

ii

About the Authors

Klaus Pohl holds a full professorship for Software Systems Engineer-
ing at the Institute for Computer Science and Business Information
Systems (ICB) at University of Duisburg-Essen, Germany. He was the
scientific funding director of Lero, the Irish Software Engineering
Research Centre. Currently he is the acting director of paluno—The
Ruhr Institute for Software Technology—at the University of Duis-
burg-Essen. He received his Ph.D. and his habilitation in computer
science from RWTH Aachen, Germany.

Klaus is (co-)author of more than 250 peer-reviewed publications and
several text books. He served as Program and General Chair for many
international and national conferences including the 35th ACM/IEEE
Conference on Software Engineering (ICSE 2013). As consultant, asses-
sor, and expert he supports small and multi-national companies,
research institutes, and public funded research programs. Klaus is co-
founder of the IREB e.V. (International Requirements Engineering
Board). You can find more information on https://sse.uni-due.de.

Chris Rupp—SOPHIST-in-chief (formally: founder and executive part-
ner of the SOPHIST GmbH), chief consultant, coach and trainer. Looking
back over 25 years of professional experience, a lot has come up: a
company… 6 books… 55 employees… countless articles and presen-
tations… and a whole lot of experience. My passion for project consul-
tation might account for the fact that, until now, I do not “only”
manage, but I am still directly involved in projects and close to custo-
mers. What drives me is the vision to implement good ideas so that
developers, contractual partners and users—both direct and indi-
rect—face an intelligent, sophisticated and beneficial product. In
doing so, I work with a range of methods and approaches in agile and
non-agile environments.

In order to standardize qualification for requirements engineers / busi-
ness analysts, I founded the IREB e.V. (International Requirements
Engineering Board). You can find further information on www.
sophist.de.

www.sophist.de
www.sophist.de
https://sse.uni-due.de

iii

Klaus Pohl · Chris Rupp

Requirements
Engineering
Fundamentals
A Study Guide for the Certified Professional
for Requirements Engineering Exam

Foundation Level – IREB compliant

2nd Edition

iv

Klaus Pohl (klaus.pohl@sse.uni-due.de)
Chris Rupp (chris.rupp@sophist.de)

Translated from German by Thorsten Weyer, Bastian Tenbergen, and Marta Tayeh.
Editor: Michael Barabas
Project Manager: Matthias Rossmanith
Copyeditor: Judy Flynn
Proofreader: James Johnson
Layout and Type: Josef Hegele
Cover design: Helmut Kraus, www.exclam.de
Printer: Courier
Printed in USA

ISBN 978-1-937538-77-4

2nd Edition 2015
© 2015 by Klaus Pohl and Chris Rupp

Rocky Nook Inc.
802 East Cota St., 3rd Floor
Santa Barbara, CA 93103

www.rockynook.com

Library of Congress Cataloging-in-Publication Data

Pohl, Klaus.
 Requirements engineering fundamentals : a study guide for the certified professional for requirements
engineering exam, foundation level, IREB compliant / Klaus Pohl, Chris Rupp. -- 2nd edition.
 pages cm
 ISBN 978-1-937538-77-4 (softcover : alk. paper)
1. Software engineering--Examinations--Study guides. 2. System design--Examinations--Study guides.
3. Requirements engineering--Examinations--Study guides. 4. Electronic data processing documentation--
Examinations--Study guides. I. Rupp, Chris. II. Title.
 QA76.758.P6413 2015
 005.1076--dc23
 2015009245

Many of the designations in this book used by manufacturers and sellers to distinguish their products are claimed
as trademarks of their respective companies. Where those designations appear in this book, and Rocky Nook was
aware of a trademark claim, the designations have been printed in caps or initial caps. They are used in editorial
fashion only and for the benefit of such companies, they are not intended to convey endorsement or other
affiliation with this book.

No part of the material protected by this copyright notice may be reproduced or utilized in any form, electronic or
mechanical, including photocopying, recording, or by any information storage and retrieval system, without
written permission of the copyright owner. While reasonable care has been exercised in the preparation of this
book, the publisher and author assume no responsibility for errors or omissions, or for damages resulting from the
use of the information contained herein.

This book is printed on acid-free paper.

www.exclam.de
www.rockynook.com

Foreword v

Foreword

Dear reader,

With Requirements Engineering Fundamentals, you are holding the official
text book of the Certified Professional for Requirements Engineering (CPRE)
– Foundation Level certification in your hands.

The 2nd edition of this book is aligned with the curriculum (version
2.2) of the International Requirements Engineering Board e.V. (IREB) and
the IREB glossary. In addition, some minor defects of the 1st edition have
been corrected. A short introduction to the IREB and the certification
process can be found in the previous section “The Certified Professional
for Requirements Engineering (CPRE) Exam”.

The aim of this book is to aid you in your preparation for the certifi-
cation examination of the Certified Professional for Requirements Engi-
neering. The book is suited for your individual preparation for the exam-
ination as well as for companion literature to training courses offered by
training providers.

In addition to the book, you should consider the information about
the preparation for the certification examination published on the IREB
website (http://www.ireb.org/en). That additional information reflects
updates of the curriculum (after version 2.2) and potentially amends this
book with respect to some areas of interest. Errata to this book are pub-
lished on the IREB website.

Our decision to author this book collaboratively was not unjustified.
The book at hand is meant to integrate long-lasting practical experiences
with educational and research knowledge concerning the topic of require-
ments engineering, in particular for the Foundation Level of the Certified
Professional for Requirements Engineering. As a consequence, this book
is based on the two best-selling books in the German language about
requirements engineering by the two main authors:

http://www.ireb.org/en

vi Foreword

Klaus Pohl: Requirements Engineering – Grundlagen, Prinzipien, Tech-
niken. Published at dpunkt.verlag, Heidelberg, 2008. This book was
written from a perspective of research and education and offers a
structured discussion of the fundamentals, principles, and techniques
of requirements engineering. (Also available in English: Requirements
Engineering – Fundamentals, Principles, and Techniques. Springer, New
York, 2010)

Chris Rupp: Requirements-Engineering und -Management – Aus der
Praxis von klassisch bis agil. Published at Hanser Fachbuchverlag,
Munich, 2014. This book contains application-oriented knowledge
about requirements engineering, which supports the requirements
engineer in his or her daily practice. (Individual chapters also available
in English on the SOPHIST website: http://www.sophist.de)

We have chosen not to reference the two books listed above in the individ-
ual chapters of this book. You can find detailed additional information on
the topics of this book in both of the books mentioned above.

This book was made possible with the help of a number of people. Our
special thanks go to Dirk Schüpferling and Thorsten Weyer for their
contributions to this book and their outstanding commitment, without
which this book would not have been possible. Many reviews and
consistent support by other board members increased the quality of this
book. We particularly thank all board members of the IREB for their
active support. In addition, Urte Pautz of the Siemens AG; Christian
Pikalek and Rainer Joppich of the SOPHIST GmbH (www.sophist.de); and
Dr. Kim Lauenroth and Nelufar Ulfat-Bunyadi from “paluno – The Ruhr
Institute for Software Technology” at the University of Duisburg-Essen
(www.paluno.de) have contributed to individual sections of the book. Fur-
thermore, we want to thank Thorsten Weyer and Bastian Tenbergen
(paluno) as well as Marta Tayeh (SOPHIST GmbH) for their commitment
towards translating this book from German into English. Thanks also to
Philipp Schmidt and Dirk Schüpferling for their support in aligning this
book to the IREB syllabus version 2.2.

We also want to thank Christa Preisendanz, Dr. Michael Barabas, and
Judy Flynn for their support in publishing this book.

Klaus Pohl and Chris Rupp
Essen and Nuremberg, February 2015

http://www.sophist.de
www.sophist.de
www.paluno.de

With Contributions from vii

With Contributions from

Karol Frühauf
INFOGEM AG, SAQ

Karol Frühauf studied in Bratislava and at RWTH Aachen, gain-
ing his degree in computer engineering in 1975. He then spent
12 years at Brown, Boveri & Cie working as a programmer, head
of quality and finally as a manager in network control technol-
ogy. In 1987, Frühauf founded INFOGEM AG with Helmut
Sandmayr, and the company has since gained a reputation as
one of the leading system engineering consulting and training
addresses in Switzerland. He is an honorary member of SAQ,
the Swiss Association for Quality and was instrumental in the
launch of the “Brückenwächter” (“Bridge Guard”) residence for
artists and scientists in Štúrovo, Slovakia.

Emmerich Fuchs
FUCHS-INFORMATIK AG

Emmerich Fuchs has over 30 years of experience in application
development. Since 1985, he has been working as a lecturer at
schools of higher education and as a seminar instructor as well
as a co-author of many books and an examination expert. In
1989, he founded the FUCHS-INFORMATIK AG and is now
working as a consulting business manager for renowned com-
panies in the areas of business process modeling, requirements
engineering, and quality assurance.

Prof. Dr. Martin Glinz
University of Zurich

Martin Glinz is a full professor of computer science and leads
the research unit Requirements Engineering at the University
of Zurich. He is mainly interested in methods, languages and
tools for requirement modeling. His additional fields of inter-
est include software engineering, software quality, and model-
ing. He obtained his doctoral degree from RWTH Aachen in
computer science. Before he accepted the call to Zurich, he
worked for over 10 years in the industry as a researcher, devel-
oper, consultant, and lecturer in the field of software engineer-
ing. He is a member of the board of publishers of Requirements
Engineering and a member of the International Requirements
Engineering Board (IREB). He was chairman of the steering
committee for the International Requirements Engineering
Conference from 2007–2009.

viii With Contributions from

Rainer Grau
Digitec Galaxus

Rainer Grau is Head of Business Development at Digitec/
Galaxus, one of Switzerland's top eCommerce companies. He
and his team are responsible for innovation and portfolio man-
agement as well as the implementation of all the company’s
strategic projects. Before joining Digitec/Galaxus he was a
director and partner at Zühlke Engineering, where he was in
charge of agility, lean management, requirements engineering
and product management.

Rainer Grau holds various teaching posts at Swiss universi-
ties and is actively involved in SAQ, the Swiss Association for
Quality. He is a founder member of the Swiss Agile Leaders
Circle where he supports community members in their
requirements engineering, enterprise agility and lean manage-
ment activities.

Rainer Grau likes to spend his free time with his family, on
his bicycle, windsurfing, rock climbing or reading the latest
novels by T.C. Boyle and Haruki Murakami.

Colin Hood
Colin Hood Systems
Engineering Ltd.

Starting out in 1977, Colin Hood has accompanied the evolu-
tion of control systems from their beginnings in relay-based
systems through programmable logic controllers (PLCs) to
modern software-controlled safety-critical systems. His vari-
ous jobs have included analysis, design, implementation, test-
ing and delivery of complex software systems. Requirements
engineering has always been the foundation of his success at
companies such as Alcatel, BMW, DaimlerChrysler, Hella and
Miele. As well as continually improving the processes involved,
he specializes in introducing new methods and tools that sup-
port the process of change.

Dr. Frank Houdek
Daimler AG

Frank Houdek graduated in Computer Science at the Univer-
sity of Ulm and joined the Daimler Research Centre in 1995.
After completing his PhD in empirical software engineering in
1999 he began working in requirements engineering and has
headed various research and technology transfer projects
within the Daimler passenger car and commercial vehicles
business units. Since 2013 he has been responsible for coordi-
nating the requirements engineering activities for all electric/
electronic specifications in Mercedes-Benz passenger car
development.

Dr. Houdek is a member of GI (German Interest Group on
Computer Science) and IEEE CS, and belongs to the steering
committee of the GI Group 2.1.6 (Requirements Engineering).
He is also involved in the organizational and program commit-
tees for requirements engineering events such as RE, REFSQ,
and ICSE.

He is responsible for the Requirements Engineering module
of the Software Engineering for Embedded Systems course at the
Technical University at Kaiserslautern.

With Contributions from ix

Dr. Peter Hruschka
Atlantic Systems Guild

Peter Hruschka has been working as an independent IT and
management consultant since 1994. His mission is the practi-
cal implementation of new ideas in software engineering. This
comprises the entire spectrum from analysis of the initial situa-
tion via the creation of strategic plans to introductory training
for every (structured or object-oriented) method and process
to guarantee success. Dr. Hruschka is principal of the Atlantic
Systems Guild, an internationally renowned group of experts
on software technology, and founder of the German network
of agile developers.

Prof. Dr. Barbara Paech
University of Heidelberg

Barbara Paech is a professor with the Institute for Computer
Science of the University of Heidelberg. Until October 2003,
she was a department leader with the Fraunhofer Institute for
Experimental Software Engineering. Her area of research is
software engineering, especially the methods and processes
necessary to improve quality with appropriate effort. For many
years, she has been active in the area of requirements engineer-
ing and usability engineering. Paech and her group have
implemented many national, international and industrial
research and technology transfer projects. She is a member of
the International Requirements Engineering Board (IREB).

Dirk Schüpferling
SOPHIST GmbH

I am a SOPHIST since 2001 and the past years have led me to
the conclusion that, in most cases, communication is the key to
(customer) satisfaction. What surprised me was that features
like laziness or being a know-it-all can—applied correctly—
lead to something positive. The specialist calls this “reuse” or
“identifying potential for improvement”. I transmit this
knowledge as a classic Requirements-Engineer, as well as in
agile contexts (e.g., as Product Owner) in various projects. My
job is to support the project team in the conception or applica-
tion of new methods.

x With Contributions from

Thorsten Weyer
University of Duisburg-Essen

Thorsten Weyer is a research group leader at the University of
Duisburg-Essen and Head of Requirements Engineering and
Conceptual Design at “paluno – The Ruhr Institute for Soft-
ware Technology” at the University of Duisburg-Essen. He has
worked for more than a decade as a researcher and consultant
in requirements engineering, systems analysis, variability man-
agement, and model-based software engineering. He is a mem-
ber of the organizational and program committees for various
scientific conferences and also contributes his expertise to
research funding projects and international trade publications.
Thorsten Weyer is a member of the International Require-
ments Engineering Board (IREB) and co-publisher of the
Requirements Engineering Magazine.

Contents xi

Contents

Foreword v

With Contributions from vii

1 Introduction and Foundations 1

1.1 Introduction .. 1

1.1.1 Figures and Facts from Ordinary Projects 1

1.1.2 Requirements Engineering – What Is It? ... 3

1.1.3 Embedding Requirements Engineering
into Process Models .. 5

1.2 Fundamentals of Communication Theory ... 5

1.3 Characteristics of a Requirements Engineer .. 6

1.4 Requirement Types ... 8

1.5 Importance and Categorization of Quality Requirements 9

1.6 Summary .. 10

2 System and Context Boundaries 11

2.1 System Context .. 11

2.2 Defining System and Context Boundaries .. 12

2.2.1 Defining the System Boundary ... 13

2.2.2 Defining the Context Boundary ... 15

2.3 Documenting the System Context ... 17

2.4 Summary .. 17

xii Contents

3 Eliciting Requirements 19

3.1 Requirements Sources .. 19

3.1.1 Stakeholders and Their Significance .. 19

3.1.2 Handling Stakeholders in the Project .. 20

3.2 Requirements Categorization According to the Kano Model 22

3.3 Elicitation Techniques ... 24

3.3.1 Types of Elicitation Techniques ... 24

3.3.2 Survey Techniques .. 25

3.3.3 Creativity Techniques .. 26

3.3.4 Document-centric Techniques ... 28

3.3.5 Observation Techniques .. 29

3.3.6 Support Techniques ... 30

3.4 Summary .. 31

4 Documenting Requirements 33

4.1 Document Design ... 33

4.2 Types of Documentation .. 34

4.2.1 The Three Perspectives of Requirements 34

4.2.2 Requirements Documentation using Natural Language 35

4.2.3 Requirements Documentation using Conceptual Models 35

4.2.4 Hybrid Requirements Documents .. 36

4.3 Document Structures .. 37

4.3.1 Standardized Document Structures ... 37

4.3.2 Customized Standard Contents ... 39

4.4 Using Requirements Documents .. 40

4.5 Quality Criteria for Requirements Documents ... 41

4.5.1 Unambiguity and Consistency ... 42

4.5.2 Clear Structure ... 42

Contents xiii

4.5.3 Modifiability and Extendibility .. 42

4.5.4 Completeness ... 42

4.5.5 Traceability ... 43

4.6 Quality Criteria for Requirements .. 43

4.7 Glossary ... 45

4.8 Summary .. 47

5 Documenting Requirements in Natural Language 49

5.1 Effects of Natural Language .. 49

5.1.1 Nominalization ... 50

5.1.2 Nouns without Reference Index ... 51

5.1.3 Universal Quantifiers .. 51

5.1.4 Incompletely Specified Conditions ... 52

5.1.5 Incompletely Specified Process Verbs ... 53

5.2 Requirement Construction using Templates .. 53

5.3 Summary .. 57

6 Model-Based Requirements Documentation 59

6.1 The Term Model ... 59

6.1.1 Properties of Models .. 60

6.1.2 Modeling Languages .. 60

6.1.3 Requirements Models .. 61

6.1.4 Advantages of Requirements Models .. 61

6.1.5 Combined Use of Models and Natural Language 62

6.2 Goal Models ... 62

6.2.1 Goal Documentation Using AND/OR Trees 63

6.2.2 Example of AND/OR Trees .. 63

xiv Contents

6.3 Use Cases ... 64

6.3.1 UML Use Case Diagrams ... 64

6.3.2 Use Case Specifications ... 67

6.4 Three Perspectives on the Requirements .. 70

6.5 Requirements Modeling in the Data Perspective 71

6.5.1 Entity-Relationship Diagrams ... 71

6.5.2 UML Class Diagrams ... 74

6.6 Requirements Modeling in the Functional Perspective 76

6.6.1 Data Flow Diagrams ... 76

6.6.2 Models of the Functional Perspective and Control Flow 78

6.6.3 UML Activity Diagrams .. 79

6.7 Requirements Modeling in the Behavioral Perspective 82

6.7.1 Statecharts ... 83

6.7.2 UML State Diagrams .. 84

6.8 Summary .. 87

7 Requirements Validation and Negotiation 89

7.1 Fundamentals of Requirements Validation ... 89

7.2 Fundamentals of Requirements Negotiation ... 90

7.3 Quality Aspects of Requirements .. 91

7.3.1 Quality Aspect “Content” ... 91

7.3.2 Quality Aspect “Documentation” .. 92

7.3.3 Quality Aspect “Agreement” ... 93

7.4 Principles of Requirements Validation .. 94

7.4.1 Principle 1: Involvement of the Correct Stakeholders 94

7.4.2 Principle 2: Separating the Identification
and the Correction of Errors .. 95

7.4.3 Principle 3: Validation from Different Views 95

7.4.4 Principle 4: Adequate Change of Documentation Type 96

Contents xv

7.4.5 Principle 5: Construction of Development Artifacts 96

7.4.6 Principle 6: Repeated Validation .. 96

7.5 Requirements Validation Techniques .. 97

7.5.1 Commenting ... 97

7.5.2 Inspection ... 98

7.5.3 Walk-Through ... 99

7.5.4 Perspective-Based Reading .. 100

7.5.5 Validation through Prototypes .. 101

7.5.6 Using Checklists for Validation .. 103

7.6 Requirements Negotiation ... 104

7.6.1 Conflict Identification ... 105

7.6.2 Conflict Analysis .. 105

7.6.3 Conflict Resolution ... 106

7.6.4 Documentation of the Conflict Resolution 108

7.7 Summary ... 109

8 Requirements Management 111

8.1 Assigning Attributes to Requirements ... 111

8.1.1 Attributes for Natural Language Requirements
and Models ... 111

8.1.2 Attribute Scheme ... 112

8.1.3 Attribute Types of Requirements .. 113

8.2 Views on Requirements ... 115

8.2.1 Selective Views on the Requirements ... 115

8.2.2 Condensed Views on the Requirements 117

8.3 Prioritizing Requirements .. 118

8.3.1 Method for Requirements Prioritization 118

8.3.2 Techniques for Requirements Prioritization 119

xvi Contents

8.4 Traceability of Requirements .. 122

8.4.1 Advantages of Traceable Requirements 122

8.4.2 Purpose-Driven Definition of Traceability 123

8.4.3 Classification of Traceability Relations .. 124

8.4.4 Representation of Requirements Traceability 125

8.5 Versioning of Requirements ... 127

8.5.1 Requirements Versions ... 128

8.5.2 Requirements Configurations .. 129

8.5.3 Requirements Baselines .. 130

8.6 Management of Requirements Changes ... 131

8.6.1 Requirements Changes ... 131

8.6.2 The Change Control Board .. 131

8.6.3 The Change Request .. 133

8.6.4 Classification of Incoming Change Requests 134

8.6.5 Basic Method for Corrective and Adaptive Changes 134

8.7 Measurement of Requirements .. 136

8.7.1 Product vs. Process Metric .. 136

8.7.2 Examples of Product and Process Metrics 136

8.8 Summary .. 137

9 Tool Support 139

9.1 General Tool Support .. 139

9.2 Modeling Tools .. 140

9.3 Requirements Management Tools ... 141

9.3.1 Specialized Tools for Requirements Management 142

9.3.2 Standard Office Applications .. 142

9.4 Introducing Tools .. 143

Contents xvii

9.5 Evaluating Tools .. 144

9.5.1 Project View .. 145

9.5.2 User View ... 146

9.5.3 Product View .. 146

9.5.4 Process View ... 146

9.5.5 Provider View ... 146

9.5.6 Technical View ... 147

9.5.7 Economic View .. 147

9.6 Summary ... 147

References 149

Index 157

The glossary of those terms used in this book (IREB-Glossary) can be found on the
website of the “International Requiremens Engineering Board e.V.”

www.ireb.org/en

www.ireb.org/en

This page intentionally left blank

1 Introduction and Foundations 1

1 Introduction and Foundations

The impact of requirements engineering (RE) on successful and customer-
oriented systems development can no longer be ignored. It has become
common practice to provide resources for requirements engineering. In
addition, there is a growing understanding that the role of the require-
ments engineer is essentially self-contained and comprises a series of
demanding activities.

1.1 Introduction

Why perform requirements

engineering?

According to the figures reported in the Standish Group’s Chaos Report of
2006, much has improved in the execution of software projects in the
twelve years between 1994 and 2006. While about 30 percent of the soft-
ware projects investigated in 1994 failed, it was a mere 20 percent in 2006.
The number of projects that exceeded time or budget constraints signifi-
cantly and/or did not meet customer satisfaction dropped from 53 percent
to 46 percent [Chaos 2006]. Jim Johnson, chairperson of the Standish
Group, names three reasons for the positive development of the figures
since 1994. One is that the communication of requirements has much
improved since ten years ago. These figures are of importance since how
the requirements of a system are handled is a significant cause for project
failures and/or time and budget overruns.

1.1.1 Figures and Facts from Ordinary Projects

Requirements engineering

as a cause of errors

According to past studies, approximately 60 percent of all errors in system
development projects originate during the phase of requirements engi-
neering [Boehm 1981]. These errors, however, are often discovered only
in later project phases or once the system has been deployed because
incorrect or incomplete requirements can be interpreted by developers in
such a fashion that they are subjectively sound or (subconsciously) com-
plete. Missing requirements often remain undetected during design and

2 1 Introduction and Foundations

realization because developers trust the requirements engineers to deliver
high-quality work. Developers implement whatever the requirements
document says or what they believe it to be saying. Unclear, incomplete,
or wrong requirements inevitably lead to the development of a system
that does not possess critical properties or possesses properties that were
not requested.

Costs of errors during

requirements engineering

The later in the development project a defect in the requirements is
corrected, the higher are the costs associated with fixing it. For instance,
the effort to fix a requirements defect is up to 20 times higher if the
correction is done during programming as opposed to fixing the same
defect during requirements engineering. If the defect is fixed during
acceptance testing, the effort involved may be up to a 100 times higher
[Boehm 1981].

Symptoms and causes of

deficient requirements

engineering

Symptoms for inadequate requirements engineering are as numerous
as their causes. Frequently, requirements are missing or not clearly formu-
lated. For instance, if the requirements do not reflect customer wishes
precisely or if the requirements are described in an imprecise way and thus
allow for several interpretations, the result is often a system that does not
meet the expectations of the client or the users.

The most common reason for deficient requirements is the miscon-
ception of the stakeholders that much is self-evident and does not need to
be stated explicitly. This results in problems in communication among the
involved parties that arise from differences in experience and knowledge.
To make matters worse, it is often the case that especially the client wishes
for quick integration of recent results into a productive system.

The significance of good

requirements engineering

The increasing importance of software-intensive systems in industrial
projects as well as the need to bring more innovative, more individual,
and more comprehensive systems to market and the need to do so
quicker, better, and with a higher level of quality calls for efficient require-
ments engineering. Complete requirements free from defects are the basis
for successful system development. Potential risks have to be identified
during requirements engineering and must be reduced as early as possible
to allow for successful project progress. Faults and gaps in requirement
documents must be discovered early on to avoid tedious change pro-
cesses.

1.1 Introduction 3

1.1.2 Requirements Engineering – What Is It?

In order to make a development project succeed, it is necessary to know
the requirements for the system and to document them in a suitable man-
ner.

StakeholdersThe term stakeholder is essential in requirements engineering. Among
other things, stakeholders are the most important sources of requirements.
Not considering a stakeholder often results in fragmentally elicited
requirements, i.e., incomplete requirements [Macaulay 1993]. Stake-
holders are those people or organizations that have some impact on the
requirements. This could be people that are going to interact with the
system (e.g., users or administrators), people that have a mere interest in
the system but are not likely to use it (e.g., the management, a hacker from
which the system must be protected, stakeholders of competing systems),
but also legal entities, institutions, etc., because these are embodied by
living people who may choose to influence or define the requirements of
the system.

Goal of requirements

engineering

During the development process, requirements engineering must elicit the
stakeholders’ requirements, document the requirements in a suitable man-
ner, validate and verify the requirements, and manage the requirements
over the course of the entire life cycle of the system [Pohl 1996].

Definition 1-1: Requirement
(1) A condition or capability needed by a user to solve a problem or achieve an

objective.

(2) A condition or capability that must be met or possessed by a system or
system component to satisfy a contract, standard, specification, or other
formally imposed documents.

(3) A documented representation of a condition or capability as in (1) or (2).

[IEEE 610.12-1990]

Definition 1-2: Stakeholder
A stakeholder of a system is a person or an organization that has an (direct or
indirect) influence on the requirements of the system.

4 1 Introduction and Foundations

Four core activities of

requirements engineering

The four core activities to meet these ends are as follows:

 Elicitation: During requirements elicitation, different techniques are
used to obtain requirements from stakeholders and other sources and
to refine the requirements in greater detail.

 Documentation: During documentation, the elicited requirements are
described adequately. Different techniques are used to document the
requirements by using natural language or conceptual models (see
chapters 4, 5, and 6).

 Validation and negotiation: In order to guarantee that the predefined
quality criteria are met, documented requirements must be validated and
negotiated early on (see chapter 7).

 Management: Requirements management is orthogonal to all other
activities and comprises any measures that are necessary to structure
requirements, to prepare them so that they can be used by different
roles, to maintain consistency after changes, and to ensure their imple-
mentation (see chapter 8).

These core activities can be applied for different levels of requirements
abstraction, like stakeholder requirements, system requirements, and soft-
ware requirements. Their execution can follow different processes, such as
the processes recommended in [ISO/IEC/IEEE 29148:2011].

Constraints Different project constraints influence requirements engineering. For
instance, people, domain factors, or organizational constraints (e.g., spa-
tial distribution or temporal availability of project members) have a large
impact on the choice of suitable techniques.

Definition 1-3: Requirements Engineering
(1) Requirements engineering is a systematic and disciplined approach to the

specification and management of requirements with the following goals:
(1.1) Knowing the relevant requirements, achieving a consensus among

the stakeholders about these requirements, documenting them
according to given standards, and managing them systematically

(1.2) Understanding and documenting the stakeholders’ desires and
needs, they specifying and managing requirements to minimize the
risk of delivering a system that does not meet the stakeholders’
desires and needs

1.2 Fundamentals of Communication Theory 5

1.1.3 Embedding Requirements Engineering into Process Models

Requirements engineering

as a self-contained phase

Ponderous process models (e.g., the Waterfall model [Royce 1987] or the
V-Model [V-Modell 2004]) aim at completely eliciting and documenting
all requirements in an early project phase before any design or realization
decisions are made. The goal of such models is to elicit all requirements
prior to the actual development. As a result, in these process models,
requirements engineering is understood to be a finite, time-restricted
initial phase of system development.

Requirements engineering as

a continuous, collateral

process

Lightweight process models (e.g., eXtreme Programming [Beck 1999]),
on the other hand, only elicit necessary requirements once they are sup-
posed to be implemented as “foretelling” future functionalities is difficult
and requirements change over the course of the project. In these process
models, requirements engineering is treated as a continuous, comprehen-
sive process that comprises and integrates all phases of system develop-
ment.

1.2 Fundamentals of Communication Theory

Language as a medium for

requirement communication

Requirements must be communicated. In most cases, one uses a rule-
driven medium that is accessible to the communication partner—natural
language.

For the transmission of information from one individual to another to
work properly, a common code is needed. The sender encodes her mes-
sage and the receiver has to decode it. Such a common code is intrinsic to
any two people that speak the same language (e.g., German), have the
same cultural background, and have similar experiences. The more similar
the cultural and educational background, the area of expertise, and the
everyday work life, the better the exchange of information works.
However, such ideal conditions most often do not exist between stake-
holders. It is therefore sensible to agree upon a common language and how
this common language is to be used. This can, for instance, be achieved by
means of glossaries (see chapter 4), in which all important terms are
explained. Alternatively, this can be done by agreeing upon a formal
descriptive language, e.g., OMG’s Unified Modeling Language, UML (see
chapter 6).

Type of communication

medium

Another important factor is the type of communication medium. In
verbal communication, the success of the communication relies heavily on
redundancy (e.g., language and gestures or language and intonation) and

6 1 Introduction and Foundations

feedback. In written technical communication, for example, information
is transmitted with a minimum of redundancy and feedback.

Language comfort In addition to the problems arising from differing domain vocabu-
laries and different communication media, it can often be observed that
information is not adequately transmitted or not transmitted at all. This
can be traced back to natural transformations that occur during human
perception. These transformational effects are, in particular, focusing and
simplification and can impact the communication more or less harshly.

Implicit background

knowledge

Communication—i.e., the language-based expression of knowledge—
is necessarily simplifying in nature. The author expects the reader to have
some kind of implicit background knowledge. It is the simplifications that
arise from language-based knowledge expression that become problematic
with regard to requirements, as requirements can become interpretable in
different ways. In chapter 5, natural language-based requirement docu-
mentation is discussed in further detail.

1.3 Characteristics of a Requirements Engineer

Central role The requirements engineer as a project role is often at the center of atten-
tion. She is usually the only one who has direct contact with the stakehold-
ers and has both the ability and the responsibility to become as familiar as
possible with the domain and to understand it as well as possible. She is
the one that identifies the needs underlying the stakeholders’ statements
and amends them in a way that architects and developers—usually laymen
where the domain in question is concerned—can understand and imple-
ment them. The requirements engineer is, in a manner of speaking, a
translator that understands the domain as well as its particular language
well enough and also possesses enough IT know-how to be aware of the
problems the developers face and to be able to communicate with them on
the same level. The requirements engineer therefore has a central role in
the project.

Seven necessary capabilities of

a requirements engineer

To be able to fulfill all of her tasks, the requirements engineer needs
much more than process knowledge. Many of the capabilities required
must be based on practical experience.

 Analytic thinking: The requirements engineer must be able to become
familiar with domains that are unknown to her and must understand
and analyze complicated problems and relationships. Since stakehold-

1.3 Characteristics of a Requirements Engineer 7

ers often discuss problematic requirements by means of concrete
examples and (suboptimal) solutions, the requirements engineer must
be able to abstract from the concrete statements of the stakeholder.

 Empathy: The requirements engineer has the challenging task of identi-
fying the actual needs of a stakeholder. A core requirement to be able to
achieve this is to have good intuition and empathy for people. In addi-
tion, she must identify problems that might arise in a group of stakehold-
ers and act accordingly.

 Communication skills: To elicit the requirements from stakeholders and
to interpret them correctly and communicate them in a suitable man-
ner, a requirements engineer must have good communication skills.
She must be able to listen, ask the right questions at the right time,
notice when a statement does not contain the desired information, and
make further inquiries when necessary.

 Conflict resolution skills: Different opinions of different stakeholders
can be the cause of conflicts during requirements engineering. The
requirements engineer must identify conflicts, mediate between the
parties involved, and apply techniques suitable to resolving the conflict.

 Moderation skills: The requirements engineer must be able to mediate
between different opinions and lead discussions. This holds true for
individual conversations as well as group conversations and work-
shops.

 Self-confidence: Since the requirements engineer is frequently at the
center of attention, she occasionally is exposed to criticism as well. As a
result, she needs a high level of self-confidence and the ability to defend
herself should strong objections to her opinions arise. She should never
take criticism personally.

 Persuasiveness: Among other things, the requirements engineer is, in a
matter of speaking, a kind of attorney for the requirements of the stake-
holders. She must be able to represent the requirements in team meet-
ings and presentations. In addition, she must consolidate differing
opinions, facilitate a decision in case of a disagreement, and create con-
sensus among the stakeholders.

8 1 Introduction and Foundations

1.4 Requirement Types

Generally, one can distinguish between three types of requirements:

 Functional requirements define the functionality that the system to be
developed offers. Usually, these requirements are divided into func-
tional requirements, behavioral requirements, and data requirements
(see chapter 4).

 Quality requirements define desired qualities of the system to be devel-
oped and often influence the system architecture more than functional
requirements do. Typically, quality requirements are about the perfor-
mance, availability, dependability, scalability, or portability of a system.
Requirements of this type are frequently classified as non-functional
requirements.

 Constraints cannot be influenced by the team members. Requirements
of this type can constrain the system itself (e.g., “The system shall be
implemented using web services”) or the development process (“The
system shall be available on the market no later than the second quarter
of 2012”). In contrast to functional and quality requirements, con-
straints are not implemented, they are adhered to because they merely
limit the solution space available during the development process.

Definition 1-4: Functional Requirement
A functional requirement is a requirement concerning a result of behavior that
shall be provided by a function of the system.

Definition 1-5: Quality Requirement
A quality requirement is a requirement that pertains to a quality concern that is
not covered by functional requirements.

Definition 1-6: Constraint
A constraint is a requirement that limits the solution space beyond what is
necessary for meeting the given functional requirements and quality
requirements.

1.5 Importance and Categorization of Quality Requirements 9

In addition to the classification into functional requirements, quality
requirements, and constraints, a number of different classifications of
requirements are used in practice. For example, there are a number of clas-
sifications suggested by several standards, e.g., CMMI [SEI 2006] or SPICE
[ISO/IEC 15504-5]. Other classification schemes describe requirement
attributes, such as the level of detail of a requirement, the priority, or the
degree of legal obligation of requirements (see chapters 4 and 8).

1.5 Importance and Categorization
of Quality Requirements

In daily practice, quality requirements of a system are often not docu-
mented, inadequately documented, or improperly negotiated. Such cir-
cumstances can threaten the project’s success or the subsequent acceptance
of the system under development. Therefore, the requirements engineer
should place special emphasis on the elicitation, documentation, and
negotiation of quality requirements during the development process.

Typically, many different kinds of desired qualities of the system are
assigned to the requirement type quality requirement. In order to be able
to deal with quality requirements in a structured manner, many different
classification schemes for quality requirements have been proposed. The
ISO/IEC 25010:2011 standard [ISO/IEC 25010:2011], for example,
suggests a classification scheme for quality requirements that can also be
used as a standard structure for requirements documentation and as a
checklist for requirements elicitation and validation. Among others, the
following categories are typical for quality requirements (see [ISO/IEC
25010:2011]):

 Requirements that define the performance of the system, in particular
response time behavior and resource utilization

 Requirements that define the security of the system, in particular with
regard to accountability, authenticity, confidentiality, and integrity

 Requirements that define the reliability of functionalities, in particular
with regard to availability, fault tolerance, and recoverability

 Requirements that define the usability of a system, in particular with
regard to accessibility, learnability, and ease of use

 Requirements that define the maintainability of a system, in particular
with regard to reusability, analyzability, changeability, and testability

10 1 Introduction and Foundations

 Requirements that define the portability of a system, in particular with
regard to adaptability, installability, and replaceability

Currently, quality requirements are often specified using natural language.
However, numerous approaches to document quality requirements by
means of models have been suggested over the past couple of years.

The requirements engineer is responsible for making sure the quality
requirements are as objective and verifiable as possible. Typically, this
necessitates that the quality requirements are quantified. For example, a
quality requirement with regard to system performance could specify that
a system shall process 95 percent of all queries within 1.5 seconds and that
it must not take longer than 4 seconds to process queries at any given time.
This can cause quality requirements to be refined by means of additional
functional requirements. This could be the case for a quality requirement
that is concerned with system security if a functional requirement speci-
fies the exact encryption algorithm to satisfy the need for encryption as
demanded by some quality requirement.

Quality requirements are often related to different functional require-
ments. As a result, quality requirements should always be kept separated
from functional requirements. In other words, quality requirements
should not be mixed with functional requirements and should be docu-
mented separately, with explicit documentation of their relation to func-
tional requirements.

1.6 Summary

Requirements engineering can hardly be avoided, especially when systems
are to be developed that satisfy customers and meet budget constraints and
schedules. The goal of requirements engineering is to document customer
requirements as completely as possible in good quality and to identify and
resolve problems in the requirements as early as possible. Successful
requirements engineering is based on including the right stakeholders as
well as embedding the four core activities of requirements engineering
(elicitation, documentation, validation and negotiation, and management)
into the system development process. At the center of attention is the
requirements engineer, who is the primary contact point in requirements
engineering and possesses a great deal of domain knowledge and process
knowledge as well as a multitude of soft skills.

2 System and Context Boundaries 11

2 System and Context Boundaries

The requirements for a system to be developed do not simply exist, they
have to be elicited. The purpose of defining the system and context bound-
aries in requirements engineering is to identify the part of the environment
that influences the requirements for the system to be developed.

2.1 System Context

Anticipate the system

in operation

In the development process, requirements engineering fulfils the task of
identifying all those material and immaterial aspects that have a relation-
ship to the system. In order to do that, it is anticipated what the system will
be like once it becomes real. By doing so, those parts of the real world
which will potentially influence the requirements of the system can be
identified. To be able to specify the requirements for a system correctly and
completely, it is necessary to identify the relationships between individual
material and immaterial aspects as precisely as possible. The part of reality
that is relevant for the requirements of a system is called the system con-
text.

Context aspects in the

system context

Among others, the following possible aspects of reality influence the con-
text of a system:

 People (stakeholders or groups of stakeholders)
 Systems in operation (other technical systems or hardware)
 Processes (technical or physical processes, business processes)
 Events (technical or physical)
 Documents (e.g., laws, standards, system documentation)

Definition 2-1: System Context
The system context is the part of the system environment that is relevant for the
definition as well as the understanding of the requirements of a system to be
developed.

12 2 System and Context Boundaries

Consequence of erroneous or

incomplete context

consideration

If the system context is incorrectly or incompletely considered during
requirements engineering, it may result in incomplete or erroneous
requirements. This leads to the system operating on the basis of incom-
plete or erroneous requirements, which is often the reason for system fail-
ure during operation. Such errors often remain undetected during the val-
idation procedures, which determine if the system meets the specified
requirements, and occur only during operation, sometimes entailing cata-
strophic consequences.

System context and

requirement context

The origin of the system’s requirements lies within the context of the
system to be developed. For example, stakeholders, pertinent standards,
and legal guidelines demand particular functional properties that the sys-
tem to be developed must possess at its interfaces. A requirement is there-
fore defined for a specific context and can only be interpreted correctly in
regard to this specific context. The better the context of a requirement is
understood (e.g., why is the technical system “X” in the system context the
origin of some requirement), the lower the likelihood of incorrect inter-
pretation of the requirement. Therefore, a purpose-driven documentation
of the system context or information about the system context is of par-
ticular importance.

2.2 Defining System and Context Boundaries

It is within the responsibility of the requirements engineer to define the
system context properly. In order to do so, it is necessary to separate the
system context from the system to be developed as well as from the parts
of reality that are irrelevant for the system (see figure 2-1):

 Defining the system boundary: When defining the system boundary, a
decision has to be made: Which aspects pertain to the system to be
developed and which aspects belong in the system context?

 Defining the context boundary: When defining the context boundary,
the question to be answered is: Which aspects pertain to the system
context (i.e., have a relation to the system to be developed) and which
aspects are part of the irrelevant environment?

2.2 Defining System and Context Boundaries 13

Figure 2-1 System and context boundary of a system

System and context

boundaries define the

system context.

Thus, system and context boundaries define the system context. The sys-
tem context comprises all aspects that are relevant with regard to the
requirements for the system to be developed. These aspects cannot be
altered or modified by the system development process.

2.2.1 Defining the System Boundary

The system boundary separates the object of concern (i.e., the system)
from its environment. When the system boundary is defined, the scope of
the development (i.e., the aspects that are covered by the system to be
developed) as well as the aspects that are not part of the system are deter-
mined. We therefore define the system boundary as follows:

All aspects that are within the system boundary can thus be altered during
system development. For instance, an existing system that consists of hard-
ware and software components and is supposed to be replaced by the new
system can be within the system boundary. Aspects within the system con-
text can be business processes, technical processes, people and roles,
organizational structures, and components of the IT infrastructure.
Figure 2-2 schematically shows the system context of a system. The system
context consists of other systems, groups of stakeholders that in some way
use the interfaces of the system to be developed, and additional require-
ments sources and their interrelations.

Definition 2-2: System Boundary
The system boundary separates the system to be developed from its
environment; i.e., it separates the part of the reality that can be modified or
altered by the development process from aspects of the environment that
cannot be changed or modified by the development process.

14 2 System and Context Boundaries

Figure 2-2 Types of aspects within the system context

Sources and sinks as the

starting point

Among other things, sources and sinks (see, e.g., [DeMarco 1978]) can be
used to identify the interfaces the system has with its environment. Sources
provide inputs for the system. Sinks receive outputs from the system. Pos-
sible sources and sinks of a system are as follows:

 (Groups of) stakeholders
 Existing systems (both technical and nontechnical systems)

Interfaces: interaction between

system and environment

Sources and sinks interact with the system to be developed via system
interfaces. Using these interfaces, the system provides its functionality to
the environment, monitors the environment, influences parameters of the
environment, and controls operations of the environment. Depending on
the type of the respective source or sink, the system needs different inter-
face types (e.g., humanmachine interface, hardware interface, or software
interface). The interface type in turn may also impose specific constraints
or additional sources of requirements on the system to be developed.

Gray zone between system

and system context

Frequently, the system boundary is not precisely defined until the end
of the requirements engineering process. Before that, some or several
interfaces as well as desired functions and qualities of the system to be
developed are only partially known or not known at all. We refer to this
initially vague separation of the system and its context as the gray zone
between the system and the context (see figure 2-3). At the beginning of
the requirements engineering process, it may, for example, not be clear
whether the system should implement a certain function (e.g., “pay by
credit card”) or whether there is another system in the system context
providing such a function that should be used (e.g., “payment process-
ing”).

2.2 Defining System and Context Boundaries 15

Adjusting the gray zoneThe system boundary may not only shift within the gray zone ( in
figure 2-3) but also the gray zone itself may shift during the requirements
engineering process ( in figure 2-3). This kind of shifting is caused by
the fact that aspects, pertaining at first to the system context, now will be
modified during system development. Such a situation occurs during
requirements engineering, for example, if it is not clear in the system con-
text whether certain activities of a business process should be imple-
mented or supported by the system to be developed or not. In this situa-
tion, it is not clear which aspects belong to the system and can thus be
changed or modified and which aspects belong to the system context. This
causes a corresponding shift of the gray zone between system and system
context (see figure 2-3).

Figure 2-3 Gray zone of the system boundary

The gray zone shifts, for instance, when interfaces are attributed to the
system boundary and the gray zone is extended to comprise aspects of the
environment that concern these interfaces.

2.2.2 Defining the Context Boundary

The context boundary distinguishes between context aspects, i.e., those
aspects of the environment that need to be taken into account during
requirements engineering (e.g., as requirements sources) and those aspects
that are irrelevant for the system. The context boundary can be defined as
follows:

16 2 System and Context Boundaries

Concretion and shift of the

context boundary

At the beginning of the requirements engineering process, frequently only
part of the environment as well as single specific relationships between the
environment and the system to be developed are known. In the course of
requirements engineering, it is necessary to concretize the boundary
between system context and irrelevant environment by analyzing relevant
aspects within the environment with regard to their relationships to the
system. Besides the system boundary, the context boundary typically also
shifts during requirements engineering. For instance, it may be possible
that a law directive that was considered to be relevant for the system to be
developed no longer impacts the system or is no longer considered rele-
vant. The system context is therefore reduced ( in figure 2-4). If a new
law directive is identified that influences the system, the system context is
extended accordingly ( in figure 2-4).

Figure 2-4 Gray zone between system context and irrelevant environment

Gray zone between system

context and irrelevant

environment

Since the context boundary separates the system context from those parts
of reality that are irrelevant to the system, a complete and precise definition
of the context boundary for complex systems is virtually impossible. In
addition, it may not be possible to clarify for single aspects of the environ-
ment whether they influence the system to be developed or are influenced

Definition 2-3: Context Boundary
The context boundary separates the relevant part of the environment of a
system to be developed from the irrelevant part, i.e., the part that does not
influence the system to be developed and, thus, does not have to be considered
during requirements engineering.

2.3 Documenting the System Context 17

by it or not. These two observations are the reason for the existence of a
gray zone with regard to the context boundary (see figure 2-4).

Resolving and shifting of the

gray zone

This gray zone therefore comprises identified aspects of the environ-
ment for which it is unclear whether they have a relation to the system or
not. In contrast to the gray zone between the system and the system con-
text that must be resolved in the course of requirements engineering, it is
not necessary to resolve the gray zone between the system context and the
irrelevant environment entirely.

2.3 Documenting the System Context

In order to document the system context (especially the system and con-
text boundaries), “use case” diagrams [Jacobson et al. 1992] (see sections
4.2.3 and 6.3.1) or “data flow” diagrams [DeMarco 1978] (see section
6.6.1) are often used. When the context is modeled with data flow dia-
grams, sources and sinks in the environment of the system that represent
the source or destination of data flows (or flows of material, energy,
money, etc.) are modeled. In use case diagrams, actors (such as people or
other systems) in the system environment and their usage relationships to
the system are modeled. To model the system context, UML class diagrams
[OMG 2007] (see section 6.5.2) may also be used. In order to document
the system context of a system as thoroughly as possible, typically several
documentation forms are used.

2.4 Summary

The system context is the part of the reality that influences the system to
be developed and thus also influences the requirements for the system. In
order to be able to elicit the requirements for the system to be developed,
it is necessary to define the boundary of the system to the system context
and the boundary of the system context to the irrelevant environment first.
When the system boundaries are defined, the scope of the system is deter-
mined. The scope comprises those aspects that can be changed and
designed during system development. At the same time, it is also defined
which aspects belong to the environment and thus cannot be altered
during development and may provide constraints for the system to be
developed.

18 2 System and Context Boundaries

The context boundary separates the part of the environment that
influences the requirements for the system to be developed from that part
that does not influence the requirements. Typical aspects within the sys-
tem context are stakeholders (e.g., the users of the system) and documents
(e.g., standards that have to be considered) as well as other systems that,
for instance, interact with the system to be developed. Defining the system
and context boundaries successfully is the foundation for a systematic
elicitation of requirements for the system to be developed.

3 Eliciting Requirements 19

3 Eliciting Requirements

A core activity of requirements engineering is the elicitation of require-
ments for the system to be developed. The basis for requirements elicita-
tion is the knowledge that has been gained during requirements engineer-
ing about the system context of the system to be developed, which
comprises the requirements sources that are to be analyzed and queried.

3.1 Requirements Sources

Three types of requirements

sources

There are three different kinds of requirements sources:

 Stakeholders (see section 1.1.2) are people or organizations that
(directly or indirectly) influence the requirements of a system. Exam-
ples of stakeholders are users of the system, operators of the system,
developers, architects, customers, and testers.

 Documents often contain important information that can provide
requirements. Examples of documents are universal documents, such
as standards and legal documents, as well as domain- or organization-
specific documents, such as requirements documents and error reports
of legacy systems.

 Systems in operation can be legacy or predecessor systems as well as
competing systems. By giving the stakeholders a chance to try the sys-
tem out, they can gain an impression of the current system and can
request extensions or changes based on their impressions.

3.1.1 Stakeholders and Their Significance

Significance of stakeholdersIdentifying the relevant stakeholders is a central task of requirements
engineering [Glinz and Wieringa 2007]. For the requirements engineer,
stakeholders are important sources of requirements for the system (see
section 1.1.2). It is the task of the requirements engineer to gather,

20 3 Eliciting Requirements

document, and consolidate the partially conflicting goals and require-
ments of different stakeholders [Potts et al. 1994] (see chapter 8).

Consequences

of unconsidered stakeholders

If stakeholders are not identified or not considered, it may result in
significant negative repercussions for the project progress because
requirements may remain undetected. At the latest, these overlooked
requirements will enter the picture in the form of change requests during
system operation. Fixing these issues retroactively causes high additional
costs. Therefore, it is essential to identify all stakeholders and integrate
them into the elicitation procedures.

Stakeholder lists

 provide overview.

An auxiliary technique for stakeholder identification is maintaining
checklists. This allows for systematic and targeted elicitation of relevant
stakeholders. If the stakeholder list is updated too late or incompletely, the
result may be that important aspects of the system remain undetected, that
the project goal is missed, or that significant additional costs arise from
fixing issues. The starting point for stakeholder elicitation is often sugges-
tions of relevant stakeholders that are made by management or by domain
experts, for example. On the basis of these suggestions, relevant stake-
holders can be identified.

3.1.2 Handling Stakeholders in the Project

Managing stakeholders It can often be observed in practice that a lot of stakeholders are involved
in complex and “difficult” projects. Due to limited resources, the stake-
holders that are the most suitable for requirements elicitation must be care-
fully selected. To document the stakeholders in the development process,
it makes sense to use tables and spreadsheets that contain (at least) the fol-
lowing data: name, function (role), additional personal and contact data,
temporal and spatial availability during the project progress, relevance of
the stakeholder, area and extent of expertise of the stakeholder, and the
stakeholder’s goals and interests regarding the project.

Making collaborators out of

the affected

Handling stakeholders also means continuously exchanging infor-
mation: Periodic status updates and continuous involvement of the
stakeholders assist the requirements engineer in turning people previ-
ously simply affected by the project (i.e., principally affected stake-
holders) into collaborators (i.e., well-integrated, jointly responsible
stakeholders).

3.1 Requirements Sources 21

Individual “contracts” with the

stakeholders

Stakeholders that are not given enough attention by the requirements
engineer might be overly critical toward the project. In addition, some
stakeholders may show a lack of motivation because they are sufficiently
satisfied with the legacy system, are afraid of change, or are negatively
biased due to previous projects. It’s the requirements engineer’s task to
support the project manager in convincing all stakeholders of the benefit
of the project. To avoid misunderstandings and disputes regarding compe-
tence, it is useful to formally agree on the tasks, responsibilities, and man-
agerial authority as well as to determine individual goals, communication
paths, and feedback loops that can be used by the stakeholders. Depending
on the culture of the organization, this agreement and determination can
be done verbally (i.e., by “shaking hands”) or, more formally, by means of
written documentation. The individual agreements should be signed off
by the managers.

Obligations and privileges

of the stakeholders

A number of obligations and privileges result from the agreement with
the stakeholders.

The requirements engineer
 speaks the language of the stakeholders,
 becomes thoroughly familiar with the application domain,
 creates a requirements document,
 is able to get work results across (e.g., by means of diagrams and

graphs),
 maintains a respectful relationship with any stakeholder,
 presents her ideas and alternatives as well as their realizations,
 allows stakeholders to demand properties that make the system user-

friendly and simple,
 ensures that the system satisfies the functional and qualitative demands

of the stakeholders.

The stakeholders
 introduce the requirements engineer to the application domain,
 supply the requirements engineer with requirements,
 document requirements assiduously,
 make timely decisions,
 respect the requirements engineer’s estimates of costs and feasibility,
 prioritize requirements,
 inspect the requirements that the requirements engineer documents,

such as prototypes, etc.,

22 3 Eliciting Requirements

 communicate changes in requirements immediately,
 adhere to the predetermined change process,
 respect the requirements engineering process that has been instated.

Elicitation techniques

determine communication

and process.

In addition, the requirements engineer plans and organizes the communi-
cation paths as well as drafts a structured schedule for the requirements
engineering activities that are to be performed in collaboration with the
stakeholders. This organization and the type of communication are signif-
icantly influenced by the elicitation techniques that can be used during
requirements engineering.

3.2 Requirements Categorization According
to the Kano Model

Influence of the requirements

on satisfaction

Knowing the importance of a requirement for the satisfaction of the stake-
holders is very helpful for requirements elicitation. Along with the respec-
tive properties of a product that determine the satisfaction, the satisfaction
is classified into the following three categories [Kano et al. 1984]:

 Dissatisfiers are properties of the system that are self-evident and taken
for granted (subconscious knowledge).

 Satisfiers are explicitly demanded system properties (conscious knowl-
edge).

 Delighters are system properties that the stakeholder does not know or
expect and discovers only while using the system—a pleasant and use-
ful surprise (unconscious knowledge).

As time goes by, delighters turn into satisfiers and dissatisfiers as the user
becomes accustomed to the properties of the system. When eliciting
requirements, all three categories must be considered.

3.2 Requirements Categorization According to the Kano Model 23

Figure 3-1 Graphical representation of the Kano model

DissatisfiersDissatisfiers (subconscious requirements) must be fulfilled by the system
in any case. Otherwise, stakeholders will be disappointed and dissatisfied.
Completely fulfilled dissatisfiers do not generate a positive disposition but
merely help to avoid massive discontent. Dissatisfiers are dominantly
influenced by existing systems. Therefore, observation and document-cen-
tric techniques are especially well suited for the elicitation of these factors.

SatisfiersSatisfiers (conscious requirements) are properties that are consciously
known to the stakeholders and explicitly demanded. When these proper-
ties are fulfilled, stakeholders are content and satisfied, which is desirable.
If some demanded properties are missing, the stakeholders probably will
not accept the product. Their satisfaction decreases with each missing sat-
isfier. Satisfiers can be elicited well using survey techniques.

DelightersDelighters (unconscious requirements) are properties of a system
whose value is recognized only when the stakeholder can try out the sys-
tem for herself or the requirements engineer proposes them. Creativity
techniques are best suited to elicit delighters.

24 3 Eliciting Requirements

3.3 Elicitation Techniques

Requirements elicitation:

no universal method

The main goal of all elicitation techniques is in supporting the requirements
engineer in ascertaining the knowledge and requirements of the stake-
holders. How and when a technique can be applied depends on the given
conditions. Applying the technique consciously and in a fashion appropri-
ate to the situation at hand allows for tailoring the requirements elicitation
process which takes into account project constraints so that requirements
may be elicited as completely and comprehensibly as possible.

3.3.1 Types of Elicitation Techniques

Influencing factors regarding

the choice of elicitation

techniques

Elicitation techniques serve the purpose of identifying the conscious,
unconscious, and subconscious stakeholder requirements. However, there
is no universal method to elicit these requirements [Hickey and Davis
2003]. Every project has individual constraints and individual characteris-
tics and is by and large unique, but there are always elicitation techniques
that are compatible with the project. The most important influencing fac-
tors when choosing the appropriate elicitation techniques are as follows:

 the distinction between conscious, unconscious, and subconscious
requirements that are to be elicited

 the time and budget constraints, as well as the availability of the stake-
holders

 the experience of the requirements engineer with a particular elicita-
tion technique

 the chances and risks of the project

Risk factors The first important step when choosing a suitable elicitation technique is
to perform an analysis of constraints critical to the project, i.e., identifying
so-called risk factors. Mostly, these result from human, organizational, and
professional influences, as illustrated in the following passages.

Human influences During the requirements elicitation phase, which is heavily influenced
by the stakeholders, good communication is essential. In order to assure
high-quality communication between the requirements engineer and
stakeholders, it is important to determine the type of requirement, the
desired level of detail, and the experience of the requirements engineer
and the interviewees with different elicitation techniques.

Social, group-dynamic, and cognitive capabilities of the stakeholders
also influence the choice of suitable elicitation techniques significantly.

3.3 Elicitation Techniques 25

Another influence factor is whether the elicited knowledge is explicit
(consciously known) by each individual stakeholder or if it is implicit or
unconscious (i.e., covert).

Organizational influencesOrganizational risk factors the project faces need to be investigated as
well. Among other things, this comprises the distinction between fixed
price contracts and service contracts, whether the system to be built is a
new development or an extension of a legacy system, and spatial and tem-
poral availability of the stakeholders.

Operational influences of the

content

In addition, it is necessary to consider the operational content of the
requirements. If the system is very complex, it is advisable to employ a
structuring approach during elicitation in order to deconstruct the opera-
tional contents into understandable parts.

Combine techniques with

regard to your particular

situation to lower risks.

Another influencing factor on the choice of elicitation techniques is
the desired level of detail of the requirements. Abstract requirements can
be elicited rather well using creativity techniques. With the stakeholders, a
vision of the system or its important properties can be created or collected.
Inquisitive (survey) techniques or observational techniques can aid in elic-
iting requirements of a medium level of detail [Robertson 2002]. Finely
detailed requirements can be elicited well by making use of document-
centric techniques, i.e., techniques that use existing documents because
information up to an arbitrary level of detail can be extracted from these.

It is advisable to combine different techniques because this minimizes
many of the risks inherent to the project. Weaknesses and pitfalls of a par-
ticular technique can be balanced out through the use of another tech-
nique whose strong points lie where the first technique may have deficits.

3.3.2 Survey Techniques

Eliciting explicit knowledgeSurvey techniques aim at eliciting as precise and unbiased statements as
possible from stakeholders regarding their requirements. All survey tech-
niques assume that the respondent is capable of explicitly expressing his or
her knowledge and that he or she is committed to investing time and effort
for the elicitation. Survey techniques are usually driven by the require-
ments engineer because she asks the questions. This, however, might result
in the fact that stakeholder concerns are forgotten, superseded, or disre-
garded.

Interview During an interview, the requirements engineer asks predetermined
questions to one or more stakeholders and documents the answers.
Questions that arise during the conversation can be discussed immedi-

26 3 Eliciting Requirements

ately, and the requirements engineer may uncover subconscious
requirements through clever questions. Interviews can be employed
during the entire development phase of the system. An experienced
interviewer individually controls the course of the conversation, com-
pletely commits herself to each stakeholder, inquires about specific
aspects, and thus ensures the completeness of the answers. The most
prominent disadvantage of this elicitation technique is that it is very
time-consuming.

Questionnaire  Questionnaire: Making use of open and/or closed questions (e.g., mul-
tiple choice questions) is another way of eliciting requirements from
stakeholders. If there are a large number of participants that must be
surveyed, an online questionnaire is a viable option. Questionnaires
can elicit a magnitude of information in a short amount of time and at
low costs. As long as answers are predetermined, even stakeholders
that are not able to explicitly express their knowledge can deliver an
assessment. A disadvantage of using a questionnaire is that it can be
only employed to gather requirements the requirements engineer
already knows or conjectures. Creating a proper questionnaire is often
tricky and time-consuming and requires thorough knowledge of the
domain in question and the psychological guidelines for creating ques-
tionnaires. In addition, as opposed to interviews, questionnaires do not
provide immediate feedback between the surveyor and the surveyed,
so it becomes apparent that questions were forgotten or badly formu-
lated only once the questionnaires have been evaluated.

3.3.3 Creativity Techniques

Establishing innovations Creativity techniques serve the purpose of developing innovative require-
ments, delineating an initial vision of the system, and eliciting excitement
factors. Creativity techniques are usually not well suited for establishing
fine-grained requirements about the system behavior. The following crea-
tivity techniques are commonly used [Maiden and Gizikis 2001]:

Brainstorming  During brainstorming, ideas are collected within a certain time frame,
usually in groups of 5 to 10 people. The ideas are documented by a
moderator without discussing, judging, or commenting on them at
first. Participants use ideas of other participants to develop new origi-
nal ideas or to modify existing ideas. After that, the collected ideas are
subjected to a thorough analysis. This technique is especially effective
when a large number of people of different stakeholder groups are

3.3 Elicitation Techniques 27

involved. Among the advantages of this technique is that a large num-
ber of ideas can be collected in a short amount of time and multiple
people can expand on these ideas collaboratively. The unbiased collec-
tion of these ideas allows new solutions to pop up. Brainstorming is
usually less effective when the dynamics of the group are muddled or
when participants with very varied levels of dominance are involved.
For such situations, other creativity techniques may be better suited,
e.g., the 6-3-5 method (six participants, three ideas each, fivefold hand-
off of the ideas) [Rohrbach 1969] or the brainwriting method.

Brainstorming paradox Brainstorming paradox is a modification of regular brainstorming in
that events that must not occur are collected. Afterward, the group
develops measures to prevent the events collected earlier from hap-
pening. Through this process, participants often realize which actions
may entail negative results. With this method, risks can be identified
early on and countermeasures can be developed. Advantages and dis-
advantages of this technique are identical to those of classic brain-
storming.

Change of perspective Change of perspective: Among the techniques that employ a change of
perspective (adopting different extreme standpoints), the most com-
mon technique is the so-called Six Thinking Hats [DeBono 2006].
Each of the six hats represents a particular perspective that is in turn
adopted by each of the participants. The resulting solutions approach
the problem from different standpoints. That way, even stakeholders
that are very convinced of their own opinion are persuaded to adopt a
different standpoint. This technique is extraordinarily beneficial when
stakeholders can only express their knowledge in a biased manner or
are harshly constricted to their opinions. On the other hand, this tech-
nique cannot be applied if the requirements require a fine-grained level
of detail because this would render the technique very laborious.

Analogy technique Analogy techniques (bionics/bisociations): In bionics, problems that the
project faces are mapped to an analogous situation occurring in
nature, and the solutions nature provides are sought and then mapped
back to the project. In bisociation, the analogies need not originate in
nature. These techniques assume that each participant is capable of
analogous thinking, that a lot of time is available, and that the partici-
pants have an in-depth knowledge of the domain with which an anal-
ogy will be drawn. Analogy techniques can be applied covertly or in
the open. When this technique is applied covertly, the participants are
only told the analogy. The requirements engineer is then responsible

28 3 Eliciting Requirements

for mapping the results onto the real problem space. When this tech-
nique is applied in the open, the stakeholders know the real problem
space as well as the analogy.

3.3.4 Document-centric Techniques

Document-centric techniques reuse solutions and experiences made with
existing systems. When a legacy system is replaced, this technique ensures
that the entire functionality of the legacy system can be identified. Docu-
ment-centric techniques should be combined with other elicitation tech-
niques so that the validity of the elicited requirements can be determined
and new requirements for the new system can be identified.

System archaeology  System archaeology is a technique that extracts information required to
build a new system from the documentation or implementation (code)
of a legacy system or a competitor’s system. The technique is often
applied when explicit knowledge about the system logic has been lost
partially or entirely. By analyzing existing code, the requirements engi-
neer ensures that none of the functionalities of the legacy system will
be overlooked and the system logic of the legacy system is elicited
anew. This method leads to a large amount of very detailed require-
ments and is very laborious. However, system archaeology is the only
technique that can ensure that all functionalities of the legacy system
will be implemented in the new system. When it becomes obviously
apparent that the legacy system and the new system differ in function-
ality, additional elicitation techniques, e.g., creativity techniques, must
be applied early on.

Perspective-based reading  Perspective-based reading (see section 7.5.4) is applied when docu-
ments need to be read with a particular perspective in mind, e.g., the
perspective of the implementer or the tester. Aspects that are contained
in the document but do not pertain to the current perspective are
ignored. This allows for an analysis that is strictly focused on particular
parts of the existing documentation. This way, detailed, technology-
related or implementation-related aspects can be separated from essen-
tial operational aspects that are relevant for the successor system.

Reuse  Reuse: Requirements that have been previously compiled and brought
up to a certain quality standard can be reused. In order to do that, the
requirements are stored in a database, for instance, and kept available
at the required level of detail for reuse. Through reuse, the costs
involved with the elicitation procedures can be significantly reduced.

3.3 Elicitation Techniques 29

3.3.5 Observation Techniques

Question observations and

optimize processes.

When domain specialists are unable to spend the time needed to share
their expertise with the requirements engineer, or are unable to express
and denote their knowledge, observation techniques are helpful. During
observation, the requirements engineer observes the stakeholders while
they go about their work. The requirements engineer documents all steps
and thus elicits the processes the system must support as well as potential
mistakes, risks, and open questions. All those are potential requirements
that need to be formulated. The stakeholders can actively demonstrate
their knowledge in using the application or can remain passive, with the
requirements engineer merely observing. The requirements engineer
ought to question the observed processes so that the situation as it should
be can be established. Otherwise, she is at risk of documenting outdated
technological decisions and suboptimal processes (i.e., the situation as is
and not as it should be). As the requirements engineer is an external
observer, her chances of identifying inefficient processes are good and she
can then suggest better solutions. She is farther removed from the pro-
cesses than the stakeholders, who frequently repeat work steps without
questioning them critically. Observation techniques are well suited to elicit
detailed requirements and dissatisfiers because the requirements engineer
can recognize dissatisfiers thought of as self-evident or only subcon-
sciously known by the stakeholders. In addition, the requirements engi-
neer becomes very familiar with the domain language, which simplifies
further elicitation. Satisfiers can only be observed if they have been imple-
mented in the legacy system or are actively employed in the current pro-
cesses. As a result, this technique is not suited for the development of new
processes. During system development, field observations and apprentic-
ing are especially well suited as elicitation techniques.

Field observation Field observation: The requirements engineer is on location with the
specialist or the users of the system and observes and documents the
processes and operational procedures that they carry out. Using these
observations, she formulates the requirements. Often, this can be fur-
ther aided by audio and video recordings. This technique is well suited
for operational procedures that are difficult to express verbally, but it
can only be applied if the procedures are visible physically.

Apprenticing With apprenticing, the requirements engineer must actively learn and
perform the procedures of the stakeholders. Just like an apprentice, the
requirements engineer is encouraged to question unclear and complex

30 3 Eliciting Requirements

operational procedures so that she may gather domain experience.
Thereby, she can experience requirements that the stakeholders take for
granted and therefore cannot elucidate. Another advantage is that the
typical balance of power between the requirements engineer and the
respective specialist is reversed because the stakeholder now adopts the
role of the “master” that has the knowledge the apprentice is yet lacking.

3.3.6 Support Techniques

Support techniques serve as an addition to the elicitation techniques and
try to balance out the weaknesses and pitfalls of the chosen elicitation tech-
nique.

Mind mapping  In mind mapping, a graphical representation of the refined relation-
ships and interdependencies between terms is created. Mind mapping
is often used as a supporting technique for brainstorming or brain-
storming paradox.

Workshops  During a joint meeting, the requirements engineer and the stake-
holders elaborate the goals (or details of a certain functionality) of the
system. For example, the necessary user interfaces of the system can be
designed in a workshop [Gottesdiener 2002].

CRC cards  With the CRC technique (CRC stands for Class Responsibility Collabo-
ration), context aspects and their respective attributes and properties
are denoted on index cards. Requirements are then formulated using
these cards.

Audio and video recordings  Audio and video recordings are very well suited to elicit requirements
when stakeholders are not always available, when budget is tight, or
when the system is highly critical. Especially during field observations,
audio and video recordings can help capture fast-paced processes. The
disadvantage of this technique is that stakeholders often feel supervised
when they are being recorded and as a result might deliver biased state-
ments or, in extreme cases, might even refuse to cooperate.

Modeling action sequences  Use case modeling: Use cases document the external view of the system
to be developed. A use case has a trigger event, which triggers the use
case and an expected result, or outcome of the use case. Every use case
is a functionality that must be supported by the system to be developed
(see section 6.3).

Prototypes for illustration  Prototypes are well suited to question established requirements and to
elicit requirements in situations where stakeholders have only a vague

3.4 Summary 31

understanding of what is to be developed. Potential consequences of
new or changed requirements can be identified easier. For example,
user interface prototypes are frequently used in practice to find addi-
tional functional requirements.

3.4 Summary

Requirements elicitation is a core activity in requirements engineering.
Aside from documents and legacy systems, stakeholders are the main
sources for requirements. It is important to initially agree upon mutual
rights and responsibilities of the stakeholders and the requirements engi-
neer in order to facilitate communication and cooperation and to success-
fully integrate the stakeholders into the elicitation process. The choice of
the right elicitation technique for the respective project is made by the
requirements engineer based on the given cultural, organizational, and
domain-specific constraints.

This page intentionally left blank

4 Documenting Requirements 33

4 Documenting Requirements

In requirements engineering, information that has been established or
worked out during different activities must be documented. Among this
information are, for example, protocols of interviews and reports of vali-
dation or agreement activities, but also change requests. The main and
most important documentation task in requirements engineering, though,
is to document the requirements for the system in a suitable manner.

4.1 Document Design

A documentation technique is any kind of more or less formal depiction
that eases communication between stakeholders and increases the quality
of the documented requirements. In principle, any kind of documentation
technique can be used to document the requirements, let it be natural lan-
guage-based documentation by means of prose, more structured natural
language-based text, or more formal techniques such as state diagrams.

Reasons for the

documentation

During the life cycle of a requirements document, many people are trusted
with the documentation. During communication, the documentation has
a goal-oriented and supporting role. The main reasons for documenting
requirements are as follows:

Central role

of requirements

 Requirements are the basis of the system development. Requirements of
any kind influence the analysis, design, implementation, and test
phases directly and indirectly. The quality of a requirement or of a
requirements document has a strong impact on the progress of the pro-
ject and therefore on its success.

Definition 4-1: Requirements Document / Requirements Specification
A requirements specification is a systematically represented collection of
requirements, typically for a system or component, that satisfies given criteria.

34 4 Documenting Requirements

Legal relevance  Requirements have a legal relevance. Requirements are legally binding
for the contractor and the client, and the client can sue for their fulfill-
ment. Documenting the requirements can help to quickly overcome
legal conflicts between two or more parties.

Complexity  Requirements documents are complex. Systems that possess thousands
of requirements that in turn have complex interdependencies on multi-
ple layers are not unheard of in practice. Without suitable documenta-
tion, keeping on top of things can become very difficult for anyone
involved.

Accessibility  Requirements must be accessible to all involved parties. Projects undergo
certain “development” as time goes by—with regard to the subject as
well as the staff. When requirements can be permanently accessed,
uncertainty and obscurities can be avoided and staff that has recently
joined the project can quickly get up to speed.

Another argument for a good documentation, supportive of the project, is
that employees almost never share the same understanding of a subject
matter. Therefore, requirements should be documented in a way that they
meet the quality demands of all involved.

4.2 Types of Documentation

Requirements for a system can be documented in three different perspec-
tives. In practice, natural language as well as conceptual models are used
to this end, or oftentimes, an advantageous combination of both is
employed.

4.2.1 The Three Perspectives of Requirements

Requirements for a system can be documented in three different perspec-
tives onto the system to be developed:

Data perspective  Data perspective: In the data perspective, a static-structural perspective
on the requirements of the system is adopted. For example, the struc-
ture of input and output data as well as static-structural aspects of
usage and dependency relations of the system and the system context
can be documented (e.g., the services of an external system).

Functional perspective  Functional perspective: The functional perspective documents which
information (data) is received from the system context and manipulated

4.2 Types of Documentation 35

by the system or one of its functions. This perspective also documents
which data flows back into the system context. The order in which
functions processing the input data are executed is also documented.

Behavioral perspective Behavioral perspective: In the behavioral perspective, information
about the system and how it is embedded into the system context is
documented in a state-oriented manner. This is done by documenting
the reactions of the system upon events in the system context, the con-
ditions that warrant a state transition, and the effects that the system
shall have on its environment (e.g., effects of the system analyzed that
represent events in the system context of a different system).

4.2.2 Requirements Documentation using Natural Language

Advantages of using natural

language

Natural language, particularly prose, is the most commonly applied docu-
mentation form for requirements in practice. In contrast to other docu-
mentation forms, prose has a striking advantage: No stakeholder has to
learn a new notation. In addition, language can be used for miscellaneous
purposes—the requirements engineer can use natural language to express
any kind of requirement.

Disadvantages of using

natural language

Natural-language-based documentation is well suited to document
requirements in any of the three perspectives. However, natural language
can allow requirements to be ambiguous, and requirements of different
types and perspectives are in danger of being unintentionally mixed up
during documentation. In that case, it is difficult to isolate information
pertaining to a certain perspective amidst all of the requirements in natu-
ral language.

4.2.3 Requirements Documentation using Conceptual Models

In contrast to natural language, the different types of conceptual models
cannot be used universally. When documenting requirements by means of
models, special modeling languages must be used that pertain to the
appropriate perspective. Assuming the modeling language selected for a
documentation task is applied correctly, its use constructively guarantees
that the models created depict information pertaining to the respective
perspective only. The models depict the documented requirements much
more compactly and they therefore are easier for a trained reader to under-
stand than is natural language. In addition, conceptual models offer a
decreased degree of ambiguity (i.e., fewer ways to be interpreted) than

36 4 Documenting Requirements

natural language due to their higher degree of formality. However, using
conceptual modeling languages for requirements documentation requires
specific knowledge of modeling. The following list includes short descrip-
tions of the most important diagrams discussed in chapter 6.

Overview

of system functions

 Use case diagram: A use case diagram allows you to gain a quick over-
view of the functionalities of the specified system. A use case describes
which functions are offered to the user by the system and how these
functions relate to other external interacting entities. However, use
cases do not describe the responsibilities that the functions have in
detail (see section 6.3).

Structural data modeling and

structuring of terms

 Class diagram: Among other things, class diagrams are used in require-
ments engineering to document requirements with regard to the static
structure of data, to document static-structural dependencies between
the system and the system context, or to document complex domain
terms in a structured manner (see section 6.5.2).

Sequence modeling  Activity diagram: Using activity diagrams, business processes, or
sequence-oriented dependencies of the system in regard to processes
within the system context can be documented. Activity diagrams are
also well suited to model the sequential character of use cases or to
model a detailed specification of the interaction of functions that pro-
cess data (see section 6.6.3).

Event-driven behavior  State diagram: State diagrams are used in requirements engineering to
document event-driven behavior of a system. The focus of this type of
model is on the individual states the system can be in, events and their
respective conditions that trigger a state transition, and effects of the
system in its environment.

4.2.4 Hybrid Requirements Documents

Combined use of

documentation types

Requirements documents first and foremost contain requirements. In
addition, in many situations it is sensible to document decisions, impor-
tant explanations, and other relevant information as well. Depending on
the target audience of the document, the perspective on the system, and
the documented knowledge, suitable documentation types are selected.
Typically, documents contain a combination of natural language and con-
ceptual models. The combination allows the disadvantages of both docu-
mentation types to be decreased by means of the strengths of the other
documentation type, and combining documentation types exploits the

4.3 Document Structures 37

advantages of both. For instance, models can be amended or comple-
mented by natural language comments and natural language requirements
and natural language glossaries can be summarized and their dependen-
cies can be depicted clearly by making use of models.

4.3 Document Structures

Influence of the

requirements on satisfaction

Requirements documents contain a magnitude of different information.
These must be well structured for the reader. In order to do that, one can
make use of standardized document structures or individually define a
custom document structure.

4.3.1 Standardized Document Structures

Adaptation of existing

standard outlines

Standard outlines offer a predefined structure, i.e., predefined stereotypes
according to which the information can be classified. By using standard
outlines, a rough structure along with a short description of the content of
the main sections is predetermined. Using standard outlines has the fol-
lowing advantages:

 Standard outlines simplify incorporating new staff members.
 Standard outlines allow for quickly finding desired contents.
 Standard outlines allow for selective reading and validation of require-

ments documents.
 Standard outlines allow for automatic verification of requirements doc-

uments (e.g., with regard to completeness).
 Standard outlines allow for simplified reuse of the contents of require-

ments documents.

It must be noted that these structures must be tailored with regard to the
specific project properties to meet the respective constraints. In the follow-
ing paragraphs, three of the most widely used standardized document
structures are introduced.

Rational Unified ProcessThe Rational Unified Process (RUP) [Kruchten 2001]is usually used for
software systems that are developed using object-oriented methods. The
client creates a business model that contains different artifacts from the
business environment (e.g., business rules, business use cases, business
goals), which serve as the basis for requirements of the system over the
course of development. The contractor uses the structures of the software

38 4 Documenting Requirements

requirements specification (SRS) to document all software requirements.
These structures are closely related to the ISO/IEC/IEEE standard
29148:2011, as described next.

ISO/IEC/IEEE standard

29148:2011

The ISO/IEC/IEEE standard 29148:2011 [ISO/IEC/IEEE 29148:2011]
contains an outline designed for the documentation of software require-
ments (software requirements specification). The standard structure
suggests dividing the requirements document into five parts with regard
to their subject matter:

 A chapter with introductory information (e.g., system goal, system
bounding) and a general description of the software (e.g., perspective
of the system, properties of future users)

 A chapter with a listing of all documents that are referenced in the
specification

 A chapter for specific requirements (e.g., functional requirements, per-
formance, interfaces)

 A chapter with all planned measures for verification
 Appendices (e.g., information about assumptions that were made,

identified dependencies)

V-Model The V-Model [V-Modell 2004] of the German Federal Ministry of the Inte-
rior (BMI) defines different structures, depending on the creator of the
requirements document:

 The Customer Requirements Specification, known in the German origi-
nal as Lastenheft, is created by the customer and describes all of the
demands to the contractor regarding the subject of the contract, i.e.,
deliveries and services. In addition, in many cases, demands of the
users, including all constraints to the system and the development pro-
cess, are documented. Therefore, the Customer Requirements Specifi-
cation usually describes what is made for what.

 The System Requirements Specification, known in the German original
as Pflichtenheft, is based on the Customer Requirements Specification
and contains the implementation suggestions that the contractor has
elaborated. Therefore, the System Requirements Specification is a
refinement of the requirements and constraints of the Customer
Requirements Specification.

4.3 Document Structures 39

4.3.2 Customized Standard Contents

The minimum contentAs described in section 4.3.1, standardized document structures are
adapted with regard to the specific project conditions. The following issues
should be addressed by any chosen structure.

Introduction

The introduction contains information about the entire document. This
information allows gaining a quick overview of the system.

 Purpose: This section discusses why the document was created and
who the target audience for the requirements document is.

 System coverage: This part consists of the system to be developed. It
indicates system name and the principle goals and advantages that arise
from introducing the system.

 Stakeholder: This section contains a list of stakeholders and their rele-
vant information (see section 3.1.1).

 Definitions, Acronyms, and Abbreviations:1 In this section, the terms
used in the document are defined so that they can be used consistently
throughout the document.

 References:2 All documents that are referenced by the requirements
document are listed herein.

 Overview: At the end of the introductory chapter, the content and
structure of the following sections of the requirements document
should be explained briefly.

General Overview

In this section, additional information is documented that increases the
understandability of the requirements. In contrast to the introduction, this
is merely operational information that does not pertain to administration,
management, or organizational aspects of the requirements document.

 System environment: The embedding of the system into the environ-
ment is of key concern in this paragraph. The results of your definition
of the system boundary and context boundary can be found herein.

 Architecture description: In this section, the operational interfaces of
the system (e.g., user interfaces, hardware and software interfaces, and

1. This section can also be treated as an appendix to the document.
2. This section can also be treated as an appendix to the document.

40 4 Documenting Requirements

communication interfaces) are documented. In addition, further infor-
mation, e.g., regarding storage limitations, is also discussed.

 System functionality: This section contains the coarse functionalities
and tasks of the system. This can be documented, for example, using a
use case diagram.

 User and target audience: The different users of the system that make
up the target audience are listed.

 Constraints: In this section, all conditions ought to be listed that have
not been documented thus far and might hinder the requirements
engineering.

 Assumptions: Decisions, such as not implementing certain aspects of
the system due to budgeting reasons, or other general assumptions
about the system context that the requirements are based upon are doc-
umented here.

Requirements

This part contains functional requirements as well as quality requirements.

Appendices

In the appendices, additional information that completes the document
can be documented. For example, the appendices can include additional
documents regarding the user characteristics, standards, conventions, or
background information regarding the requirements document.

Index

The index typically contains a table of contents (i.e., a structure of the
chapters) and an index directory. In highly dynamic requirements docu-
ments, this may be a highly critical section that must be kept up-to-date.

4.4 Using Requirements Documents

Requirements documents as

the basis for development

Over the course of the project, requirements documents serve as the basis
for different tasks:

 Planning: Based on the requirements document, concrete work pack-
ages and milestones for the implementation of the system can be
defined.

4.5 Quality Criteria for Requirements Documents 41

 Architectural design: The detailed documented requirements (along
with constraints) serve as the basis for the design of the system archi-
tecture.

 Implementation: Based on the architectural design, the system is imple-
mented by making use of the requirements.

 Test: On the basis of requirements that have been documented in the
requirements document, test cases can be developed that can be used
for system validation later on.

 Change management: When requirements change, the requirements
document can serve as the basis to analyze the extent to which other
parts of the system are influenced. The change effort can thus be esti-
mated.

 System usage and system maintenance: After the system is developed,
the requirements document is used for maintenance and support. This
way, the requirements document can be used to analyze concrete
defects and shortcomings that surface during system use. For example,
one can deduct if a defect is a result of using the system incorrectly, a
result of an error in requirements, or a result of an error in implemen-
tation.

 Contract management: The requirements document is the prime sub-
ject of a contract between a client and a contractor in many cases.

4.5 Quality Criteria for Requirements Documents

To become a basis for the subsequent processes, the requirements docu-
ment must meet certain quality criteria. According to the ISO/IEC/IEEE
standard 29148:2011 [ISO/IEC/IEEE 29148:2011], a requirements docu-
ment shall be complete and consistent. Moreover, a requirements docu-
ment shall support readability by offering a clear structure, reasonable
scope, and traceability. Overall, a requirements document shall fulfil the
following quality criteria:

 Unambiguity and consistency
 Clear structure
 Modifiability and extendibility
 Completeness
 Traceability

42 4 Documenting Requirements

4.5.1 Unambiguity and Consistency

Quality of individual

requirements is a

prerequisite.

Requirements documents can be consistent and unambiguous only when
the individual requirements are consistent and unambiguous. In addition,
it must be guaranteed that individual requirements do not contradict one
another. To achieve this, it is advisable to make use of conceptual models
(see chapter 6). Another aspect of unambiguity pertains to the unique
identification of a requirements document or a requirement among the set
of all requirements documents or requirements in a development project
(see section 8.5).

4.5.2 Clear Structure

Allows for selective reading In order to guarantee that the requirements document is readable by any
stakeholder, it should be appropriately comprehensive and clearly struc-
tured. Unfortunately, no clear-cut suggestions can be made regarding the
appropriate comprehensiveness of a requirements document. A very com-
prehensive requirements document with a good structure can be just as
appropriate as a less comprehensive document because a clear structure
will allow the reader to skip parts that are not relevant to him. An unstruc-
tured or badly structured requirements document of the same high level
of comprehensiveness would not be appropriate because the document
must be read in its entirety in order for a stakeholder to be able to identify
parts that are relevant to her. A good starting point is the standard struc-
tures described in section 4.3.1.

4.5.3 Modifiability and Extendibility

Content and structure should

support changeability.

Requirements documents must be easy to extend. There are always
requirements that are changed, altered, added, or removed as a project pro-
gresses. As a result, the structure of requirements documents should be
easy to modify and extend. The requirements documents of a project
should be subject to the project’s version control management.

4.5.4 Completeness

Two types of completeness in

requirements documents

Requirements documents must be complete, i.e., they must contain all rel-
evant requirements (and required additional information), and each
requirement must be documented completely.3 All possible inputs, influ-

4.6 Quality Criteria for Requirements 43

ential factors, and required reactions of the system must be described for
each desired system function. This comprises describing error and excep-
tion cases in particular. Also, quality requirements, such as requirements
pertaining to reaction times or availability and usability of the system,
must be noted.

Evidence, reference,

and sources are formal

necessities.

Formal factors also contribute to completeness. Graphs, diagrams, and
tables should be appropriately labeled. Another important aspect is that
consistent reference and index directories must exist. Also, definitions and
norm reference that denote specific terms must be included in any
requirements document. The comprehensiveness of a requirements docu-
ment is a challenge during requirements engineering. Often, a compro-
mise must be found between the time resources available and the com-
pleteness of the requirements documents.

4.5.5 Traceability

Relationship to other

development documents

An important quality criterion is traceability of relationships between
requirements documents and other documents (e.g., business process
model, test plans, or design plans). These documents could have been cre-
ated in previous development phases, in subsequent development phases,
or concurrently with the requirements documents. Among other things,
traceability supports change management (see section 8.4).

4.6 Quality Criteria for Requirements

Quality criteria for single

document requirements

Each documented requirement should fulfil the following quality criteria:

 Agreed: A requirement is agreed upon if it is correct and necessary in
the opinion of all stakeholders.

 Unambiguous: [ISO/IEC/IEEE 29148:2011] A requirement that is
unambiguously documented can be understood in only one way. It
must not be possible to interpret the requirement in a different way. All
readers of the requirement must arrive at the same understanding of
the requirement.

 Necessary: [ISO/IEC/IEEE 29148:2011] A documented requirement
must represent the facts and conditions of the system context in a way

3. Strictly speaking, this statement holds true only for the requirements document of the
next system release (see section 8.5.3).

44 4 Documenting Requirements

that it is valid with regard to the actualities of the system context. These
actualities may be the different stakeholders’ ideas, relevant standards,
or interfaces to external systems.

 Consistent: [ISO/IEC/IEEE 29148:2011] Requirements must be con-
sistent with regard to all other requirements, i.e., the requirements
must not contradict one another, regardless of their level of detail or
documentation type. In addition, a requirement must be formulated in
a way that allows for consistency with itself, i.e., the requirement may
not contradict itself.

 Verifiable: [ISO/IEC/IEEE 29148:2011] A requirement must be
described in a way that allows for verification. That means that tests or
measurements can be carried out that provide evidence of the func-
tionality demanded by the requirement.

 Feasible: [ISO/IEC/IEEE 29148:2011] It must be possible to implement
each requirement given the organizational, legal, technical, or financial
constraints. This means that a member of the development team ought
to be involved in rating the goals and requirements so that he can show
the technical limits of the implementation of a particular requirement.
In addition, the costs for the implementation must be incorporated
into the rating. Occasionally, stakeholders withdraw a requirement if
the costs for its realization become apparent.

 Traceable: [ISO/IEC/IEEE 29148:2011] A requirement is traceable if its
origin as well as its realization and its relation to other documents can
be retraced. This can be done by means of unique requirement identifi-
ers. Using these unique identifiers, requirements that are derived from
other requirements on a different level of the specification can be con-
nected. For example, a system goal can be traced through all levels of
abstraction, from design to implementation and test. Details can be
found in section 8.4.

 Complete: [ISO/IEC/IEEE 29148:2011] Each individual requirement
must completely describe the functionality it specifies. Requirements
that are yet incomplete must be specially marked, for example by
inserting “tbd” (“to be determined”) into the respective text field or by
setting a corresponding status. These markings can then be systemati-
cally searched for and missing information can be amended accord-
ingly.

 Understandable: Requirements must be comprehensible to each stake-
holder. Therefore, the type of requirements documentation (see sec-

4.7 Glossary 45

tion 4.2) can vary significantly, depending on the development phase
(and therefore, depending on the involved staff). In requirements engi-
neering, it is important to strictly define the terms used.

Fundamental principles of

understandability

Along with quality criteria for requirements, there are two fundamental
rules that enhance the readability of requirements:

 Short sentences and short paragraphs: As human short-term memory is
very limited, circumstances that belong together should be described
in no more than seven sentences.

 Formulate only one requirement per sentence: Formulate requirements
using active voice and use only one process verb. Long, complicated
interlaced sentences must be avoided.

4.7 Glossary

A frequent cause for conflicts in requirements engineering is that the peo-
ple that are involved in the development process have different interpreta-
tions of terms. In order to avoid these conflicts, it is necessary that every-
one who is involved in the development process shares the same
understanding of the terminology used. Therefore, all relevant terms must
be defined in a common glossary. A glossary is a collection of term defini-
tions and contains the following elements:

 Context-specific technical terms
 Abbreviations and acronyms
 Everyday concepts that have a special meaning in the given context
 Synonyms, i.e., different terms with the same meaning
 Homonyms, i.e., identical terms with different meanings

Consistent definitionsBy defining the meaning of terms, you can increase the understandability
of requirements considerably. Misunderstandings and different interpreta-
tions of terms that might lead to conflicts can be avoided from the begin-
ning.

Reuse of glossary entriesOften, in different projects, terms are used that are similar to one
another or in fact identical. This may be the case, for example, when one
system is developed for different customers but within the same domain.
In this case, already existing glossary entries should be reused. It may even
be feasible to define such terms in a universal, inter-project glossary. The
additional effort of creating such a glossary will pay off in future projects.

46 4 Documenting Requirements

For certain domains, collections of term definitions already exist and are
publicly accessible. These may serve as the foundation for the definition of
specific glossaries. For example, in [IEEE 610.12-1990], typical terms of
software engineering are defined.

Rules for Using a Glossary

Basic rules for using a glossary Since creating a glossary is absolutely mandatory, the following must be
noted:

 The glossary must be centrally managed: At any time, there must be only
one valid glossary, which must also be centrally accessible. There must
not be multiple valid glossaries.

 Responsibility must be assigned: One particular individual must be
assigned with the task of maintaining the glossary and ensuring con-
sistency and up-to-dateness. The necessary resources to accomplish
this task must be included in the project plan.

 The glossary must be maintained over the course of the project: In order
to ensure that the glossary is consistent and up-to-date, it must be
maintained over the course of the entire project by the person that was
assigned this responsibility.

 The glossary must be commonly accessible: The term definitions must be
available for all involved personnel. This is the only way a common
understanding of the terms can be ensured.

 Using the glossary must be obligatory: All involved personnel must be
obliged to exclusively use the terms and term definitions as they have
been defined in the glossary.

 The glossary should contain the sources of the terms: In order to be able
to resolve questions and problems at any time during the course of the
project, it must be possible to determine the source of a term.

 The stakeholders should agree upon the glossary: Only stakeholders can
reliably validate the operational definitions for their respective project
context. Each definition should be validated by the stakeholders or
their representatives. In addition, the individual term definitions in the
glossary should be explicitly approved. This approval signals that the
respective term is correct and its use is obligatory.

 The entries in the glossary should have a consistent structure: All
entries in the glossary must be structured in the same way. In order
to support a consistent documentation, it is advisable to use a tem-
plate for glossary definitions. In addition to the definition and the

4.8 Summary 47

meaning of a term, the template should specify possible synonyms
and homonyms.

To reduce the effort of aligning terms with one another, it is advisable to
start with the creation of the glossary early on in the project.

4.8 Summary

The documentation of requirements plays a central role in requirements
engineering. As the amount of requirements is often vast, it is very impor-
tant to clearly structure the requirements so that personnel not involved
with the project also understand them. Also, looking up and changing
requirements is simplified and accelerated in this way. This makes meeting
the quality criteria for requirements documents much easier. Using
customized documentation structures has proven to be suitable for that
purpose. These are completed by inserting project-specific requirements
written in natural language in conjunction with conceptual requirements
models.

This page intentionally left blank

5 Documenting Requirements in Natural Language 49

5 Documenting Requirements
in Natural Language

Elicited requirements for the system to be developed are frequently docu-
mented using natural language. Natural language has the advantage that it
(allegedly) does not require preparation time in order to be read and
understood by stakeholders [Robertson and Robertson 2006]. In addition,
natural language is universal in the sense that it can be used to describe any
circumstances. However, there are some problems associated with the use
of natural language for requirements documentation.

5.1 Effects of Natural Language

Subjective perceptionAs natural language is inherently ambiguous and statements in natural lan-
guage can often be interpreted in multiple ways, it is necessary to place spe-
cial emphasis on potential ambiguities in such statements to satisfy the cri-
terion of unambiguousness. Requirements are defined and read by people
with different knowledge, different social backgrounds, and different expe-
riences. The diversity among the people involved in the development pro-
cesses may lead to misunderstanding as humans interpret information dif-
ferently (they form a so-called “deep structure” in their mind) and thus
construe it differently as well (e.g., as a requirement). During such a process
(i.e., perception and representation of information), so-called “transforma-
tional effects” occur that show different characteristics with every human but
may occur in all humans [Bandler and Grinder 1975, Bandler 1994].

50 5 Documenting Requirements in Natural Language

Figure 5-1 Transformational effects in perception and representation of knowledge

Transformational effects The fact that transformational effects adhere to certain rules can be
exploited by the requirements engineer to elicit the deep structure
(i.e., what the author of a requirement really meant) from its surface struc-
ture (i.e., the requirements). The following list includes the five transfor-
mational processes that are most relevant for requirements engineering:

 Nominalization
 Nouns without reference index
 Universal quantifiers
 Incompletely specified conditions
 Incompletely specified process verbs

5.1.1 Nominalization

Reduction of processes By means of nominalization, a (sometimes long-lasting) process is con-
verted into a (singular) event. All information necessary to accurately
describe the process is thereby lost. The process word transmit turns into
the noun transmission. Other typical examples of nominalization are the
terms input, booking, and acceptance.

Personal perception Personal knowledge

Reality Language representation
of knowledge

Defects? Defects?

Perception
Knowledge

representation

Example 5-1: Nominalization
“In case of a system crash, a restart of the system shall be performed.”
The terms system crash and restart each describe a process that ought to be
analyzed more precisely.

5.1 Effects of Natural Language 51

Define processes completely.Per se, there are no arguments against the use of nominalized terms to
describe complex processes. However, the process should be explicitly
defined by the term used. The definition of a nominalized term must not
allow for any leeway in the interpretation of the processes and must
precisely depict the process, including any exceptions that may occur as
well as all input and output parameters. It is therefore not necessary to
avoid nominalizations, but they should only be used if the underlying pro-
cess is completely defined. During the linguistic analysis of a text, all nom-
inalizations ought to be examined to determine whether they have been
defined in sufficient detail in another part of the requirements document
and whether they are clear for all stakeholders. If this is not the case,
another requirement or a glossary entry must be created.

5.1.2 Nouns without Reference Index

Nouns with missing

reference

As with process verbs, nouns are frequently incompletely specified. Lin-
guists call this a missing or inadequate index of reference. Examples of
terms that contain incompletely specified nouns are the user, the controller,
the system, the message, the data, or the function.

The following questions arise: What data exactly? Which user exactly?
Which terminal exactly? If this information is amended, the requirement
might thus read as follows:

5.1.3 Universal Quantifiers

Specify amounts and

frequencies.

Universal quantifiers specify amounts or frequencies. They group a set of
objects and make a statement about the behavior of this set. When using
universal quantifiers, there is the risk that the specified behavior or
property does not apply to all objects within the specified set. Stakeholders
tend to group objects together, even though some of these objects might

Example 5-2: Nouns without reference indices
The data shall be displayed to the user on the terminal.

Example 5-3: Nouns with added reference indices
The system shall display the billing data to the registered user on the terminal
she is logged in to.

52 5 Documenting Requirements in Natural Language

be special cases or exceptions, where the behavior specified does not apply
to all the objects of a group.

Identify universal quantifiers. It must be verified whether the specified behavior really applies to all
objects summarized through the quantifiers. Universal quantifiers can be
easily identified through trigger words such as never, always, no, none,
every, all, some, or nothing.

In this case, the following question must be asked: Really in every sub-
menu? Really all data sets?

5.1.4 Incompletely Specified Conditions

Identify and clarify

 condition structures.

Incompletely specified conditions are another indicator of a potential loss
of information. Requirements that contain conditions specify the behavior
that must occur when the condition is met. In addition, they must specify
what behavior must occur if the condition is not met (the part that is often
missing). Especially in complex conditional structures, decision tables can
be invaluable tools to find unspecified variants of conditions or actions.
Trigger words are, for instance, if … then, in case, whether, and depending
on.

At least one aspect remains unspecified in the example above: Which bev-
erages shall be offered to a guest that is 20 years or younger? Clarifying this
question may lead to extending the requirement as follows:

Example 5-4: Universal quantifiers
The system shall show all data sets in every submenu.

Example 5-5: Incompletely specified condition
The restaurant system shall offer all beverages to a registered guest over the age
of 20 years.

Example 5-6: More completely specified condition
The restaurant system shall offer
All alcohol-free beverages to any registered user younger than 21 years
All beverages including all alcoholic beverages to any user over the age of 20

5.2 Requirement Construction using Templates 53

5.1.5 Incompletely Specified Process Verbs

Completing

process words

Some process verbs require more than one noun to be considered com-
pletely specified. The verb transmit, for instance, requires at least three
supplements to be considered complete: what is being transmitted, from
where it is being transmitted, and to where it is being transmitted. The feel
for language (also referred to as “Sprachgefühl”) is a valuable tool to help
gauge which process word must be supplemented in order to be considered
complete. Similarly, adjectives and adverbs may need to be supplemented
as well. While the effect is much less frequent with these types of words
than with verbs, it is often hard to recognize.

Avoid passive voice.The use of incompletely specified process words can mostly be
avoided or kept to a minimum if requirements are formulated using the
active voice rather than the passive voice.

Use active voice.In this requirement using passive voice, it is unclear who enters the login
data. It is also unclear where and how this is done. If this requirement is
reformulated using the active voice, at least the agent or person responsible
must be included.

The same requirement using active voice might be as follows:

5.2 Requirement Construction using Templates

Quality by means of

requirements templates

and glossaries

Requirements templates provide a simple and easily understandable
approach to reduce language effects when documenting requirements.
Templates support the author in achieving high quality and syntactic
unambiguousness in optimal time and at low costs.

Example 5-7: Requirement using the passive voice
To log a user in, the login data is entered.

Example 5-8: Requirement using active voice
The system must allow the user to enter his user name and password using the
keyboard of the terminal.

Definition 5-1: Requirements Template
A requirements template is a blueprint for the syntactic structure of individual
requirements.

54 5 Documenting Requirements in Natural Language

In order to achieve lexical clearness in the documentation as well, it is wise
to use requirements templates in conjunction with project glossaries (see
section 4.7).

The following is a step-by-step description of the correct application
of requirements templates.

Step 1: Determine the Legal Obligation

How legally binding

 is a requirement?

In the beginning, you should determine the degree of legal obligation for
a requirement. Usually, one distinguishes between legally obligatory
requirements, urgently recommended requirements, future requirements,
and desirable requirements. To achieve this within a requirement, you can
use the modal verbs shall, should, will, and may. Alternatively, the legal
obligation of a requirement can be documented by a specific requirements
attribute.

Step 2: The Requirement Core

Determine the

 required process.

The core of each requirement is the functionality that it specifies
(e.g., print, save, paste, or calculate). This functionality is referred to as the
process. Processes are activities and may only be described using verbs. The
process that depicts the system behavior by means of a requirement is to
be described in step 2.

Since process words determine semantics, they must be defined as
clearly as possible and be used as consistently as possible (see section 4.7).

Step 3: Characterize the Activity of a System

For functional requirements, the system activity can be classified as one of
three relevant types:

 Autonomous system activity: The system performs the process autono-
mously.

 User interaction: The system provides the process as a service for the
user.

 Interface requirement: The system performs a process depending on a
third party (e.g., another system). The system is passive and waits for
an external event.

5.2 Requirement Construction using Templates 55

In step 3, any kind of system activity that is specified by a requirement of
the system is documented using exactly one of three requirements tem-
plates. These requirements templates are described in more detail in the
following sections.

After performing steps 1 through 3, the structure of the requirement
has been developed (see figure 5-2). The words that are written in angle
brackets must be replaced accordingly.

Figure 5-2 The core of a requirement and its legal obligation

Type 1:

Autonomous system activity

The first template type is used when requirements are constructed that
depict system activities that are performed autonomously. The user does
not interact with the activity. We define the following requirements
template:

<Process verb> depicts a process verb as described in step 2, e.g., print for
print functionality or calculate for some calculation that is performed by
the system.

Type 2:

User interaction

If the system provides a functionality to a user (for example, by means
of an input interface), or the system directly interacts with a user, require-
ments are constructed using template type 2:

The user that interacts with the system is integrated into the requirement
through <whom?>.

Type 3:

Interface requirement

If the system performs an activity and is dependent on neighboring
systems, the third template type is to be used. Whenever messages or data

THE SYSTEM
<system name>

SHALL

WILL

PROVIDE <whom?> WITH
THE ABILITY TO <process

verb>

BE ABLE TO
<process verb>

<process verb>

SHOULD

MAY

THE SYSTEM SHALL/SHOULD/WILL/MAY <process verb>

THE SYSTEM SHALL/SHOULD/WILL/MAY provide <whom?> with the ability to
<process verb>

56 5 Documenting Requirements in Natural Language

are received from a neighboring system, the system must react by execut-
ing specific behavior. The following template has proven itself as well
suited:

Step 4: Insert Objects

Complete

process verbs.

Some process verbs require one or more additional objects to be consid-
ered complete (see section 5.1.5). In step 4, potentially missing objects and
supplements of objects (adverbials) are identified and added to the
requirement. For instance, the requirements template for the process verb
print is amended by the information of what is being printed and where it
is printed. The amendment can be seen in figure 5-3.

Figure 5-3 Principle of a complete requirements template without conditions

Step 5: Determine Logical and Temporal Conditions

Add conditions. Typically, requirements do not document continuous functionalities, but
functionalities that are performed or provided only under certain logical
or temporal constraints. In order to easily differentiate between logical and
temporal conditions, we choose the temporal conjunction as soon as for
temporal conditions and the conditional conjunction if for logical condi-
tions. The conjunction when makes not clear whether a temporal or a log-
ical condition is described and should therefore be avoided. In step 5, qual-
ity requirements that describe the conditions under which a requirement
is fulfilled are added to the beginning of a requirement as a subordinate
clause.

THE SYSTEM SHALL/SHOULD/WILL/MAY be able to <process verb>

THE SYSTEM
<system name>

SHALL

WILL

PROVIDE <whom?> WITH
THE ABILITY TO <process

verb>

BE ABLE TO
<process verb>

<process verb>

SHOULD

MAY

<additional details
about the object>

<object>

5.3 Summary 57

Figure 5-4 The complete requirements template with conditions

Requirements templates should be used when project members show
interest in a formal development process. Style and creativity are harshly
limited when requirements templates are used. Experience shows it is best
not to make the use of requirements templates compulsory, but to offer
training on the method and treat it as a supplemental tool.

5.3 Summary

System requirements are frequently documented using natural language.
Typical advantages that arise from natural language requirements are good
readability of requirements, the fact that natural language can be univer-
sally applied to document any circumstance, and the fact that no prior
knowledge is necessary regarding the notation. On the other hand, there
are a number of disadvantages that arise from the fact that natural
language requirements are not formalized, e.g., ambiguity. Since project
members interpret requirements differently due to differences in their
respective knowledge, social background, and experiences, using natural
language for requirements documentation often leads to misunderstand-
ing in practice. These disadvantages can be minimized during require-
ments documentation—for example, by making use of requirements
templates and by checking the requirements against linguistic effects.

THE SYSTEM
<system name>

SHALL

WILL

PROVIDE <whom?> WITH
THE ABILITY TO <process

verb>

BE ABLE TO
<process verb>

<process verb>

SHOULD

MAY

<additional details
about the object>

<object>
[When? Under what

conditions?]

This page intentionally left blank

6 Model-Based Requirements Documentation 59

6 Model-Based Requirements
Documentation

During model-based documentation of requirements in requirements
engineering, three types of requirements are documented independently
and used in conjunction:

 Goals describe intentions of stakeholders or groups of stakeholders.
Goals can potentially conflict with one another.

 Use cases and scenarios document exemplary sequences of system
usage. Scenarios are grouped together in use cases.

 System requirements (generally referred to as requirements) describe
detailed functions and qualities that the system to be developed shall
implement or possess. In addition, system requirements provide
complete and precise information to serve as input for subsequent
development steps.

In practice, requirements are often documented using natural language.
However, it can be observed that requirements are increasingly often
documented using models. Requirement models are used in addition to
natural language requirements documentation and partly replace require-
ments that would have been documented using natural language.

6.1 The Term Model

Models as abstracting

images from reality

A model is an image that abstracts from reality or that serves as a abstracted
representation of reality that is to be created. Modeling may be applied to
material or immaterial objects of an existing reality or a reality to be devel-
oped. Similarly to [Stachowiak 1973], we define the term model as follows:

Definition 6-1: Model
A model is an abstract representation of an existing reality or a reality to be
created.

60 6 Model-Based Requirements Documentation

6.1.1 Properties of Models

Every model possesses three important properties that are also the preva-
lent advantages of models:

 Mapping of reality: Every model maps certain aspects of the observed
reality onto its modeling elements. Model creation can be descriptive
and prescriptive in nature. In the case of descriptive model construc-
tion, the resulting model documents the existing reality. In the case of
prescriptive model construction, the resulting model serves as a proto-
type for a fictitious reality. Depending on the perspective, models
themselves can be both descriptive and prescriptive at the same time.
For example, a model is descriptive with regard to the conception of
the stakeholder who is constructing it and prescriptive with regard to
the system to be developed.

 Reduction of reality: Models reduce the mapped reality. It is common to
differentiate between selection and compression. During selection,
only particular aspects that are part of the universe of discourse of the
system are modeled. In contrast, aspects of the subject-matter of the
system are summarized during compression.

 Pragmatic property: A model is always constructed for a special pur-
pose and within a special context. The purpose of the model may affect
the construction and the purpose-driven reduction of reality within
the models. Ideally, a model contains only the information necessary
for the respective purpose.

Typically, graphical models are used in requirements engineering. Their
modeling elements are conceptualizations of material or immaterial
objects, or people, in reality.

6.1.2 Modeling Languages

Syntax and semantics In order to construct conceptual models, specific modeling languages are
used. A modeling language is defined by its syntax and semantics:

 Syntax: The syntax of a modeling language defines the modeling ele-
ments to be used and specifies the valid combinations thereof.

 Semantics: The semantics defines the meaning of the individual
modeling elements and serves therefore as a foundation for the inter-
pretation of the models of the respective modeling language.

6.1 The Term Model 61

Different degrees of

formalization

Conceptual modeling languages can be classified as formal, informal, and
semiformal, depending on the degree of formalization. The degree of for-
malization of a modeling language depends on the magnitude of formal
definitions (e.g., mathematical calculus) that define the syntax and seman-
tics.

6.1.3 Requirements Models

Conceptual models that document the requirements of a system are called
requirements models. The Unified Modeling Language (UML) is fre-
quently used to construct requirements models [OMG 2007]. UML has
developed into the quasi-standard for model-based construction of soft-
ware systems. It consists of a set of partially complementary modeling lan-
guages that are particularly used in requirements engineering to model the
requirements of a system from different perspectives. Extensive examples
of modeling using UML can be found in [Rupp et al. 2007], for instance.

Requirements models vs.

design models

A considerable difference between the conventional use of conceptual
models in system development and model usage for requirements docu-
mentation is that conventional models document solutions chosen during
system development. Requirements models, on the other hand, depict
specific aspects of the underlying problem.

6.1.4 Advantages of Requirements Models

Increased understandabilityResearch on human cognition has shown that information can be per-
ceived and memorized faster and better when depicted graphically as
opposed to making use of natural language. (e.g., [Glass and Holyoak
1986], [Kosslyn 1988], and [Mietzel 1998]. These findings can be applied
to the use of requirements models in particular.

Support perspectives of

documentation.

An additional advantage when using requirements models is that in
contrast to natural language, the modeling languages used have a strictly
defined focus. An example is the different kinds of maps that can be drawn
for a city. Depending on what aspect of the city is being mapped (mod-
eled), different types of abstraction can be used to construct the map. For
instance, a subway map will show underground subway stations and sub-
way lines. However, the length of each connection on the map may not
accurately depict the distance between the stations but may estimate the
transit time instead. In contrast to a subway map of a city, a road map of a
city accurately depicts the streets, paths, and locations of sights. Both

62 6 Model-Based Requirements Documentation

models depict the same reality, but with a different focus that defines pur-
pose-driven abstractions.

Requirements models also have the advantage that the different types
of modeling elements within the same modeling language dictate the
method of abstraction as well as what is being abstracted and what is not.

6.1.5 Combined Use of Models and Natural Language

Using both natural language and requirements models in combination
allows the advantages of both documentation techniques to be exploited
while minimizing their disadvantages. For example, natural language
requirements can be summarized and their interrelations depicted using
models. On the other hand, natural language can help enrich requirements
models and modeling elements with additional information.

6.2 Goal Models

Many methods in requirements engineering are based on the explicit con-
sideration of stakeholders’ intentions by means of goals (e.g., [van
Lamsweerde et al. 1991] and [Yu 1997]). Ordinarily, the effort required to
explicitly consider goals during requirements engineering is minimal.
However, the positive impact on requirements engineering—if goals are
modeled—and on the quality and comprehensiveness of the requirements
is very high. Goals are a stakeholder’s (e.g., a person’s or an organization’s)
description of a characteristic property of the system to be developed or
the development project.

Natural-language-based and

model-based documentation

Goals are very well suited to refine the vision of the system. Refining
a goal is known as goal decomposition. Goals can be documented using
natural language (e.g., by means of predesigned templates) or using goal
models. A widely known and very common goal modeling technique is
the use of AND/OR trees. By means of AND/OR trees, hierarchical
decompositions can be documented. The type of refinement relation is
depicted by graphic representations of the branches. The direction of the
goal decomposition is not represented through branches but through the
top-down structure of the tree.

6.2 Goal Models 63

6.2.1 Goal Documentation Using AND/OR Trees

Using AND/OR trees, two types of decomposition relationships can be dis-
tinguished. Figure 6-1 schematically shows these types of decomposition
as well as their modeling elements.

Figure 6-1 Modeling of goal decomposition using AND/OR trees

AND-decomposition vs.

OR-decomposition

With regard to decomposition relations, one can differentiate between
AND-decomposition and OR-decomposition. In case of AND-decompo-
sition, every sub-goal must be fulfilled so that the super-goal (the root) is
fulfilled. In contrast, in OR-decomposition, it suffices if at least one sub-
goal is fulfilled so that the super-goal is met.

6.2.2 Example of AND/OR Trees

Figure 6-2 shows an AND/OR tree that documents the hierarchical
decomposition of the goal “Comfortable navigation to destination”.

Figure 6-2 Goal model in the form of an AND/OR tree

Easy-to-use Well-equipped

64 6 Model-Based Requirements Documentation

Modeling goals

 with AND/OR trees

As the goal model in figure 6-2 shows, the goal “comfortable navigation to
destination” is refined into the three sub-goals “dynamic route calculation
with respect to traffic congestion”, “comfortable destination input”, and
“comfortable route guidance” via AND-decomposition. This depicts that
all three sub-goals must be met to consider the super-goal fulfilled. The
sub-goal “dynamic route calculation with respect to traffic congestion” in
turn is refined by the two sub-goals “manual input of traffic conditions”
and “automatic update of traffic data”. The type of decomposition relation
depicts that only one of the two sub-goals must be met to consider the
super-goal met.

6.3 Use Cases

Use cases were first proposed in [Jacobson et al. 1992] as a method to
document the functionalities of a planned or existing system on the basis
of simple models. The use case approach is based on two concepts that are
used in conjunction with one another:

 Use case diagrams
 Use case specifications

6.3.1 UML Use Case Diagrams

Relations between use cases Use case diagrams in the UML [OMG 2007] (see section 4.2.3) are simple
models to schematically document the functions of a system from a user’s
perspective and to document the interrelations of the functions of a system
and the relations between these functions and their environment.

Modeling Elements of UML Use Case Diagrams

Figure 6-3 shows the most essential modeling elements of use case
diagrams, as defined in the Unified Modeling Language (UML) [OMG
2007].

6.3 Use Cases 65

Figure 6-3 Essential modeling elements of use case diagrams

 Use cases: Uses cases that are defined for the system are depicted
using oval shapes. These shapes contain the name of the use case.
Alternatively, the name can be written beneath the use case.

 Actors: Actors are outside the system boundary and represent people
or systems that interact with the system modeled. Actors are depicted
by a rectangle that receives the name of the actor and is tagged with
the stereotype “actor”. If the actor is a person, a stick figure may be
used. If the actor is a system, either a rectangle or a stick figure may be
used in conjunction with the stereotype “system”.

 System boundaries: System boundaries within a use case diagram
separate the parts of the use case that are part of the system from the
parts (people or systems) that are outside the system boundary.
Optionally, the name of the system may be denoted at the system
boundary in the diagram.

 Extend relation: An extend relation depicts that an interaction
sequence that belongs to use case A extends some interaction
sequence in use case B at a specified point. This is known as the
extension point. The extension is triggered by the condition defined.

 Include relation: An include relation from one use case to another use
case depicts that the interaction sequence of the first use case includes
the interaction sequence of the other use case.

Objects

System boundary

Communication
between actor
and use case

Use Case
23

[name]

Use Case
B

Use Case
A

«extend»

Use Case
A

Use Case
B

«include»

Relations

[name]

[name]

Actor (person)

Actor
(alternative notation)

[name] Use case

extend include

«actor»
[name]

«system»

[Name]

Actor (system)

�

�

�

�

� �

66 6 Model-Based Requirements Documentation

 Relation between actors and use cases: If communication between a
use case and one or more actors takes place during the execution of
the use case, the communication must be annotated by means of a
communication relation between the respective actors and the use
case.

Example of UML Use Case Diagrams

Figure 6-4 shows an example of a use case diagram.

Figure 6-4 An example using modeling elements of use case diagrams

The model comprises the use cases “download traffic information”,
“retrieve current position”, and “input navigate to destination” elements.
The relations in figure 6-4 that are labeled by numbers are explained in
further detail below:

Include  The use case “navigate to destination” is related to the use cases
“input destination” and “retrieve current position” via an include
relation. The relationship depicts that the interaction steps defined in
the use cases “input destination” and “retrieve current position” are
contained in the use case “navigate to destination”.

Extend  The extend relation between the use cases “download traffic
information” and “navigate to destination” defines that the
interaction steps defined in the use case “download traffic
information” are included in the interaction steps of the use case

�

�

�

6.3 Use Cases 67

“navigate to destination” if a certain condition, such as “avoid
congestion”, is met. The extension point “avoid congestion” depicts
the step in the use case “navigate to destination” at which the
additional interaction steps are being executed.

GeneralizationUML also provides a generalization relation between use cases or actors.
In this case, the specializing use cases or actors inherit the properties of the
generalizing use case or actor (e.g., [Rumbaugh et al. 2005]). For instance,
the actors “service mechanic” and “customer service representative” can be
generalized as the actor “employee”. The generalizing actor would carry all
aspects that the actors “service mechanic” and “customer service repre-
sentative” have in common (e.g., employee ID).

6.3.2 Use Case Specifications

Use case diagrams show the system’s relevant functions from a user’s per-
spective and specific relationships between the functions of the system or
between functions of the system and aspects in the system’s context. With
the exception of a use case’s name and its relationships, use cases diagrams
do not document any information about the individual use cases such as
the systematic interaction between a use case and an actor. This informa-
tion is documented textually by means of adequate templates in conjunc-
tion with use case diagrams.

Reference templates for the

documentation of use cases

Pertinent literature proposes different templates for textual specifica-
tion of use cases (e.g., [Cockburn 2001]). These templates define types of
information that should be documented for a use case and suggest an
appropriate structure for the information. The template references there-
fore document experience-based knowledge regarding structured textual
documentation of use cases. In order to textually specify use cases, the
template in table 6-1 is suitable.

68 6 Model-Based Requirements Documentation

Table 6-1 Template for textual use case documentation

Rows of a use case template The template for the specification of use cases contains the following
attributes:

 Attributes for unique identification of use cases (rows 1 and 2)
 Management attributes (rows 3 through 7)
 Attribute for the description of the use case (row 8)
 Specific use case attributes, e.g., the trigger event (row 9), actors (row

10), pre- and post-conditions (rows 11 and 12), the result of the use

Template for Textual Use Case Documentation
Nr. Section Content / Explanation

1 Designation Unique designation of the use case.
2 Name Unique name of the use case.
3 Authors Names of the authors that were involved in this use

case description.
4 Priority Importance of the use case according to the applied

prioritization technique.
5 Criticality Criticality of the use case, e.g., with respect to how

much damage a failure of the use case may cause.
6 Source Designation of the source from which the use case

was elicited ([stakeholder | document | system]).
7 Person responsible The stakeholder who is responsible for this use case.
8 Description Brief description of the use case.
9 Trigger event Name of the event that triggers this use case.

10 Actors List of all actors that are involved in this use case.
11 Pre-conditions List with all necessary constraints that must be met

before the use case can begin execution.
12 Post-conditions List of all states the system can be in immediately

after the execution of the main scenario.
13 Result Description of the results that are produced during

use case execution.
14 Main scenario Description of the main scenario of the use case.
15 Alternative scenarios Description of the alternative scenarios of the use

case or list of the trigger events of alternative
scenarios. Often, post-conditions different than
those described in (12) may hold.

16 Exception scenarios Description of the exception scenarios of the use
case or list of the trigger events of exception
scenarios. Often, post-conditions different than
those described in (12) may hold.

17 Qualities Cross references to quality requirements.

6.3 Use Cases 69

case (row 13), the main scenario (row 14), alternative and exception
scenarios (rows 15 and 16), and cross references to quality require-
ments (row 17)

Table 6-2 shows the specification of the use case “navigate to destination”
by means of the reference template suggested in table 6-1.

Table 6-2 Example of template-based documentation of a use case

Section Content
Designation UC-12-37
Name Navigate to destination
Authors John Smith, Sandra Miller
Priority Importance for system success: high

Technological risk: high
Criticality High
Source C. Warner (domain expert for navigation systems)
Responsible J. Smith
Description The driver of the vehicle types the name of the destination. The

navigation system guides the driver to the desired destination.
Trigger event The driver wishes to navigate to his destination.
Actors Driver, traffic information server, GPS satellite system
Pre-condition The navigation system is activated.
Post-condition The driver has reached his destination.
Result Route guidance to the destination
Main scenario 1. The navigation system asks for the desired destination.

2. The driver enters the desired destination.
3. The navigation system pinpoints the destination in its maps.
4. On the basis of the current position and the desired

destination, the navigation system calculates a suitable route.
5. The navigation system compiles a list of waypoints.
6. The navigation system shows a map of the current position

and shows the route to the next waypoint.
7. When the last waypoint is reached, the navigation system

shows “destination reached” on the screen.
Alternative
scenario

4a.Calculation of the route must honor traffic information and
avoid traffic congestions.
4a1. The navigation system queries the server for updated

traffic information.
4a2. The navigation system calculates a route that does not

contain any traffic congestions.
Exception
scenarios

Trigger event: The navigation system does not receive a GPS
signal from the GPS satellite system.

Qualities  QR.04 (reaction time upon user input)
 QR.15 (operating comfort)
(QR = quality requirements)

70 6 Model-Based Requirements Documentation

6.4 Three Perspectives on the Requirements

Separately documenting the

perspectives

When documenting requirements on the basis of models, one typically
distinguishes three types of perspectives: data, function, and behavior (see
section 4.2.1). Each perspective is documented separately, using suitable
conceptual modeling languages [Davis 1993], [Pohl et al. 2005]:

 Data perspective: In this perspective, the structures of input and output
data as well as static-structural aspects of the usage and dependency
relationships of the system in the system context are documented.

 Functional perspective: This perspective documents which information
of the system context is being manipulated by the system to be devel-
oped and which data is being transmitted to the system context by the
system.

 Behavioral perspective: The embedding of the system in the system con-
text is documented on the basis of states in this perspective. This is
done, for instance, by documenting the reaction of the system to events
within the system context, documenting the conditions that trigger a
state change, or documenting the effects that the system has on its envi-
ronment.

Examples of the three

perspectives

Figure 6-5 illustrates the three perspectives on functional requirements
and gives an example of a suitable modeling language for each perspective
that can be used to document the requirements. This way, requirements
aspects that pertain to the static structure can be modeled using UML class
diagrams, for instance. Requirements in the functional perspective can be
modeled using UML activity diagrams and requirements in the behavioral
perspective can be modeled using statecharts (see sections 6.6 and 6.7).

Perspectives are not disjoint. Certain aspects of the models of a particular perspective can also be
found in other perspectives. The three perspectives are therefore not dis-
joint. For example, the data, whose static structure is defined in a UML
class diagram can potentially also be found in the functional perspective
because it depicts the inputs and outputs of actions in a UML activity dia-
gram. As the three perspectives are not disjoint, the models can be recip-
rocally checked for completeness and consistency with regard to the infor-
mation that is modeled at the intersections.

6.5 Requirements Modeling in the Data Perspective 71

Figure 6-5 Three perspectives on requirements

6.5 Requirements Modeling in the
Data Perspective

Several different modeling languages are well suited to modeling structural
aspects of requirements in the data perspective. Commonly, entity-rela-
tionship models, extensions of the traditional entity-relationship model
according to Chen [Chen 1976.], and, increasingly, class diagrams of the
UML (e.g., [Rumbaugh et al. 2005]) are used as requirements models of the
data perspective.

6.5.1 Entity-Relationship Diagrams

The traditional entity-

relationship model

Traditionally, entity-relationship diagrams are used for modeling the data
perspective because they display the structure of an object of an universe
of discourse by means of entity types and relation types [Chen 1976].

Extensions of the entity-

relationship model

A number of extensions for the entity-relationship model have been
suggested. These extensions mainly concern the generalization/specializa-
tion relations, inheritance mechanisms, and roles of entities and extend
the model by a (min, max)-notation for cardinalities of relations.

Behavioral perspective

Requirements

e.g. statecharts

e.g. UML class diagrams e.g. UML activity diagrams

72 6 Model-Based Requirements Documentation

Modeling Elements of Entity-Relationship Diagrams

According to [Chen 1976], the modeling language used to construct entity-
relationship diagrams includes the modeling elements depicted in figure 6-6.

Figure 6-6 Important modeling elements of entity-relationship diagrams according to
Chen

Classification: abstraction

from concrete objects

Entity types define a set of entities within the universe of discourse (that is,
objects with the same properties, such as people or items). An entity type
(often mistakenly referred to as an entity) abstracts from the concrete char-
acteristics of these entities and therefore classifies a set in the sense of the
classification of uniform entities. For instance, the entity type “pilot” clas-
sifies all people within the universe of discourse that have the characteristic
of holding a piloting license.

Abstraction from concrete

relationships

A relation type abstracts from a concrete characteristic of a relation-
ship and of entities that are in relation to one another. A relation type clas-
sifies the set of uniform relations between entity types within the universe
of discourse. For example the relation type “executes” can be defined
between the two entity types “pilot” and “flight” to represent concrete
“executes”-relations between concrete pilots and concrete flights. If a con-
crete “is_passenger” relation is defined between a concrete passenger
“John Locke”4 and a concrete flight with the flight number “OA 815”5,
then this relation depicts that “John Locke” is a passenger of the flight with
the flight number “OA 815”.

Properties of entity types

and relation types

An attribute can be defined for entity types as well as relation types.
An attribute defines the properties of an entity type or a relation type. Pos-
sible attributes for the entity type “passenger” could be “family name”,
“given name”, “passport number”, and “reserved seat”, for instance.

Sketch level

vs. instance level

An entity-relationship model documents the structure of a universe of
discourse by means of entity types (i.e., classes of uniform entities) and

4. More precisely, there is an entity that is an instance of the entity type “passenger” that pos-
sesses a unique identity and has the attribute value “John Locke” for the attribute “name”.

5. More precisely, there is an entity that is an instance of the entity type “flight” that pos-
sesses a unique identity and has the attribute value “OA 815” for the attribute “flight
number”.

6.5 Requirements Modeling in the Data Perspective 73

relations (i.e., classes of uniform relationships). An entity-relationship
model is defined on the modeling level and defines the set of all valid
instances on the instance level.

Number

of relation instances

The cardinality of a (binary) relation defines the number of relation
instances that an entity may participate in [Elmasri and Navathe 2006]. If
no cardinalities are annotated for a specific relation type, it is assumed that
an arbitrary number of entities (in other words, at least zero entities) may
participate in such a relation. Using cardinalities for relations therefore
limits the number of instances that are principally possible in an entity-
relationship diagram.

Example of an Entity-Relationship Diagram

The entity-relationship model shown in figure 6-7 shows four entity types
(i.e., classes of entities) and three relation types (i.e., classes of relation-
ships). The individual entity types possess attributes that describe specific
properties of the associated entities. For example, the entity type “traffic
jam information” has the attributes “road”, “start”, and “length”, which
depict the road on which a traffic jam is currently present, the GPS coor-
dinates of the starting point of the jam, and the length of the jam. The rela-
tion type “queries” between the entity types “navigation device” and “traffic
jam information” means that on the instance level, a relationship between
a concrete navigation device and the information on zero or more concrete
traffic jams exists. The cardinalities of the entity types with regard to the
relation type “queries” means that a concrete navigation device can query
information on an arbitrary amount (“N”) of traffic jams. In the other
direction, any traffic jam information can be queried by an arbitrary num-
ber (“M”) of navigation devices.

Figure 6-7 Entity-relationship diagram (data model) according to Chen

Ø

Ø A

74 6 Model-Based Requirements Documentation

6.5.2 UML Class Diagrams

Static perspective: data/

structure

Class diagrams of the UML can be used to model the data perspective of
requirements of a system to be developed as well. A class diagram consists
of a set of classes and associations between classes. Classes and associations
in UML class diagrams are similar to entity types and relation types in
entity-relationship diagrams. Class models possess additional modeling
elements (e.g., that allow for the specification of valid operations on the
instances of a class) and thus have a greater power of description.6

Figure 6-8 Important modeling elements of class diagrams of UML

Modeling Elements of Class Diagrams

Figure 6-8 shows important modeling elements of class diagrams of the
UML as well as a number of modeling examples.

Classes A class is depicted by a rectangle that is separated into sections (also
called compartments). In the upper section, attributes are depicted that are
described in more detail by the instances of the class. In the lower sections,
all operations that can be performed on the instances of the class are listed.
Depending on the modeling goal, i.e., depending on the purpose of the

6. A comprehensive overview of the different modelling elements of the UML can be
found e.g., in [OMG 2007].

Person

Name
Birth date

owns 0..*1
Vehicle

Vehicle ID
Year of cons.

Multiplicities

owner owned

Roles

Vehicle

Vehicle ID

Car
#Seats

Truck
Payload

[Name]

Classes

Attributes Association

[Name]

1..*

Multiplicities
Generalization

Aggregation

Composition

Whole

Part

Whole

Part Part

Modeling elements

Modeling examples

0..1

m |N+

m

n..m

n |N Methods

6.5 Requirements Modeling in the Data Perspective 75

model, the compartments for attributes and/or methods can also be hid-
den or left out entirely.

Associations, multiplicities,

and roles

Associations between classes are depicted by edges. Associations can
optionally be given a name. In addition, multiplicities can be annotated at
each end of an association. Multiplicities are statements about the instance
level of a class and depict how many instances of a class may be associated
in a particular way with a defined number of instances of another class. By
annotating optional roles at one or both ends of an association, the mean-
ing of the instances of a class with regard to the association can the further
refined.

Aggregation and

composition

Aggregations and compositions are specific types of associations. Both
describe a relationship between a whole and its constituents. A composi-
tion documents a stronger binding than an aggregation in that a constitu-
ent in a composition cannot exist without its whole. In class models of the
UML, an aggregation is depicted as an empty diamond and a composition
is depicted as a filled diamond.

GeneralizationMoreover, in class diagrams, generalizations between classes can be
documented. A generalization between classes of the UML is a relation-
ship between a more specific class (the sub-type) and a more general class
(the super-type). The sub-type in a generalization relation inherits all
properties of the super-type and can adapt and/or extend these.

Example of a UML Class Diagram

The class diagram in figure 6-9 comprises six classes that all have respec-
tive attributes. The associations between the classes are depicted by means
of edges. For example, an association with the name “calculates” exists
between the class “navigation device” and the class “route”. Taking into
account the multiplicities, this association depicts that a navigation sys-
tem can calculate an arbitrary amount (at least zero, as depicted by an
asterisk *) of routes. In return, every route can be calculated by an arbi-
trary amount (*) of navigation devices. A route is an aggregation of at
least one, but arbitrarily many (1..*) road segments, and every road seg-
ment belongs to an arbitrary amount (*) of routes. A road segment is
defined by a road name as well as start and end points. Figure 6-9 also
shows that “navigation device w/ congestion avoiding” is a specialization
of the generic type “navigation device”. The sub-type “navigation device
w/ congestion avoiding” inherits the properties (in this case, the attribute
“identification”) from its super-type “navigation device” and extends the

76 6 Model-Based Requirements Documentation

set of attributes by an attribute that specifies the threshold length of a
traffic congestion, which triggers a route recalculation.

Figure 6-9 Class diagram in UML notation

6.6 Requirements Modeling in the Functional
Perspective

The functional perspective of requirements deals with the transformation
of input data received from the environment into output data released into
the environment of the system. There are a number of different model-
based approaches that can be used to model the functional perspective of
requirements. The majority of these techniques is based on the structured
system analysis approaches of the 1970s and 1980s, such as the structured
analysis [DeMarco 1978, Weinberg 1978] or the essential system analysis
[McMenamin and Palmer 1988.].

6.6.1 Data Flow Diagrams

At the center of attention of modeling requirements from a functional per-
spective are diagrams that model the functionality of the respective system
by means of processes (functions), data stores, sources, and sinks in the
system environment as well as data flow. A commonly used type of
functional models are data flow diagrams, as suggested in the structured
analysis according to [DeMarco 1978]. Data flow models allow modeling
the system on different levels of abstraction.

6.6 Requirements Modeling in the Functional Perspective 77

Modeling Elements of Data Flow Diagrams

Figure 6-10 shows the modeling elements in data flow diagrams in the
notation suggested by [DeMarco 1978].

Figure 6-10 Important modeling elements of data flow diagrams according to DeMarco

Data manipulationProcesses depict the functions of a particular system necessary to transform
the data that flows into the system (information flow).7 A process con-
sumes the input data, processes this data, and outputs the result of the pro-
cessing in the form of output data. How the data is transformed is not
depicted in data flow diagrams.

Resting dataData stores are abstract concepts designed to depict persistent data.
Processes can access data in a data store in a read and write manner so that
the processes may access necessary input data or persistently store output
data.

Objects in the system

environment

Sources/sinks describe objects (like people, groups of people, depart-
ments, organizations, or systems) in the environment of the system that
exchange data with the system. Sources/sinks are aspects of the system
environment and cannot be altered during system development (see sec-
tion 2.1). Sources are aspects of the system environment that deliver data
to the system, while sinks receive data from the system.

Flowing dataA data flow describes data that is transported between processes, data
stores, and sources/sinks [Yourdon 1989]. In requirements models, a data
flow can model both the transport of material and immaterial objects, e.g.,
information flow or material flow. Typically, only the most important data
flows are modeled in data flow diagrams. Data flows that are not relevant
for the requirements of the system can be neglected.

Example of a Data Flow Diagram

System interfacesFigure 6-11 shows a simplified data flow diagram of a navigation system in
the notation suggested by DeMarco. The interfaces of the system to the

Data FlowProcess Source/SinkData Store

[Name] [Name][Name]
[Name]

7. In the structured analysis, the flow of data, information, documents, or material is
considered a data flow.

78 6 Model-Based Requirements Documentation

context are defined by the data flows to the sources “GPS satellite system”
and “traffic information server” as well as to the sink “driver”.

Process “calculate route” The functionality of the navigation system is separated into three dis-
tinct processes. Process one, named “calculate route”, receives up-to-date
traffic information via its interface to the source “traffic information
server” as well as data about the current location via its interface to the
source “GPS satellite system”. In addition, the process “calculate route” is
provided with the desired destination by the driver of the vehicle. The cal-
culated route is stored in the data store “route data”.

Process “determine next

waypoint”

Process two—“determine next waypoint”—accesses the data store and
retrieves data concerning the current route. The process determines the
next waypoint and outputs this information.

Process “recalculate route” Process three—“recalculate route”—plots a new course to the destina-
tion. In order to do so, it gathers traffic information from the source “traf-
fic information server” and, potentially, information about the current
location. The newly calculated course is stored in the data store “route
data”.

Figure 6-11 Data flow diagram in the notation suggested by DeMarco

6.6.2 Models of the Functional Perspective and Control Flow

In data flow diagrams, it cannot be seen which conditions trigger which
processes. Data flow diagrams merely depict data dependencies of the pro-
cesses in a system and document necessary input and generated output
data. Approaches used in structured system analysis, however, often offer
complementary behavioral descriptions and control flow descriptions.

Route data

Driver

Recalculate
routeDeviant location

Determine
next

waypoint

Calculate
route

Location data Traffic information server

GPS satellite system

6.6 Requirements Modeling in the Functional Perspective 79

This is achieved either by using distinct documentation forms, such as
mini-specifications in structured analysis, or by means of implicit language
extensions of data flow models. Language extensions offer the ability to
model additional aspects, e.g., the control flow between functions, as done
in SA/RT [Ward and Mellor 1985, Hatley and Pirbhai 1988].

6.6.3 UML Activity Diagrams

UML activity diagrams are well suited to model action sequences [OMG
2007]. Along with activity diagrams in UML, event-driven process chains
(EPC) can be used to model sequences of activities [Keller et al. 1992],
especially in information system development. UML activity diagrams
depict the control flow between activities or actions. In case of a sequential
progression of actions, a subsequent action is executed once every prece-
dent action terminates. Figure 6-12 shows important modeling elements of
activity diagrams in UML [OMG 2007].

Figure 6-12 Modeling elements of activity diagrams of the UML

Action nodesActivity diagrams are control flow graphs that consist of action nodes and
the control flow between these action nodes (i.e., the arrows in the control
flow graph depicting transitions). Action nodes execute an action. The
start and end nodes in activity diagrams have defined semantics. The start
node represents an event that initiates the execution of the activity dia-
gram. End nodes are special nodes that represent the termination of the
activity diagram.

Control flows, object flows,

responsibilities

Depicting alternative control flows in activity diagrams can be
achieved through the use of decision nodes. At decision nodes, conditions
that trigger alternative control flows are annotated. In addition, synchro-

Action/Activity

Start node

End node

Synchronization bar

Fork

Join

Control flow

Decision

Decision node

Merge of alternative
control flows

[Name]

[condition] Condition

[Name] Object flow

[Name]

Control flow
termination

Hierarchization

80 6 Model-Based Requirements Documentation

nization bars allow for concurrent execution of control flows. A special
type of control flows are object flows. By making use of activity partitions
(swimlanes), different activities can be documented as the responsibility
of specific actors.

Sequence Modeling using UML Activity Diagrams

The activity diagram in figure 6-13 documents the process “navigate to
destination”. Input and output data can be documented by modeling addi-
tional object flows along the edges. The data and object flows are special
types of control flows of the activity diagram. Every action is executed if
and only if previous actions have been carried out and all incoming object
flows are available. The action diagram in figure 6-13 also shows object
flows that are documented in addition to the actions and control flows.

Figure 6-13 Activity diagram in UML notation

Determine current
location

Calculate route

Output route

Route:
[calculated]

Destination:
[input]

Ask for destination

Object flow

Location:
[determined]

Query traffic
info

Traffic:
[queried]

[avoid congestion]

Concurrent execution
(Fork)

Concurrent execution
(Join)

Decision
(Branch)

Merge
(Unbranch)

Alternative
control flow

Action

[do not avoid
congestion]

Ask for desire to calculate
the route dynamically

Execution of a
different activity

6.6 Requirements Modeling in the Functional Perspective 81

The activity diagram above documents the sequence of actions necessary
for a navigation device to calculate a route. The model documents that
initially the desired destination is asked for and that the current location
is determined. These two actions happen concurrently, independent from
one another. The input destination (object flow: object  destination;
state input) and the determined location (object flow: object  loca-
tion; state  determined) are relayed. If the driver has opted to automati-
cally circumvent traffic congestions, the system queries for up-to-date
traffic information. Once the updated traffic information is received or if
the driver has not selected to circumvent traffic jams, the system calcu-
lates a route to the destination. The calculated route is output to the
driver.

Modeling sequences

of a use case

Activity diagrams are well suited to document the relationships and
execution conditions of main, alternative, and exception scenarios. Deci-
sion nodes represent branches in the control flow between the main sce-
nario and alternative and exception scenarios.

Control Flow of Main and Alternative Scenarios

The activity diagram in figure 6-14 shows the control flow of the main and
alternative scenario of the use case “navigate to destination” as docu-
mented in table 6-2. Alternative control flow branches begin at the
decision nodes that document the respective alternative- and exception
scenarios to a particular main scenario.

Main and alternative

scenarios

The activity diagram shows that initially, the action “start navigation”
is executed. After that, the actions “input destination” and “determine
GPS coordinates” are executed concurrently and independent from one
another. Once both actions have been executed, the system asks the
driver if he wishes the route to be calculated dynamically (action “ask for
desire to calculate the route dynamically”). If the driver does not request
the route to be calculated dynamically (selection “do not avoid conges-
tions”), no specific action is executed (see table 6-1  main scenario). If
the driver selects dynamic route calculation (selection “avoid conges-
tions”), updated traffic information is determined (action “query traffic
info”, see table 6-1  alternative scenario). After that, the route is calcu-
lated (action “calculate route”) and output to the driver (action “output
route”).

82 6 Model-Based Requirements Documentation

Figure 6-14 Documentation of the control flow of scenarios using UML activity diagrams

6.7 Requirements Modeling in the
Behavioral Perspective

Finite-state automata To model the dynamic behavior of a system, modeling approaches based
on automata theory are typically employed. The definition of a finite-state
automaton comprises a set of states and a set of transitions that, dependent
on the current state of the automaton, are performed given some event.

Mealy and Moore automata In the scope of system modeling, extensions of finite-state automata
are frequently used that are based on the concepts of so-called Mealy
[Mealy 1955] and Moore automata [Moore 1956], respectively. In Mealy
automata, the output of an automaton depends on the current state of the
automaton as well as on the input. In contrast, in Moore automata, the
output merely depends on the current state.

Start navigation

Determine
GPS coordinates

Calculate route

Query traffic info

Output route

[avoid congestions]

Input destination

[do not avoid congestions]

Ask for desire to calculate
the route dynamically

6.7 Requirements Modeling in the Behavioral Perspective 83

6.7.1 Statecharts

Statecharts =

 state machines

 + hierarchization

 + conditions

 + concurrency

Due to challenges that arise when using finite state automata in practice
(such as missing support for abstraction), the automata concept has been
developed into a technique of modeling the reactive behavior of a system.
A widely applied technique to model the behavior of a system is the use
of statecharts [Harel 1987]. Statecharts are a type of automata that is based
on finite-state automata but are extended to support hierarchization of
states to document conditions of state transitions and to model concurrent
behavior. Figure 6-15 shows the modeling elements of statecharts in the
notation suggested by Harel [Harel 1987].

Figure 6-15 Modeling elements of statecharts

StateA state defines a period of time in which the system shows a specific behav-
ior and waits for a particular event to occur in order to perform a defined
transition.

Transition with condition

and activity

A transition is triggered by a particular event once it occurs in a spe-
cific state. A transition describes the change from one state to the next.
The change of states can additionally be dependent on some condition.
The system can perform particular activities if it is in a particular state
(typical for Moore automata) or if it performs a transition to another state
(typical for Mealy automata). These activities can be directed toward the
system itself or the environment of the system.

Hierarchization and

abstraction

Statecharts allow for the hierarchical refinement of states that in turn
represent automata. The initial state is referred to as super state and is
defined by a number of refining states. Hierarchization allows abstracting
from the irrelevant details of a state by—depending on the purpose of the
model—only regarding and/or modeling the super state rather than the
entire sub automaton that defines the super state. The detailed behavior of
the system can, if necessary, be refined by defining the respective partial
automata.

ConcurrencyAlong with hierarchical decomposition of a state into refining autom-
ata, a state can be decomposed into several concurrent automata. The con-
current automata can be synchronized by means of transition conditions

TransitionState

Initial state[Name]

Final state

Event [condition] / activity

Hierarchization

[Name]

Concurrent states

Automaton 1 Automaton 2

Sub state
Super stateSpecial state

84 6 Model-Based Requirements Documentation

(e.g., “if automaton A is in state 4”). Figure 6-16 shows a behavior model
for a navigation device of a vehicle by means of a statechart. The naviga-
tion device is initially in the state “navigation device inactive”.

Figure 6-16 Simplified statechart of a vehicular navigation device

Transition into super state By turning on the navigation device (event: “navigation device activated”),
the system transitions into the super state “navigation device active” (more
precisely, the system transitions into the initial state “no GPS signal” of the
super state “navigation device active”). The super state “navigation device
active” is refined by a partial automaton that consists of two states. For
example, if a GPS signal is received in the state “navigation device active:
no GPS signal”8. the system transitions into the state “navigation device
active: GPS signal” and issues a notification. If the device is deactivated
while in the state “navigation device active” (event: “navigation device deac-
tivated”), the system transitions into the state “navigation device inactive”.

6.7.2 UML State Diagrams

Modeling reactive behavior

 of a system using UML

In order to model reactive system behavior, Unified Modeling Language
(UML) [OMG 2007] offers so-called state machines that are essentially
based on statecharts. Figure 6-17 shows the most important modeling ele-
ments of UML state diagrams. The notation of the modeling elements of
UML state diagrams has largely been adopted from statecharts. However,
UML 2 extends the modeling elements of statecharts, e.g., by the ability to
define explicit entry and exit points of hierarchical states [OMG 2007].

8. For unique identification, a state that is part of a super state is referenced by “super state:
state”. The state “no GPS signal” in the super state “navigation device active” is therefore
referenced as “navigation device active: no GPS signal”.

6.7 Requirements Modeling in the Behavioral Perspective 85

Figure 6-17 Modeling elements of state machines as defined by the UML 2

States and transitionsJust as in statecharts, a state defines a period of time in which a system
shows a particular behavior and waits for a particular event to occur. A
transition is triggered by an event that occurs in a particular state and
describes the change from one state to the next. A transition can be
dependent on a condition. In addition, the system can perform actions that
are directed toward the system or its environment.

Hierarchization and

concurrency

Depending on the purpose of the model, state machines allow hierar-
chically combining states into super states, thereby abstracting from the
potentially very complex behavior of these states. Aside from hierarchi-
cally decomposing states by means of partial automata, a state can be
decomposed into several concurrent state machines. Just as in statecharts,
synchronization of concurrent state machines can be achieved using con-
ditions.

Encapsulation of internal

states using entry and exit

points

UML 2 defines entry points and exit points as an extension of stat-
echarts that allow for additional hierarchization of states. An exit point is
an externally visible pseudo-state that is immediately associated with an
internal state. An exit point is an externally visible pseudo-state that has its
origin in an internal state. A super state within a state machine can have
arbitrarily many entry and exit points that can be identified by a name
[Rumbaugh et al. 2005].

Figure 6-18 shows a state diagram of UML that possesses two explic-
itly defined entry points (“enter new destination” and “last destination”) as
well as one exit point (“navigation successful”) along with the modeling
elements introduced in section 6.7.1.

Automaton 1 Automaton 2

86 6 Model-Based Requirements Documentation

Figure 6-18 State diagram in UML 2 notation

The state diagram in figure 6-18 documents the reactive behavior of a nav-
igation device. Initially, the system is in the state “device ready”. By select-
ing “navigate to…”, the system changes into the super state “navigation
active” and, within the super state, into the sub state “enter destination
data” by making use of the entry point “enter new destination”. Alterna-
tively, the system changes from the state “device ready” into the internal
state “route calculation” of the super state “navigation active” by making
use of the entry point “last destination” as soon as the event “navigate to
last destination” occurs. Once the system is in the state “navigation active:
enter destination data”, the system transitions into the state “navigation
active: route calculation” if the condition that the destination data is valid
has been met.

Once the route is calculated in the state “navigation active: route cal-
culation”, the system transitions into the state “navigation active: output
route”. If a deviation from the route is detected (event: “deviation from cal-
culated route”) in the state “navigation active: route calculation”, the driver
is notified (activity: “notify driver”). From the state “navigation active”, the
system transitions into the state “device ready” once the event “cancel”
occurs. If the system is in the state “navigation active: route calculation”
and the destination is reached, the system exits the super state “navigation
active” via the exit point “navigation successful” to transition into the state
“device ready”.

Route calculation

Output route

Enter
destination data

Navigation active

Device ready

Selected

Last
destination

Arrive at
destination

Destination data entered
[destination data valid]

Route
calculated

Deviation from
calculated route

/notify driver

Enter new
destination

Navigation
successful

6.8 Summary 87

6.8 Summary

Along with using natural language to document requirements, require-
ments can be documented by means of models. Typically, natural language
requirements and requirements models are frequently employed in con-
junction so that the advantages of both forms of documentation can be
exploited.

Model-based documentation of requirements has, among other
things, the advantage that graphical (imagelike) descriptions of circum-
stances can be understood faster and better than natural-language
descriptions. Among the models that are frequently used in requirements
engineering are goal models (e.g., in the form of AND/OR trees) and use
case diagrams as well as conceptual models to document requirements
from three perspectives: data, functional, and behavioral. For each of these
three perspectives, there are suitable conceptual modeling languages that
provide purpose-specific means to document the information depicted in
each respective perspective.

This page intentionally left blank

7 Requirements Validation and Negotiation 89

7 Requirements Validation
and Negotiation

Validation and negotiation during requirements engineering is meant to
ensure that the documented requirements meet the predetermined quality
criteria, such as correctness and agreement (see section 4.6). The intro-
duced principles and techniques can be used to validate and negotiate indi-
vidual requirements or entire requirements documents.

7.1 Fundamentals of Requirements Validation

During the requirements engineering activity, it is necessary to review the
quality of the requirements developed. Among others, the requirements
are presented to the stakeholders with the goal to identify deviations
between the requirements defined and the stakeholders’ actual wishes and
needs.

Approving requirementsDuring requirements validation, the decision of whether a require-
ment possesses the necessary level of quality is made (see chapter 4) and
whether the requirement can be approved to be used for further develop-
ment activities (such as design, implementation, and testing). This deci-
sion should be made on the basis of predefined acceptance criteria.

Goal of validationThe goal of requirements validation is therefore to discover errors in
the documented requirements. Typical examples of errors in requirements
are ambiguity, incompleteness, and contradictions (see section 7.3).

Error proliferationRequirements documents are reference documents for all further
development activities. Therefore, errors negatively affect all further
development activities. A requirements error that is discovered when the
system is already deployed and operating requires all artifacts affected by
the error to be revised, such as source code, test artifacts, and architectural
descriptions. Correcting errors in requirements once the system is in
operation therefore entails significant costs.

90 7 Requirements Validation and Negotiation

Legal risks A contract between client and contractor is often based on require-
ments documents. Critical errors in requirements can lead to the fact that
contractual agreements cannot be met, e.g., scope of supply and services,
expected quality, or completion deadlines.

7.2 Fundamentals of Requirements Negotiation

Contradictory requirements

cause conflicts.

If there is no consent among the stakeholders regarding the requirements
and thus the requirements cannot be implemented collectively in the sys-
tem, a conflict arises between the contradictory requirements as well as
between the stakeholders that demand contradictory requirements. For
example, one stakeholder could demand the system to shut down in case
of a failure, whereas another stakeholder could require the system to
restart.

Risks and opportunities of

conflicts

The acceptance of a system is threatened by unresolved conflicts
because unresolved conflicts cause the requirements of at least one group
of stakeholders to not be implemented. In the worst case, a conflict causes
stakeholder support to cease, causing the development project to fail (cf.
[Easterbrook 1994]). Other than posing risks, conflicts can also be an
opportunity for requirements engineering because conflicts between
stakeholders require a solution that can potentially help discover new
ideas for development and can illustrate different options (cf. [Gause and
Weinberg 1989]). Therefore, treating and resolving conflicts openly dur-
ing requirements engineering can increase acceptance.

Goal of requirements

negotiation

The goal of negotiation is to gain a common and agreed-upon under-
standing of the requirements of the system to be developed among all rel-
evant stakeholders.

Reducing costs and risks

 in late phases

Requirements validation and negotiation is an activity that must be
performed (to a varying degree of intensity) throughout the entirety of
requirements engineering. The validation and negotiation of requirements
therefore causes additional effort and therefore additional costs. However,
the advantages gained by performing requirements validation and
negotiation as described in the previous sections (reduction of overall
cost, increase in acceptance, supporting creativity and innovations) is
usually significantly higher than the costs that arise due to the increased
effort.

7.3 Quality Aspects of Requirements 91

7.3 Quality Aspects of Requirements

A major aim of using quality criteria (e.g., completeness, understandabil-
ity, agreement) in requirements validation is to be able to check require-
ments systematically (see section 1.1.2). In order to assure an objective and
consistent validation, it is necessary that each quality criterion is concre-
tized and refined. In correspondence with the overall goals of the require-
ments engineering process, the validation is carried out with the following
goals:

 Content: Have all relevant requirements been elicited and documented
with the appropriate level of detail?

 Documentation: Are all requirements documented with respect to the
predetermined guidelines for documentation and specification?

 Agreement: Do all stakeholders concur with the documented require-
ments and have all known conflicts been resolved?

Three quality aspectsEach of the three goals implies an individual approach that focuses on spe-
cific aspects of the quality of the requirements. Therefore, the following
three quality aspects have been defined:

 Quality aspect “content”
 Quality aspect “documentation”
 Quality aspect “agreement”

A requirement should be approved for further development activities
only if all three quality aspects have been checked. The quality aspects
are described in detail in the following sections and made concrete
through different fine-grained quality criteria (with no claim of com-
pleteness).

7.3.1 Quality Aspect “Content”

The quality aspect “content” refers to the validation of requirements with
respect to errors in the content. Errors in requirements with regard to con-
tent negatively influence the subsequent development activities and cause
these activities to be based upon erroneous information.

Test criteria of the quality

aspect “content”

Errors in requirements with regard to content are present when spe-
cific quality criteria for requirements (see section 4.6) or for requirements
documents (see section 4.5) are violated. The validation of requirements
with regard to the quality aspect “content” is successful once requirements

92 7 Requirements Validation and Negotiation

validation has been applied to the following error types and no significant
shortcomings have been detected:

 Completeness (set of all requirements): Have all relevant requirements
for the system to be developed (for the next system release) been docu-
mented?

 Completeness (individual requirements): Does each requirement con-
tain all necessary information?

 Traceability: Have all relevant traceability relations been defined (e.g.,
to relevant requirements sources)?

 Correctness/adequacy: Do the requirements accurately reflect the
wishes and needs of the stakeholders?

 Consistency: Is it possible to implement all defined requirements for
the system to be developed jointly? Are there no contradictions?

 No premature design decisions: Are there any forestalled design
decisions present in the requirements not induced by constraints (e.g.,
constraints that specifiy a specific client-server architecture to be
used)?

 Verifiability: Is it possible to define acceptance and test criteria based
on the requirements? Have the criteria been defined?

 Necessity: Does every requirement contribute to the fulfillment of the
goals defined?

7.3.2 Quality Aspect “Documentation”

The quality aspect “documentation” deals with checking requirements
with respect to flaws in their documentation or violations of the documen-
tation guidelines that are in effect, such as understandability of the docu-
mentation formats and the consideration of organizational or project-
specific guidelines regarding the documentation of requirements but also
the structure of the requirements documents.

Implications of the violation of

documentation guidelines

Ignoring the documentation guidelines can, among other things, lead to
the following risks:

 Impairment of development activities: It may be impossible to carry out
development activities that are based upon a specific documentation
format.

 Misunderstandings: Requirements may not be understandable or may
be misunderstood by the people that need to comprehend them. As a
result, the requirement may be unusable.

7.3 Quality Aspects of Requirements 93

 Incompleteness: Relevant information is not documented in the
requirements.

 Overlooking requirements: If requirements are not documented at the
position that they are supposed to in the requirements document, these
requirements may be overlooked in subsequent activities.

Test criteria of the quality

aspect “documentation”

Requirements validation with regard to the quality aspect “documenta-
tion” is successful when requirements validation has been applied to the
following error types and no significant shortcomings have been
detected:

Four test criteria of the

quality aspect

“documentation”

 Conformity to documentation format and to documentation structures:
Are the requirements documented in the predetermined documenta-
tion format? For instance, has a specific requirements template or a
specific modeling language been used to document the requirements?
Has the structure of the requirements document been maintained? For
instance, have all requirements been documented at the position
defined by the document structure?

 Understandability: Can all documented requirements be understood in
the context given? For instance, have all terms used been defined in a
glossary (see section 4.7)?

 Unambiguity: Does the documentation of the requirements allow for
only one interpretation or are multiple different interpretations possi-
ble? For instance, does a text-based requirement not possess any kind
of ambiguity?

 Conformity to documentation rules: Have the predetermined documen-
tation rules and documentation guidelines been met? For instance, has
the syntax of the modeling language been used properly?

7.3.3 Quality Aspect “Agreement”

The quality aspect “agreement” deals with checking requirements for flaws
in the agreement of requirements between stakeholders.

Last opportunity for changesDuring the course of requirements engineering, stakeholders gain
novel knowledge about the system to be developed. Due to this additional
knowledge, the opinion of the stakeholders regarding a requirement that
has already been agreed upon can change. During requirements valida-
tion, stakeholders have the opportunity to requests changes without
impairing the subsequent development activities.

94 7 Requirements Validation and Negotiation

Requirements validation with regard to the quality aspect “agreement”
is successful when requirements validation has been applied to the follow-
ing error types and no significant shortcomings have been detected:

Three test criteria of the quality

aspect “agreement”

 Agreed: Is every requirement agreed upon with all relevant stakehold-
ers?

 Agreed after changes: Is every requirement agreed upon with all rele-
vant stakeholders after it has been changed?

 Conflicts resolved: Have all known conflicts with regard to the require-
ments been resolved?

7.4 Principles of Requirements Validation

Considering the following six principles of requirements validation
increases the quality of the validation results:

 Principle 1: Involvement of the correct stakeholders
 Principle 2: Separating the identification and the correction of errors
 Principle 3: Validation from different views
 Principle 4: Adequate change of documentation type
 Principle 5: Construction of development artifacts
 Principle 6: Repeated validation

The individual principles are explained in the following sections.

7.4.1 Principle 1: Involvement of the Correct Stakeholders

The choice of stakeholders for requirements validation depends on the
goals of the validation as well as the requirements that are to be audited.

When assembling the auditing team, at least the following two aspects
ought to be considered.

Independence

of the auditor

Generally, it should be avoided that the author of a requirement is also
the person to validate it. The author will make use of his or her prior
knowledge when reading or reviewing the requirement. This prior knowl-
edge can negatively influence the identification of errors because potential
erroneous passages of the requirements documentation or the require-
ments are implicitly and subconsciously amended by the author’s own
knowledge and can thus easily be overlooked.

7.4 Principles of Requirements Validation 95

Internal vs. external auditorsSuitable auditors can be identified within or outside of the developing
organization. Internal audits are performed by stakeholders that are mem-
bers of the developing organization and can be used to validate inter-
mediate results or preliminary requirements. An internal validation is easy
to coordinate and organize because the stakeholders are available from
within the organization. An external audit requires a higher degree of
effort because it identifies auditors and (potentially) hires them for pay-
ment. In addition, external auditors have to become familiar with the con-
text of the system to be developed. Due to the high effort, an external
audit should be performed only on requirements that exhibit a high level
of quality.

7.4.2 Principle 2: Separating the Identification and the Correction
of Errors

Basic principleSeparation between identifying errors and actually fixing them has proven
itself in the domain of software quality assurance. The same principle can
be applied to requirements validation. During validation, the flaws identi-
fied are documented immediately. After that, each flaw identified is dou-
ble-checked to determine whether it really is an error.

Concentrating on

error identification

Separating error identification and error correction allows auditors to
concentrate on the identification. Measures to correct the errors are taken
only after identification measures have been completed. This has the
advantages that the resources available for error correction can be used
purposefully, that premature error identification does not create addi-
tional errors, and that no alleged error is fixed that did not need fixing
because further investigation of the error may result in the fact that an
alleged error is in fact no error at all. That way, potentially present signif-
icant errors are less likely to be overlooked because the auditor is concen-
trating on fixing a previous error instead of identifying new ones.

7.4.3 Principle 3: Validation from Different Views

Perspective-based

validation

Validating requirements from different views is another principle that has
proven itself in practice. In this principle, requirements are validated and
agreed upon from different perspectives (e.g., by different people, see sec-
tion 7.5.4). Comparable methods are used in other disciplines as well. For
instance, in a legal trial, circumstances are often reported from the per-
spective of different people so that a sound overall picture can be gained.

96 7 Requirements Validation and Negotiation

7.4.4 Principle 4: Adequate Change of Documentation Type

Strengths and weaknesses

of documentation types

Changing the documentation type during requirements validation uses the
strengths of one documentation type to balance out the weaknesses of
other documentation types. For instance, good understandability and
expressiveness are strengths of natural language texts. However, their
weakness is potential ambiguity and difficulty in expressing complex cir-
cumstances. Graphic models are able to depict complex circumstances
rather well, but the individual modeling constructs are restricted in expres-
siveness.

Simpler identification of errors Transcribing a requirement that is already documented in another
form of documentation simplifies finding errors. For instance, ambiguities
in natural language requirements can be identified much easier by
transcribing them into a model-based representation.

7.4.5 Principle 5: Construction of Development Artifacts

Suitability of the requirements

for design, test, and manual

creation

Constructing development artifacts aims at validating the quality of
requirements that are meant to be the basis of creating design artifacts, test
artifacts, or the user manual. During the course of the validation, the activ-
ities usually carried out during subsequent phases to construct respective
development artifacts are carried out for small samples. For instance, the
auditor intensively deals with a requirement by creating a test case. This
way, errors (e.g., ambiguity) can be identified in the requirement. This
kind of validation, however, demands a lot of resources because subse-
quent development activities must be executed at least in part.

7.4.6 Principle 6: Repeated Validation

Validation occurs at a distinct point in time during the development
process and relies on the level of knowledge of the auditors at that point in
time. During requirements engineering, the stakeholders gain additional
knowledge about the planned system. Therefore, a positive validation of
requirements does not guarantee that requirements are still valid at a later
point in time. Requirements validation should occur multiple times in the
following cases (among others):

 Lots of innovative ideas and technology used in the system
 Significant gain of knowledge during requirements engineering
 Long-lasting projects

7.5 Requirements Validation Techniques 97

 Very early requirements validation
 Unknown domain
 Requirements that are to be reused

7.5 Requirements Validation Techniques

In the following sections, techniques for requirements validation are intro-
duced. Often, manual validation techniques, which are also known by the
general term review, are used for requirements validation. Three major
types of reviews can be differentiated:

 Commenting
 Inspections
 Walk-throughs

Along with reviews, the following three techniques have proven them-
selves to be useful for requirements validation:

 Perspective-based reading
 Validation through prototypes
 Using checklists for validation

In the following, these six techniques are described. Prior to applying any
of these techniques, preparatory steps need to be taken as needed, such as
identifying and inviting the right stakeholders or organizing suitable
rooms and supplies.

7.5.1 Commenting

Individual validation of

requirements

During commenting, the author hands his or her requirements over to
another person (e.g., a co-worker). The goal is to receive the co-worker’s
expert opinion with regard to the quality of a requirement. The co-worker
reviews the requirement with the goal to identify issues that impair
requirement quality (e.g., ambiguity or errors) with respect to predeter-
mined quality criteria. The identified flaws are marked in the requirements
document and briefly explained.

98 7 Requirements Validation and Negotiation

7.5.2 Inspection

Typical phases

of an inspection

Inspections of software or any other type of product are done to systemat-
ically check development artifacts for errors by applying a strict process
[Laitenberger and DeBaud 2000].

An inspection is typically separated into various phases [Gilb and
Graham 1993]: planning, overview, defect detection, defect correction,
follow-up, and reflection. For requirements validation, the planning,
overview, error detection, and error collection phases are relevant (see
principle 2, separating the identification and correction of errors in sec-
tion 7.4.2). Individual preparation is an obligatory part of inspections. An
inspection session usually serves the purpose of collecting and evaluating
error indications. Occasionally, performing dedicated inspection sessions
is omitted when performing inspections.

Planning Among other things, the goal of the inspection, the work results that
are to be inspected, and the roles and participants are determined during
the planning phase.

Overview In the overview phase, the author explains the requirements to be
inspected to all team members so that there is a common understanding
about the requirement among all inspectors.

Error detection In the error detection phase, the inspectors search through the
requirement for errors. Error detection can be performed individually by
each inspector or collaboratively in a team. Individual inspection has the
advantage that each inspector can concentrate on the requirements. On
the other hand, team inspections have the advantage that communication
between the inspectors creates synergy effects during error detection.
During the course of error detection, any errors that are found are purpo-
sively documented.

Error collection and

consolidation

In the error collection phase, all identified errors are collected, consol-
idated, and documented. During consolidation, errors that have been
identified multiple times or errors that aren’t really errors are identified.
The latter can be the case if, for instance, an inspector makes wrong
assumptions about a requirement or interprets some constraint the wrong
way. Along with consolidation, the identified errors and correcting meas-
ures are documented in an error list. Inspections are also known as techni-
cal reviews.

Roles during inspection For an inspection to be performed, the following roles must be staffed
with suitable personnel:

7.5 Requirements Validation Techniques 99

 Organizer: The organizer plans and supervises the inspection process.
 Moderator: The moderator leads the session and ensures that the pre-

determined inspection process is followed. It is advisable to select a
neutral moderator because the moderator could potentially balance
out opposing opinions of authors and inspectors.

 Author: The author explains the requirements that he created to the
inspectors in the overview phase and later on is responsible for correct-
ing the errors identified.

 Reader: The reader introduces the requirements to be inspected suc-
cessively and guides the inspectors through them. The role of the
reader should be given to a neutral stakeholder so that the inspectors
can center their attention on the requirements instead of on the inter-
pretation of the author. Often, the moderator is also the reader.

 Inspectors: The inspectors are responsible for finding errors and com-
municating their findings to the other members of the project team.

 Minute-taker: This person takes minutes of the results of the inspec-
tion.

7.5.3 Walk-Through

Lightweight inspectionIn requirements validation, a walk-through is a lightweight version of an
inspection. A walk-through is less strict than an inspection and the
involved roles are differentiated to a lesser degree. During a walk-through,
at least the roles of the reviewer (comparable to the inspector), author, and
minute-taker, and potentially the moderator, are staffed.

Discussion of the

identified flaws in quality

during a group session

The goal of a walk-through of requirements is to identify quality flaws
within requirements by means of a shared process and to gain a shared
understanding of the requirements between all the people involved. To
prepare for a walk-through, the requirements to be validated are handed
out to all participants and inspected. During the walk-through session, the
participants discuss the requirements to be validated step-by-step, under
guidance of the moderator/reader. Usually, the author of a requirement is
the one who introduces the requirement to all other participants. This
way, the authors have the opportunity to give additional information to
the group along with the actual requirement (e.g., alternative require-
ments, decisions, and rationale for decisions). A minute-taker documents
the flaws in quality that have been identified during the session.

100 7 Requirements Validation and Negotiation

7.5.4 Perspective-Based Reading

Check requirements from a

defined perspective.

Perspective-based reading is a technique for requirements validation in
which requirements are checked by adopting different perspectives [Basili
et al. 1996]. Typically, perspective-based reading is applied in conjunction
with other review techniques (e.g., during inspections or walk-throughs).
Focusing on particular perspectives when reading a document verifiably
leads to improved results during requirements validation. Possible per-
spectives for validation, for instance, emerge from the different addressees
of a requirement [Shull et al. 2000]:

 User/customer perspective: The requirements are checked from the per-
spective of the customer or the user to determine whether they
describe the desired functions and qualities of the system.

 Software architect perspective: The requirements are checked from the
perspective of the software architect to ascertain if they contain all nec-
essary information for architectural design (e.g., if all relevant perfor-
mance properties have been described).

 Tester perspective: The requirements are checked from the perspective
of the tester to establish whether they contain the information neces-
sary to derive test cases from the requirements.

Perspective quality aspects The three quality aspects (see section 7.3) also describe three possible per-
spectives for requirements validation:

 Content perspective: With the content perspective, the auditor verifies
the content of requirements and focuses on the quality of the content of
the documented requirement.

 Documentation perspective: With the documentation perspective, the
auditor ensures that all documentation guidelines for requirements
and requirements documents have been met.

 Agreement perspective: With the agreement perspective, the auditor
checks if all stakeholders agree on a requirement, i.e., if the require-
ments are agreed upon and conflicts have been resolved.

In addition, further perspectives that emerge from the individual context
of the development project can be created as need be.

Define validation directives

 for each perspective.

During perspective-based validation, each auditor is assigned a per-
spective (at the proper point in time) from which she reads and validates
the requirement. For each perspective defined, detailed instructions for
performing the validation should be laid down because the auditor might

7.5 Requirements Validation Techniques 101

not be familiar with all relevant details of her assigned perspective. It is
advisable to associate questions with each validation instruction that must
be answered by the content of the requirements or by the auditor after she
has read the requirement, respectively. In addition, validation instructions
can be amended with a checklist that summarizes the most important con-
tent aspects that ought to be addressed by a requirement with regard to the
appropriate perspective.

Follow-upDuring the course of the follow-up to a perspective-based reading ses-
sion, the results of the chosen perspective are analyzed and consolidated.
On the one hand, the results of the perspective-based reading contain
answers to the predefined questions, and on the other hand, open issues
that the auditors noticed while reading may be present. The consolidation
can be done as a group effort, similarly to a review.

Support

of other techniques

Perspective-based reading can be both an independent technique for
requirements validation and a support technique for other validation tech-
niques, such as inspections or reviews of requirements documents by
means of perspective-based reading.

7.5.5 Validation through Prototypes

Requirements validation by means of prototypes allows auditors to expe-
rience the requirements and to try them out. Experiencing requirements
directly through prototypes [Jones 1998] is the most effective method to
identify errors in requirements. Stakeholders can try out the prototype and
compare their own idea of how the system ought to be implemented with
the prototype at hand and thereby find discrepancies between their ideas
and the current implementation.

Evolutionary vs.

throw-away prototypes

Depending on the further use of the prototype, one can distinguish
between throw-away prototypes and evolutionary prototypes [Sommer-
ville 2007]. Throw-away prototypes are not maintained once they have
been used. Evolutionary prototypes are developed with the goal to be
developed further and improved in later steps. In contrast to throw-away
prototypes, implementation plays a much more significant role here.
Therefore, the effort to create evolutionary prototypes is much higher.

Selection of relevant

requirements

Before a prototype can be implemented, the requirements that shall be
validated through the prototype must be selected. The set of requirements
to be validated is limited by development resources (e.g., time, money,
etc.) that can be allocated for validation. For example, a selection criterion
can be the criticality of a requirement.

102 7 Requirements Validation and Negotiation

Preparation of the validation The following preparations have to be made in order to validate
requirements by means of prototypes:

 Manual/instructions: The users of the prototype must be supplied with
the necessary information so that they can use or apply the prototype.
This can be done by means of a manual or by means of proper instruc-
tion.

 Validation scenarios: Validation scenarios that the users of the proto-
type can perform with the prototype should be prepared. A validation
scenario defines, for example, all relevant data sets or user interactions.

 Checklist with validation criteria: For requirements validation, a check-
list of validation criteria should be created according to which the pro-
totype (and by proxy, the requirements) can be validated.

Performing the validation The auditor should validate the prototype without being influenced;
i.e., the auditor should execute the validation scenarios independently
and by herself. This ensures that the validation results are created without
bias.

During validation, the auditors can and ought to execute alternative
and deviant scenarios and should use the prototype exploratively and
experimentally once the required validation scenarios have been covered.
For example, error cases that have remained hidden until then can be
identified. For experimental validation of the prototype, the auditor needs
to know the scope of the prototype, i.e., the set of requirements that have
been considered when the prototype was created. Without knowledge of
the implemented requirements, an auditor cannot decide whether an
identified error can be traced back to a missing requirement or if the
requirement has been consciously omitted in the prototype.

Documentation of the

validation results

Requirements validation through prototypes therefore permits two
types of result documentation:

 Protocol of the auditor: The auditor documents the results and experi-
ences made during the validation of the prototype, e.g., by means of
validation scenarios as well as a checklist that he has been supplied
with.

 Observation protocol: The auditor can be observed by a second person.
The second person creates a so-called observation protocol. This
protocol can disclose additional important symptoms for errors in
requirements. For example, when the auditor hesitates at a certain step
in the validation scenario while using the prototype and the observer

7.5 Requirements Validation Techniques 103

documents this, it may be an indication for missing apparentness and
as such an indication for impaired understandability of the prototype.
Under certain circumstances, it may be advisable to record the valida-
tion on video because the validation situation can be analyzed in detail
during the follow-up. For example, a video recording can show the
realization of requirements pertaining to anthropometric properties
(such as ergonomics) or intuitive use and can be investigated in detail.

AnalysisThe results of the validation are analyzed after validation is complete.
Change suggestions for the requirements are consolidated. If significant
changes to the requirements are necessary, it may be advisable to revise the
prototype and validate anew.

7.5.6 Using Checklists for Validation

A checklist comprises a set of questions and/or statements about a certain
circumstance. Checklists can be applied whenever many aspects must be
considered in a complex environment and no aspect must be omitted. A
checklist for requirements validation contains questions that ease the
detection of errors [Boehm 1984]. Using checklists for requirements vali-
dation is very common in practice. Checklists can be used in all previously
introduced techniques for requirements validation.

Creating checklistsBefore a checklist can be used, every single question or statement must
be defined. The sources for questions and statements in the following list
can be used to create checklists to support requirements validation:

 The three quality aspects of requirements (see section 7.3)
 Principles of requirements validation (see section 7.4)
 Quality criteria for requirements documents (see section 4.5)
 Quality criteria for individual requirements (see section 4.6)
 Experiences of the auditors from prior projects
 Error statistics [Chernak 1996]

Improving checklistsChecklists are not necessarily complete. When using a checklist, one
should always look for opportunities to improve the checklist for future
use. For example, if a question was forgotten, the checklist should be
amended to contain the extra question. Ambiguous questions or questions
that are not understandable must be marked and revised. Outdated or no
longer valid questions should be removed.

104 7 Requirements Validation and Negotiation

Checklists as a guideline Checklists can support requirements validation in different ways.
They can serve as a guideline for the auditor, who can follow the checklists
at her own discretion (e.g., during a review).

Checklists as a means

of structuring

The checklist can define a list of questions that must be strictly
adhered to. These questions must be answered by the auditor to validate
the requirements. In this case, the checklist serves as a measure to
approach the validation in a structured manner. For example, the checklist
may detail the exact process that the auditors are asked to apply, which
guarantees that every auditor validates the requirements in the same way.
This makes the results more comparable.

Hybrid forms of checklist application are also possible. For example, a
checklist can contain obligatory questions for perspective-based reading
and can contain suggestions that the auditor may or may not follow.

Successfully applying

checklists

Applying checklists for requirements validation successfully depends
on the manageability and complexity of the checklist. A large amount of
questions can make it more difficult to use the checklist because the audi-
tor does not have a steady overview of the questions and is thus forced to
consult the checklist frequently. It is therefore advisable to design the
checklist to not be longer than a single page [Gilb and Graham 1993]. In
addition, questions that are formulated altogether too generically or
abstractly can make it more difficult to use the checklist. For example, the
question “Is the requirement formulated appropriately?” can lead to a
multitude of different answers, depending on what the auditor considers
an appropriately formulated requirement. The questions therefore ought
to be as precise as possible.

7.6 Requirements Negotiation

To negotiate the requirements of a system to be developed, it is necessary
to identify conflicts and to resolve those conflicts. This is done by means
of systematic conflict management. The conflict management in require-
ments engineering comprises the following four tasks:

Four tasks of conflict

management

 Conflict identification
 Conflict analysis
 Conflict resolution
 Documentation of the conflict resolution

These four tasks are explained in the following sections.

7.6 Requirements Negotiation 105

7.6.1 Conflict Identification

Conflicts can arise during all requirements engineering activities. For
example, different stakeholders can utter contradicting requirements dur-
ing elicitation.

Conflict identification in all

requirements engineering

activities

Conflicts between requirements and conflicts between stakeholders
are often not obvious due to different reasons. During the entire require-
ments engineering process, the requirements engineer should pay atten-
tion to potential conflicts so that they can be identified, analyzed, and
resolved early on.

7.6.2 Conflict Analysis

Determining

the conflict type

During conflict analysis, the reason for an identified conflict must be
determined. According to [Moore 2003], different types of conflicts
exist.

Data conflictA data conflict between two or more stakeholders is characterized by
a deficit of information, by false information, or by different interpretations
of some information. For example, take the following requirement: “R131:
The reaction time of the planned system shall not exceed one second”. A
data conflict between two stakeholders with regard to this requirement can
arise from the fact that one stakeholder considers a reaction time of 1 sec-
ond to be too slow while another stakeholder does not believe that a reac-
tion time of 1 second is feasibly implementable (i.e., it is too short).

Conflict of interestA conflict of interest between two or more stakeholders is character-
ized by subjectively or objectively different interests or goals of stakehold-
ers. A conflict of interest between two or more stakeholders can arise, for
instance, when one stakeholder primarily focuses on keeping the costs of
the planned system at a minimum while another stakeholder primarily
desires a high level of quality. A conflict of interest between these two
stakeholders arises when the first stakeholder rejects a requirement due to
estimated costs and the second stakeholder insists on implementing it due
to quality reasons.

Conflict of valueA conflict of value is characterized by differing underlying values
stakeholders have regarding some circumstance (e.g., cultural differences,
personal ideals). For instance, a conflict of value arises when one stake-
holder favors open source technologies while another stakeholder favors
closed sources technologies.

Relationship conflict A relationship conflict is characterized by strong emotions, stereo-
typical relationship concepts, deficient communication, or negative inter-

106 7 Requirements Validation and Negotiation

personal behavior between stakeholders (e.g., insults, disrespect). For
instance, a relationship conflict arises when two stakeholders of equal rank
or position (e.g., department leaders) reject each other’s requirements and
try to distinguish themselves by forcing their requirements onto the pro-
ject.

Structural conflict A structural conflict is characterized by unequal levels of authority or
power. For instance, a structural conflict can arise between an employee
and his superior if the superior invariably rejects requirements that the
employee has defined because he does not recognize the employee’s com-
petence to delineate requirements.

Mixed reasons for conflicts Often, it is difficult to unambiguously classify emerging conflicts. For
example, a conflict can be a relationship conflict with clear structural
components. Similarly, a conflict of interest can be a conflict of values as
well. Therefore, it is advisable to analyze an identified conflict with respect
to all types so that all possible reasons for the conflict can be determined
and suitable resolution strategies can be selected.

7.6.3 Conflict Resolution

Good conflict resolution is a

success factor.

Conflict resolution is very important for requirements negotiation because
the strategy of conflict resolution has a big influence on the willingness of
the people involved (e.g., customers, consultants, or developers) to con-
tinue working together. For example, a conflict resolution considered
unfair by at least one party of the conflict can lead to a decreased engage-
ment and willingness to collaborate in the project. On the other hand, a
resolution that is considered fair by all parties can increase the willingness
to cooperate because this signals that everyone’s ideas about the planned
system are being considered.

Involvement of the relevant

stakeholders

Independently from the selected resolution strategy, it is essential to
involve all relevant stakeholders. If not all relevant stakeholders are con-
sidered, some opinions and viewpoints will remain unconsidered. The
conflict will therefore only be resolved in part or incompletely. In the fol-
lowing paragraphs, different conflict resolution techniques are introduced.

Agreement With the conflict resolution technique agreement, all conflict parties
negotiate a solution to the conflict. The parties exchange information,
arguments, and opinions and try to convince one another of each other’s
viewpoints in order to come to an agreeable solution.

Compromise With the conflict resolution technique compromise, all conflict parties
try to find a compromise between alternative solutions. In contrast to an

7.6 Requirements Negotiation 107

agreement, a compromise consists of an amalgamation of different parts of
the alternative solutions. Also, a compromise can mean that all alternative
solutions as proposed thus far are discarded and entirely new solutions are
creatively developed.

VotingIn the conflict resolution technique voting, all conflict parties vote on
solution alternatives. The alternatives that are up for voting are presented
to all relevant stakeholders. Each stakeholder casts her vote for an alterna-
tive and the alternative with the most votes is accepted as the resolution
for the conflict.

Definition of variantsIn the conflict resolution technique definition of variants, the system is
developed in a way that permits the definition of variants by deriving var-
iants, by selecting parameters that define system variants, or by selecting
variable system properties. This way, the system can satisfy the different
interests of the stakeholders.

OverrulingIn the conflict resolution technique overruling, a conflict is resolved by
means of the hierarchical organization. This means that a conflict party
with higher organizational rank or position wins the conflict by overruling
objections of organizationally lower parties. If both parties have the same
organizational rank, the conflict is resolved by a superior stakeholder or
some third-party decider. This conflict resolution technique is only advis-
able if other resolution techniques have failed (e.g., no compromise could
be found) or are not applicable due to limitations of resources (e.g., time).

Consider-all-factsIn the conflict resolution technique consider-all-facts (CAF), all influ-
encing factors of a conflict are being investigated so that as much informa-
tion about the conflict can be collected as possible. This information is
used during resolution. By prioritizing the influence factors, the relevance
is determined. Based on the results of this technique, the plus-minus-
interesting conflict resolution technique can be applied.

Plus-minus-interestingIn the conflict resolution technique plus-minus-interesting (PMI), all
positive and negative repercussions of a solution alternative are investi-
gated so that positive and negative repercussions can be evaluated. Positive
repercussions are placed in the category “plus” and negative repercussions
are placed in the category “minus”. Repercussions that are neither positive
nor negative are placed in the category “interesting”. Repercussions in the
category “interesting” cannot be evaluated yet and must be investigated
further to determine if their influence is positive or negative.

Decision matrixIn the conflict resolution technique decision matrix, a table is created
that contains solution alternatives in the columns and all relevant decision
criteria in the rows. The decision criteria can be identified by means of the

108 7 Requirements Validation and Negotiation

technique “consider-all-facts”. For each combination of criterion and solu-
tion alternative, an assessment is made, for instance by means of a point-
scale ranging from irrelevant (0 points) to relevant (10 points). Table 7-1
shows a decision matrix.

Table 7-1 Decision matrix

In order to find a solution, the sums of the columns are calculated; i.e., the
assessments of the criteria of each solution alternative are summed up. The
solution alternative with the highest score is accepted as the decision. In
the example shown in table 7-1, this would be solution alternative 1.

7.6.4 Documentation of the Conflict Resolution

Risks of missing conflict

documentation

Conflicts cannot be avoided during requirements engineering. A resolu-
tion to a conflict must always be traceably documented. If a conflict reso-
lution is not properly documented, the following threats (among others)
to the project may arise:

 Handling conflicts repeatedly: A certain conflict can arise a second time
during the requirements engineering process. Without proper docu-
mentation of the conflict resolution, the conflict must be analyzed and
resolved anew. This causes additional effort and can potentially lead to
additional conflicts or abrogate previous resolutions.

 Inappropriate conflict resolution: During the requirements engineering
process, the resolution of a conflict can turn out to be wrong or unsuit-
able. In this case, the conflict must be investigated and resolved anew.
Without proper documentation, relevant information that has been
considered during the initial analysis and resolution can be overlooked
and the new conflict resolution can once again lead to false results.

Solution
alternative 1

Solution
alternative 2

Solution
alternative 3

Criterion 1 3 6 2

Criterion 2 5 4 10

Criterion 3 10 3 5

Sum 18 13 17

7.7 Summary 109

In both cases, proper documentation of the conflict and its resolution sup-
ports the requirements engineering process and ensures that relevant
information already known can be considered.

7.7 Summary

The quality of the elicited and documented requirements must be assured
during requirements engineering so that it can be guaranteed that the
requirements meet the desires and ideas of the stakeholders adequately.
Therefore, it is necessary to validate the requirements with regard to the
quality of their content, their documentation, and their agreement with
respect to the different stakeholders. There are different techniques that
can be selected and purposively combined for requirements validation,
depending on the project peculiarities and project goals. Among the most
common validation techniques for requirements are the different types of
requirements reviews (e.g., commenting, inspection, walk-through) as
well as perspective-based reading and validation through prototypes and
checklists.

For requirements negotiation, it is necessary to identify conflicts
between stakeholders, analyze them, and resolve them in a suitable man-
ner. A systematic conflict management supports analysis and resolution of
the conflicts that have been identified over the course of requirements val-
idation or other requirements engineering activities.

This page intentionally left blank

8 Requirements Management 111

8 Requirements Management

Requirements management comprises purposefully assigning attributes to
requirements, defining views on requirements, prioritizing requirements,
and tracing requirements as well as versioning requirements, managing
requirements changes, and measuring requirements. Requirements man-
agement includes the management of individual requirements as well as
the management of requirements documents.

8.1 Assigning Attributes to Requirements

Information about the requirements must be documented throughout the
entire life cycle of a system. This includes, for example, unique identifiers
of a requirement, the name of the requirement, the author and sources of
the requirement, and the person responsible for the requirement.

8.1.1 Attributes for Natural Language Requirements and Models

To document information about requirements, it has proven useful to
delineate this information in a structured manner: as attributes. Attributes
of a requirement are defined by a unique name, a short description of the
contents, and the set of possible values that can be assigned to the attribute.

Template-based assignment

of attributes to requirements

The simplest way to define requirement attributes is by means of a
table structure (template). The template defines the relevant information
that is to be documented. This information, i.e., the defined attributes
(attribute types), can be different for each type of requirement. For exam-
ple, the template for functional requirements can be different from the
template for quality requirements with respect to the defined attribute
types and/or the allowed attribute values.

112 8 Requirements Management

8.1.2 Attribute Scheme

The set of all defined attributes for a class of requirements (e.g., functional
requirements, quality requirements) is called an attribute scheme. Attrib-
ute schemes are usually tailored to meet the individual project’s needs.

Assignment

of requirement attributes

During the course of the project, the attributes of the requirements are
assigned with fitting attribute values. Figure 8-1 shows an exemplary
assignment of attributes for a requirement including the attributes “iden-
tifier”, “name”, and “requirement description” as well as attributes that
allow for documenting the stability of the requirements and its source as
well as its author.

Figure 8-1 Example of requirement attribute assignment

The requirement that is documented on the basis of the simple template
shown in figure 8-1 has the code “Req-10” as its unique identifier. It bears
the name “Dynamic Traffic Congestion Avoidance” and a description that
specifies the subject of this requirement. The stability of this requirement
is classified as “fixed”, “J. Locke” is the person responsible for this require-
ment, and the requirement stems from the source “Product Management”.
“B. Wagner” is the author.

The reader of the requirement (e.g., the contractor, product man-
ager, developer, project manager) has a significant advantage when tem-
plate-based documentation is used, namely that information of the same
type can always be found in the same position (e.g., the requirement sta-
bility is always in the template section “stability”). In addition, template-
based assignment of attributes has the advantage for the requirements
engineer that it is harder for her to overlook important information and
that this information, supported by the structure of the template and the

Attribute name Assignment of the attribute
(Attribute value)

Identifier Name

Stability Responsible Source Author

If traffic congestions exceed the configurable critical threshold
the system shall calculate an alternative route automatically.

8.1 Assigning Attributes to Requirements 113

predetermined attribute values, can be documented purposefully and
correctly.

8.1.3 Attribute Types of Requirements

Frequently used attribute

types

The various standards in requirements engineering and the most pertinent
tools for requirements documentation and management often offer a set
of predefined attributes. Table 8-1 lists attribute types that are frequently
used in practice during requirements management.

Table 8-1 Frequently used attribute types

Additional attribute types for

requirements

Along with the requirements attributes listed in table 8-1, many addi-
tional attribute types exist to document important information of a
requirement. Table 8-2 shows a selection of additional attribute types for
requirements.

Attribute Type Meaning

Identifier Short, unique identifier of a requirement artifact from the set
of all regarded requirements.

Name Unique, characterizing name.

Description Briefly describes the content of the requirement.

Version Current version of the requirement.

Author Specifies the author of the requirement.

Source Specifies the source or sources of the requirement.

Stability Specifies the approximate stability of the requirement. The
stability is the amount of changes that are to be expected
with regard to the requirement. Possible values can be “fixed”,
“established”, and “volatile”.

Risk Specifies the risk based on an estimate of the amount
of damage and loss and the probability of occurrence.

Priority Specifies the priority of the requirement regarding the chosen
prioritization properties, e.g., “importance for market
acceptance”, “order of implementation”, “loss/opportunity
cost if not implemented”.

114 8 Requirements Management

Table 8-2 Additional types of requirement attributes

Project-specific tailoring of the

attribute scheme

The attribute types suggested are the basis for defining an attribute scheme
in the development project. To define an attribute scheme, at least the fol-
lowing specific aspects must be considered:

 Specific properties of the project, e.g., project size, local or distributed
development, or project risk

 Constraints of the organization, e.g., organizational standards and reg-
ulations

 Properties and regulations of the application domain, e.g., reference
models, modeling guidelines, standards

 Constraints and restrictions of the development process, e.g., liability
law, process standards

Attribute Type Meaning

Person
responsible

Specifies the person, group of stakeholders, organization, or
organizational unit that is responsible for the content of the
requirement.

Requirement
type

Specifies the type of requirement (e.g., “functional
requirement”, “quality requirement”, or “constraint”)
depending on the applied classification scheme.

Status regarding
the content

Specifies the current status of the content of the requirement,
e.g., “idea”, “concept”, “detailed content”.

Status regarding
the validation

Specifies the current status of the validation, e.g.,
“unvalidated”, “erroneous”, “in correction”.

Status regarding
the agreement

Specifies the current status of the negotiation, e.g., “not
negotiated”, “negotiated”, “conflicting”.

Effort Estimated/actual effort to implement the requirement

Release The designation of the release in which the requirement shall
be implemented.

Legal obligation Specifies the degree of legal obligation of the requirement.

Cross references Specifies relations to other requirements, for example, if it is
known that the implementation of the requirement requires
prior implementation of another requirement.

General
information

In this attribute, arbitrary information that is considered
relevant can be documented, for example, if the negotiation of
this requirement is scheduled for discussion during the next
meeting with the stakeholders.

8.2 Views on Requirements 115

Definition of attributes by

means of information

models

When employing tools for requirements management, defining the attrib-
ute structure of requirements is often not done by means of tables, but is
model based, by means of information models. A model-based definition
of an attribute scheme determines the attribute types as well as limitations
in attribute values, similar to template-based definitions. In addition,
model-based attribute scheme definition allows for determining relations
between attribute types of different attribute schemes.

Advantages of model-based

attributing

Along with the advantages of table-based definition, model-based
assignment of requirement attributes additionally allows consideration of
requirement dependencies when selectively accessing the requirements.
This aids in maintaining consistency in the attributes of the requirements.
Furthermore, the information model of a model-based assignment of
requirement attributes can serve as the foundation for the definition of an
attribute structure to be used in a requirements management tool. (see
section 9.3). Also, templates for the assignment of requirement attributes
can be generated on the basis of the information model.

8.2 Views on Requirements

Structuring requirements by means of information models allows for gen-
erating specific views on requirements. It can be seen in practice that the
amount of requirements and the amount of dependencies among require-
ments are evermore increasing. In order to keep the complexity of the
requirements manageable for the project staff, it is necessary to selectively
access and thereby filter the requirements depending on the current task.

Role-specific definition of

views

Views on requirements are often defined for different roles in the
development process. Examples include views for the architect, the pro-
grammer, the project manager, and the tester. It is common to define mul-
tiple views for a role in order to support the sub-activities of each role. One
particular view can also be applied to multiple roles.

8.2.1 Selective Views on the Requirements

A view contains a part of all available requirement information. A view can
do the following:

 Select particular requirements; i.e., not every requirement is contained
in a view.

116 8 Requirements Management

 Mask certain attributes of requirements; i.e., not every attribute of a
requirement is contained in a view.

 Arbitrarily combine both these selection principles; i.e., only a subset
of all available requirements and only a subset of all available attributes
are contained in a view.

Generating selective views Figure 8-2 illustrates the generation of three views, represented by a table
that is defined on the basis of the structure of the attributes. In all three
cases, the views are created by selecting attribute types as well as by deter-
mining the attributes that must be available. The definition of the first view
(), for example, determines that only those requirements are selected
that “J. Locke” is responsible for and that have a stability of “fixed”. Of all
selected requirements, only the attributes “identifier”, “name”, “descrip-
tion”, and “author” are being considered.

Figure 8-2 Selective views on the requirements

R
eq

ui
re

m
en

ts
 B

as
is Identifier Name Description Author Source Responsible Stability Status Content Status Validation X-Ref

Req-1 "Keyboard Input ..." "The System …" J. Locke PM P. Wagner fixed concept unvalidated Req-3; Req-9
Req-2 "Voice Input ..." "The System …" E. Kurt PM P. Wagner established concept in validation Req-5; Req-123
Req-3 "Receiption of …" "The System …" H. Escher Maintanence P. Wagner established idea unvalidated Req-4; Req-1
Req-4 "Remote Diagn …" "The System …" M. Born Maintanence M. Born volatile idea unvalidated Req-47
Req-5 "Input of miscel …" "The System …" H. Miller F. Goldstein H. Miller fixed concept in validation Req-33
Req-6 "Acessing reco …" "The System …" J. Locke F. Goldstein M. Born fixed detailed content validated Req-45; Req-11
Req-7 "Automatic …" "The System …" M. Born H. Licht M. Born fixed detailed content in correction Req-11
Req-8 "Display of …" "The System …" H. Miller J. Locke M. Born volatile idea unvalidated Req-11
Req-9 "Input of miscel …" "The System …" J. Locke J. Locke P. Wagner volatile concept in validation Req-49
Req-10 "Dynamic …" "The System …" M. Born Customer P. Wagner established detailed content erroneous Req-51; Req-9
Req-11 "Voice Control …" "The System …" H. Miller Customer P. Wagner established concept validated Req-7; Req-81; Req-6

… … … … … … … … … …

Identifier Name Description Author
Req-2 "Voice Input ..." "The System …" E. Kurt
Req-3 "Receiption of …" "The System …" H. Escher
Req-10 "Dynamic …" "The System …" M. Born
Req-11 "Voice Control …" "The System …" H. Miller

… … … …

Identifier Name Author
Req-1 "Keyboard Input ... J. Locke

… … …

Identifier Name Description Author Source
Req-6 "Acessing reco …""The System …" J. Locke F. Goldstein
Req-7 "Automatic …" "The System …" M. Born H. Licht
Req-8 "Display of …" "The System …" H. Miller J. Locke

… … … … …

1

V
ie

w
s

Selection: Requirements
that “J. Locke” is
responsible for and have a
stability of “fixed.”

Display: “Identifier”, “Name”,
“Description”, “Author”

Selection: Requirements
that are not validated and
originate from the source
“Product Management”
(PM).

Display: “Identifier”,
“Name”, “Author”

Selection: Requirements that have a
cross reference to requirement R-11.

Display: “Identifier”, “Author”,
“Source”, “Responsible”, “Stability”

8.2 Views on Requirements 117

8.2.2 Condensed Views on the Requirements

Along with selecting existing information from the requirements basis,
views can contain generated or condensed data that is not immediately
contained in the requirements. Views that contain only generated or con-
densed data are called condensed views.

Generating

condensed views

Condensed views can be defined by aggregating the data contained in
the requirements basis. A condensed view can, for example, contain
information on the percentage of requirements that stem from a particular
source.

Combination of selecting

and condensing

A single view may also consist of a combination of generated, con-
densed, and selected data.

Figure 8-3 Condensed view generated from a requirements basis

Figure 8-3 shows two condensed views of the requirements. The view
“Validation status of the Requirements Basis” () groups requirements
according to the current status of validation and calculates the percentage
value of the requirements with regard to the status “unvalidated”, “in vali-
dation”, “validated”, “in correction”, and “erroneous”. The result is depicted
as a bar chart in the figure above. In view (), “Implementation effort by
Release”, the estimated and actual effort involved with the implementation

118 8 Requirements Management

of the requirements of a particular release is depicted. In order to calculate
this aggregated data, the requirements are grouped by their respective
release and their implementation effort is summed up. The result is
depicted as a pie chart in figure 8-3.

8.3 Prioritizing Requirements

Requirements are prioritized during requirements engineering using dif-
ferent prioritization criteria in all sub-activities. Requirements can be pri-
oritized by their order of implementation, for example. Due to the different
prioritizations in the various sub-activities, the priority of a requirement
can be determined by one or more attributes (e.g., priority of the contrac-
tor, priority due to urgency of implementation).

8.3.1 Method for Requirements Prioritization

Determining goal and

constraints of prioritization

In order to prioritize a set of requirements, a goal (i.e., purpose) of prior-
itization must be defined first. In addition, the constraints of prioritization
are documented, such as the availability of different stakeholders and
groups thereof or the resources available for prioritization.

Determining prioritization

criteria

Depending on the goal of prioritization, the criterion for prioritizing
the requirements (or the combination of two or more criteria) is chosen.
The following are typical examples of prioritization criteria:

 Cost of implementation
 Risk
 Damage due to unsuccessful implementation
 Volatility
 Importance
 Duration of implementation (i.e., how long it takes to be implemented)

Determining Stakeholders Depending on the goal of prioritization and the selected prioritization
criteria, it is usually necessary to involve different stakeholders in the
prioritization process. By choosing appropriate stakeholders, it can be
guaranteed that the required expert knowledge is available during the
prioritization process. The stakeholders that ought to be involved are,
depending on the goal and prioritization criteria, developers, project
managers, customers, or users, for example.

8.3 Prioritizing Requirements 119

Selection of artifactsIn addition, the requirements to be prioritized must be selected. When
selecting requirements, one must make sure that the selected requirements
stem from the same level of abstraction. Prioritizing requirements from
considerably differing levels of detail will lead to inconsistent and errone-
ous results because stakeholders tend to assign a higher priority to
requirements at higher levels of abstraction than to more refined and con-
crete requirements.

Selection of prioritization

techniques

On the basis of the determined properties of the prioritization (e.g.,
constraints, criteria of prioritization, etc.), a suitable prioritization tech-
nique or a combination of multiple techniques is selected.

8.3.2 Techniques for Requirements Prioritization

For prioritization, multiple techniques exist. The techniques mainly differ
with regard to the time and effort needed but also with regard to the suit-
ability of the different prioritization criteria and project properties.

Ad hoc techniques and

analytical techniques

The spectrum of prioritization techniques spans from simple, single-
criterion classification to elaborate analytic prioritization approaches,
such as AHP (Analytical Hierarchy Process) [Saaty 1980], Cost-Value-
Analysis [Karlsson and Ryan 1997], or QFD (Quality Function Deploy-
ment) [Akao 1990].

In many projects, simple ad hoc prioritization techniques such as
ranking or requirements classification are well suited. Especially with
regard to the resources available, using ad hoc techniques is often advisa-
ble.

If the decision process is considered too incomprehensible, or if the
results are too erroneous, analytical approaches for prioritization should
be used (additionally). In practice, multiple prioritization techniques are
used in combination in order to prioritize the requirements [Lehtola and
Kauppinen 2006].

Ranking and Top-Ten Technique

Two well-established techniques for requirement prioritization are, for
example, the following [Lauesen 2002]:

 Ranking: In this technique, a number of selected stakeholders arrange
the requirements to be prioritized with respect to a specific criterion.

 Top-Ten Technique: In this technique, the n most important require-
ments for a defined criterion are selected. For these requirements, a

120 8 Requirements Management

ranking order is determined afterward. This ranking order represents
the importance of the selected requirements with regard to the defined
criterion.

Single-Criterion Classification

Another prioritization technique that is often used in practice is based on
the classification of requirements with respect to the importance of the
realization of the requirements for the system’s success. This type of prior-
itization is based on assigning each requirement to one of the following
priority classes [IEEE 830-1998]:

 Mandatory: A mandatory requirement is a requirement that must be
implemented at all costs or else the success of the system is threatened.

 Optional: An optional requirement is a requirement that does not nec-
essarily need to be implemented. Neglecting a few requirements of this
class does not threaten the success of the system.

 Nice-to-have: Nice-to-have requirements are requirements that do not
influence the system’s success if they are not implemented.

In practice, differentiating between “optional” and “nice-to-have” require-
ments can be very difficult. Therefore, requirements classification
demands classification criteria that are as objectively verifiable as possible.

Kano Classification

The Kano approach introduced in section 3.2 also supports the prioritiza-
tion of requirements. By making use of the Kano approach, one can classify
and prioritize requirements with respect to their acceptance on the market.
In order to do so, the following three property classes (see also figure 3-1)
are classified:

The three properties

 in the Kano approach

 Dissatisfiers: A requirement specifies a dissatisfier the system must
possess in order to be successfully introduced to the market.

 Satisfiers: A requirement specifies a satisfier if the customers con-
sciously demand the associated property. Satisfiers of the system spec-
ify the degree of satisfaction of the customer. An increase in the num-
ber of satisfiers usually leads to increased customer satisfaction.

 Delighters: A requirement specifies a delighter if the customers do not
consciously demand the defined system property or the customers do
not expect the implementation of the property. The customer satisfac-
tion increases exponentially by implementing delighters.

8.3 Prioritizing Requirements 121

On the basis of requirements classified according to Kano, a prioritization
of the requirements can be performed in order to plan the system releases,
for example.

Prioritization Matrix According to Wiegers

Computing requirement

priorities

The prioritization matrix according to Wiegers [Wiegers 1999] is an ana-
lytical prioritization approach for requirements. The core of the approach
is a prioritization matrix according to which the priorities of the regarded
requirements can be determined systematically. Figure 8-4 shows the
structure of a prioritization matrix according to Wiegers as well as the
method according to which priorities are calculated.

Figure 8-4 Calculation of priorities in a prioritization matrix according to Wiegers

Systematic method to

determine the requirement

priorities

In the following, the calculation of priorities in a prioritization matrix
according to Wiegers is only briefly sketched. More detailed information
can be found in [Wiegers 1999].

The calculation of priorities in a prioritization matrix according to
Wiegers can be done as follows:

 Determine the relative weights for benefit, detriment, cost, and risk.
 Determine the requirements to be prioritized.
 Estimate the relative benefit.
 Estimate the relative detriment.
 Calculate the total values and percentage values for each requirement:

Value%(Ri) =
Benefit(Ri) ×WeightBenefit + Detriment(Ri) × WeightDetriment

122 8 Requirements Management

 Estimate the relative cost and calculate the cost percentage for each
requirement.

 Estimate the relative risks and calculate the risk percentage for each
requirement.

 Calculate the individual requirement priorities:
Priority(Ri)=
Value%(Ri)/(Cost%(Ri) ×WeightCost + Risk%(Ri) ×WeightRisk)

 Assert the rank of the individual requirements.

It became apparent in practice that analytical prioritization approaches
such as the prioritization matrix according to Wiegers as sketched above
demand considerably more time and effort than ad hoc approaches, so
these ad hoc approaches are to be favored in many cases. However, analyt-
ical approaches have the advantage that the degree of subjectivity in the
prioritization results can be significantly reduced so that they lead to more
objective and comprehensible results in complex and critical prioritization
situations.

8.4 Traceability of Requirements

An important aspect of requirements management is ensuring the trace-
ability of requirements. The traceability of a requirement is the ability to
trace the requirements over the course of the entire life cycle of the system
(see section 4.5.5).

8.4.1 Advantages of Traceable Requirements

Advantages of requirements

traceability

The use of traceability information supports system development in many
aspects and is often the precondition for establishing and using certain
techniques during the developmental process [Pohl 1996; Ramesh 1998]:

 Verifiability: Traceability of requirements allows verifying whether a
requirement has been implemented in the system, i.e., if the require-
ment has been implemented through a system property.

 Identification of gold-plated solutions in the system: Traceability of
requirements allows for the identification of so-called gold-plated solu-
tions of the developed system and thereby allows identifying unneeded
properties. In order to do that, for each system property (functional or

8.4 Traceability of Requirements 123

qualitative), a check is performed to determine whether it contributes
to the implementation of a requirement of the system.

 Identification of gold-plated solutions in the requirements: Tracing
requirements back to their origin allows identifying requirements that
do not contribute to any system goal and are not associated with any
source. Usually, there is no reason for these requirements to exist and
hence these requirements do not have to be implemented.

 Impact analysis: Traceability of requirements allows for the analysis of
effects during change management. For example, traceability of
requirements allows identifying the requirements artifacts that must be
changed when their underlying requirements undergo a change.

 Reuse: Traceability of requirements allows for the reuse of require-
ments artifacts in other projects. By comparing the requirements of a
previous project to the requirements of a new project by means of trace
links, development artifacts (e.g., components, test cases) can be iden-
tified that may be adapted and/or reused in the new development pro-
ject.

 Accountability: Traceability of requirements allows for retroactive
assignment of development efforts to a requirement. After the require-
ment is implemented, for example, all partial efforts for the associated
development artifact can be summed up and associated with the
requirement.

 Maintenance: Traceability of requirements allows for simplified system
maintenance. For example, the cause and effect of failures can be iden-
tified, the system components that are affected by the failure can be
determined, and the effort for removing the underlying error can be
estimated.

8.4.2 Purpose-Driven Definition of Traceability

As resources are usually severely restricted during development projects,
capturing all conceivable information that supports the traceability of
requirements over the course of the system life cycle is almost never pos-
sible.

Purpose of traceability

information

In order to establish requirements traceability effectively and effi-
ciently, the information to be recorded should be chosen with respect to
the purpose that it will serve. In other words, only the information which
has a clear purpose for system development or system evolution [Dömges
and Pohl 1998; Ramesh and Jarke 2001] ought to be recorded. Recording

124 8 Requirements Management

of traceability information that is not purpose driven often results in the
fact that the recorded information cannot be profitably used in the devel-
opment project. Traceability information that is recorded in this fashion is
often sketchy and incomplete, unstructured, and erroneous with regard to
its further use.

8.4.3 Classification of Traceability Relations

Pre-RS traceability

and post-RS traceability

The pertinent literature on the topic of requirements traceability suggests
different kinds of traceability of requirements. A common differentiation
is distinguishing between pre-requirements-specification (pre-RS) trace-
ability and post-requirements-specification (post-RS) traceability of
requirements [Gotel and Finkelstein 1994]. We thus distinguish between
three kinds of traceability:

 Pre-RS traceability: Pre-RS traceability are traceability links between
requirements and those artifacts that are the basis for the requirements,
e.g., artifacts like the source or origin of a requirement (previous arti-
facts).

 Post-RS traceability: Post-RS traceability comprises traceability infor-
mation between requirements and artifacts of subsequent development
activities. For example, such artifacts could be components, implemen-
tation, or test cases that belong to a requirement (posterior artifacts).

 Traceability between requirements: The traceability between require-
ments is about mapping dependencies between requirements. An
example of this kind of traceability is the information that a require-
ment refines another requirement, generalizes it, or replaces it.

Figure 8-5 shows the three types of traceability of requirements in require-
ments engineering.

Figure 8-5 Types of requirements traceability

Artifacts that are the
basis of requirements
(previous artifacts)

Artifacts that are
based on requirements

(posterior artifacts)
Requirements

Origin of the requirements Realization of the requirements

Pre-RS
traceability

Post-RS
traceability

Traceabiltiy
between
requirements

8.4 Traceability of Requirements 125

Figure 8-6 shows the three types of requirements traceability by means of
requirement “R-14” in an example. The pre-RS traceability comprises the
relations of requirement “R-14” to its origin. The origin of this requirement
are the artifacts in the system context that influence the requirement. The
post-RS traceability of requirement “R-14” consists of the relations to the
components in the rough design, the refined design, and the respective
implementation as well as test cases that are used during system testing and
verify the implementation of the requirement in the developed system.

Figure 8-6 Example of the three types of requirements traceability

In addition, figure 8-6 shows the traceability between requirements. The
traceability link between requirement “R-14” and “R-11” documents that
requirement “R-14” was derived from requirement “R-11”.

8.4.4 Representation of Requirements Traceability

Requirements traceability information can be represented in different
ways. The most common approaches to representing traceability are sim-
ple textual references, hyperlinks, and trace matrices and trace graphs.

Text-Based References and Hyperlinks

This simple way to represent traceability information of a requirement
consists of annotating the target artifact as a textual reference in the

Stakeholder

“We want to gain technological
market leadership by 2010.”

Company Strategy
Document V.12

“The customer desires the
simplest possible interaction
with the navigation system”.

R-14: The navigation system shall offer the
user the ability to enter the destination via
voice command.

Rough design

Refined design

realized through

R-11: The navigation system must be able to
receive voice commands from the user.

Implementation

Pre-RS traceability

Test cases

is derived from

Post-RS traceability

Traceability between requirements

126 8 Requirements Management

requirement (initial artifact) or to establish a hyperlink between the initial
artifact and the target artifact. When linking artifacts, different types of
hyperlinks with specific link semantics can be used.

Trace Matrices

Another common technique for representing and documenting traceabil-
ity information between requirements as well as between requirements
and previous and posterior artifacts in the development process are trace
matrices. The rows in a trace matrix contain the initial artifacts (require-
ments). In the columns, the target artifacts (e.g., sources of requirements,
development artifacts, requirements) are represented. If a trace link exists
between an initial artifact in row n and a target artifact in column m, cell
(n, m) is marked in the trace matrix.

Interpretation

of a trace matrix

Figure 8-7 shows a simple trace matrix for the trace relation “derived”
that exists between two requirements. An entry in the matrix specifies that
a trace link of type “derived” exists from a requirement “Req-n” to another
requirement “Req-m” such that “Req-n” was derived from “Req-m”.

Figure 8-7 Representation of traceability information in a trace matrix

Maintainability of trace

matrices

In practice, it became apparent that trace matrices are difficult to maintain
as the number of requirements increases. A trace matrix that, for example,
documents the refinement relations between merely 2,000 requirements
contains over four million cells. In addition, many trace matrices must be
created in order to be able to represent the available information cleanly
(e.g., with regard to different types of traceability links).

Trace Graphs

A trace graph is a graph in which all nodes represent artifacts and all edges
represent relationships between artifacts. The distinction between differ-

derived Req-1 Req-2 Req-3 Req-4 Req-5

Req-1 X

Req-2 X

Req-3 X

Req-4 X

Req-5

In
iti

al
ar

tif
ac

ts

Target artifacts

8.5 Versioning of Requirements 127

ent artifacts and types of traceability can be realized by means of assigning
different attributes to the nodes and edges of the graph.

Trace graph over different

development artifacts.

Figure 8-8 shows the representation of traceability information in a
simple example. In the trace graph, a node type is defined for each type of
artifact (context information “C”, requirements “Req-n”, components
“Comp-n”). In addition, three types of edges are defined to represent three
types of traceability relations (“realized through”, “is origin”, “refines”).

Figure 8-8 Representation of traceability in a trace graph (extract)

Traceability chainsIf traceability information about previous artifacts (e.g., stakeholders and
interview protocols) as well as posterior artifacts (e.g., test cases and com-
ponents) must be managed, traceability chains for the respective require-
ment can be created at different levels, up to a trace of the requirement over
the entire life cycle of the system. Common tools to maintain requirements
allow for the definition of representation levels when creating traceability
chains so that, depending on the selected level, only immediate relations
of a requirement or entire traceability chains for the requirement can be
generated and displayed. The traceability chains are the foundation for
a comprehensive impact analysis during requirements change manage-
ment.

8.5 Versioning of Requirements

During the life cycle of a system, the requirements of the system change as
new requirements are added and existing requirements are removed or
altered. The reasons for changes in requirements are diverse. One possible
reason is, for instance, the fact that stakeholders learn more and more
about the system as requirements engineering progresses. As a result, new

Req-5

is origin
realized through

refines
Requirements
Components

Informationabout the system context

Req-6

C-1

C-2

C-3
C-4

Comp-3

Comp-2Comp-1

Req-1

Req-2

Req-3

128 8 Requirements Management

and altered requirements come to their mind. Due to these changes, a suit-
able versioning of requirements is strongly advisable.

Subject of version control Versioning of requirements aims at providing access to the specific
change states of individual requirements over the course of the life cycle of
the system. The version of a requirement is defined by its specific content
of the change state and is marked by a unique version number. The infor-
mation that is subject to version management can be single text-based
requirements, sentences, sections of requirements documents, or entire
requirements documents, but also requirements models and partial
requirements models.

8.5.1 Requirements Versions

When versioning requirements, one can distinguish between the version
and the increment of the version number. For example, the version num-
ber 1.2 references a requirement with version 1 and the increment 2.

Figure 8-9 illustrates the method of assigning version numbers. As
shown in the figure, with smaller changes regarding the content, the incre-
ment is increased by one. If larger changes are performed, the version
number is incremented. If the version number is increased, the increment
is set to the initial value (0). A v can be added in front of the version num-
ber to make it more understandable and easier to identify as such.

Figure 8-9 Requirements versions

Along with the rather simple structuring by means of version numbers,
and the proposed method of versioning requirements, other methods of
assigning version numbers are widely used. For example, it is possible to
distinguish between the version identifier, the increment identifier, and
the sub-increment identifier (v1.2.12).

v0.1
version number

v0.2 v0.3 v1.0 v1.1 v1.2

Req-3

small changes

big changes

version increment

8.5 Versioning of Requirements 129

8.5.2 Requirements Configurations

A requirements configuration consists of a set of requirements with the
additional condition that each selected requirement is present in the
requirements configuration with exactly one version, identified by the
version number.

Dimensions of configuration

management of

requirements

Managing configurations of requirements can be described in two
dimensions [Conradi and Westfechtel 1998]: In the product dimension,
configuration management deals with individual requirements within the
requirements base (foundation). In the version dimension, configuration
management considers the various change states as part of version man-
agement within the product dimension. Figure 8-10 illustrates both
dimensions of configuration management of requirements. On the
requirements axis, requirements are represented. On the version axis, the
different versions of the requirements are depicted.

Figure 8-10 Dimensions of configuration management of requirements
(based on [Conradi and Westfechtel 1998])

Properties of requirements

configurations

A configuration of requirements subsumes a defined set of logically con-
nected requirements (more precisely, versions of requirements), where
each requirement of the requirements base may occur at most once in the
requirements configuration. A requirements configuration does not need
to contain a version of every requirement that is considered in the product

[…]

Req-3

v0.1
Version dimension

……

Requirements configuration 1 Requirements configuration 2
= Baseline 1Product dimension

(here: requirements)

Requirement: Req-4
in version 1.1

v0.2 v0.3 v1.0 v1.1 v1.2

Req-2

Req-1

Req-4

Req-N

…

130 8 Requirements Management

dimension (see figure 8-10, requirements configuration 1). A configura-
tion of requirements has the following properties:

 Logical connection: The requirements contained in a configuration are
directly logically connected to one another, i.e., a goal-oriented group-
ing of the requirements to a common configuration has been per-
formed.

 Consistency: The requirements contained in a configuration do not
contradict one another, i.e., the configuration contains requirements
that are contradiction free in their respective version.

 Unique identification: A configuration has a unique identifier (ID)
which can be used to uniquely identify the configuration.

 Immutable: A configuration defines a certain, immutable state of the
specification. If requirements of a configuration are changed, a new
version of the requirements and potentially of the configuration is the
result.

 Basis for rollbacks: If changes of requirements must be undone, config-
urations offer the ability to roll back requirements to a specific version
within a configuration. Therefore, a consistent state of the specification
can be maintained.

8.5.3 Requirements Baselines

Configuration vs. baseline Requirements baselines are specific configurations of requirements that
typically comprise stable versions of requirements and, also, often define a
release of a system. Due to that property, requirements baselines are usu-
ally visible externally (e.g., to the contractor). When requirements base-
lines are used, a number of important activities in the development process
are supported:

 Basis for release planning: Requirements baselines are configurations of
“stable” requirements, specially marked for the contractor. Baselines
therefore serve as the basis of communication for the planning of sys-
tem releases as well as their definition.

 Estimation of the effort involved with implementation: As baselines of
requirements can be used for the definition of system releases, they can
also be used to estimate the effort needed to realize a system release.
This can be done by estimating the partial effort involved with imple-
menting a requirement of the baseline and summing up the total effort
for the remaining baseline.

8.6 Management of Requirements Changes 131

 Comparison to competing products: Requirements baselines can be used
to compare the planned system to competing systems.

8.6 Management of Requirements Changes

Requirements change over the course of the entire development and life
cycle of a system. This means that new requirements are added and
existing requirements are changed or removed.

8.6.1 Requirements Changes

Reasons for changesThe reasons for changes in requirements can be multifarious. Along with
changes that stem immediately from errors or incomplete requirements,
the evolution of the context can make it necessary to change the require-
ments. For example, changes in the stakeholders’ desired application of the
system, amendments to a law, new technologies, or additional competition
in the market can influence the requirements and make changes necessary.
Changes in requirements, however, can also stem from system failure after
the system was deployed if an error in the requirements can be held
responsible for the failure.

Changes per se are not

negative.

Changes in requirements per se are not negative. They are merely an
indication that stakeholders deal closely with the system and learn more
and more about its functions, qualities, and restrictions. If change requests
only occur infrequently during development of the system, it may be a
sign of low stakeholder interest in the system to be developed.

Change frequency as an

indicator of process quality

However, if requirements changes occur very frequently, the develop-
ment of a system that is in agreement with all involved stakeholders
becomes nearly impossible. A high change frequency is, among other
things, an indicator for inadequately performed requirements engineering
activities, such as elicitation and negotiation techniques. In addition, a
high change frequency takes up a lot of resources in the development pro-
ject.

8.6.2 The Change Control Board

Over the course of the system life cycle, it is necessary to channel change
requests for requirements and define a structured process that will lead to
a justified decision about whether a change request is approved and how it

132 8 Requirements Management

is approved. Changes can pertain to individual requirements (e.g., redefin-
ing a requirement) or the entire requirements document. The evaluation
of requirements changes, as well as the decision about performing the
change, is usually the responsibility of a change control board. The change
control board (CCB) typically has the following tasks:

Tasks of the

change control board

 Estimate the effort for performing the change (potentially commission
a third party with an effort analysis).

 Evaluate change requests, e.g., with respect to the effort/benefit ratio.
 Define requirement changes or define new requirements on the basis

of change requests.
 Decide about acceptance or rejection of change requests.
 Classify incoming change requests.
 Prioritize accepted change requests.
 Assign accepted change requests to change projects.

Representatives

in the change control board

In some cases, the CCB may want to delegate these tasks to another party.
Decisions about changes have to be negotiated and agreed upon with the
contractor and all involved stakeholders in the development project.
Therefore, the change control board should consist of, among others, the
following stakeholders, depending on the properties of the system to be
developed and the development process:

 Change manager
 Contractor
 Architect
 Developer
 Configuration manager
 Customer representative
 Product manager
 Project manager
 Quality assurance representative
 Requirements engineer

The role of the change

manager

The chairperson of the change control board is the change manager. The
change manager has the task, among other things, of mediating between
parties in case of conflicts and to negotiate decisions with the respective
parties. In addition, the change manager is responsible for communicating
and documenting decisions.

8.6 Management of Requirements Changes 133

8.6.3 The Change Request

Template

for change requests

In order to be able to manage changes of requirements during require-
ments engineering, they have to be documented in a purpose-oriented
manner. A change request documents the desired change and contains
additional information for the management of the change request.

A change request should contain the following information:

Change information Identifier: The identifier makes it possible to uniquely identify a change
request at any point during the life cycle of the system.

 Title: The title summarizes the key concern of the change request in
one brief statement.

 Description: The description documents the requirement change as
precisely as possible. It can contain information on the effect of the
changes as well.

 Justification: The most important reasons as to why the change is nec-
essary are listed here.

 Date filed: The date at which the change request was filed.
 Applicant: The name of the person that issued the change request.
 Priority (in the applicant’s opinion): The importance of the change

request according to the applicant’s opinion.

Management information

for the change request

In addition to the preceding change information, the following informa-
tion for requirements change management is helpful:

 Change validator: The person that verifies if the change has been per-
formed correctly.

 Impact analysis status: Flags whether an impact analysis has already
been performed on the change request.

 CCB decision status: Flags whether the change control board has
already decided upon the change request.

 CCB priority: Documents the priority of the change request assigned by
the change control board.

 Responsible: Documents the person that is in charge of performing the
change request.

 System release: Documents in which system release the changed
requirement shall be implemented.

134 8 Requirements Management

8.6.4 Classification of Incoming Change Requests

Corrective, adaptive,

and exceptional changes

After it has been filed, the change request is classified by the change man-
ager and the change control board. Typically, the change manager pre-
classifies incoming change requests that will be introduced, adapted (if
necessary), and finally approved (or rejected) during the next change
control board meeting. A change request can be classified according to the
following three categories:

 Corrective requirement change: A change request is classified thusly if
the reason for the change request is a failure of the system during its
operation that can be attributed to an error in the requirements.

 Adaptive requirement change: A change request is thusly classified if a
requested change requires the system to be amended. A possible reason
for an adaptive requirement change can be a change in the system con-
text, e.g., a new technology is available or the system boundary was
altered (see section 2.2).

 Exceptional change (hotfix): A change request is classified as an excep-
tional change if the change must absolutely immediately be done at all
costs. Exceptional changes can be either corrective or adaptive.

Different processing methods The method for processing requirements changes depends on their classi-
fication. For example, exceptional changes must be analyzed, evaluated,
decided, and potentially implemented right away. Contrastingly, adaptive
requirement changes are often processed in batches at a later point in time,
typically as soon as the next (or some subsequent) system release is immi-
nent. On the other hand, corrective requirement changes are usually ana-
lyzed, evaluated, and if necessary implemented rather promptly after the
change request has been filed.

8.6.5 Basic Method for Corrective and Adaptive Changes

Figure 8-11 illustrates the principal method of handling change requests.
This method can be tailored depending on organizational and project-
specific particularities.

8.6 Management of Requirements Changes 135

Figure 8-11 Method for handling change requests

Impact analysisDuring impact analysis, the effort for performing the change is estimated.
In order to do so, all requirements affected by the change are sought out,
including any newly defined requirements. Afterward, the posterior devel-
opment artifacts that potentially will have to be changed or redeveloped
are identified (e.g., test cases or components). For each affected artifact, the
effort for implementing the change is determined and the total effort for
the change is computed by summing up all partial efforts.

The consistent integration of the changes into the requirements basis
often only negligibly influence the total effort. The most significant por-
tion of the total effort is usually generated by the necessary adaptations of
the posterior development artifacts.

Using traceability

information

Identifying those requirements and posterior development artifacts
that are affected by a requirements change can be automated or at least
supported by means of traceability information. If no or not all necessary
traceability information is available, domain experts or experts of the
development team should be questioned with respect to the consequences
of the change request filed.

Impact analysis

Change evaluation

[change approved] [change rejected]

Prioritizing the
requirement change

Communicating
the rejection

Assigning the change
to a change project

136 8 Requirements Management

Evaluating

a change

After the impact analysis has been completed, the change control
board evaluates the change filed. In order to do that, cost and benefit are
compared and evaluated with regard to the available resources. For exam-
ple, the benefit of the change can be the avoided loss in prestige, improved
market position, or avoided contract penalties.

Implementing approved

changes

In the next step, approved changes are prioritized by the change
control board. Afterward, the requirements changes are assigned to a
change project or the next (or any subsequent) system release for imple-
mentation.

Validating the requirement

changes

Planning, control of the implementation, and validation of the suc-
cessfully applied changes are typically the responsibility of the change
manager or of the change control board and may be delegated, of course.

8.7 Measurement of Requirements

Metrics can be used to assess the quality of requirements and the require-
ments engineering process. A metric can be used to measure one or more
properties of requirements or of the requirements engineering process.
The measurement results obtained by using metrics are indicators of the
product and process quality.

8.7.1 Product vs. Process Metric

We thus differentiate between two types of metrics:

 Product metrics, used to obtain insights regarding the amount and
quality of the documented requirements and requirements documents

 Process metrics, used to obtain insights regarding the progress and
quality of the requirements engineering process

8.7.2 Examples of Product and Process Metrics

A typical example of a process metric used in requirements engineering is
a metric used to measure the “requirements changes” over a period of time
(e.g., already agreed-upon requirements that have been changed within
one month or week).

8.8 Summary 137

A typical example of a product metric used in requirements engineer-
ing is a metric used to measure the “number of requirements errors” iden-
tified in a requirements specification at a given point in time. Typically,
the error rate is calculated as a relative value, for example, per 100 pages of
the specification or per 1000 requirements.

The rate of requirements errors is primarily an indicator of the quality
of the requirements documents produced. Moreover, it is also an indicator
of the quality of the requirements engineering process.

8.8 Summary

Requirements management is a core activity of requirements engineering.
It’s the aim of this activity to maintain persistent availability of the docu-
mented requirements as well as other relevant information over the course
of the entire system or product life cycle, to structure this information in
a sensible manner (e.g., by means of requirements attributes), and to
ensure selective access to this information. The management of require-
ments comprises techniques of the following categories:

 Assigning attributes to requirements: In order to allow for requirements
management, properties of requirements are documented by means of
requirements attributes.

 Prioritizing requirements: Requirements are prioritized at different
points in time, during different activities, and according to different
criteria. Depending on the goal of prioritization and the subject of pri-
oritization, different prioritization techniques are to be used.

 Traceability of requirements: During requirements management, trace-
ability information of requirements is recorded, organized, and main-
tained so that information about cross references and dependencies
between requirements or between requirements and other develop-
ment artifacts can be used.

 Versioning of requirements: Versioning and configuring requirements
makes it possible to keep information about specific developmental
states of requirements and requirements documents available over the
course of the life cycle of the system or the product.

138 8 Requirements Management

 Management of requirements changes: Usually, the change control
board is responsible for processing change requests. The change
control board decides if a change request is approved or rejected and
prioritizes it. The board also performs an impact analysis to estimate
the impact of the change on all requirements and development artifacts
as well as the resources necessary for implementing the change.

 Measurement of requirements: Product and process metrics can be used
to measure the quality of the requirements and the requirements
engineering process.

9 Tool Support 139

9 Tool Support

The different activities of requirements engineering should be supported
by adequate tools that ideally integrate and continue processing the already
existing information. This information could have been generated during
requirements engineering (e.g., natural language or model-based require-
ments) or could have been used as the basis for requirements (e.g., conver-
sation minutes, goal documents, lists of stakeholders). In practice, the
most commonly known tools for requirements engineering are tools that
support the management of requirements (see chapter 8). This chapter pri-
marily considers requirements management tools (RM tools, for short).
Along with RM tools, there are also tools in requirements engineering that
support the elicitation, documentation, negotiation, and validation of
requirements.

9.1 General Tool Support

Tools during system

development

A great number of tools that are being used during system development
can also be used during requirements engineering. In that sense, test man-
agement, bug tracking, or configuration management tools often offer the
ability to manage requirements or have the ability to be extended to do so.
One advantage of using such tools for requirements management is that
requirements can be well integrated with the artifacts the tools were orig-
inally designed to create, like test cases or change requests. For example, if
requirements are managed using a test management tool and not a distinct
RM tool, an interface between two tools can be omitted and tracing test
cases and their respective requirements becomes much simpler.

Support through

wiki technologies

Wiki technologies are nowadays also used to support requirements
engineering. For instance, glossaries can be authored collaboratively or
system requirements can be worked on in cooperation using wiki technol-
ogies. Especially in case of systems with a large number of stakeholders,
wikis have proven themselves as exceedingly useful in practice.

140 9 Tool Support

Tools to structure, present,

visualize, and simulate

Tools of other tool categories can help increase the effectiveness and
efficiency of requirements engineering. Mind maps that have been devel-
oped during brainstorming sessions can serve as a structuring aid, and
presentation tools can help in designing a rough analysis concept. If pro-
totypes are used, simulation tools or test environments can help to simu-
late the operation of the system. Tools to design prototypical user inter-
faces (GUI prototypes) or development environments can illustrate user
interfaces and functions and serve as a basis for discussion. Flow charting
tools and visualization programs can be used to generate different dia-
grams and graphics.

Communication, office, and

project management tools

Also, tools that are commonplace in everyday work scenarios, such as
office suites, can be used gainfully in requirements engineering. Mail
clients, chat software, address books, calendar applications, and group-
ware platforms as well as tools for project management, planning, and
project controlling are everyday work tools that can aid requirements
engineering. These tools support stakeholders in the communication,
planning, and coordination of their tasks.

9.2 Modeling Tools

Along with natural-language-based information, in requirements engi-
neering information is also documented based on models, which can be
generated using modeling tools (see chapter 6). These tools do not only
offer the ability to create the models, they often also allow analyzing the
models for syntactic correctness.

When choosing modeling tools, it is important to adhere to criteria
similar to those for specialized requirements management tools (see sec-
tion 9.5). The modeling tool must provide a unique ID to each model ele-
ment to support traceability between the different models and allow for
multi-user manipulation. In addition, modeling tools should offer some
kind of version control functionality with regard to the models and the
model elements.

Traceability between

 multiple tools

An important aspect related to the application of different tools is the
integration and traceability between artifacts of the different tools (e.g.,
use cases, behavior models, and test cases). The choice of the modeling
tool or the RM tool ought to be made with regard to the interface between
both tools. That means that an interface should either be already present
or be easy to create. Such an interface should allow for tracing changes in

9.3 Requirements Management Tools 141

models and/or requirements and for managing the traces between models
and requirements (see chapter 8). If requirements change, it is indispensa-
ble to make the necessary changes in the associated model elements as
well. Similarly, if a model changes, the necessary changes must be inte-
grated into the natural language requirements as well.

9.3 Requirements Management Tools

Necessary properties

of RM tools

To support requirements management techniques (as described in chapter
8) most optimally, a RM tool should have the following basic properties:

 Manage different information (e.g., natural language requirements,
conceptual models, sketches, test plans, change requests)

 Manage logical relationships between information (traceability, e.g.,
between requirements or between requirements and their implementa-
tion)

 Allow for unique identification (e.g., a unique ID for every managed
artifact)

 Edit the managed information (multi-user accessibility, access control,
configuration and version management)

 Allow for different views on the managed information, depending on
the purpose

 Organize the managed information (grouping, hierarchically structur-
ing, assigning attributes, and annotation of additional information)

 Generate reports or summaries regarding the managed information
(e.g., reports of change requests for requirements)

 Generate different kinds of output documents based on the managed
information (e.g., generate requirements documents for a specific sys-
tem release)

Depending on the amount of functions and depending on what the basic
functions cover, requirements management tools can be categorized in two
ways:

 Specialized tools
 Standard office applications

142 9 Tool Support

9.3.1 Specialized Tools for Requirements Management

Tools of this category have been developed specifically to support require-
ments management techniques and govern any tasks associated therewith.
Characteristic properties of such tools are as follows (see chapter 8):

Characteristic

 RM tool properties

 Management of requirements and attributes on the basis of informa-
tion models

 Organization of requirements (by means of hierarchy levels)
 Configuration and version management on requirement level
 Definition of requirement baselines
 Multi-user accessibility and management (e.g., access control)
 Traceability management
 Consolidation of elicited requirements (e.g., generation of views)
 Change management support (change control)

Architecture of RM tools The different RM tools that are available on the market possess a similar
structure. The most common tools have a user interface that the user can
use to access all functions necessary to carry out the requirements man-
agement tasks. The managed data is stored in a database and can be edited
using an integrated editor. Different import and export functions for doc-
uments ensure that imported data from external systems can be read by
the RM tool and exported data can be read by external systems.

Suitability of RM tools Such requirements management tools thus cover most of the basic
functions. They are very well suited to managing the relevant information
for requirements engineering. An overview of the products that support
requirements engineering and that are available on the market can be
found, for example, on the website of the INCOSE and of the Volere
process.

9.3.2 Standard Office Applications

In many projects, standard office applications are still used to manage
requirements (e.g., word processors and spreadsheet calculators). The main
reasons for this are that on one hand, such applications are very widely dis-
tributed, and on the other hand, no additional effort must be spent to
become familiar with them. In conjunction with using templates – like, for
instance, templates for requirements documentation (see section 5.2) –
these applications are suited for documenting and, to some extent, for man-

9.4 Introducing Tools 143

aging requirements (e.g., traceability relations can be established by means
of hyperlinks).

Office applications give

only little support.

However, such tools support the basic functions of requirements man-
agement only to a limited extent. They do not offer a version control
mechanism on the level of requirements, nor do they have supporting fea-
tures for specific techniques for requirements management (e.g., the abil-
ity to maintain traceability links between individual artifacts in an auto-
mated way). Some of the basic functions can be emulated using other
tools. For instance, an office application that is used in conjunction with
some version control tool may fulfill the requirement of active version
control or managed multi-user access. Nevertheless, the productivity and
performance with regard to requirements management that can be
achieved with specialized tools cannot be achieved using standard office
applications.

9.4 Introducing Tools

Assign responsibility.Before any effort can be spent on finding a tool that supports requirements
management in the best possible manner, responsibilities regarding
requirements engineering should already have been delineated in the
organization or in the project. In addition to the parties responsible, the
techniques and processes that are necessary to achieve the goal of require-
ments engineering and requirements management (see chapter 8) must be
defined. After all, even the most sophisticated requirements management
tool is but an aid for the requirements engineer and requirements engi-
neering.

The tool follows

the method.

Only when every process and every technique has been defined and
all involved people are able to follow these constraints can an evaluation of
the available tools be performed. The following considerations have to be
factored in when choosing and introducing tools for requirements engi-
neering:

Consider necessary

resources.

 The choice and introduction of tools takes up resources in the organi-
zation. This holds not only for personnel entrusted with the introduc-
tion of a tool, but also for the future users of a tool. These efforts have
to be considered during evaluation.

Pilot project In practice, it has proven problematic to introduce a tool while a devel-
opment project is already in progress. While additional effort for
instruction of the employees can be estimated rather well, the risks that

144 9 Tool Support

are associated with introducing a new tool while a project is in progress
are easily underestimated. Employee resistance or deficiencies of the
tool that become apparent when the tool is deployed can influence the
project negatively. Such risks can be avoided by introducing new tools
in pilot projects. In this pilot project, additional resources for tool
introduction, employee instruction, and process tailoring should be
factored in.

Evaluation  A suitable tool should be determined in the context of a tool evalua-
tion. When manufacturers are surveyed and critical “must-have” crite-
ria are defined, potential candidates for introduction can be selected
and investigated in further detail. In order to do that, a catalogue of cri-
teria must be created that describes which requirements a tool for
requirements engineering must fulfill. The tools that remain to be eval-
uated can then be rated according to these requirements.

Costs  Costs for a tool usually exceed licensing cost alone. Typically, costs for
employee instruction as well as potential tool customization and costs
for support must be taken into account as well.

Instruct employees.  It is necessary for the future users of the tool to know, actively shape,
and master the processes and activities that they encounter during
requirements engineering. The users must be instructed with regard to
processes, techniques, and the respective tool support.

9.5 Evaluating Tools

Due to the many different kinds of tools that are available, evaluating tools
with regard to their adequacy to support requirements engineering is very
tedious and challenging in practice.

Views on tools in requirements

engineering

To evaluate the tools as objectively as possible, different views on the
tools in requirements engineering should be adopted. By defining differ-
ent tool views, it is possible to analyze the adequacy of a tool systematically
and to prioritize the tool requirements individually. Figure 9-1 shows
views that could be used to evaluate tool adequacy in requirements engi-
neering.

9.5 Evaluating Tools 145

Figure 9-1 Views on a requirements engineering tool

For each view, criteria should be defined that are tailored toward the core
aspects of the respective perspective.

9.5.1 Project View

Project supportThe project view shows the extent to which the tool can support the pro-
ject. Relevant criteria are support during project preparation, project plan-
ning, and project execution. With regard to project preparation, criteria
can be considered that pertain to the definition of project-specific infor-
mation types and documents. With regard to project planning, the scope
of defined milestones as well as how information and documents that are
created by means of the tool pertain to the milestones. Project execution
comprises criteria that pertain to the scope of project control and project
lead on the basis of information and documents that are created with the
tool.

146 9 Tool Support

9.5.2 User View

Perspective of the future users The user view considers the requirements for the tool that emerge out of
the perspective of the users (e.g., multi-user capability). The evaluation
from the perspective of the user is focused on tool usage, mapping of roles,
and support of group work. In detail, this means that the different stake-
holders that are involved in a development project must be adequately
mapped by appropriate user management and access rights management.
This enables the users to gain the appropriate access to the tool functions
and the stored information, depending on their respective role.

9.5.3 Product View

Tool functions The product view contains the functionalities that the tool possesses (e.g.,
different documentation types for requirements). Among other things, the
supported document types, views, and reports that can be generated, as
well as traceability between the selected products, are considered in this
view.

9.5.4 Process View

Method support offered

 by the tool

The process view focuses on the method support offered by the tool (e.g.,
possible guidance, maintenance of traceability relations). Considerations
of the process view comprise the ability to document activities within the
tool as well as the extent to which the tool offers method guidance. With
regard to method guidance, different degrees of obligation can be distin-
guished. Method guidance can be strict and restrictive or offer more leni-
ent suggestions and hints. Along with the degree of method support that
is offered by the tool, the degree to which a project-specific process model
can be defined can also be considered in this view.

9.5.5 Provider View

Market position

 of the manufacturer

 and support offered

The provider view considers the market position as well as the different
services that are offered by a manufacturer. When choosing a tool, not only
the functional aspects but also constraints that must be fulfilled for the tool
to be applicable are pertinent. The degree of brand awareness, for instance,
and the reputation of the provider are therefore often used as decision cri-
teria. Due to the relatively high acquisition cost and the long-term sub-

9.6 Summary 147

scriptions to support services, a close commitment toward the provider is
made.

9.5.6 Technical View

The tool’s ability to perform

and to integrate

The technical view involves technical context conditions that the system is
expected to meet. Important aspects in the technical view are, for instance,
the ability to integrate the tool, the performance of the used repository, the
necessary hardware and software, and scalability of the tool. The ability of
the tool to integrate can be determined, for instance, by investigating to
what extend the functionalities of the tool are accessible via an API and to
what degree the process, data, and control integration is possible. The scal-
ability of the tool can be determined, for instance, by determining the max-
imum number of users that can be maintained or the maximum number
of objects (e.g., content packages or documents). The performance of the
repository used can be measured by determining the degree to which
importing and exporting data can be done as well as by determining the
performance of the query interfaces or the available security concepts.

9.5.7 Economic View

Introduction and follow-up

costs

The economic view regards the possible costs that arise due to the acqui-
sition, introduction, and maintenance of a tool (e.g., licensing costs,
employee instruction costs, and support costs). The amount of the relevant
costs can consist of the integration costs, costs of operation, maintenance
and infrastructure, costs for method tailoring, and acquisition costs.

9.6 Summary

When managing requirements during requirements engineering, it is nec-
essary to store the information in a way that the quality criteria for require-
ments management are met. Tools support the requirements engineer in
doing so. These tools can be differentiated into professional RM tools,
modeling tools, and standard office applications and differ from one
another in the functionalities that are offered to the requirements engineer.
This is the reason an evaluation must be done before a tool is selected, so
as to not inhibit the introduction process unnecessarily.

This page intentionally left blank

References 149

References

[Akao 1990] Y. Akao: Quality Function Deployment – Integrating Customer
Requirements into Product Design. Productivity Press, Portland, 1990.

[Bandler 1994] R. Bandler: Metasprache und Psychotherapie: Die Struktur der
Magie I. Junfermann, Paderborn, 1994.

[Bandler and Grinder 1975] R. Bandler, J. Grinder: The Structure of Magic II.
Science and Behaviour Books, Palo Alto CA, 1975.

[Basili et al. 1996] V. Basili, S. Green, O. Laitenberger, F. Lanubile, F. Shull, S.
Sörumsgard, M. Zelkowitz: The Empirical Investigation of Perspective-
Based Reading. Empirical Software Engineering, Vol. 1, No. 12, Springer-
Verlag, Berlin, Heidelberg, 1996, pp. 133–144.

[Beck 1999] K. Beck: Extreme Programming Explained – Embrace Change.
Addision-Wesley, Reading MA, 1999.

[Boehm 1981] B. Boehm: Software Engineering Economics. Prentice Hall,
Englewood Cliffs, 1981.

[Boehm 1984] B. Boehm: Verifying and Validating Software Requirements
and Design Specifications. IEEE Software, Vol. 1, No. 1, IEEE Press, Los
Alamitos, 1984, pp. 75–88.

[Chaos 2006] Standish Group: Chaos Report, 2006.

[Chen 1976] P. Chen: The Entity-Relationship Specification – Toward
a Unified View of Data. ACM Transactions on Database Systems, Vol. 1,
No. 1, 1976, pp. 9–38.

[Chernak 1996] Y. Chernak: A Statistical Approach to the Inspection Checklist
Formal Synthesis and Improvement. IEEE Transactions on Software
Engineering, Vol. 22, No. 12, 1996, pp. 866-874.

[Cockburn 2001] A. Cockburn: Writing Effective Use Cases. Addison-Wesley,
Reading, MA, 2001.

150 References

[Conradi and Westfechtel 1998] R. Conradi, B. Westfechtel: Version Models
for Software Configuration Management. ACM Computing Surveys, Vol.
30, No. 2, 1998, pp. 232–282.

[Davis 1993] A. M. Davis: Software Requirements – Objects, Functions, and
States. Prentice Hall, Englewood Cliffs, 1993.

[DeBono 2006] E. DeBono: Edward DeBono’s Thinking Course: Powerful
Tools to Transform Your Thinking. BBC Active, Harlow, 2006.

[DeMarco 1978] T. DeMarco: Structured Analysis and System Specification.
Yourdon Press, New York, 1978.

[Dömges and Pohl 1998] R. Dömges, K. Pohl: Adapting Traceability
Environments to Project-Specific Needs. Communications of the ACM,
Vol. 41, No. 12, 1998, pp. 55–62.

[Easterbrook 1994] S. Easterbrook: Resolving Requirements Conflicts with
Computer-Supported Negotiation. In: M. Jirotka, J. Goguen (eds.):
Requirements Engineering – Social and Technical Issues, Academic Press,
London, 1994, pp. 41–65.

[Elmasri and Navathe 2006] R. Elmasri, S. B. Navathe: Fundamentals of
Database Systems. 5th Edition, Addison-Wesley, Reading MA, 2006.

[Gause and Weinberg 1989] D. C. Gause, M. Weinberg: Exploring
Requirements – Quality before Design. Dorset House, New York, 1989.

[Gilb and Graham 1993] T. Gilb, D. Graham: Software Inspection. Addison-
Wesley, Reading MA, 1993.

[Glass and Holyoak 1986] A. L. Glass, K. J. Holyoak: Cognition. Random
House, New York, 1986.

[Glinz and Wieringa 2007] M. Glinz, R. Wieringa: Stakeholders in
Requirements Engineering. IEEE Software 24, 2, 2007, pp. 18–20.

[Gotel and Finkelstein 1994] O. Gotel, A. Finkelstein: An Analysis of the
Requirements Traceability Problem. In: Proceedings of the IEEE
International Conference on Requirements Engineering (ICRE’94), 1994,
pp. 94–102.

[Gottesdiener 2002] E. Gottesdiener: Requirements by Collaboration:
Workshops for Defining Needs. Addison-Wesley Longman, Amsterdam,
2002.

References 151

[Harel 1987] D. Harel: Statecharts – A Visual Formalism for Complex Systems.
Science of Computer Programming, Vol. 8, No. 3, 1987, pp. 231–274.

[Hatley and Pirbhai 1988] D. J. Hatley, I. A. Pirbhai: Strategies for Real Time
System Specification. Dorset House, New York, 1988.

[Hickey and Davis 2003] A. M. Hickey, A. M. Davis: Elicitation Technique
Selection: How Do Experts Do It? Proceedings of the 11th IEEE
International Requirements Engineering Conference (RE'03), Monterey
Bay, USA, 2003, pp. 169–178.

[IEEE 610.12-1990] Institute of Electrical and Electronics Engineers: IEEE
Standard Glossary of Software Engineering Terminology (IEEE Std.
610.12-1990). IEEE Computer Society, New York, 1990.

[IEEE 830-1998] Institute of Electrical and Electronics Engineers: IEEE
Recommended Practice for Software Requirements Specifications (IEEE
Std. 830-1998). IEEE Computer Society, New York, 1998.

[ISO/IEC 9126] International Organisation for Standardization: Software
Engineering – Product Quality – Part 1: Quality Model. Geneva, 2001.

[ISO/IEC 15504-5] International Organisation for Standardization:
An Exemplar Process Assessment Model. Geneva, 2007.

[ISO/IEC 25010:2011] International Organization for Standardization:
Systems and software engineering – Systems and software Quality
Requirements and Evaluation (SQuaRE) – System and software quality
models, Geneva 2011.

[ISO/IEC/IEEE 29148:2011] International Organization for Standardization:
Systems and software engineering – Life cycle processes – Requirements
engineering, Geneva, 2011.

[Jacobson et al. 1992] I. Jacobson, M. Christerson, P. Jonsson, G. Oevergaard:
Object Oriented Software Engineering – A Use Case Driven Approach.
Addison-Wesley, Reading MA, 1992.

[Jones 1998] T. C. Jones: Estimating Software Costs. McGraw-Hill, New York,
1998.

[Kano et al. 1984] N. Kano, S. Tsuji, N. Seraku, F. Takahashi: Attractive Quality
and Must-be Quality. Quality – The Journal of the Japanese Society for
Quality Control, Vol. 14, No. 2, 1984, pp. 39–44.

152 References

[Karlsson and Ryan 1997] J. Karlsson, K. Ryan: A Cost-Value Approach for
Prioritizing Requirements. IEEE Software, Vol. 14, No. 5, IEEE Press, Los
Alamitos, 1997, pp. 67–74.

[Keller et al. 1992] G. Keller, M. Nüttgens, A.-W. Scheer: Semantische
Prozeßmodellierung auf der Grundlage »Ereignisgesteuerter
Prozessketten (EPK)«. Publications of the institute for business informatics
(IWi), Saarland University , Issue 89, Saarbrücken, 1992.

[Kosslyn 1988] S. M. Kosslyn: Imagery in Learning. In: M. Gazzaniga (ed.):
Perspectives in Memory Research, The MIT Press, Cambridge, 1988.

[Kruchten 2001] P. Kruchten: The Rational Unified Process: An Introduction,
Addison-Wesley, 2001.

[Laitenberger and DeBaud 2000] O. Laitenberger, J.-M. DeBaud:
An Encompassing Life Cycle Centric Survey of Software Inspection.
Journal of Systems and Software, Vol. 50, No. 1, 2000, pp. 5–31.

[Lauesen 2002] S. Lauesen: Software Requirements – Styles and Techniques,
Addison-Wesley, London, 2002.

[Lehtola and Kauppinen 2006] L. Lehtola, M. Kauppinen: Suitability of
Requirements Prioritization Methods for Market-driven Software Product
Development. Software Process – Improvement and Practice, Vol. 11, No.
1, 2006, pp. 7–19.

[Macaulay 1993] L. Macaulay: Requirements Capture as a Cooperative
Activity. In: Proceedings of the 1st IEEE International Symposium on
Requirements Engineering, 1993, pp. 174–181.

[Maiden and Gizikis 2001] N. Maiden, A. Gizikis: Where Do Requirements
Come From? IEEE Software 18, 5, 2001, pp. 10–12.

[McMenamin and Palmer 1988] S. M. McMenamin, J. F. Palmer:
Essential Systems Analysis. Prentice Hall, London, 1984.

[Mealy 1955] G. H. Mealy: A Method for Synthesizing Sequential
Circuits. Bell System Technical Journal, Vol. 34, No. 5, 1955, pp. 1045–
1079.

[Mietzel 1998] G. Mietzel: Pädagogische Psychologie des Lernens und
Lehrens. 5th Edition, Hogrefe-Verlag, Göttingen, 1998.

References 153

[Moore 1956] E. F. Moore: Gedanken-Experiments on Sequential Machines.
In: C. Shannon, J. McCarthy (eds.): Automata Studies, Princeton
University Press, Princeton, 1956, pp. 129–153.

[Moore 2003] C. Moore: The Mediation Process – Practical Strategies for
Resolving Conflicts. 3rd Edition, Jossey-Bass, San Francisco, 2003.

[OMG 2007] OMG: Unified Modeling Language: Superstructure,
Version 2.1.1. OMG document formal/2007-02-05.

[Pohl 1996] K. Pohl: Process-Centered Requirements Engineering.
Research Study Press, Advanced Software Development, Taunton,
Somerset, 1996.

[Pohl 2008] K. Pohl: Requirements Engineering – Grundlagen, Prinzipien,
Techniken. dpunkt.verlag, Heidelberg, 2008.

[Pohl 2010] K. Pohl: Requirements Engineering – Fundamentals, Principles,
and Techniques. Springer, New York, 2010.

[Pohl et al. 2005] K. Pohl, G. Böckle, F. van der Linden: Software Product Line
Engineering – Foundations, Principles, and Techniques. Springer-Verlag,
Berlin, Heidelberg, New York, 2005.

[Potts et al. 1994] C. Potts, K. Takahashi, A. Antón: Inquiry-Based
Requirements Analysis. IEEE Software 11, 2, 1994, pp. 21–32.

[Ramesh 1998] B. Ramesh: Factors Influencing Requirements Traceability
Practice. Communications of the ACM, Vol. 41, No. 12, ACM Press, 1998,
pp. 37–44.

[Ramesh and Jarke 2001] B. Ramesh, M. Jarke: Toward Reference Models for
Requirements Traceability. IEEE Transactions on Software Engineering 27,
1, 2001, pp. 58-92.

[Robertson 2002] J. Robertson: Eureka! Why Analysts Should Invent
Requirements. IEEE Software 19, 4, 2002, pp. 20–22.

[Robertson and Robertson 2006] S. Robertson, J. Robertson: Mastering the
Requirements Process. 2nd Edition, Addison-Wesley, Upper Saddle River,
2006.

[Rohrbach 1969] B. Rohrbach: Kreativ nach Regeln – Methode 635,
eine neue Technik zum Lösen von Problemen. Absatzwirtschaft 12,
Issue 19, 1969, pp. 73–75.

154 References

[Royce 1987] W. W. Royce: Managing the Development of Large Software
Systems. In: Proceedings of the 9th International Conference on Software
Engineering (ICSE’87), IEEE Computer Society Press, Los Alamitos, 1987,
pp. 328–338.

[Rumbaugh et al. 2005] J. Rumbaugh, I. Jacobson, G. Booch: The Unified
Modeling Language Reference Manual. 2nd Edition,
Addison-Wesley, Boston, 2005.

[Rupp 2014] C. Rupp: Requirements-Engineering und -Management –
Aus der Praxis von klassisch bis agil. Hanser-Verlag, Munich, 2014.
(Individual chapters also available in English on the SOPHIST website:
http://www.sophist.de)

[Rupp et al. 2007] C. Rupp, S. Queins, B. Zengler: UML 2 glasklar –
Praxiswissen für die UML-Modellierung. Hanser-Verlag, Munich, 2007.

[Saaty 1980] T. L. Saaty: The Analytical Hierarchy Process. McGraw-Hill, New
York, 1980.

[SEI 2006] Software Engineering Institute: CMMI for Development (CMMI-
Dev), V1.2, Technical Report CMU/SEI-2006-TR-008 – ESC-TR-2006-
008. Carnegie Mellon, Software Engineering Institute, Pittsburgh, PA 2006.

[Shull et al. 2000] F. Shull, I. Rus, V. Basili: How Perspective-Based Reading
Can Improve Requirements Inspections. IEEE Computer, Vol. 33, No. 7,
2000, pp. 73–79.

[Sommerville 2007] I. Sommerville: Software Engineering. 8th Edition,
Pearson Studium, Boston, 2007.

[Stachowiak 1973] H. Stachowiak: Allgemeine Modelltheorie.
Springer-Verlag, Vienna, 1973.

[van Lamsweerde et al. 1991] A. van Lamsweerde, A. Dardenne, B.
Delcourt, F. Dubisy: The KAOS Project – Knowledge Acquisition in
Automated Specification of Software. In: Proceedings of AAAI Spring
Symposium Series, Stanford University, American Association for
Artificial Intelligence, 1991, pp. 69–82.

[V-Modell 2004] V-Modell: V-Modell XT, 2004, Entwicklungsstandard für
IT-Systeme des Bundes, Bundesrepublik Deutschland, Vorgehensmodell.
www.kbst.bund.de

http://www.sophist.de
www.kbst.bund.de

References 155

[Ward and Mellor 1985] P. Ward, S. Mellor: Structured Development of Real-
Time Systems – Introduction and Tools. Vol. 1. Prentice Hall, Upper Saddle
River, 1985.

[Weinberg 1978] V. Weinberg: Structured Analysis. Yourdon Press, New York,
1978.

[Wiegers 1999] K. E. Wiegers: Software Requirements. Microsoft Press,
Redmond, 1999.

[Yourdon 1989] E. Yourdon: Modern Structured Analysis. Prentice Hall,
Englewood Cliffs, 1989.

[Yu 1997] E. Yu: Towards Modelling and Reasoning Support for
Early-Phase Requirements Engineering. In: Proceedings of the 3rd IEEE
International Symposium on Requirements Engineering (RE'97), IEEE
Computer Society, Los Alamitos, 1997, pp. 226–235.

This page intentionally left blank

Index 157

Index

A

Accountability 123
Action voice 53
Activity diagram 36, 79
Activity node 79
Activity partition 80
Actor 17, 65
Adaptive change 134
Aggregation (UML) 75
Agreed 43
Agreement See Negotiation
AHP See Analytical Hierarchy Process
Alternative scenario 81
Ambiguity 96
Analogy technique 27
Analysis of conflicts 105
Analytic thinking 6
Analytical Hierarchy Process 119
AND/OR trees 62
Apprenticing 29
Architect 132
Association (UML) 75
Assumption 2
Attribute scheme

definition 112
project-specific 114

Attribute type 113
Attribute (ER) 72
Attributing 112, 115, 116
Audio recording 30
Audition team 94
Auditor protocol 102
Author (role) 99

B

Behavioral model 82
Behavioral perspective 35, 82
Bionics 27
Bisociations 27
Brainstorming 26, 140
Brainstorming paradox 27
Business goal (RUP) 37
Business model (RUP) 37
Business processes 11
Business rules (RUP) 37
Business use case (RUP) 37

C

Cardinality (ER) 73
CCB See Change control board
Change control board 132, 135
Change frequency 131
Change management 142
Change manager 132
Change of perspective 27
Change request 131, 141
Checklist 103
Class diagram 36
Class (UML) 74
Client 2

wishes 2
Client (RUP) 37
CMMI 9
Commenting 97
Communication

technical 6
verbal 5

158 Index

Communication medium 5
Communication skills 7
Completeness

of a requirements document 42
Completeness (ISO/IEC/IEEE 29148) 43
Composition (UML) 75
Compromise 106
Conceptual model 34, 141
Conceptual modeling language 60
Concurrent state machine 85
Condition

in activity diagrams 79
in statecharts 83
incompletely specified 52

Configuration management 129
Configuration manager 132
Conflict

analysis 105
documentation of resolution 108
identification 105
mixed reasons for 106
of data 105
of interest 105
of relationship 105
of structure 106
of value 105
resolution 106
risks of a 90
techniques for resolution 106
types of 105
unresolved 90

Conflict resolution skills 7
Consider-all-facts (CAF) 107
Consistency (ISO/IEC/IEEE 29148) 43, 44
Constraint

System Requirements Specifications 38
term definition 8

Context boundary
definition of the 12, 15
gray zone 17
term definition 15

Context consideration
erroneous 12

Context modeling 17

Contract management 41
Contractor 132
Control flow

and data flow diagrams 78
execution of concurrent 80

Control flow graph 79
Corrective change 134
Cost-Value-Analysis 119
CRC card 30
Creativity technique 26
Customer representative 132
Customer Requirements Specification 38

D

Data flow diagram 17, 77
Data flow model See Data flow diagram
Data flow (DFD) 77
Data modeling 36
Data perspective 34, 71
Data store (DFD) 77
Decision matrix 107
Decision node 79
Definition of variants 107
Delighter 23, 120
Developer 132
DFD See Data flow diagram
Dissatisfier 23, 120
Document structure 37
Documentation form

change of 96
combined 62
model-based 59
natural-language-based 49

Documentation (activity) 4
Document-centric technique 28
during 118

E

Economic view 147
Effort 114

Index 159

Elicitation
of innovations 26
through reuse 28

Elicitation technique 24
Elicitation (activity) 4
Energy flow 17
Entity type (ER) 72
Entity-relationship diagram 71
Entry point 85
Environment See System context
EPC See Event-driven process chain
Error statistics 103
Event

physical 11
technical 11

Event-driven process chain 79
Evolutionary prototype 101
Exceptional change 134
Execution scenario 81
Exit point 85
Extend relation 65
Extendibility 42
eXtreme Programming 5

F

Feasibility (ISO/IEC/IEEE 29148) 44
Field observation 29
Functional model 76
Functional modeling 76
Functional perspective 34, 76
Functional requirement

perspectives 34
term definition 8

G

Generalization (UML) 75
Glossary 5, 37, 45, 139
Glossary entry 45
Goal decomposition 62
Goal model 62

Gold-plated solution 122
Gray zone

of the context boundary definition 16
of the system context definition 14
shifting of the 15, 17

H

Hardware 11
Hardware interface 14
Hierarchization

in state diagrams 85
of states 83

Human-machine interface 14
Hyperlink 126

I

Identification of conflicts 105
Identifier 113
IEEE standard 610 46
Impact analysis 123, 127, 133, 135
Implicit background knowledge 6
Include relation 65
Incompletely specified

condition 52
process verb 53

Increment identifier 128
Inspection 98
Inspector (role) 99
Interface

between human and machine 14
hardware 14
software 14

Interview 25
ISO/IEC 15504-5 9
ISO/IEC/IEEE 29148 38, 41

K

Kano approach See Kano model
Kano model 22, 120

160 Index

L

Lastenheft See Customer Requirements Specification
Legal obligation 114

M

Main Scenario 81
Maintenance 123
Management of requirements 111
Management (activity) 4
Manual 102
Manufacturers survey 144
Material flow 17
Mealy automata 82
Mind map 140
Mind mapping 30
Minute taker (role) 99
Model

properties 60
term definition 59

Model conceptual See Conceptual model
Modeling

of data 36
of goals 62
of sequences 36
of states 36
of static structures 71
of use cases 64

Modeling language See Conceptual modeling
language

Modeling tool 140
Moderation skills 7
Moderator (role) 99
Modifiability 42
Money flow 17
Moore automaton 82
Multiplicity (UML) 75

N

Necessity (ISO/IEC/IEEE 29148) 43
Negotiation 90

Nominalization 50
Noun without reference index 51

O

Object flow 80
Observation protocol 102
Observation technique 29
Office applications 142
Organizer (role) 99
Other technical systems 11
Overruling 107

P

Passive voice 53
Perception transformation 49
Perspective-based reading 28, 100
Pflichtenheft See System Requirements Specification
Physical events 11
Physical process 11
Pilot project 144
Plus-minus-interesting (PMI) 107
Post-RS traceability 124
Pre-RS traceability 124
Prioritization of requirements 118
Prioritization criteria 118
prioritization matrix 121
Prioritization techniques 119
Priority 113, 133

of a requirement 118
Process knowledge 6
Process model 5
Process view 146
Process (DFD) 77
Product manager 132
Product view 146
Project constraints 4
Project manager 132
Project view 145
Prototype 31, 101
Provider view 146

Index 161

Q

QFD See Quality Function Deployment
Quality aspects of requirements

agreement 91
content 91
documentation 91

Quality assurance representative 132
Quality criteria for requirements documentation 43
Quality Function Deployment 119
Quality requirement

term definition 8
Questionnaire 26

R

Ranking 119
Rational Unified Process 37
Reader (role) 99
Relation type (ER) 72
Release planning 121
Representation transformation 49
Requirement

attributes 111
conscious 23
deficient 2
erroneous 1
incomplete 1
legal obligation 34
negotiation 90
perspectives 34
Prioritization 118
reuse of 97
subconscious 23
term definition 3
types 8
unconscious 23
validation 89
versioning 128

Requirement context 12
Requirement defect 2
Requirement documentation

hybrid 37
Requirement version 128
Requirements baseline 130

Requirements change 131
Requirements configuration 129
Requirements document 2

customized standard contents 39
hybrid 36
standard outline of the 37
usage throughout the development process 40

Requirements documentation
model-based 35, 59, 96
natural language-based 96
reasons for 33
template-based 112
using natural language 35, 49

Requirements engineer 132
characteristics of 6
obligations and privileges 21

Requirements engineering
activities in 4
continuous 5
cost of errors 2
inadequate 2
source of errors 1

Requirements management tool 141
Requirements models 61

advantages 61
and natural-language requirements 62
behavioral perspective 82
data perspective 71
functional perspective 76

Requirements patterns 53
Requirements source 3, 19
Requirements template

for autonomous system activity 55
for interface requirements 56
for user interaction 55

Requirements templates 53
Requirements view

combined 117
condensed 117
definition 115
selective 115

Resolution of conflict 106
Reuse 28, 37, 97, 123
Review 97

162 Index

Risk 113
RM tool See Requirements management tool
RUP See Rational Unified Process

S

Satisfier 23, 120
Scope 13
Semantics 60
separates 13
Sequence modeling 36
Singe-Criterion Classification 120
Sink

of information flows 14
Sink (DFD) 77
Six Thinking Hats 27
Software inspection 98
Software interface 14
Software Requirements Specification 38
Source

of a requirement 3, 13, 113
of information flows 14

Source (DFD) 77
SPICE 9
Spreadsheet calculator 142
SRS See Software Requirements Specification
Stability 113
Stakeholder

as a source/sink 14
during negotiation 90
during validation 94
groups of 11, 14
in requirements engineering 2
in requirements prioritization 118
in the system context 11
list of 20
obligations and privileges 21
relation to requirements engineer 6
requirements source 19
term definition 3

Standard outline 37
State 83, 85
State diagram 36

State machine diagram See State diagram
State machine See State diagram
State modeling 36
Statechart 83
Super state 83, 85
Survey technique 25
Synchronization

of concurrent state machines 85
Syntax 60
System

as requirements source 19
System archaeology 28
System boundary

definition of the 12, 14
gray zone 14
term definition 13
use case 65

System context
aspects in the 11
documenting the 17
term definition 11

System release 130, 133, 136
System Requirements Specification 38

T

Technical events 11
Technical process 11
Technical view 147
Technique

for elicitation See Elicitation technique
Techniques

for requirements prioritization 119
Template

for use case specification 68
Test case 127, 135
Throw-away prototype 101
Tool evaluation 144
Tool support 139
Top-Ten Technique 119
Trace graph 127
Trace matrix 126

Index 163

Traceability 43, 122, 141
between requirements 124
of requirements documents 43
purpose-driven 123

Traceability (ISO/IEC/IEEE 29148) 44
Traceability chain 127
Traceability information 135
Traceability management 142
Transformational effects 49
Transition 83

U

UML See Unified Modeling Language
Unambiguity 42
Unambiguity (ISO/IEC/IEEE 29148) 43
Understandability 44

fundamental principles 45
Unified Modeling Language 5
Universal quantifiers 51
Use case 30, 36, 65
Use case diagram 17, 36, 64
Use case modeling 30
Use case specification 67
User 3
User view 146

V

Validation criteria 102
quality aspect “agreement” 93
quality aspect “content” 91
quality aspect “documentation” 92

Validation of requirements 89
external vs. internal 95
perspective-based 95
principles 94
repetition of the 96
techniques 97
through development artifact construction 96
through prototypes 101

Validation scenario 102
Validation See Validation of requirements
Validation team 94
Validation (activity) 4
Verifiability 122
Verifiability (ISO/IEC/IEEE 29148) 44
Verification (activity) 4
Version management 142
Version number 128
Versioning 128
Video recording 30
View

role-specific definition 115
View definition

combined 117
condensed 117
selective 115

V-Model 5, 38
Voting 107

W

Walk-through 99
Waterfall model 5
Wiki technologies 139
Word processors 142
Workshop 30

This page intentionally left blank

Index 165

166 Index

Klaus Pohl

Requirements
Engineering
Fundamentals, Principles,
and Techniques
Springer-Verlag 2010
Hardcover
814 pages
ISBN 978-3-642-12577-5

www.requirements-book.com

www.paluno.uni-due.de/en

In this textbook, Klaus Pohl provides a com-
prehensive and well-structured introduc-
tion to the fundamentals, principles, and
techniques of requirements engineering.
He presents approved techniques for elicit-
ing, negotiating and documenting as well
as validating, and managing requirements
for software-intensive systems. The various
aspects of the process and the techniques
are illustrated using numerous examples.

The book aims at professionals, students,
and lecturers in systems and software en-
gineering or business applications develop-
ment. Professionals such as project man-

agers, software architects, systems analysts,
and software engineers will benefit in their
daily work from the didactically well-pre-
sented combination of validated proced-
ures and industrial experience.

Students and lecturers will appreciate the
comprehensive description of sound
fundamentals, principles, and techniques,
complemented by a commented list of
references for further reading. Lecturers will
find additional teaching material on
www.requirements-book.com.

www.requirements-book.com
www.requirements-book.com
www.paluno.uni-due.de/en

	Cover
	Contents
	Foreword
	With Contributions from
	1 Introduction and Foundations
	1.1 Introduction
	1.1.1 Figures and Facts from Ordinary Projects
	1.1.2 Requirements Engineering – What Is It?
	1.1.3 Embedding Requirements Engineering into Process Models

	1.2 Fundamentals of Communication Theory
	1.3 Characteristics of a Requirements Engineer
	1.4 Requirement Types
	1.5 Importance and Categorization of Quality Requirements
	1.6 Summary

	2 System and Context Boundaries
	2.1 System Context
	2.2 Defining System and Context Boundaries
	2.2.1 Defining the System Boundary
	2.2.2 Defining the Context Boundary

	2.3 Documenting the System Context
	2.4 Summary

	3 Eliciting Requirements
	3.1 Requirements Sources
	3.1.1 Stakeholders and Their Significance
	3.1.2 Handling Stakeholders in the Project

	3.2 Requirements Categorization According to the Kano Model
	3.3 Elicitation Techniques
	3.3.1 Types of Elicitation Techniques
	3.3.2 Survey Techniques
	3.3.3 Creativity Techniques
	3.3.4 Document-centric Techniques
	3.3.5 Observation Techniques
	3.3.6 Support Techniques

	3.4 Summary

	4 Documenting Requirements
	4.1 Document Design
	4.2 Types of Documentation
	4.2.1 The Three Perspectives of Requirements
	4.2.2 Requirements Documentation using Natural Language
	4.2.3 Requirements Documentation using Conceptual Models
	4.2.4 Hybrid Requirements Documents

	4.3 Document Structures
	4.3.1 Standardized Document Structures
	4.3.2 Customized Standard Contents

	4.4 Using Requirements Documents
	4.5 Quality Criteria for Requirements Documents
	4.5.1 Unambiguity and Consistency
	4.5.2 Clear Structure
	4.5.3 Modifiability and Extendibility
	4.5.4 Completeness
	4.5.5 Traceability

	4.6 Quality Criteria for Requirements
	4.7 Glossary
	4.8 Summary

	5 Documenting Requirements in Natural Language
	5.1 Effects of Natural Language
	5.1.1 Nominalization
	5.1.2 Nouns without Reference Index
	5.1.3 Universal Quantifiers
	5.1.4 Incompletely Specified Conditions
	5.1.5 Incompletely Specified Process Verbs

	5.2 Requirement Construction using Templates
	5.3 Summary

	6 Model-Based Requirements Documentation
	6.1 The Term Model
	6.1.1 Properties of Models
	6.1.2 Modeling Languages
	6.1.3 Requirements Models
	6.1.4 Advantages of Requirements Models
	6.1.5 Combined Use of Models and Natural Language

	6.2 Goal Models
	6.2.1 Goal Documentation Using AND/OR Trees
	6.2.2 Example of AND/OR Trees

	6.3 Use Cases
	6.3.1 UML Use Case Diagrams
	6.3.2 Use Case Specifications

	6.4 Three Perspectives on the Requirements
	6.5 Requirements Modeling in the Data Perspective
	6.5.1 Entity-Relationship Diagrams
	6.5.2 UML Class Diagrams

	6.6 Requirements Modeling in the Functional Perspective
	6.6.1 Data Flow Diagrams
	6.6.2 Models of the Functional Perspective and Control Flow
	6.6.3 UML Activity Diagrams

	6.7 Requirements Modeling in the Behavioral Perspective
	6.7.1 Statecharts
	6.7.2 UML State Diagrams

	6.8 Summary

	7 Requirements Validation and Negotiation
	7.1 Fundamentals of Requirements Validation
	7.2 Fundamentals of Requirements Negotiation
	7.3 Quality Aspects of Requirements
	7.3.1 Quality Aspect "Content"
	7.3.2 Quality Aspect "Documentation"
	7.3.3 Quality Aspect "Agreement"

	7.4 Principles of Requirements Validation
	7.4.1 Principle 1: Involvement of the Correct Stakeholders
	7.4.2 Principle 2: Separating the Identification and the Correction of Errors
	7.4.3 Principle 3: Validation from Different Views
	7.4.4 Principle 4: Adequate Change of Documentation Type
	7.4.5 Principle 5: Construction of Development Artifacts
	7.4.6 Principle 6: Repeated Validation

	7.5 Requirements Validation Techniques
	7.5.1 Commenting
	7.5.2 Inspection
	7.5.3 Walk-Through
	7.5.4 Perspective-Based Reading
	7.5.5 Validation through Prototypes
	7.5.6 Using Checklists for Validation

	7.6 Requirements Negotiation
	7.6.1 Conflict Identification
	7.6.2 Conflict Analysis
	7.6.3 Conflict Resolution
	7.6.4 Documentation of the Conflict Resolution

	7.7 Summary

	8 Requirements Management
	8.1 Assigning Attributes to Requirements
	8.1.1 Attributes for Natural Language Requirements and Models
	8.1.2 Attribute Scheme
	8.1.3 Attribute Types of Requirements

	8.2 Views on Requirements
	8.2.1 Selective Views on the Requirements
	8.2.2 Condensed Views on the Requirements

	8.3 Prioritizing Requirements
	8.3.1 Method for Requirements Prioritization
	8.3.2 Techniques for Requirements Prioritization

	8.4 Traceability of Requirements
	8.4.1 Advantages of Traceable Requirements
	8.4.2 Purpose-Driven Definition of Traceability
	8.4.3 Classification of Traceability Relations
	8.4.4 Representation of Requirements Traceability

	8.5 Versioning of Requirements
	8.5.1 Requirements Versions
	8.5.2 Requirements Configurations
	8.5.3 Requirements Baselines

	8.6 Management of Requirements Changes
	8.6.1 Requirements Changes
	8.6.2 The Change Control Board
	8.6.3 The Change Request
	8.6.4 Classification of Incoming Change Requests
	8.6.5 Basic Method for Corrective and Adaptive Changes

	8.7 Measurement of Requirements
	8.7.1 Product vs. Process Metric
	8.7.2 Examples of Product and Process Metrics

	8.8 Summary

	9 Tool Support
	9.1 General Tool Support
	9.2 Modeling Tools
	9.3 Requirements Management Tools
	9.3.1 Specialized Tools for Requirements Management
	9.3.2 Standard Office Applications

	9.4 Introducing Tools
	9.5 Evaluating Tools
	9.5.1 Project View
	9.5.2 User View
	9.5.3 Product View
	9.5.4 Process View
	9.5.5 Provider View
	9.5.6 Technical View
	9.5.7 Economic View

	9.6 Summary

	References
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

