
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/292613523

Requirements Engineering: Best Practice

Chapter · October 2015

DOI: 10.1007/978-3-319-09798-5_2

CITATIONS

70
READS

5,697

All content following this page was uploaded by Samuel Fricker on 18 July 2017.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/292613523_Requirements_Engineering_Best_Practice?enrichId=rgreq-8f8d617e7091a26147fa9cc43f103d1e-XXX&enrichSource=Y292ZXJQYWdlOzI5MjYxMzUyMztBUzo1MTczNzc5NTI2MjA1NDRAMTUwMDM2MzkyNDAzMw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/292613523_Requirements_Engineering_Best_Practice?enrichId=rgreq-8f8d617e7091a26147fa9cc43f103d1e-XXX&enrichSource=Y292ZXJQYWdlOzI5MjYxMzUyMztBUzo1MTczNzc5NTI2MjA1NDRAMTUwMDM2MzkyNDAzMw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-8f8d617e7091a26147fa9cc43f103d1e-XXX&enrichSource=Y292ZXJQYWdlOzI5MjYxMzUyMztBUzo1MTczNzc5NTI2MjA1NDRAMTUwMDM2MzkyNDAzMw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Samuel-Fricker-2?enrichId=rgreq-8f8d617e7091a26147fa9cc43f103d1e-XXX&enrichSource=Y292ZXJQYWdlOzI5MjYxMzUyMztBUzo1MTczNzc5NTI2MjA1NDRAMTUwMDM2MzkyNDAzMw%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Requirements Engineering: Best Practice 

Samuel A. Fricker1, Rainer Grau2, and Adrian Zwingli3 

1Software Engineering Research Laboratory, Blekinge Institute of Technology, Sweden 
2Zühlke Engineering AG, Switzerland 
3SwissQ Consulting AG, Switzerland 

{samuel.fricker@bth.se, rainer.grau@zuehlke.com, 

adrian.zwingli@swissq.it} 

Abstract. Many software solutions have failed because they did not meet stake-

holder needs. In response to this problem a massive amount of techniques were 

developed to elicit stakeholder needs, to analyze the implications of these needs 

on the software, to specify proposed software products, and to check acceptance 

of these proposals. However, many of these techniques did not become industrial 

practice because they were not practicable or ineffective when used in real-world 

projects. To obtain an overview of what common practice is and to understand 

which techniques reflect best practice because they are particularly effective, we 

have surveyed a large number of industry projects. Based on 419 valid answers, 

this chapter gives an overview of commonly used requirements engineering tech-

niques. It also shows which of the techniques, when used in a software project, 

correlate with requirements engineering success. The chapter concludes with rec-

ommendations for software projects and future research to improve requirements 

engineering practice. 

1 Introduction 

In 1995 the consultancy company Standish Group International published results of an 

industry survey that showed that only 16% of the software projects were successful, 

53% were challenged, and 31% complete failures (Standish Group International 1995). 

Successful projects were those that completed on time and budget and produced a soft-

ware product with all features and functions as initially specified. The low success rates 

described in the Standish report generated substantial attention by industry and politics. 

The Standish survey pointed to software project practices that needed improvement. 

According to the respondents, the most frequently stated factors that influenced project 

success were user involvement, executive management support, and a clear statement 

of requirements. These factors show that requirements engineering is crucial to achieve 

project success. User involvement is critical for building a software that will be under-

stood by the users, that will be used appropriately, and that creates joy (Hassenzahl, 

Beu et al. 2001). Management support is critical to align the software with the strategic 

goals of the organization (Gorschek and Wohlin 2006). Clearly stated requirements 

contribute to a shared understanding between the project team and the software prod-

uct’s users, management, and other stakeholders. The shared understanding reduces the 

mailto:%7bsamuel.fricker@bth.se
mailto:rainer.grau@zuehlke.com


risk of unsatisfactory outcome and rework of project results (Glinz and Fricker 2013). 

Influenced by these insights, software engineering practice matured over time. 32% of 

the software projects were successful according to the Standish survey published in 

2009 (Eveleens and Verhoef 2010). 

Even-though many requirements engineering techniques exist for involving users, 

for obtaining management support, and for achieving shared understanding, we lack an 

understanding of whether these techniques make requirements engineering successful. 

Some researchers believe that no technique would do and claim that good requirements 

practices are neither sufficient nor necessary (Davis and Zowghi 2006). The best we 

can say today is that the techniques are used inconsistently: some techniques get used 

by some projects but not by others (Neill and Laplante 2003, Paech, Koenig et al. 2005). 

Companies that care about requirements engineering seem have a preference for Qual-

ity Function Deployment, prototyping, Data Flow Diagrams, role playing, and decision 

trees (Rouibah and Al-Rafee 2009). However, we do not know whether any of these 

techniques correlates with requirements engineering success, thus should be used sys-

tematically. 

This chapter intends to develop an understanding of what practice makes require-

ments engineering successful by reporting the results from an own large-scale industry 

survey. The survey investigated whether the use of requirements engineering tech-

niques differed between projects with successful and unsuccessful requirements engi-

neering. The results show that a few techniques indeed correlated with success. In ad-

dition, also the ability to apply a broad variety of requirements engineering techniques 

is important. These results imply that best practice would be to utilize the few effective 

techniques and pragmatically select complementing techniques that suit well the type 

of software being developed and the situation that requirements engineering is con-

fronted with. 

The remainder of this chapter is structured as follows. Section 2 gives an overview 

of requirements engineering state-of-art that was studied in the industry survey. Section 

3 describes the survey methodology. Section 4 characterizes the projects that have re-

sponded to the survey, gives an overview of the requirements engineering practice of 

these projects, and shows the correlation of requirements engineering practice with suc-

cess. Section 5 discusses the obtained results, gives recommendations for practice, and 

suggests implications for research. Section 6 summarizes and concludes. 

2 Requirements Engineering State-of-Art 

2.1 Requirements Engineering Techniques 

There is a long tradition of research and practice in requirements engineering. One of 

the early influential works describes requirements engineering as inquiry (Potts, 

Takahashi et al. 1994). During an inquiry the requirements engineer asks questions 

about a future software product to stakeholders and turns the obtained answers into a 

specification. While doing so, new questions emerge that are posed again to the stake-

holders to initiate the next inquiry. 



Since these early days, a large number of techniques have been investigated to ad-

vance requirements engineering state-of-the-art (Cheng and Atlee 2007). Still, Potts’s 

inquiry remains a good model of how to think of requirements engineering in a software 

project. Today, a requirements engineer is expected to elicit needs and expectations 

from stakeholders, to model and analyze the impact of these inputs on the system to-

gether with the development team, and to check proposed implementations for ac-

ceptance by the stakeholders (Pohl and Rupp 2011). Once both the stakeholders and the 

development team agree, the requirements are used to steer development and, upon 

release of the solution, check whether the developed product fulfils the agreement. If 

the inquiry is done well, one can observe that a shared understanding emerges, require-

ments stabilize, and the stakeholders become satisfied (Fricker and Glinz 2010, Glinz 

and Fricker 2014). 

During elicitation the requirements engineer aims at understanding the project vision 

and constraints, the context that the product will be deployed into, and the stakeholders 

that will need to accept the product (Hickey and Davis 2004, Zowghi and Coulin 2005). 

Such requirements elicitation results in an overview of users, external systems, and 

other stakeholder viewpoints and a description of their respective background, interests, 

and expectations. A large number of techniques are known to elicit such information 

about the system requirements (Hickey and Davis 2003, Davis, Dieste et al. 2006, 

Dieste, Juristo et al. 2008). Table 1 gives an overview of selected elicitation techniques. 

Table 1: Selected requirements elicitation techniques. 

Technique Description 

Archaeology Analysis of existing systems to understand their functionality, qual-

ity, and usage (Pérez-Castillo, Garciía-Rodríguez de Guzmán et al. 

2011). 

Creativity The generation and selection of ideas to innovate or solve a difficult 

problem (Maiden, Gizikis et al. 2004, Gorschek, Fricker et al. 2010). 

Data Mining Search and filtering of requirements databases to identify relevant 

knowledge about stakeholder needs (Cleland-Huang and Mobasher 

2008). 

Interview Meeting between a requirements engineer and a stakeholder to dis-

cuss topics of relevance for the system (Alvarez and Urla 2002). 

Introspec-

tion 

Use of domain knowledge in combination with reflection and empa-

thy to base requirements on experience (Vermersch 2009). 

Observation Study of system use, possibly in the target environment and by real 

users, to understand usage processes and strengths and weaknesses 

of a current system (Beyer and Holtzblatt 1995). 

Question-

naire-based 

Survey 

Paper or electronic form with questions and space for answers dis-

tributed to stakeholders to obtain an overview of stakeholder opinion 

(Ng, Barfield et al. 1995). 

Reuse Use of existing specifications to avoid re-invention of requirements 

that already are adequate (Lam, McDermid et al. 1997). 

Workshop Meeting between a requirements engineer and stakeholders to reach 

agreement between the workshop participants (Gottesdiener 2002). 



During analysis the requirements engineer aims at understanding how the require-

ments will be implemented by the software system (Mylopoulos, Chung et al. 1999), 

how they will be considered in the development plan (van de Weerd, Brinkkemper et 

al. 2006), and how they will be used for the testing of the system (Martin and Meinik 

2008). Requirements analysis typically results in one or more prototypes, a definition 

of project scope or release plan, and a requirements specification for the system. Table 

2 gives an overview of selected analysis techniques, Table 3 of planning techniques, 

Table 4 of relevant requirements types, and Table 5 of specification techniques.  

Table 2: Selected system analysis techniques. 

Technique Description 

Domain-

driven De-

velopment 

Specifying the concepts of relevance in the context the system will 

be deployed into that are to be implemented or respected by the sys-

tem (Danevas and Garva 2012). 

Formal 

Specification 

Use of mathematical or formal-logic expressions to enable auto-

mated checking of completeness consistency, and correctness 

(Holtmann, Meyer et al. 2011). 

Informal 

Modelling 

Sketching a model of something of relevance to reflect and discuss 

how the parts of that thing interrelate (Glinz 2010). 

OOA Specifying the structure, functionality, and behaviour of the system 

usually with the object-oriented analysis language UML (Arlow and 

Neustadt 2005). 

Prototyping Paper- or tool-based approximation of the end-systems to increase 

the tangibility and authenticity of the planned system (Rettig 1994). 

Quality 

Checks 

Checking whether the system fulfils its goals and whether function-

ality and quality are adequate and needed (Chung, Nixon et al. 2000). 

SA Specifying the structure, functionality, and behaviour of the system 

with a structured analysis language (Ross 1977, DeMarco 1979). 

Table 3: Selected requirements planning techniques. 

Technique Description 

Business 

Case 

Evaluating whether a set of requirements has to good return-of-in-

vestment and should be included into project scope (Schmidt 2002). 

Prioritizing Ranking the requirements to obtain an order of how they shall be 

addressed by the project work (Achimugu, Selamat et al. 2014). 

Release 

Planning 

Defining the contents of one or more releases to define the scope of 

the software system (Svahnberg, Gorschek et al. 2010). 

Roadmap-

ping 

Corse-grained, long-term planning to agree with stakeholders and 

suppliers for how the software system shall evolve (Phaal, Farrukh 

et al. 2003, Fricker and Schumacher 2012). 

Triage Filtering the requirements to determine what requirements are rele-

vant and what requirements are not (Davis 2005). 

Vision Defining the problem that is addressed, the key idea of the solution, 

and how the solution improves state-of-art to align the work of de-

velopers and stakeholders (McGrath 2001). 



Table 4: Selected requirement types. 

Type Description 

Behaviour Behaviour is a sequence of states that determine how a system, arte-

fact, or class reacts to events (Whittle and Schumann 2000). 

Formal 

Property 

A formal property can be tested for correctness, completeness, and 

consistency with automated tools (Berard, Bidoit et al. 2010). 

Function Function is a reaction to inputs or an action of a system (IEEE 1990). 

Glossary A glossary defines terms, abbreviations, acronyms, synonyms, and 

homonyms (Pohl and Rupp 2011). 

Interface An interface connects a system with its environment. Typical inter-

faces are user interfaces (Myers 1989) and interfaces to other soft-

ware systems (Chung, Lin et al. 2003). 

Process A process is a series of actions or operations implemented by people, 

organizations, or software to achieve a goal (Melão and Pidd 2000). 

Quality Quality is a characteristic of a software system such as performance, 

reliability, security, compatibility, portability, usability, and main-

tainability (ISO/IEC 2010). 

Scenario A scenario is a story of how users and systems interact to achieve a 

goal (Alexander and Maiden 2005). 

Stakeholder A person, group, or organization who gains or loses something with 

the software (Alexander and Robertson 2004). May be denoted agent 

(van Lamsweerde 2001) or actor (Arlow and Neustadt 2005). 

Structure Structure refers to entities or systems with their attributes and rela-

tionships (Arlow and Neustadt 2005). 

Table 5: Selected specification techniques. 

Technique Description 

i* or KAOS Specifying agents, goals, and formal properties with formal lan-

guages to enable reasoning about goals and goal-achievement (van 

Lamsweerde 2001). 

Natural Lan-

guage 

Specifying requirement with words and sentences to achieve speci-

fication flexibility and understandability. Language templates may 

be used to improve precision (Denger, Berry et al. 2003). 

SA Dia-

grams 

Specifying functions, processes, structure, and behaviour with one of 

the graphical notations proposed by structured analysis to achieve 

precision and make structure visible. 

Tables Specifying concepts to achieve an understanding of the terminology 

(Dwarakanath, Ramnani et al. 2013) and or rules for how conditions 

affect system behaviour (Bajec and Krisper 2005). 

UML Dia-

grams 

Specifying functions, scenarios, processes, rules, relations, behav-

iour, and deployment with graphical notations from the Unified 

Modelling Language to increase precision and show structure. 

User Screens Specifying the user interface with paper or tool-based mock-ups to 

increase the tangibility and authenticity of the planned system. 



During requirements checking, the requirements engineer checks that the right ap-

proach has been selected for fulfilling the vision and achieving the system goals and 

that the system will be accepted by the stakeholders. Requirements checking initiates a 

new inquiry cycle if the checked requirements turn out to be not good-enough. Require-

ments checking marks the agreement of the stakeholders on contents and scope of the 

development project if the checking has been successful. Table 6 gives an overview of 

selected checking techniques. 

Table 6: Selected checking techniques. 

Technique Description 

Automated 

Checking 

Testing a formal specification of the system to detect conflicting 

and missing requirements (Easterbrook, Lutz et al. 1998). 

Inspection Review of the requirements specification by all relevant stakehold-

ers with a formal process that is effective at discovering problems 

and leads to in-depth understanding of the specification (Porter, 

Votta et al. 1995). 

Peer review Feedback by one or more requirements engineers to support and 

assure the quality of the specification work. 

Prototype re-

view 

Discussion and use of the prototype, for example in a role-play, to 

explore uses and check acceptance of the system. 

Simulation Approximation and review of the behaviour of the system with an 

appropriate tool to check correctness of the behaviour (Glinz, 

Seybold et al. 2007). 

Walk-through Efficient review of the requirements specification by discussing the 

requirements specification in their sequence with stakeholders. 

The inquiry cycle leads to a dialogue between stakeholders and development team 

that can be seen as a negotiation (Fricker 2009). The negotiation results in an agreement 

between the stakeholders and the development team about the product to be developed. 

This agreement, represented by the approved requirements specification, is then base-

lined and used to manage the development project and the release of the developed 

product. Table 7 gives an overview of selected requirements negotiation techniques and 

Table 8 of requirements management techniques. 

Table 7: Selected requirements negotiation techniques. 

Technique Description 

Conflict 

Management 

Discovering and resolving conflicts among stakeholders and be-

tween stakeholders and development team (Pohl and Rupp 2011). 

Handshaking The review and discussion of implementation proposals to align the 

planned implementation of the software system with stated and un-

stated stakeholder needs (Fricker, Gorschek et al. 2010). 

Negotiation 

Analysis 

Analysing possible negotiation outcomes and selecting a value-cre-

ating, fair agreement (Raiffa 2007). 

Power 

Analysis 

Analysing power and influence of stakeholders and planning how 

to interact with them (Milne and Maiden 2012). 



Technique Description 

Prioritizing Ranking the requirements to obtain an order of how they shall be 

addressed by the project work (Achimugu, Selamat et al. 2014). 

Strategy 

Alignment 

Aligning requirements with company strategy, for example 

through explicit traceability (Gorschek and Wohlin 2006). 

Variant 

Analysis 

Analysing and selecting alternative features or ways of solving a 

problem (Schobbens, Heymans et al. 2007). 

Win-Win 

Negotiation 

Structured, possibly tool-supported approach to identification of 

options for agreement and selection of the appropriate option 

(Boehm, Grünbacher et al. 2001). 

Table 8: Selected requirements management techniques. 

Technique Description 

Baselining Versioning requirements and specifications and communicating 

these as a baseline to stakeholders (Conradi and Westfechtel 1998). 

Change 

Management 

Controlled process of collecting change requests, analysing impact, 

and deciding about the change (Kobayashi and Maekawa 2001). 

Process 

Measurement 

Measuring requirements engineering and implementation effi-

ciency, for example in the form of value stream analysis (Petersen 

and Wohlin 2010). 

Progress 

Tracking 

Monitoring the lifecycle of requirements from discovery to selec-

tion, implementation, and release (Kniberg and Skarin 2010). 

Report 

Generation 

Generation of reports, such as requirements specifications, from a 

database of requirements. 

Traceability 

Management 

Maintaining relationships between requirements and possibly other 

artefacts to express dependencies, conflicts, and synergies 

(Cleland-Huang, Settimi et al. 2007). 

2.2 Requirements Engineering Success 

For evaluating how requirements engineering practices are one needs to understand 

how to measure requirements engineering success. The most through study that an-

swered this question was a survey that tested 32 indicators with 30 requirements engi-

neering experts (El Emam and Madhavji 1985). It showed that requirements engineer-

ing success can be measured with quality of requirement engineering service and qual-

ity of requirements engineering products. Table 9 gives an overview of the indicators. 



Table 9. Success measurements for requirements engineering (El Emam and Madhavji 1985). 

Quality of RE Service Quality of RE Products 

Business-technical alignment: fit 

with strategy, ability and willing-

ness to make business changes, 

and management support. 

Stakeholder acceptance: aware-

ness of business changes, extent of 

consensus, willingness to defend 

solution, and relationship to users. 

 

Quality of cost/benefits analysis: completeness 

and coverage of cost/benefit analysis, new ben-

efits created by the new solution, and sufficient 

accuracy of cost estimates. 

Argumentation of impact: diagnosis of existing 

solution, traceability of supported processes to 

problem to be solved and to system goals, and 

traceability of strengths and weaknesses of 

new solution to replaced solution. 

The quality of requirements engineering service refers to the effects a requirements 

engineer wants to achieve. These concern the alignment of the software product with 

business objectives and the alignment of it with stakeholder needs and expectations. 

Such alignment can be checked by asking the concerned stakeholders of whether they 

agree that system will deliver the desired impacts. 

The quality of requirements engineering products refers to the work results delivered 

by the requirements engineer. These should include a comprehensive cost/benefit anal-

ysis and a description of impact with detailed traceability to supported processes, sys-

tem goals, and the replaced solution. Such work results are tangible and can be easily 

inspected if they are presented in the form of a requirements specification. 

In this chapter we use El Emam and Madhavji’s success measurements to inquire 

what requirements engineering goals were important and whether these goals were 

achieved. This way of assessing the quality of requirements engineering service and 

products allows taking into consideration the many possible variations of what is im-

portant in given projects. It allows the respondents to judge whether requirements en-

gineering was successful according to their own specific contexts. 

El Emam and Madhavji’s success measurement have the advantage of being meas-

urable immediately when requirements engineering is concluded. However, they fall 

short in capturing the ultimate objective of requirements engineering. No measurement 

has been proposed to assess whether the specified system will be successful. For that 

reason, we extend the measurement framework outlined in Table 9 with the additional 

dimension of requirements engineering outcome. In the survey we thus ask the respond-

ents whether the specified product met the goals the product was conceived for. 

3 Industry Survey 

We investigated the use of requirements engineering techniques and how much they 

contributed to requirements engineering success with an online survey (Rea and Parker 

2005). We distributed an online questionnaire to people involved in software projects 

in an attempt to answer the following main research questions. 



- RQ1: What requirements engineering techniques are used in software pro-

jects? 

- RQ2: What are the goals pursued in requirements engineering? 

- RQ3: Which requirements engineering techniques correlate with require-

ments engineering success? 

The answers to RQ1 show how frequently each of the requirements engineering 

techniques is used, thus allows us to say what common practice is. Besides benchmark-

ing practice, these results allow judgment whether techniques that were investigated in 

research were successfully transferred or not. The answers to RQ2 tell us what require-

ments engineers try to achieve with their work and with the systems they specify. The 

results show the priorities that are set for requirements engineering work. The answers 

to RQ3, finally, tell us what requirements engineering techniques matter most because 

they are associated with success more than other techniques do. 

We built the questionnaire by first basing it on requirements engineering state-of-art 

(Cheng and Atlee 2007, Pohl and Rupp 2011) and then adjusting it based on suggestions 

from practitioners with broad overview on the software industry. A focus group with 

experienced practitioners evaluated adequacy, coverage, and understandability of the 

questionnaire. We then tested and further improved the form by letting respondents fill 

it in and give feedback in interviews. 

To know who was answering, the questionnaire asked respondents to characterize 

their most recent software project. To answer RQ1, the questionnaire asked multiple-

choice questions about requirements-related inquiry, specification, and management 

techniques in the characterized project. To answer RQ2, it asked multiple-choice ques-

tions about the goals of requirements engineering in the project and of the specified 

product. To answer RQ3, it asked questions about the requirements engineering suc-

cess. Free-text areas allowed expanding or qualifying the answers. 

The theoretical population of the survey were all software projects that were recent 

when the survey was administered in 2012. The sampling frame were the industrial 

contacts of our partners in academia and industry. To increase the reach of the survey 

we encouraged subjects to recommend the questionnaire to their own contacts. 

625 respondents, about 10% of the invited persons, answered the online question-

naire. Filtering for completeness and plausibility reduced the data to 419 valid answers. 

This number of answers makes this requirements engineering survey by far the largest 

ever published. The obtained number of samples allowed describing requirements en-

gineering practice with a margin of error smaller than ±5% for 95% confidence. 

We answered the research questions with statistical analysis. Descriptive statistics 

of proportions were used for answering RQ1 and RQ2. The difference of proportions 

test, a variation of the independent samples t test, was used for answering RQ3. To 

control the accumulation of type I error, Holm’s step-down method (Holm 1979) was 

used to prune the t test results for statistical significance. Wilcoxon’s rank-sum test, 

finally, allowed us to explore an additional angle to answer RQ3, whether the number 

of requirements engineering practices that are used in a software projects would corre-

late with success. 



4 Requirements Engineering Practice and Success 

4.1 Responding Projects 

A diverse mix of software projects answered the survey. Fig. 1 gives an overview of 

the answering projects, the kinds of software products they developed, and the compa-

nies they belonged to. 

 

Fig. 1. Demography of projects that responded to the survey. 

Many projects were performed at large companies in Switzerland and developed in-

formation systems. This distribution is consistent with the Switzerland-oriented contact 

networks we used for soliciting responses. The key employer in this country is the ser-

vice sector with IT departments that produce information systems. 

A wide spread of industries were addressed with the developed products. 35 re-

sponses, 8% of all responses, were given by projects that developed products for 

healthcare. Thus the results reflect practice across industries and are not specific to one 

of them, for example healthcare. Product novelty was relatively evenly spread. 

A majority of the projects were bespoke and developed tailor-made solutions. The 

projects used a sequential, incremental, or hybrid development process. Only few did 

research or used a process like the Spiral model that is designed for experimentation. 

The long duration of the projects may be explained by the prolonged relationship that 

IT departments have with the business units they support. The same relationship can 

Research 32 8% Banking, Finance 98 23% < 10 23 5%

Product, Platform 87 21% Automotive, Transport 54 13% 10-49 39 9%

Bespoke 237 57% Software, IT 51 12% 50-249 42 10%

Tender 42 10% Government, Military 40 10% 250-4499 144 34%

Other 21 5% Healthcare, Medical 35 8% >= 4500 168 40%

Insurance 31 7% n/a 3 1%

Prototyping 23 5% Telecommunications 31 7%

Evolutionary 39 9% Manufacturing, Supply 22 5% Europe 368 88%

Incremental 113 27% Other 57 14% Switzerland    248 59%

Hybrid 104 25% Germany    69 16%

Sequential 135 32% Information System 260 62% Other Europe    51 12%

Other 5 1% Software-Intensive 62 15% Americas 26 6%

Engineering 28 7% Asia-Pacific 25 6%

< 4 54 13% Other 69 16%

4-9 107 26%

10-19 89 21% Completely New 149 36%

20-49 84 20% New Features or Use 107 26%

>= 50 82 20% Changed Technology 79 19%

n/a 3 1% Maintenance 84 20%

< 4.5 27 6%

4.5-9 97 23%

9-18 119 28% ***: n/a was a possible answer,

>= 18 165 39% light color: sub-categories,

n/a 11 3% "Other": answers with less than 5% frequency.

Innovation

Type

Location

Project

Industry (application domain)

Company

Size (number of employees)***

Product

Duration (calendar months)***

Category

Process (Lifecycle Model)

Size (number of staff)***



also explain the bespoke nature of the projects. Information systems developed for busi-

ness units are used by a pre-determined set of users that can be actively involved into 

the requirements engineering process. 

4.2 Common Practice 

Our data shows that requirements engineering was widely established. However, 

there was not one way of doing requirements engineering. While only few of the tech-

niques are employed by almost all projects, e.g. workshops, many of the techniques are 

used by some of the projects only. This result indicates a wide variety of how require-

ments engineering is done. Fig. 2 gives an overview of how frequently each require-

ments engineering practice was used. 

 

Fig. 2. Common requirements engineering practice. 

Almost every project elicited requirements. The projects tended to do with stake-

holder workshops, by studying existing systems, or by re-using specifications. Work-

shops dominated requirements elicitation practice. Only few projects used techniques 

like observation, ethnography, surveys, or data mining. These techniques are thus used 

in special situations only. 

Almost every project planned the product to be developed, often by prioritizing re-

quirements. Often a mix of planning techniques were used. No technique was dominant. 

Almost every project analyzed requirements. Often a mix of informal modeling, pro-

totyping, and object-oriented analysis was used. No analysis technique was dominant. 

Historically important techniques like structured analysis, quality function deployment, 

and decision trees or specialized techniques such as domain-driven development were 

uncommon. 

Total 405 97% Total 414 99% Total 384 92% Total 407 97% Total 404 96%

Reqs. Prioritizing 252 60% Workshops 328 78% Informal Modeling 210 50% Functional 343 82% Natural Language 374 89%

Release Planing 209 50% Feedback    183 44% Prototyping 169 40% Scenarios 263 63% Use Cases    248 59%

Triage 206 49% Analysis    161 38% OOA 166 40% Quality 240 57% Informal Text    219 52%

Business Case 202 48% Design    149 36% Quality Checks 107 26% User Interfaces 238 57% User Stories    111 26%

Roadmapping 174 42% Creativity    142 34% SA 51 12% Processes 183 44% Shall Templates    94 22%

Vision 165 39% System Archeology 292 70% DDD 34 8% Rules 173 41% Other   37 9%

Other 1 0% Reqs. Reuse 270 64% Other 36 9% Softw. Interfaces 157 37% UML Diagrams 245 58%

Copy/Paste    159 38% Structure 140 33% Use Case Diagr.   188 45%

Total 382 91% Delta Specs.    121 29% Total 391 93% Glossary 132 32% Activity Diagr.   128 31%

Reqs. Prioritizing 252 60% Standard Reqs.    81 19% Inspection 266 63% Behavior 95 23% Class Diagr.    114 27%

Handshaking 209 50% Variability    42 10% Walk-Through 175 42% Stakeholders 71 17% Sequence Diagr.    89 21%

Conflict Mgmt. 167 40% Modeling    3 1% Peer Review 161 38% Formal Properties 24 6% State Machines    54 13%

Strategy Alignment 125 30% Interviews 265 63% Prototype Review 143 34% Other 26 6% Other    2 0%

Power Analysis 76 18% Document Analysis 211 50% Checklist 89 21% Processes 208 50%

Win-Win 45 11% Creativity 183 44% Simulation 33 8% Total 405 97% Activity Diagr.   128 31%

Variant Analysis 31 7% Workshops    142 34% Autom. Checking 30 7% Document 265 63% DFD    111 26%

Negotiat. Analysis 29 7% Idea Castings    43 10% Other 4 1% Spreadsheet 149 36% BPMN; BPML    37 9%

Idea Databases    38 9% Database 146 35% Other    9 2%

Total 341 81% Introspection 118 28% Modeling Tool 135 32% SA Diagrams 177 42%

Change Mgmt. 243 58% Observation 87 21% Drawing Tool 61 15% DFD    111 26%

Baselining 196 47% Surveys 50 12% Other 4 1% ERD    94 22%

Traceability 167 40% Data Mining 25 6% STD    62 15%

Progress Tracking 106 25% Other 12 3% User Screens 151 36%

Report Generation 60 14% Informal Drawings 139 33%

Process Analytics 55 13% Tables 67 16%

Other 3 1% Other 19 5%

Multiple answers were possible, light color: sub-categories, "Other": answers with less than 5% frequency

Requirements Management

Management

Product Planning Elicitation Requirement TypesAnalysis

Storage

Checking

Inquiry Specification

Stakeholder Negotiation

Notations



Almost every project specified requirements. A majority specified functionality, 

quality, use scenarios, and user interfaces of intended solutions. Functional require-

ments dominated. Concepts commonly used for formal reasoning, such as agents, goals, 

and formal properties, were rare. For specifying the requirements, natural language 

dominated as the notation. Natural language was often complemented with UML dia-

grams. The use of other diagram types, user screens, and informal drawings varied. 

Formal-logic and goal-oriented languages like i* or KAOS were almost never used. 

The frequency of notations that match requirements analysis techniques was incon-

sistent with requirements analysis practice. Object-oriented and structured diagrams 

were much more common than the use of corresponding analysis techniques. User 

screens were much less frequently documented than prototypes created. Formal speci-

fication languages were used as rarely as the corresponding formal methodology. 

Almost every project stored requirements. Requirements documents were the most 

common type of storage. The use of spreadsheets, requirements databases, and model-

ing tools varied. Drawing tools, wikis, and cards for capturing requirements backlogs 

were uncommon. 

Almost every project checked requirements. Projects tended to prefer manual re-

quirements checking, preferably with rigorous inspections. Simulation and automated 

formal checking were uncommon. 

Almost every project negotiated requirements. To reach an agreement on require-

ments, most common was requirements prioritization. Uncommon were analytical tech-

niques such as power, variant, and negotiation analysis, and advanced techniques such 

as win-win negotiations. 

Four out of five projects managed the requirements. This means at the same time 

that one out of five projects did not use the requirements once they were inquired. Re-

quirements management tended to focus on the handling of requirements. Most com-

mon was change management. Requirements were rarely used for analyzing project 

progress, for reporting, or for measuring the development process. 

Overall, the large variety of techniques indicates that there was no one-size-fits-all 

in requirements engineering practice. Still, there are a few practices that could be seen 

in a large majority of projects. These include the use workshops to discuss requirements 

with stakeholders, the specification of functional requirements, and the use of natural 

language for specification. Among the established methodologies, object-oriented anal-

ysis and specification appears to be widely adopted, although not dominating. The older 

counter-parts, for example structured analysis, were much less important in compari-

son. Extremely rare were formal techniques. Even-though they are widely researched, 

they have hardly found their way into current practice. 

4.3 Requirements Engineering Success 

The data from the responding projects showed that there was no dominant way of 

judging requirements engineering success. Fig. 3 gives an overview. 



 

Fig. 3. Success factors for requirements engineering process and outcome. 

The most important requirements engineering goals were shared understanding be-

tween the project team and its stakeholders and good quality of the requirements spec-

ification. These two objectives of requirements engineering were often complemented 

with the need for a clear scope for the development, for using little time and resources 

for requirements engineering, for satisfying the users, and for delivering the require-

ments engineering work results in time. 

The most common goal pursued by the software products that were specified with 

the requirements was productivity improvement. This goal was complemented by a va-

riety of goals that included effectiveness, e.g. to enable users to do things they could 

not do before, compliance with laws and regulations, and satisfaction of users and 

stakeholders with the product. Important societal topics, like environmental or societal 

challenges, were rarely considered to be a goal of the software product.  

Fig. 4 shows how many projects were successful and how many have not been suc-

cessful when judged according to the criteria summarized in Fig. 3. A bit more than 

half of the projects judged that they fulfilled the requirements engineering goals. A bit 

less than half judged they did too little. Almost none stated they would have done too 

much. While positive and negative satisfaction with requirements engineering were ra-

ther balanced, product goal achievement was a sharp success. About 9 out of 10 of the 

specified products were judged to be a success. Only few were considered failures. 

 

Fig. 4. Requirements engineering success. 

These success rates appear to contradict the success rates identified in other studies. 

In comparison, Standish presented 32% project success rate in 2009 by taking into con-

sideration scope, time, and budget adherence (Eveleens and Verhoef 2010). The stag-

gering success rate of 92% for product goal achievement we observed thus says that 

Total 419 100% Total 419 100%

Shared Understanding 214 51% Productivity 228 54%

Specification Quality 197 47% Effectiveness 156 37%

Clear Scope 160 38% Compliance 143 34%

Efficiency 155 37% Satisfaction 137 33%

User Satisfaction 145 35% Flexibility 86 21%

Timeliness 139 33% Safety 73 17%

Fit of Solution 94 22% Environment 7 2%

Estimation Reliability 65 16% Other 8 2%

Architecture Quality 58 14%

Cost/Benefit Analysis 26 6%

Other 4 1%

Requirements Engineering Goals Software Product Goals

Total 419 100% Total 419 100%

Too little 181 43% Rather Yes 385 92%

Just enough 229 55% Rather No 34 8%

Too much 9 2%

Achievement of RE Goals Achievement of Product Goals



while the project may have been problematic, the outcome of the project was not. Also, 

55% satisfaction with the requirements engineering experience is significantly larger 

than then 32% project success rate. This may indicate that requirements engineering 

practice had matured and was less problematic than other disciplines. 

4.4 Success-Correlating Practice 

To identify effective requirements engineering practice we correlated technique use 

with requirements engineering success. The result of this analysis indicates the tech-

niques that are used in projects with successful requirements engineering significantly 

more often than in projects that did not meet requirements engineering goals or pro-

duced products that did not achieve their goals. Whether practice use leads to success 

or whether good projects select these practices cannot be concluded from these results 

and needs to be investigated in future research. 

Our survey data showed 221 projects with successful requirements engineering and 

189 failures according to our success criteria. Only three techniques correlated with 

requirements engineering success with p < 0.05 significance after pruning the results 

with Holm’s step-down method to remove false positives. None of the other techniques 

correlated significantly with success, and no technique correlated negatively. Fig. 5 

gives an overview. 

 

Fig. 5. Techniques that correlated with requirements engineering success (upper rows: suc-

cesses, lower rows: failures) 

Scenarios are exemplary sequences of system usage (Alexander and Maiden 2005). 

In requirements engineering, they are used to describe concrete stories of how users 

and external systems interact with the system under consideration to achieve goals that 

are of value to the user. Scenarios make the functionality of the system concrete and 

thus enable users to judge whether they feel to be able to use the system meaningfully 

and whether they like it. Scenarios also allow capturing interaction design knowledge 

from user experience experts. A common format used to document scenarios is the use 

case template (Cockburn 2001). 

Business cases are used to document predicted financial results and other business 

consequences for one or multiple alternative ways of how a product is built, deployed, 

and maintained (Schmidt 2002). The business case planning work and results that are 

obtained with it are determinant for selecting what is in the product scope and what not 

and for evaluating whether a chosen scope is attractive for the customer of the project. 

160 72%

100 53%

126 57%

71 38%

189 86%

133 70%

Business Case

Scenarios

Workshops



The understanding of a business case allows to stop work on a product that does not 

make sense or to re-scope the product to make it more attractive. 

Workshops create an efficient, controlled, and dynamic setting for quickly eliciting, 

prioritizing, and agreeing on requirements (Gottesdiener 2002). The discussion of re-

quirements by the critical stakeholders makes a requirements workshop to be one of the 

most efficient techniques to perform inquiry and to achieve shared understanding. No 

other technique allow exposure and resolution of conflicts between stakeholders so ef-

ficiently. The same applies for discovery and resolution of misunderstandings. 

We also studied whether the number of techniques used and the number of require-

ment types documented in a project correlates with requirements engineering success. 

Fig. 6 shows the distributions with box plots. 

  

Fig. 6. Number of requirements engineering techniques (left) and number of requirements types 

(right) used in projects with successful, respectively failing requirements engineering. 

According to the Wilcoxon’s rank-sum test, successful projects use a significantly 

larger number of requirements engineering techniques and specify a significantly larger 

number of requirement types than unsuccessful ones. 

Again, the causes for these correlations should be investigated with future research. 

A hypothesis that should be tested is whether there is a large variety of project context 

that require more techniques to be used. The observed large variety of requirements 

engineering techniques used across projects would support this claim. Another hypoth-

esis may be that the experience of a requirements engineer may lead to both greater use 

of techniques and greater likelihood of project success. Experienced requirements en-

gineers will use more techniques and specify more types of requirements than less ex-

perienced requirements engineers. At the same moment they are the better guarantors 

of requirements engineering success. 

0

10

20

30

40

50

60

70

Successful Failing

0

2

4

6

8

10

12

14

Successful Failing



5 Discussion 

5.1 Contribution 

This chapter has provided an overview of common and best practice in requirements 

engineering. Based on answers from 419 projects, it has shown how frequently the 

many requirements engineering were used and which of these techniques correlated 

with requirements engineering success. The presented frequencies of requirements en-

gineering technique use extend the results from earlier surveys  (Neill and Laplante 

2003, Paech, Koenig et al. 2005) with an updated set of practices. For example, prior 

surveys did not evaluate whether common requirements engineering research such as 

i* or KAOS had been transferred to practice. Our results showed that these two tech-

niques were not. The presented results also extend prior research with a number of 

samples that is by far larger than any previous requirements engineering survey was 

based on. We could indicate state-of-practice with a level of accuracy that previous 

surveys could not. 

Earlier surveys did not have enough data to correlate requirements engineering prac-

tice with success, thus gave others fertile grounds to claim that no technique would lead 

to requirements engineering success (Davis and Zowghi 2006). The results shown in 

this chapter provide counter-evidence. While we could not demonstrate sufficiency or 

necessity of any requirements engineering practice, we could show that there are indeed 

a few requirements engineering techniques that are associated with significantly higher 

success rates. The relevant techniques were scenarios, business cases, and workshops. 

Interestingly, the three techniques we identified were not the same that were used by 

companies that valued requirements engineering (Rouibah and Al-Rafee 2009). The 

latter included prototyping, data flow diagrams and techniques like quality function 

deployment and decision trees that are hardly used according to our data. To understand 

why the identified techniques correlate with success, while others do not, future re-

search should investigate what causes the correlations. 

The presented results are relevant for education and practice. They enable compari-

son of own practice and competences with common practice. Requirements engineers 

should be well-versed in the use of the techniques that are used frequently. According 

to our data, almost any requirements engineer will be requested to perform workshops 

and specify functional requirements in natural language. The larger number of tech-

niques used and requirements types specified in successful requirements engineering 

also shows that a requirements engineer should know many practices, rather than few. 

Comparison of the frequencies of the various requirements engineering techniques may 

be used to guide the development of needed competencies. For example, object-ori-

ented analysis techniques should be learned before structured analysis techniques be-

cause the former are much more common in real-world projects than the latter. 

The presented results can be used for advice about effective practice. If the three 

success-correlating techniques cause requirements engineering success, they should be 

used whenever possible. Accepting this assumption, we started utilizing requirements 

workshops systematically. We integrated scenarios into the workshops by role-playing 

and discussing the intended system use with the participating real-world stakeholders. 



We integrated business case by discussing whether and why each of the product’s fea-

tures are needed and by estimating feasibility and cost. Fig. 7 show a photograph from 

one of these workshop, which involved real stakeholders, users, project members, and 

experts. 

 

Fig. 7. Requirements workshop for exploring scenarios and business case (participants shown 

in photograph from left to right: development manager, project leader, requirements engineer, 

domain expert, domain expert, quality of experience expert, lead engineer, user, developer) 

5.2 Threats to Validity 

Any research results should be considered with caution because none is free from 

threats to validity. We discuss here the threats to conclusion, internal, construct, and 

external validity that were suggested for empirical software engineering research by 

(Wohlin, Runeson et al. 2000). 

Conclusion validity is concerned with the relationship between treatment and out-

come. The here presented results are based on a survey with a large-enough number of 

samples that were analyzed by keeping the accumulation of the probability of false 

positives in mind. As a result we can claim that there is a statistically significant rela-

tionship between the identified three practices scenarios, business case, and workshops 

and the success of requirements engineering. 

Internal validity is concerned with the causal relationship between treatment and 

outcome. The survey does not tell us anything about such causal relationships. We have 

no evidence that it is the scenarios, the business case, or the workshops that caused 

success, but just know that their frequency of use is different significantly between 

successful and failing projects. Further research is needed to understand what the right 

causal relationship is. 

Construct validity is concerned with the relation between theory and observation. 

Potential problems may be misunderstanding of questions and answers and inadequate 

operationalization of the concepts we evaluated. We used survey pre-tests with experts 

and with selected respondents, thus have reduced the likelihood of misunderstanding 

the questionnaire. Also, we filtered responses that were incomplete or unreasonable 

based on the free-text answers that were given. The potential problem of inadequate 



operationalization was addressed by basing our definition on prior research of require-

ments engineering success and by adding to the original success measurement the im-

pact of requirements engineering: whether the specified system achieved its goals. The 

study thus reasonably reflects the constructs were intended to evaluate. 

An important threat to validity of this survey concerns external validity. Alike other 

surveys in requirements and software engineering, we used nonprobability sampling to 

reach respondents. Hence, the frequencies we presented are valid for populations of 

projects that have a profile similar to the one presented in Fig. 1. As requirements en-

gineering practice varies a lot across projects, other populations may have different 

frequencies and other conclusions about practice use may need to be drawn. Also avail-

ability and knowledge of techniques evolves over time and affect the frequency distri-

bution of practice use. For example, 30 years ago Structured Analysis would have been 

much more frequent than Object-Oriented Analysis. We conjecture, however, that 

change in the frequency of technique use does not affect the effectiveness of the tech-

niques. The causes that make business cases, scenarios, and workshops effective are 

hardly affected by such changes. Thus we expect the results about practice effectiveness 

to be replicable also in populations other than the studied one. 

5.3 Need for Research 

The large variations of the requirements engineering techniques used by the software 

projects indicates that technique use may depend on context. Such context dependency 

was shown in other related domains as well (Khurum, Fricker et al. 2014). For software 

built for digital health, the context dependency may imply shifts in the frequency of 

practice use. Also, the regulated nature of the healthcare industry may imply that addi-

tional techniques, such as document analysis and reuse of requirements may correlate 

with requirements engineering success. The former may help in the identification of 

compliance requirements (Thuemmler, Fricker et al. 2013), the latter in how to specify 

a system that is compliant. 

Another venue of research is the construction of models that explain how require-

ments engineering success can be achieved. For example, control theory of goal-ori-

ented systems was used to explain how stakeholder needs and development intentions 

can be aligned in a one-to-one situation between a product manager and an architect 

(Fricker, Gorschek et al. 2008) and successfully validated (Fricker and Glinz 2010). 

However, other approaches may be needed to achieve socio-technical alignment of a 

software solutions and technologies in large-scale. Once validated in large-scale, these 

models help us to develop and justify causes and effects behind the correlations that are 

observed in surveys such as the one presented here. They are also the basis to design 

techniques that help practitioners to be successful. 

6 Summary and Conclusions 

This chapter has presented the results of a large-scale survey of requirements engi-

neering practice. The results were obtained by analyzing the answers of 419 projects. 

Many of the answering projects developed of information systems in a bespoke manner 



with known stakeholders. The projects implemented agile, waterfall, and hybrid devel-

opment processes. A wide variety of industries were addressed by the developed soft-

ware products. 221 projects did requirements engineering successfully, 189 not. 

Almost all projects elicited, planned, analyzed, specified, checked, and managed re-

quirements. The most common techniques were stakeholder workshops and the speci-

fication of functional requirements with natural language. For most of the remaining 

techniques can be concluded that requirements engineering practice varies across the 

software projects. Formal techniques were extremely rare, even if they were researched 

intensively. 

Only three techniques correlated with requirements engineering success: scenarios 

of system use, business cases, and stakeholder workshops. We recommend that all pro-

jects implement these practices. In addition we observed that projects with successful 

requirements engineering used more requirements engineering techniques and speci-

fied more types of requirements than unsuccessful ones. We thus recommend the use 

of experienced requirements engineers that are able to identify and apply the right tech-

nique for the many situations that may be encountered in a real-world project. 

The obtained results extend previous surveys that were substantially smaller with 

updated frequencies of requirements engineering technique use and with the really new 

insights into what practices are correlate with success. Further research should look at 

specific project constellations, for example at projects that target digital health, and at 

building theories for what can be done to achieve requirements engineering success. 

References 

Achimugu, P., A. Selamat, R. Ibrahim and M. N. r. Mahrin (2014). "A Systematic 

Literature Review of Software Requirements Prioritization Research." Information and 

Software Technology 56(6): 568-585. 

Alexander, I. and N. Maiden (2005). Scenarios, Stories, Use Cases: Through the 

Systems Development Life-Cycle, John Wiley & Sons. 

Alexander, I. and S. Robertson (2004). "Understanding Project Sociology by Modeling 

Stakeholders." IEEE Software 21(1): 23-27. 

Alvarez, R. and J. Urla (2002). "Tell me a Good Story: Using Narrative Analysis to 

Exmine Informaton Requirements Interviews during an ERP Implementation." Data 

Base for Advances in Information Systems 33(1): 38-52. 

Arlow, J. and I. Neustadt (2005). UML 2 and the Unified Process: Practical Object-

Oriented Analysis and Design, Pearson Education. 

Bajec, M. and M. Krisper (2005). "A Methodology and Tool Support for Managing 

Business Rules in Organisations." Information Systems 30(6): 423-443. 

Berard, B., M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci and P. 

Schnoebelen (2010). Systems and Software Verification: Model-Checking Techniques 

and Tools, Springer Berlin Heidelberg. 

Beyer, H. and K. Holtzblatt (1995). "Apprenticing with the Customer." 

Communications of the ACM 38(5): 45-52. 



Boehm, B., P. Grünbacher and R. Briggs (2001). "Developing Groupware for 

Requirements Negotiation: Lessons Learned." IEEE Software 18(3): 46-55. 

Cheng, B. and J. Atlee (2007). Research Directions in Requirements Engineering. 

Future of Software Engineering (FOSE'07). Washington, DC, USA. 

Chung, J.-Y., K.-J. Lin and R. Mathieu (2003). "Web Services Computing: Advancing 

Software Interoperability." IEEE Computer 36(10): 35-37. 

Chung, L., B. Nixon, E. Yu and J. Mylopoulos (2000). Non-Functional Requirements 

in Software Engineering. Boston, USA, Kluwer Academic Publishers. 

Cleland-Huang, J. and B. Mobasher (2008). Using Data Mining and Recommender 

Systems to Scale up the Requirements Process. 16th IEEE International Requirements 

Engineering Conference (RE'08). Barcelona, Spain. 

Cleland-Huang, J., R. Settimi, E. Romanova, B. Berenbach and S. Clark (2007). "Best 

Practices for Automated Traceability." Computer 40(6): 27-35. 

Cockburn, A. (2001). Writing Effective Use Cases, Addison-Wesley Professional. 

Conradi, R. and B. Westfechtel (1998). "Version Models for Software Configuration 

Management." ACM Computing Surveys 30(2): 232-282. 

Danevas, P. and G. Garva (2012). Domain Driven Development and Feature Driven 

Development for Development of Decision Support Systems. 18th International 

Conference on Information and Software Technologies (ICIST 2012). Kaunas, 

Lithuania. 

Davis, A. (2005). Just Enough Requirements Management, Dorset House Publishing. 

Davis, A., O. Dieste, A. Hickey, N. Juristo and A. Moreno (2006). Effectiveness of 

Requirements Elicitation Techniques: Empirical Results Derived from a Systematic 

Review. 14th IEEE International Requirements Engineering Conference (RE'06). 

Minneapolis, MN, USA. 

Davis, A. and D. Zowghi (2006). "Good Requirements Practices are Neither Necessary 

nor Sufficient." Requirements Engineering 11(1): 1-3. 

DeMarco, T. (1979). Structured Analysis and System Specification, Yourdon Press. 

Denger, C., D. Berry and E. Kamsties (2003). Higher Quality Requirements 

Specifications through Natural Language Patterns. IEEE International Conference on 

Software: Science, Technology and Engineering (SwSTE'03). Herzelia, Israel. 

Dieste, O., N. Juristo and F. Shull (2008). "Understanding the Customer: What do we 

Know about Requirements Elicitation?" IEEE Software 25(2): 11-13. 

Dwarakanath, A., R. Ramnani and S. Sengupta (2013). Automatic Extraction of 

Glossary Terms from Natural Language Requirements. 21st IEEE International 

Requirements Engineering Conference (RE'13). Rio de Janeiro, Brazil. 

Easterbrook, S., R. Lutz, R. Covington, J. Kelly, Y. Ampo and D. Hamilton (1998). 

"Experiences Using Lightweight Formal Methods for Requirements Modeling." IEEE 

Transactions on Software Engineering 24(1): 1-11. 



El Emam, K. and N. Madhavji (1985). A Field Study of Requirements Engineering 

Practices in Information Systems Development. 2nd IEEE International Symposium on 

Requirements Engineering (RE'95). York, England. 

Eveleens, L. and C. Verhoef (2010). "The Rise and Fall of the Chaos Report Figures." 

IEEE Software 27(1): 30-36. 

Fricker, S. (2009). Pragmatic Requirements Communication: The Handshaking 

Approach, Shaker. 

Fricker, S. and M. Glinz (2010). Comparison of Requirements Hand-Off, Analysis, and 

Negotiation: Case Study. 18th IEEE International Requirements Engineering 

Conference (RE'10). Sydney, Australia. 

Fricker, S., T. Gorschek, C. Byman and A. Schmidle (2010). "Handshaking with 

Implementation Proposals: Negotiating Requirements Understanding." IEEE Software 

27(2): 72-80. 

Fricker, S., T. Gorschek and M. Glinz (2008). Goal-Oriented Requirements 

Communication in New Product Development. International Workshop on Software 

Product Management (IWSPM 2008). Barcelona, Spain. 

Fricker, S. and S. Schumacher (2012). Release Planning with Feature Trees: Industrial 

Case. Requirements Engineering: Foundations for Software Quality (RefsQ 2012). 

Essen, Germany. 

Glinz, M. (2010). Very Lightweight Requirements Modeling. 18th IEEE International 

Requirements Engineering Conference (RE'10). Sydney, Australia. 

Glinz, M. and S. Fricker (2013). On Shared Understanding in Software Engineering. 

Software Engineering 2012. Aachen, Germany. 

Glinz, M. and S. Fricker (2014). "On Shared Understanding in Software Engineering: 

An Essay." Computer Science - Research and Development. 

Glinz, M., C. Seybold and S. Meier (2007). Simulation-driven Creation, Validation and 

Evolution of Behavioral Requirements Models. Dagstuhl-Workshop MBEES: 

Modellbasierte Entwiclung eingebetteter Systeme III (MBEES 2007). Braunschweig, 

Germany. 

Gorschek, T., S. Fricker and K. Palm (2010). "A Lightweight Innovation Process for 

Software-Intensive Product Development." IEEE Software 27(1). 

Gorschek, T. and C. Wohlin (2006). "Requirements Abstraction Model." Requirements 

Engineering 11(1): 79-101. 

Gottesdiener, E. (2002). Requirements by Collaboration: Workshops for Defining 

Needs, Addison-Wesley Professional. 

Hassenzahl, M., A. Beu and M. Burmester (2001). "Engineering Joy." IEEE Software 

18(1): 70-76. 

Hickey, A. and A. Davis (2003). Elicitation Technique Selection: How Do Experts Do 

It? 11th IEEE International Requirements Engineering Conference. Monterey Beach, 

CA, USA. 



Hickey, A. and A. Davis (2004). "A Unified Model of Requirements Elicitation." 

Journal of Management Information Systems 20(4): 65-84. 

Holm, S. (1979). "A Simple Sequential Rejective Multiple Test Procedure." 

Scandinavian Journal of Statistics 6(2): 65-70. 

Holtmann, J., J. Meyer and M. von Detten (2011). Automatic Validation and Correction 

of Formalized, Textual Requirements. IEEE Fourth International Conference on 

Software Testing, Verification and Validation Workshops (ICSTW 2011). Berlin, 

Germany. 

IEEE (1990). IEEE Standard Glossary of Software Engineering Terminology 610.12-

1990. 

ISO/IEC (2010). Systems and Software Quality Requirements and Evaluation, 

ISO/IEC. ISO/IEC FDIS 25010. 

Khurum, M., S. Fricker and T. Gorschek (2014). "The Contextual Nature of Innovation 

- An Empirical Investigation of Three Software Intensive Products." Information and 

Software Technology. 

Kniberg, H. and M. Skarin (2010). Kanban and Scrum - Making the Most of Both, 

lulu.com. 

Kobayashi, A. and M. Maekawa (2001). Need-based Requirements Change 

Management. 8th Annual IEEE International Conference and Workshop on the 

Engineering of Computer Based Systems (ECBS 2001). Washington, DC, USA. 

Lam, W., J. McDermid and A. Vickers (1997). "Ten Steps Towards Systematic 

Requirements Reuse." Requirements Engineering 2(2): 102-113. 

Maiden, N., A. Gizikis and S. Robertson (2004). "Provoking Creativity: Imagine What 

Your Requirements Could Be Like." IEEE Software 21(5): 68-75. 

Martin, R. C. and G. Meinik (2008). "Tests and Requirements, Requirements and Tests: 

A Möbius Strip." IEEE Software 25(1): 54-59. 

McGrath, M. E. (2001). Product Strategy for High Technology Companies: 

Accelerating Your Business to Web Speed, McGraw-Hill. 

Melão, N. and M. Pidd (2000). "A Conceptual Framework for Understanding Business 

Processes and Business Process Modelling." Information Systems Journal 10(2): 105-

129. 

Milne, A. and N. Maiden (2012). "Power and Politics in Requirements Engineering: 

Embracing the Dark Side?" Requirements Engineering 17(2): 83-98. 

Myers, B. (1989). "User-Interface Tools: Introduction and Survey." IEEE Software 

6(1): 15-23. 

Mylopoulos, J., L. Chung and E. Yu (1999). "From Object-Oriented to Goal-Oriented 

Requirements Analysis." Communications of the ACM 42(1): 31-37. 

Neill, C. and P. Laplante (2003). "Requirements Engineering: The State of the 

Practice." IEEE Software 20(6): 40-45. 



Ng, L., W. Barfield and F. Mannering (1995). "A Survey-based Methodology to 

Determine Information Requirements for Advanced Traveler Information Systems." 

Transportation Research Part C: Emerging Technologies 3(2): 113-127. 

Paech, B., T. Koenig, L. Borner and A. Aurum (2005). An Analysis of Empirical 

Requirements Engineering Survey Data. Engineering and Managing Software 

Requirements. A. Aurum and C. Wohlin, Springer: 427-452. 

Pérez-Castillo, R., I. Garciía-Rodríguez de Guzmán and M. Piattini (2011). "Business 

Process Archeology using MARBLE." Information and Software Technology 53(10): 

1023-1044. 

Petersen, K. and C. Wohlin (2010). "Measuring the flow in lean software development." 

Software Practice and Experience 41(9): 975-996. 

Phaal, R., C. Farrukh and D. Probert (2003). "Technology Roadmapping - A Planning 

Framework for Evolution and Revolution." Technological Forecasting and Social 

Change 71: 5-26. 

Pohl, K. and C. Rupp (2011). Requirements Engineering Fundamentals: A Study Guide 

for the Certified Professional for Requirements Engineering Exam - Foundation Level 

- IREB Compliant, Rocky Nook Computing. 

Porter, A., L. Votta and V. Basili (1995). "Comparing Detection Methods for Software 

Requirements Inspections - Replicated Experiment." IEEE Transactions on Software 

Engineering 21(6): 563-575. 

Potts, C., K. Takahashi and A. I. Antón (1994). "Inquiry-based requirements analysis." 

IEEE software 11(2): 21-32. 

Raiffa, H. (2007). Negotiation Analysis: The Science and Art of Collaborative Decision 

Making, Harvard University Press. 

Rea, L. and R. Parker (2005). Designing and Conducting Survey Research: A 

Comprehensive Guide. San Francisco, CA, USA, Jossey-Bass. 

Rettig, M. (1994). "Prototyping for Tiny Fingers." Communications of the ACM 37(4): 

21-27. 

Ross, D. (1977). "Structured Analysis (SA): A Language for Communicating Ideas." 

IEEE Transactions on Software Engineering 3(1): 16-34. 

Rouibah, K. and S. Al-Rafee (2009). "Requirements Engineering Elicitation Methods: 

A Kuwaiti Empirical Study about Familiarity, Usage and Perceived Value." 

Information Management & Computer Security 17(3): 192-217. 

Schmidt, M. (2002). The Business Case Guide, Solution Matrix. 

Schobbens, P.-Y., P. Heymans, J.-C. Trigaux and Y. Bontemps (2007). "Generic 

Semantics of Feature Diagrams." Computer Networks 51(2): 456-479. 

Standish Group International (1995). The CHAOS Report, Standish Group 

International, Inc. 

Svahnberg, M., T. Gorschek, R. Feldt, R. Torkar, S. Bin Saleem and M. U. Shafique 

(2010). "A Systematic Review on Strategic Release Planning Models." Information and 

Software Technology 52(3): 237-248. 



Thuemmler, C., S. Fricker, O. Mival, D. Benyon, W. Buchanan, A. Paulin, M. Fiedler, 

B.-J. Koops, E. Kosta, A. Grottland, A. Schneider, T. Jell, A. Gavras, M. Barros, T. 

Magedanz, P. Cousin, I. Ispas and E. Petrakis (2013). Norms and Standards in Modular 

Medical Architectures. IEEE 15th International Conference on e-Health Networking, 

Applications and Services (Healthcom 2013). Lisbon, Portugal. 

van de Weerd, I., S. Brinkkemper, R. Nieuwenhuis, J. Versendaal and L. Bijlsma 

(2006). Towards a Reference Framework for Software Product Management. 14th 

IEEE International Requirements Engineering Conference (RE'06). Minneapolis; MN, 

USA. 

van Lamsweerde, A. (2001). Goal-Oriented Requirements Engineering: A Guided 

Tour. 5th IEEE International Symposium on Requriements Engineering (RE'01). 

Toronto, Canada. 

Vermersch, P. (2009). "Describing the Practice of Introspection." Journal of 

Consciousness Studies 16(10-12): 20-57. 

Whittle, J. and J. Schumann (2000). Generating Statechart Designs from Scenarios. 

IEEE International Conference on Software Engineering (ICSE 2000). Limerick, 

Ireland. 

Wohlin, C., P. Runeson, M. Host, C. Ohlsson, B. Regnell and A. Wesslén (2000). 

"Experimentation in software engineering: an introduction." 

Zowghi, D. and C. Coulin (2005). Requirements Elicitation: A Survey of Techniques, 

Approaches, and Tools. Engineering and Managing Software Requirements. A. Aurum 

and C. Wohlin. Berlin, Germany, Springer. 

 

 

View publication stats

https://www.researchgate.net/publication/292613523

