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Industrial Foreword

The last decade has seen a great deal of attention paid to 
requirements engineering by researchers, teachers, consultants, 
managers, and practitioners. Increasingly, people within 

information technology, commercial product development, services 
industries, nonprofits, government, and beyond regard good 
requirements as a key to project and product success. Requirements 
methods and practices are common subject matter for conferences, 
books, and classes. The business case for requirements is clear. It is in 
a sense a golden age for requirements.

So why then another book on the topic?
There is evidence from many sources to suggest that requirements 

engineering is not gaining much ground on the underlying problems 
of excessive rework, persistent scope creep, and finished products 
that fail to meet user expectations. So, despite the large investment 
made and the hard work done to this point, challenges still exist with 
regard to ever-increasing product complexity, time-to-market 
pressures, market segmentation, and globally diverse users.

It is here that books from practitioners, such as Software & Systems 
Requirements Engineering: In Practice, make a valuable contribution. 
Unlike most consultants and researchers, practitioners are deeply 
involved with individual projects. Moreover, they are present 
throughout the project and into the next one. In books from 
practitioners, we can see a set of requirements practices and the 
underlying setting; a detailed description of the philosophy and 
environment in which those practices work.

So, rather than being a compendium of possible practices, or a 
generic reference book, Software & Systems Requirements Engineering: 
In Practice provides readers a particular view into the world of product 
development and applied requirements engineering. Such windows 
provide a coherent and useful picture of requirements engineering.

For most practitioners, locating potential solutions to 
requirements engineering challenges is only part of the battle. When 
a method or practice is being considered for use, the question 
becomes “Will this work for me?” Understanding the experiences of 
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other practitioners can be an incredibly valuable shortcut to the 
answer, and books like Software & Systems Requirements Engineering: 
In Practice are a great place to find that information.

Erik Simmons 
Requirements Engineering Practice Lead 

Corporate Platform Office 
Intel Corporation



Academic Foreword

Requirements engineering has proven to be one of the most 
difficult and critical activities for the successful development 
of software and software-intensive systems. The reasons for 

that are obvious. If requirements are invalid, then even the most 
careful implementation of a system will not result in a product that is 
useful. Moreover, if requirements are included in the requirements 
specifications that are not actually valid, then the product or system 
becomes unnecessarily expensive. This shows that requirements 
engineering is important.

In fact, requirements engineering is also difficult. There are many 
reasons for this. One is that often software-intensive systems are 
innovative in providing new functionality. Then, learning curves 
have to be considered. It is often impossible to understand, in advance, 
what the requirements actually are. The people involved have quite 
different perspectives on their valid requirements. Therefore, it is 
difficult to arrive at an agreement. At the same time, important 
requirements might be overlooked and only discovered when gaining 
first experiences with the produced systems. Moreover, for large, 
long-term projects requirements may change due to changes in the 
environment, the market, or user needs.

Finally, requirements engineering is often underestimated or even 
neglected by project management. The core of requirements 
engineering is devoted to understand and work on the problem 
statement and not so much the solution. However, management may 
think that only when a team of developers starts to work on the 
solution will the project begin to show real progress. Therefore, both 
for management and even for experienced developers, there is always 
a tendency to rush too early into the solution domain. As a result, 
solutions are produced that miss requirements or do not explore the 
full range of possible solutions.

However, even having accepted that requirements engineering is 
difficult, error-prone, costly, but nevertheless important, a lot more 
has to be understood to be able to do professional requirements 
engineering. For most projects, the overall development process can 
be easily standardized after the requirements have been captured. 

xix
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What is most difficult is to standardize the process of requirements 
engineering, since requirements engineering is at the very beginning 
of a project when so much is unclear. Therefore, in industrial software 
development, it is important to come up with a requirements 
engineering approach that is on the one hand flexible but on the other 
hand gives enough methodological guidance.

In scientific research, exploring requirements engineering has 
been an active field for many years. However, at least in the beginning, 
requirements engineering was sometimes misunderstood as a 
discipline, which only has to document and specify requirements but 
neglects the necessary decision making. This ignores the difficulty of 
coming up with a requirements specification that takes into account 
all issues from functionality to quality and cost. There are even 
process development issues to consider, such as certification 
requirements or product constraints dealing with given operating 
systems or software reuse.

As a result of all these considerations, the software engineering 
group of Siemens Corporate Research in Princeton, New Jersey, 
decided a few years ago to concentrate their research on a broad 
spectrum of requirements engineering themes. I had the privilege to 
work extensively with this group of engineers and researchers, who 
gained a lot of experience in requirements engineering on coaching, 
teaching, and consulting methods in ongoing Siemens projects. Some 
of the projects are very large scale. It is helpful that the software 
engineering group in Princeton is not just focused on the core topics of 
requirements engineering but also covers closely related aspects such 
as architectural design, quality assurance, testing, model-based 
software development, and prototyping. Doing so, the group is looking 
at a systematic foundation to requirements engineering by creating a 
requirements engineering reference model, which helps to list all the 
necessary content in the requirements engineering process while at the 
same time providing flexibility by tailoring and by a choice of methods.

It is a pleasure to see the results of the requirements engineering 
research and practice at Siemens Corporate Research documented in 
this book. It describes a lot of precious experiences, principles, and 
the state of the practice in industry. As such, it is quite unique and 
complements existing academic books on requirements engineering, 
which look more at the basic terminology and approaches.

I hope that this book will help in many respects development teams 
around the world to improve their industrial requirements engineering. 
It is a pleasure for me to thank the authors and the members of Siemens 
Corporate Research for a scientifically fruitful cooperation over the last 
six years and to congratulate them on this book, which is a milestone in 
the field of industrial requirements engineering.

Manfred Broy 
Professor of Software and Systems Engineering 

Technical University of Munich



 

Preface

Today’s software and systems engineers are facing an increasing 
number of challenges as they attempt to develop new products 
and systems faster, with higher quality and rich feature content. 

Part of these challenges are created by advances in computing 
technology, as processors and memory become faster and less 
expensive. Along with increased processing capability, there is an 
expectation that today’s systems will do more. As more features are 
being defined for a product or system, the discipline of requirements 
engineering has increased in importance to help manage the 
development of the features throughout the product life cycle.

This book was written to help provide an understanding of the 
challenges in requirements engineering (RE) that are facing industrial 
practitioners and to present some best practices for coping with those 
challenges. Many texts on RE generally do a good job covering the 
basics of RE, but they may not adequately discuss the real-world 
problems that can make requirements elicitation, analysis, and 
management difficult. For example, Siemens products are typically 
defined with at least several thousand recorded requirements. 
Complex Department of Defense projects are sometimes reported as 
having 100,000 requirements or more in their project database. 
Managing projects of this size is very difficult, and managing the 
requirements on such a project can be quite daunting. The trend is 
toward defining more requirements, but developers often struggle 
with managing them, especially as requirements are added or 
changed during the development life cycle. Unfortunately, problems 
of scale often do not always appear on a project until it is too late to 
easily change process, tooling, or infrastructure. It is hoped that some 
of the techniques described in this book will be of use to industrial 
practitioners for helping to make project managers aware of potential 
problems before they happen, and providing techniques and guidance 
for successfully navigating the many pitfalls associated with large, 
complex projects.
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Background
The Software and Systems Engineering Department of Siemens 
Corporate Research is involved with many software development 
projects with Siemens organizations working across a broad spectrum 
of application domains in the business sectors of industrial, health 
care, and energy. In our dual role of an industrial research and 
development laboratory, we have many opportunities for observing 
how requirements engineers do their work. Over time we can classify 
certain requirements engineering practices as “best practices,” and 
we also learn from the not-so-best practices that were not as effective 
in achieving project goals.

This book was written to summarize our requirements engineering 
experiences, and to describe them in a form that would be useful 
to software and systems engineering practitioners; i.e., methods, 
processes, and rules of thumb that can be applied to new development 
projects. We are not so naïve as to believe that engineers who follow 
what is described in this book will work only on successful projects. 
We know too well that a practice that worked well in Princeton may 
not work so well in Poland, and much like our children, engineers 
sometimes learn best from their own mistakes. But, if software and 
systems engineers can learn from our experiences and increase the 
probability of a successful project outcome, our efforts will be 
worthwhile.

Requirements engineering is most critically applied in the early 
phases of a systems development project, but it is a decision-making 
process that is applied across the entire product development life 
cycle. Thus, the requirements engineer must work effectively with 
software and systems engineers working on other tasks such as 
architecture design and test procedures. Indeed, our research in 
requirements engineering was initiated based on the observation that 
the first task for an architect on a new project is to understand the 
product requirements.

We have worked on projects for a broad range of application 
domains; e.g., medical equipment, factory automation, transportation, 
communications, automotive. The number of requirements that must 
be defined, analyzed, and managed in the projects may range from a 
few thousand to one hundred thousand. Many of our projects are 
distributed over multiple development sites, involving engineers 
living in many different countries. These software and systems 
engineers are often working under great pressure to deliver the 
product quickly, with good quality and a rich feature set. Most of the 
products contain both hardware and embedded software; thus, there 
are dependencies on electrical and mechanical characteristics, 
reliability, usability engineering, and requirements that must be 
considered by many different stakeholders. We often work within 
regulated domains such as medical devices where requirements must 



 

be carefully documented, traced, reviewed, and tested. We have also 
had to develop expertise on subjects that are not commonly taught at 
universities, such as hazard analysis.

Requirements engineering has become more complicated over 
time as the complexity of the products we desire to develop has 
increased. Thus, the requirements engineer is continually challenged 
by issues of scale, unstable requirements, product complexity, and 
managing change. Our experience has resulted from the opportunities 
to work on, for example, a project that is defining the requirements 
for an automobile infotainment system and then a few months later a 
project that is defining the requirements for a medical imaging 
system.

How to Use This Book
Our experience is with requirements engineering for products, 
systems, and services; typically (but not always) with high software 
content. This book contains RE methods, processes, and rules of 
thumb that have been derived from observed best practices of RE 
across many such projects. Thus, this book is meant for software and 
systems engineering professionals who are interested in learning new 
or validating their current techniques for RE. Such professionals 
include practicing requirements engineers, who should benefit most 
from the best practices discussed. But, the book material may also be 
useful to other engineering professionals, such as system architects, 
testers, developers, and engineering managers. The book may be 
useful to “not quite yet” practitioners such as graduate students in 
software engineering, systems engineering, or computer science. We 
would also hope that product or marketing managers would receive 
valuable information from this book as they struggle with bringing 
new products to a competitive market.

In order to focus on best practices and techniques for the 
practitioner, there is very little introductory material presented, but 
pointers are given to reference books that cover basic software 
engineering concepts. Thus, users of this book typically would have 
at least an undergraduate degree in computer science, systems or 
software engineering and some experience developing systems.
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Studies such as the CHAOS report [Johnson 2000] indicate that 
about half of the factors associated with project or product 
success are requirements related. Recently, researchers have 

reported on studies showing that project success is directly tied to 
requirements quality [Kamata et al. 2007]. With such overwhelming 
evidence that requirements engineering is a cornerstone of software 
systems engineering, one could ask, why is it still a relatively neglected 
topic in university training? It is quite rare, for example, that a new 
Computer Science (CS) university graduate might be asked to 
participate in the development of a compiler or operating system, yet 
nearly every graduate working in the industry will, sooner or later, 
be asked to participate in creating the requirements specifications for 
a product or service.

1.1  Why Has Requirements Engineering  
Become So Important?

For years, many products were successfully created without the 
participation of professionals who specialized in requirements 
creation or management. So, why is requirements engineering (RE) 
so important today? The answer lies in the changing nature of 
industry and society in general. First, the pace of product development 
has picked up drastically. Whereas just a few decades ago, product 
improvements would be a slow process, today customers often 
demand new versions of a product in less than one year. For example, 
Siemens estimates that approximately 20 years ago, 55 percent  
of sales were from products that were less than 5 years old. Today, 
75 percent of sales are from products that were developed less than 
5 years ago (Figure 1.1). Second, turnover and technology change 
have impacted the experience levels of professionals engaged in the 
development of products. Just a few short years ago, engineers might 
expect to spend their entire careers with a single company, whereas 
today job change is more common. Finally, outsourcing and offshoring 
have dramatically changed the product life cycle. Specifications must 
now be created for implementation or manufacturing by organizations 
with potentially limited or no domain expertise. Imagine, for example, 
having to create a product specification for a washing machine, 
dishwasher, or luxury automobile to be built by staff who may have 
never even seen one! Under such circumstances specifications must 
be exact and detailed.

Software development is highly coupled to the domain; e.g., cell 
phone software and avionics software tend to be designed, built, 
and managed with processes that are heavily domain specific. 
Furthermore, industries have begun to use software as product 
differentiators. Product innovations can be more easily implemented 
in software than hardware because of the lower engineering 
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investment and modification costs. This results in domain-specific, 
complex software for which high-quality requirements specifications 
are essential.

Requirements engineering is extremely important when a product, 
service, or industry is regulated. For example, the U.S. government’s 
Food and Drug Administration (FDA) and Federal Aviation 
Administration (FAA) both mandate specific activities and work 
products (e.g., hazard analysis) where there is the potential for injury 
or death. Sarbanes-Oxley regulations mandate traceability for certain 
types of financial software used by companies doing business in the 
United States. The European Union and Japan have regulations for 
their respective businesses. Good requirements engineering practices 
are essential for companies that must comply with government 
regulations.

1.2 Misconceptions about Requirements Engineering
Misconceptions about requirements engineering can strongly 
influence a company’s processes. Many companies and organizations 
have a solid understanding of requirements processes, but some do 
not. Some of the more common misconceptions are listed under the 
headings that follow.

FIGURE 1.1 Acceleration of new product creation
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Misconception 1: Any Subject Matter Expert Can Become  
a Requirements Engineer after a Week or Two of Training
Requirements engineers need strong communication and knowledge 
of engineering skills, the ability to organize and manage a data set of 
requirements, high-quality written and visual presentation skills, 
and the ability to extract and model business processes using both 
text and graphical (e.g., Integration DEFinition [IDEF], Unified 
Modeling Language [UML]) techniques. First and foremost, to elicit 
requirements from stakeholders requires the ability to interact with 
a variety of roles and skill levels, from subject matter experts (detailed 
product requirements) to corporate officers (elicitation of business 
goals).

Moreover, people have to be trained to write good specifications. 
High school and university training tends to teach a style of writing 
that is antithetical to the techniques needed to create unambiguous 
and complete documents. Requirements analysts typically need 
significant training, both classroom and on the job, before they can 
create high-quality specifications.

Misconception 2: Nonfunctional and Functional Requirements 
Can Be Elicited Using Separate Teams and Processes
The subject domains for nonfunctional and functional requirements 
are related, may impact each other, and may result in iterative changes 
as work progresses (see Chapter 5). Team isolation may do more 
harm than good.

Misconception 3: Processes That Work for a Small Number  
of Requirements Will Scale
Requirements engineering processes do not scale well unless crafted 
carefully. For example, a trace matrix is an N × N matrix, where N is 
the number of requirements of interest. In each cell, a mark or arrow 
indicates that there is a trace from requirement Ri (row i) to requirement 
Rj (column j). It is relatively easy to inspect, say, a 50-requirement 
matrix, but what happens when five to ten thousand requirements 
are needed to define a product? Filtering and prioritization become 
important in order to retrieve results that can be better understood, 
but the requirement annotations necessary to provide such filtering 
are often neglected up front because the database is initially small.

1.3 Industrial Challenges in Requirements Engineering
Over the last few years, the requirements engineering R&D focus 
program at Siemens Corporate Research has been involved with a 
substantial number of requirements engineering (RE) projects with 
Siemens development organizations. Many RE challenges have been 
identified as potentially impacting project performance. We have 
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observed that problems tend to be exacerbated by three critical 
factors, the first being a decision to outsource the implementation, the 
second being a significant change in technology, and the third being 
the introduction of new products (e.g., entering a market where the 
company has minimal prior experience).

When a decision is made to outsource, changes must take place in 
all processes, especially in the area of requirements engineering. The 
implementation may be done by staff with minimal domain 
knowledge and, because of customs, logistics, time, or distance, with 
limited access to subject matter experts. Attempts to use the same 
processes and techniques used for in-house development for the 
development of specifications for subcontracting or outsourcing may 
lead to significant delays in delivery, sometimes even resulting in 
project cancellation.

When technology changes rapidly, domain experts may no longer 
be “experts.” Techniques and solutions that worked for many years 
may become obsolete or irrelevant. Such technological discontinuities 
may require substantial new training, or the experts in the older 
technologies may make poor decisions for new product designs. A set 
of key success factors for identifying potential requirements 
engineering problems early has been developed at SCR and is 
described in the next section.

1.4 Key Success Factors in Requirements Engineering
This section contains a checklist describing key factors for success in 
requirements engineering. Most of the factors can be evaluated prior 
to project initiation. Although project success cannot be guaranteed, 
it is likely that if several of the success factors are not in place there 
may be significant project difficulties.

The Project Has a Full-Time, Qualified Chief Architect
On many large projects the only senior technical role that spans the 
requirements process through delivery is that of the chief architect. 
He provides technical continuity and vision, and is responsible for 
the management of the nonfunctional requirements (e.g., scalability, 
quality, performance, environmental, etc.) and for the implementation 
of the functional requirements. In our experience having an 
experienced, full-time architect on a project contributes significantly 
to its success [Hofmeister et al. 1999], [Paulish 2002].

A Qualified Full-Time Architect Manages  
Nonfunctional Requirements
The architect is responsible for managing nonfunctional requirements 
and the relationships among requirements analysis, development, 
and management.
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An Effective Requirements Management Process Is in Place
The critical success factors in a requirements management process 
are well defined by the Capability Maturity Model Integration 
(CMMI), specifically those addressing change management and 
traceability. A change control board (CCB) performs an impact analysis 
and conducts cost/benefit studies when feature changes are requested. 
The CCB acts as a gatekeeper to prevent unwanted “scope creep” and 
ensures properly defined product releases.

Requirements Elicitation Starts with Marketing and Sales
The marketing and sales organizations and the project’s requirements 
engineering staff must establish strong bonds to enable accurate 
definition of product and/or product line features. Incorrect features 
and requirements may be carried over into the requirements 
development activities and create downstream problems.

Requirements Reviews Are Conducted for All New  
or Changed Requirements or Features
Requirements must be reviewed, and the review must occur at the 
right level. Since it typically takes one hour to review four to ten 
requirements (e.g., for the first review—followup reviews may go 
faster), reviews must be conducted at a high enough level to avoid 
“analysis paralysis” and yet low enough to catch significant feature-
level defects.

Requirements Engineers Are Trained and Experienced
Requirements engineering is like any other scientific or engineering 
endeavor in that the basic skills can be learned through training. But 
without experienced staff, the project may “stall” or “churn” in the 
requirements definition stage. If the staff is new, and the team has 
more than four members, RE mentors should be used to improve the 
skills of the team.

Requirements Processes Are Proven and Scalable
When processes are defined at the start of a project, they should be 
bootstrapped from prior successful efforts, not just based on 
“textbook” examples. As the size of a project increases, or the number 
or size of work products increases, the methodologies must be scaled 
to match.

Subject Matter Experts Are Available as Needed
Arrangements must be made early on to access the experts needed to 
assist in defining requirements. For example, during tax season, tax 
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accountants and attorneys may be unavailable. Schedules cannot be 
defined unless the experts are available during requirements 
development.

All Stakeholders Are Identified
All the relevant stakeholders must be identified if requirements are to 
be properly defined and prioritized. The later key requirements are 
identified during the project, the greater the risk that major changes 
to the in-progress implementation will be necessary. Furthermore, 
the success of a product may be jeopardized by failure to validate key 
requirements.

The Customer Is Properly Managed
Customer management includes rapid feedback during prototyping, 
minimizing the number of points of contact between project staff and 
stakeholders, and maintaining strict control of feature change 
requests. It also includes using good techniques to elicit product 
features that are correct and unambiguous.

Progress and Quality Indicators Are Defined
The CMMI has a measurement and analysis practice area that 
overlaps with both requirements development and requirements 
management. Sometimes, a methodology (such as the Rational 
Unified Process [RUP] techniques for capturing text use cases) 
doesn’t include progress or work product quality measures. These 
indicators must be defined in advance, or project management will 
find it difficult to gauge project progress and make appropriate 
corrections.

The RE Tools Increase Productivity and Quality
Any software tools used must enable a process (increasing 
productivity and CMMI compliance), rather than hinder it. Positive 
outcomes may require tool integration, customization, or, in rare 
cases where there is a justifiable cost benefit, creating a new tool 
from scratch.

The Core Project Team Is Full Time and Reports  
into a Single Chain of Command
Studies have shown that a full-time core team is essential to the 
success of a large project [Ebert 2005]. Without the continuity provided 
by a committed full-time core of people, issues may “fall through the 
cracks” or not show up until problems are revealed at integration 
testing time.



 8 S o f t w a r e  &  S y s t e m s  R e q u i r e m e n t s  E n g i n e e r i n g :  I n  P r a c t i c e

 

1.5 Definition of Requirements Engineering
“Requirements engineering [DoD 1991] involves all lifecycle activities 
devoted to identification of user requirements, analysis of the 
requirements to derive additional requirements, documentation of 
the requirements as a specification, and validation of the documented 
requirements against user needs, as well as processes that support 
these activities.” Note that requirements engineering is a domain-
neutral discipline; e.g., it can be used for software, hardware, and 
electromechanical systems. As an engineering discipline, it 
incorporates the use of quantitative methods, some of which will be 
described in later chapters of this book.

Whereas requirements analysis deals with the elicitation and 
examination of requirements, requirements engineering deals with all 
phases of a project or product life cycle from innovation to obsolescence. 
Because of the rapid product life cycle (i.e., innovation→development→
release→maintenance→obsolescence) that software has enabled, 
requirements engineering has further specializations for software. 
Thayer and Dorfman [Thayer et al. 1997], for example, define software 
requirements engineering as “the science and discipline concerned 
with establishing and documenting software requirements.”

1.6  Requirements Engineering’s Relationship  
to Traditional Business Processes

It is extremely important to tie requirements activities and artifacts to 
business goals. For example, two competing goals are “high quality” 
and “low cost.” While these goals are not mutually exclusive, higher 
quality often means higher cost. Customers would generally accept 
the higher cost associated with a car, known for luxury and high 
quality, but would likely balk at paying luxury car prices for a car 
expected to compete in the low-cost automotive market.

Unfortunately, some organizations may tend to decouple business 
and requirements activities. For example, business goals may drive 
marketing activities that result in the definition of a new product and 
its features. However, the business goals may have no clearly defined 
relationship to the artifacts used and produced during requirements 
analysis and definition. RE activities start at the very beginning of 
product definition with business goals and innovation. Requirements 
engineering techniques can add an element of formality to product 
definition that can improve communication and reduce the 
downstream implementation effort.
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1.7 Characteristics of a Good Requirement
Requirements characteristics are sometimes overlooked when defining 
requirements processes. They can be an excellent source of metrics for 
gauging project progress and quality. One question we typically ask 
organizations when discussing their quality processes is, “Given two 
requirements specifications, how would you quantitatively determine 
that one is better than the other?” This question may be answered by 
looking at the IEEE 830 Standard [IEEE 1998]. The characteristics of 
a good requirement, as defined by the IEEE, are listed next, with 
several additional useful ones.

It is important to distinguish between the characteristics of a 
requirement and the characteristics of a requirements specification (a set 
of related requirements). In some cases a characteristic can apply to a 
single requirement, in some cases to a requirements specification, and in 
other cases to the relationship of two or more requirements. Furthermore, 
the meaning may be slightly different when referring to a requirement 
or a specification. Care must be taken, therefore, when discussing the 
characteristics described here to define the context of the attributes.

Feasible
A requirement is feasible if an implementation of it on the planned 
platform is possible within the constraints of the program or project. 
For example, the requirement to handle 10,000 transactions per second 
might be feasible given current technologies, but it might not be feasible 
with the selected platform or database manager. So a requirement is 
feasible if and only if it can be accomplished given the resources, 
budget, skills, schedule, and technology available to the project team.

Valid
A requirement is valid if and only if the requirement is one that the 
system shall (must) meet. Determination of validity is normally 
accomplished by review with the stakeholders who will be directly 
responsible for the success or failure of the product in the marketplace. 
There can be a fine line between “must” and “nice to have.” Because 
the staff of a development team may be mainly focused on technology, 
it is important to differentiate between stakeholder requests that are 
wishful thinking and those that are actually needed to make the project 
or product a success. The inclusion of requirements that are nice but 
not valid is called “gold plating.” As the name implies, having 
requirements on a project that are not valid will almost certainly add 
cost without adding value, possibly delaying project completion.
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Unambiguous
A requirement is unambiguous if it has only one interpretation. Natural 
language tends toward ambiguity. When learning writing skills in 
school, ambiguity can be considered a plus. However, ambiguity is 
not appropriate for writing the requirements for a product, and care 
must be taken to ensure that there is no ambiguity in a requirements 
specification. For example, consider this statement:

“The data complex shall withstand a catastrophe (fire, flood).”

This statement is ambiguous because it could mean “The data 
complex shall withstand a catastrophe of type fire or flood,” or it 
could mean “The data complex shall withstand any catastrophe, two 
examples being fire and flood.” A person skilled in writing requirement 
specifications would rephrase as

“The data complex shall be capable of withstanding a severe fire. 
It shall also be capable of withstanding a flood.”
An example of an ambiguous statement is “The watch shall be 
water resistant.” An unambiguous restatement is “The watch shall 
be waterproof to an underwater depth of 12 meters.”

A measure of the quality of a requirements specification is the 
percent of requirements that are unambiguous. A high level of 
ambiguity could mean that the authors of the specification likely 
need additional training. Ambiguity often causes a project to be late, 
over budget, or both, because ambiguity allows freedom of 
interpretation. It is sometimes necessary to take a holistic view of 
ambiguity; e.g., a requirement may be ambiguous, but when placed 
in the context of the background, domain, or other related 
requirements, it may be unambiguous. Product features found in 
marketing literature (e.g., shock resistant) are typically ambiguous. 
However, when placed in the context of the detailed specifications 
used by manufacturing, the ambiguity is no longer present. On the 
other hand, a requirement may be unambiguous, but when placed 
in the context of related requirements, there may be ambiguity. 

The Use of the Terms “Valid” and “Correct”
The IEEE Standard 830 uses the term “correct.” We use the term “valid” 
instead because “correct” can be misleading. Something that is “correct” 
is said to be “without error,” or mathematically provable. However, in 
the context of a requirement, “valid” is more appropriate, as the 
requirement may be exactly what the customer wants, but it may still 
contain errors or be an inappropriate solution.



 C h a p t e r  1 :  I n t r o d u c t i o n  11 C h a p t e r  1 :  I n t r o d u c t i o n  11

When two requirements conflict with each other or create contextual 
ambiguity, they are said to be inconsistent (see the later section 
“Consistent”).

Verifiable
A requirement is verifiable if the finished product or system can be 
tested to ensure that it meets the requirement. Product features are 
almost always abstract and thus not verifiable. Analysis must be done 
to create testable requirements from the product features. For example, 
the requirement “The car shall have power brakes” is not testable, 
because it does not have sufficient detail. However, the more detailed 
requirement “The car shall come to a full stop from 60 miles per hour 
within 5 seconds” is testable, as is the requirement “The power brake 
shall fully engage with 4 lbs. of pressure applied to the brake pedal.” 
As we have noted, product features lack detail and tend to be 
somewhat vague and not verifiable. However, the analysis of those 
features and the derived requirements should result in a specification 
from which full coverage test cases can be created.

Modifiable
The characteristic modifiable refers to two or more interrelated 
requirements or a complete requirements specification. A requirements 
specification is modifiable if its structure and style are such that any 
changes to a requirement can be made easily, completely, and 
consistently while retaining the structure and style. Modifiability 
dictates that the requirements specification has a coherent, easy-to-
follow organization and has no redundancy (e.g., the same text 
appearing more than once), and that it keeps requirements distinct 
rather than intermixed. A general rule is that information in a set of 
requirements should be in one and only one place so that a change to 
a requirement does not require cascading changes to other 
requirements.

A typical way of ensuring modifiability is to have a requirement 
either reference other requirements specifically or use a trace 
mechanism to connect interrelated requirements.

Consistent
In general, consistency is a relationship among at least two 
requirements. A requirement is consistent if it does not contradict or is 
not in conflict with any external corporate documents or standards or 
other product or project requirements. Contradiction occurs when 
the set of external documents, standards, and other requirements 
result in ambiguity or a product is no longer feasible to build. For 
example, a corporate standard might require that all user interface 
forms have a corporate logo in the upper-right corner of the screen, 
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whereas a user interface requirement might specify that the logo be at 
the bottom center of the screen. There are now two conflicting 
requirements, and even though a requirements specification may be 
internally consistent, the specification would still be inconsistent 
because of conflict with corporate standards. Creating documentation 
that is both internally and externally consistent requires careful 
attention to detail during reviews.

Complete
A requirements specification is complete if it includes all relevant 
correct requirements, and sufficient information is available for the 
product to be built. When dealing with a high-level requirement, the 
completeness characteristic applies holistically to the complete set 
of lower-level requirements associated with the high-level feature 
or requirement. Completeness also dictates that

• Requirements be ranked for importance and stability.

• Requirements and test plans mirror each other.

A requirements specification is complete if it includes the following 
elements [IEEE 1998]:

 1. Definition of the responses of the system or product to all 
realizable classes of input data in all realizable classes of 
situations. Note that it is important to specify the responses 
to both valid and invalid input values and to use them in test 
cases.

 2. Full labels and references to all figures, tables, and diagrams 
in the specification and definitions of all terms and units of 
measure.

 3. Quantification of the nonfunctional requirements. That is, 
testable, agreed-on criteria must be established for each 
nonfunctional requirement.

Nonfunctional requirements are usually managed by the project’s 
chief architect. In order for the completed product to be correct and 
complete, it must include the testable requirements that have been 
derived from the high-level nonfunctional requirements.

It is difficult to create complete specifications, yet complete 
specifications are mandatory under certain circumstances; e.g., 
where the implementation team has no domain knowledge, or where 
communication between subject experts and developers will be 
problematic. We have seen projects where the requirements definition 
phase was shortened for schedule reasons. The general consensus 
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was that “the developers will finish writing the requirements.” But 
when doing a risk analysis, it was nearly always quite clear that 
having the developers complete the requirements was not an 
appropriate process, due to

• Limited access to subject matter experts

• Lack of experience or bias when defining product requirements

At the back end of the project, the failure to properly define the 
requirements almost always caused a greater delay than would have 
happened by allowing the requirements specification to be completed 
with the appropriate level of detail up front.

Traceable
Requirements traceability is the ability to describe and follow the life 
of a requirement, in both a forward and backward direction, i.e., from 
its origins, through its development and specification, to its 
subsequent deployment and use, and through periods of ongoing 
refinement and iteration in any of these phases” [Gotel et al. 1994]. 
Traceability is required for proper requirements management and 
project tracking.

A requirement is traceable if the source of the requirement can be 
identified, any product components that implement the requirement 
can easily be identified, and any test cases for checking that the 
requirement has been implemented can easily be identified.

Tracing is sometimes mandated by a regulatory body such as the 
Federal Aviation Administration (FAA) or Food and Drug 
Administration (FDA) for product safety. Furthermore, there are 
some rare situations where failure to create the appropriate traces 
between requirements can have legal repercussions. Traceability is 
discussed in more detail in Chapter 7.

Other Project- or Product-Specific Characteristics
Occasionally, the requirements for a specific project or product have 
characteristics that do not apply to all the projects or products. While 
it can be argued that an attribute that crosscuts all other requirements 
is just another requirement, when treated as a characteristic it is more 
likely that the requirement will be fulfilled. For example, if a new 
system is being built that must be downward compatible with an 
older system, it could be argued that the need for downward 
compatibility is just a nonfunctional requirement. However, we have 
found that having such all-encompassing requirements converted to 
characteristics makes it more likely that the completed system will be 
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in compliance. A similar approach can be used for other “umbrella” 
requirements such as

• Compliance with Sarbanes-Oxley regulations

• Meeting all corporate security requirements

• Meeting electrical safety requirements

Characteristics of a Good Requirements Specification
As was stated in the definition of consistency, the definition of  
a characteristic may be different when applied to requirements  
and to a specification. A requirements specification is a filtered 
compendium of requirements. Having the requirements in a 
document rather than a database permits holistic views and allows 
the addition of history, a rationale, etc. There are certain characteristics 
that apply to specifications as opposed to individual requirements as 
listed here:

• A requirements specification is feasible if building the product 
specified is feasible given the state of technology, the budget, 
and the allotted time.

• A requirements specification is unambiguous if there is no 
pair-wise ambiguity in the specification.

• A requirements specification is valid if every requirement in it 
is valid.

• A requirements specification is verifiable if every requirement 
in it is verifiable.1

• A requirements specification is modifiable if there is no 
redundancy and changes to requirements are easily and 
consistently made; e.g., a change to one requirement does not 
require cascading changes to other requirements.

• A requirements specification is consistent if the requirement 
set is internally consistent.

• A requirements specification is complete if it provides sufficient 
information for complete coverage testing of the product or 
system.

• A requirements specification is traceable if every requirement 
in it can be traced back to its source and forward to test 
cases.

• A requirements specification is concise if the removal of any 
requirement changes the definition of the product or system.

1  Product or business requirements specifications typically describe features, and 
as such there may be ambiguity and a lack of testability.
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Requirements elicitation and analysis are typically done under 
project time constraints. Consequently, it is important to prioritize 
and identify risks when defining requirements. For example, “If 
this nonfunctional requirement is not completely analyzed, what 
are the risks to the project, the company, and/or the user?” By 
doing a risk analysis, the effort associated with fully defining a 
requirement set can usually be balanced against the needs of the 
project. Techniques for doing risk analysis of high-level requirements 
(e.g., balancing effort against need) will be discussed further in 
Chapter 5.

1.8 Requirements and Project Failure
It must be remembered that most systems under development are not 
new; i.e., only a fraction of the requirements in the product are new or 
unique [Jones 2007]. Yet issues of requirements maintenance and 
long-term support are often missing from project plans; e.g., the 
project plan is created as though the requirements will be discarded 
after project completion. When long-term requirements management 
is not planned, requirements creep can cause significant problems 
late in a project. Furthermore, Capers Jones reports that the defect 
rate increases significantly in requirements that are injected late over 
those that are created prior to the start of implementation, and the 
most egregious defects in requirements defined or modified late in a 
project can sometimes show up in litigation [Jones 2007].

1.9 Quality and Metrics in Requirements Engineering
As was mentioned in connection with the success factors for projects, 
project indicators need to be defined in order to have some measure 
of project transparency. It is important to be able to answer the 
questions “Am I making progress?” and “What is the quality of my 
work products?” How does one, for example, determine that a 
requirements specification is of high quality?

Requirement characteristics or quality indicators are extremely 
important for determining artifact quality. They can be measured by 
inspection (metrics), and the reported metrics can then be used to 
determine the quality of individual requirements and requirements 
specifications. Furthermore, metrics summaries tracked over time 
can be used to identify potential problems earlier to permit corrective 
actions, and provide guidance as to what type of corrective actions to 
take. For example, a high level of ambiguity in a requirement set 
might indicate that the analysts creating the requirements may need 
additional training in requirements writing. Some of the chapters in 
this book provide guidance on how to capture and use metrics to 
improve requirements processes.
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Function Point Metrics as Leading Indicators
A function point is used to estimate the complexity and effort 
necessary to build a software product. Capers Jones has published 
extensively on this topic [Jones 2007, 2008]. Function point metrics 
are an excellent way of identifying potential problems with 
requirements prior to the implementation of a project. Furthermore, 
there is a clear correlation between function points and requirements; 
that is, function points can be used as an indicator of requirements 
creep and quality. Furthermore, it has been shown that function point 
analysis (FPA) can be effective in determining requirements 
completeness [Dekkers et al. 2001].

1.10 How to Read This Book
We suggest that you start by reading Chapters 1 and 2 before looking 
at any of the other chapters. They lay the groundwork for the 
remaining chapters by defining basic terminology that is used 
throughout the book.

Chapters 3 and 5 describe techniques for eliciting requirements. If 
you are interested in gathering requirements for software platforms 
or middleware, we also suggest that you read Chapter 6.

Chapter 4 describes modeling techniques that can be used for 
business or use case analysis. One specific method that has been used 
successfully at Siemens on several projects, the hierarchical 
decomposition of use cases, is described in detail.

Chapter 9 is devoted to rapid prototyping and describes a simple 
technique that has been found useful in the development of systems 
that are categorized by workflow and graphical user interfaces.

Chapter 7 describes techniques and best practices for requirements 
management. If you are interested in managing environments where 
the work may be distributed, then read Chapter 10 as well.

Chapter 8 describes advanced techniques for transforming 
requirements into test cases. It will be of interest to project and quality 
assurance staff. However, as Chapter 8 uses model-based methods, 
be sure to read Chapter 4 before reading Chapter 8.

Finally, Chapter 11 describes hazard and threat analysis and 
management in the context of a requirements engineering process. If 
you are an analyst working in a domain that is regulated or where 
there is the potential for physical or financial harm to an end user of 
a product, we recommend reading this chapter.

1.11 Summary
We’ve introduced some of the key challenges for requirements 
engineering and some of the success factors to achieve good RE. 
We’ve provided a definition of requirements engineering, and we’ve 
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described the characteristics of a good requirement and a good 
requirements specification.

1.12 Discussion Questions
 1. Why is good requirements engineering more important to 

product development than it was ten years ago?

 2. What are the differences between good requirements and a 
good requirements specification?

 3. What are some of the key full-time roles necessary for a 
project to be successful?

 4. What is the role of the chief architect?
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