

Software & Systems
Requirements Engineering:

In Practice

About the Authors
Brian Berenbach is the technical manager of the requirements
engineering competency center at Siemens Corporate Research in
Princeton, NJ. Prior to joining Siemens, he consulted for many of the
Fortune 100 companies on large projects. For several years he was
an architect at ABB Corporation and oversaw the installation of
large software-based systems in power companies. Mr. Berenbach
has graduate degrees from Emory University and the U.S. Air
Force, and he is an ACM Distinguished Engineer.

Daniel J. Paulish is a Distinguished Member of Technical Staff
at Siemens Corporate Research in Princeton, NJ, responsible for
the Siemens Software Initiative in the Americas. He is a co-author
of Software Metrics: A Practitioner’s Guide to Improved Product
Development, the author of Architecture-Centric Software Project
Management: A Practical Guide, and a co-author of Global Software
Development Handbook. He is formerly an industrial resident
affiliate at the Software Engineering Institute (SEI), and he has
done research on software measurement at Siemens Corporate
Technology in Europe. He holds a Ph.D. in Electrical Engineering
from the Polytechnic Institute of New York.

Juergen Kazmeier holds a major degree in Mathematics and a
Ph.D. in Computer Science from the Technical University of Munich.
He has worked at Siemens on software development processes,
methods, and tools, and he has been a researcher and consultant on
modeling languages and visualization methods. As a member of
the Corporate Development Audit Unit, he analyzed and supported
large product development and IT projects. Within the Intelligent
Transportation Systems Division, he headed a global development
group, as Vice President of R&D. Dr. Kazmeier has been responsible
for the Software and Engineering Research Department at Siemens
Corporate Research, where he started the Siemens Requirements
Engineering Global Technology Field. Currently, he is Vice President
of the Software Engineering Services Division of Siemens IT
Solutions and Services, headquartered in Vienna, Austria.

Arnold Rudorfer holds an M.S. in Telematics degree from the
University of Technology, Graz. Prior to joining Siemens, he worked
as a developer, process consultant, and manager for user interface
design and usability engineering at the European Software Institute
(Spain), the Institute of Production Engineering Research (Sweden),
and Meta4 (Spain), a French software multinational. At Siemens, he
was responsible for building up Corporate Technology’s first
regional business unit in the United States, the User Interface Design
Center. Since 2004, he is heading the Requirements Engineering
(RE) Global Technology Field with Centers of Competence in
Princeton (NJ, USA), Munich and Erlangen (Europe), as well as
Beijing (China).

Software & Systems
Requirements Engineering:

In Practice

Brian Berenbach
Daniel J. Paulish

Juergen Kazmeier
Arnold Rudorfer

New York Chicago San Francisco
Lisbon London Madrid Mexico City

Milan New Delhi San Juan
Seoul Singapore Sydney Toronto

Copyright © 2009 by The McGraw-Hill Companies. All rights reserved. Except as permitted under
the United States Copyright Act of 1976, no part of this publication may be reproduced or
distributed in any form or by any means, or stored in a database or retrieval system, without the
prior written permission of the publisher.

ISBN: 978-0-07-160548-9

MHID: 0-07-160548-7

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-160547-2,
MHID: 0-07-160547-9.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after
every occurrence of a trademarked name, we use names in an editorial fashion only, and to the
benefit of the trademark owner, with no intention of infringement of the trademark. Where such
designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales
promotions, or for use in corporate training programs. To contact a representative please visit the
Contact Us page at www.mhprofessional.com.

Information has been obtained by McGraw-Hill from sources believed to be reliable. However,
because of the possibility of human or mechanical error by our sources, McGraw-Hill, or others,
McGraw-Hill does not guarantee the accuracy, adequacy, or completeness of any information and
is not responsible for any errors or omissions or the results obtained from the use of such
information.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licen-
sors reserve all rights in and to the work. Use of this work is subject to these terms. Except as per-
mitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work,
you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works
based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it
without McGraw-Hill’s prior co sent. You may use the work for your own noncommercial and
personal use; any other use of the work is strictly prohibited. Your right to use the work may be
terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO
GUARANTEES OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETE-
NESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY
INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR
OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not
warrant or guarantee that the functions contained in the work will meet your requirements or that
its operation will be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be
liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work
or for any damages resulting therefrom. McGraw-Hill has no responsibility for the content of any
information accessed through the work. Under no circumstances shall McGraw-Hill and/or its
licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages
that result from the use of or inability to use the work, even if any of them has been advised of the
possibility of such damages. This limitation of liability shall apply to any claim or cause
whatsoever whether such claim or cause arises in contract, tort or otherwise.

www.mhprofessional.com

Contents at a Glance

 1 Introduction . 1

 2 Requirements Engineering Artifact Modeling . . . 19

 3 Eliciting Requirements . 39

 4 Requirements Modeling . 73

 5 Quality Attribute Requirements 125

 6 Requirements Engineering for Platforms 175

 7 Requirements Management 193

 8 Requirements-Driven System Testing 219

 9 Rapid Development Techniques
 for Requirements Evolution 233

 10 Distributed Requirements Engineering 257

 11 Hazard Analysis and Threat Modeling 275

 12 Conclusion . 287

 A Configuring and Managing
 a Requirements Database 291

 Index . 301

v

This page intentionally left blank

Contents
Industrial Foreword . xvii
Academic Foreword . xix
Preface . xxi
Acknowledgments . xxv

 1 Introduction . 1
Why Has Requirements Engineering

Become So Important? . 2
Misconceptions about Requirements

Engineering . 3
Misconception 1: Any Subject Matter Expert

Can Become a Requirements Engineer
after a Week or Two of Training 4

Misconception 2: Nonfunctional and
Functional Requirements Can Be Elicited
Using Separate Teams and Processes 4

Misconception 3: Processes That Work
for a Small Number of Requirements
Will Scale . 4

Industrial Challenges in Requirements
Engineering . 4

Key Success Factors in Requirements
Engineering . 5

The Project Has a Full-Time, Qualified Chief
Architect . 5

A Qualified Full-Time Architect Manages
Nonfunctional Requirements 5

An Effective Requirements Management
Process Is in Place . 6

Requirements Elicitation Starts with
Marketing and Sales 6

Requirements Reviews Are Conducted
for All New or Changed Requirements
or Features . 6

Requirements Engineers Are Trained
and Experienced . 6

Requirements Processes Are Proven
and Scalable . 6

vii

 viii S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

Subject Matter Experts Are Available
as Needed . 6

All Stakeholders Are Identified 7
The Customer Is Properly Managed 7
Progress and Quality Indicators

Are Defined . 7
The RE Tools Increase Productivity

and Quality . 7
The Core Project Team Is Full Time and Reports

into a Single Chain of Command 7
Definition of Requirements Engineering 8
Requirements Engineering’s Relationship

to Traditional Business Processes 8
Characteristics of a Good Requirement 9

Feasible . 9
Valid . 10
Unambiguous . 10
Verifiable . 11
Modifiable . 11
Consistent . 11
Complete . 12
Traceable . 13
Other Project- or Product-Specific

Characteristics . 13
Characteristics of a Good Requirements

Specification . 14
Requirements and Project Failure 15
Quality and Metrics in Requirements

Engineering . 15
Function Point Metrics

as Leading Indicators 16
How to Read This Book . 16
Summary . 16
Discussion Questions . 17
References . 17

 2 Requirements Engineering Artifact Modeling . . . 19
Introduction . 20
RE Taxonomy . 21

Taxonomy Attributes . 24
Creation of an RE Taxonomy 24
Other Types of Taxonomies Useful in RE . . . 25
Taxonomy Extension . 26

RE Artifact Model . 27
Elements of an Artifact Model 27

 C o n t e n t s ix

Creation of a Requirements Engineering
Artifact Model . 28

Using the Artifact Model . 30
Extending an Artifact Model to Augment

Process Definition . 30
Using Templates for Requirement Artifacts 30
Dynamic Tailoring of an Artifact Model 34
Organizational Artifact Model Tailoring 34
Creating a System Life Cycle Process 35
Tips for Requirements Engineering

Artifact Modeling . 36
Summary . 37
Discussion Questions . 37
References . 37

 3 Eliciting Requirements . 39
Introduction . 40
Issues and Problems in Requirements

Elicitation . 41
The Missing Ignoramus 41
The Wrong Stakeholders 42
Untrained Analysts . 42
Not Identifying Requirements Level 42
Failure to Accurately Identify

Stakeholders . 43
Problems Separating Context from

Requirement . 44
Failure to Collect Enough Information 44
Requirements Are Too Volatile 45
System Boundaries Are Not Identified 45
Understanding of Product Needs

Is Incomplete . 46
Users Misunderstand What Computers

Can Do . 47
The Requirements Engineer Has Deep

Domain Knowledge 47
Stakeholders Speak Different Natural

and Technical Languages 47
Stakeholders Omit Important,

Well-Understood, Tacit Information 48
Stakeholders Have Conflicting Views 48

Requirements Elicitation Methods 48
Eliciting Business Goals 49
Ethnographic Techniques 52
Prioritization and Ranking

of Requirements . 53

 x S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

Quality Function Deployment
(QFD) Method . 55

Brainstorming Sessions 55
Tabular Elicitation Techniques 56
Process Modeling Techniques 58

Customer-Specific Business Rules 62
Why Are Customer-Specific Business Rules

Important? . 62
What Are Their Characteristics? 62
Example Customer-Specific

Business Rules . 63
Managing the Customer Relationship 64
Managing Requirements Elicitation 64

Planning Elicitation Sessions 64
Requirements and Cost Estimation 67
Requirements Elicitation for Incremental Product

Development . 67
Tips for Gathering Requirements 68
Summary . 69
Discussion Questions . 70
References . 70

 4 Requirements Modeling . 73
Introduction . 74
Model-Driven Requirements Engineering (MDRE) 79
Advantages of an MDRE Approach 84

Using MDRE to Estimate Project Size
and Cost . 85

Improved Management of Cross-Cutting
Requirements . 85

Navigation of Complex System
Requirement Sets . 86

Rapid Review of Business Processes
and Requirements Relationships 86

Metrics for Quality and Progress 86
Semiautomatic Generation of Project Plans

and Requirements Database Content 86
Prerequisites for Using MDRE 87

Modeling Skills Not Readily Available 87
Inadequate Tooling . 87
Organization Not Ready for MDRE 87

MDRE Processes . 88
Initial Understanding . 88
Understanding the Context and How

the Product Will Be Used 90

 C o n t e n t s xi

Analyzing Product Features and Creating
a Use Case Model . 92

Extracting Requirements from the Model . . . 94
Starting an MDRE Effort 96
Managing Elicitation and Analysis Sessions 96
Improved Productivity Through Distributed

Modeling . 98
Conducting Model Reviews 98

Elicitation and Analysis Model Heuristics 99
The Model Should Have a Single

Entry Point . 99
All Actors Associated with the System Being

Analyzed Should Appear on the Context
Diagram . 99

The Early Modeling Effort Should Cover
the Entire Breadth of the Domain 100

Identify “Out-of-Scope” Use Cases
as Early as Possible 100

Every Diagram Should Have an Associated
Description and Status 100

Avoid the Early Use of Packages 101
Do Not Substitute Packages for Abstract

Use Cases . 101
Every Artifact in a Model Should

Be Visible on a Diagram 101
Every Symbol Should Have a Bidirectional

Hyperlink to the Diagrams
That Define It . 102

Package Dependencies Should Be Based
on Content . 102

Every Concrete Use Case Must
Be Defined . 102

Use an Activity Diagram to Show All Possible
Scenarios Associated with a Use Case . . . 105

Use Sequence Rather Than Collaboration
Diagrams to Define One Thread/Path
for a Process . 105

Abstract Use Cases Must Be Realized
with Included or Inherited Concrete
Use Cases . 107

Extending Use Case Relationships Can
Only Exist Between Like Use Cases 108

A Concrete Use Case Cannot Include
an Abstract Use Case 108

Avoid Realization Relationships and Artifacts
in the Analysis Model 108

 xii S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

Business Object Modeling 108
Coherent Low-Level Processes Should

Be Defined with State or Activity
Diagrams . 112

Elicit Requirements and Processes by Starting
at Boundaries and Modeling Inward 112

Hide Complexity by Using Compound
Business Objects . 112

Initiate Prototyping Efforts Quickly 112
Determining Model Completeness 113

Diagram Quality . 113
Content Correctness . 113
Model Faults That Should Be Corrected

Before a Model Is Completed 113
Transitioning from Analysis to Design 115
Suggested Model Conversion Heuristics 115

Design Model Package Structure 115
Use Case Tracing . 115
Interface Tracing . 115
Artifact Tracing . 115

Design Model Structure . 117
Tracing Requirements Through

the Design Model . 117
Intermodel Quality Assurance Checks 117
Design Model Initial Construction 118

Use of Tooling for MDRE . 120
Tips for Modeling Requirements 120
Summary . 121
Discussion Questions . 122
References . 122

 5 Quality Attribute Requirements 125
Why Architectural Requirements Are Different . . . 126

Terminology . 127
An Integrated Model . 130

Quality Attribute Scenarios 131
Quality Attribute Requirements 131
Factors, Issues, and Strategies 132
Product Architecture . 132

Quality Attribute Requirements 132
Selecting Significant Stakeholders 140

Identifying Potential Stakeholders 141
Methods for Architectural Requirements

Engineering . 142
Quality Attribute Workshop 143

 C o n t e n t s xiii

Goal Modeling . 145
Global Analysis . 146

Testing ASRs . 154
Case Study: Building Automation System 156

Features That Define the Product 157
Forces That Shape the Architecture 159
Constraints on the Architecture 160
Architectural Drivers . 161
Architecture Design . 162
Modeling the Domain 164
Performance Modeling 164

Practice and Experience . 168
Impact of Business Goals 168
The Notion of Quality 169
Integration of Functional Requirements,

Quality Attributes, and Architecture 170
Tips for Quality Attribute Requirements 171
Summary . 172
Discussion Questions . 172
References . 172

 6 Requirements Engineering for Platforms 175
Background . 176
Challenges . 177
Practices . 178

Define Questionnaires 180
Elicit the Stakeholders’ Inputs 181
Unify Terminology . 181
Normalize Stakeholders’ Inputs 181
Reconcile Stakeholders’ Inputs 182
Define the NFRs for the Platform 182
Derive the NFRs for the Components 183
Check for Consistency 184
Check for Testability . 185
Complete the Constraints 185
Tune the NFRs for Feasibility 185
Complete NFRs . 186
Formal Review by Stakeholders 186

Experience . 186
Define the Questionnaires and Elicit

the Stakeholders’ Inputs 186
Unify Terminology . 187
Normalizing and Reconciling

Stakeholders’ Inputs 188
Derive the NFRs for the Software Platform . . . 190

 xiv S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

Check for Testability and Complete
the Constraints . 190

Tips for RE for Platforms . 190
Summary . 191
Discussion Questions . 191
References . 191

 7 Requirements Management 193
Background . 194
Change Management . 195

Impact Analysis . 197
Derivation Analysis . 198
Coverage Analysis . 198

Routine Requirements Management Activities 198
Identifying Volatile Requirements 198
Establishing Policies for Requirements

Processes and Supporting Them with
Workflow Tools, Guidelines, Templates,
and Examples . 199

Prioritizing Requirements 199
Establishing and Updating the Requirements

Baseline . 199
Documenting Decisions 199
Planning Releases and Allocating

Requirements to Releases 199
Traceability . 200

Goal-Based Traceability 202
Types of Traces . 202
Example Engineering Project-Based

Traceability Model . 202
Measurement and Metrics . 204

Project Metrics . 205
Quality Metrics . 205

Scalability . 207
Creation of a Requirements

Management Process . 207
Measuring Savings with RE Processes 209
Organizational Issues Impacting

Requirements Management 210
Creating a Requirements Database 210
Managing Requirements for

Product Lines . 213
Tips for Requirements Management 215

Best Practices . 215
Summary . 217

 C o n t e n t s xv

Discussion Questions . 218
References . 218

 8 Requirements-Driven System Testing 219
Background . 220
Requirements Engineering Inputs for Testing 222
Model-Based Testing . 222
Testing Performance and Scalability

Requirements . 227
Rules of Thumb/Best Practices 228

Reviewing Models . 229
Improved Test Coverage 229
Tracing to Requirements 229
Start Early in the Development Life Cycle . . . 229
Improved Efficiency . 230

Summary . 231
Discussion Questions . 231
References . 231

 9 Rapid Development Techniques
 for Requirements Evolution 233

Background . 234
When to Prototype . 236

Early Requirement Elicitation 236
Conflicting or Nonprioritized

Requirements . 237
Bridge the Skills of Stakeholders

and Developers . 238
Capture Detailed Requirements 238
Time-to-Market . 239

Practices and Experience . 240
Requirements Engineering and

Prototype Development in Parallel 240
Identify and Eliminate Stakeholder

Conflicts . 243
Rapid Iteration of Requirements/Stakeholder

Feedback . 244
Storyboarding . 246
Executable Prototypes 248
Transparency . 250
Testing . 250
Modification Optimization 251

Tips for Prototyping . 252
Summary . 254
Discussion Questions . 254
References . 254

 xvi S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

 10 Distributed Requirements Engineering 257
Background . 258
Requirements Engineering for Global Projects 260
Organizations for Distributed Projects 261
Managing Distributed RE Efforts 266
Requirements and Collaboration Tools 267
Communications, Culture, and Team Size 269
RE with OEMs and Suppliers 270
Tips for Distributed Requirements Engineering . . . 271
Summary . 272
Discussion Questions . 272
References . 273

 11 Hazard Analysis and Threat Modeling 275
Hazard Analysis . 276

Terms Used in Hazard Analysis 276
Hazard Analysis Processes 277
Reflecting Actions into the

Requirements Database 280
Hazard Analysis and MDRE 281
Importance of Hazard Analyses 282

Threat Modeling . 284
Basic Terminology . 284
Threat Modeling and MDRE 285
Threat Modeling Metrics 286

Summary . 286
Discussion Questions . 286
References . 286

 12 Conclusion . 287

 A Configuring and Managing
 a Requirements Database 291

Introduction . 292
Prerequisites for the Use of

a Requirements Database 293
RDB Basic Features . 295
RDB Advanced Features . 297

Automatic Upward Propagation
of Attributes . 297

Automatic Downward Propagation
of Attributes . 298

Unique Needs for a Product Line RDB 299
Multidimensional Support 299
Generation of Product Maps 299

Summary . 300

 Index . 301

Industrial Foreword

The last decade has seen a great deal of attention paid to
requirements engineering by researchers, teachers, consultants,
managers, and practitioners. Increasingly, people within

information technology, commercial product development, services
industries, nonprofits, government, and beyond regard good
requirements as a key to project and product success. Requirements
methods and practices are common subject matter for conferences,
books, and classes. The business case for requirements is clear. It is in
a sense a golden age for requirements.

So why then another book on the topic?
There is evidence from many sources to suggest that requirements

engineering is not gaining much ground on the underlying problems
of excessive rework, persistent scope creep, and finished products
that fail to meet user expectations. So, despite the large investment
made and the hard work done to this point, challenges still exist with
regard to ever-increasing product complexity, time-to-market
pressures, market segmentation, and globally diverse users.

It is here that books from practitioners, such as Software & Systems
Requirements Engineering: In Practice, make a valuable contribution.
Unlike most consultants and researchers, practitioners are deeply
involved with individual projects. Moreover, they are present
throughout the project and into the next one. In books from
practitioners, we can see a set of requirements practices and the
underlying setting; a detailed description of the philosophy and
environment in which those practices work.

So, rather than being a compendium of possible practices, or a
generic reference book, Software & Systems Requirements Engineering:
In Practice provides readers a particular view into the world of product
development and applied requirements engineering. Such windows
provide a coherent and useful picture of requirements engineering.

For most practitioners, locating potential solutions to
requirements engineering challenges is only part of the battle. When
a method or practice is being considered for use, the question
becomes “Will this work for me?” Understanding the experiences of

xvii

 xviii S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

other practitioners can be an incredibly valuable shortcut to the
answer, and books like Software & Systems Requirements Engineering:
In Practice are a great place to find that information.

Erik Simmons
Requirements Engineering Practice Lead

Corporate Platform Office
Intel Corporation

Academic Foreword

Requirements engineering has proven to be one of the most
difficult and critical activities for the successful development
of software and software-intensive systems. The reasons for

that are obvious. If requirements are invalid, then even the most
careful implementation of a system will not result in a product that is
useful. Moreover, if requirements are included in the requirements
specifications that are not actually valid, then the product or system
becomes unnecessarily expensive. This shows that requirements
engineering is important.

In fact, requirements engineering is also difficult. There are many
reasons for this. One is that often software-intensive systems are
innovative in providing new functionality. Then, learning curves
have to be considered. It is often impossible to understand, in advance,
what the requirements actually are. The people involved have quite
different perspectives on their valid requirements. Therefore, it is
difficult to arrive at an agreement. At the same time, important
requirements might be overlooked and only discovered when gaining
first experiences with the produced systems. Moreover, for large,
long-term projects requirements may change due to changes in the
environment, the market, or user needs.

Finally, requirements engineering is often underestimated or even
neglected by project management. The core of requirements
engineering is devoted to understand and work on the problem
statement and not so much the solution. However, management may
think that only when a team of developers starts to work on the
solution will the project begin to show real progress. Therefore, both
for management and even for experienced developers, there is always
a tendency to rush too early into the solution domain. As a result,
solutions are produced that miss requirements or do not explore the
full range of possible solutions.

However, even having accepted that requirements engineering is
difficult, error-prone, costly, but nevertheless important, a lot more
has to be understood to be able to do professional requirements
engineering. For most projects, the overall development process can
be easily standardized after the requirements have been captured.

xix

 xx S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

What is most difficult is to standardize the process of requirements
engineering, since requirements engineering is at the very beginning
of a project when so much is unclear. Therefore, in industrial software
development, it is important to come up with a requirements
engineering approach that is on the one hand flexible but on the other
hand gives enough methodological guidance.

In scientific research, exploring requirements engineering has
been an active field for many years. However, at least in the beginning,
requirements engineering was sometimes misunderstood as a
discipline, which only has to document and specify requirements but
neglects the necessary decision making. This ignores the difficulty of
coming up with a requirements specification that takes into account
all issues from functionality to quality and cost. There are even
process development issues to consider, such as certification
requirements or product constraints dealing with given operating
systems or software reuse.

As a result of all these considerations, the software engineering
group of Siemens Corporate Research in Princeton, New Jersey,
decided a few years ago to concentrate their research on a broad
spectrum of requirements engineering themes. I had the privilege to
work extensively with this group of engineers and researchers, who
gained a lot of experience in requirements engineering on coaching,
teaching, and consulting methods in ongoing Siemens projects. Some
of the projects are very large scale. It is helpful that the software
engineering group in Princeton is not just focused on the core topics of
requirements engineering but also covers closely related aspects such
as architectural design, quality assurance, testing, model-based
software development, and prototyping. Doing so, the group is looking
at a systematic foundation to requirements engineering by creating a
requirements engineering reference model, which helps to list all the
necessary content in the requirements engineering process while at the
same time providing flexibility by tailoring and by a choice of methods.

It is a pleasure to see the results of the requirements engineering
research and practice at Siemens Corporate Research documented in
this book. It describes a lot of precious experiences, principles, and
the state of the practice in industry. As such, it is quite unique and
complements existing academic books on requirements engineering,
which look more at the basic terminology and approaches.

I hope that this book will help in many respects development teams
around the world to improve their industrial requirements engineering.
It is a pleasure for me to thank the authors and the members of Siemens
Corporate Research for a scientifically fruitful cooperation over the last
six years and to congratulate them on this book, which is a milestone in
the field of industrial requirements engineering.

Manfred Broy
Professor of Software and Systems Engineering

Technical University of Munich

Preface

Today’s software and systems engineers are facing an increasing
number of challenges as they attempt to develop new products
and systems faster, with higher quality and rich feature content.

Part of these challenges are created by advances in computing
technology, as processors and memory become faster and less
expensive. Along with increased processing capability, there is an
expectation that today’s systems will do more. As more features are
being defined for a product or system, the discipline of requirements
engineering has increased in importance to help manage the
development of the features throughout the product life cycle.

This book was written to help provide an understanding of the
challenges in requirements engineering (RE) that are facing industrial
practitioners and to present some best practices for coping with those
challenges. Many texts on RE generally do a good job covering the
basics of RE, but they may not adequately discuss the real-world
problems that can make requirements elicitation, analysis, and
management difficult. For example, Siemens products are typically
defined with at least several thousand recorded requirements.
Complex Department of Defense projects are sometimes reported as
having 100,000 requirements or more in their project database.
Managing projects of this size is very difficult, and managing the
requirements on such a project can be quite daunting. The trend is
toward defining more requirements, but developers often struggle
with managing them, especially as requirements are added or
changed during the development life cycle. Unfortunately, problems
of scale often do not always appear on a project until it is too late to
easily change process, tooling, or infrastructure. It is hoped that some
of the techniques described in this book will be of use to industrial
practitioners for helping to make project managers aware of potential
problems before they happen, and providing techniques and guidance
for successfully navigating the many pitfalls associated with large,
complex projects.

xxixxi

 xxii S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

Background
The Software and Systems Engineering Department of Siemens
Corporate Research is involved with many software development
projects with Siemens organizations working across a broad spectrum
of application domains in the business sectors of industrial, health
care, and energy. In our dual role of an industrial research and
development laboratory, we have many opportunities for observing
how requirements engineers do their work. Over time we can classify
certain requirements engineering practices as “best practices,” and
we also learn from the not-so-best practices that were not as effective
in achieving project goals.

This book was written to summarize our requirements engineering
experiences, and to describe them in a form that would be useful
to software and systems engineering practitioners; i.e., methods,
processes, and rules of thumb that can be applied to new development
projects. We are not so naïve as to believe that engineers who follow
what is described in this book will work only on successful projects.
We know too well that a practice that worked well in Princeton may
not work so well in Poland, and much like our children, engineers
sometimes learn best from their own mistakes. But, if software and
systems engineers can learn from our experiences and increase the
probability of a successful project outcome, our efforts will be
worthwhile.

Requirements engineering is most critically applied in the early
phases of a systems development project, but it is a decision-making
process that is applied across the entire product development life
cycle. Thus, the requirements engineer must work effectively with
software and systems engineers working on other tasks such as
architecture design and test procedures. Indeed, our research in
requirements engineering was initiated based on the observation that
the first task for an architect on a new project is to understand the
product requirements.

We have worked on projects for a broad range of application
domains; e.g., medical equipment, factory automation, transportation,
communications, automotive. The number of requirements that must
be defined, analyzed, and managed in the projects may range from a
few thousand to one hundred thousand. Many of our projects are
distributed over multiple development sites, involving engineers
living in many different countries. These software and systems
engineers are often working under great pressure to deliver the
product quickly, with good quality and a rich feature set. Most of the
products contain both hardware and embedded software; thus, there
are dependencies on electrical and mechanical characteristics,
reliability, usability engineering, and requirements that must be
considered by many different stakeholders. We often work within
regulated domains such as medical devices where requirements must

be carefully documented, traced, reviewed, and tested. We have also
had to develop expertise on subjects that are not commonly taught at
universities, such as hazard analysis.

Requirements engineering has become more complicated over
time as the complexity of the products we desire to develop has
increased. Thus, the requirements engineer is continually challenged
by issues of scale, unstable requirements, product complexity, and
managing change. Our experience has resulted from the opportunities
to work on, for example, a project that is defining the requirements
for an automobile infotainment system and then a few months later a
project that is defining the requirements for a medical imaging
system.

How to Use This Book
Our experience is with requirements engineering for products,
systems, and services; typically (but not always) with high software
content. This book contains RE methods, processes, and rules of
thumb that have been derived from observed best practices of RE
across many such projects. Thus, this book is meant for software and
systems engineering professionals who are interested in learning new
or validating their current techniques for RE. Such professionals
include practicing requirements engineers, who should benefit most
from the best practices discussed. But, the book material may also be
useful to other engineering professionals, such as system architects,
testers, developers, and engineering managers. The book may be
useful to “not quite yet” practitioners such as graduate students in
software engineering, systems engineering, or computer science. We
would also hope that product or marketing managers would receive
valuable information from this book as they struggle with bringing
new products to a competitive market.

In order to focus on best practices and techniques for the
practitioner, there is very little introductory material presented, but
pointers are given to reference books that cover basic software
engineering concepts. Thus, users of this book typically would have
at least an undergraduate degree in computer science, systems or
software engineering and some experience developing systems.

 P r e f a c e xxiii

This page intentionally left blank

Acknowledgments

Since requirements engineers work across the entire development
life cycle, they must interface with engineers working on
specialized project tasks. We’re fortunate to have had the

experience of working with many talented software and systems
architects, testing experts, project managers, and requirements
engineers. Some of these experts have also collaborated with us on
this book project as contributing authors. We acknowledge the
contributions of these authors here as well as in the chapters they
have written: Sascha Konrad, Raghu Sangwan, Hans Ros, Xiping
Song, Bea Hwong, Marlon Vieira, Bill Hasling, Gilberto Matos, Bob
Schwanke, and Brad Wehrwein.

Like software system development, writing a book can be done
using a very iterative process. Once the author puts the first words to
paper, there is an iterative (seemingly endless) process of review and
rewrite, until we either become comfortable with the work or run out
of time. We’d like to acknowledge the contributions of our review
team: Capers Jones, Manfred Broy, John Worl, John Nallon, Stephan
Storck, and Mark Sampson.

We’d like to acknowledge the contributions of our cartoonist,
Johnol Jones, who helped to insert some humor into a usually serious
subject, and our intern, Lindsay Ivins, who developed the figures and
helped keep us organized when the page counts started to grow.

Finally, we’d like to acknowledge the support of our editor,
Wendy Rinaldi, and the staff at McGraw-Hill and International
Typesetting and Composition. Sometimes, just knowing that someone
has confidence in us to complete the project is enough motivation to
keep us working toward a successful completion.

Brian Berenbach
Daniel J. Paulish

Juergen Kazmeier
Arnold Rudorfer

Princeton, NJ 08540 USA

xxv

This page intentionally left blank

CHAPTER 1
Introduction

by Brian Berenbach, Arnold Rudorfer

1

 2 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

Studies such as the CHAOS report [Johnson 2000] indicate that
about half of the factors associated with project or product
success are requirements related. Recently, researchers have

reported on studies showing that project success is directly tied to
requirements quality [Kamata et al. 2007]. With such overwhelming
evidence that requirements engineering is a cornerstone of software
systems engineering, one could ask, why is it still a relatively neglected
topic in university training? It is quite rare, for example, that a new
Computer Science (CS) university graduate might be asked to
participate in the development of a compiler or operating system, yet
nearly every graduate working in the industry will, sooner or later,
be asked to participate in creating the requirements specifications for
a product or service.

1.1 Why Has Requirements Engineering
Become So Important?

For years, many products were successfully created without the
participation of professionals who specialized in requirements
creation or management. So, why is requirements engineering (RE)
so important today? The answer lies in the changing nature of
industry and society in general. First, the pace of product development
has picked up drastically. Whereas just a few decades ago, product
improvements would be a slow process, today customers often
demand new versions of a product in less than one year. For example,
Siemens estimates that approximately 20 years ago, 55 percent
of sales were from products that were less than 5 years old. Today,
75 percent of sales are from products that were developed less than
5 years ago (Figure 1.1). Second, turnover and technology change
have impacted the experience levels of professionals engaged in the
development of products. Just a few short years ago, engineers might
expect to spend their entire careers with a single company, whereas
today job change is more common. Finally, outsourcing and offshoring
have dramatically changed the product life cycle. Specifications must
now be created for implementation or manufacturing by organizations
with potentially limited or no domain expertise. Imagine, for example,
having to create a product specification for a washing machine,
dishwasher, or luxury automobile to be built by staff who may have
never even seen one! Under such circumstances specifications must
be exact and detailed.

Software development is highly coupled to the domain; e.g., cell
phone software and avionics software tend to be designed, built,
and managed with processes that are heavily domain specific.
Furthermore, industries have begun to use software as product
differentiators. Product innovations can be more easily implemented
in software than hardware because of the lower engineering

 C h a p t e r 1 : I n t r o d u c t i o n 3 C h a p t e r 1 : I n t r o d u c t i o n 3

investment and modification costs. This results in domain-specific,
complex software for which high-quality requirements specifications
are essential.

Requirements engineering is extremely important when a product,
service, or industry is regulated. For example, the U.S. government’s
Food and Drug Administration (FDA) and Federal Aviation
Administration (FAA) both mandate specific activities and work
products (e.g., hazard analysis) where there is the potential for injury
or death. Sarbanes-Oxley regulations mandate traceability for certain
types of financial software used by companies doing business in the
United States. The European Union and Japan have regulations for
their respective businesses. Good requirements engineering practices
are essential for companies that must comply with government
regulations.

1.2 Misconceptions about Requirements Engineering
Misconceptions about requirements engineering can strongly
influence a company’s processes. Many companies and organizations
have a solid understanding of requirements processes, but some do
not. Some of the more common misconceptions are listed under the
headings that follow.

FIGURE 1.1 Acceleration of new product creation

1980 1985 2005

0

10

20

30

40

50

60

70

80

1 2 3

Sh
ar

e
of

 s
al

es
 w

it
h

pr
od

uc
ts

 ..
.

Less than 5 years 5 to 10 years More than 10 years

 4 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

Misconception 1: Any Subject Matter Expert Can Become
a Requirements Engineer after a Week or Two of Training
Requirements engineers need strong communication and knowledge
of engineering skills, the ability to organize and manage a data set of
requirements, high-quality written and visual presentation skills,
and the ability to extract and model business processes using both
text and graphical (e.g., Integration DEFinition [IDEF], Unified
Modeling Language [UML]) techniques. First and foremost, to elicit
requirements from stakeholders requires the ability to interact with
a variety of roles and skill levels, from subject matter experts (detailed
product requirements) to corporate officers (elicitation of business
goals).

Moreover, people have to be trained to write good specifications.
High school and university training tends to teach a style of writing
that is antithetical to the techniques needed to create unambiguous
and complete documents. Requirements analysts typically need
significant training, both classroom and on the job, before they can
create high-quality specifications.

Misconception 2: Nonfunctional and Functional Requirements
Can Be Elicited Using Separate Teams and Processes
The subject domains for nonfunctional and functional requirements
are related, may impact each other, and may result in iterative changes
as work progresses (see Chapter 5). Team isolation may do more
harm than good.

Misconception 3: Processes That Work for a Small Number
of Requirements Will Scale
Requirements engineering processes do not scale well unless crafted
carefully. For example, a trace matrix is an N × N matrix, where N is
the number of requirements of interest. In each cell, a mark or arrow
indicates that there is a trace from requirement Ri (row i) to requirement
Rj (column j). It is relatively easy to inspect, say, a 50-requirement
matrix, but what happens when five to ten thousand requirements
are needed to define a product? Filtering and prioritization become
important in order to retrieve results that can be better understood,
but the requirement annotations necessary to provide such filtering
are often neglected up front because the database is initially small.

1.3 Industrial Challenges in Requirements Engineering
Over the last few years, the requirements engineering R&D focus
program at Siemens Corporate Research has been involved with a
substantial number of requirements engineering (RE) projects with
Siemens development organizations. Many RE challenges have been
identified as potentially impacting project performance. We have

 C h a p t e r 1 : I n t r o d u c t i o n 5 C h a p t e r 1 : I n t r o d u c t i o n 5

observed that problems tend to be exacerbated by three critical
factors, the first being a decision to outsource the implementation, the
second being a significant change in technology, and the third being
the introduction of new products (e.g., entering a market where the
company has minimal prior experience).

When a decision is made to outsource, changes must take place in
all processes, especially in the area of requirements engineering. The
implementation may be done by staff with minimal domain
knowledge and, because of customs, logistics, time, or distance, with
limited access to subject matter experts. Attempts to use the same
processes and techniques used for in-house development for the
development of specifications for subcontracting or outsourcing may
lead to significant delays in delivery, sometimes even resulting in
project cancellation.

When technology changes rapidly, domain experts may no longer
be “experts.” Techniques and solutions that worked for many years
may become obsolete or irrelevant. Such technological discontinuities
may require substantial new training, or the experts in the older
technologies may make poor decisions for new product designs. A set
of key success factors for identifying potential requirements
engineering problems early has been developed at SCR and is
described in the next section.

1.4 Key Success Factors in Requirements Engineering
This section contains a checklist describing key factors for success in
requirements engineering. Most of the factors can be evaluated prior
to project initiation. Although project success cannot be guaranteed,
it is likely that if several of the success factors are not in place there
may be significant project difficulties.

The Project Has a Full-Time, Qualified Chief Architect
On many large projects the only senior technical role that spans the
requirements process through delivery is that of the chief architect.
He provides technical continuity and vision, and is responsible for
the management of the nonfunctional requirements (e.g., scalability,
quality, performance, environmental, etc.) and for the implementation
of the functional requirements. In our experience having an
experienced, full-time architect on a project contributes significantly
to its success [Hofmeister et al. 1999], [Paulish 2002].

A Qualified Full-Time Architect Manages
Nonfunctional Requirements
The architect is responsible for managing nonfunctional requirements
and the relationships among requirements analysis, development,
and management.

 6 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

An Effective Requirements Management Process Is in Place
The critical success factors in a requirements management process
are well defined by the Capability Maturity Model Integration
(CMMI), specifically those addressing change management and
traceability. A change control board (CCB) performs an impact analysis
and conducts cost/benefit studies when feature changes are requested.
The CCB acts as a gatekeeper to prevent unwanted “scope creep” and
ensures properly defined product releases.

Requirements Elicitation Starts with Marketing and Sales
The marketing and sales organizations and the project’s requirements
engineering staff must establish strong bonds to enable accurate
definition of product and/or product line features. Incorrect features
and requirements may be carried over into the requirements
development activities and create downstream problems.

Requirements Reviews Are Conducted for All New
or Changed Requirements or Features
Requirements must be reviewed, and the review must occur at the
right level. Since it typically takes one hour to review four to ten
requirements (e.g., for the first review—followup reviews may go
faster), reviews must be conducted at a high enough level to avoid
“analysis paralysis” and yet low enough to catch significant feature-
level defects.

Requirements Engineers Are Trained and Experienced
Requirements engineering is like any other scientific or engineering
endeavor in that the basic skills can be learned through training. But
without experienced staff, the project may “stall” or “churn” in the
requirements definition stage. If the staff is new, and the team has
more than four members, RE mentors should be used to improve the
skills of the team.

Requirements Processes Are Proven and Scalable
When processes are defined at the start of a project, they should be
bootstrapped from prior successful efforts, not just based on
“textbook” examples. As the size of a project increases, or the number
or size of work products increases, the methodologies must be scaled
to match.

Subject Matter Experts Are Available as Needed
Arrangements must be made early on to access the experts needed to
assist in defining requirements. For example, during tax season, tax

 C h a p t e r 1 : I n t r o d u c t i o n 7 C h a p t e r 1 : I n t r o d u c t i o n 7

accountants and attorneys may be unavailable. Schedules cannot be
defined unless the experts are available during requirements
development.

All Stakeholders Are Identified
All the relevant stakeholders must be identified if requirements are to
be properly defined and prioritized. The later key requirements are
identified during the project, the greater the risk that major changes
to the in-progress implementation will be necessary. Furthermore,
the success of a product may be jeopardized by failure to validate key
requirements.

The Customer Is Properly Managed
Customer management includes rapid feedback during prototyping,
minimizing the number of points of contact between project staff and
stakeholders, and maintaining strict control of feature change
requests. It also includes using good techniques to elicit product
features that are correct and unambiguous.

Progress and Quality Indicators Are Defined
The CMMI has a measurement and analysis practice area that
overlaps with both requirements development and requirements
management. Sometimes, a methodology (such as the Rational
Unified Process [RUP] techniques for capturing text use cases)
doesn’t include progress or work product quality measures. These
indicators must be defined in advance, or project management will
find it difficult to gauge project progress and make appropriate
corrections.

The RE Tools Increase Productivity and Quality
Any software tools used must enable a process (increasing
productivity and CMMI compliance), rather than hinder it. Positive
outcomes may require tool integration, customization, or, in rare
cases where there is a justifiable cost benefit, creating a new tool
from scratch.

The Core Project Team Is Full Time and Reports
into a Single Chain of Command
Studies have shown that a full-time core team is essential to the
success of a large project [Ebert 2005]. Without the continuity provided
by a committed full-time core of people, issues may “fall through the
cracks” or not show up until problems are revealed at integration
testing time.

 8 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

1.5 Definition of Requirements Engineering
“Requirements engineering [DoD 1991] involves all lifecycle activities
devoted to identification of user requirements, analysis of the
requirements to derive additional requirements, documentation of
the requirements as a specification, and validation of the documented
requirements against user needs, as well as processes that support
these activities.” Note that requirements engineering is a domain-
neutral discipline; e.g., it can be used for software, hardware, and
electromechanical systems. As an engineering discipline, it
incorporates the use of quantitative methods, some of which will be
described in later chapters of this book.

Whereas requirements analysis deals with the elicitation and
examination of requirements, requirements engineering deals with all
phases of a project or product life cycle from innovation to obsolescence.
Because of the rapid product life cycle (i.e., innovation→development→
release→maintenance→obsolescence) that software has enabled,
requirements engineering has further specializations for software.
Thayer and Dorfman [Thayer et al. 1997], for example, define software
requirements engineering as “the science and discipline concerned
with establishing and documenting software requirements.”

1.6 Requirements Engineering’s Relationship
to Traditional Business Processes

It is extremely important to tie requirements activities and artifacts to
business goals. For example, two competing goals are “high quality”
and “low cost.” While these goals are not mutually exclusive, higher
quality often means higher cost. Customers would generally accept
the higher cost associated with a car, known for luxury and high
quality, but would likely balk at paying luxury car prices for a car
expected to compete in the low-cost automotive market.

Unfortunately, some organizations may tend to decouple business
and requirements activities. For example, business goals may drive
marketing activities that result in the definition of a new product and
its features. However, the business goals may have no clearly defined
relationship to the artifacts used and produced during requirements
analysis and definition. RE activities start at the very beginning of
product definition with business goals and innovation. Requirements
engineering techniques can add an element of formality to product
definition that can improve communication and reduce the
downstream implementation effort.

 C h a p t e r 1 : I n t r o d u c t i o n 9 C h a p t e r 1 : I n t r o d u c t i o n 9

1.7 Characteristics of a Good Requirement
Requirements characteristics are sometimes overlooked when defining
requirements processes. They can be an excellent source of metrics for
gauging project progress and quality. One question we typically ask
organizations when discussing their quality processes is, “Given two
requirements specifications, how would you quantitatively determine
that one is better than the other?” This question may be answered by
looking at the IEEE 830 Standard [IEEE 1998]. The characteristics of
a good requirement, as defined by the IEEE, are listed next, with
several additional useful ones.

It is important to distinguish between the characteristics of a
requirement and the characteristics of a requirements specification (a set
of related requirements). In some cases a characteristic can apply to a
single requirement, in some cases to a requirements specification, and in
other cases to the relationship of two or more requirements. Furthermore,
the meaning may be slightly different when referring to a requirement
or a specification. Care must be taken, therefore, when discussing the
characteristics described here to define the context of the attributes.

Feasible
A requirement is feasible if an implementation of it on the planned
platform is possible within the constraints of the program or project.
For example, the requirement to handle 10,000 transactions per second
might be feasible given current technologies, but it might not be feasible
with the selected platform or database manager. So a requirement is
feasible if and only if it can be accomplished given the resources,
budget, skills, schedule, and technology available to the project team.

Valid
A requirement is valid if and only if the requirement is one that the
system shall (must) meet. Determination of validity is normally
accomplished by review with the stakeholders who will be directly
responsible for the success or failure of the product in the marketplace.
There can be a fine line between “must” and “nice to have.” Because
the staff of a development team may be mainly focused on technology,
it is important to differentiate between stakeholder requests that are
wishful thinking and those that are actually needed to make the project
or product a success. The inclusion of requirements that are nice but
not valid is called “gold plating.” As the name implies, having
requirements on a project that are not valid will almost certainly add
cost without adding value, possibly delaying project completion.

 10 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

Unambiguous
A requirement is unambiguous if it has only one interpretation. Natural
language tends toward ambiguity. When learning writing skills in
school, ambiguity can be considered a plus. However, ambiguity is
not appropriate for writing the requirements for a product, and care
must be taken to ensure that there is no ambiguity in a requirements
specification. For example, consider this statement:

“The data complex shall withstand a catastrophe (fire, flood).”

This statement is ambiguous because it could mean “The data
complex shall withstand a catastrophe of type fire or flood,” or it
could mean “The data complex shall withstand any catastrophe, two
examples being fire and flood.” A person skilled in writing requirement
specifications would rephrase as

“The data complex shall be capable of withstanding a severe fire.
It shall also be capable of withstanding a flood.”
An example of an ambiguous statement is “The watch shall be
water resistant.” An unambiguous restatement is “The watch shall
be waterproof to an underwater depth of 12 meters.”

A measure of the quality of a requirements specification is the
percent of requirements that are unambiguous. A high level of
ambiguity could mean that the authors of the specification likely
need additional training. Ambiguity often causes a project to be late,
over budget, or both, because ambiguity allows freedom of
interpretation. It is sometimes necessary to take a holistic view of
ambiguity; e.g., a requirement may be ambiguous, but when placed
in the context of the background, domain, or other related
requirements, it may be unambiguous. Product features found in
marketing literature (e.g., shock resistant) are typically ambiguous.
However, when placed in the context of the detailed specifications
used by manufacturing, the ambiguity is no longer present. On the
other hand, a requirement may be unambiguous, but when placed
in the context of related requirements, there may be ambiguity.

The Use of the Terms “Valid” and “Correct”
The IEEE Standard 830 uses the term “correct.” We use the term “valid”
instead because “correct” can be misleading. Something that is “correct”
is said to be “without error,” or mathematically provable. However, in
the context of a requirement, “valid” is more appropriate, as the
requirement may be exactly what the customer wants, but it may still
contain errors or be an inappropriate solution.

 C h a p t e r 1 : I n t r o d u c t i o n 11 C h a p t e r 1 : I n t r o d u c t i o n 11

When two requirements conflict with each other or create contextual
ambiguity, they are said to be inconsistent (see the later section
“Consistent”).

Verifiable
A requirement is verifiable if the finished product or system can be
tested to ensure that it meets the requirement. Product features are
almost always abstract and thus not verifiable. Analysis must be done
to create testable requirements from the product features. For example,
the requirement “The car shall have power brakes” is not testable,
because it does not have sufficient detail. However, the more detailed
requirement “The car shall come to a full stop from 60 miles per hour
within 5 seconds” is testable, as is the requirement “The power brake
shall fully engage with 4 lbs. of pressure applied to the brake pedal.”
As we have noted, product features lack detail and tend to be
somewhat vague and not verifiable. However, the analysis of those
features and the derived requirements should result in a specification
from which full coverage test cases can be created.

Modifiable
The characteristic modifiable refers to two or more interrelated
requirements or a complete requirements specification. A requirements
specification is modifiable if its structure and style are such that any
changes to a requirement can be made easily, completely, and
consistently while retaining the structure and style. Modifiability
dictates that the requirements specification has a coherent, easy-to-
follow organization and has no redundancy (e.g., the same text
appearing more than once), and that it keeps requirements distinct
rather than intermixed. A general rule is that information in a set of
requirements should be in one and only one place so that a change to
a requirement does not require cascading changes to other
requirements.

A typical way of ensuring modifiability is to have a requirement
either reference other requirements specifically or use a trace
mechanism to connect interrelated requirements.

Consistent
In general, consistency is a relationship among at least two
requirements. A requirement is consistent if it does not contradict or is
not in conflict with any external corporate documents or standards or
other product or project requirements. Contradiction occurs when
the set of external documents, standards, and other requirements
result in ambiguity or a product is no longer feasible to build. For
example, a corporate standard might require that all user interface
forms have a corporate logo in the upper-right corner of the screen,

 12 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

whereas a user interface requirement might specify that the logo be at
the bottom center of the screen. There are now two conflicting
requirements, and even though a requirements specification may be
internally consistent, the specification would still be inconsistent
because of conflict with corporate standards. Creating documentation
that is both internally and externally consistent requires careful
attention to detail during reviews.

Complete
A requirements specification is complete if it includes all relevant
correct requirements, and sufficient information is available for the
product to be built. When dealing with a high-level requirement, the
completeness characteristic applies holistically to the complete set
of lower-level requirements associated with the high-level feature
or requirement. Completeness also dictates that

• Requirements be ranked for importance and stability.

• Requirements and test plans mirror each other.

A requirements specification is complete if it includes the following
elements [IEEE 1998]:

 1. Definition of the responses of the system or product to all
realizable classes of input data in all realizable classes of
situations. Note that it is important to specify the responses
to both valid and invalid input values and to use them in test
cases.

 2. Full labels and references to all figures, tables, and diagrams
in the specification and definitions of all terms and units of
measure.

 3. Quantification of the nonfunctional requirements. That is,
testable, agreed-on criteria must be established for each
nonfunctional requirement.

Nonfunctional requirements are usually managed by the project’s
chief architect. In order for the completed product to be correct and
complete, it must include the testable requirements that have been
derived from the high-level nonfunctional requirements.

It is difficult to create complete specifications, yet complete
specifications are mandatory under certain circumstances; e.g.,
where the implementation team has no domain knowledge, or where
communication between subject experts and developers will be
problematic. We have seen projects where the requirements definition
phase was shortened for schedule reasons. The general consensus

 C h a p t e r 1 : I n t r o d u c t i o n 13 C h a p t e r 1 : I n t r o d u c t i o n 13

was that “the developers will finish writing the requirements.” But
when doing a risk analysis, it was nearly always quite clear that
having the developers complete the requirements was not an
appropriate process, due to

• Limited access to subject matter experts

• Lack of experience or bias when defining product requirements

At the back end of the project, the failure to properly define the
requirements almost always caused a greater delay than would have
happened by allowing the requirements specification to be completed
with the appropriate level of detail up front.

Traceable
Requirements traceability is the ability to describe and follow the life
of a requirement, in both a forward and backward direction, i.e., from
its origins, through its development and specification, to its
subsequent deployment and use, and through periods of ongoing
refinement and iteration in any of these phases” [Gotel et al. 1994].
Traceability is required for proper requirements management and
project tracking.

A requirement is traceable if the source of the requirement can be
identified, any product components that implement the requirement
can easily be identified, and any test cases for checking that the
requirement has been implemented can easily be identified.

Tracing is sometimes mandated by a regulatory body such as the
Federal Aviation Administration (FAA) or Food and Drug
Administration (FDA) for product safety. Furthermore, there are
some rare situations where failure to create the appropriate traces
between requirements can have legal repercussions. Traceability is
discussed in more detail in Chapter 7.

Other Project- or Product-Specific Characteristics
Occasionally, the requirements for a specific project or product have
characteristics that do not apply to all the projects or products. While
it can be argued that an attribute that crosscuts all other requirements
is just another requirement, when treated as a characteristic it is more
likely that the requirement will be fulfilled. For example, if a new
system is being built that must be downward compatible with an
older system, it could be argued that the need for downward
compatibility is just a nonfunctional requirement. However, we have
found that having such all-encompassing requirements converted to
characteristics makes it more likely that the completed system will be

 14 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

in compliance. A similar approach can be used for other “umbrella”
requirements such as

• Compliance with Sarbanes-Oxley regulations

• Meeting all corporate security requirements

• Meeting electrical safety requirements

Characteristics of a Good Requirements Specification
As was stated in the definition of consistency, the definition of
a characteristic may be different when applied to requirements
and to a specification. A requirements specification is a filtered
compendium of requirements. Having the requirements in a
document rather than a database permits holistic views and allows
the addition of history, a rationale, etc. There are certain characteristics
that apply to specifications as opposed to individual requirements as
listed here:

• A requirements specification is feasible if building the product
specified is feasible given the state of technology, the budget,
and the allotted time.

• A requirements specification is unambiguous if there is no
pair-wise ambiguity in the specification.

• A requirements specification is valid if every requirement in it
is valid.

• A requirements specification is verifiable if every requirement
in it is verifiable.1

• A requirements specification is modifiable if there is no
redundancy and changes to requirements are easily and
consistently made; e.g., a change to one requirement does not
require cascading changes to other requirements.

• A requirements specification is consistent if the requirement
set is internally consistent.

• A requirements specification is complete if it provides sufficient
information for complete coverage testing of the product or
system.

• A requirements specification is traceable if every requirement
in it can be traced back to its source and forward to test
cases.

• A requirements specification is concise if the removal of any
requirement changes the definition of the product or system.

1 Product or business requirements specifications typically describe features, and
as such there may be ambiguity and a lack of testability.

 C h a p t e r 1 : I n t r o d u c t i o n 15 C h a p t e r 1 : I n t r o d u c t i o n 15

Requirements elicitation and analysis are typically done under
project time constraints. Consequently, it is important to prioritize
and identify risks when defining requirements. For example, “If
this nonfunctional requirement is not completely analyzed, what
are the risks to the project, the company, and/or the user?” By
doing a risk analysis, the effort associated with fully defining a
requirement set can usually be balanced against the needs of the
project. Techniques for doing risk analysis of high-level requirements
(e.g., balancing effort against need) will be discussed further in
Chapter 5.

1.8 Requirements and Project Failure
It must be remembered that most systems under development are not
new; i.e., only a fraction of the requirements in the product are new or
unique [Jones 2007]. Yet issues of requirements maintenance and
long-term support are often missing from project plans; e.g., the
project plan is created as though the requirements will be discarded
after project completion. When long-term requirements management
is not planned, requirements creep can cause significant problems
late in a project. Furthermore, Capers Jones reports that the defect
rate increases significantly in requirements that are injected late over
those that are created prior to the start of implementation, and the
most egregious defects in requirements defined or modified late in a
project can sometimes show up in litigation [Jones 2007].

1.9 Quality and Metrics in Requirements Engineering
As was mentioned in connection with the success factors for projects,
project indicators need to be defined in order to have some measure
of project transparency. It is important to be able to answer the
questions “Am I making progress?” and “What is the quality of my
work products?” How does one, for example, determine that a
requirements specification is of high quality?

Requirement characteristics or quality indicators are extremely
important for determining artifact quality. They can be measured by
inspection (metrics), and the reported metrics can then be used to
determine the quality of individual requirements and requirements
specifications. Furthermore, metrics summaries tracked over time
can be used to identify potential problems earlier to permit corrective
actions, and provide guidance as to what type of corrective actions to
take. For example, a high level of ambiguity in a requirement set
might indicate that the analysts creating the requirements may need
additional training in requirements writing. Some of the chapters in
this book provide guidance on how to capture and use metrics to
improve requirements processes.

 16 S o f t w a r e & S y s t e m s R e q u i r e m e n t s E n g i n e e r i n g : I n P r a c t i c e

Function Point Metrics as Leading Indicators
A function point is used to estimate the complexity and effort
necessary to build a software product. Capers Jones has published
extensively on this topic [Jones 2007, 2008]. Function point metrics
are an excellent way of identifying potential problems with
requirements prior to the implementation of a project. Furthermore,
there is a clear correlation between function points and requirements;
that is, function points can be used as an indicator of requirements
creep and quality. Furthermore, it has been shown that function point
analysis (FPA) can be effective in determining requirements
completeness [Dekkers et al. 2001].

1.10 How to Read This Book
We suggest that you start by reading Chapters 1 and 2 before looking
at any of the other chapters. They lay the groundwork for the
remaining chapters by defining basic terminology that is used
throughout the book.

Chapters 3 and 5 describe techniques for eliciting requirements. If
you are interested in gathering requirements for software platforms
or middleware, we also suggest that you read Chapter 6.

Chapter 4 describes modeling techniques that can be used for
business or use case analysis. One specific method that has been used
successfully at Siemens on several projects, the hierarchical
decomposition of use cases, is described in detail.

Chapter 9 is devoted to rapid prototyping and describes a simple
technique that has been found useful in the development of systems
that are categorized by workflow and graphical user interfaces.

Chapter 7 describes techniques and best practices for requirements
management. If you are interested in managing environments where
the work may be distributed, then read Chapter 10 as well.

Chapter 8 describes advanced techniques for transforming
requirements into test cases. It will be of interest to project and quality
assurance staff. However, as Chapter 8 uses model-based methods,
be sure to read Chapter 4 before reading Chapter 8.

Finally, Chapter 11 describes hazard and threat analysis and
management in the context of a requirements engineering process. If
you are an analyst working in a domain that is regulated or where
there is the potential for physical or financial harm to an end user of
a product, we recommend reading this chapter.

1.11 Summary
We’ve introduced some of the key challenges for requirements
engineering and some of the success factors to achieve good RE.
We’ve provided a definition of requirements engineering, and we’ve

 C h a p t e r 1 : I n t r o d u c t i o n 17 C h a p t e r 1 : I n t r o d u c t i o n 17

described the characteristics of a good requirement and a good
requirements specification.

1.12 Discussion Questions
 1. Why is good requirements engineering more important to

product development than it was ten years ago?

 2. What are the differences between good requirements and a
good requirements specification?

 3. What are some of the key full-time roles necessary for a
project to be successful?

 4. What is the role of the chief architect?

References
Dekkers, C. and Aguiar, M., “Applying Function Point Analysis to Requirements

Completeness,” Crosstalk, February 2001.
DoD 91, U.S. Department of Defense, Software Technology Strategy, December

1991.
Ebert, C., “Requirements BEFORE the Requirements: Understanding the Upstream

Impact,” Proceedings of the 13th IEEE International Conference on Requirements
Engineering (RE’05), 2005, pp. 117–124.

Gotel, O. and Finkelstein, A., “An Analysis of the Requirements Traceability
Problem,” Proceedings of the First International Conference on Requirements
Engineering, Colorado Springs, CO, pp. 94–101, April 1994.

Hofmeister, C., Nord, R., and Soni, D., Applied Software Architecture, Addison-
Wesley, Boston, MA, 1999.

IEEE Standard 830, IEEE Recommended Practice for Software Requirements Specifications,
1998.

Johnson, J., “Turning Chaos into Success,” Software Magazine, Vol. 19, No. 3,
December 1999/January 2000, pp. 30–39.

Jones, C., Applied Software Measurement, 3rd ed., McGraw-Hill, New York, 2008.
Jones, C., Estimating Software Costs, 2nd ed., McGraw-Hill, New York, 2007.
Kamata, M.I. and Tamai, T., “How Does Requirements Quality Relate to Project

Success or Failure?” Proceedings of the International Requirements Engineering
Conference (RE‘07), 2007.

Paulish, D., Architecture-Centric Software Project Management, Addison-Wesley,
Boston, MA, 2002.

Standish Group Report, “CHAOS,” http://www.projectsmart.co.uk/docs/chaos_
report.pdf, 1995.

Thayer, R. and Dorfman, M., Software Requirements Engineering, 2nd ed., Los
Alamitos, CA: IEEE Computer Society Press, 1997.

http://www.projectsmart.co.uk/docs/chaos_report.pdf
http://www.projectsmart.co.uk/docs/chaos_report.pdf

	Contents
	Industrial Foreword
	Academic Foreword
	Preface
	Acknowledgments
	1 Introduction
	Why Has Requirements Engineering Become So Important?
	Misconceptions About Requirements Engineering
	Misconception 1: Any Subject Matter Expert Can Become a Requirements Engineer After a Week or Two of Training
	Misconception 2: Nonfunctional and Functional Requirements Can Be Elicited Using Separate Teams and Processes
	Misconception 3: Processes That Work for a Small Number of Requirements Will Scale

	Industrial Challenges in Requirements Engineering
	Key Success Factors in Requirements Engineering
	The Project Has a Full-Time, Qualified Chief Architect
	A Qualified Full-Time Architect Manages Nonfunctional Requirements
	An Effective Requirements Management Process Is in Place
	Requirements Elicitation Starts with Marketing and Sales
	Requirements Reviews Are Conducted for All New or Changed Requirements or Features
	Requirements Engineers Are Trained and Experienced
	Requirements Processes Are Proven and Scalable
	Subject Matter Experts Are Available as Needed
	All Stakeholders Are Identified
	The Customer Is Properly Managed
	Progress and Quality Indicators Are Defined
	The RE Tools Increase Productivity and Quality
	The Core Project Team Is Full Time and Reports into a Single Chain of Command

	Definition of Requirements Engineering
	Requirements Engineering’s Relationship to Traditional Business Processes
	Characteristics of a Good Requirement
	Feasible
	Valid
	Unambiguous
	Verifiable
	Modifiable
	Consistent
	Complete
	Traceable
	Other Project- or Product-Specific Characteristics
	Characteristics of a Good Requirements Specification

	Requirements and Project Failure
	Quality and Metrics in Requirements Engineering
	Function Point Metrics as Leading Indicators

	How to Read This Book
	Summary
	Discussion Questions
	References

