27. Copyright 1998 Elsevier. Reprinted with permission.
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sometimes called true positives. On the other hand, there were zero classes that the programmers 
predicted would be modified but they were not; these classes are sometimes called false posi-
tives. The classes that the programmers predicted would not be modified and were not modi-
fied are called true negatives, and they are in the upper left cell of the table; there were 42 true 
negatives. Finally, false negatives are the classes that the programmers predicted would not be 
modified but that actually were modified; there were 64 false negatives.

The numbers in Table 8.1 are sometimes presented in terms of precision and recall (Baeza-
Yates & Ribeiro-Neto, 1999), which are commonly used in the information retrieval. Precision 
indicates how many members of the estimated set are actually correct; that is, it is a ratio of (true 
positives)/(true positives + false positives). In the case of the engineers at Ericsson Radio Systems 
(Lindvall & Sandahl, 1998), precision = 30/(30 + 0) = 1 = 100%.

Recall indicates to what degree we retrieved everything that we need; that is, it is a ratio of 
(true positives)/(true positives + false negatives). In the case of Ericsson, recall = 30/(30 + 64) = 
0.32 = 32%. In other words, the programmers estimated that the changes would impact only 
about one-third of all classes that actually were modified, and missed the other two-thirds. The 
managers who planned their effort got an estimate that was lower than reality by two-thirds!

The underestimation is very common in software engineering, perhaps because of the soft-
ware invisibility, which is one of the essential software difficulties. However, software engineers 
are by no means the only people who underestimate the difficulties of the task they are facing. 
There are students who underestimate the difficulty of homework, book authors who underes-
timate the time necessary to write a book, and a long parade of others who find themselves in 
similar situations.

Summary

After the earlier preparatory phases, actualization modifies the code in such a way 
that the new requested functionality becomes a part of the code. Actualization 
of small changes is done directly by modification of the code in the location that 
was indicated by concept location. Actualization of larger changes is done by new 
classes that are incorporated into the old code. Polymorphism allows a straightfor-
ward incorporation of the new responsibility. Wherever the polymorphism cannot 
be used, then new responsibility can be introduced as a new supplier. If parts of 
the new functionality already exist in the code, then they can be glued together as 
a new client. If the old functionality needs to be upgraded, then it is incorporated 
through replacement. Secondary modifications then may propagate to other classes 
of the software.

Further Reading and Topics

There are numerous technologies that make the actualization easier. Polymorphism 
is one such technology, and its use in incorporation of new responsibilities was 
illustrated in section 8.2. Polymorphism and its theory are discussed in great detail 
by Cardelli and Wegner (1985).

Design patterns are precepts on how to use object-oriented technology, includ-
ing polymorphism, in a sophisticated way to solve commonly occurring diffi-
culties in class interactions. When properly used, they make incorporation of a 
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new requested responsibility easier (Gamma, Helm, Johnson, & Vlissides, 1995; 
Stelting & Maassen, 2002).

Application programming interface (API) is a module that supports incorpora-
tion of composite clients. API is a supplier that provides a universal set of con-
tracts for a specific problem area. When programmers need to create a new client, 
they use a combination of these contracts. They implement the new responsibil-
ity by finding the appropriate API and then gluing together the contracts offered 
by the API, by writing a minimal additional code. If they need to replace an 
obsolete client by an enhanced one, they use the same API and create the new cli-
ent. API is a stabilized code, and ordinary changes do not propagate through API 
into the supplier slice; hence, change propagation is smaller. This greatly facili-
tates actualization of all changes that deal with the problems that are solved by 
API. An example of an elaborate API is in the Eclipse Platform API Specification 
(Eclipse, 2010).

Polymorphism, design patterns, and API belong to the category of anticipated 
changes. If programmers expect certain kinds of volatility, they can prepare soft-
ware for it by using these techniques that make future changes easier. There are 
additional techniques that support anticipated changes, for example, more general 
and complete class interfaces (Parnas, 1979). However, all anticipatory approaches 
should be used with realistic expectations; the anticipation always codifies the past 
understanding of the system and past understanding of its evolution. There is no 
guarantee that the anticipated changes will actually arrive, while the unanticipated 
changes may hit with a vengeance. The anticipations also complicate the code and 
its comprehension by a new factor: The programmers have to guess what the origi-
nal authors anticipated, and what they did not.

Among the additional technologies that support incorporation of new respon-
sibilities into old programs, a widely used technology is reflection (Forman & 
Forman, 2004).

Some technologies support fast gluing of already-implemented responsibili-
ties into a new composite client; they can be seen as a technological support of 
the incorporation of the composite client as described in section 8.2.3. Prominent 
among them are scripting languages (Ousterhout, 2002; Loui, 2008).

In certain situations where software cannot be stopped for the update, the incor-
poration is done dynamically while software is running (Hicks & Nettles, 2005).

Exercises

 8.1  If you have a choice to incorporate your changes through polymorphism 
or through a component class, which one are you going to choose? Why?

 8.2  Do changes done through polymorphism propagate to the clients of the 
base class?

 8.3  How is the activity diagram of impact analysis in Figure 7.9 modified 
for change propagation?

 8.4 What is the difference between small and medium size changes?
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 8.5  Give an example of the replacement of a component class by a class 
that contains new functionality.

 8.6  Give an example of the replacement of the composite class by a class 
that contains new functionality.
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Chapter 9

Refactoring

Objectives

Refactoring is a phase of software change that improves the structure of the soft-
ware while keeping the same functionality; the software has the same behavior 
before and after the refactoring. In this chapter, you will learn when and how to 
refactor the code so that evolution can continue unhindered.

After you have read this chapter, you will know:

 ◾ Prefactoring, which prepares the code for a specific change
 ◾ Postfactoring, which removes bad smells from the code
 ◾ Several specific refactorings, including function extraction, base class extrac-

tion, and component class extraction

***

An introductory example of a refactoring is “Rename an entity.” Suppose that the 
programmers concluded that an identifier in the code is misleading and should be 
replaced by an improved one that better represents the concepts implemented by 
the entity. For example, the programmers may want to change the variable name 
money that is too generic to a more specific name salary.

In a simple context, renaming can be accomplished by a simple substitution 
of one string by another, but in the languages with complicated name spaces, 
like Java or C++, it can be a difficult task. The same name can be used in dif-
ferent contexts with different meanings. For example, names of methods can be 
overloaded, and the same name of a method with a different list of parameter 
types can have a different meaning. The programmers may desire to rename the 
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identifier that has only one of these meanings. Therefore, often renaming is not 
just a simple string replacement, but it requires code analysis. Other refactorings 
are even more complex and change the software structure. Examples are merging 
and splitting classes, merging and splitting methods, moving a method from one 
class into another one, and so forth.

During the software change, refactoring is done both before and after the 
actualization, as indicated by Figure 9.1. Before the actualization, the program-
mers may want to reorganize software to make the following actualization easier; 
we call that prefactoring. After the actualization is complete, the programmers 
may want to clean up whatever problems the actualization caused, so that future 
programmers will encounter a clean and logical code structure; we call that post-
factoring. It is a similar situation to home repair: Before adding a dishwasher to 
a kitchen, the repairman makes changes to the kitchen that give better access to 
the pipes and makes room for the dishwasher, without changing the kitchen’s 
functionality (prefactoring). After the dishwasher has been installed, the repair-
man replaces all broken kitchen counter tiles, seals the holes around the pipes, 
cleans the debris, and so forth (postfactoring). If a repairman did not perform 
these tasks, you would consider it an incomplete or poor job; the same is true for 
software change.

The same set of refactoring transformations can be used in both prefactoring 
and postfactoring. For example, “Rename an entity,” mentioned previously, is fre-
quently used in postfactoring. The actualization that was just done in the software 
may mean that the entities of the program acquired new functionality and are 
no longer accurately identified by their old names; hence, they need renaming. 

Concept Location

Impact Analysis

Prefactoring

Actualization

Postfactoring

Conclusion

Initiation

V
e
r
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c
a
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o
n

Figure 9.1 Refactoring in software change.
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It can also be done during prefactoring when programmers decide to rename the 
entities in advance. There is a wide selection of refactoring techniques, and several 
frequently used refactorings are presented in the following sections. The last section 
of the chapter addresses the respective roles of prefactoring and postfactoring in the 
software change process.

9.1 Extract Function

During evolution, some functions grow too large because they acquire new respon-
sibilities. When they reach a certain size, they need to be divided into smaller and 
more manageable parts that are easier to understand; “Extract function” refactor-
ing accomplishes that. Sometimes a part of the function code is universal and can 
be used by other functions, and that is another reason to extract that code as a 
separate function. As an example, consider the following function:

void count_char_input(char c, int& count)
 {
int i, len;
char str[100];
cin.getline(str, 100);
len=strlen(str);
   count=0;
for(i=0; i<len; i++)
    if(str[i]==c)
        count++;
 }

The function count _ char _ input reads a string from input and then 
counts how many times the character specified as argument c appears in the string. 
The highlighted part of the function is doing the counting; this part of the code 
is universal and can be used in many different contexts, so it is a candidate for 
extraction as a new function count _ char _ str. After the extraction, func-
tion count _ char _ input calls this new function:

void count_char_input(char c, int& count)
 {
int len;
char str[100];
cin.getline(str, 100);
len=strlen(str);
   count_char_str(count,len,str,c);
 }

void count_char_str(int& count, int len, char* str, char c)
 {
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int i;
count=0;
for(i=0; i<=len; i++)
        if(str[i]==c)
            count++;
 }

The functionality of the new and old code is the same; only the structure is differ-
ent. The lines of code that were added during the function extraction are bold.

Function extraction consists of the following steps: First, the programmers 
select a block of code for extraction. The block must be syntactically complete; 
if there is a loop in the old function, it must be either completely inside or com-
pletely outside of the selection, and the same is true for other control constructs. 
Next, the programmer extracts the selected block as a new function body and 
replaces the selected block in the old function by the new function call. If the old 
function is a member of a class, the new function also becomes a member of the 
same class.

The variables that move from the selected block to the new function are turned 
into one of the following categories:

 1. Local variables
 2. Global variables
 3. Parameters passed by value
 4. Parameters passed by reference

The variable that is used only in the selected block and does not carry any 
information into or out of it becomes a local variable. That can occur even when 
the original variable is declared outside the selected block. A candidate for a local 
variable must be written before being read inside of the selected code, and it must 
not be accessed in the rest of the code; an example is the variable i in the previ-
ous code.

A variable will be passed as a value parameter to the new function if its value is 
used within the selected block, but either there is no modification to this variable 
in this block, or the modifications are not used elsewhere. This variable must be 
either local or passed by value in the original function; examples are variables len, 
str, and c.

If a variable is global in the original function, it remains global in the extracted 
function. The rest of the variables are passed as reference parameters; an example is 
the variable count in the previous code.

The programmers who want to separate a specific concept extension from the 
other concepts sometimes use function extraction. The opposite of extraction is 
macro expansion when the programmers replace function calls by the macro-
expanded function body.
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9.2 Extract Base Class

Programmers extract base classes whenever they want to prepare software for the 
incorporation of the new functionality through inheritance or polymorphism, as 
discussed in chapter 8. This is necessary whenever the programmers originally 
missed the opportunity to divide the responsibilities between the base and derived 
classes and created only one class instead. The need to separate derived and base 
classes becomes obvious later when a new change request demands a new function-
ality that has a large overlap with the functionality already implemented by an old 
class. If that happens, then the overlapping functionality should be extracted into 
the base class.

As an example of extracting a base class, consider a program that has a class 
Matrix that implements the concept “matrix” from the linear algebra; the matrix 
is implemented as a large array of 100 × 100 integers:

class Matrix
 {
 protected:
  int elements [100][100], columns, rows;
 public:
  Matrix();
  void inverse();
  void multiply (Matrix&);
  int get (int,int);
  void put(int,int,int);
 };

There is the following change request: “Add sparse matrix to the code.” The 
reason for the change request is that the program is supposed to handle even larger 
matrices than 100 × 100, and there is a concern that the required memory size will 
be too large. Moreover, the data in the matrix are mostly zeroes, and therefore, the 
matrix can be implemented as a properly structured linked list where the nonzero 
elements are present as the nodes, and the zero elements are left out. For a bet-
ter terminology, let’s call this implementation sparse matrix and the original array 
implementation of the matrix to be dense matrix.

An analysis of the problem indicates that the only difference in the dense and 
sparse implementation of the matrix is the difference in the data structure that is 
used to represent the matrix. This difference is reflected in different access to the 
elements of the matrix, that is, in different implementations of the methods get 
and put. For the dense matrix, these methods are just reading and assigning an 
array element, while for sparse matrix they involve a search in the linked list that 
implements the matrix. At the same time, both sparse and dense matrices use the 
same algorithms for the matrix operations that constitute the bulk of the code, 
multiply and inverse. These algorithms originate from linear algebra; hence, 
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it is not a surprise that they are the same for sparse and dense matrices. There is sig-
nificant overlap between the old and new functionality; consequently, the situation 
is suitable for the addition of the new functionality through polymorphism, but 
that polymorphism has to be introduced into the program through prefactoring.

In the first step of the prefactoring, the programmers rename class Matrix to 
class DenseMatrix. The goal is to create several different classes that deal with 
matrices; therefore, each of them needs a more descriptive name. After renam-
ing, the change is done in two steps: First, the base class AbstractMatrix is 
extracted from the DenseMatrix as in Figure 9.2. Later during actualization, the 
incorporation of the new functionality is done by polymorphism as in Figure 9.3. 
The shading in both figures represents the new class.

The extracting of the base class AbstractMatrix is done in the follow-
ing steps:

DenseMatrix

AbstractMatrix

Figure 9.2 Extracting a base class.

DenseMatrix

AbstractMatrix

SparseMatrix

Figure 9.3 Incorporation of a new functionality in SparseMatrix.
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 ◾ Create a new empty class AbstractMatrix
 ◾ Make DenseMatrix derived from AbstractMatrix
 ◾ Replace all references to the matrix elements in the code of DenseMatrix 

by get and put to avoid the direct references to the array implementation 
of the matrix

 ◾ Move variables columns and rows to AbstractMatrix
 ◾ Move methods inverse and multiply to AbstractMatrix and add 

virtual functions get and put into AbstractMatrix

After this refactoring, the code of the two classes is the following:

class AbstractMatrix
 {
 protected:
  int columns, rows;
 public:
  void inverse();
  void multiply (AbstractMatrix&);
  virtual int get (int,int)=0;
  virtual void put(int,int,int)=0;
 };
class DenseMatrix: public AbstractMatrix
 {
 protected:
  int elements [100][100];
 public:
  DenseMatrix();
  int get (int,int);
  void put(int,int,int);
 };

After this refactoring, the program has exactly the same behavior as before, but 
has a different class structure that is much more suitable for the addition of the 
SparseMatrix. Like DenseMatrix, the class SparseMatrix will contain 
the data structure that implements sparse matrix as a linked list as well as the functions 
get and put that access elements of the matrix. The complicated methods multi-
ply and inverse will be inherited from the class AbstractMatrix, and this 
will greatly simplify the implementation and incorporation of SparseMatrix.

9.3 Extract Component Class

Programmers extract a component class when a primitive form of the concept 
extension is already present in the code, and it is to be modified and expanded in 
response to a change request. The old primitive concept extension does not have a 
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class of its own, but is a part of another class. The programmers extract it into a new 
class and, in this way, they prepare the software for the incorporation of the new 
functionality by replacement, as explained in chapter 8.

The point-of-sale example in Figure 9.4 contains three classes, and the concept 
“price” is implemented as a field and a method of the class Item. The old code 
assumes that there is only a single price for every item. The change request is to sup-
port price fluctuations and allow the users to set prices in advance and be able to 
change them on selected dates. For example, there can be sales periods where, on cer-
tain dates, the price is lower, while after these dates it returns to the previous level.

The prefactoring that prepares the program for this change creates the new 
component class Price and moves all related data fields and functions into it, 
as shown in Figure 9.5. It does not matter that this extracted class has very little 
responsibility, because it will be replaced anyway. During this class extraction, the 
field price and the method getPrice() are extracted and included in a new 
class called Price that is a component of the class Item.

The methods calcSubTotal and calcTotal that stay in the class Item are 
changed because they now have to deal with a component class. The commented-out 
code is deleted, and the code highlighted in bold is added to these two functions.

double calcSubTotal(int numberToSell)
 {
 if (numberToSell < 1) return 0.0;
 else
  // return numberToSell * price;
   return numberToSell * price.getPrice();
 }

Inventory

+getPrice() : double

+getTax() : double

+calcSubTotal() : double

+calcTotal() : double

-inventory : int

-price : double

-tax : double

-upc : long

-name : String

Item

Store

Figure 9.4 Point-of-sale before refactoring.
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double calcTotal(int numberToSell)
 {
 if (numberToSell < 1) return 0.0;
 else
 // return numberToSell * price *(1+tax);
  return numberToSell * price.getPrice() * (1+tax);
 }

After this refactoring, the code is ready for the incorporation of the new functional-
ity. It is done through the replacement of the class Price by the new one that has 
the full functionality of price fluctuations.

Experience with Refactoring

Powertrain Engineering Tool (PET) is a program developed at Ford Motor Company to support 
the conceptual design of a car power train. The power train consists of the car engine, gear box, 
wheels, and so forth. The mechanical parts of the power train are described by physical param-
eters, and their interactions are modeled by equations that contain these parameters. Whenever 
a parameter value is changed, an inference algorithm traverses the equations and recalculates 
the values of all dependent parameters. The value of each calculated parameter must stay within 
certain constraints.

PET is implemented in C++, and every mechanical part is modeled as a C++ class. It is inter-
faced with other software, including optimization software and 3-D modeling software.

The object-oriented structure of PET was impacted by rapid evolution. PET started as a novel 
proof-of-concept tool, but it quickly developed a user community that used it to design the real 
power trains. Based on the experience from this use, user requirements substantially expanded. 
However, the structure of the code did not keep up with this rapid expansion. Some important 

Store

+getPrice() : double
+getTax() : double
+calcSubTotal() : double
+calcTotal() : double

-inventory : int
-price : double
-tax : double
-upc : long
-name : String

Item

Inventory

+getPrice() : double

-price : double

Price

Figure 9.5 Extraction of the class Price.
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concepts ended up sharing the same classes, which was not a problem with the original tool, 
but it became a problem once these classes grew. New programmers in particular had difficulty 
understanding and evolving this rapidly expanding system. With the growing size of the source 
code and confusing structure, further evolution became difficult.

One of the problems was the intermingling of two tiers: the graphics user interface through 
which the users communicate with the system and the algorithmic tier that handles the mechani-
cal parts, the equations, and inference algorithm. This led to frequent situations where changes in 
user interface impacted the algorithmic part, and vice versa. To make the future changes easier, 
the programmers separated these two tiers, dividing the classes that intermingled the two tiers by 
“extract component” refactoring. That substantially improved the structure of the code and made 
further evolution easier, because the changes in the graphics user interface and changes in the 
algorithms no longer impacted the same code (Fanta & Rajlich, 1998).

9.4 Prefactoring and Postfactoring

Refactoring differs from actualization by the fact that it is hidden from the user, 
because no new functionality is added. This leads some programmers and managers 
to incorrectly conclude that refactoring does not add to the value of the software.

Among the refactorings presented in the previous two sections, both component 
and base class extractions are particularly suitable for prefactoring that prepares the 
software for a change actualization. These refactorings, if properly used, make the 
subsequent actualizations easier, and in fact they divide the implementation of the 
change into two smaller and easier steps: prefactoring and actualization.

Change actualization sometimes leaves messy code. The old code and the new 
code that was introduced by actualization may work correctly together, but the 
structure of the code may become confused and illogical. These deviations from the 
ideal have been called bad smells. Bad smells—if left untreated—will cause code 
decay and complicate future software evolution.

The purpose of postfactoring is to remove bad smells from the code. If the code 
contains functions that are too large, they are removed through “extract function.” 
If the names used in the program become illogical, the problem is solved by renam-
ing. If a class is too big, it is divided into smaller ones by class extraction, and so on. 
The postfactoring cleans up the code and makes future changes feasible.

While prefactoring has a clear goal, postfactoring’s goal is a somewhat ambigu-
ous “good code structure,” and sometimes the question is raised how much code 
postfactoring is optimal. Obviously, insufficient postfactoring causes problems, and 
a certain portion of programming effort must be spent in postfactoring. The bad 
smells left in the code contribute to the code decay, and the code decay causes prob-
lems that were discussed in chapter 2 that ultimately lead to the loss of evolvability.

On the other hand, there is no such thing as perfect code, and excessive post-
factoring can be a waste of resources. Small bad smells (small deviations from per-
fect) can be a matter of opinion, where different programmers may prefer different 
variants of the code structure. Excessive postfactoring or postfactoring that is not 
backed by a consensus of the programming team should be avoided.



Refactoring ◾ 149

Summary

Refactoring reorganizes the structure of software according to the needs of soft-
ware evolution. It is done either before (prefactoring) or after (postfactoring) 
actualization. Prefactoring makes work on the change easier; hence, it is driven 
by the self-interest of the programmers. Postfactoring, on the other hand, makes 
work easier for future programmers; therefore, it requires a responsible attitude 
on the part of the programmers. There is a large selection of specific refactor-
ings. Examples of important refactorings that were covered in this chapter are 
“Rename an Entity,” “Extract a Base Class,” “Extract Function,” and “Extract 
Component Class.”

Further Reading and Topics

There are as many different postfactorings as there are deviations from a good struc-
ture of the code. Beyond the refactorings that are presented in this chapter, numer-
ous additional refactorings appear in a book by Fowler (1999). The same author also 
maintains a website that, at current count, contains 93 refactorings (Fowler, 2011). 
More advanced refactorings are refactorings to patterns (Kerievsky, 2005). Base 
class extraction of section 9.2 is from Opdyke and Johnson (1993).

Large-scale refactorings can be presented as transformations of dependency graphs; 
a survey of this approach is presented in a paper by Mens & Tourwé (2004).

Refactoring can be done by a standard editor, but in that case the bulk of the 
work is done by the programmers, and the code after refactoring must be thoroughly 
verified because the programmers can introduce bugs. Recent software environ-
ments contain a selection of refactoring tools that cover basic refactorings (Deva, 
2009). They help the programmers to refactor and also to improve the correctness 
of refactoring results. Some of these tools are fully automatic, and they refactor 
the code correctly. After these refactorings, the code does not need retesting. An 
example of such refactoring tools includes those used for “Rename an entity.”

Exercises

 9.1  During the software change process, the programmer has already done 
refactoring during the prefactoring phase. Why is postfactoring needed?

 9.2  Give three examples of refactoring. When should each of them be 
applied, and why are they important?

 9.3  Associate the following types of refactoring with prefactoring and post-
factoring. Justify each decision.

  a. Move function from one class to another
  b. Extract superclass
  c. Extract component class
  d. Merge classes
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 9.4  From the following function printPosition(), extract a new func-
tion that returns the position of the beginning of a given string in a 
given text.

void printPosition(){
 int i,j;
 char text[1024]=”1234567890”;
 int text_length = 10;
 char array_to_search1[4]=”23”;
 int array_to_search1_length = 2;
 int position1 = -1;
 for (i=0;i<text_length-array_to_search1_length+1;i++) {
   bool found = true;
   for (j=0;j<array_to_search1_length;j++)
      if(text[i+j]!=array_to_search1[j])
         found = false;
   if (found) {
      position1 = i;
      break;
   }
 }
 cout<<position1;
}

 9.5  The following program calculates the square root of the absolute value 
of a given number. The program contains duplicate code, dead code, 
and variables without a meaning. Apply refactoring, and justify your 
decisions.

public class A {
 public static void main(String args[]){
  double c = Double.parseDouble(args[0]);
  if (c>0) {
   double t = c;
   double EPSILON = 1e-15;
   while (Math.abs(t - c/t) > t*EPSILON) {
    t = (c/t + t) / 2.0;
   }
   System.out.println(t);
  }
  else {
   double t = -c;
   c = -c;
   double EPSILON = 1e-15;
   while (Math.abs(t - c/t) > t*EPSILON) {
    t = (c/t + t) / 2.0;
   }
   System.out.println(t);
  }
  if ( c<0){
   System.out.println(«Error: the number is
                       smaller than 0»);
  }
 }
}
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Chapter 10

Verification

Objectives

Regardless of their size and scope, all changes in the code, even the smallest ones, 
have to be verified. After you have read this chapter, you will know:

 ◾ The reasons why programmers need to verify all their work
 ◾ The role of testing, its limits and strategies
 ◾ Unit testing and test-driven development
 ◾ Functional and structural testing
 ◾ The purpose of regression and system testing
 ◾ Verification of the code by inspections

***

Programmers are performing verification during phases of prefactoring, actualiza-
tion, postfactoring, and change conclusion. Figure 10.1 shows the verification and 
the phases it overlaps with.

The reason for the need to verify programs lies in the essential difficulties of 
software that were described in chapter 1. Because of these difficulties, program-
mers very often produce imperfect work and commit various mistakes. These mis-
takes are called faults, defects, or bugs, and the purpose of the verification is to find 
and correct them. The bugs, when found, are either immediately fixed, or they are 
described in a bug report and recorded in the product backlog with the expectation 
that they will be fixed later.

Many techniques of software verification have been researched and proposed, 
but in current practice, testing and code inspection are the main techniques used.
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10.1 Testing Strategies

Software testing verifies the correctness of software through tests, which execute the 
program or its parts. Tests execute software with the specific input data, compare the 
outputs of the execution with the expected outputs, and report if there is a deviation. 
Tests are usually organized into a test suite that consists of several, often many, tests.

Although testing is the most common form of software verification, it has a 
serious weakness that has been summarized by the following observation: Testing 
can demonstrate the presence of bugs, but not their absence. No matter how much 
testing is done, residual bugs can still hide somewhere in the code, because they 
have not been reached and revealed by any of the current tests. No test suite can 
guarantee that the program runs without errors under all conditions; no matter 
how thorough it is, it cannot simulate all the circumstances under which the pro-
gram or its parts operate.

There are deep theoretical reasons for this fact, as it is one of the consequences 
of the so-called halting problem. The halting problem states that it is impossible to 
create a tool that would analyze a program and determine whether the program 
contains an infinite loop or whether it always stops. Although the programmers 
can create tools that find some specific infinite loops, they cannot create tools that 
find all of them.

Because an infinite loop is a bug in many programs, it logically follows that it is 
impossible to create a perfect tool or perfect a test suite that would reveal all bugs. 
Programmers have been trying to do the best under the circumstances and have 
developed techniques of testing that—although they cannot and do not establish 
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Figure 10.1 Software verification and its role in software change.
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complete correctness of software—are nevertheless able to intercept a large number 
of bugs and satisfy reasonable stakeholder expectations.

When developing testing techniques, programmers face software discontinuity 
that is an essential difficulty of software and was discussed in chapter 1. Because 
of it, the software may give a correct result for a specific value, for example, for the 
value 1, but for the very next value, 0, it can have a bug because, in one of the state-
ments somewhere in the code, it attempts to divide by this value.

There is a large variety of software testing techniques and contexts. The tests of 
the new code are created from scratch as a part of the software change. There is also 
the testing of the old code that was not supposed to be impacted by the change, 
and the tests make sure that this is indeed the case. These tests are called regression 
tests, because their purpose is to prevent regression of what was already function-
ing before. The system tests verify software comprehensively, without regard to what 
is new and what is old; they are done during the phase of change conclusion and 
verify the complete functionality of the software baseline.

Unit tests verify individual modules (units) of the program, for example, 
classes or class methods. Functional tests verify correctness of a specific func-
tionality of the whole program. If the program has a graphical user interface 
(GUI), the features that are available to the user are tested in these functional 
tests. Furthermore, there are structural tests that guarantee that the tests exe-
cuted certain parts of the programs, and the testing coverage specifies the parts 
that the structural tests must execute. The tests are aggregated into test suites 
that test various aspects of software and contain unit, functional, and struc-
tural tests.

There is a distinction between the production code and the scaffolding or har-
ness code. Production code is part of the product, and corresponds to the cus-
tomer requirements. Its compilation creates the executable code that will run on 
the customer’s computer. In contrast, scaffolding is used only internally by the 
development team but does not go to the user. The scaffolding code is analogous to 
scaffolding that is used in the construction industry: It supports the workers and 
their tools during the building process and contains ladders or elevators to trans-
port materials to the higher floors, temporary support for beams, platforms for the 
workers, and so forth. When the construction is done, the scaffolding is torn down 
and the users get the building without the scaffolding.

The software scaffolding or harness code consists of temporary throwaway parts 
that contain test drivers that control the execution of the tests and test stubs that 
implement a temporary replacement for missing classes and subsystems. It may 
also contain a simulation of the environment in which the software operates; for 
example, in programs with a graphical user interface, it may simulate user actions. 
Control programs are frequently tested with the controlled system being simulated, 
in order to lower the expenses of the testing and to give testers greater control over 
the parameters of the controlled system.
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The harness and the production code are one system. Each software change 
modifies not only the production code, but also modifies the harness code. After 
the concept location, the impact analysis identifies not only the modules of the pro-
duction code that will change, but also the tests and other harness-code modules 
that have to be changed. For example, some tests may become obsolete, and these 
have to be deleted from the harness code, while new tests are introduced. The new 
tests added during the software change will become a part of the harness code. The 
prefactoring, actualization, and postfactoring phases update not only the produc-
tion code, but they update the harness code as well. The parallel evolution of the 
production code and the harness code is shown in Figure 10.2.

The size of the harness code depends on the application domain and on the 
expected thoroughness of the software testing. As a rule of thumb, the harness code 
is on average the same size as the production code.

10.2 Unit Testing

Unit testing is the testing of a specific module of the software; it tests whether these 
modules correctly fulfill their responsibilities. Unit tests deal with the composite 
responsibility, or the local responsibility.

10.2.1 Testing Composite Responsibility

Testing of the composite responsibility verifies a class together with its supplier slice. 
The programmers write test drivers that substitute for the clients. An example of 
a test driver is the class TestItem in Figure 10.3; it tests whether class Item 
together with its supplier class Price fulfill their responsibility. Both classes Item 
and Price are called the tested code.

. . .. . .

Production code 1

Production code 2 

Production code 3 

Harness 1 

Harness 2 

Harness 3 

Figure 10.2 Parallel versions of production and harness codes.
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Test drivers typically verify whether the tested class fulfills the contract with 
its clients, particularly whether the postconditions hold if the supplier keeps the 
preconditions. However, for practical reasons, the drivers rarely can deal with com-
plete preconditions and postconditions, and most commonly, they check the fulfill-
ment of the contract for a specific sampling of input values only.

An example in Figure 10.3 is a part of a point-of-sale system that contains a 
class that deals with items sold in a store. The following is an example of code of 
the test driver:

class TestItem
 {
 Public:
 Item testItem;
 void testCalcSubTotal()
  {
  assert(testItem.calcSubTotal(2, 3) == 6);
  assert(testItem.calcSubTotal(10, 20) == 200);
  }
 void testCalcTotal()
  {
  assert(testItem.calcTotal(0, 5) == 5);
  assert(testItem.calcTotal(15, 25) == 40);
  }
 };

+testCalcSubTotal()

+testCalcTotal()

TestItem

+calcSubTotal() : int

+calcTotal() : int

Item

+setPrice()

+getPrice() : int

Price

Figure 10.3 Example of a test driver.



158 ◾ Software Engineering: The Current Practice

In this example, the assert statement is a special statement that is used in the 
tools for unit testing; it contains a condition that checks whether the contract for a 
particular value is satisfied. The contract for that value is expressed as a logical state-
ment, in this case an equivalence that checks whether a method returns the correct 
values. If the condition of the assert statement is not satisfied, the tester is notified 
that the test failed. If an assert statement is not available, it can be simulated by 
a combination of other statements.

Class TestItem consists of two tests, each testing a different method of class 
Item. The method calcSubTotal calculates one line of a customer receipt, 
where for a given number of items and given price the method calculates the sub-
total to be paid, which is given by the formula: (price of the item) * (number of 
items). The corresponding test checks whether the method is doing this correctly 
for specific values 2 and 3. The method calcTotal adds the values of the first 
and the second parameter; the assert statements checks whether the method 
does that correctly for specific values 15 and 25.

10.2.2 Testing the Local Responsibility

Sometimes the local responsibility of a class needs to be tested. This situation 
arises when the supplier classes are not available or have not been tested and, 
therefore, confidence in them is low. In these cases, the user has to provide not 
only the drivers that substitute for the clients, but also stubs that substitute for 
the suppliers. These stubs are part of the testing harness code together with the 
drivers. Because the stubs are throwaway code, the programmers usually try to 
spend less time on their implementation than they would spend on the final sup-
plier classes.

Several stubbing techniques save the programmer’s effort. There are stubs with 
less effective but easier to implement algorithms; for example, if the supplier is sup-
posed to sort the data, the stub uses a trivial but inefficient sorting algorithm. As 
a result, the test becomes less efficient, but since the users are not involved, it does 
not have great impact.

Another stubbing technique is to use a limited range of the contract (precondi-
tion) that the stub can handle and do the testing only within this range; this can 
simplify the code of the stub substantially. For example, if the supplier is sup-
posed to convert the date into a day of the week, the stub may do that only for a 
selected month, for example, January 2011, and not worry about the quirks of the 
Gregorian calendar. Of course, this type of stub limits the composite responsibility 
of the client class also, and therefore, limits the range of the tests.

User intervention is a stubbing technique that interrupts the test and asks the 
user who is running the test for the correct answer from the stub. This technique is 
practical only in situations where the stub is executed only a few times during the 
test, or the stub provides a technique for how the value will be recorded and repeat-
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edly used; otherwise, it becomes tedious. Also, the human user may input incorrect 
values; hence, this stubbing technique is to a certain degree unreliable.

The most controversial stubs are those with a replacement contract that provide 
a quick but incorrect postcondition. For example, the supplier is asked to convert a 
date into a day, but the stub always returns “Wednesday” as the answer, so the stub 
provides an incorrect answer most of the time. Stubs of this type can be written 
very quickly, but they introduce an intentional bug into the testing process. Testing 
with this type of stub may still provide valuable results if it is used with caution for 
some peripheral responsibilities that are not essential for the functioning software, 
and if the intentional bug that is introduced by this stub has an easy workaround.

10.2.3 Test-Driven Development

One of the promising unit-testing techniques is the test-driven development (TDD) 
that was mentioned in chapter 5 in Figure 5.2. In TDD, the programmers use the 
change request as the starting point and, based on this, they define a corresponding 
unit test. After such a test is written, they write or modify the actual code of the 
relevant unit and immediately test it. If the test fails, they correct the code and then 
repeat the corrections until the code passes the test.

A benefit of this approach lies in the fact that if there is an ambiguity in the 
change request, it is discovered early during the test writing. If the programmers 
cannot decide what the postcondition values should be for certain precondition 
values, then there is a problem with the requirement. Hence, the ambiguity is dis-
covered early, before the effort is spent on actual code writing. This helps to prevent 
certain types of bugs that are caused by the ambiguity of the requirements.

Another benefit is that the test focuses the programmers’ efforts on the essen-
tial code that helps to pass the test, which is also essential for the actualization of 
the change request. The programmers are sometimes tempted to add elaborate but 
unnecessary wrinkles to the code that are not only unnecessary, but can become a 
distraction and a source of bugs. TDD helps to avoid this gold plating.

10.3 Functional Testing

Functional testing verifies the functionality of the whole software that is available 
to the users. In many ways, it is similar to testing the composite responsibility, 
where the supplier slice is now the whole program. However, functional testing 
has to take into account the interface through which the program interacts with 
the outside world. This interface often has different properties than the rest of the 
software, and it plays a substantial role in the functional testing.

Programs with a GUI are a very common type of software. These programs are 
characterized by the fact that the users can select various features from the menus. 
Programmers do functional testing by executing these features one by one and 
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observing the program behavior. For example, in the point-of-sale applications, 
there is a feature “print out a sales receipt”; the programmers verify this feature by 
selecting it from the menu, supplying the data, and observing whether the sales 
receipt is printed correctly, which means that the feature behaves as specified in the 
requirements or in a user manual. The complete coverage of all features means that 
the users test all features that the application offers.

Manual functional testing can become tedious; there are tools that record the 
events on the interface, and they can be used when automating functional test-
ing. When the programmers test the software for the first time, they do the tests 
manually with the recording turned on. When they repeat the tests, they replay the 
recording. Several record/playback tools are currently available.

10.4 Structural Testing

Structural testing bases the testing on the structure of the code. The idea is the fol-
lowing: Since programmers cannot guarantee a complete correctness of the code 
by testing, they accept a reduced target. They guarantee that a reasonable number 
of the code units will be executed at least once. This guarantees that at least some 
of the more obvious bugs are discovered; those are the bugs that are revealed by a 
single execution of the unit.

An important notion of structural testing is coverage, which identifies the units 
that have been executed at least once and how they relate to each other. The cover-
age can be done on different granularities. The coarsest granularity that is usually 
considered is the granularity of the methods. In the example of Figure 10.3, there 
are the following methods: calcSubTotal(), calcTotal(), getPrice(), 
setPrice(); complete method coverage guarantees that each of these methods 
is executed at least once. This may look like a rather crude approach, as it guaran-
tees very little in terms of the program correctness. However, it is still a valuable 
approach that guarantees the correctness of the software better than an arbitrary 
selection of tests.

Finer granularities that are used in structural testing include the granularity 
of statements; statement coverage guarantees that every statement of the program is 
executed at least once. There are many ways that a test suite can cover a statement. A 
minimal test suite covers all statements of the program and does not have any redun-
dant tests, that is, it does not contain any tests that cover only statements that are 
not already covered by other tests. A minimal test suite is of particular importance 
because it efficiently accomplishes the coverage goal.

Consider the following code fragment:

read (x); read (y);
if x > 0 then
 write (“1”);
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else
 write (“2”);
end if;
if y > 0 then
 write (“3”);
else
 write (“4”);
end if;

Each test for this code must specify two input values, one for the variable x 
and one for the variable y. The test suite consisting of a single test {<x=2, y=3>} 
covers statements write (“1”) and write (“3”), but does not cover write 
(“2”) and write (“4”); hence, it does not provide complete coverage. The test 
suite {<x=2, y=3>, <x=97, y=17>, <x=-1, y=-1>} covers all statements, but it 
is not minimal; the test {<x=97, y=17>} is redundant because it covers only 
statements that are already covered by test {<x=2, y=3>}. The test suite {<x=2, 
y=3>, <x=-1, y=-1>} covers all statements and is minimal.

A minimal test suite that provides complete coverage is ideal, but unfortunately, 
it is very hard and expensive to implement it in large programs. Very often, the test 
suites have redundant tests, and they cover only part of the code. The reason why 
it is hard to do higher coverage is the following: It is very easy to write the first test 
because no matter what it covers, it increases the test suite coverage. However, as 
the number of tests grows and the uncovered statements are fewer, it is increas-
ingly hard to aim the tests at these remaining uncovered statements. To create new 
nonredundant tests takes more and more effort, and at some point, the managers 
may decide that the increased coverage is not economical. That is why many test 
suites fall short, sometimes far short, of complete coverage.

10.5 Regression and System Testing

After a change has been made, the programmers must retest the software to reestab-
lish confidence that the former functionalities of the software still work properly. 
Regression testing attempts to find whether the change inadvertently introduced 
stray bugs into the intact parts of the software.

Because regression testing verifies the parts that are not supposed to change, tests 
from the past constitute the bulk of the regression test suite. The suite may consist 
of tests that use various testing strategies, and it is not uncommon that it combines 
the structural, unit, and functional testing. The original tests were created when the 
particular issue was tested the first time. After that, they become a part of the test 
suite, and they are reused repeatedly whenever regression testing is conducted.

Repeatability of the tests is the problem that the programmers have to address in 
this context; if a test worked in the past and the tested functionality did not change, 
the repeated test must return the same result. Repeatability can be a challenge in 
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certain situations; for example, if a test requires a manual mouse click on a specific 
point on the screen. Fortunately, there are tools available that allow the recording 
of the user actions; these actions can be recorded when the test is run for the first 
time and become part of the test suite. They are repeatedly replayed whenever the 
regression test suite runs.

There are two closely related test suites: regression and system test suites, as 
depicted in Figure 10.4. The system test suite verifies the whole functionality of soft-
ware at a particular moment in time, and it is used to validate the new baseline. 
However, after a change, some tests become obsolete because the corresponding 
functionality has changed. These tests are deleted, and the resulting test suite is 
the regression test suite for the software after the change. When the tests for the new 
functionality are added to the test suite, a new system test is created, and it is then 
ready for the next baseline testing.

As new tests are added, the test suite often grows, and it can become time con-
suming to rerun it. For large programs, the system testing is often done overnight 
or over weekends.

10.6 Code Inspection

Code inspection is a totally different approach to software verification than testing. 
Its basic idea is that somebody else other than the author reads the code and checks 
its correctness. Code inspection does not require execution of a system, and it can 
be applied to incomplete code or to other artifacts like models or documentation. 
Code inspections are based on the idea that software defects are a programmer’s 
mistakes, and that it is easier for other programmers to spot these mistakes than it 
is for the original programmer.

Habituation

To explain the success of code inspections, we have to understand the problem of habituation. 
Habituation is a term from psychology and neurobiology that explains how people (and animals) 
become blind to repeatedly experienced stimuli.

If there is a repeated stimulus, the response from the nervous system declines. For example, 
shortly after putting on clothes, people stop noticing them. People who live next to railroad 
tracks become habituated to the train noise and sleep soundly through the night, while a visitor 
who has not habituated repeatedly wakes up with each passing train.

System test Regression test

Add tests of new functionality

Delete obsolete tests

Figure 10.4 System and regression test suites.
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Habituation is nature’s coping mechanism. Imagine how overwhelmed our nervous system 
would be if all stimuli, no matter how repetitive, would be processed with the same intensity. 
There is so much to distract us: people walking behind classroom windows, the spot on the wall, 
a forgotten flier on the desk in front of us, and so forth. After the first glance, all these stimuli fade 
away and we can concentrate on the lecture, thanks to habituation.

However habituation also has a dark side. Some stimuli should not fade away, because they 
require our persistent attention. An example is traffic signs: Commuters who have traveled a 
road 100 times habituate and stop noticing the traffic signs. However, if there is a change—for 
example, a new stop sign in a place where it was not before—habituation can cause a serious 
accident. The departments of transportation know this, and when they introduce a new stop sign, 
they usually post one or several warnings that notify the commuters: “Watch out, there will be a 
new stop sign ahead,” hoping that the commuters will notice one of these warnings.

The inability of programmers to find their own software bugs also belongs to this dark 
side of habituation. After reading their own code several times, programmers no longer read 
the code with the same intensity, but recall from memory what they think the code contains; 
hence, some rather obvious errors repeatedly escape their attention. A different reader who 
does not have the same habituation discovers these errors right away. The programmers can 
productively reinspect their own code, but only after a passage of time when the habituation 
has worn off (Thompson, 2001). 

Inspections and testing are complementary verification techniques. There are 
bugs that are easily discovered by testing but are hard to spot by a human. An 
example is misspellings of long identifiers; they are intercepted early in the testing, 
during the compiling stage, but they can be very hard for programmers to spot. On 
the other hand, some bugs occur only in special circumstances, and it is hard to 
create a targeted test that aims at such circumstances. In this case, human readers 
have an advantage because, as they read the code, they can assess it from the point 
of view of these unlikely situations. An example is a potential division by zero in a 
code statement. Human readers can point out that, under certain circumstances, 
there is a danger that division by zero will occur and cause program failure. To cre-
ate a test that causes such a situation can be much more difficult.

Inspections can also check whether different artifacts agree with each other. 
They can check whether the code implemented in actualization corresponds to the 
change request, whether the UML model corresponds to the actual code, and so 
forth. However, inspections cannot check some nonfunctional characteristics such 
as performance.

Inspections can be successful only if the code reviewer has knowledge of the 
technologies used in the process, understands the program domain, and under-
stands the specifics of the change request. Code inspections may seem to be an 
extra cost, but they have proved to be an effective technique that increases the 
quality of the code.

The inspection process is sometimes formalized in code walk-throughs, which 
are conducted in a very structured way. A walk-through team is made up of at least 
four members: the author of the inspected code, a moderator, and at least two code 
reviewers. The walk-through process consists of preparation, where the code or 
other work products are distributed to the inspection team. For each document, 
one participant inspects the document thoroughly. Then there is the meeting in 
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which all team members participate. The whole group walks through the docu-
ment under direction of the reviewer, who notes the errors, omissions, and incon-
sistencies in the code; the other members of the team add their own observations. 
The moderator chairs the meeting and notes the discovered errors. In the end, the 
moderator produces a report from the walk-through session that contains recom-
mendations that list the documents that need corrections and the documents that 
have to be completely reworked.

Summary

Software verification increases the quality of software by finding and removing 
bugs from the code. The two most common and complementary techniques of 
verification are testing and inspection.

Testing executes the program or its parts and assesses whether the program 
behaves correctly. Structural testing monitors execution of code units, most com-
monly the statements and methods. Unit testing selects a specific unit of the code, 
usually a class or a method, and tests its composite responsibility with the help of 
specially written drivers. Sometimes it tests its local responsibility with the help of 
both drivers and stubs that substitute for the supplier units. Test-driven develop-
ment is a technique where the tests are written first, and the code is written after 
that and tested. Functional testing executes the software as a whole as it appears to 
the user. Regression testing reestablishes confidence in the parts of software that 
have not been touched by the change, and system tests verify a new baseline that 
includes both old and new code.

Software inspection is a process wherein programmers other than the author 
read the code and point out the bugs; the programmers approach the code from 
a fresh perspective and are able to spot bugs that escape the attention of the 
original authors.

Further Reading and Topics

Software verification is a key software engineering issue, and an enormous amount 
of research and practical work has been done and published in this field. There are 
specialized books and numerous papers that deal with it in a more thorough man-
ner. Chapter 13 describes testing as the main task of a specialized group of devel-
opers, who are called testers; for them, a more thorough treatment of this topic is 
necessary. To answer that need, specialized courses on verification often appear in 
curriculums. Examples of textbooks that cover testing in a more thorough manner 
are those by Jorgensen (2008), Binder (1999), and many others.

In related literature, structural testing is often called white-box testing, while 
functional testing is often called black-box testing. The halting problem that is the 
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theoretical basis for the incompleteness of all testing strategies is explored in the 
theoretical literature, for example, by Hopcroft, Motwani, and Ullman (1979).

The strategies for test selection of both functional and unit testing, including 
boundary-value testing and equivalence-class testing, are presented in a book by 
Jorgensen (2008). Unit testing and the tools that support it are described in a book 
by Hamill (2004). Test-driven development is explored in a book by Beck (2003). 
Several tools that support testing of GUIs through the record/playback strategy are 
described by Ruiz and Price (2007).

Unit testing is usually done bottom-up: The first units (classes) that are tested 
are the classes that have no suppliers. Once they are tested, their clients are tested, 
then the clients of the clients, and so forth, until the whole software is tested. A 
topological sort on the class-dependency diagram establishes the order in which the 
unit tests are conducted. However, this simple strategy does not work when there 
are loops in the dependency graph. These loops have to be disconnected, and the 
classes that lost their suppliers due to this disconnection have to be tested with the 
use of stubs (see chapter 14 and also a paper by Kung, Gao, and Hsia [1995]).

Structural testing and testing coverage is explored in great detail in a book by 
Ammann and Offutt (2008). Automatic test generation that aims to produce pre-
defined coverage is discussed by Korel (1990).

Regression testing is done frequently and, therefore, an important issue is 
the reduction of the time that regression tests need to run. Various techniques 
that explore the regression-test creation and reduction are explored in a paper by 
Rothermel, Untch, Chu, and Harrold (2001). Among them are firewalls that limit 
the regression tests to the neighbors of the changed classes, with the idea that most 
of the regression bugs introduced by a change are forgotten change propagations 
(White, Jaber, Robinson, & Rajlich, 2008).

A thorough description of code inspections is presented by Fagan (1999). An 
important issue is the estimation of the defects that are left in the code, because 
it is an indicator of the quality of the code. A statistical technique called capture-
recapture that uses inspection data was developed for that purpose (Humphrey, 
1999; Biffl, 2002). The resulting indicator of the software quality is called defect 
density or fault density, and it is estimated that solid software of today contains 
2.0 residual defects per 1,000 lines of code. The cutting edge of what can be 
achieved is 0.1 defects per 1,000 lines of code, but there is a trade-off between 
defect density and software cost. Some avionics software, where human life is at 
stake, aims at that high standard while accepting the extra cost that the additional 
testing and additional inspections require. The history of modifications and past 
faults also serves as a predictor of the faults left in the code (Ostrand, Weyuker, 
& Bell, 2005).

The change propagates not only through the production code, but it also propa-
gates to the harness code, and in particular to the tests contained in the harness 
code. The tests are tied to the production code through dependencies, and there-
fore, each change that affects a part of the production code propagates through 
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these dependencies to the harness code and identifies the tests that are no longer 
valid (Ren, Shah, Tip, Ryder, & Chesley, 2004).

Exercises

 10.1  After completing 100% statement coverage, is software without a bug? 
Give a simple example to validate your answer.

 10.2 What is unit testing and why is it used?
 10.3 What is the difference between inspection and testing?
  a. Give example of a bug that is easily found by testing
  b. Give example of a bug that is hard to find by testing
  c. Give example of a bug that is easily found by inspection
  d. Give example of a bug that is hard to find by inspection
 10.4 What is regression testing? What does regression testing prevent?
 10.5  Design a minimal test suite that cover all the statements of the following 

function:

#include <iostream>
using namespace std;
char* f(int number){
 if (number>=0){
  switch (number){
   case 0: return “yellow”;
   case 1: return “red”;
   case 2: return “green”;
   default: return “no color”;
  }
 }
 else
  cout<<”error: the number has to be positive”;
}

 10.6 For the following program, design a minimal test suite:

public static void main(String args[]) {
  int i,j;
  int k = 0;
  i = Integer.parseInt(args[0]);
  j = Integer.parseInt(args[1]);
  if (i>30) {
   if (i<=60 &&j<=150)
    k=1;
   else if (i<=90 &&j<=150)
    k=2;
   else
    k=3;
  }
  if (i==j &&i<=30)
   k=4;
  System.out.println(k);
 }
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 10.7 Explain the difference between unit and functional testing.
 10.8  In test-driven development, a test is written first and then the code to 

pass it. Given the following test, write a method that passes the test.

 public class TestGrade {
  Grade testGrade;
  public void testGetFinalGrade() {
  assert(testGrade.getFinalGrade(70) == “Pass”);
  assert(testGrade.getFinalGrade(69) == “Fail”);
 };

 10.9  Expand the test in exercise 10.8 to include grades A to F using the following 
grade scale:

Letter Grade Minimum percentage

A 90

B 80

C 70

D 60

F < 60

 10.10 The following class Item needs to be tested:

public class Item{
 Price p = new Price();
  public Item(int priceOfItem){
   p.setPrice(priceOfItem);
  }
 public double calcSubTotal(int numItems){
return numItems * p.getPrice();
}
public double calcTotal(double subTotal, double tax){
 return subtotal + tax;
}
 };

   However, the class Price is not available. Write a stub of class Price 
for testing.

 10.11 Explain the inspection process.
 10.12 Inspect the following code and identify bugs in it.

public double calculatePercentage(int x, int y){
 if(x == 0)
  return 0;
 else
  return x/y;
 }
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Chapter 11

Conclusion of 
Software Change

Objectives

The last phase of software change is a phase where the programmers integrate 
the modified code into the baseline, prepare software for future changes, and 
may release the new version to the users. After you have read this chapter, you 
will know:

 ◾ Build of the new baseline
 ◾ Preparation of the software for future changes
 ◾ Release of the new version

***

After the previous phases of the software change have been completed, conclusion 
is the last phase, as depicted in Figure 11.1. In this phase, programmers commit 
the updated code to the version control system. As we discussed in chapter 3, con-
flicts may arise with teammates’ parallel updates, and resolving these conflicts is a 
part of this phase. After the changes have been committed and conflicts have been 
resolved, a new baseline is created in a process that is called the build.
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11.1 Build Process and New Baseline

The new baseline differs from the old one by modifications in several files. The build 
process first recompiles the modified files and then links all files into a new execut-
able. Verification follows; this verification guarantees that the new baseline is as bug 
free as possible and that it represents a progress of the project, not a regress. The 
verification is often done by system testing, and it can take a significant amount of 
time and significant computer resources, depending on the size of the project. For 
many projects it is done overnight or over the weekend. Often, a specialized testing 
team conducts this baseline testing.

To do a build that includes testing of the new baseline, the programming team 
typically has a deadline by which programmers have to commit their changes; this 
is the time when the build starts. If some programmers miss that deadline, they 
have to submit their changes for the next build. However, in that case, they have 
to guarantee that their changes comply with the new baseline. That means that a 
missed build is not just a postponement of the commit, but there is additional work 
involved. If the files that the programmers worked on extensively change in the new 
baseline, it can be significant additional work.

If programmers commit faulty code and the bugs are discovered during the 
baseline testing, the testing team has to respond. If the bugs are minor, the testing 
team can still certify the updated code as the new baseline and add the correction 
of these bugs into the product backlog, with the idea that they will be fixed as a part 
of future changes. If the bugs are more serious but they are discovered early in the 
testing process, the testing team can selectively reject the commits that caused the 
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bugs and create the new baseline without them. The team also can ask the program-
mers who committed faulty code to fix the faults.

However, in some instances, all the work done on the new baseline has to be 
rejected, and no new baseline is created. In the language of the programmers, this 
is called a broken baseline or a failed build. If that happens, the programmers will 
return to the old baseline, and all work that was done to update it is either invali-
dated or postponed. On large projects, this may represent a significant financial 
loss. There is pressure to disregard project faults and accept the baseline with minor 
defects as a successful build; therefore, each project has a standard that deter-
mines which defects are showstoppers that require a broken build to be declared. 
Obviously, the projects that do not compile or do not link, and hence, cannot even 
run, belong to that category.

Usually, the testing team is able to identify which files caused the broken base-
line and the programmers who committed them. Many teams have a penalty for 
breaking the build, and certainly the reputation of the programmers who broke the 
build suffers.

Software verification is part of the build; it is most commonly done by system 
testing. The frequency and extent of the build verification depends on the size of 
the program and the expected quality of the software. To postpone the build for 
too long means that there could be a large accumulation of bugs or conflicts that 
makes the build more difficult and less likely to succeed. An analogy of a build is 
kitchen cleaning: If cleaning of the kitchen is postponed too long, the accumula-
tion of dirty dishes becomes too big, and the task of cleaning becomes intimidat-
ing. The programmers who face this big task caused by a delayed build are tempted 
to postpone it even further. The best policy is to schedule a build in advance, and 
then to stick to the schedule.

Daily overnight builds became a standard of medium-sized projects. The result-
ing new baseline is the starting point for the next round of software changes.

Daily Builds at Microsoft

The Microsoft process of program development is characterized by many developers who work 
on large software projects, and they work on their individual software changes in parallel. They 
synchronize their results through daily builds. The daily build starts at a specific time in the eve-
ning and runs overnight. If the build is successful, a new baseline is available the next morning, 
when the programmers show up for work.

If the programmers want to have their work included as a part of the build, they have to com-
mit before the deadline when the build starts. If they miss the deadline, they have to work toward 
the next deadline, but there will be a different baseline by then, and they have to update their 
files, and sometimes they even have to redo their work in the context of the new baseline. They 
are expected to commit every few days. Every build first recompiles changed files and then links 
the entire system into a new executable file. That is followed by a system test that tests this new 
baseline.

The complete build can be an extensive process. An example is Microsoft Windows NT 3.0, 
which consists of 5.6 million lines of code. A complete build took up to 19 hours, and hence, it 
could not be done overnight (Zachary, 2009). To speed up the process, a greatly reduced system 
test called a smoke test has been developed. According to the Microsoft website, “The term 
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smoke testing originated in the hardware industry. The term derived from this practice: After 
a piece of hardware or a hardware component was changed or repaired, the equipment was 
simply powered up. If there was no smoke, the component passed the “test” (Microsoft, 2005). 
A smoke test exercises the entire system but uses only a limited number of very basic tests; it is 
the first indication whether the baseline works or whether something is fundamentally wrong. A 
smoke test rarely runs for longer than one hour. While the smoke test is done frequently, a more 
thorough system test is conducted at larger time intervals.

Of course, broken builds do occasionally happen, and Microsoft immediately identifies a 
culprit code and the culprit programmer who created that code. For Windows NT, where many 
programmers participated and the cost of a broken build was large, the programmers had beep-
ers, and if the broken build was caused by their code, they would be mercilessly dragged out of 
the bed in the middle of the night and asked to fix their code on the spot.

The software process used at Microsoft guarantees that the code files that the individual 
programmers work on do not deviate from each other too much. Daily baseline testing, even 
the minimal smoke testing, indicates that the code is not decaying. Daily build also gives the 
programmers experience with the entire system, establishes the individual programmer reputa-
tion, and improves the morale (McCarthy & McCarthy, 2006). Because of these documented 
advantages, the daily build was adopted by many successful software development processes 
across the whole software industry, and they form the foundation of the processes explained in 
the later chapters of this book.

11.2 Preparing for Future Changes

Once the software change is finished, the preparations for future changes start. The 
change request that was just implemented is labeled “inactive” or deleted from the 
backlog and the new requirements that arrived are added. The product backlog is 
reanalyzed and reprioritized because the past software changes make some future 
changes easier and others harder; some requirements become more urgent while 
others become less critical; and new knowledge gained during the change gives a 
better insight into the value or difficulty of future changes.

Throughout the software change, the programmers work very hard to compre-
hend the changing software, and some authors claim that this comprehension con-
stitutes more than half of their total effort (Corbi, 1989). There is a danger that this 
arduously gained comprehension will soon be forgotten and that all the effort that 
went into it will be lost if it is not properly recorded. A single programmer’s resigna-
tion can have serious consequences because the comprehension—effectively half 
the work he or she has done—departs as well. The project team then must rebuild 
the knowledge of the parts that only the departing programmer comprehended, 
often at a considerable expense. Even if all programmers stay with the project, over 
time they forget the infrequently visited parts of the software. Software change 
conclusion is an opportunity to record the newly gained comprehension before it 
is lost.

The vehicle for recording this comprehension is external documentation. The 
external documentation is a set of special documents that describe the software, but 
are separate from the source code. Because the external documentation is separate 
from the code, it can be updated without a need to recompile the code. Annotations 
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describe the functioning of the different parts of the software. The information that 
particularly needs to be recorded are the contracts between the clients and suppli-
ers, coordinations among the modules of the software, explanations of the cryptic 
parts of the code, or the nature of the algorithms that the code implements.

11.3 New Release

Establishing a baseline is an internal matter of the project, and its purpose is to 
synchronize the programmers’ work and assess the quality of the code. From time 
to time, the programmers do an even more thorough verification and then release 
the baseline code to the users as a new version. Substantial extra work is always 
required for a release; therefore, the frequency of the releases is both a technical and 
a business decision.

It has become customary to have less frequent major releases and more frequent 
minor releases. Major releases are the releases where the functionality of the soft-
ware is substantially changed, while minor releases deal only with small updates or 
bug fixes. A common practice is to designate major releases with the number before 
the decimal point, while the minor releases are designated by the numbers after the 
decimal point. For example, there may be an application AwesomeApp 4.2, where 
the number 4 is the number of the major release, while 2 is the number of the minor 
release that updates major release 4. This process was summarized in chapter 2 as 
the “versioned model of software life span.” It has become customary to download 
and install major releases, while minor releases are often delivered as patches that 
are incorporated into the users’ program.

In situations where there is only one user or few users who fund the project, 
these users can exercise their large clout, and they may influence the decision 
of when software is released. They typically conduct a test that determines 
whether the software is release worthy. The task they conduct for that pur-
pose is acceptance testing. It is functional testing that thoroughly tests various 
software functionalities. If the users are satisfied, the software is approved for 
release; otherwise, the programmers have to do additional work and fix all of 
the users’ objections.

As explained in chapter 10 on software verification, the verification—whether 
by testing or by inspections—cannot guarantee a complete correctness of the soft-
ware. In fact, it is very common that the early releases are burdened by bugs and 
that only later in the software evolution do programmers find and fix them. The 
users of the software can help to find these bugs because they use it in ways that the 
original programmers often do not expect.

The large releases of software with large user communities are done in sev-
eral steps that are commonly called alpha release, beta release, and general release. 
The alpha release is usually done in-house, and it means that the software is sub-
jected to a thorough functional testing, often by a different team than the team of 
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developers. As the defects are discovered, the developer team fixes them while the 
testing team continues the testing.

In the beta release, select outside users are involved; sometimes these users are 
called beta testers. Very often these users are selected because of their loyalty and 
technical prowess. They understand the tentative nature of the program verifica-
tion, report the bugs they find, and suggest software improvements. There may 
be a special contract between software developers and beta testers that contains 
a reduced software price (or may even pay for their service), nondisclosure agree-
ments, and so forth.

Finally, when bugs reported from the alpha and beta releases are fixed, there is 
an unrestricted general release where the typical customers receive the product. The 
reports from these users serve to prepare new small releases.

User manuals and help systems are typically prepared as a part of a release. They 
help the customers to use the system, and they have to be regularly updated to 
reflect the latest changes.

Summary

Software change conclusion builds a new software baseline; this new baseline is the 
starting point for future changes. The build process involves an extensive testing by 
system test. Selected baselines are released to the users as new versions of the soft-
ware. Major versions are distributed as downloads of the software, while minor ver-
sions are frequently distributed as patches. Preparation for future changes includes 
updates of the product backlog or updates of the external documentation. Software 
change conclusion is the last phase of the software change and the last chapter of 
this section of the book.

Further Reading and Topics

Some authors recommend frequent builds several times a day to avoid the need to 
integrate too many changes at once. The advantage is that the smaller changes that 
each build handles lead to an improved likelihood that the build will be success-
ful, and the cost of broken builds is smaller. However this strategy is viable only in 
smaller projects where the build takes less time (Duvall, Matyas, & Glover, 2007).

The previous chapters emphasized the need for verification of all software mod-
ifications, throughout the whole software change process. Despite all efforts, and 
as a consequence of the incompleteness of all available verification techniques, soft-
ware changes still introduce bugs into the code. The work that studies these bugs is 
surveyed by Kim, Whitehead, and Zhang (2008).

The popular tool Javadoc extracts annotations from the comments in the code 
(Oracle, 2011). Incremental redocumentation is a process that opportunistically 
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adds further information to the annotations. Whenever programmers make a 
change and obtain comprehension of a specific file or class, they record that com-
prehension in the relevant annotation. Over time, the documentation of the pro-
gram accumulates, and it is mostly concentrated in places with a high frequency 
of visits, which are the places that need the documentation the most (Rostkowycz, 
Rajlich, & Marcus, 2004).

An overwhelming number of the patches are incorporated into the code while 
the program is not running. In contrast, some programs cannot be stopped, and 
the changes require patching the program while it is running. In these situations, 
the new binary code of the patches has been created in the traditional way, but it 
is integrated into the running system by runtime activation, which requires special 
strategies (Hicks & Nettles, 2005).

There may be additional activities of change conclusion that depend on the spe-
cific software process that is employed in the project. These activities are described 
in future chapters in the context of the specific processes.

Exercises

 11.1 What is a broken baseline? How can it be avoided?
 11.2 What happens if a programmer misses a deadline for build?
 11.3  What is a common meaning of numbers 4 and 2 from the name of the 

application “AwesomeApp 4.2”?
 11.4  What is the difference between alpha and beta releases? What makes 

these two releases different from general releases?
 11.5  Why is baseline system testing not sufficient for the release to general 

customers?
 11.6 List three reasons a nightly build is important.
 11.7  Why should a project have a standard that determines when a broken 

build should be declared?
 11.8  What is the advantage of running a smoke test instead of just relying on the 

system test?
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Contents

 12. Introduction to Software Processes
 13. Team Iterative Processes
 16. Initial Development
 15. Final Stages

This part of the book presents the most common software processes. It explains 
what a software process is and what the forms are (model, enactment, performance, 
and plan). Then it deals with the iterative process of a solo programmer (SIP), the 
team agile iterative process (AIP), the directed iterative process (DIP), and the cen-
tralized iterative process (CIP); these processes are primarily applicable to the stages 
of software evolution and servicing, but they also apply to initial implementation 
and reengineering. This part then covers initial development and the final stages of 
software life span, and hence it presents an overview of processes applicable to all 
stages of software life span.
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Chapter 12

Introduction to 
Software Processes

Objectives

The software engineering discipline studies successful projects of the past and uses 
this experience as a recommendation for future projects. An accumulated expe-
rience with software processes is the core of software engineering. The iterative 
processes of software evolution and servicing play a prominent role, and one of 
them—the solo iterative process (SIP)—is explained in this chapter.

After you have read this chapter, you will know:

 ◾ The granularities and forms of software processes
 ◾ The solo iterative process (SIP)
 ◾ The two main work products and three main loops of SIP
 ◾ The enactment and measures of SIP
 ◾ Planning in SIP

***

At the core of the study of processes is the belief that a good process leads to good 
product and vice versa. This belief is shared by all engineering disciplines, including 
software engineering. To discover good processes, software engineers study both 
successful and unsuccessful past projects and try to identify both the good insights 
that led to successes and the mistakes that led to failures. There is a large variety of 
software processes that were tried in the past. To orient ourselves in these processes, 
we start with the characteristics that allow us to classify them.
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12.1 Characteristics of Software Processes

A process is a routine that converts one thing into another or modifies something. 
For example, there are chemical processes that mix components and produce com-
pounds, or an administrative process that starts with an appearance in a govern-
ment office and results in a driver’s license, or the process of a loan modification 
that starts with filling an application and results in changed terms of the loan, and 
so forth.

Software processes are specialized processes that develop or modify software. 
There are many software processes that have been employed in the past, and this 
chapter starts with their classification according to their basic characteristics: pro-
cess granularity, form, stage they are employed in, and team organization.

12.1.1 Granularity

Coarse granularity processes deal with long periods of time, and fine granularity 
processes deal with short time intervals. Theoretically speaking, the software life-
span models of chapter 2 are very coarse software processes that consist of stages. 
Stages are also processes of somewhat finer granularity (see Table 12.1), where the 
granularity decreases from top to bottom.

Most of what software engineers usually call processes fits within a single 
stage or into a few neighboring stages. This book follows this common practice 
and uses the generic word process for the processes that fit within a single stage 
of the life span or into neighboring stages. The processes, in this narrow sense 
of the word, consist of tasks that in turn consist of phases or subtasks. For 
example, software change is a task of the software evolution processes, and it 
contains the phases (subtasks) of concept location, impact analysis, actualiza-
tion, and so forth. Phases are further divided into steps or actions. Table 12.1 
summarizes this terminology.

Table 12.1 Granularities of Software Processes

Granularity Example

life span staged, V-model

Stage evolution, servicing

Process SIP, AIP, DIP, CIP

task software change, build

phase, subtask concept location, actualization

action, step inspection of a class
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12.1.2 Forms of the Process

Another important characteristic is the form of the software process. The process 
can be in the form of a process model that describes the tasks, their relations, their 
results, and the stakeholders who participate in them. The process model is a blue-
print of how to conduct a process and, as all models, it presents an abstraction and 
simplification of reality.

The process can also be in the form of enactment, which is the actual process 
that is happening in a project. The enactment consists of the real tasks and produces 
real results. As each project has its own peculiarities, there are inevitable deviations 
and exceptions from the process model. They should be minor and infrequent; 
massive deviations and exceptions indicate that there is something wrong with the 
process model.

Process performance is the set of measurements that an observer of an enacted 
process collects. The tasks of the process are measured for their duration, their 
cost, and other measures. There are also measurements related to the characteristics 
of the work products produced by the process, including their size, quality, and 
so forth. Other measurements may address the characteristics of the stakeholders, 
including the productivity, work quality, frequency of interactions, and so forth.

A process plan summarizes expected future performance and required resources 
for a given process. It may include the projected time needed to complete future 
tasks, the required number of team members, the expected quality of the results, 
and so forth.

12.1.3 Stage and Team Organization

An important characteristic is the stage the processes work in. The stages of evolution 
and servicing require iterative processes that are characterized by repeated changes to 
existing software. Software evolution and servicing command the largest amount 
of a software engineer’s time; therefore, these processes are the first ones that we 
are addressing in this and in the next chapter. They are followed by noniterative 
processes of initial development (chapter 14) and final stages of software life span 
(chapter 15), although some tasks of these processes can be also done iteratively.

The rest of this chapter describes the iterative process of a solo programmer, and 
the next chapter describes the iterative processes employed by a team.

12.2 Solo Iterative Process (SIP)

All iterative software processes repeatedly modify software and are particularly 
suitable for the stages of software evolution and servicing. The solo iterative process 
(SIP) is characterized by a single programmer working alone. Despite its simplicity, 
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SIP shares some characteristics with the team iterative processes, and hence, it is a 
suitable introduction into the topics of the software processes.

When solo programmers work on their projects, a fundamental question arises: 
Why should they worry about a process and software engineering at all? In chapter 
1, we talked about the original ad hoc processes that characterized the early soft-
ware projects; they often worked and produced valuable software for their time. 
Why not let the solo programmers of today do the same, to react flexibly and cre-
atively to the various challenges they are facing?

The short answer to that question is that even the solo programmers have to 
meet their obligations, fulfill their promises, and pay their bills. They need to know 
where they stand and be able to plan the future; they need to manage their own 
resources. SIP is a software process that single programmers use while working 
alone on a software project.

The SIP model is shown in Figure 12.1. For easier reading, the solo program-
mer who is the hero of this process is named “Sol”; please note that, although 
rare, the name can be either male or female, a first name, or a nickname. In 
Figure 12.1, Sol does all tasks that lie within the shaded rectangle; the other 

Iteration/release

Software

changes
Sol

Build

Users

Delivery

Change

requests Product backlog

Iteration backlog

Figure 12.1 SIP model.
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stakeholders are the users of Sol’s product. Two work products play a prominent 
role in SIP and other iterative processes: the product backlog and the code.

Sol receives the requirements from the users, records them in the product back-
log, analyzes them, and prioritizes them, as was explained in chapter 5. Sol then 
selects the highest priority requirements from the product backlog and creates the 
iteration backlog that consists of all the requirements that will be implemented in 
the next iteration. The iteration in SIP often coincides with a new version release, and 
the iteration backlog is a collection of the requirements that will be implemented in 
this next version. The iteration/release loop is the outer loop of the SIP process.

From the iteration backlog, Sol selects a specific change request and imple-
ments the corresponding software change, going through its various phases that 
were described in the previous part of the book (see the schematics in Figure 12.1). 
Then Sol updates the product backlog by closing or deleting the change request 
that has been implemented. After that, Sol selects the next change request from 
the product backlog. These tasks are presented by the inner loop of the SIP model.

At regular intervals, Sol builds a new baseline to monitor more thoroughly the 
progress of the project. This is the middle loop of the SIP model.

More elaborate versions of SIP deal with additional work products like the 
documentation, models, user manuals, and so forth. Sol updates these other work 
products as additional tasks within the three iterative loops of SIP.

12.3 Enacting and Measuring SIP

Sol enacts the SIP model on a specific software project. While enacting the pro-
cess, Sol works on the tasks and work products that the SIP model specifies. As 
an example, suppose Sol works on a point-of-sale application. The upper part of 
Table 12.2 contains a short fragment of the log of enacted SIP that records the tasks 
and subtasks that Sol performed, while the lower part contains the explanation of 
the log acronyms.

In the first subtask, Sol selects the change request “Add cashier session” from 
the product backlog. During the next subtask, concept location, Sol determines 
that the relevant concept is located in class CashierRecord. Impact analysis 
follows and identifies four classes that need to change. The refactoring is next, and 
it extracts class Session.

At this point, Sol decides to make an exception to the SIP model and works on 
the task “Download and install new version of Bugzilla.” After that, Sol returns 
back to the next task of the SIP model and actualizes a new version of the class 
Session. Then Sol builds a baseline. While doing the system test for the baseline, 
Sol finds two bugs and decides to add them to the backlog rather than fixing them 
immediately. The process enactment then continues with additional tasks that do 
not appear in the log fragment in Table 12.2.
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The full log of enacted SIP may span weeks, months, and even years. 
Table 12.2 monitors the process on the granularity of phases, and this is the rec-
ommended granularity. However on some projects, that granularity seems to be 
too detailed, and Sol monitors the use of time on the coarser granularity of tasks, 
which makes the logs shorter and less tedious, but sometimes leads to a loss of 
important information.

Table 12.2 SIP Enactment

Task Comments

1 Ini add cashier session

2 CL CashierRecord

3 IA 4 classes

4 Ref extract class Session

5 Ex install new version of Bugzilla

6 Act class Session

7 Bas add two regression faults to the backlog

8   . . .

  Code Meaning

Pri backlog prioritization

Div dividing the change into smaller parts

Ini software change initiation

CL concept location

IA impact analysis

Ref refactoring and testing

Act actualization and testing

Test other testing

Bas baseline build

Rel release

Ex exceptional task or phase
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12.3.1 Time

The single most important resource of the SIP is Sol’s time, and measuring the use 
of time is the foundation for Sol’s planning. Time tracking has been discussed in 
many contexts, particularly in the context of time management. It is an accounting 
system for time, telling Sol how time was spent in the past. The raw time data for 
SIP are collected in an expanded log of Table 12.3. It is an expansion of the upper 
part of Table 12.2, and each row of the log records the start, end, and interruptions 
for each task. The last column contains the size of code that Sol dealt with while 
working on the tasks, and it is explained in the next subsection.

The time log contains raw data that have to be processed. There is a difference 
between the total time and the clean time that is obvious to every observer of the 
game of American football. Each game consists of four 15-minute quarters, but 
interruptions do not count toward these 15 minutes. Hence, 15 minutes is the 
clean time of each quarter, while total time includes all interruptions and can take 
considerably longer. In the log fragment of Table 12.3, there are two columns for 
a number of interruptions and for their summary time in minutes. Clean time is 
then given by the formula

 Clean time = end time − start time − time of interruptions

Table 12.3 Time Log

Process Enactment Interrupt

Task Comments Date Start End # Time Size

1 Ini add cashier 

session

4/21 8:32 8:39 1 2

2 CL CashierRecord   8:42 8:52 340

3 IA 4 classes   8:52 9:23 2 12 420

4 Ref extract class 

Session

9:27 10:46 3 25 36

5 Ex install new 

version of 

Bugzilla

10:51 11:42 2 6

6 Act Class Session 1:23 2:17 98

7 Bas add two 

regression faults  

to the backlog

2:22 3:12 3 12 12,000

8   . . .      
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Sol uses the log data to extract answers to questions of the following type: What 
is the weekly summary of clean time on the project? What is the average time for 
concept location? As the time goes on, is the phase of concept location becoming 
faster or slower? Over the last month, how much time was spent in the exceptional 
tasks that are not parts of the SIP model? Is there a task or step of the SIP model that 
was not done in a week or in a month? The answer to all these and similar questions 
can be extracted from the log, and they give Sol a picture of the project progress.

12.3.2 Code Size

The complexity of the tasks is often related to the size of the code they deal with. 
The most common measure for program size is the number of lines of source code, 
abbreviated “LOC.” For larger programs, the size may be expressed in thousands 
of lines of code “kLOC” or even millions of lines of code “MLOC.” However, it 
has to be understood that this measure is very inaccurate, and there is a dispute as 
to how the lines should be counted. The recommended measure counts only “lines 
with something other than comments and whitespace (tabs and spaces)” (Wheeler, 
2002). Even then, different programming or coding styles can lead to different code 
sizes. Also, the same problem solved in different programming languages can lead 
to a substantially different number of lines.

Despite these problems, LOC became the most commonly used measure of 
program size, perhaps because there are easily available tools to compute it, and the 
other measures are not much better. Because of the inaccuracy involved, only the 
most significant digit or most significant two digits are meaningful, and the actual 
measures produced by the tool should be rounded to these one or two digits; we 
talk about programs of the size 900 LOC, 23 kLOC, 3.4 MLOC, and so forth.

Sol wants to record the size of the code that is inspected, written, or tested in 
the tasks of the enacted process. The rightmost column of Table 12.3 contains these 
data. Tasks 1 and 5 do not deal with the code, so no size is recorded. For subtasks 2, 
concept location, and 3, impact analysis, Sol records the size of the inspected code. 
For subtasks 4, refactoring, and 6, actualization, Sol records the lines of the code 
modified or written from scratch. In subtask 7, baseline, Sol records the total size 
of the baseline code. The size of Sol’s code changes over time, and during software 
evolution, it usually increases as the evolution adds new functionality.

12.3.3 Code Defects

As with any other product, software quality is a large concern. An important mea-
sure of software quality is the number of defects (bugs) that are left in the code. 
Defects are the properties of software that cause software to behave differently than 
expected; examples of defects are incorrect computations, premature terminations, 
and so forth. The defects lower the quality of software.
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Defects in the code can be found by testing and by inspections, as explained 
in chapter 10. Sol keeps a defect log that monitors the known defects in the code. 
Defects can be discovered during testing or during inspections. Sol’s inspections 
are less effective than inspections by another programmer because of habituation, 
but after a certain amount of time, Sol views the code from a fresh angle and dis-
covers defects. An example of a defect log is in Table 12.4.

In the log in Table 12.4, defects are listed in the order they are discovered; the 
task during which they have been discovered is listed as well. If the location of the 
defect is known, it is listed in the next column; the column after that lists a brief 
description of the bug. Sol tries to determine the origin of the defect and estimates 
both the date and the tasks that caused the defect. If Sol is unable to determine the 
origin, the two columns are left blank. Finally the last column contains the date on 
which the defect was fixed.

The defect log can be mined for the answers to the following questions: What 
are the tasks most likely to introduce a defect? What is the average time from intro-
duction of a bug to its discovery and fix? How many known but unfixed defects are 
in the software on any particular date?

12.4 Planning in SIP

Sol collects the process data in order to plan. Planning is a prediction of the future, 
and if Sol says that the next version of the program will be released in March, Sol 
is making a prediction. As with every prediction, there are uncertainties and risks 
involved; the customers are more satisfied if Sol makes accurate predictions.

Table 12.4 Defect Log

Defect Found Origin

Date Time Task Location Description Date Task Fixed

1 11/4 9:00 CL Cashier.

get()
For I = 0, loop 

does not 

terminate

3/12 Act 12/8

2 11/4 2:32 Bas -- The pop-up 

window for 

3rd cashier 

does not 

appear

?   11/25

3 11/4 3:02 Bas Price.

get()
Price = 0 raises 

exceptions

4/21 Ref

4       . . .      
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Measuring the past may seem to be less important than correctly planning the 
future, but it is well known that data about the past are good predictors about the 
future. In fact, the future cannot be predicted with any level of certainty without 
knowing the past. Recording the past and planning for the future are closely related.

The unique and unprecedented tasks are very hard to plan. It is much easier to 
plan for repetitions of past tasks, assuming that the planned tasks are similar to the 
past tasks. In SIP, the repetitive tasks are the tasks in the three loops of SIP, and to 
make them more predictable, they should be made more alike.

Repetition and Planning

There is an old adage, “Repetition is the mother of skill.” For repetitive tasks, Sol learns how to do 
them well. When cooking an omelet each morning, Sol learns what the temperature should be, 
how long it takes, how much cooking oil is required, how to avoid getting burned in the process, 
and so forth. That helps not only to produce a good omelet, but also to plan the breakfast for 
tomorrow. For example, if cooking and eating breakfast took Sol 30 minutes each day during the 
past week, it is reasonably safe to predict that tomorrow it will also take 30 minutes; this figure 
can be used when planning for tomorrow.

However, there is a risk in planning even repetitive tasks. What if Sol makes a mistake, runs 
out of food, and has to run to a nearby grocery store? The time planned for breakfast will grow! 
If Sol deviates from the routine and tries to cook a new kind of dish never tried before, the risk is 
even larger.

Understanding the risks and uncertainty is one of the main issues in planning. A time-honored 
technique of controlling risk is to emphasize the repetitive nature of the process and try to make 
the process as repetitive as possible.

12.4.1 Planning the Software Changes

The strategy that Sol uses in the planning of the changes is an analogy between the 
past tasks and the future tasks. If a future task is similar to a past task, Sol assumes 
that the effort needed to implement it is similar. Accuracy of planning improves 
with time, when a larger log is available, because it becomes more likely that Sol will 
find a more accurate analogy present in the log. At the beginning, the planning is 
based on less data, and hence, it is more of a guess, but as time goes on, the analogies 
become more and more fitting and the planning becomes more and more accurate.

Planning of the early phases of SIP may be based on the experience gained from 
other projects or on the experience of other programmers, but these other projects 
and other programmers may possess very different characteristics, and hence, the 
analogy is weak and estimates are very inaccurate. Of course, some variables change 
as the process continues: The size of the code, the quality of the code, Sol’s knowl-
edge of the code and of the domain problem, and so forth. When estimating the 
future tasks, Sol must take into the account these changing characteristics also.

The accuracy of planning future tasks is improved by decomposition. The task 
of software change is decomposed into phases, as explained in chapter 5. While 
planning, Sol decomposes future software changes into phases, and for each phase, 
Sol finds in the log the phases that are the most similar to the planned phase. Sol 
estimates the time for each future phase based on the analogy with these past data, 
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knowing that all estimates of this kind are burdened by inevitable errors. Then Sol 
adds these estimates and produces the total for the whole change. In this total, the 
errors hopefully compensate each other: The overestimates of some phases compen-
sate for the underestimates of other phases, and the resulting total for the whole 
change has a higher accuracy.

A part of planning software change is the prediction of software quality and 
introduced bugs. The defect log serves here to indicate by analogy how many bugs 
will be introduced by the future changes, how long it will take to fix them, and 
how much effort that is going to take. If too many bugs are allowed to accumulate, 
the quality of the code deteriorates, and the pace of the work on the project may 
slow down.

12.4.2 Task Determination

The effort required for each task should be within a narrow range, so that tasks can 
be properly planned and executed. If they fall within that range, their planning 
can be based on past experience, and the new experience from them can serve as 
guidance for the future task. A typical recommended upper range for tasks is a few 
(for example, two) days of work; all larger tasks should be decomposed into smaller 
ones. During planning, Sol divides all larger changes into smaller subtasks. These 
extra-large changes that need decomposition are sometimes called epics.

The division of the epics into tasks (sometimes called tasking) should be done in 
such a way that the resulting tasks are well defined. One tasking strategy separates 
multiple concepts. Some requirements deal with multiple concepts that can be sepa-
rated into tasks, where each task deals with a different concept.

As an example, suppose that the change request is “Customers can download 
and then cash sales coupons.” This is a large change request (epics). Sol estimates 
that its implementation would be out of range of a typical task and therefore, 
divides it into smaller tasks. The concepts that can be used to separate the tasks are 
“download,” which deals with the Internet, and “cashing,” which deals with the 
process of a sale in the store. The two smaller tasks then are:

 1. Build an Internet website from which customers can download coupons
 2. Update customer payment to include cashing coupons

These smaller tasks now fall within the customary range, and Sol replaces the origi-
nal change request in the product backlog with these two tasks.

In another strategy, the tasks deal with the same concept, but they represent 
an increasing complexity of the concept’s extension. An example is the point-of-
sale application in chapter 18, which supports a small store. The requirement can 
be separated into tasks, where the first task implements a store that has only one 
cashier, sells one item of a fixed price, and uses only cash. The following tasks 
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increase complexity and add multiple items, fluctuating prices, multiple cashiers, 
methods of payment other than cash, and so forth.

12.4.3 Planning the Baselines and Releases

The baselines and builds are internal matters of the project. The best strategy is to 
schedule them at regular intervals, for example, every day at the end of the shift, 
or perhaps every other day. It is not advisable to postpone the baseline creation, 
because the longer the postponement, the more unsolved problems accumulate, 
and they can become overwhelming.

Releases are a part of the outer loop of the SIP model. They present Sol’s 
accomplishments to the world, and hence, they are no longer an internal mat-
ter, like baselines and individual software changes are. In planning of releases, 
Sol has to take into account business considerations. Very often, Sol promises a 
release with a certain new functionality on a certain date, and the thrust of Sol’s 
planning is to make sure that this promise is realistic. Sol then monitors whether, 
with the passage of time, the “facts on the ground” still indicate that the promise 
remains realistic.

Table 12.5 is an example of a release backlog table that Sol uses in planning the 
releases. The rows of the table represent the requirements iteration backlog that 
Sol wants to introduce into the point-of-sale program in the next release. They are 
prioritized in descending order, with the most important requirement on line 1.

The column on the right is a plan at the beginning of the effort, after 0 hours 
were spent on the effort, and it contains estimates in hours of work for each require-
ment. Sol arrived at these estimates by decomposition and analogy, as presented in 
section 12.4.1, and rounds the resulting numbers to full hours. Sol estimates that 
the total effort of introducing these 12 features is 330 working hours, shown at the 
bottom of the right-hand column.

After 100 hours of the work, Sol returns to the planning and creates another 
column in the table, column labeled “100” in the top row (see Table 12.6). At this 
point, Sol is done with features 1, 2, and 3. However some of the original estimates 
turned out to be inaccurate, and Sol replaces them with real data: Requirements 2 
and 3 took longer than originally thought, and Sol highlights the updated data in 
gray. In the table, Sol separates the real data from the estimates by a thick line to 
the left and bottom of the real data. With the additional knowledge now available, 
Sol corrects the estimates for features 7 and 9, also highlighted in gray. After this 
new planning, 340 more hours of work remain to fulfill what was promised, and 
the total effort is increased to 440 hours, indicating that there will be a delay (slip) 
in the release date. The remaining effort and total effort needed to reach the goal 
are in the bottom two lines.

Sol also returns to planning after 285 and 405 hours were spent on the project, 
respectively, and adds two additional columns to the table. The data in Table 12.7 
are of two kinds: The data representing the real effort on requirements already 
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implemented are above the thick line, while the updated estimates for the remain-
ing requirements are below that line. The table indicates that the project acquired 
additional delays highlighted in gray.

After 405 hours of effort, Sol is already late against the original estimate and 
must make a decision: Either stop now and release the software without require-
ments 11 and 12, or cause an additional delay and complete all the requirements of 
the original iteration backlog. This is a business decision, and it involves carefully 
weighing the pros and cons.

Table 12.7 presents the first alternative where Sol decides to complete the prom-
ised backlog, at the expense of further delay. The last column of Table 12.7 contains 
the final data for the process that took 475 hours total.

Table 12.8 presents the other alternative where Sol decided to deliver the next 
version after 405 hours of work and drop requirements 11 and 12 from the original 
plan, in order to avoid further delays. Requirements 11 and 12 will return back into 
the product backlog and Sol will consider them for the next version.

The release backlog table and its updates compare the original plan against the 
actual progress and give an early warning if delays may have occurred. The rows 
labeled “remaining effort” are highlighted in the tables, and they present in simple 

Table 12.5 Release Backlog Table

Plan After X Hours of Work 0

1: initial 10

2: inventory 30

3: multiple prices 30

4: promo prices 30

5: cashier login 20

6: multiple cashiers 30

7: cashier sessions 35

8: detailed sale 30

9: multiple line items 35

10: payment 20

11: credit payment 40

12: check payment 20

remaining effort 330

total effort needed to reach the goal 330
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terms Sol’s progress as compared to the plan. Sol pays particular attention to these 
data, as they summarize in simple terms the progress and the setbacks.

Summary

Software processes describe stakeholders, tasks, and work products within a single 
or a few neighboring stages of software life span. They are presented in the form of 
the process model that describes idealized principles of the process, or the process 
enactment that describes the reality of a specific project, or the process performance 
that collects process data, or the process plan that uses these data to predict the 
future course of the project.

The solo iterative process (SIP) describes the process of a single programmer; 
it deals mainly with two work products: the product backlog, and the code of the 
software. There is a single programmer who carries out the tasks of the process, and 
there are users who receive new versions of the software and produce requirements 
for future functionality. The process contains three nested loops: In the outer loop 

Table 12.6 Updated Release Backlog Table After 100 
Hours of Effort

Plan After X Hours of Work 0 100

1: initial 10 10

2: inventory 30 50

3: multiple prices 30 40

4: promo prices 30 30

5: cashier login 20 20

6: multiple cashiers 30 30

7: cashier sessions 35 80

8: detailed sale 30 30

9: multiple line items 35 70

10: payment 20 20

11: credit payment 40 40

12: check payment 20 20

remaining effort 330 340

total effort needed to reach the goal 330 440
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called iteration, the programmer selects the highest priority requirements and turns 
them into the iteration backlog. Once implemented, they will become a part of 
the new software version that will be delivered to the users. In the inner loop, the 
programmer takes the change requests from the iteration backlog and implements 
them in the code. In the middle loop, the programmer builds a new baseline and 
runs a system test.

The programmer collects the data in logs that include a time log and defect 
log, and uses them in estimating future tasks, baselines, and releases. The planning 
of tasks is based on decomposition and analogy with previous similar tasks. The 
release backlog tables are based on estimating individual tasks, and they monitor 
how close the programmer is to finishing all the tasks for the release.

Further Reading and Topics

Software processes are a large field; one of the pioneering papers was written by 
Osterweil (1987). An interplay of the processes and the technology that supports 

Table 12.7 Final Release Backlog Table With Delayed Completion of 
the Entire Feature Set

Plan After X Hours of Work 0 100 285 405 475

1: initial 10 10 10 10 10

2: inventory 30 50 50 50 50

3: multiple prices 30 40 40 40 40

4: promo prices 30 30 30 30 30

5: cashier login 20 20 20 20 20

6: multiple cashiers 30 30 55 55 55

7: cashier sessions 35 80 80 80 80

8: detailed sale 30 30 30 30 30

9: multiple line items 35 70 70 70 70

10: payment 20 20 20 20 20

11: credit payment 40 40 40 50 50

12: check payment 20 20 20 20 20

remaining effort 330 340 180 70 0

total effort needed to reach the goal 330 440 465 475 475
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them is discussed by Finkelstein, Kramer, and Nuseibeh (1994). A detailed descrip-
tion of the process measurements employed by an individual programmer is pre-
sented by Humphrey (1997).

In the current state of the art, the performance of the software process in one 
project cannot be mechanically used in planning another one. This is the issue of 
the external validity of the process measurements, and it is discussed by Fuggetta 
(2000) and other authors. The independent variables of software processes are still 
not properly understood, and additional research is necessary before the experience 
from one project can be confidently used in another project.

Within the same project, external validity is less of a problem, as most of the 
independent variables remain the same, and the data collected in the past serve as 
a good predictor for planning future tasks. This technique has been called “yester-
day’s weather” (Cohn & Martin, 2005), based on the observation that, in many 
geographic locations, the best prediction for today’s weather is to assume that it will 
be the same as yesterday’s weather.

Table 12.8 Final Release Backlog Table With Incomplete 
Feature Set

Plan After X Hours of Work 0 100 285 405

1: initial 10 10 10 10

2: inventory 30 50 50 50

3: multiple prices 30 40 40 40

4: promo prices 30 30 30 30

5: cashier login 20 20 20 20

6: multiple cashiers 30 30 55 55

7: cashier sessions 35 80 80 80

8: detailed sale 30 30 30 30

9: multiple line items 35 70 70 70

10: payment 20 20 20 20

11: credit payment 40 40 40 50

12: check payment 20 20 20 20

remaining effort 330 340 180 70

total effort needed to reach the goal 330 440 465 475
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The collection, processing, and use of time logs is discussed by Humphrey 
(1997). Several tools supporting time logs are available from the open-source com-
munity or from the vendors.

The code size is discussed by Wheeler (2002), and “source line of code” (SLOC) 
in that paper is equivalent to what is called “line of code” (LOC) in this book. An 
alternative measure of code size is function points (Garmus & Herron, 2001).

The remaining effort to reach an iteration goal is discussed by Schwaber and 
Beedle (2001), and it is presented as a release backlog table in this book. An exam-
ple of the development of a small application using SIP is presented in chapter 18.

Exercises

 12.1  Explain the granularity of processes and give examples of various 
granularities.

 12.2  What are the four forms of the software process? How are they related to 
each other?

 12.3  In Awesome Software Company (ASC), developers are rewarded based 
on their productivity as measured by LOC/day.

  a. What are the advantages and disadvantages of such a criterion?
  b.  One developer, Bob, decides to increase his productivity by repeat-

ing the same lines of code. What are the effects of such a practice 
during software evolution?

  c.  After a while, the manager detects a higher defect density in the 
code written by Bob. What type of verification should the manager 
use to detect the problems introduced by Bob?

 12.4  How is process enactment different from the process model? Can there 
be different enactments of the same process model?

 12.5 Explain the three loops of the SIP model and how are they related.
 12.6  Why do programmers keep a log of their time spent on the project? 

What entries do programmers record in the log?
 12.7 How is the size of the code measured? How accurate is the measure?
 12.8 What is a defect log? Why is it important to keep it?
 12.9  What are the options when the release backlog shows that the original 

deadline cannot be met?
 12.10  How would you modify the release backlog if, during the process, it 

becomes obvious that an additional task is required?
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Chapter 13

Team Iterative Processes

Objectives

Most software projects require a larger effort than what a solitary programmer can 
handle; therefore, programmers often have to organize themselves into teams. This 
chapter describes the most common team organizations and processes. After you 
read this chapter, you will know:

 ◾ The agile iterative process (AIP)
 ◾ The iteration and daily loop of AIP
 ◾ The directed iterative process (DIP)
 ◾ The difference between developers and testers in DIP
 ◾ The centralized iterative process (CIP)
 ◾ The project circumstances that require CIP and the role of architects, code 

owners, and quality managers in CIP

***

Software teams work on large software projects and most often deal with itera-
tive processes of software evolution or servicing. The iterative nature of these tasks 
favors organizing the workers into teams. The most common variants of the team 
organization and their corresponding iterative software processes are explained in 
this chapter.

The directed teams and centralized teams entrust project monitoring, planning, 
and key project decisions to the managers. In contrast to that, agile teams base their 
work and their planning on a consensus among the programmers and limit the role 
of the managers.
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13.1 Agile Iterative Process (AIP)

The stakeholders of AIP are the programmers, managers, and users. The program-
ming team in AIP typically consists of 5–10 people, and they arrive at decisions 
mostly by consensus. To make that consensus easier to reach, agile teams avoid 
specialization. All programmers have universal skills, and they are capable of 
doing any programming task; that greatly simplifies the assignment of tasks to 
individual team members. A model of the agile iterative process (AIP) is depicted 
in Figure 13.1, and the tasks that are done by the programmers are within the 
shaded rectangle.

In AIP, the product manager supervises the business decisions, is responsible for 
the profitability of the product, and controls the product backlog and the prioritiza-
tion of the requirements. The product manager also accepts or rejects the results of 
the programmers’ work and decides when and how the product is released to users.

The process manager is responsible for enacting the AIP and for removing the 
impediments. The impediments may include hardware problems, network prob-
lems, the need for training, the need to present and defend the project to the top 
managers, and so forth. The process manager ensures that the team is fully func-
tional and productive and shields it from external interferences. However, the 
assignment of tasks to individual team members and monitoring the progress of 

Product backlog

Programmers
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changes

Process

manager

Product

manager
Users

Build

...
Daily

Meeting

Iteration backlog

Iteration meeting/release

Figure 13.1 AIP model.
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the project is not done by the process manager; this responsibility is entrusted to the 
team members and the consensus within the team.

The AIP model in Figure 13.1 contains an iteration loop (emphasized in bold) 
that is explained in detail later. Nested within it are parallel software change loops 
that represent the individual programmers who work on software changes in par-
allel, using the techniques that were explained in the second part of this book. 
Whenever they finish a change, they commit the resulting code to the repository 
and start another change. If there are conflicts among their commits, they resolve 
them through the consensus. There is also a parallel daily loop that consists of a 
build process and a daily meeting.

13.1.1 Daily Loop

The daily loop in AIP includes the tasks of the build and the daily meeting. The build 
process prepares a new baseline, most often overnight, as discussed in chapter 11.

The daily meeting takes place after the build, and the whole programming team 
participates. During the daily meeting, the programmers discuss the results of the 
last build. They also explain to their teammates what they have accomplished since 
the last meeting, the progress of the tasks they are currently working on, and what 
the plans are for the next day. They may clarify ambiguities in the change requests, 
discuss the quality of code, identify the need for code refactoring, and so forth.

They also discuss the problems at hand, for example, conflicts between com-
mits, problems that baseline testing revealed, hardware problems, problems that 
surfaced during their work on the tasks, or similar problems. The meetings bring 
out into the open the daily challenges that the programmers experience. After the 
daily meeting, the programmers resume their individual work.

The daily meetings are short; the recommended duration is 15 minutes. They 
build the consensus that the team needs to function. To accomplish that, they have 
to be frank, polite, and to the point.

The process and product managers participate in the daily meetings in a limited 
way. The product manager helps resolve issues that are related to the business side 
of the project, including ambiguities in the change requests. The process manager 
makes sure that the daily meeting is short and professional, but allows the team to 
set its own priorities and build a consensus. In exceptional situations, the process 
manager steps in when the team is unable to resolve a serious problem on its own.

13.1.2 Iteration Planning

The iteration is the bold loop of the AIP model (see Figure 13.1). It covers a time 
period of one to four weeks, with the most common duration being two weeks. It 
contains the iteration meeting, where all stakeholders participate. The meeting has 
two parts: The first part reviews the previous iteration, and the second part plans 
the next iteration.
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Let’s start with this second part of the meeting, the iteration planning. Planning 
the next iteration is done based on the experience from previous iterations. The 
participants in the planning process take into account the product backlog, team 
capabilities, changing business conditions, the stability or volatility of the technol-
ogy used in the project, and so forth. Based on these factors, they establish the goals 
of the next iteration.

As a start, the programmers know the length of the iteration expressed as the 
number of work hours that are planned for the iteration, denoted L, and the number 
of programmers, N, that will participate. They estimate the team iteration capacity 
as C = L*N.

From the product backlog, which contains all of the requirements for future 
product functionality, the participants select a subset called the iteration backlog, in 
a similar way as in SIP (solo iterative process). Those are the requirements that will 
be implemented in the next iteration. For that, the programmers use the require-
ments prioritization and estimated effort for the individual requirements. They 
arrive at the estimated effort for each requirement by using decomposition and 
analogy, as in SIP: They look for analogous tasks that were done in past iterations 
and, based on the relevant data, they estimate the future necessary effort. Then they 
select the highest priority tasks until they fill the iteration capacity, and thus they 
create the iteration backlog. The sum of all the task estimates should be approxi-
mately the iteration capacity.

13.1.3 Iteration Process

Once the iteration backlog is defined, the programming team starts its iteration work: 
The individual programmers pick their tasks from the iteration backlog based on their 
priority, and then work on them in parallel. They also produce daily baselines and par-
ticipate in daily meetings. A characteristic feature of AIP is that the team works autono-
mously with minimal direction from the managers, and organizes its work through a 
consensus that is reached by programmer interactions during the iteration meetings, the 
daily meetings, and other communications among the team members. This consensus 
allows the team to react to various situations that may arise. The process manager makes 
sure that this process continues smoothly and interferes with it only in emergencies.

A successful iteration implements all the requirements of the iteration backlog; 
however, sometimes if there is a slip in the schedule, only a subset is implemented. 
In the rare situation when the iteration backlog turns out to be easier than planned, 
the team may implement additional requirements that go beyond the iteration 
backlog. A characteristic of AIP is that the time for the iteration is rigid; the itera-
tion meeting is set in advance, and implementing a subset of the iteration backlog 
is the only option if the schedule slips. Postponing the iteration meeting because of 
the schedule slip is not an option. Only in unforeseen emergencies can the iteration 
end prematurely, for example, if there is a sudden dramatic change in the business 
priorities of the company.
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Individual programmers in the AIP are encouraged to keep individual time 
logs that indicate the time it takes to do the tasks or phases. The team as a whole 
keeps the defect log. Also, the team as a whole keeps an iteration backlog table that 
is identical to the release backlog table of SIP. However, a difference is that the 
assessments of the iteration progress are done daily during the daily meeting where 
the latest data are presented. Useful tools are iteration backlog charts that plot 
the remaining effort; they are easy to grasp, easily visible by the whole group, and 
they handily contrast the iteration plan with reality. Figures 13.2 and 13.3 provide 
examples of the iteration backlog charts.

Figure 13.2 contains the ideal iteration backlog chart. The days of the iteration 
are plotted on the horizontal axis (it is a 10-day iteration), and the effort remain-
ing to complete the iteration is plotted on the vertical axis. On day 0, before the 
iteration starts, the remaining effort is equal to the iteration capacity; in this case 
it is equal to 800 hours. In the perfect world of this chart, each day brings the goal 
closer exactly as estimated; by the middle of the iteration on day 5, the remaining 
effort is 400 hours, and at the end of iteration on day 10, the remaining effort is 
exactly 0.

A more realistic example of actual remaining effort is in the chart of Figure 13.3. 
It differs from the ideal by imperfect estimates and also by unexpected problems 
that surface during the iteration. The iteration backlog chart starts like the ideal 
chart, with the iteration capacity equal to 800 on day 0, but then it deviates from it. 
Already during the second day, after the inaccurate estimates have been corrected 
and unexpected events have been absorbed, the iteration goal is now estimated to 
be further away than the estimate on day 0. Similar ups and downs appear on the 
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Figure 13.2 Ideal iteration backlog chart.
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remaining days of the iteration, and the iteration ends on day 10 with the original 
goal not being reached—there are 100 hours of estimated work remaining.

Agile Manifesto

There are a variety of agile processes, and they differ from each other in certain recom-
mended practices. The best-known characterization of all agile processes is contained in the 
Agile Manifesto, which was authored by 17 leading software developers who met in 2001 at 
Snowboard Ski Lodge in the Rocky Mountains. Later it was signed by numerous others (Agile 
Alliance, 2001). While being revolutionary in the context of the year 2001, it became the 
mainstream of thinking that guides today’s software processes, which is a testament to the rapid 
change of software engineering views during the last decade.

The core of the Agile Manifesto is summarized in the values presented in Table 13.1. Each line 
contains the desired goal in boldfaced text and a criticism of the prevailing practice of software 
engineering in the year 2001 in lightfaced text. The first line emphasizes individuals and interac-
tions that build a consensus among the project stakeholders, and that is the primary characteristic 
of the agile approach. The reference to the processes in the lightfaced text of the first line should 
be read as “rigid and arbitrary processes and tools” that were imposed on the programmers 
by management, often based on unproven theories—a very common practice in the historical 
context of 2001.
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Figure 13.3 Actual iteration backlog chart.

Table 13.1 Agile Manifesto Values

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan
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The second line addresses another issue in the historical context of 2001, where overempha-
sis on secondary work products like documentation or models sometimes overshadowed the 
work on software code. The managers of that time sometimes took working software for granted, 
and focused excessively on these secondary work products. This second line redirects the atten-
tion back to the work product that matters most—the software code.

The third line addresses a consequence of the waterfall life cycle: The assumption was that 
the whole software life span can be planned with reasonable certainty, similar to the construc-
tion of a suburban house. This approach assumed that the plan could be the basis for a contract 
between the customers and the developers that specified all functionality delivered at a specific 
time. Of course, this view did not take into account the volatility of requirements, volatility of 
technology, and volatility of knowledge, which made these plans grossly inaccurate. Note that 
in many professions, the contract between customers and suppliers is based on the idea of a 
retainer, rather than on reaching specific goals by a specific date. A medical doctor is paid by 
effort, rather than being contracted for a specific outcome, and the same is true of lawyers. This 
third line of the manifesto recognizes the futility of the outcome-based contract, and it is a step in 
the direction of programmers working on the basis of a retainer, rather than a fixed outcome and 
date.

The last value—responding to change—is common to all processes of software evolution, and 
it is the fundamental characteristic of all iterative processes that are covered in this book, includ-
ing SIP from the previous chapter, and AIP, DIP, and CIP of this chapter.

13.1.4 Iteration Review

The iteration ends with an iteration review, which is a part of the iteration meet-
ing, and allows the programmers and the managers to evaluate the just-finished 
iteration; the iteration review is scheduled as the first part of the iteration meet-
ing. Presentations and hands-on demonstrations of the latest version of the soft-
ware are the main part of the review. The stakeholders assess the current state 
of the product and identify any discrepancies between the expectations and the 
reality of the project. This assessment becomes a part of the planning for the 
next iteration.

The participants may also discuss the release of the next version to the users. 
Iterations should produce software that is ready for release, and the iteration review 
assesses both technical and business aspects and decides whether to actually release 
the software to the users, or whether it is better to wait for a future iteration.

13.2 Directed Iterative Process (DIP)

The directed iterative process (DIP) is a process where the decisions, planning, and 
task assignments are done by the process managers. Because the managers handle 
the decisions and there is no need to seek a consensus, the DIP process does not 
contain regular meetings. DIP also scales to large-size teams and allows specializa-
tion. Some projects employ hundreds of programmers who may work in different 
geographical locations under a hierarchy of managers. A model of the DIP process 
is presented in Figure 13.4.
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13.2.1 DIP Stakeholders

DIP allows programmers to specialize. A common division of labor in the program-
ming team is the division between developers and testers, as depicted in Figure 13.4. 
The developers work on software changes, while the testers monitor the quality of the 
code and produce the baseline at regular intervals, usually on a daily basis. Testers 
also maintain the system test suite, delete obsolete tests, and create new tests for 
new code. The division of labor between the developers and testers is desirable not 
only because each group needs different skills, but also to avoid a potential conflict 
of interest. The developers may be tempted to gloss over problems in their own code 
and may try to conceal their own coding shortcomings. The independent testers do 
not have this temptation, and their verdict about the quality of the code is more 
credible than that of the developers.

The role of the product managers is similar to their role in AIP; they understand 
the software and its position in the market. They collect requirements and maintain 
the product backlog, including the prioritization of tasks. They monitor the status of 
the tasks and the status of the code, and decide when and how to release new versions 
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of the code to the users. In large projects, there can be several product managers, 
each dealing with a specific issue of product quality or its position in the market.

The process managers enact, monitor, and plan DIP. As part of enactment, 
they issue directives to the developers and testers and tell them which tasks to 
do. They protect the productivity and morale of the team and step in whenever 
morale or productivity is under threat that may come from external or internal 
sources. An example of an internal threat is an individual who fails to cooper-
ate with other programmers; cooperation among the programmers is an essen-
tial ingredient of team morale, and a repeated failure to cooperate is an issue 
that the process managers must resolve. External threats include unreasonable 
demands from higher level managers or powerful users, inadequate resources, 
and so forth.

13.2.2 DIP Process

The bold loop in Figure 13.4 is the iteration loop. It starts with the product and pro-
cess managers jointly defining the iteration backlog, which contains requirements 
that will be implemented in the next iteration. Then there are parallel repeated 
software changes and daily builds; the iteration ends with an iteration review that 
may recommend software release.

In the software change loop, the managers select tasks from the product backlog 
and assign them to the developers. Developers then work on these changes in paral-
lel, implement the corresponding changes, and commit the updated code and other 
work products to the repository.

The build loop is the responsibility of the testers. At a certain specified time 
interval, most often daily, the testers run system tests on the code and establish a 
new baseline that becomes the starting point for the next changes.

Process managers enact DIP and set up the monitoring and planning. They 
monitor the size and quality of the code and the individual programmers’ perfor-
mance. They also plan and monitor the iteration loop. The plan for the iteration 
backlog is similar to the one in SIP and AIP, and the analogy of the planned tasks 
with the past tasks serves as the basis for the planning. For monitoring, they may 
also use iteration backlog charts like the one in AIP.

However, because of software essential difficulties, there is a constant danger 
that managers will lose grasp of the issues that the programmers are facing; there-
fore, the developers and testers have to provide the managers with an accurate and 
timely feedback that serves as the basis for management decisions. Poor quality of 
communication between programmers and managers may lead to a loss of impor-
tant information and negatively impact the work of the whole team.

The iteration ends with an iteration review, where the current state of the project 
is presented to upper management, investors, users, and other stakeholders. If the 
results of the review are favorable, the project may be released to the users. The typical 
length of iterations in DIP is longer than in AIP and ranges from one to six months.
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13.3 Centralized Iterative Process (CIP)

AIP and DIP processes are based on the assumption that the quality of most of the 
commits that the programmers produce is acceptable. Symbolically, this is depicted 
in Figure 13.5, which plots the quality of commits on the horizontal scale, from 
lowest on the left to the highest on the right, and on the vertical scale is the number 
of the commits. The figure assumes something close to a normal distribution of 
quality.

The unacceptable commits are shaded in gray, and Figure 13.5 shows the proj-
ect, where the instances of the low-quality commits are rare. If an unacceptable 
commit happens, the mechanisms of the respective processes are sufficient to deal 
with the situation.

Figure 13.6 presents a different situation, where unacceptable commits are fre-
quent, and therefore, the process has to have a mechanism to filter them out. In 
this situation, code guardians decide whether a commit meets the standard that is 
required by the project and reject failing commits. The process is called a central-
ized iterative process (CIP) and is presented in Figure 13.7.

CIP is used in several different situations. One is when the developer teams 
consist of programmers with widely different skills. An example is an open source 
community that consists of volunteers. Another example is an extra large and geo-
graphically distributed project that has many participating programmers who do not 
know each other. There are academic projects that have students with different skills 
and a wide range of motivations. All these projects employ CIP as their process.

In other projects, the expected software quality is exceedingly high, above the 
skills of most programmers. An example of that is avionics software, where human 
life is at risk and bugs have to be avoided at any cost. In these situations, the devel-
opers are no longer allowed to commit their code at their discretion, and each com-
mit has to pass rigorous checks by guardians before it is allowed to become part of 
the version control system repository.

The code guardians specialize in different aspects of code quality. They are archi-
tects, quality managers, code owners, and so forth. The guardians evaluate the 
programmers’ commits and have the right to accept or reject them, as depicted in 
Figure 13.7.
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Figure 13.5 Quality of commits in AIP and DIP.
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Chapter 4 briefly described software architectures as prescriptive models. 
Architectures have to be preserved during evolution and, therefore, they consist of 
a set of rules that the programmers must observe. An example is the rule that only 
a few selected classes can access the database; all other classes must request the help 
of these privileged classes if they want access. The reason is to keep the overall struc-
ture simple, and if there is ever a need to make changes in the database interface, 
the change propagation of such a change is limited to the classes that have database 
access. Software architects are guardians of these rules.

Quality managers are specialists whose role is to protect the quality of software 
and prevent introduction of faults. They check developers’ commits through fur-
ther inspections or tests before they allow them to become a part of the repository.

Code owners are usually senior programmers who possess specific knowledge of 
a specific part of the code. They are guardians of quality and style of that part of 
the code, and if developers try to commit a change to that part, they have to get the 
owner’s permission. Code ownership is frequently used in open-source software, 
but can be used in other contexts as well. There can be several code owners, each 
owning a part of the code.

There are many specialized tasks that the software project requires, and in large 
teams that use DIP or CIP, these tasks are sometimes done by specialists. There 
may be requirements engineers whose responsibility is to elicit, analyze, and priori-
tize the requirements. The manual writers produce user manuals and documentation 
writers produce documentation. Sometimes their background is in communica-
tion or English, rather than programming. There could be network and operating 
system specialists. In extra-large systems, there even can be concept locators whose 
sole responsibility is the concept-location phase of a change (S. Eick, personal com-
munication, 1998). This specialization increases the effectiveness of the work on 
the tasks, while at the same time it may complicate the communication within the 
team; it is the task of the managers to decide whether this tradeoff contributes to 
the success of the team.

Summary

Software teams are organized in several different ways and use several different 
process models. The agile iterative process (AIP) relies on a consensus among the 
programmers and limits the role of the managers. AIP is a suitable process for 
smaller teams where the complexity of the tasks is high, and therefore, a consensus 
is a better way to arrive at decisions than a manager’s directive. The iteration of AIP 
typically takes one to four weeks, and it contains an iteration meeting where the 
stakeholders of the project meet, assess the current state of the project, and assess 
whether to release the current version of the software or to wait for a future iteration. 
The stakeholders also plan the next iteration, and from the product backlog, they 
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select the iteration backlog, which contains the changes that will be implemented 
in the next iteration.

In the directed iterative process (DIP), managers control the process enactment 
and make the key process decisions. DIP scales to large-size software and large-
size projects. It is particularly suitable for situations where a management directive 
works better than a consensus; examples are large teams, geographically distributed 
teams, and teams with many specialized roles. The programming team of DIP typi-
cally consists of developers who develop the code, and testers who maintain the test 
suite and build the baseline. The centralized iterative process (CIP) is suitable for 
teams with a wide variability of skills or teams with unusually high expectations 
of quality. CIP has code guardians that inspect developers’ commits and accept or 
reject them, and hence, they guard the quality of the code in the version control 
repository. Among them, architects guarantee that the program architecture will 
be preserved through the evolution; code owners guarantee the quality of the com-
mits in the part of the code they own; and quality managers guarantee the general 
quality of the commits.

Further Reading and Topics

There are many variants of directed processes that are described in the literature. 
Among them is the team software process (TSP) (Humphrey, 1999). TSP pays par-
ticular attention to managers and their roles. The book lists several specialized 
management roles, each with different responsibilities. These refined roles include 
a development manager who leads the development and testing of the product, a 
planning manager who guides team planning and monitoring, a quality manager 
who tracks the quality of the code, and many others.

TSP also collects some process measures that are a result of industry-wide sur-
veys, for example, defects inserted per hour (Humphrey, 1999). However, the appli-
cability of these measures to a specific project that deals with a specific problem 
domain and a software team with specific skills is still is a matter of debate.

The rational unified process (RUP) is an iterative process where iterations have 
the following potentially overlapping phases: inception, elaboration, construction, 
and transition (Kruchten, 2004; Jacobson & Bylund, 2000). The management 
issues of RUP are discussed by Bittner and Spence (2006).

The open-source process has been extensively used and studied. Because this pro-
cess typically deals with a large community of developers, code ownership is an 
important issue (Bowman, Holt, & Brewster, 1999).

Geographically distributed teams are increasingly frequent in software develop-
ment. The teams are located in several locations within the same country or even 
overseas. The advantage of such an arrangement is that the teams pool resources 
that are not available in a single location. However, the physical distance also brings 
a special set of challenges (Herbsleb & Mockus, 2003).
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A clean-room software process tries to prevent software defects, while other pro-
cesses concentrate on discovery and removal of existing defects. The clean-room 
process relies heavily on the use of software inspections and on formal methods 
(Prowell, Trammell, Linger, & Poore, 1999).

The classroom iterative process is a reduced version of DIP, where the role of pro-
gram manager, process manager, and testers is merged into a single role of a super-
visor. This simplified process is appropriate for classroom introduction to software 
engineering (Petrenko, Poshyvanyk, Rajlich, & Buchta, 2007).

An agile process exists in many variants. Among them, scrum is a widely used 
agile process of today (Schwaber & Beedle, 2001). The name “scrum” originates 
from rugby, where players decide on a strategy of how to play the next phase of the 
game (Takeuchi & Nonaka, 1986) while standing in a close circle, and that is a 
metaphor for daily meetings and iteration meetings.

Lean software construction is inspired by just-in-time manufacturing, and it 
tries to eliminate all unnecessary overhead from the software processes. Everything 
that does not add value to the customer is suspect and a candidate for elimination 
(Poppendieck & Poppendieck, 2003).

Extreme programming (XP) is a variant of the agile processes, and it contains 12 
practices (Beck, 2000; Jeffries, Anderson, & Hendrickson, 2000). Some of these 
practices overlap with the practices explained in the context of SIP and AIP, but 
other practices are unique to XP and often are carried to the extreme; that fact gave 
the name to this process. These practices are:

The planning game. XP recommends a thorough planning of the iterations along 
the lines that were described in the context of SIP and AIP. The planning 
game includes prioritization of the change requests (user stories in XP lan-
guage), estimates of the effort it takes to implement them, selection of the 
user stories for the next iteration backlog, and assignment of the tasks to the 
programmers in the team.

Simple design. Simple design fulfills the business requirements with the fewest 
possible classes and methods. It is biased toward currently implemented user 
stories and it does not contain provisions for the future. Because of volatility, 
the future is considered uncertain, and to provide elaborate preparations for 
future changes that may never be needed is considered a waste of resources.

Small releases. The goal of small releases is to put the system into production as 
soon as possible so that programmers receive feedback from customers as fast 
as possible. The most valuable features from the point of view of the custom-
ers should be delivered first.

Metaphor. There should be a simple and easy-to-understand metaphor that 
describes the overall idea of the software so that the programmers do not drown 
in its complexity. Examples of simple metaphors are an ATM machine, the 
contract between a client and a supplier, purchasing an item or a set of items 
from a store including a shopping cart and checkout, and similar metaphors.
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Pair programming. XP recommends that all programming be done in pairs. The 
pair constantly communicates about the task at hand; one person types at the 
keyboard (“driver”) and the other person looks at the screen and comments 
(“navigator”); the navigator has an opportunity to think about broader issues 
that include improvements, test cases, and so forth. This work in pairs is in 
fact a continuous code inspection; every piece of code that is committed has 
been seen by at least two people and higher quality code is the result.

  The pairs regularly change, and this presents an opportunity to exchange 
knowledge of the code and the project during the discussions within the 
pairs. If a more senior team member is teamed up with a junior member, 
it provides an opportunity to train the junior member of the team. On the 
other hand, there is a need for the pair to function, and both paired program-
mers must exhibit characteristics and behaviors that make this possible.

Immediate testing. XP recommends immediate update of the test suite as a part of 
each change and to do a full battery of system tests that include unit tests and 
functional tests. Unit testing is done continuously, and all unit tests have to 
pass every time; if they do not, an immediate remedial action has to be taken. 
Functional tests are also run regularly, and they also have to pass every time.

Immediate refactoring. Refactoring is used in XP whenever the code structure 
deviates from the ideal; refactoring was discussed in chapter 9.

Collective ownership. Every member of the XP team owns the code of the whole 
system; there are no specialized owners of any specific parts. Each team mem-
ber can change or improve any part of the system at any time, without seek-
ing anybody’s permission.

Continuous integration. XP recommends creating a new baseline after a few 
hours of development. This lessens the problem of broken baselines, because 
the amount of effort that a broken baseline destroys is smaller. XP requires 
that all problems that led to a broken baseline be immediately resolved.

On-site customer. XP recommends that a real customer be a part of the team and 
be actually located in the same physical space as the rest of the team. The 
on-site customer presents and defends customer needs and concerns that the 
programmers are often unaware of. The customer also clarifies the ambigui-
ties and omissions in the requirements and sets the priorities.

Coding standards. The collective code ownership requires that the team adopts a 
unified coding standard that will make the comprehension of other peoples’ 
code easier.

40-hour week. Programming is hard work, and programmers need to rest and 
have time to attend to their personal matters. Excessive hours on a regular 
basis are counterproductive and only lead to a drop in productivity.
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Exercises

 13.1  In AIP, who decides what changes will be implemented in the next 
iteration?

 13.2 Who meets in the iteration meeting and what do they decide?
 13.3  Consider an AIP iteration that is scheduled to take 10 days, but on 

day 5 the programmers realize they won’t be able to finish the backlog 
until day 11. Should they extend the iteration, or should they return the 
unfinished changes to the product backlog? Why?

 13.4  What is the advantage of separating programmers into developers and 
testers?

 13.5 How do product managers control the product development?
 13.6 In CIP, why is it necessary to sometimes reject developers’ commits?
 13.7 Create an iteration backlog chart for each day based on Table 13.2.
 13.8 In DIP, who is responsible for the build loop?
 13.9 Why are code owners important in open-source software projects?
 13.10 Is “extreme programming” a variation on AIP or DIP?
 13.11 How does the process manager’s role differ from AIP to DIP?
 13.12 Assign each aspect to one or more of the following: AIP, DIP, or CIP.
  a. Consensus
  b. Programmers and testers
  c. Daily loop
  d. Product backlog
  e. Iteration loop
  f. Product and process manager
  g. Parallel software changes
  h. Code owners or architects
  i. Iteration review
 13.13 State three of the values expressed in the Agile Manifesto.

Table 13.2 Estimated Remaining Effort

Day Remaining Effort

1 600

2 650

3 500

4 250

5 320

6 120
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Chapter 14

Initial Development

Objectives

In this chapter, you will learn about the initial development of completely new 
software from scratch. After you have read this chapter, you will know:

 ◾ The software plan and its role in initial development
 ◾ The elicitation and analysis of the initial product backlog
 ◾ The design of the classes and their dependencies
 ◾ CRC cards
 ◾ Bottom-up implementation of the first version

***

Starting a project from scratch is not as common as it was in the past, but when 
it occurs, it presents unique opportunities and challenges. During initial devel-
opment, the project stakeholders make fundamental decisions, and the conse-
quences of these decisions will be present in the software throughout its entire 
life span. The tasks of the initial development are the creation of a software plan, 
then creation of the initial product backlog, initial design, and finally implemen-
tation of the first version (see Figure 14.1). The process resembles a miniature 
waterfall with the difference that it runs only for a relatively short and predeter-
mined time.
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14.1 Software Plan

The first task of initial development is to create the software plan that summarizes 
the goals and circumstances of the project. At the beginning of the project, there is 
usually a good deal of flexibility; however, wise choices must be made, as they are 
difficult to reverse later. The software plan identifies the important issues so that 
informed decisions can be made. The project’s stakeholders review this document 
and reach an agreement so that surprises and disappointments are minimized. The 
document contains both the data and the narrative. It is a brief document of about 
10 pages, and it allows the managers to make an informed fundamental decision: 
to go ahead with the project or not.

The emphasis of the software plan is on brevity and unambiguous communica-
tion. This section presents the recommended outline of the software plan.

14.1.1 Overview

The overview gives a brief introduction to the plan. It explains the purpose of the 
project and lists the reasons to embark on it. It also briefly explains the project 
objectives and the expected results of the project. It explains the scope of the project: 
what is to be covered and what is to be left out.

The subsection titled assumptions lists the assumptions that the project plan 
writers made, like the availability of resources, situation of the market, and so 
forth. The constraints subsection explains the project boundaries, like the limita-
tions of the available resources, deadlines to be met, and so forth. The section 
on deliverables explains what work products will be delivered early in the project 
and when.

The subsection on the evolution and range of the software plan briefly 
explains how far into the future the current plan reaches; the plan typically 
covers the stage of initial development and early iterations of software evolu-
tion, but the accumulations of uncertainties due to volatility limit the range 

Software plan

Initial product backlog

Initial design

Implementation of the first version

Figure 14.1 Tasks of the initial development.
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of the plan. This subsection of the software plan acknowledges this mounting 
uncertainty and the limits of the plan. It also states whether the software plan 
is to be revised, and when.

The subsection titled summaries overviews the rest of the software plan for quick 
reading. In particular, a brief summary of the process, organization, and manage-
ment are contained in this subsection.

14.1.2 Reference Materials

This part of the plan lists all references where readers can find additional infor-
mation related to the project. This may include references to similar past or cur-
rent projects, references to books about the process to be employed by the project, 
articles that describe the domain and the algorithms, websites dealing with the 
technologies to be used, and so forth.

14.1.3 Definitions and Acronyms

This part is a vocabulary of the terms and acronyms used in the software plan and 
in the project. Each project has its own specialized vocabulary, and this vocabulary 
is explained here. This section should make the rest of the project plan understand-
able to a reader who does not have the specialized project expertise.

14.1.4 Process

This part describes in greater detail the project process. It describes the scope of 
the initial development and the subsequent early evolution. It describes the spe-
cific methods to be used in the project, the testing plan, and the work products. 
It summarizes the techniques to be used to ensure the quality of the product, 
including the testing and code inspections. There may be additional aspects of 
the process like the security, data conversions, installations, and specifics of the 
process enactment.

14.1.5 Organization

This part explains the roles of the various actors and specialists that the project 
requires. It explains how the project participants are going to be organized into 
teams, departments, divisions, and so forth; how these units are going to be man-
aged; and how they are going to interact with each other and with other external 
units. If there are subcontractors involved who produce certain work products for 
the project, this section describes their role.
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14.1.6 Technologies

This part of the plan describes the required project technologies that include the 
programming languages and their environments, libraries and frameworks, version 
control system, hardware for the project, and so forth. There may be a need to pur-
chase equipment or software tools, and time for training of team members.

14.1.7 Management

This part also explains how the progress of the project is going to be monitored. 
This includes mechanisms for monitoring requirements volatility, adherence to the 
planned schedule and budget, code quality control, project risks, and so forth. 
The management plan also defines the metrics to be used for monitoring, how the 
results of monitoring are to be reported, and how corrective actions are going to 
be taken.

14.1.8 Cost

Estimated project cost is an important part of the data on which the managers 
base their decisions. The cost estimate uses an analogy with other similar projects 
and acknowledges the level of uncertainty in this estimate. It also states how this 
estimate is going to be adjusted based on the data that will become available as 
the project progresses.

14.2 Initial Product Backlog

Once the project plan is finished and approved by the managers, the product devel-
opment can start. However, at this point, the product backlog is empty and the first 
task is to elicit the initial requirements.

14.2.1 Requirements Elicitation

The unusual aspect of initial development is that there is no product, and therefore, 
there are no product users who can volunteer their views and help to formulate the 
requirements. The potential future users usually consider the project to be abstract, 
and they see the benefits to be far in the future. Some highly motivated potential 
users may be enticed to collaborate in creating a vision for this future product, but 
experience has shown that participation of users at this stage is lukewarm, and vari-
ous techniques must be used to entice them to participate.

The first step in requirements elicitation is to identify whom to ask, that is, 
to identify the stakeholders. The stakeholders are recruited from the ranks of the 
future users, current or future project staff, current or future project managers, 
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veterans from similar past projects, experts on the project domain, and so forth. 
The more of these groups and subgroups are reached during requirements elicita-
tion, the more representative the product backlog will be.

Because the stakeholders are reluctant to participate in requirements elici-
tation in this early part of the project, the software engineers have to employ 
various specialized techniques and methods. One of the prominent techniques 
for initial requirements elicitation is prototyping, which was discussed in chap-
ter 2. The prototype is a quick implementation of the basic functionalities of 
the new software with an emphasis on the user interface, and the purpose is to 
demonstrate to future users the look and feel of the future system. The users can 
get hands-on experience with this prototype, and that prompts them to require 
improvements or new features. These new requirements become a part of the 
product backlog.

14.2.2 Scope of the Initial Development

Once the raw initial requirements have been elicited, the next step is to analyze 
them following a process similar to the one described in chapter 5. The next step 
selects the initial backlog, a subset of the product backlog that will be implemented 
during initial development.

Initial development should give quick feedback about the feasibility of the proj-
ect to all stakeholders, and this consideration determines which requirements will 
make it into the initial backlog. The project risks and the process needs both play a 
prominent role in the prioritization, and to address them, initial development often 
tries to include requirements that use all tiers and all technologies of the project, 
for example, the database, graphical user interface (GUI), client-server support, and 
so forth.

The need to provide a thorough assessment of risks and process needs con-
flicts with the need to provide quick feedback to the stakeholders. Timely 
feedback requires minimal initial development that avoids the problems that 
plagued the waterfall. As in many engineering situations, a suitable compro-
mise must be found. The programmers should weigh all requirements proposed 
for the initial backlog and make sure that they really have to be there. In par-
ticular, all requirements that impact the users in novel ways should be post-
poned into evolution, so that they can be withdrawn if they turn out to have 
undesired effects.

If the size of the initial backlog is kept small, initial development is fast, the 
project stakeholders receive timely feedback, and the volatility that accumulates in 
the meantime does not get out of hand. The evolution that starts afterwards can 
handle all the requirements that were left out.
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Requirements Creep

Requirements creep is a common thing in our lives. When shopping for a car, it is tempting to 
look at cars that are slightly bigger and have a few more features than the car that we originally 
budgeted. In a restaurant, it is tempting to order an especially tasty dessert after a hearty meal, 
and so forth.

The same thing can happen in software projects: When doing initial development, why not 
add a couple of features? Or opt for a bolder and more comprehensive feature? Or try a brand 
new idea? This is called requirements creep, and it is one of the reasons for project failures. 
One extra feature here, another one there, and soon one of them becomes the proverbial straw 
that broke the camel’s back. Requirements creep represents a serious project risk, and it was an 
endemic problem in the context of waterfall projects.

Software evolution guards against requirements creep, because iterations have a limited 
duration, and only a limited number of requirements make it into an iteration based on hard-
nosed prioritization. If a faulty requirement still creeps in, the version that implements it can be 
withdrawn and replaced by an earlier version.

However, initial development does not have this option to revert to an earlier version. At the 
same time, the system still has very tentative contours; therefore, some ill-thought-out goals can 
creep into the project plan or into the initial backlog. Unrealistic expectations in the project plan 
may make the managers feel that they have been deceived. Untried, excessively ambitious, or 
unnecessary requirements in the initial backlog can be very hard or impossible to undo, and they 
often lead to serious operational problems and to project cancellations.

One example among many is the London Ambulance System that was used briefly in the 
early 1990s and whose operation was blamed for 20 unnecessary deaths. The commission that 
conducted inquiry into this failure concluded that there were numerous errors during the plan-
ning and initial requirements phase, and stated: “There is little doubt that the full requirements 
specification is an ambitious document. As pointed out earlier its intended functionality was 
greater than was available from any existing system” (Communications Directorate, 1993).

An example of an ill-thought-out requirement that crept in was the brand new strategy of 
selecting who was going to respond to a call. The system allocated the nearest free ambulance 
to respond to a call, which sounds very reasonable. However the London metropolitan area is 
very large, and with each call, some ambulances drifted farther and farther away from their home 
base, finally reaching areas of London they were not familiar with. Apparently, at that point, 
they often got lost and sometimes even had to ask pedestrians for directions! Thus this new and 
untried requirement of allocating the nearest ambulance, although it looked reasonable at first, 
had serious practical consequences that were unacceptable, and the inclusion of this untried 
practice in the system belongs to the category of requirements creep.

The lesson learned is that such novel requirements should not creep into the initial backlog 
but, instead, they should be postponed into evolution so that the version that implements them 
can be withdrawn if there are unforeseen negative consequences. The programmers working 
on initial development should be aware of these pitfalls and exercise great caution. The initial 
development should address only a very select set of fundamental issues, and the rest should be 
postponed into evolution.

14.3 Design

Design is the next task of initial development. It produces a model of the future first 
version of software, and the main issue that the designers address is the decomposition 
of the software into its parts. The design gives the programmers a glimpse into the 
implementation problems and their solutions while the investment into the software 
is still small, and hence, exploring several alternatives is not prohibitively expensive.
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The design identifies the classes, their relations, and responsibilities. Unified 
Modeling Language (UML) class diagrams are often used as a notation in which 
the model is expressed. Besides that, the class-responsibility collaboration (CRC) 
cards that are described in section 14.3.5 are a frequently used alternative, but 
numerous other notations also have been proposed and used.

The design is usually divided into phases that follow a certain methodology. 
A large number of software design methodologies have been proposed, and this 
section presents a methodology that starts with extraction of significant concepts 
(ESC) that was used in the context of concept location in chapter 6, and it is used 
here with a slight modification. ESC identifies the classes of the future program, 
and it is followed by identification of the class responsibilities and class relations. 
Either CRC cards or UML class diagrams are often used to record the progress of 
the design task, but other notations may be used as well.

14.3.1 Finding the Classes by ESC

The first phase is to find the classes of the future system, and this is done by a 
slightly modified ESC that consists of the following steps:

 ◾ Extract the set of concepts used in the initial backlog.
 ◾ Delete the irrelevant concepts that are intended for communication with the 

programmers and do not deal with the program.
 ◾ Delete external concepts that lie outside the scope of the initial development.
 ◾ The remaining concepts are relevant concepts. Divide them into significant 

concepts that deserve to be implemented as a class, and trivial concepts that 
do not require a full class implementation.

 ◾ If necessary, change the names of the concepts into identifiers that are suit-
able to be used in the code.

14.3.2 Assigning the Responsibilities

In the next step of the design, each class is assigned responsibilities. Each trivial 
concept is assigned to the most closely related class as its responsibility. After that 
is done, the other responsibilities are the actions that are taken by the program 
algorithms, for example, “compare two names” that may be required by a search 
algorithm. The designers estimate what actions the program algorithms need, and 
then assign them as responsibilities to the appropriate classes.

14.3.3 Finding Class Relations

Some of the classes may handle too many responsibilities and need help. In that 
case, they contract with other classes that assume some of these responsibilities. 
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This is how dependencies among the classes are established. Coordinations among 
the classes are also established in this step.

14.3.4 Inspecting and Refactoring the Design

The design at this stage is inspected and improved by refactoring, which may introduce 
additional classes, responsibilities, and interactions. If the responsibilities of any of the 
classes lead to a class that is too large, or if a class assumes a range of responsibilities that 
have very little in common, the programmers create new supplier classes and move some 
of the responsibilities to these suppliers. For example, if there is a class Student that 
contains the student’s personal data like date of birth and address, together with the stu-
dent’s transcript, the personal data are refactored into a newly formed class Person.

The same refactoring operations can be done with the design as they are done with 
the code, but design refactoring is much easier than code refactoring because the design 
does not contain the details that the code does. Because of that, it is recommended 
that all obvious refactoring be done during the design rather than implementation.

14.3.5 CRC Cards

In the context of the methodology outlined here, some people have found CRC cards 
to be a useful tool for recording various steps of the design. Class-responsibility col-
laboration (CRC) cards are small cards, 3 × 5 in. or 4 × 6 in. in size, and each of 
them is used for one class. Each CRC card has three compartments: class name, 
responsibilities, and cooperations (see Figure 14.2). The small size of the cards is 
intentional; we do not want to overload the classes with too many responsibilities 
or cooperations.

The software designers create a card for each class and fill out the name of the 
class, assign class responsibilities, and list all cooperations the class is involved in. 

Class name: Inventory

Responsibilities:

Order items

Cooperations:

Item

Figure 14.2 CRC card.
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The design consists of a stack of CRC cards. It can be readily updated, as cards are 
easily added, removed, or replaced.

The design is a model of the future code and, like all models, it is an abstraction 
that lacks many details, and these details have to be filled in during the next task of 
implementation. Often there are deficiencies in the design, and the implementation 
must correct them, sometimes at the cost of great amount of rework.

14.3.6 Design of Phone Directory

This example illustrates the design of a small program. The initial backlog of this 
example is the following: A person’s telephone number is found by searching a 
directory, which contains records of several persons. The user enters names, and 
the program returns the respective phone numbers. The session is terminated by 
entering the string xxx.

The same initial backlog with the relevant concepts in italics is the follow-
ing: A person’s telephone number is found by searching a directory, which contains 
records of several persons. The user enters names, and the program returns the 
respective phone numbers. The session is terminated by entering the string xxx.

The next step is in Table 14.1. In the left column are the concept names as 
they appear in the initial backlog; all of them are relevant. In the right column 
are the corresponding identifiers to be used in the CRC cards and the code. 
Among them, the significant concepts are highlighted in bold, and they will be 
the future classes.

The next step uses the CRC cards of Figure 14.3. Each class has its own CRC 
card with the name of the class on the top. The trivial concepts are assigned as 

Table 14.1 Relevant Concepts and Significant Concepts

Concept Name in Backlog Concept Name in Code

A person’s telephone number PhoneNumber

Searching Search

Directory Directory

Record Record

User UserInterface

Enters EnterName

Name Name

Return the phone numbers returnPhone

Terminated by entering string xxx terminate
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responsibilities of the most relevant classes and entered into the left compartment 
of the CRC cards. The cooperations among the classes are then listed in the right-
hand compartment. The designers also select the algorithms and data structures 
and, based on them, they add additional responsibilities to the bottom of the left-
hand compartment.

The stack of four CRC cards representing the completed design of the program 
is shown in Figure 14.3. The stack can be converted into a UML class diagram of 
Figure 14.4. However, before that, all cooperations have to be converted into class 
associations. In Figure 14.4, all are converted into the part-of relations.

14.4 Implementation

After the design has been completed, the next task is the implementation of the first 
version of the software. The implementation contains two concurrent activities: 
writing the code and testing it. The programmers either write the code of the classes 
first and then they write test drivers for the unit tests, or they write the test drivers 
first and then the corresponding code. The most common implementation strategy 
is the bottom-up strategy, where the programmers write and verify the suppliers 
first, and then they write and verify the clients.

Class name: Directory

Responsibilities:

search

list

addRecord

deleteRecord

Cooperations:

Record

Name

Class name: UserInterface

Responsibilities:

main

Cooperations:

Directory

Record

Name

Class name: Record

Responsibilities:

phoneNumber

returnPhone

putRecord

Cooperations:

Name

Class name: Name

Responsibilities:

enterName

terminate

nameString

compare

Cooperations:

Figure 14.3 CRC cards of Phone Directory.



Initial Development ◾ 225

14.4.1 Bottom-Up Implementation

Bottom-up implementation is a process that is driven by the desire to minimize the 
number of testing stubs for unit tests, because they represent an extra expense and 
delay in the project. The programmers are guided by the dependency graph. First 
they implement the bottom classes that do not have any suppliers, and then they 
implement their clients, the clients of the clients, and so forth. In the dependency 
graphs without cycles, all suppliers can be written before the clients, so there is no 
need for writing any stubs.

Figure 14.5 contains the dependency graph that corresponds to the UML class 
diagram of Figure 14.4 and CRC cards of Figure 14.3. The bottom-up implemen-
tation sequence that this dependency graph allows is Name, Record, List, 
UserInterface. In this particular case, this is the only bottom-up implementa-
tion sequence, but more complex dependency graphs may allow multiple bottom-
up implementation sequences.

Cycles in the dependency graph present a problem to this process. If they are 
small, the whole cycle can be handled in one step of the bottom-up implementa-
tion. If the cycles are large and cannot be credibly verified in one step, the cycles 
have to be disconnected and a stub has to be written for one class in the cycle. 

+main()

UserInterface

+enterName()

+terminate()

+compare()

-name

Name

+deleteRecord()

+addRecord()

+search()

-list

List

+returnPhone()

+putRecord()

-phoneNumber

Record

Figure 14.4 UML class diagram of Phone Directory.
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The programmers inspect the design of all classes and decide which class can be 
replaced by a stub at the least cost, and then write the stub for that class. That dis-
connects the cycle, and the bottom-up process can be applied.

Figure 14.6 presents an example of a dependency graph with a cycle, where 
classes B, C, and D form a cycle. After the programmers inspected the design, they 
concluded that the easiest stub to write would be the stub for class B. The modi-
fied dependency graph with the stub appears in Figure 14.7. The sequence of class 
implementation then is: StubB, D, C, B, A.

If it were class C in Figure 14.6 that had the easiest stub to write, then the 
modified dependency graph with the stub for class C would be as presented in 
Figure 14.8. One of the sequences of class implementation then is: StubC, B, D, 
C, A.

When all classes of the program have been written and tested, the final part 
of bottom-up development is functional testing of the completed version of 
software.

The process of bottom-up implementation can be viewed as consisting of 
repeated software changes that are, in this particular context, greatly simplified and 
consist only of actualization, conclusion, and verification phases, where actualiza-
tion consists only of creation of new client classes. The bottom-up process follows 
the design document and, in theory, there is no need for other phases of software 
change like code refactoring or change propagation. However, as mentioned before, 
design documents often have various deficiencies that are discovered during the 

UserInterface

List

Record

Name

Figure 14.5 Dependency graph of Phone Directory.
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implementation, and the introduction of new classes also requires refactoring and 
change propagation.

During the bottom-up development, the baseline of the project may consist of 
several disconnected supplier slices. They are integrated into greater and greater 
slices by the actualizations of new clients, and finally the whole program is inte-
grated into one.

14.4.2 Code Generation from Design

There is substantial overlap between the information that is contained in the design 
documents and the corresponding code. The class names, class members, class 
associations—all of these things are a part of the design and can be directly copied 
into the code. There are tools that process this design information and generate code 
skeletons. Of course, these skeletons do not contain all the necessary code; there 
are missing parts that need to be filled in, in particular the bodies of the methods. 
The code generated from the design is like a blank form, where certain parts are 
already there but other parts have to be filled in. These code skeletons can save the 
programmers a substantial amount of work.

A

B

C

D

Figure 14.6 Dependency graph with a cycle.
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A

B

C

D

StubB

Figure 14.7 Modified dependency graph with stub for class B.

D

CA

B

StubC

Figure 14.8 Modified dependency graph with stub for class C.
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14.5 Team Organizations for Initial Development

The tasks of initial development have a very dissimilar character, and different skills 
are required for the project plan, initial requirements, design, and implementation. 
On large projects, different teams with different qualifications may participate in 
these separate tasks. However, often a single team goes through all the tasks of 
initial development and obtains help from different consultants who are experts in 
specific tasks. The initial development is often used to recruit people into the team, 
because few people are needed for the early tasks, but the need for additional people 
grows in later tasks, particularly during the implementation; after that, the team is 
ready for evolution.

Implementation of the first version can be done iteratively in the tailored pro-
cesses of SIP (solo iterative process), AIP (agile iterative process), DIP (directed 
iterative process), and CIP (centralized iterative process). The main difference 
with the original processes is that the iteration backlog consists of the classes 
of the design rather than the requirements. The programmers pick these classes 
from the iteration backlog one by one and implement them using a simplified 
process of software change, until the whole initial version is implemented. For 
that, they most often follow the bottom-up strategy that was outlined in the 
previous section.

14.5.1 Transfer from Initial Development to Evolution

Initial development ends with the first version of the software, which serves as a 
baseline for subsequent evolution. The stakeholders have to decide whether this 
version is ready for release, or whether the first release should be postponed until 
the conclusion of one or several evolutionary iterations. The subsequent evolu-
tion fills in the missing requirements that the initial development was unable 
to implement, and also reacts to the volatility that has accumulated during the 
initial development.

To get evolution off the ground, the evolution processes need an updated prod-
uct backlog and, therefore, the last part of the implementation is to update the 
backlog. The programmers delete or inactivate all the requirements that have been 
successfully implemented, and add new requirements that surfaced during the ini-
tial development.

In rare circumstances, the product backlog is empty after the initial develop-
ment, or contains only minor corrective changes. This happens when the software 
is small or oriented toward an unusually stable domain, like a washing machine 
control program. In that case, the software life span in fact follows the waterfall 
model, and there is no evolution. Instead, the next stage is one of the final stages of 
software life span: the servicing, phaseout, or shutdown.
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Summary

Initial development starts a new project from scratch. The project plan provides 
documentation for the managerial decision of whether to go ahead with the project 
or not. If the managerial decision is positive, the requirements elicitation elicits 
the initial requirements and selects the initial backlog for the implementation. The 
design produces the classes, their responsibilities, and cooperations. CRC cards 
or UML class diagrams are common notations that record the design. The imple-
mentation produces the first version of software. The bottom-up implementation 
process minimizes the need for stubs during unit testing. The whole process of 
initial development runs for a limited time, implements only the most important 
requirements, and addresses the most important project risks.

Further Reading and Topics

An IEEE document (IEEE, 1998 ) defines a suggested format of a software plan in 
more detail.

Software design is one of the most developed subfields of software engineer-
ing, and there are numerous books and articles dealing with it. See, for example, 
the work of Booch (1991) and Coad and Yourdon (1991). A survey of design tech-
niques appears in a book by Budgen (2003). CRC methodology and CRC cards are 
explained in detail by Bellin and Simone (1997). The short overview of the software 
design in this chapter only briefly outlines this large subfield. To illustrate how 
large it is, the query “software design” in Google Scholar (2011) produced more 
than 300,000 hits!

Bottom-up implementation is favored by the current strongly typed languages 
that require definitions of entities before their use, and hence, they require a defi-
nition of the suppliers before the clients. It is also favored by the current testing 
technologies, in particular technologies that favor unit testing of the whole supplier 
slice (Hamill, 2004).

However, there are also processes of top-down implementation that are a mirror 
image of the bottom-up, because they implement and verify clients before devel-
oping the suppliers. The verification of the clients in this context is often done by 
inspections that do not need the stubs, or by unit testing with the help of stubs. 
This process starts with the top modules that support interaction with the users. 
Their behavior reflects the requirements and, therefore, starting the development 
with them ensures that the requirements will not be missed or deformed by the 
process (Rajlich, 1985, 1994).

A combined development that has advantages of both top-down and bottom-
up is present in V-development (not to be confused with the V-model of software 
life span!). In the first phase, it implements the software modules top-down and 
verifies them by inspections; inspections do not need stubs and can be applied 
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to incomplete code. When the bottom modules are reached, the process reverses 
direction; the testing phase starts and then moves bottom-up from the suppliers 
toward the clients.

Code generators convert the design into a skeleton of the code, and numerous 
tools have been developed for that purpose. (See, for example, Budinsky, Gross, 
Steinberg, & Ellersick, 2009).

Software design is the process that offers an opportunity to identify code reuse. 
To write and verify the code is a slow process, and software reuse of ready-made 
code can greatly speed it up and improve productivity. The reuse can use products 
that are specifically prepared for reuse, or it can be opportunistic, where code from 
old projects is used in new ones. Issues of software reuse are summarized by Frakes 
and Kang (2005).

Exercises

 14.1 How does initial development differ from the waterfall?
 14.2 What are the tasks of initial development?
 14.3 What is the purpose of the software plan?
 14.4 List five sections of the software plan.
 14.5  Why do initial requirements have to be elicited? What does elicitation 

mean?
 14.6 What is the difference between the product backlog and initial backlog?
 14.7 What are the criteria for the selection of the initial backlog?
 14.8  Create a product backlog for a small software that controls a washing 

machine.
 14.9  For the product backlog created in the previous question, create a 

design using CRC cards.
 14.10  How does a design that uses CRC cards differ from a design that uses 

UML class diagrams?
 14.11  What do you have to do to convert CRC cards into a UML class 

diagram?
 14.12  Write an example of a code skeleton that is generated from a class dia-

gram that contains two classes. Describe by comments a code that is 
missing in the skeletons and will have to be written by programmers.
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Chapter 15

Final Stages

Objectives

As software technology has matured, more and more software systems are reaching the 
final stages of the software life span. After you have read this chapter, you will know:

 ◾ The reasons why software evolution ends
 ◾ The servicing stage and its difference from evolution
 ◾ The techniques of software change that are acceptable during servicing but 

not during evolution
 ◾ The phaseout stage, when servicing is discontinued
 ◾ The activities of closedown
 ◾ The heterogeneous systems and iterative reengineering

***

The past emphasis of software engineering has been on the early stages of the soft-
ware life span, and the initial development has gained particular attention. This 
is not surprising because software technology still has a relatively short history, 
and starting new projects has been the dominant activity in the past. However, an 
increasing number of software projects now reach the final stages, and therefore, 
they are an important software engineering topic as well. These final stages have 
already been introduced in chapter 2, but this chapter presents a more complete 
exposition. The stages are servicing, phaseout, and closedown, as presented in the 
lower right part of Figure 15.1.
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15.1 End of Software Evolution

Software evolution is a software engineer’s response to the volatility of the requirements, 
volatility of stakeholder knowledge, or volatility of technology. Software evolution ends 
for several different reasons: stabilization, decay, cultural change, or business decision.

15.1.1 Software Stabilization

One of the reasons for software evolution is the volatility of stakeholder knowledge. 
As the stakeholders explore the problem that software solves, they learn more about it. 
Very often, they do it by trial and error, where they try certain ideas. If the ideas work, 
they keep them, and if they do not work, they reject them. In the situations where the 
software domain is stable and the technology is stable as well, stakeholder learning is 
the sole cause of the evolution. Once the problem is sufficiently explored and the cor-
rect solutions are found, the software project reaches a point of stability where further 
substantial changes are unnecessary. This is called stabilization of software.

Stabilization of software frequently occurs in real-time systems that control a 
specific mechanism, for example, a car ignition. The domain of the software is a 
particular car engine. Once the engine is produced and used, it does not change, 
and therefore, the domain is stable. The only reason for evolution is the volatility 
of stakeholder knowledge, where the stakeholders are learning how to control this 
specific engine ignition. Once the stakeholders complete their learning and find the 
solution, there is no reason for further evolution.

15.1.2 Code Decay

Code decay is another reason for the end of evolution. Although software is not 
material and is not subject to wear and tear, its structure decays under the impact 
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of software changes. The symptoms of code decay are increased difficulty of mak-
ing software changes and decreasing change quality, particularly an increase in the 
presence of bugs introduced by the changes. The decaying software can have con-
fusing contracts between software suppliers and clients, unexpected coordination 
among the classes, illogical identifiers or comments, concept extensions delocalized 
into several classes, and so forth. Code decay is the result of accumulated problems 
that postfactoring did not resolve in a timely fashion.

Concept location in decayed code may become very hard. If the code does not 
have meaningful identifiers or comments, the grep search utility does not work. If 
there are no clean and understandable contracts, the dependency search does not 
work either. A decayed structure of software may complicate unit testing or code 
inspection and, as a result, the changes become increasingly difficult and risky. The 
software becomes increasingly unpredictable, costly to evolve, and costly to debug. 
It may reach the point where further evolution is beyond the capabilities of the 
programming team, and this pushes the software into the servicing stage.

Insufficient knowledge is one of the reasons for code decay. To understand a soft-
ware system, software engineers must understand the domain of the application, the 
architecture, the algorithms, the data structures, and the concept extensions in the 
code. They must understand all code strengths and weaknesses. If that knowledge is 
not available, the new code that they produce does not mesh with the old code, and 
software changes aggravate code decay. Even refactoring requires a thorough knowledge 
of software, and without it, it is no longer possible, and the system further decays.

The programmers may record part of the knowledge in the program documen-
tation, but usually this knowledge is of such size and complexity that a complete 
recording is not available. Everything that is not recorded persists in the form of 
tacit individual or group knowledge. This tacit knowledge is constantly at risk of 
being lost or forgotten. Changes in the code make this knowledge obsolete, and 
software engineers may forget some of the knowledge over time. In addition, the 
software engineers who leave the project take their knowledge with them, and if 
they do not transfer this knowledge to other members of the team, that knowledge 
is lost, and this can also trigger code decay.

As the symptoms of decay proliferate, the code becomes more and more compli-
cated, and the knowledge that is necessary for further evolution actually increases. 
When the gap between the knowledge of the team and the growing complexity of 
software becomes too large, the software evolvability is lost and, whether by acci-
dent or by design, the system slips into servicing.

15.1.3 Cultural Change

A special instance of loss of knowledge is cultural change. Software engineering 
has more than half a century of history, and there are programs still in use that 
were created a half century ago. These programs were created in a time of com-
pletely different properties of hardware: Computers were slower and had much less 
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memory, often requiring elaborate algorithms to swap information into and out of 
the memory. Moreover, the programmers used different programming techniques, 
wrote in obsolete languages and for obsolete operating systems, and held different 
opinions about what constitutes a good structure of software. The recently devel-
oped object-oriented techniques were unknown at that time.

The programmers who created these programs are no longer available, and the 
current programmers who try to change these old programs face a double problem: 
Not only do they have to recover the knowledge that is necessary for that specific 
program, but they also have to recover the culture within which these programs were 
created. Without that, they may be unable to make the changes in the program.

15.1.4 Business Decision

Evolution of software may also end for business reasons. Any product can lose its use-
fulness through either “physical obsolescence,” when it tears or wears down, or “moral 
obsolescence,” when it is still functioning but is no longer needed. Software is not 
physical; therefore, it does not wear or tear, but it can become obsolete when it loses 
its usefulness. When that happens, managers decide to stop software evolution.

Another business reason is based on the fact that software evolution is expen-
sive, and it typically requires the effort of the best personnel. The situation may 
arise that the company no longer wishes to spend the resources on further evolu-
tion and the managers stop it, even if the technical properties of the program still 
allow it.

15.2 Servicing

After the evolution ends, software enters the servicing stage. The purpose of the 
servicing is to protect the residual value of software. The threats to that value can 
come from bugs that surface during the use, or from changes in the domain or 
technology to which the software must adapt; the servicing is dominated by adap-
tive and corrective changes.

Because the resulting structure of the code is no longer a matter of concern, ser-
vicing frequently uses actualization techniques that would be inadmissible during 
evolution. A prominent technique of this kind is the use of wrappers, as represented 
in Figure 15.2.

Wrappers, as the word implies, do not change the code that has a deficient 
functionality. Instead, they wrap it in additional code that transforms the new pre-
condition into the old one, then executes the old code, and finally transforms the 
old postcondition into the new one. The wrapped code remains undisturbed, does 
not need to be understood by programmers, and does not need to be verified. The 
size of the wrapped code can range from a single method to the whole program.
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Wrapping seriously deteriorates the structure of the program. Within the 
wrapped part of software, the contracts between suppliers and clients become illog-
ical, and the concept extensions become delocalized between the old code and the 
new wrapper. These conditions make future changes more difficult. For that rea-
son, this technique is not recommended during the stage of evolution; however, it 
may become tolerable when the software nears the end of its life span.

Wrapper for Y2K

In the context of Y2K that was discussed in chapter 5, the life span of many programs was 
extended by the use of a wrapper that shifted the two-digit original “window” of January 1, 
1900–December 31, 1999, to a new window, for example, January 1, 1930–December 31, 2029. 
That extended the useful life of the software into the future and reinterpreted the codes of unused 
years January 1, 1900–December 31, 1929, as codes of future years January 1, 2000–December 
1, 2029. For programs wrapped in this way, the new window will ultimately run out again, but the 
hope is that by that time, new programs that correctly handle the date will replace them.

The correct change does not use the wrapper but addresses the problem head-on and 
extends the code for the year to four digits. The programs changed that way do not have an early 
expiration date, and they can operate until December 31, 9999.

When comparing the stage of servicing to the stage of evolution, there are simi-
larities: Both stages consist of repeated software changes, and the changes have 
similar phases. Because of that, the processes SIP (solo iterative process), AIP (agile 
iterative process), DIP (directed iterative process), and CIP (centralized iterative 
process) are also applicable to servicing.

However, there are also important differences. Because servicing is not inter-
ested in increasing the value of software, the only considerations are correctness and 
the cost of the changes. There is no longer any need to preserve the code properties 
that allow large future changes. Therefore, the structure of the code is no longer a 
concern, and the software changes skip the phase of postfactoring, including the 
associated costs. However, regression tests are even more prominent in servicing 
than they are during evolution; the preservation of the old functionality that the 
users rely on is of the highest importance. Because of these differences, certain 
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teams specialize in servicing, and they take over when software moves into the 
servicing stage.

15.3 Phaseout and Closedown

The phaseout is the next stage of the software life span. It is characterized by the 
absence of new updates to the software. The customers use workarounds when they 
encounter defects. The owners of the software may still provide help to the users, 
and part of that help includes bulletins that describe recommended workarounds. 
An example is a workaround for a security risk for an application that was issued 
by Microsoft (2011).

The boundary between servicing and phaseout does not need to be abrupt; 
management may gradually withdraw support from the software and limit servic-
ing to the highest-priority bugs or adaptations, while issuing bulletins on how to 
work around the less important issues. Management also can intensify or restart the 
servicing and put additional resources into it if the business situation changes and 
a need for more intensive servicing becomes apparent.

Closedown is the end of the software life span. The reasons for closedown vary: 
The work done by the system may no longer be needed; or new and better software 
has appeared and replaced the old one; or the software was already in the stage of 
phaseout, but a new serious problem appeared and pushed the software over into 
closedown. We have already seen an example of that: The Y2K problem was the 
reason why approximately 20% of the software applications worldwide were closed 
down at the end of the 20th century (Kappelman, 2000).

Several actions must precede closedown. There may be persistent data that needs 
to be preserved: student transcripts, some customer records, birth certificates, and 
so forth. The closedown then contains a phase where the old data are migrated to 
the new system, and that may involve data conversion; the quality and integrity of 
this conversion must be evaluated before the old system is shut down.

If new software is replacing the old software, there may be a need to retrain 
users in the use of the replacement system. Sometimes contracts define the legal 
responsibilities of the individual stakeholders when the software shuts down.

15.4 Reengineering

Section 15.1.2 described the transition from software evolution to servicing. It can 
occur as stealthy code decay that leads to the loss of software structure or loss of 
software knowledge and results in the loss of software evolvability. If code decays, 
but the expectations for the system are still high and users still request new func-
tionalities, then management has the following options:
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 ◾ Maintain the increasingly unsatisfactory status quo
 ◾ Transfer the work to the servicing stage and refuse the change requests that 

cannot be honored
 ◾ Rejuvenate the system by reengineering

Reengineering reverses the code decay, but there is a large asymmetry involved: 
While the code decay happens spontaneously and sometimes even unnoticed, reen-
gineering can be an arduous process. Hence, the transition from evolution to ser-
vicing is a very significant episode that substantially lessens the value of software, 
and the reversal can be very expensive. The modified life-span model that includes 
reengineering is depicted in Figure 15.3.

Reengineering does not change the functionality of software; it only changes 
the structure and, therefore, it is similar to refactoring. However, while refactoring 
aims at small and localized code improvements—for example, changing a name 
of an identifier or extracting a function, as discussed in chapter 9—reengineering 
typically reorganizes and rewrites the decayed code of the whole system or substan-
tial parts of it.

The first phase of a reengineering task is called reverse engineering, where the 
programmers analyze the old code and extract the relevant information from it. 
In the next phase, the programmers analyze this information, delete what became 
obsolete or unnecessary, and create the new design. Finally, they use this new design 
to implement the code; this last phase is called forward engineering.

In Figure 15.4, the horizontal axis represents time and the vertical axis rep-
resents the level of abstraction. The code has a low level of abstraction, while the 
extracted information and new design are abstract. The process of reengineering 
visits all four quadrants of Figure 15.4.
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Figure 15.3 Reengineering in software life-span model.
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15.4.1 Whole-Scale Reengineering

The process of reengineering can be a whole-scale process (the model is depicted 
in Figure 15.5), and it is similar to that of the initial development as presented 
in chapter 14. The first task is the creation of a plan that estimates the duration 
and the cost of the reengineering effort. Next, the knowledge from the old code is 
extracted. Then the design phase follows and, finally, the new code is implemented 
according to this design.

However, the whole-scale reengineering effort has problems that resemble the 
problems of the waterfall. For large software, a whole-scale reengineering can be 
a difficult, expensive, and unpredictable undertaking. During the reengineering 
process, the requirements volatility continues and may lead to a growing difference 
between the reengineered software and the users’ expectations. To prevent that, the 
project owners have to evolve two projects in parallel: the old one that is currently 
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in use, and the new one that is being prepared for the future. If they do not properly 
evolve the new system, it may end up being obsolete before being released.

The risk is magnified by the fact that, during the reengineering, the tolerance of 
the users toward any inadvertent alteration is low. The users are accustomed to the 
old software and are very sensitive to any disruption of their routine. Their toler-
ance of alterations in that routine is usually much smaller than the tolerance of the 
users of brand-new systems. They typically expect exactly the same functionality 
from the new project and do not tolerate any deviations. To develop a system that 
has an identical functionality as the old one may be hard to accomplish, and this 
fact presents a significant risk for a whole-scale reengineering effort.

15.4.2 Iterative Reengineering and Heterogeneous Systems

Iterative reengineering is a process that avoids the problems of whole-scale reengi-
neering. It blends software evolution and reengineering into a single iterative pro-
cess that can use the SIP, AIP, DIP, or CIP process model. The blended process 
deals with heterogeneous systems.

The assumption behind the previous chapters was that the software systems are 
homogeneous, that is, all modules are in the same stage of the software life span. 
Heterogeneous systems are systems whose code consists of some modules that are 
evolvable, other decayed modules that cannot be evolved, or stabilized modules 
that do not need to be evolved. An example of heterogeneous software is given in 
Figure 15.6, which presents evolvable software modules as white rectangles, stabi-
lized modules as black rectangles, and decayed modules as gray rectangles.

The iterative reengineering interleaves reengineering tasks and regular evolution 
tasks. The evolutionary tasks follow the process of chapters 5–11, and the phases 
of concept location and impact analysis identify the affected modules. Table 15.1 
summarizes what to do with the changes that impact modules in various stages of 
life span. The changes that involve only evolvable modules or small changes that 
involve stabilized modules present no problem. Large changes to stabilized modules 
are not supposed to happen; perhaps when such a change request appears, it may be 
an indication that the module is not truly stabilized. Servicing changes that involve 
decayed modules may involve wrapping and, hence, again they can be scheduled 
without a problem. However, the large changes that require evolution of decayed 
modules cannot be done and have to wait until after the programmers reengineer 
these decayed modules.

To minimize user disruption, the programmers reengineer the old system one 
task at a time, based on the project priorities. If the result of the reengineering task 
is unsatisfactory, the programmers can always return to the earlier version, and 
this lessens the reengineering risk. This approach also minimizes the disruption 
of the users’ routine, and the results of the reengineering are immediate, concrete, 
and limited in scope. Justification and budgeting of iterative reengineering is 
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easier because the expenses of the individual reengineering tasks are limited, and 
immediate feedback on the success of the process is available.

If the old code is only partially decayed, forward engineering can preserve the 
healthy part of the old code and reimplement only the decayed part, and that may 
speed up the reengineering. Redevelopment is the most radical reengineering where 
none of the code of the decayed program is usable. However, even in that case, the 
functional tests or select unit tests still should be used because they validate that the 
functionality of the new code does not depart from the old one.

The other aspect of the code that needs to be preserved is the knowledge accumu-
lated in the code. As the evolution of the software progresses, often the knowledge 
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Table 15.1 Changes in Heterogeneous Software

Evolvable Stabilized Decayed

Small change to the functionality do do wrap

Large change to the functionality do postpone



Final Stages ◾ 243

of the domain accumulates in the code and is not recorded anywhere else: It is not 
recorded in any books, reports, or documentation. This knowledge must not be lost 
during the redevelopment because it represents a large business value. An example 
of such knowledge is the knowledge of how to calculate insurance premiums: The 
premiums are dependent on a particular state and are impacted by the laws of 
the state, court decisions, demographics, ZIP codes, and many other factors. The 
formula to calculate this premium is based on accumulated experience over a long 
period of time, and the same formula must be used in the new code after redevelop-
ment; otherwise, important business value is lost.

Incremental reengineering is a preferable process, but it works only in the situa-
tions where the old and new modules can communicate with each other and run as 
a single executable software. This is guaranteed when the old and new modules use 
the same technology, including the same hardware, language, and compiler, but it 
can be a problem when this condition is not satisfied.

Summary

Software evolution ends through software stabilization, when there is no longer 
any volatility, or through code decay, when the complexity of the code outruns the 
cognitive capabilities of the programming team, or through a business decision, 
when investment into further evolution is no longer economically viable. After 
software evolution ends, the next stage is servicing, where the programmers do 
only minor corrective or adaptive changes. Servicing sometimes uses techniques 
that would be unacceptable during the evolution, like wrapping. When servicing 
stops, software enters the stage of phaseout and, finally, closedown. Reengineering 
is a process that returns software from the final stages back to evolution. It con-
sists of three steps: reverse engineering, where relevant information is extracted 
from the old code; new design, where this information is used to determine new 
classes and their relations; and forward engineering that implements the new 
classes. The recommended process of reengineering is the iterative process, where 
the reengineering tasks are interleaved with servicing or evolutionary changes. The 
software that iterative reengineering deals with is heterogeneous software, where 
some modules are evolvable, while others are decayed or stabilized and cannot be 
involved in evolutionary changes.

Further Reading and Topics

A symptom that the software evolution is nearing its end is the declining rate of 
system growth. It was documented for some software systems by Paulson, Succi, 
and Eberlein (2004). Code decay was documented by Eick, Graves, Karr, Marron, 
and Mockus (2001). However, it is possible—with extraordinary effort—to evolve 
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even decayed code; some of the encountered situations and their solutions are dis-
cussed by Feathers (2005). Legacy code is a term that describes the decayed code 
(Feathers, 2005).

Software maintenance is an older term and a synonym for software servicing. 
However, note that in the old waterfall model, the term maintenance was used as 
an umbrella term for all stages of the life span that follow the initial development 
and, hence, it may include evolution, servicing, phaseout, and closedown. Since 
evolution, servicing, and the remaining stages are so different in many of their 
characteristics, the old observations that apply to software maintenance should be 
used with caution.

A different team than the original development team often does software 
servicing in order to cut down on costs. However, there is a sensitive issue of 
handover when the development team transfers the project to the servicing team. 
The goal is to hand over not only the code, but also the necessary knowledge 
(Pigoski, 1996).

The length of the life span of software in Japan was surveyed by Tamai and 
Torimitsu (1992). Several software domains were included in the survey, including 
manufacturing, financial services, construction, media, and so forth. For software 
larger than 1 million lines of code, the average life span was found to be 12.2 years, 
with a standard deviation of 4.2 years; there was a larger variation in the life span 
of smaller software. The reasons for the closedown were found to be the following: 
Hardware or system change was the reason in 18% of the cases; new technology 
was the reason in 23.7% of the cases; the need to satisfy new user requirements 
was the cause in 32.8% of the cases; and deterioration of software maintainability 
caused the remaining 25.4% of the cases.

Reengineering in the presence of different technologies is described by Olsem 
(1998). The publication describes the process of reengineering that replaces an 
old technology with a new one in an iterative fashion, and gateways are used as 
wrappers that support coexistence of the modules that use different technologies 
in the same system. Reengineering in the presence of a knowledge in the code 
that is not recorded elsewhere and must be extracted and preserved is described by 
Kozaczynski and Wilde (1992).

Selected tasks of iterative reengineering are described by Demeyer, Ducasse, 
and Nierstrasz (2003). A redevelopment of a highly decayed code that also is imple-
mented in an obsolete language and obsolete programming culture is described by 
Rajlich, Wilde, Buckellew, and Page (2001). A survey of reverse-engineering tech-
niques is presented by Müller et al. (2000).

Exercises

 15.1 What are the main differences between software evolution and servicing?
 15.2 Name two causes of code decay.
 15.3 During servicing, what phase of software change is skipped? Why?
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 15.4  Suppose that you have a method in the code that calculates a day for 
a given date within year 2011, and it has a day and a month as param-
eters. How would you wrap this method so that it calculates a correct 
day for the year 2012?

 15.5 How does phaseout differ from servicing?
 15.6 What is code stabilization and what is its cause?
 15.7  What is the difference between homogeneous and heterogeneous 

software?
 15.8  In a process that mixes reengineering with evolution, how are the reen-

gineering priorities determined?
 15.9  If a module was in the decayed state, what techniques could be used to 

modify its contract with its clients?
 15.10 What must programmers preserve during the closedown phase?
 15.11 What is the difference between reverse engineering and reengineering?
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The concluding part of the book contains a chapter on the related topics that peo-
ple working on software projects frequently encounter. The book concludes with a 
chapter that presents an example of a software change, and a chapter that presents 
an example of the solo iterative process (SIP).





249

Chapter 16

Related Topics

Objectives

Software engineers, in their education and in their software projects, frequently 
deal with topics that are a part of other academic disciplines. After you have read 
this chapter, you will know the roles of these related topics:

 ◾ Other computing disciplines
 ◾ Professional ethics, with a particular emphasis on confidentiality and privacy
 ◾ Software management
 ◾ Ergonomics (human factors)

***

This book presents a core part of the knowledge that software engineers need to be 
successful in their projects and their careers. There are additional related fields and 
overlapping disciplines whose knowledge they also need. This chapter contains a 
brief overview of some of them and points to further reading where the reader can 
gain a deeper knowledge of these related fields.

16.1 Other Computing Disciplines

Software engineering belongs to a family of computing disciplines that deal with 
computer-related topics from different points of view. Each of these disciplines has 
a different emphasis and overlaps with software engineering in a different way. The 
divisions among the disciplines are often a matter of historical accident. From the 
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point of view of the current software projects and programmer needs, they may 
have lost their justification. Nevertheless, they still exist and divide the field of com-
puting into separate disciplines. The curricula for software engineering education 
reflect these divisions (ACM, 2006).

In chapter 3, we encountered technologies that software engineers need to 
know, but that are traditionally considered separate academic topics with their own 
courses, textbooks, journals, and conferences. Besides them, there are additional 
computing disciplines that lie outside traditional software engineering limits, and 
this section gives a brief survey.

16.1.1 Computer Engineering

Computer engineering concentrates on computer hardware and computer-con-
trolled equipment. The specific topics of computer engineering include circuits, 
digital logic, operating systems, digital signal processing, distributed systems, 
embedded systems, and so forth. Embedded systems are a topic that deals with the 
development of devices that contain embedded hardware and software. Examples 
of such devices are washing machines that contain control chips and their pro-
grams, cars that have numerous chips that control ignition and other functions, cell 
phones, medical tools and machines, and many other devices.

There is a substantial overlap between software engineering and computer engi-
neering: Software engineers need to know the properties of the hardware and the con-
trol software while developing applications, and computer engineers need to know 
the principles of software engineering while developing control software. Software 
engineers often work together with computer engineers in the same teams. Although 
the development of embedded systems requires knowledge of software engineering 
principles, it has a distinct flavor. It solves a distinct set of problems and utilizes dis-
tinct software models and technologies (Barr & Massa, 2006; Gupta, 1995).

16.1.2 Computer Science

Computer science emphasizes the theoretical and scientific aspects of computing. 
The subfields of computer science are algorithms, computability, intelligent sys-
tems, bioinformatics, and so forth. Many subjects of computer science are abstract, 
and they are independent of technologies or software engineering processes and 
paradigms. The theory of algorithms is an example of that independence (Cormen, 
Leiserson, Rivest, & Stein, 2009).

Historically, computer science is the oldest computing discipline, and for that 
reason, it often serves as an umbrella that contains other computing disciplines. For 
example, in many academic programs, software engineering is a part of computer 
science, rather than the other way around.
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16.1.3 Information Systems

The information systems discipline developed in business schools, and it deals with 
business software. The subfields of emphasis are databases, computer networks, 
and web programming. There are also specialized subfields like health information 
systems (Checkland & Holwell, 1998).

16.2 Professional Ethics

As software assumes a more central role for the functioning of society, it is more and 
more important that it contribute to society’s well-being rather than becoming a grow-
ing threat. Software engineers are at the center of this significant social development, 
and they should understand the big picture and be well versed in ethical issues.

The concern about software threats is well founded, as illustrated by a long 
litany of computer woes (Neumann, 1995). Because of the essential difficulties of 
software that were discussed in chapter 1, society is often hindered when dealing 
with these issues, and a large responsibility falls on the shoulders of software engi-
neers, who have to be sensitive to the public interest. Computer crime is perhaps the 
most serious of the ethical failures.

16.2.1 Computer Crime

Many computer crimes are variants of theft or vandalism. For example, in the year 
2005, “British police made a number of arrests in the case of a plan to steal huge 
sums of money from accounts at the British office of the Sumitomo Mitsui Bank 
by transferring it into their accounts in various countries. Their basic trick was to 
plant software on the bank’s computers that exposed login names and passwords to 
them” (Neumann, 2009).

Computer crime is the topic of the growing field of computer forensics (Carrier, 
2005). This discipline deals with gathering evidence for criminal convictions, and it 
lies in an intersection between software engineering and criminal justice. Software 
engineers may be called to help with gathering this evidence, or to testify, or to 
provide necessary expertise, and should be prepared to fill this role.

16.2.2 Computer Ethical Codes

Despite the novelty of software, the responsibility of software engineers is the clas-
sical responsibility of one person to another that has been present in human society 
through the ages. Software engineers make choices, and these choices affect the 
lives of others, positively or negatively. These issues have been studied by the disci-
pline of ethics. Natural law is the conceptual ethical framework that can serve as 
the foundation of conduct in novel situations (Finnis, 1983).
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While natural law is generic, professional groups often feel that they need to 
develop specific guidelines. The classical professional code of conduct in the field 
of medicine is the Hippocratic oath (NIH, 2002); the modern oaths of medical 
doctors stem from it.

Similarly, like the medical community, professional societies of software engi-
neers have developed ethics codes that codify the conduct of software engineers. 
For example, see Software Engineering Code of Ethics and Professional Practice (ACM, 
1999). There is a short and long version of the document; the short version states 
the following:

Software engineers shall commit themselves to making the analysis, 
specification, design, development, testing and maintenance of soft-
ware a beneficial and respected profession. In accordance with their 
commitment to the health, safety and welfare of the public, software 
engineers shall adhere to the following eight principles:

 1. Public. Software engineers shall act consistently with the public 
interest.

 2. Client and employer. Software engineers shall act in a manner that 
is in the best interests of their client and employer consistent with 
the public interest.

 3. Product. Software engineers shall ensure that their products and 
related modifications meet the highest professional standards 
possible.

 4. Judgment. Software engineers shall maintain integrity and inde-
pendence in their professional judgment.

 5. Management. Software engineering managers and leaders shall 
subscribe to and promote an ethical approach to the management 
of software development and maintenance.

 6. Profession. Software engineers shall advance the integrity and 
reputation of the profession consistent with the public interest.

 7. Colleagues. Software engineers shall be fair to and supportive of 
their colleagues.

 8. Self. Software engineers shall participate in lifelong learning 
regarding the practice of their profession and shall promote an 
ethical approach to the practice of the profession.

16.2.3 Information Diversion and Misuse

The novel capabilities of computers amplify numerous ethical issues, and one espe-
cially troubling ethical issue is the diversion and misuse of information. Computers 
have the capability to collect information on an unprecedented scale and to pro-
cess this huge amount of information through data-mining algorithms. It is easily 
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foreseeable that the results of that process may end up in the wrong hands, and the 
society that would allow this exploitation of information would find its freedom 
under serious attack. To have a Big Brother who knows more about you than you 
yourself, or to have private snooping agencies with some petty agendas focused on 
your every move, is unfortunately within technological reach.

Privacy and confidentiality rights are an important wall that can stave off 
this nightmare, and software engineers should tirelessly work to protect confi-
dentiality rights. It is important to know that confidentiality rights are rooted 
in natural law (Fagothey, 1967). In the medical field, the Hippocratic oath 
contains the clause: “Whatever I see or hear in the lives of my patients, whether 
in connection with my professional practice or not, which ought not to be spo-
ken of outside, I will keep secret, as considering all such things to be private” 
(NIH, 2002).

To protect their confidentiality, individuals must have the right to give or with-
draw consent to use information about them. They must retain the right to know 
the collected information, correct it, and even to withdraw it from the database, 
the same way that customers can withdraw their name and phone number from 
the phone book. Software engineers are key players in all these situations, and they 
hold an important aspect of our freedom in their hands. They should be vigilant 
about this threat and monitor how their projects observe confidentiality.

Note that some of the most popular applications routinely collect user data to 
enhance the customer’s experience. However, software engineers should be vigilant 
to prevent diversion of these data toward purposes that might be unethical. The 
ethical and social issues of software engineering are discussed in greater detail in a 
book by Kizza (2002).

16.3 Software Management

Chapters 13, 14, and 15 dealt with the software team processes, and these teams 
require management to guarantee smooth functioning. Software engineers must 
understand the team management issues so that they can effectively contribute to 
the team effort.

The management discipline studies how to manage teams and resources and 
how to guarantee a successful outcome of projects. Typically, business schools teach 
this discipline. Generic management skills include operations management, busi-
ness law, human resources management, accounting and finance, marketing and 
sales, economics, quantitative analysis, business policy and strategy, and so forth 
(Gomez-Mejia, Balkin, & Cardy, 2008).

Besides these generic management skills, software managers require specialized 
skills that are necessary for the direction of software projects. Chapter 13 divided 
the management tasks into process management and product management. The 
process management is inward looking, concerned with the internal matters of 
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process, people, and resources, while product management is outward looking, 
concerned with the world outside that includes product position in the market and 
product reputation.

Medium-size teams follow this division, and they have two specialized manag-
ers: one being the process manager and the other being the product manager (some-
times called product owner). In small teams, a single manager often fills both roles, 
while large teams may have a whole hierarchy of managers, where each manager 
deals with a specialized task (Humphrey, 1999).

16.3.1 Process Management

Process management deals with issues of the process in all its forms, including the 
process model, enactment, measurement, and plan. It also deals with the issue of 
resource allocation so that the project can progress unhindered, including person-
nel, equipment, space, supplies, and so forth.

One of the considerations of the process managers is the quality and predictabil-
ity of their processes. The previous chapters describe ideal processes, but the reality 
sometimes falls short of the ideal. To compare their processes, communities have devel-
oped standards against which the processes can be measured (Jalote, 2000; ISO, 2008). 
There are national and international organizations that certify the degree to which the 
companies comply with the standard; customers frequently require this certification; it 
confirms a sound production process that will result in a high-quality product.

16.3.2 Product Management

While process management deals mainly with the issues of the process and the 
team, product management is concerned with the product and its position and rep-
utation in the market. The issues that the product managers deal with are the scope 
of the product, its readiness for the release, its cost and profitability, prioritization of 
the individual requirements from the point of view of the users, and so forth.

Quality management is an especially important product management task 
(Kan, 2002). Product managers have the right to reject low-quality commits or 
entire low-quality baselines or versions if they decide that the quality would be 
injurious to the reputation of the product. Product managers closely collaborate 
with the sales department and monitor relations with the users.

16.4 Software Ergonomics

The field of ergonomics (also called human factors) studies the interactions among 
people and systems (Salvendy, 2006). Ergonomics is a broad field and deals with all 
kinds of human-related issues, such as the optimal height of chairs, and it overlaps 
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with software engineering in several aspects. The relevant part of ergonomics deals 
with the interaction of programmers and users with the programs.

Cognitive issues are of particular importance to software engineers. The soft-
ware systems are often complex, and software engineers must try to make them 
easy to deal with. Human cognitive characteristics are a specific topic that is related 
to this issue (Posner, 1993).

Software typically can be used in several different ways, and it is helpful to 
aggregate users into groups based on their goals and habits; these groups are 
called marketing personas (Pruitt & Adlin, 2006). For example, a chess-playing 
program can have many types of users. One group of users includes the play-
ers who use the program to get suggestions for their next move, another group 
uses it to analyze a complete past chess game to see where they made a mistake, 
while instructors use it to teach novices about the basics of the chess, and so 
forth. These are marketing personas, and each marketing persona places dif-
ferent demands on software. To facilitate communication, software engineers 
sometimes give these personas names, like Edward, Inventor, Student, Beginner, 
and so forth.

Usability is a term that describes how well software (and other systems) serve 
their users. Software engineers can test the usability of their systems, and tech-
niques of this testing are described in the literature (Rubin & Chisnell, 2008).

Four Personas Using Institutional Repository in Colorado

The Institutional Repository (IR) is a centralized archive that collects the results of the intellectual 
work of university faculty and students. It includes experimental data, reports, teaching materials, 
and so forth. It is a publication venue of a new type. It complements the more rigorous, but also 
narrower, venues of scholarly publications like journals, conference proceedings, and books.

The University of Colorado is one of the universities that has implemented IR. They con-
ducted a survey of the IR users and analyzed their responses, a process that led to the discovery 
of four personas (Maness, Miaskiewicz, & Sumner, 2008). To facilitate the communication about 
them, they gave the personas fake names, and even fake photographs and fake resumes. They 
are:

Professor Charles Williams teaches humanities and has been at the university for more than 
30 years. He uses the IR it to share teaching materials with his students and colleagues. 
However, he is not a “techie” and is concerned with technical difficulties of using the 
IR.

Rahul Singh is a graduate student who spends most of his time in the lab. He uses the IR 
to identify collaborators, promote his research, and interact with the world outside the 
lab.

Professor Anne Chao is very active and, besides the IR, she has her own website and a 
blog where she publishes her views. She also very actively publishes in the traditional 
venues like conferences and journals.

Julia Fisher is starting her graduate studies. She is very active in various social events both 
on and off campus. Her source of professional information and scholarly references is 
almost exclusively Internet, and the IR is a part of her strategy for obtaining relevant 
information and publishing her early results.

Each of the four personas places a different set of demands on the IR and its interface. If the 
IR is to fulfill its mission, it must provide a support for all four personas; otherwise, it would miss 
an important segment of the user community.
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16.5 Software Engineering Research

Software engineering is a rapidly developing discipline, and new research ideas and 
new approaches appear frequently. Several journals and conferences present these 
new developments and allow software engineers to keep up with these changes. The 
following is a partial list of journals and conferences that present the new results 
of the research:

Transactions on Software Engineering (IEEE)
Transactions on Software Engineering and Methodology (ACM)
Software (IEEE)
Computer (IEEE)
Communications of ACM
Proceedings of International Conference on Software Engineering (ICSE, ACM/IEEE)
Proceedings of International Conference on Software Maintenance (ICSM, IEEE)
Journal of Software Maintenance and Evolution (Wiley)
Software: Practice and Experience (Wiley)

Summary

Disciplines other than software engineering teach additional skills and insights 
that software engineers need in their projects and careers. These other disci-
plines include other computing disciplines, professional ethics, management, 
and ergonomics.

Exercises

 16.1  Can software engineers ignore other disciplines and concentrate only on 
their own specialty of software engineering?

 16.2 How do software engineering and computer engineering overlap?
 16.3 How do software engineering and computer science differ?
 16.4  This book emphasizes object-oriented technology. What other technolo-

gies do software engineers need to know?
 16.5 Why is information diversion a serious social problem?
 16.6  How does computer crime affect software engineers, even if they are not 

direct victims?
 16.7  Why do you think the writers of the Software Engineering Code of Ethics 

and Professional Practice made the first rule about the public and the 
second about the client and employer?

 16.8  Governments, businesses, and organizations have collected information 
about people for a very long time. Why is it more likely to be misused 
with computers?

 16.9  What skills besides programming skills are necessary to become effec-
tive in software management?

 16.10 Could good software ergonomics be considered an ethical concern?
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Chapter 17

Example of 
Software Change

Objectives

This chapter illustrates the phases of a software change that are parts of the pro-
cess explained in the second part of this book (chapters 5–11). While reading this 
chapter, you will see an example of a complete software change that consists of the 
following phases:

 ◾ Finding the significant concepts of the change request
 ◾ Concept location by dependency search
 ◾ Impact analysis
 ◾ Actualization by creation of a new component
 ◾ Testing the changed code

***

The Drawlets application is a framework that supports drawing figures, includ-
ing lines, rectangles, rounded rectangles, triangles, polygons, ellipses, text boxes, 
and so forth. The figures have several attributes, such as size, location, color of 
the contour, and color of the filling. In this example, the framework is hosted 
by an application called SimpleApplet that displays the drawing canvas in a web 
browser window. The toolbar buttons activate drawing tools that create or modify 
the figures. Figure 17.1 shows the SimpleApplet canvas with a selection of different 
figures. SimpleApplet has more than 130 classes and 40,000 lines of code.
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The change request is: “Implement an owner for each figure. An owner is the 
user who put the figure onto the canvas, and only the owner should be allowed to 
modify it. At the beginning of a session, the users input their ID and password, and 
they are the owners of all figures that were created during the session.”

17.1 Concept Location

The change request with the concept names in italics is: “Implement an owner for 
each figure. An owner is the user who put the figure onto the canvas, and only the 
owner should be allowed to modify it. At the beginning of a session, the users input 
their IDs and passwords, and they are the owners of all figures that were created 
during the session.” Table 17.1 contains these concepts and their classification.

After filtering out irrelevant and external concepts, the programmers are left 
with relevant concepts and have to decide which ones are significant. The program-
mers noted that each session has one and only one canvas. They concluded that 
session properties and canvas properties belong to the same group, and only one of 
these two concepts needs to be selected as significant and located in the code. Of 

Figure 17.1 SimpleApplet canvas and tool buttons. From Rajlich, V., & Gosavi, P. 
(2004). Incremental change in object-oriented programming. IEEE Software, 21, 
62–69. Copyright 1998 Elsevier. Reprinted with permission.
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the two, the programmers selected “canvas” because it is certain that the extension 
“canvas” is present in the code, while the extension “session” is less likely to be pres-
ent. Once the concept “canvas” is located, the “session owner” will be implemented 
there. The “figure owner” belongs to the group of the basic figure properties, and 
that is another location that must also be found in the code.

Among the concept-location techniques, a grep search is less convenient in this 
particular case because of the uncertainty of what specific identifiers are used in the 
code and in what context they are they used. A dependency search is more likely to 
be successful, and therefore, it is used in this example.

Figure 17.2 contains a UML class diagram of the top classes of the SimpleApplet 
and traces the steps that were taken during the concept location. The programmers 
first visited the top class SimpleApplet. The supplier slice of this class is the entire 
program, and therefore, this is a suitable location to start the search. The concepts 
“canvas properties” and “figure properties” are not found in this top class; there-
fore, the programmers searched for them among the suppliers StylePalette, 
Toolbar, and ToolPalette, but none of them contain these concepts in their 
extended responsibility. Therefore, the concepts must be located in the supplier slice 
of DrawingCanvas.

Table 17.1 Concepts and Their Classification

Irrelevant External Significant

implement x

owner x

figure x

user x

canvas x

allowed x

modify x

beginning x

session

input x

ID x

password x

created x
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DrawingCanvas is an interface, and its supplier class SimpleDrawing
Canvas implements all responsibilities. There is one and only one instance of 
SimpleDrawingCanvas for each session of Drawlets; hence, both the canvas 
attributes and session attributes are concentrated in this class, and it is the logical 
location of the implicit concept “session owner.”

The programmers then searched for the location of Figure proper-
ties, visiting again SimpleApplet and DrawingCanvas. The interface 
DrawingCanvas contains many figures, and the properties of these figures are 
therefore, a part of its extended responsibility. This part of the responsibility is 
contracted to SequenceOfFigures, then to Figure, and finally to the class 
AbstractFigure. The class AbstractFigure holds the basic figure proper-
ties, and the programmers concluded that the concept of “figure owner” also should 
be located in this class.

SimpleApplet

Toolbar

ToolPalette

SimpleDrawingCanvas

«interface»

DrawingCanvas

«interface»

SequenceOfFigures

«interface»

Figure

StylePalette

AbstractFigure

Figure 17.2 Concept location. From Rajlich, V., & Gosavi, P. (2004). Incremental 
change in object-oriented programming. IEEE Software, 21, 62–69. Copyright 
1998 Elsevier. Reprinted with permission.
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Once the location of the concepts “session owner” and “figure owner” were 
found, concept location was completed. The programmers were then ready to begin 
impact analysis.

17.2 Impact Analysis

Impact analysis starts with the initial impact set that consists of classes 
SimpleDrawingCanvas and AbstractFigure; both classes of this initial 
impact set are the locations of the significant concepts. To discover the estimated 
impact set, we have to follow the interactions of these classes.

SimpleDrawingCanvas interacts with 23 classes; the inspection of these 
classes determined that only DrawingCanvas was impacted by the change. The 
class AbstractFigure interacts with 26 classes; of them, classes Figure, 
AbstractShape, and TextLabel were impacted.

In the next steps, programmers inspected the classes that interact with these 
impacted classes. If the inspection revealed that they were either impacted or prop-
agating the change, their neighbors were inspected also. The result of this iterative 
process is the estimated impact set that is represented by classes marked by gray in 
Figure 17.3.

17.3 Actualization

The concept “owner” was implemented in the new class OwnerIdentity that 
holds the owner ID and a password, and supports a dialog box that lets users change 
the current session owner. Another class OwnerListener is a supplier to the class 
OwnerIdentity, and it notifies the program when the user clicks on a button in 
this box.

The newly created class OwnerIdentity and its supplier OwnerListener 
were incorporated into the old code by creating an instance of OwnerIdentity 
in both AbstractFigure and SimpleDrawingCanvas. The incorporation 
required a new parameter in some of the methods of the class AbstractFigure; 
these methods now compare the identities of the current session owner and the 
figure owner before making changes to the figures.

In the class SimpleDrawingCanvas, programmers modified the function 
cutSelections(...) to prevent figures not belonging to the current session 
owner from being cut from the canvas. Programmers also implemented several 
new methods to allow access to the current session owner information stored in 
class SimpleDrawingCanvas.

Change propagation parallels impact analysis, but it involves real code modi-
fications. The classes SimpleDrawingCanvas and AbstractFigure 
are the starting points for the change propagation. The complete set of classes 
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changed during the change propagation is equivalent to the estimated impact set 
of Figure 17.3.

17.4 Testing

The system test for the original baseline contains unit tests and functional tests. The 
unit test harness consists of 385 unit tests, with 1,369 assertions and about 4,800 

LocatorConnectionHandle

«interface»

Locator

AbstractFigure

«interface»

Figure

«interface»

SequenceOfFigures

«interface»

DrawingCanvas

CanvasTool SimpleDrawingCanvas

SelectionTool
ConstructionTool

LabelTool

ShapeTool

PrototypeConstructionTool

RectangleTool

EllipseTool RectangularCreationTool

StylePalette

SimpleApplet

ToolBarToolPalette

ConnectedLineCreationHandle

ConnectingLine

ConnectingLinePointHandle

BoundsHandle

LinePointHandle

TextLabel

LabelHolder

StringHolder

AbstractShape

FilledShape

PolygonShape

LinearShape

«interface»

PolygonFigure

«interface»

LineFigure

AdornedLine

DrawLineTool

AnySidedPolygonTool

PolygonTool

LineTool

ConnectionLineTool

AdornedLineTool

LabelEditHandle

OwnerListener

OwnerIdentity

Figure 17.3 The estimated impact set. From Rajlich, V., & Gosavi, P. (2004). 
Incremental change in object-oriented programming. IEEE Software, 21, 62–69. 
Copyright 1998 Elsevier. Reprinted with permission.
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lines. The functional test consists of the basic functions that include Draw (a figure 
is drawn on the canvas), Select (a figure is selected), Move (a figure is moved to a 
different location), Resize (a figure is resized), and so forth. All together it consists 
of 141 test cases.

The phase of actualization added new test cases to both the unit test harness 
and the functional test. During the change propagation, the old tests that were 
impacted by the change were updated.

During the change, 91 lines of production code (0.5%) and 124 lines (2.5%) of 
the test code were modified; hence, for each modified production code line, there 
were approximately 1.4 modified lines of test code.

Prefactoring Can Shorten Change Propagation

The change presented in this chapter is not excessively complicated, but it propagates to a large 
number of classes. Change propagation is an error-prone activity, and each additional modified 
class requires a thorough validation and retesting and increases the risk that bugs will be intro-
duced into the code. Therefore, it is important to find whether any prefactoring would shorten 
the change propagation. Here, we present two separate and mutually independent prefactoring 
techniques that shorten change propagation.

MOVING MISPLACED CODE TO BASE CLASS

During impact analysis, the programmers inspected the classes that are the change-propagation 
targets, and they found misplaced code that unnecessarily extends the impact set. Moving this 
misplaced code into its proper place shortens change propagation.

The classes that contain this misplaced code are classes that draw some figures, including 
rectangle and ellipse. Other classes that draw other figures, including line and polygon, are not 
impacted by the change. A closer inspection of these impacted classes reveals that the impacted 
classes contain the following algorithm:

• Draw the new figure in a default location.
• If the figure was drawn in a wrong location, move it by calling the method move(...).

However, this method has changed, and it is now protected against unauthorized use, and the 
classes that invoke it have to obtain the authorization, and therefore, they also have to change. 
The structure of the code can be improved by the following prefactoring:

• Create a new method move _ new _ figure(...) in the affected classes, and put the 
call of the method move(...) in it.

• Pull up move _ new _ figure(...) into the base class ConstructionTool.
• Merge method move _ new _ figure(...) into method ConstructionTool::new

Figure(...).

This refactoring improves the code by removing redundancies and shortening the change propa-
gation that now stops at class ConstructionTool, as the data in Table 17.2 show.

SPLITTING THE ROLES

A more radical prefactoring is splitting the roles. Splitting roles applies when the code uses the 
same class or same method in two slightly different roles. Because the roles are similar, the same 
code can handle both of them. The propagating change, however, can highlight the differences in 
these two roles. Only one of them might need updating, while the other one remains the same. 
Splitting the two roles and updating only one of them shortens the change propagation.

In our example, programmers observed that the method move(...) is used in Drawlets 
in two different ways: to move the figure as requested by the user, or to move it as part of 
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the algorithm for drawing new figures. The method’s dual role partially causes the extended 
change propagation.

It is obvious that a user-initiated move must check the user identity, while the creation of new 
figures need not. Splitting these two roles into two separate functions—a new method secure-
Move(...) and the old method move(...)—shortens the change propagation. The new method 
secureMove(...) first checks the user’s identity and then invokes the old method move(...).

Table 17.2 contains the data showing how the original change and the prefactoring variants 
compare. While the number of lines modified remains about the same, the prefactoring signifi-
cantly improves the number of modified classes.

Summary

SimpleApplet is a drawing program, and the change in it followed the processes 
and the phases discussed in part 2 of this book. The change did not require any 
advanced knowledge of the program; the knowledge of the program domain was 
sufficient. Programmers learned additional necessary facts during the process.

Further Reading and Topics

Drawlets is available from RoleModel Software (2002). Additional information on 
this example may be found in a paper by Rajlich and Gosavi (2004). The testing 
before and after the change is described by Skoglund and Runeson (2004).

Exercises

 17.1  Find a suitable application in http://sourceforge.net/ and a suitable 
change request for that application; make the corresponding change.

 17.2  How much initial knowledge of Drawlets code do you have to have in 
order to make a change similar to the one presented in this example?

Table 17.2 The Three Strategies of Prefactoring

Technique Used in IC Classes Modified

No prefactoring + incorporation + propagation 36

Moving code + incorporation + propagation 36

 Moving code 12

 Incorporation + propagation after moving code 25

Splitting + incorporation + propagation 24

 Splitting  5

 Incorporation + propagation after splitting 20
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Chapter 18

Example of Solo 
Iterative Process (SIP)

Objectives

This chapter illustrates a development of a small point-of-sale application by a solo 
programmer. While reading this chapter, you will see an example of a software 
development that consists of the following:

 ◾ Initial development of a greatly simplified version
 ◾ Two iterations of SIP that expand this initial version and consist of a sequence 

of software changes

***

Point of Sale (PoS) is an application that supports a small store. It controls the 
cash registers, prints sales receipts, keeps data about the cashiers, and controls the 
inventory. It is developed in several steps, the first one being initial development, 
followed by evolution that consists of two iterations of SIP.

18.1 Initial Development

Because the application starts from scratch, the first stage is the initial development. 
The first phase of initial development, the software plan, is greatly reduced because 
the single programmer does not need to address the issues of management and 
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collaboration. Nevertheless, the software plan addresses two issues: the selection of 
project technologies and the assessment of available resources.

18.1.1 Project Plan

The programmer chose the following technologies for the project:

 ◾ Java programming language and Eclipse software environment
 ◾ Swing framework for graphical user interface (GUI)
 ◾ JUnit framework for unit testing
 ◾ Abbot Java GUI Test Framework for functional testing
 ◾ Version control system “Subversion”

The rationale for the choice is the following: Java is one of the most common 
object-oriented languages, and it is the language the programmer is familiar with. 
The Eclipse software environment is a widely available and proven environment 
that supports development of Java applications. The Swing framework is a popular 
and proven toolkit for graphical user interfaces (GUI) for Java applications, and its 
wide availability guarantees that there will be no unpleasant surprises during the 
development.

For testing, JUnit is the standard tool for unit testing, and it is well integrated 
with Eclipse, so again it is a logical choice. Abbot is also a proven tool and supports 
functional testing of Swing GUIs. Subversion is one of the most widely used version 
control systems, and although other systems are available, Subversion is likely to 
support the project well.

As far as the project resources is concerned, the programmer’s time is the most 
important resource; the time available is sufficient for the development of a small 
application. All necessary hardware and Internet connectivity are also available.

In conclusion, the planned technology is proven and the resources are adequate, 
and the project can go ahead.

18.1.2 Requirements

The following requirements were elicited:

 ◾ The program keeps track of an inventory of items by Universal Product Code 
(UPC), item name, price, tax, and current quantity available.

 ◾ It keeps track of the store’s total cash balance.
 ◾ It allows cashiers to log in and keep track of sales made during a cashier ses-

sion. A session involves the time between the cashier logging in and out, and 
the program keeps a record of sales made during this time.

 ◾ The sale price of an item overrides the regular price and can vary on specific 
dates and hours.
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 ◾ A customer receipt contains one or more items, as well as data such as the date 
of sale and information on the processing cashier.

 ◾ Acceptable payments include cash, credit, and check.

The programmer first decomposed the requirements into tasks, and selected the 
following task as the only task in the initial backlog:

 ◾ Build a very simple version that keeps a constant price and tax of a single item.
 ◾ Keep the quantity of the item.
 ◾ Support a single cashier.
 ◾ Keep track of the store cash balance, and allow only the exact cash payment 

without supporting returning change.

The fledgling application described by the initial backlog is able to support a 
store that sells only one kind of item and uses only cash, which is common with 
street vendors. Nevertheless, this initial product backlog tests all project technolo-
gies. The implementation is fast, giving timely feedback to the programmer and 
other project stakeholders. The remaining features of the product backlog are post-
poned to the phase of evolution that follows initial development.

18.1.3 Initial Design

This initial product backlog leads to a design that consists of a single class. The class 
Store is able to handle all responsibilities requested in the initial backlog. The 
UML diagram of the class is in Figure 18.1.

+getBalance() : double
+processSale() : double
+resetStore() : void
+calcSubTotal() : double
+calcTotal() : double
+getInventory() : int
+setInventory() : void
+addToInventory() : void
+removeFromInventory() : void
+getPrice() : double
+getTax() : double
+main() : void

-balance : double
-inventory : int
-price : double
-tax : double

Store

Figure 18.1 Initial Point of Sale as a single class.
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18.1.4 Implementation

The programmer implemented code of class Store in Java together with the other 
code parts. The results of the implementation are:

 ◾ Java code for the class Store
 ◾ The unit test for the class Store, implemented as a class StoreTest; it 

contains 12 assertions
 ◾ GUI that allows the user to select the current features of the program and is 

supported by the Swing framework
 ◾ The functional test of all features of the GUI recorded by Abbot

This version can be presented to the stakeholders for evaluation and comments. 
Despite its primitive features, it uses all project technologies. These technologies are 
likely to accompany this project to the end of its life span, and the initial develop-
ment is a tryout for these technologies. The longer the project uses these technolo-
gies, the harder it is to replace them.

18.2 Iteration 1

The additional requirements that are not a part of the initial backlog and have been 
deferred are implemented in the stage of evolution. The process of evolution is SIP, 
and two iterations are presented; they implement all remaining requirements.

First, the requirements are divided into tasks of manageable size. For example, 
there is the requirement “Program allows cashiers to log in, and keep track of sales 
made during a cashier session. A session involves the time between the cashier log-
ging in and out, and the program keeps a record of sales made during this time.” 
This requirement is divided into three tasks:

 a. Support the log-in of a single cashier
 b. Support multiple cashiers
 c. Add cashier session that involves the time between the cashier logging in and 

out, and keeps a record of sales made during this time

Tasks are then prioritized. In this case, the most important prioritization crite-
rion is the process needs. For example, the log-in of a single cashier precedes sup-
port for multiple cashiers, and this sequencing supports a gradual increase of the 
program complexity. The iteration backlog of Iteration 1 then consists of a sequence 
of the following tasks:
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 1. Expand inventory to support multiple items.
 2. Attach multiple prices to a single item. Each price will have an effective date, 

so when the user sells an item, the software will calculate the correct total 
based on the most current pricing information.

 3. Support the log-in of a single cashier.
 4. Support multiple cashiers.

The remaining requirements are postponed to Iteration 2, which is described in the 
next section.

This section describes the selected tasks in more detail. Because the program 
under development is small, concept location is simple, and the programmer is 
able to identify the concept location immediately, after the significant concept is 
extracted from the change request.

18.2.1 Expand Inventory to Support Multiple Items

The initial development produced an application that is able to handle a store that 
sells a single item only. The change request for the first task is: “Expand inventory to 
support multiple items.” The significant concepts are “inventory” and “item,” and 
their original extensions are present in in class Store.

Two classes are extracted by prefactoring, one being a new class Inventory 
that includes the methods setInventory, getInventory, addToIn-
ventory, and removeFromInventory. A second class, Item, was then 
extracted from Inventory. It contains the variables int inventory, which 
contains the number of the items, double price, and double tax, and 
the methods getPrice and getTax (see Figure 18.2). In the figure, the meth-
ods moved out of a class are crossed out, and the methods moved into a class are 
in boldface.

During the next phase of actualization, new variables are added to the Item 
class for data such as the UPC, item name, and current quantity of the item. The 
Inventory class is enhanced with a new data structure to hold a collection of 
items. This new data structure is a HashMap from the Java framework, and it 
uses the UPC as a key. The function members of the class are updated so that they 
can handle this data structure. The class diagram of the resulting program is in 
Figure 18.3, with additional class members in boldface.

Inspection of the code reveals that the calcTotal and calcSubTotal 
methods deal with the class Item more than the class Store where they reside; 
they use the data from the class Item. As a postfactoring, they are moved to the 
class Item. The UML class diagram of the resulting program is in Figure 18.4. 
Two new test classes with 22 assertions were created in this task.
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+setInventory() : void

+getInventory() : int

+addToInventory() : int

+removeFromInventory() : void

Inventory

+getPrice() : double

+getTax() : double

-inventory : int

-price : double

-tax : double

Item

+getBalance() : double
+processSale() : double
+resetStore() : void
+calcSubTotal() : double
+calcTotal() : double
+getInventory() : int
+setInventory() : void
+addToInventory() : void
+removeFromInventory() : void
+getPrice() : double
+getTax() : double
+main() : void

-balance : double
-inventory : int
-price : double
-tax : double

Store

Figure 18.2 PoS after prefactoring.

Store

+setInventory() : void
+getInventory() : int
+addToInventory() : int
+removeFromInventory() : void

-inventory : HashMap<long, Item>

Inventory

+getPrice() : double
+getTax() : double

-inventory : int
-price : double
-tax : double
-upc : long

-name : String

Item

Figure 18.3 PoS after actualization.
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18.2.2 Support Multiple Prices with Effective Dates

The change request is the following: “Attach multiple prices to a single item. Each 
price will have an effective date, and the software will calculate the correct price 
based on the most current pricing information.” The significant concept of this 
change request is “price,” which is located in the class Item. A prefactoring “extract 
component class” creates a new class Price (see Figure 18.5).

In actualization, a list is added to the Price class that implements the effective 
date of a price, and get and set methods for this list are added as well. A test class 
with three assertions is created for unit testing.

18.2.3 Support the Log-In of a Single Cashier

The change request is the following: “Support log-in of a single cashier.” The signifi-
cant concept is “cashier.” Currently there is no code that represents this concept, and 
the system assumes that anyone who runs the software is an authorized cashier.

Because the concept of “cashier” is implicit, the programmer located an area 
of the code that is somehow related to the cashier. The Store class has variables 
for the cash balance and, therefore, it is a logical location for the related cashier 
information as well.

The class Store will change, and the impact analysis inspects the class 
Inventory. Because it needs modification, it is added to the estimated impact 
set. After this, its neighbor class Item is visited, but will not change and does not 
propagate the change further.

Inventory

+getPrice() : double
+getTax() : double
+calcSubTotal() : double

+calcTotal() : double

-inventory : int
-price : double
-tax : double
-upc : long
-name : String

Item

+getBalance() : double
+processSale() : double
+resetStore() : void
+calcSubTotal() : double
+calcTotal() : double
+main() : void

-balance:double

Store

Figure 18.4 PoS supporting multiple items.
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The actualization then creates a new class Cashier as a new component of 
the class Store (see Figure 18.6). No postfactoring is needed after these modifica-
tions are completed. The programmer also created a new test class CashierTest 
with assertions that test the functionality of the new methods; 16 new assertions 
are made.

18.2.4 Support Multiple Cashiers

The significant concept is “cashier,” and since there is a class that implements this 
concept, concept location is easy; the new concept will be implemented in the 
Cashier class. For impact analysis, the Store class contains an instance and 
calls the method contained in the Cashier class, so it is likely to require the 
change and is added to the estimated impact set. Inventory is the only other 
neighbor class to Store and Cashier, and it is likely to require modification, so 
it is also added to the estimated impact set.

As a prefactoring, a new CashierRecord component class is extracted 
from the Cashier class and contains the variables cashierId, password, 
firstName, and lastName. The login and logout methods are not specific 
to any individual cashier; this functionality is related to all cashiers, so it remains 
in the Cashier class.

Store

+getPrice() : double
+getTax() : double
+calcSubTotal() : double
+calcTotal() : double

-inventory : int
-price : double
-tax : double
-upc : long
-name : String

Item

Inventory

+getPrice() : double

-price : double

Price

Figure 18.5 Extraction of the class Price.



Example of Solo Iterative Process (SIP) ◾ 277

As actualization, two new variables are added to the CashierRecord class, 
loginTime for storing the current login time, and lastLogin, which stores 
the last date and time the cashier logged into the point-of-sale system. Two new 
methods are created: initLogin, which sets the isLoggedIn Boolean value 
to true, and initLogout, which sets the isLoggedIn Boolean value to false, 
and sets the lastLogin variable to the current login date.

The Cashier class is visited first, and is modified to support multiple 
cashiers in the system. The cashier variable is replaced with an ArrayList 
of CashierRecord objects. The login method is updated to accept a 
cashierId, which is used to search the ArrayList, and a password that is 
used for authentication. The Store class is visited, but it is determined that no 
change is needed here. The Cashier class has no more neighboring classes, so the 
change propagation ends.

The “rename class” refactoring is used to rename the Cashier class to 
Cashiers. Although this is a small and simple refactoring, it leads to a more 
accurate description of the responsibility that the class now handles. Figure 18.7 
contains the class diagram after this software change.

The iteration concludes with a thorough test and production of the next ver-
sion. This new version of the program can handle multiple items in inventory 
and multiple cashiers; hence, it is more useful than the earlier version. However, 
some requirements are still deferred and, therefore, another iteration is required.

Store

Item

Inventory

Price

+login() : void
+logout() : void
+setCashier() : void
+getCashier() : int

-firstName : String
-lastName : String
-cashierId : int
-password : String
-isLoggedIn : boolean

Cashier

Figure 18.6 New class supporting single cashier incorporated into PoS.
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18.3 Iteration 2

The iteration backlog for Iteration 2 consists of the tasks that have been deferred 
during initial development and during the first iteration. The tasks are ordered by 
process needs:

 5. Add cashier session.
 6. Implement promotional prices.
 7. Keep detailed sales records, such as item sold and date/time of sale.
 8. Support multiple items per transaction.
 9. Expand concept of cash payment to include cash tendered and returned 

change.
 10. Implement credit card payment.
 11. Implement check payment.

They are implemented one by one in a similar fashion as the tasks of the first 
iteration. The growth of the program and the corresponding unit tests are sum-
marized in Table 18.1.

When all these tasks are completed, the next version fulfills all originally elic-
ited requirements. The resulting class diagram is in Figure 18.8.

Store

Item

Inventory

Price

+login() : void
+logout() : void
+setCashier() : void
+getCashier() : int

-cashiers : ArrayList<CashierRecord>

-firstName : String
-lastName : String
-cashierId : int
-password : String
-isLoggedIn : boolean

Cashiers

+initLogin() : void

+initLogout() : void

-firstName : String

-lastName : String

-cashierId : int

-password : String

-isLoggedIn : boolean

-lastLogin : Time

-loginTime : Time

CashierRecord

Figure 18.7 PoS with support for multiple cashiers.
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This second iteration completed the implementation of the product backlog 
that was created at the beginning of the project. However, in the meantime, new 
requirements may have arrived, and the next iteration selects its tasks from them. 
An example of such future requirement is support for a customer database that 
records past customers and their credit history, or a database of suppliers, or a 
record of holidays when the store is closed, or a feature that allows the user to 
declare sales to clear a part of inventory, or daily, weekly, monthly, or yearly reports 
from the store, and so forth. These future iterations will be handled by the same 
techniques that were explained in this book.

Summary

Point of Sale is a small application that controls the basic functions of a small store. 
This chapter presents a process that develops this application. The process consists 
of the initial development followed by two iterations of the solitary iterative process 
(SIP). The iterations consist of several tasks that add features to the application.

Table 18.1 Growth of the Program

  Step Classes
Unit Test 

Assertions

Initial development 0 1 12

Iteration 1

 

 

 

1 3 34

2 4 37

3 5 53

4 6 55

Iteration 2

 

 

 

 

 

 

5 7 65

6 8 40

7 9 68

8 10 71

9 11 77

10 13 89

11 14 98
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Further Reading and Topics

Additional details of this example are available in works by Febbraro and Rajlich 
(2007) and Febbraro (2008). The same development accomplished in its entirety 
by the initial development is presented in a book by Coad, North, and Mayfield 
(1995). The results of these two development processes are compared in a paper by 
Febbraro and Rajlich (2007).

Exercises

 18.1  Consider task 2: “Support multiple prices with effective dates.” Describe 
all phases of this task that apply.

 18.2  Suppose that you want to accomplish more during the initial devel-
opment and want to merge the current initial product backlog with 
the first task of the evolution. What will be the process of the initial 
development?

 18.3  Write a program that plays checkers, using SIP. For the initial develop-
ment, implement a greatly simplified game with only one piece of each 
color on the board, without kings and without jumps. Define a product 
backlog and the first iteration. Then implement all tasks of this first 
iteration.

 18.4  Create a product backlog and add one more iteration to the Point of Sale 
system of this chapter.

InventoryStoreCashiers

CashierRecord

Session Sale Item

Payment SaleLineItem Price

PromoPriceChargeCheckCash

Figure 18.8 PoS after the second iteration.
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