
MANAGING AND
LEADING SOFTWARE

PROJECTS

RICHARD E. (DICK) FAIRLEY

A JOHN WILEY & SONS, INC., PUBLICATION

Innodata
File Attachment
9780470405734.jpg

MANAGING AND
LEADING SOFTWARE

PROJECTS

Press Operating Committee

Chair

Linda Shafer
former Director, Software Quality Institute

The University of Texas at Austin

Editor-in-Chief

Alan Clements
Professor

University of Teesside

Board Members

David Anderson, Principal Lecturer, University of Portsmouth
Mark J. Christensen, Independent Consultant

James Conrad, Associate Professor, UNC Charlotte
Michael G. Hinchey, Director, Software Engineering Laboratory, NASA Goddard Space Flight Center

Phillip Laplante, Associate Professor, Software Engineering, Penn State University
Richard Thayer, Professor Emeritus, California State University, Sacramento

Donald F. Shafer, Chief Technology Offi cer, Athens Group, Inc.
Evan Butterfi eld, Director of Products and Services

Kate Guillemette, Product Development Editor, CS Press

IEEE Computer Society Publications
The world-renowned IEEE Computer Society publishes, promotes, and distributes a wide variety of
authoritative computer science and engineering texts. These books are available from most retail
outlets. Visit the CS Store at http://computer.org/cspress for a list of products.

IEEE Computer Society / Wiley Partnership
The IEEE Computer Society and Wiley partnership allows the CS Press authored book program to
produce a number of exciting new titles in areas of computer science, computing and networking
with a special focus on software engineering. IEEE Computer Society members continue to receive
a 15% discount on these titles when purchased through Wiley or at wiley.com/ieeecs

To submit questions about the program or send proposals please e-mail kguillemette@computer.org
or write to Books, IEEE Computer Society, 10662 Los Vaqueros Circle, Los Alamitos, CA 90720-1314.
Telephone +1-714-821-8380. Additional information regarding the Computer Society authored book
program can also be accessed from our web site at http://computer.org/cspress.

MANAGING AND
LEADING SOFTWARE

PROJECTS

RICHARD E. (DICK) FAIRLEY

A JOHN WILEY & SONS, INC., PUBLICATION

Copyright © 2009 by IEEE Computer Society. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee
to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should
be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts
in preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifi cally disclaim any implied warranties of
merchantability or fi tness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be
suitable for your situation. You should consult with a professional where appropriate. Neither the
publisher nor author shall be liable for any loss of profi t or any other commercial damages, including
but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care
Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or
fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print
may not be available in electronic formats. For more information about Wiley products, visit our web
site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data is available.

ISBN: 978-0-470-29455-0

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com

v

CONTENTS

Preface xv

 1 Introduction 1

1.1 Introduction to Software Project Management, 1
1.2 Objectives of This Chapter, 2
1.3 Why Managing and Leading Software Projects Is

Diffi cult, 2
1.3.1 Software Complexity, 3
1.3.2 Software Conformity, 4
1.3.3 Software Changeability, 4
1.3.4 Software Invisibility, 5
1.3.5 Team-Oriented, Intellect-Intensive Work, 6

1.4 The Nature of Project Constraints, 9
1.5 A Workfl ow Model for Managing Software Projects, 13
1.6 Organizational Structures for Software Projects, 16

1.6.1 Functional Structures, 16
1.6.2 Project Structures, 17
1.6.3 Matrix Structures, 17
1.6.4 Hybrid Structures, 18

1.7 Organizing the Project Team, 19
1.7.1 The System Engineering Team, 19
1.7.2 The Software Engineering Team, 20

1.8 Maintaining the Project Vision and the Product Vision, 21
1.9 Frameworks, Standards, and Guidelines, 22
1.10 Key Points of Chapter 1, 23
1.11 Overview of the Text, 23
References, 24
Exercises, 25

vi CONTENTS

Appendix 1A: Frameworks, Standards, and Guidelines for Managing
Software Projects, 28
1A.1 The CMMI-DEV-v1.2 Process

Framework, 28
1A.2 ISO/IEC and IEEE/EIA Standards 12207, 34
1A.3 IEEE/EIA Standard 1058, 36
1A.4 The PMI Body of Knowledge, 37

 2 Process Models for Software Development 39

2.1 Introduction to Process Models, 39
2.2 Objectives of This Chapter, 42
2.3 A Development-Process Framework, 42

2.3.1 Users, Customers, and Acquirers, 43
2.3.2 System Requirements and System Design, 46
2.3.3 Software Requirements, Architecture,

and Implementation, 47
2.3.4 Verifi cation and Validation, 50

2.4 Tailoring the System Engineering Framework for
Software-Only Projects, 52

2.5 Traditional Software Development Process Models, 54
2.5.1 Hacking, 54
2.5.2 Requirements-to-Code, 55
2.5.3 The Waterfall Development Model, 55
2.5.4 Guidelines for Planning and Controlling Traditional

Software Projects, 58
2.6 Iterative-Development Process Models, 58

2.6.1 The Incremental-Build Model, 59
2.6.2 The Evolutionary Model, 64
2.6.3 Agile Development Models, 66
2.6.4 The Scrum Model, 68
2.6.5 The Spiral Meta-Model, 69
2.6.6 Guidelines for Planning and Controlling Iterative-

Development Projects, 71
2.7 Designing an Iterative-Development Process, 72
2.8 The Role of Prototyping in Software Development, 74
2.9 Key Points of Chapter 2, 75
References, 76
Exercises, 77
Appendix 2A: Frameworks, Standards, and Guidelines for Software

Development Process Models, 79
2A.1 The CMMI-DEV-v1.2 Technical Solution

Process Area, 79
2A.2 Development Processes in ISO/IEC and

IEEE/EIA Standards 12207, 80
2A.3 Technical Process Plans in IEEE/EIA Standard

1058, 81
2A.4 The PMI Body of Knowledge, 81

CONTENTS vii

Appendix 2B: Considerations for Selecting an Iterative-
Development Model, 82

 3 Establishing Project Foundations 85

3.1 Introduction to Project Foundations, 85
3.2 Objectives of This Chapter, 86
3.3 Software Acquisition, 87
3.4 Requirements Engineering, 88

3.4.1 Requirements Development, 89
3.4.2 Requirements Analysis, 96
3.4.3 Technical Specifi cations, 98
3.4.4 Requirements Verifi cation, 105
3.4.5 Requirements Management, 106

3.5 Process Foundations, 109
3.5.1 Specifying the Scope of Your Project, 110
3.5.2 The Contractual Agreement, 110

3.6 Key Points of Chapter 3, 112
References, 113
Exercises, 114
Appendix 3A: Frameworks, Standards, and Guidelines for Product

Foundations, 116
3A.1 The CMMI-DEV-v1.2 Process Areas for

Requirements Development and
Requirements Management, 116

3A.2 Product Foundations in ISO/IEC and
IEEE/EIA Standards 12207, 117

3A.3 IEEE/EIA Standard 1058, 118
3A.4 The PMI Body of Knowledge, 118

 4 Plans and Planning 119

4.1 Introduction to the Planning Process, 119
4.2 Objectives of This Chapter, 120
4.3 The Planning Process, 121
4.4 The CMMI-DEV-v1.2 Process Area for Project Planning, 125

4.4.1 Planning Agile Projects, 128
4.4.2 Balancing Agility and Discipline, 129

4.5 A Minimal Project Plan, 129
4.6 A Template for Software Project Management Plans, 130

4.6.1 Front Matter, 130
4.6.2 Project Summary, 132
4.6.3 Evolution, Defi nitions, and References, 134
4.6.4 Project Organization, 136
4.6.5 Managerial Processes, 137
4.6.6 Technical Processes, 143
4.6.7 Supporting Processes, 145
4.6.8 Additional Plans, Appendixes, Index, 149

viii CONTENTS

4.7 Techniques for Preparing a Project Plan, 150
4.7.1 Tailoring the Project Plan Template, 150
4.7.2 Including Predefi ned Elements, 152
4.7.3 Using Organizational Support, 152
4.7.4 Leading a Planning Team, 153
4.7.5 Incremental Planning, 153

4.8 Key Points of Chapter 4, 154
References, 154
Exercises, 155
Appendix 4A: Frameworks, Standards, and Guidelines for Project

Planning, 156
4A.1 The CMMI-DEV-v1.2 Project Planning

Process Area, 156
4A.2 ISO/IEC and IEEE/EIA Standards

12207, 157
4A.3 IEEE/EIA Standard 1058, 158
4A.4 The PMI Body of Knowledge, 158

Appendix 4B: Annotated Outline for Software Project Management
Plans, Based on IEEE Standard 1058, 159
4B.1 Purpose, 159
4B.2 Evolution of Plans, 160
4B.3 Overview, 160
4B.4 Format of a Software Project Management

Plan, 160
4B.5 Structure and Content of the Plan, 162

 5 Project Planning Techniques 173

5.1 Introduction to Project Planning Techniques, 173
5.2 Objectives of This Chapter, 174
5.3 The Scope of Planning, 175
5.4 Rolling-Wave Planning, 175
5.5 Scenarios for Developing a Project Plan, 176
5.6 Developing the Architecture Decomposition View and

the Work Breakdown Structure, 177
5.7 Guidelines for Designing Work Breakdown

Structures, 182
5.8 Developing the Project Schedule, 188

5.8.1 The Critical-Path Method, 190
5.8.2 The PERT Method, 190
5.8.3 Task-Gantt Charts, 193

5.9 Developing Resource Profi les, 193
5.10 Resource-Gantt Charts, 199
5.11 Estimating Project Effort, Cost, and Schedule, 199
5.12 Key Points of Chapter 5, 201
References, 202
Exercises, 202

CONTENTS ix

Appendix 5A: Frameworks, Standards, and Guidelines for Project
Planning Techniques, 204
A5.1 Specifi c Practices of the CMMI-DEV-v1.2

Project Planning Process Area, 204
5A.2 ISO/IEC and IEEE/EIA Standards 12207, 205
5A.3 IEEE/EIA Standard 1058, 205
5A.4 The PMI Body of Knowledge, 206

 6 Estimation Techniques 207

6.1 Introduction to Estimation Techniques, 207
6.2 Objectives of This Chapter, 208
6.3 Fundamental Principles of Estimation, 209
6.4 Designing to Project Constraints, 214
6.5 Estimating Product Size, 216
6.6 Pragmatic Estimation Techniques, 224

6.6.1 Rule of Thumb, 224
6.6.2 Analogy, 226
6.6.3 Expert Judgment, 227
6.6.4 Delphi Estimation, 227
6.6.5 WBS/CPM/PERT, 229

6.7 Theory-Based Estimation Models, 230
6.7.1 System Dynamics, 230
6.7.2 SLIM, 231

6.8 Regression-Based Estimation Models, 234
6.8.1 COCOMO Models, 238
6.8.2 Monte Carlo Estimation, 244
6.8.3 Local Calibration, 244

6.9 Estimation Tools, 249
6.10 Estimating Life Cycle Resources, Effort, and Cost, 249
6.11 An Estimation Procedure, 251
6.12 A Template for Recording Estimates, 256
6.13 Key Points of Chapter 6, 258
References, 258
Exercises, 259
Appendix 6A: Frameworks, Standards, and Guidelines for

Estimation, 262
6A.1 Estimation Goals and Practices of the

CMMI-DEV-v1.2 Project Planning Process
Area, 262

6A.2 ISO/IEC and IEEE/EIA Standards 12207, 263
6A.3 IEEE/EIA Standard 1058, 263
6A.4 The PMI Body of Knowledge, 263

 7 Measuring and Controlling Work Products 265

7.1 Introduction to Measuring and Controlling Work Products, 265
7.2 Objectives of This Chapter, 268

x CONTENTS

7.3 Why Measure?, 268
7.4 What Should Be Measured?, 269
7.5 Measures and Measurement, 270
7.6 Measuring Product Attributes, 276

7.6.1 Measuring Operational Requirements and Technical
Specifi cations, 276

7.6.2 Measuring and Controlling Changes to Work
Products, 281

7.6.3 Measuring Attributes of Architectural Design
Specifi cations, 285

7.6.4 Measuring Attributes of Software Implementation, 288
7.6.5 Complexity Measures for Software Code, 293
7.6.6 Measuring Integration and Verifi cation of Software

Units, 298
7.6.7 Measuring System Verifi cation and Validation, 299

7.7 Measuring and Analyzing Software Defects, 301
7.8 Choosing Product Measures, 309
7.9 Practical Software Measurement, 311
7.10 Guidelines for Measuring and Controlling Work Products, 311
7.11 Rolling-Wave Adjustments Based on Product Measures and

Measurement, 313
7.12 Key Points of Chapter 7, 313
References, 314
Exercises, 315
Appendix 7A: Frameworks, Standards, and Guidelines for Measuring

and Controlling Work Products, 319
7A.1 The CMMI-DEV-v1.2 Monitoring and Control

Process Area, 319
7A.2 ISO/IEC and IEEE/EIA Standards 12207, 320
7A.3 IEEE/EIA Standard 1058, 321
7A.4 The PMI Body of Knowledge, 321
7A.5 Practical Software and Systems Measurement

(PSM), 321
Appendix 7B: Procedures and Forms for Software Inspections, 322

7B.1 Conducting a Software Inspection, 322
7B.2 The Defect Checklist, 324
7B.3 Conducting an Inspection Meeting, 325

 8 Measuring and Controlling Work Processes 333

8.1 Introduction to Measuring and Controlling Work Processes, 333
8.2 Objectives of This Chapter, 336
8.3 Measuring and Analyzing Effort, 336
8.4 Measuring and Analyzing Rework Effort, 339
8.5 Tracking Effort, Schedule, and Cost; Estimating Future

Status, 342
8.5.1 Binary Tracking, 342
8.5.2 Estimating Future Status, 345

CONTENTS xi

8.6 Earned Value Reporting, 347
8.7 Project Control Panel®, 353
8.8 Key Points of Chapter 8, 357
References, 358
Exercises, 358
Appendix 8A: Frameworks, Standards, and Guidelines for Measuring

and Controlling Work Processes, 361

 9 Managing Project Risk 363

9.1 Introduction to Managing Project Risk, 363
9.2 Objectives of This Chapter, 365
9.3 An Overview of Risk Management for Software

Projects, 366
9.4 Conventional Project Management Techniques, 369
9.5 Risk Identifi cation Techniques, 373

9.5.1 Checklists, 373
9.5.2 Brainstorming, 375
9.5.3 Expert Judgment, 375
9.5.4 SWOT, 375
9.5.5 Analysis of Assumptions and Constraints, 375
9.5.6 Lessons-Learned Files, 376
9.5.7 Cost and Schedule Modeling, 376
9.5.8 Requirements Triage, 379
9.5.9 Assets Inventory, 380
9.5.10 Trade-Off Analysis, 380

9.6 Risk Analysis and Prioritization, 381
9.7 Risk Mitigation Strategies, 382

9.7.1 Risk Avoidance, 382
9.7.2 Risk Transfer, 383
9.7.3 Risk Acceptance, 383
9.7.4 Immediate Action, 384
9.7.5 Contingent Action, 385

9.8 Top-N Risk Tracking and Risk Registers, 388
9.9 Controlling the Risk Management Process, 392
9.10 Crisis Management, 394
9.11 Risk Management at the Organizational Level, 395
9.12 Joint Risk Management, 396
9.13 Key Points of Chapter 9, 396
References, 397
Exercises, 397
Appendix 9A: Frameworks, Standards, and Guidelines for Risk

Management, 399
9A.1 The CMMI-DEV-v1.2 Risk Management

Process Area, 399
9A.2 ISO/EIC and IEEE/EIA Standards

12207, 400
9A.3 IEEE/EIA Standard 1058, 400

xii CONTENTS

9A.4 The PMI Body of Knowledge, 401
9A.5 IEEE Standard 1540, 402

Appendix 9B: Software Risk Management Glossary, 404

10 Teams, Teamwork, Motivation, Leadership, and Communication 407

10.1 Introduction, 407
10.2 Objectives of This Chapter, 408
10.3 Managing versus Leading, 408
10.4 Teams and Teamwork, 410
10.5 Maintaining Morale and Motivation, 417
10.6 Can’t versus Won’t, 418
10.7 Personality Styles, 420

10.7.1 Jungian Personality Traits, 420
10.7.2 MBTI Personality Types, 421
10.7.3 Dimensions of Social Styles, 425

10.8 The Five-Layer Behavioral Model, 427
10.9 Key Points of Chapter 10, 430
References, 430
Exercises, 432
Appendix 10A: Frameworks, Standards, and Guidelines for

Teamwork and Leadership, 433
10A.1 The CMMI-DEV-v1.2 Framework

Processes, 433
10A.2 ISO/IEC and IEEE/EIA Standards

12207, 433
10A.3 IEEE/EIA Standard 1058, 433
10A.4 The PMI Body of Knowledge, 434
10A.5 Other Sources of Information, 434

10A.5.1 The People CMM, 434
10A.5.2 The Personal Software Process, 435
10A.5.3 The Team Software Process, 436
10A.5.4 Peopleware, 436

11 Organizational Issues 439

11.1 Introduction to Organizational Issues, 439
11.2 Objectives of This Chapter, 440
11.3 The Infl uence of Corporate Culture, 441
11.4 Assessing and Nurturing Intellectual Capital, 443
11.5 Key Personnel Roles, 444
11.6 Fifteen Guidelines for Organizing and Leading Software

Engineering Teams, 449
11.6.1 Introduction to the Guidelines, 449
11.6.2 The Guidelines, 450
11.6.3 Summary of the Guidelines, 463

11.7 Key Points of Chapter 11, 464
References, 464

CONTENTS xiii

Exercises, 465
Appendix 11: Frameworks, Standards, and Guidelines for

Organizational Issues, 467
A11.1 The CMMI-DEV-v1.2 Process

Framework, 467
A11.2 ISO and IEEE Standards 12207, 469
A11.3 IEEE/EIA Standard 1058, 470
A11.4 The PMI Body of Knowledge, 470

Glossary of Terms 471

Guidance for Term Projects 481

Index 487

xv

 PREFACE

 Too often those who develop and modify software and those who manage software
development are like trains traveling different routes to a common destination. The
managers want to arrive at the customer ’ s station with an acceptable product, on
schedule and within budget. The developers want to deliver to the users a trainload
of features and quality attributes; they will delay the time of arrival to do so, if
allowed. Sometimes the two trains appear to be on the same schedule, but often one
surges ahead only to be sidetracked by traffi c of higher priority while the other
chugs onward. One or both may be unexpectedly rerouted, making it diffi cult to
rendezvous en route and at the fi nal destination.

 Managers traveling on their train often wonder why programmers cannot just
write the code that needs to be written, correctly and completely, and deliver it when
it is needed. Software developers traveling on their train wonder what their manag-
ers do all day. This text provides the insights, methods, tools, and techniques needed
to keep both trains moving in unison through their signals and switches and, better
yet, shows how they can combine their engines and freight to form a single express
train running on a pair of rails, one technical, the other managerial.

 By reading this text and working through the exercises, students, software devel-
opers, project managers, and prospective managers will learn why

 managing a large computer programming project is like managing any other large
undertaking — in more ways than most programmers believe. But in many ways it is
different — in more ways than most professional managers expect. 1

 Readers will learn how software projects differ from other kinds of projects
(i.e., construction, agricultural, manufacturing, administrative, and traditional engi-
neering projects), and they will learn how the methods and techniques of project
management must be modifi ed and adapted for software projects.

1 The Mythical Man - Month, Anniversary Edition , Frederick P. Brooks Jr., Addison Wesley, 1995; pp. x.

xvi PREFACE

 Those who are, or will become managers of software projects, will acquire the
methods, tools, and techniques needed to effectively manage software projects, both
large and small. Software developers, both neophyte student and journeyman/jour-
neywoman professional, will gain an increased understanding of what managers do,
or should be doing all day and why managers ask them to do the things they ask/
demand. These readers will gain the knowledge they need to become project manag-
ers. Those students and software developers who have no desire to become project
managers will benefi t by gaining an increased understanding of what those other
folks do all day and why the seemingly extraneous things they, the developers, are
asked to do are important to the success of their projects.

 This text is intended as a textbook for upper division undergraduates and gradu-
ate students as well as for software practitioners and current and prospective soft-
ware project managers. Exercises are included in each chapter. Practical hints and
guidelines are included throughout the text, thus making it suitable for industrial
short courses and for self - study by practitioners and managers.

 Chapters 1 through 3 provide the context for the remainder of the text: Chapter
 1 provides an introduction to software project management; Chapter 2 covers
process models for developing software - intensive systems; Chapter 3 is concerned
with establishing the product foundations for software projects.

 Chapters 4 through 10 cover the four primary activities of software project
management:

 • Planning and estimating is covered in Chapters 4 through 6 .
 • Measuring and controlling is covered in Chapters 7 and 8 .
 • Managing risk is covered in Chapter 9 .
 • Leading, motivating, and communicating are covered in Chapter 10 .

 Chapter 11 covers organizational issues and concludes the text with a summary of
15 guidelines for organizing and leading software engineering teams.

 For each topic covered, the approach taken is to present the full scope of activi-
ties for the largest and most complex projects and to show how those activities can
be tailored, adapted, and scaled to fi t the needs of projects of various sizes and
complexities.

 Learning objectives are presented at the beginning of each chapter and each
concludes with a summary of key points from the chapter. Occasional sidebars
elaborate the material at hand. An appendix to each chapter relates the topics
covered in that chapter to four leading sources of information concerning manage-
ment of software projects:

 1. CMMI - DEV - v1.2 process framework
 2. ISO/IEC and IEEE/EIA Standards 12207
 3. IEEE/EIA Standard 1058
 4. PMI ’ s Body of Knowledge (PMBOK ®)

 The text is consistent with the guidelines contained in PMBOK and ACM/IEEE
curriculum recommendations.

 Presentation slides, document templates, and other supporting material for
the text and for term projects are available at the following URL:
 computer.org/book_extras/fairley_software_projects

PREFACE xvii

 Terms used throughout this text are defi ned in the Glossary at the end of the
text. Topics, schedule, and a template for term projects follow the Glossary and
included are some hypothetical projects that can be used as the basis for term proj-
ects in a course or as examples that practitioners and managers can use to gain
experience in preparing software project management plans. Schedule and tem-
plates for deliverables for the hypothetic projects are also provided; electronic
copies of templates and some software tools are provided at the URL previously
cited. Alternatively, practitioners and managers can apply the templates and tools
to a past, present, or future project.

 A continued example for planning and conducting a project to build the software
element of an automated teller system is presented to motivate and explain the
material contained in each chapter.

 As is well known, one learns best by doing. I strongly recommended that the
exercises at the end of each chapter be completed and that progress through the
material be accompanied by an extended exercise (i.e., a term project) to develop
some elements a project plan for a real or hypothetical software project. The plan-
ning exercise can be based on an actual project that the reader has been, is currently,
or will be involve in; or it can be based on one of the hypotheticals at the end of
the text; or it can be based on a project assigned by the instructor. A week - by - week
schedule for completing the term project on a quarter or semester basis is provided.
Completion of the planning exercise will result in a report that contains elements
similar to those presented in IEEE/EIA Standard 1058 for software project manage-
ment plans.

 The material can be presented in reading/lecture/discussion format or by assigned
readings followed by classroom or on - line discussions based on the exercises and
the term project.

 I am indebted to the pioneers who surveyed the terrain, prepared the roadbed,
laid down the tracks, and drove the golden spike so that our project trains can
proceed to their destinations. Those pioneers include Fred Brooks, the intellectual
father of us all; Winston Royce, who showed us systematic approaches to software
development and management of software projects; Barry Boehm, who was the fi rst
to address issues of software engineering economics, risk management, and so much
more; Tom DeMarco, the master tactician of software development, project manage-
ment, and peopleware; and the many others who prepared the way for this text. I
accept responsibility for any misinterpretations or misstatements of their work. My
apologies to those I have failed to credit in the text, either through ignorance or
oversight.

 Thanks to Mary Jane Fairley, Linda Shafer, and the other reviewers of the manu-
script for taking the time to read it and for the many insightful comments they
offered. Special thanks to the many students to whom I have presented this material
and from whom I have learned as much as they have learned from me.

 R ichard E. (D ick) F airleyTeller County, Colorado

1

1
 INTRODUCTION

Managing and Leading Software Projects, by Richard E. Fairley
Copyright © 2009 IEEE Computer Society

 In many ways, managing a large computer programming project is like managing any
other large undertaking — in more ways than most programmers believe. But in many
other ways it is different — in more ways than most professional managers expect. 1

 — Fred Brooks

 1.1 INTRODUCTION TO SOFTWARE PROJECT MANAGEMENT

 When you become (or perhaps already are) the manager of a software project you
will fi nd that experience to be one of the most challenging and most rewarding
endeavors of your career. You, as a project manager, will be (or are) responsible for
(1) delivering an acceptable product, (2) on the specifi ed delivery date, and (3)
within the constraints of the specifi ed budget, resources, and technology. In return
you will have, or should have, authority to use the resources available to you in the
ways you think best to achieve the project objectives within the constraints of
acceptable product, delivery date, and budget, resources, and technology.

 Unfortunately, software projects have the (often deserved) reputation of costing
more than estimated, taking longer than planned, and delivering less in quantity and
quality of product than expected or required. Avoiding this stereotypical situation
is the challenge of managing and leading software projects.

 There are four fundamental activities that you must accomplish if you are to be
a successful project manager:

1 The Mythical Man - Month, Anniversary Edition , Frederick P. Brooks Jr., Addison Wesley, 1995; p. x.

2 INTRODUCTION

 1. planning and estimating,
 2. measuring and controlling,
 3. communicating, coordinating, and leading, and
 4. managing risk.

 These are the major themes of this text.

 1.2 OBJECTIVES OF THIS CHAPTER

 After reading this chapter and completing the exercises, you should understand:

 • why managing and leading software projects is diffi cult,
 • the nature of project constraints,
 • a workfl ow model for software projects,
 • the work products of software projects,
 • the organizational context of software projects,
 • organizing a software development team,
 • maintaining the project vision and product goals, and
 • the nature of process frameworks, software engineering standards, and process

guidelines.

 Appendix 1A to this chapter provides an introduction to elements of the following
frameworks, standards, and guidelines that are concerned with managing software
projects: the SEI Capability Maturity Model ® Integration CMMI - DEV - v1.2, ISO/
IEC and IEEE/EIA Standards 12207, IEEE/EIA Standard 1058, and the Project
Management Body of Knowledge (PMBOK ®). Terms used in this chapter and
throughout this text are defi ned in a glossary at the end of the text. Presentation
slides for this chapter and other supporting material are available at the URL listed
in the Preface.

 1.3 WHY MANAGING AND LEADING SOFTWARE PROJECTS
IS DIFFICULT

 A project is a group of coordinated activities conducted within a specifi c time frame
for the purpose of achieving specifi ed objectives. Some projects are personal in
nature, for example, building a dog house or painting a bedroom. Other projects
are conducted by organizations. The focus of this text is on projects conducted
within software organizations. In a general sense, all organizational projects are
similar:

 • objectives must be specifi ed,
 • a schedule of activities must be planned,
 • resources allocated,
 • responsibilities assigned,

1.3 WHY MANAGING AND LEADING SOFTWARE PROJECTS IS DIFFICULT 3

 • work activities coordinated,
 • progress monitored,
 • communication maintained,
 • risk factors identifi ed and confronted, and
 • corrective actions applied as necessary.

 In a specifi c sense, the methods, tools, and techniques used to manage a project
depend on the nature of the work to be accomplished and the work products to be
produced. Manufacturing projects are different from construction projects, which
are different from agricultural projects, which are different from computer hardware
projects, which are different from software engineering projects, and so on. Each
kind of project, including software projects, adapts and tailors the general proce-
dures of project management to accommodate the unique aspects of the develop-
ment processes and the nature of the product to be developed.

 Fred Brooks has famously observed that four essential properties of software
differentiate it from other kinds of engineering artifacts and make software projects
diffi cult 2 :

 1. complexity,
 2. conformity,
 3. changeability, and
 4. invisibility of software.

 1.3.1 Software Complexity

 Software is more complex, for the effort and the expense required to construct it,
than most artifacts produced by human endeavor. Assuming it costs $ 50 (USD) per
line of code to construct a one - million line program (specify, design, implement,
verify, validate, and deliver it), the resulting cost will be $ 50,000,000. While this is a
large sum of money, it is a small fraction of the cost of constructing a complex
spacecraft, a skyscraper, or a naval aircraft carrier.

 Brooks says, “ Software entities are more complex for their size [emphasis added]
than perhaps any other human construct, because no two parts are alike (at least
above the statement level). ” 3 It is diffi cult to visualize the size of a software program
because software has no physical attributes; however, if one were to print a one -
 million line program the stack of paper would be about 10 feet (roughly 3 meters)
high if the program were printed 50 lines per page. The printout would occupy a
volume of about 6.5 cubic feet. Biological entities such as human beings are of
similar volume and they are far more complex than computer software, but there
are few, if any, human - made artifacts of comparable size that are as complex as
software.

 The complexity of software arises from the large number of unique, interacting
parts in a software system. The parts are unique because, for the most part, they are
encapsulated as functions, subroutines, or objects and invoked as needed rather

2 Ibid , pp. 182 – 186.
3 Ibid , p. 182.

4 INTRODUCTION

than being replicated. Software parts have several different kinds of interactions,
including serial and concurrent invocations, state transitions, data couplings,
and interfaces to databases and external systems. Depiction of a software entity
often requires several different representations to portray the numerous static
structures, dynamic couplings, and modes of interaction that exist in computer
software.

 A seemingly “ small ” change in requirements is one of the many ways that com-
plexity of the product may affect management of a project. Complexity within the
parts and in the connections among parts may result in a large amount of evolution-
ary rework for the “ small ” change in requirements, thus upsetting the ability to make
progress according to plan. For this reason many experienced project managers say
there are no small requirements changes. Size and complexity can also hide defects
that may not be discovered immediately and thus require additional, unplanned
corrective rework later.

 1.3.2 Software Conformity

 Conformity is the second issue cited by Brooks. Software must conform to exacting
specifi cations in the representation of each part, in the interfaces to other internal
parts, and in the connections to the environment in which it operates. A missing
semicolon or other syntactic error can be detected by a compiler but a defect in the
program logic, or a timing error caused by failure to conform to the requirements
may be diffi cult to detect until encountered in operation. Unlike software, tolerance
among the interfaces of physical entities is the foundation of manufacturing and
construction; no two physical parts that are joined together have, or are required to
have, exact matches. Eli Whitney (of cotton gin fame) realized in 1798 that if musket
parts were manufactured to specifi ed tolerances, interchangeability of similar (but
not identical) parts could be achieved.

 There are no corresponding tolerances in the interfaces among software entities
or between software entities and their environments. Interfaces among software
parts must agree exactly in numbers and types of parameters and kind of couplings.
There are no interface specifi cations for software stating that a parameter can be
 “ an integer plus or minus 2%. ”

 Lack of conformity can cause problems when an existing software component
cannot be reused as planned because it does not conform to the needs of the product
under development. Lack of conformity might not be discovered until late in a
project, thus necessitating development and integration of an acceptable component
to replace the one that cannot be reused. This requires unplanned allocation of
resources and can delay product completion. Complexity may have made it diffi cult
to determine that the reuse component lacked the necessary conformity until the
components it would interact with were completed.

 1.3.3 Software Changeability

 Changeability is Brooks ’ s third factor that makes software projects diffi cult. Soft-
ware coordinates the operation of physical components and provides the functional-

1.3 WHY MANAGING AND LEADING SOFTWARE PROJECTS IS DIFFICULT 5

ity in software - intensive systems. 4 Because software is the most easily changed
element (i.e., the most malleable) in a software - intensive system, it is the most fre-
quently changed element, particularly in the late stages of a project. Changes may
occur because customers change their minds; competing products change; mission
objectives change; laws, regulations, and business practices change; underlying hard-
ware and software technology changes (processors, operating systems, application
packages); and/or the operating environment of the software changes. If an early
version of the fi nal product is installed in the operating environment, it will change
that environment and result in new requirements that will require changes to the
product. Simply stated, now that the new system enables me to do A and B, I would
like for it to also allow me to do C, or to do C instead of B.

 Each proposed change in product requirements must be accompanied by an
analysis of the impact of the change on project work activities:

 • what work products will have to be changed?
 • how much time and effort will be required?
 • who is available to make the changes?
 • how will the change affect your plans for schedule, budget, resources, technol-

ogy, other product features, and the quality attributes of the product?

 The goal of impact analysis is to determine whether a proposed change is “ in scope ”
or “ out of scope. ” In - scope changes to a software product are changes that can be
accomplished with little or no disruption to planned work activities. Acceptance of
an out - of - scope change to the product requirements must be accompanied by cor-
responding adjustments to the budget, resources, and/or schedule; and/or modifi ca-
tion or elimination of other product requirements. These actions can bring a proposed
out - of - scope requirement change into revised scope.

 A commonly occurring source of problems in managing software projects is an
out - of - scope product change that is not accompanied by corresponding changes to
the schedule, resources, budget, and/or technology. The problems thus created
include burn - out of personnel from excessive overtime, and reduction in quality
because tired people make more mistakes. In addition reviews, testing, and other
quality control techniques are often reduced or eliminated because of inadequate
time and resources to accomplish the change and maintain these other activities.

 1.3.4 Software Invisibility

 The fourth of Brooks ’ s factors is invisibility. Software is said to be invisible because
it has no physical properties. While the effects of executing software on a digital
computer are observable, software itself cannot be seen, tasted, smelled, touched,
or heard. Our fi ve human senses are incapable of directly sensing software; software
is thus an intangible entity. Work products such as requirements specifi cations,
design documents, source code, and object code are representations of software, but

4 Software - intensive systems contain one or more digital devices and may include other kinds of hardware
plus trained operators who perform manual functions. Nuclear reactors, modern aircraft, automobiles,
network servers, and laptop computers are examples of software - intensive systems.

6 INTRODUCTION

they are not the software. At the most elemental level, software resides in the mag-
netization and current fl ow in an enormous number of electronic elements within
a digital device. Because software has no physical presence we use different repre-
sentations, at different levels of abstraction, in an attempt to visualize the inherently
invisible entity.

 Because software cannot be directly observed as can, for example, a building
under construction or an agricultural plot being prepared for planting, the tech-
niques presented in this text can be used to determine the true state of progress of
a software project. An unfortunate result of failing to use these techniques is that
software products under development are often reported to be “ almost complete ”
for long periods of time with no objective evidence to support or refute the claim;
this is the well - known “ 90% complete syndrome ” of software projects. Many soft-
ware projects have been canceled after large investments of effort, time, and money
because no one could objectively determine the status of the work products or
provide a credible estimate of a completion date or the cost to complete the project.
Sad but true, this will occur again. You do not want to be the manager of one of
those projects.

 1.3.5 Team - Oriented, Intellect - Intensive Work

 In addition to the essential properties of software (complexity, conformity, change-
ability, and invisibility), one additional factor distinguishes software projects from
other kinds of projects: software projects are team - oriented, intellect - intensive endeav-
ors . In contrast, assembly - line manufacturing, construction of buildings and roads,
planting of rice, and harvesting of fruit are labor - intensive activities; the work is
arranged so that each person can perform a task with a high degree of autonomy
and a small amount of interaction with others. Productivity increases linearly with
the number of workers added; the work will proceed roughly twice as fast if the
number of workers is doubled. Although labor - saving machines have increased
productivity in some of these areas, the roles played by humans in these kinds of
projects are predominantly labor - intensive.

 Software is developed by teams of individuals who engage in creative problem
solving. Teams are necessary because it would take too much time for one person
to develop a modern software system and because it is unlikely that one individual
would possess the necessary range of skills. Suppose, for example, that the total
effort to develop a software product or system 5 results in a productivity level of
1000 lines of code per staff - month (more on this later). A one million line program
would require 1000 staff - months. Because effort (staff - months) is the product of
people and time, it would require 1 person 1000 months (about 83 years) to com-
plete the project.

 A feasible combination of people and time for a 1000 staff - month project might
be a team of 50 people working for 20 months but not 1000 people working for 1
month or even 200 people working for 5 months. The later proposals (1000 × 1 and

5 Software products are built by vendors for sale to numerous customers; software systems are built by
contractors for specifi c customers on a contractual basis. The terms “ system ” and “ product ” are used
interchangeably in this text unless the distinction is important; the distinction will be clarifi ed in these
cases.

1.3 WHY MANAGING AND LEADING SOFTWARE PROJECTS IS DIFFICULT 7

200 × 5) are not feasible because scheduling constraints among work activities
dictate that some activities cannot begin before other work activities are completed:
you can ’ t design (some part of a system) without some corresponding requirements,
you should not write code without a design specifi cation for (that part of) the
system, you cannot review or test code until some code has been written, you cannot
integrate software modules until they are available for integration, and so on.

 Adding people to a software development team does not, as a rule, increase
overall productivity in a linear manner because the increased overhead of commu-
nicating with and coordinating work activities among the added people decreases
the productivity of the existing team. To cite Fred Brooks once again, the number
of communication paths among n workers is n (n − 1)/2, which is the number of links
in a fully connected graph. Five workers have 20 communication paths, 10 have 45
paths, and 20 have 190. Increasing the size of a programming team from 5 to 10
members might, for example, might increase the production rate of the team from
5000 lines of code per week to 7500 lines of code per week, but not 10,000 lines of
code per week as would occur with linear scaling. In The Mythical Man - Month ,
Brooks described this phenomenon as Brooks ’ s law 6 :

Adding manpower to a late software project makes it later .

 Brooks ’ s law is based on three factors:

 1. the time required for existing team members to indoctrinate new team
members,

 2. the learning curve for the new members, and
 3. the increased communication overhead that results from the new and existing

members working together.

 Brooks ’ s law would not be true if the work assigned to the new members did not
invoke any of these three conditions.

 A simile that illustrates the issues of team - oriented software development is that
of a team of authors writing a book as a collaborative project; a team of authors is
very much like a team of software developers. In the beginning, requirements analy-
sis must be performed to determine the kind of book to be written and the con-
straints that apply to writing it. The number and skills of team members will constrain
the kind and size of book that can be written by the available team of authors within
a specifi ed time frame. Constraints may include the number of people on the writing
team, knowledge and skills of team members, the required completion date, and the
word - processing hardware and software available to be used.

 Next the structure of the book must be designed: the number of chapters, a brief
synopsis of each, and the relationships (interfaces) among chapters must be speci-
fi ed. The book may be structured into sections that contain several chapters each
(subsystems), or the text may be structured into multiple volumes (a system of
systems). The dynamic structure of the text may fl ow linearly in time or it may
move backward and forward in time between successive chapters; primary and

6 Ibid , pp. 25 and 274.

8 INTRODUCTION

secondary plot lines may be interleaved. An important constraint is to develop a
design structure that will allow each team member to accomplish some work while
other team members are accomplishing their work so that the work activities can
proceed in parallel. Some books are cleverly structured to have multiple endings;
readers choose the one they like.

 Design details to be decided include the format of textual layout, fonts to be used,
footnoting and referencing conventions, and stylistic guidelines (use of active and
passive voice, use of dialects and idioms). Writing of the text occurs within a prede-
termined schedule of production that includes reviews by other team members
(peer reviews) and independent reviews by copy editors (independent verifi cation).
Revisions determined by the reviews must be accomplished. The goal of the writing
team is to produce a seamless text that appears to have been written by one person
in a single setting.

 A deviation from the planned narrative by one or more team members might
produce a ripple effect that would require extensive revision of the text. If the
completed book were software, a single punctuation or grammatical error in the
text would render the book unreadable until the writers or their copy editor repaired
the defect. An editor determines that each iteration of elements of the text satisfy
the conditions placed on it by other elements (verifi cation). Finally, reviews by critics
and purchases by readers will determine the degree to which the book satisfi es its
intended purpose in its intended environment (validation).

 The various development phases of writing (analysis, high - level design, detailed
design, implementation, peer review, independent verifi cation, revision, and valida-
tion) are creative activities and thus rarely occur in linear, sequential fashion. Con-
ducting analysis, preparing and revising the design of the text, and production,
review, and revision of the various parts may be overlapped, interleaved, and iter-
ated. Team members must each do their assigned tasks, coordinate their work with
other team members, and communicate ideas, problems, and changes on a continu-
ous basis. The narrative above depicts a so - called Plan - driven approach to writing
a book and, by analogy, to developing software. An alternative is to pursue an Agile
approach by which the team members start with a basic concept and evolve the text
in an iterative manner. This approach can be successful:

 • if the team is small, say fi ve or six members (to limit the complexity of
communication);

 • if all members have in mind a common understanding of the desired structure
of the text (i.e., a “ design metaphor ”);

 • if there is a strict page limit and a completion date (the project constraints);
 • if each iteration occurs in one or a few days (to facilitate ongoing revisions in

structure; known as “ refactoring ”); and
 • if a knowledgeable reader (known as the “ customer ”) is available to review

each iteration and provide guidance for the contents of the next iteration.

 In some cases, the team members may work in pairs (“ pair programming ”) to
enhance synergy of effort.

 In reality, most software projects incorporate elements of a plan - driven approach
and an agile approach. When pursuing an agile approach, the team members must

understand the nature of the desired product to be delivered, a design metaphor
must be established, and the constraints on schedule, budget, resources, and technol-
ogy that must be observed; thus some requirements defi nition, design, and project
planning must be done. Those who pursue a plan - driven strategy often pursue an
iterative (agile) approach to developing, verifying, and validating the product to be
delivered; frequent demonstrations provide tangible evidence of progress and
permit incorporation of changes in an incremental manner.

 The approach taken in this text is to present a plan - driven strategy, based on
iterative development, that is suitable for the largest and most complex projects,
and to show how the techniques can be tailored and adapted to suit the needs of
small, simple projects as well as large, complex ones. Process models for software
development are presented in Chapter 2 .

 Over time humans have learned to conduct agricultural, construction, and manu-
facturing projects that employ teams of workers who accomplish their tasks effi -
ciently and effectively. 7 Because software is characterized by complexity, conformity,
changeability, and invisibility, and because software projects are conducted by teams
of individuals engaged in intellect - intensive teamwork, we humans are not always
as adept at conducting software projects as we are at conducting traditional kinds
of projects in agriculture, construction, and manufacturing. Nevertheless, the tech-
niques presented in this text will help you manage software projects effi ciently and
effectively, that is, with economical use of time and resources to achieve desired
outcomes.

 Your role as project manager is to plan and coordinate the work activities of your
project team so that the team can accomplish more working in a coordinated
manner than could be accomplished by each individual working with total
autonomy.

 1.4 THE NATURE OF PROJECT CONSTRAINTS

 Many of the problems you will encounter, or have encountered, in software projects
are caused by diffi culties of management and leadership (i.e., planning, estimating,
measuring, controlling, communicating, coordinating, and managing risk) rather
than technical issues (i.e., analysis, design, coding, and testing). These diffi culties
arise from multiple sources; some you can control as a project manager and some
you can ’ t. Factors you can ’ t control are called constraints , which are limitations
imposed by external agents on some or all of the operational domain, operational
requirements, product requirements, project scope, budget, resources, completion
date, and platform technology. Table 1.1 lists some typical constraints for software
projects and provides brief explanations.

 The operational domain is the environment in which the delivered software will
be used. Operational domains include virtually every area of modern society, includ-
ing health care, fi nance, transportation, communication, entertainment, business, and
manufacturing environments. Understanding the operational domain in which the
software will operate is essential to success. Operational requirements describe the

7 To be effi cient is to accomplish a task without wasting time or resources; to be effective is to obtain the
desired result.

1.4 THE NATURE OF PROJECT CONSTRAINTS 9

10 INTRODUCTION

users ’ view (i.e., the external view) of the system to be delivered. Some desired
features, as specifi ed in the operational requirements, may be beyond the current
state of scientifi c knowledge, either at large or within your organization. Product
requirements are the developers ’ view (i.e., the internal view) of the system to be
built; they include the functional capabilities and quality attributes the delivered
product must possess in order to satisfy the operational requirements.

Process standards specify ways of conducting the work activities of software
projects. Your organization may have standardized ways of conducting specifi c
activities, such as planning and estimating projects, and measuring project factors
such as conformance to the schedule, expenditure of resources, and measurement
of quality attributes of the evolving product. In some cases the customer may specify
standards and guidelines for conducting a project. Four of the most commonly used
frameworks for process standards are the Capability Maturity Model Integration
(CMMI), ISO/IEEE Standard 12207, IEEE Standard 1058, and the Project Manage-
ment Body of Knowledge (PMBOK). Elements of these standards and guidelines
are contained in appendixes to the chapters of this text.

 The scope of a project is the set of activities that must be accomplished to deliver
an acceptable product on schedule and within budget. Resources are the assets, both
corporate and external, that can be applied to the project. Resources have both
quality and quantity attributes; for example, you may have a suffi cient number of
software developers available (quantity of assets), but they may not have the neces-
sary skills (quality of assets). The budget is the money available to acquire and use
resources; the budget for your project may be constrained so that resources avail-
able within the organization cannot be utilized. The completion date is the day on
which the product must be fi nished and ready for delivery. In some cases there may
be multiple completion dates on which subsets of the fi nal product must be deliv-
ered. The constrained delivery date(s) may be unrealistic.

Platform technology includes the set of methods, tools, and development environ-
ments used to produce or modify a software product. Examples include tools to
develop and document requirements and designs, compilers and debuggers to gen-

 TABLE 1.1 Typical constraints on software projects

 Constraint Explanation

 Operational domain Environment of the users
 Operational requirements Users ’ needs and desires
 Product requirements Functional capabilities and quality attributes
 Scientifi c knowledge Algorithms and data structures
 Process standards Ways of conducting work activities
 Project scope Work activities to be accomplished
 Resources Assets available to conduct a project
 Budget Money used to acquire resources
 Completion date Delivery date for work products
 Platform technology Software tools and hardware/software base
 Business goals Profi t, stability, growth
 Ethical considerations Serving best interests of humans and society

